当前位置: 仪器信息网 > 行业主题 > >

新高效液相色谱质谱法

仪器信息网新高效液相色谱质谱法专题为您整合新高效液相色谱质谱法相关的最新文章,在新高效液相色谱质谱法专题,您不仅可以免费浏览新高效液相色谱质谱法的资讯, 同时您还可以浏览新高效液相色谱质谱法的相关资料、解决方案,参与社区新高效液相色谱质谱法话题讨论。

新高效液相色谱质谱法相关的论坛

  • 【已应助】高效液相色谱-串联质谱法测定饲料中三聚氰胺

    【序号】:1【作者】:周杨; 冯群科; 朱永林;【题名】:高效液相色谱-串联质谱法测定饲料中三聚氰胺【期刊】:中国饲料【年、卷、期、起止页码】:2010年 12期 【全文链接】:http://202.119.208.220:8002/kns50/detail.aspx?dbname=CJFD2010&filename=SLGZ201012013

  • 固相萃取-超高效液相色谱法-串联质谱法测定蜂蜜中甲硝唑

    固相萃取-超高效[url=https://insevent.instrument.com.cn/t/5p][color=#3333ff]液相色谱[/color][/url]法-串联质谱法测定蜂蜜中甲硝唑[color=black] [/color][font=宋体][color=black]甲硝唑(MNZ)属于硝基咪唑类广谱抗生素,广泛用于预防和治疗组织滴虫病、球虫病等疾病,甲硝唑因疗效明显,价格低廉,被蜂农广泛使用,造成了甲硝唑药物在蜂蜜中残留[/color][/font][font=宋体][sup][size=13px][1,2][/size][/sup][/font][font=宋体][color=black],研究发现甲硝唑对人体具有潜在的致癌和致畸作用[/color][/font][font=宋体][sup][size=13px][3,4][/size][/sup][/font][font=宋体][color=black]。1998年欧盟禁止甲硝唑使用于食品动物,2002年美国食品与药物监督管理局禁止在进口动物源性食品中使用甲硝唑[/color][/font][font=宋体][sup][size=13px][5,6][/size][/sup][/font][font=宋体][color=black]。我国农业部和国家药品监督管理局2002年规定甲硝唑及其盐、酯及制剂不准以促进动物生长为目的在所有食品动物饲养过程中使用,且不得在动物源食品中检出[/color][/font][font=宋体][sup][size=13px][7,8][/size][/sup][/font][font=宋体][color=black]。目前甲硝唑的测定方法主要有[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱[/color][/url]法、高效[url=https://insevent.instrument.com.cn/t/5p][color=#3333ff]液相色谱[/color][/url]法、[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱[/color][/url]-质谱法和[url=https://insevent.instrument.com.cn/t/5p][color=#3333ff]液相色谱[/color][/url]-串联质谱法[/color][/font][font=宋体][sup][size=13px][9][/size][/sup][/font][font=宋体][color=black]。其中,[url=https://insevent.instrument.com.cn/t/5p][color=#3333ff]液相色谱[/color][/url]法-串联质谱法因选择性强、灵敏度高、检出限低而成为测定甲硝唑的优势方法[/color][/font][font=宋体][sup][size=13px][10][/size][/sup][/font][font=宋体][color=black]。本文将蜂蜜用乙酸乙酯萃取,提取液浓缩后经 [/color][/font][color=black]MCS [/color][font=宋体][color=black]固相萃取柱快速富集净化样品的前处理方法,减少前处理的操作步骤,同时降低基质干扰,利用超高效[url=https://insevent.instrument.com.cn/t/5p][color=#3333ff]液相色谱[/color][/url]法—串联质谱法测定蜂蜜中甲硝唑的方法,内标法定量,提高了检测效率,适合大批量样品检测。 [/color][/font][color=black]1.材料与方法[/color][size=16px][color=black] [/color][/size][color=black]1.1 仪器与试剂[/color][color=black]Waters Xevo TQ-S三重四极杆质谱仪(美国Waters),配有电喷雾离子源(ESI) Heidolph Multi Reax全能型振荡器(德国海道夫) 氮吹仪(美国Organomation);高速低温离心机(湘仪) 乙腈、甲醇(色谱纯,德国Merck);甲酸(色谱纯,上海麦克林);乙酸乙酯(色谱纯,美国Fisher);氨水(分析纯,天津科密欧);盐酸(优级纯,北京化工厂);MCS固相萃取小柱(天津,艾杰尔):500ml/6ml;甲硝唑标准品、D4-甲硝唑(纯度均大于99.0%)。实验用水为超纯水(电阻率为18.2mΩ.厘米)。[/color][color=black]1.2 样品前处理[/color][color=black]1.2.1 样品提取 称取蜂蜜5g(精确到 0.01 g)于50ml离心管中,加入100μlD4-甲硝唑内标应用液(20.0ng/ml),加水10ml,混合溶解,再加入10mL乙酸乙酯,涡旋1min,震荡提取 10min,1000rpm 离心 2min,吸取上层乙酸乙酯相 5mL 于10mL 试管,50℃氮气吹干后,加入 0.1mL 甲醇溶解,再加入 1.9mL 40mmol/L盐酸溶液,超声溶解 1min,转入 2mL 离心管,12000rpm 离心 2min,上清液待净化。[/color][color=black]1.2.2 样品净化 依次用 5mL 甲醇、5mL 水、5mL 40mmol/L 的盐酸溶液活化平衡MCS 固相萃取柱,然后转移上述上清液至 MCS 柱内,待样品过柱后,用 5mL水淋洗除杂,真空抽干柱内液体后加入 5mL 乙酸乙酯洗脱,再用 5mL 甲醇淋洗除杂,真空抽干后用 5mL 5%氨化甲醇洗脱,收集于 10mL 具塞试管内,得甲硝唑洗脱液;洗脱液在 50℃下用氮气吹干,分别先加入 0.1mL 甲醇超声溶解残留物,再加入0.9mL 10%甲醇/水溶液混匀,过 0.22μm 滤膜后待 [url=https://insevent.instrument.com.cn/t/Yp][color=#3333ff]LC-MS[/color][/url]/MS 分析。[/color][color=black]1.3 仪器条件[/color][color=black]1.3.1 [url=https://insevent.instrument.com.cn/t/5p][color=#3333ff]液相色谱[/color][/url]条件 色谱柱:Waters ACQUITY UPLC BEH C18(100 mm×2.1 mm,1.7 μm),流动相A为0.05% 氨水溶液,B为乙腈,流速为 0.3 mL/min,柱温:40 ℃,进样量 5.0 μl。[/color][color=black]1.3.2 质谱条件 电喷雾离子源:ESI;质谱多重反应监测方式:MRM;正离子模式(ESI+);毛细管电压:0.5 kV;离子源温度150 ℃;脱溶剂气温度400 ℃;脱溶剂气流量800 L/h。其它质谱参数见表1。[/color][align=center][color=black]表1 [/color]甲硝唑的质谱参数与保留时间[/align][table][tr][td][align=center]化合物名称[/align][/td][td][align=center]母离子[/align][/td][td][align=center]子离子[/align][/td][td][align=center]碰撞能量(eV)[/align][/td][td][align=center]锥孔电压(V)[/align][/td][td][align=center]保留时间(min)[/align][/td][/tr][tr][td][align=center]甲硝唑[/align][/td][td][align=center]172.2[/align][/td][td][align=center]128.1*[/align][align=center]82.1[/align][/td][td][align=center]18[/align][align=center]20[/align][/td][td][align=center]54[/align][/td][td][align=center]1.40[/align][/td][/tr][tr][td][align=center]D4-甲硝唑[/align][/td][td][align=center]176.2[/align][/td][td][align=center]128.1*[/align][align=center]49.0[/align][/td][td][align=center]22[/align][align=center]22[/align][/td][td][align=center]2[/align][/td][td][align=center]1.39[/align][/td][/tr][/table]注:*为定量离子[color=black]结果与讨论[/color][color=black] 前处理方法优化 针对蜂蜜样品和目标物的性质,比较了3种不同的前处理方式,包括:(1)采用水直接溶解蜂蜜,再将蜂蜜水溶液进行固相萃取净化;(2)加水溶解蜂蜜后,加入乙酸乙酯萃取目标物,取乙酸乙酯层并将溶剂吹干后加入超纯水溶解残渣,再进行固相萃取净化;(3)采用pH=8.8的磷酸缓冲液溶解蜂蜜,再将样品溶液进行固相萃取净化.通过加标回收实验比较回收率表明,本实验采用方法(2)的回收率明显高于其他2种方式,故对蜂蜜试样采用方法(2)前处理方式。[/color][color=black] 基质效应的影响 基质和干扰组分的存在影响待测物的离子化效率,从而影响定量结果的准确性,常表现为基质增强或基质抑制效应[/color][sup][size=13px][11][/size][/sup][color=black]。分别采用空白蜂蜜,按照实验方法提取与净化后的定容液和初始流动相作为标准溶液的稀释溶剂,通过测定标准溶液的峰面积的比值考察基质效应的强弱。结果表明:两者的峰面积比值为0.757,即蜂蜜基质对甲硝唑的测定具有一定的抑制效应,本实验选择同位素内标法定量,从而有效地降低样品的基质效应的对测定结果的影响。[/color][color=black]2.3 质谱条件的优化 将甲硝唑标准工作液注入质谱,启用质谱智能方法开发程序,优化碰撞能量,碰撞池电压等参数,进一步优化其他质谱参数使灵敏度和离子化效率达到最优时保存为质谱方法。离子对、碰撞能量、锥孔电压、电离方式见表1。[/color][color=black]2.4 方法的线性关系和检出限 以甲硝唑与相应同位素内标的色谱峰面积比(y)为纵坐标,以甲硝唑的质量浓度(x)为横坐标,绘制工作曲线,线性回归方程为Y=1.004X+0.1243,相关系数r:0.9996,线性关系良好。以信噪比S/N=3时对应的浓度为方法检出限为0.05[/color]μg/kg[color=black],S/N=10时对应的浓度为方法定量限为0.15[/color]μg/kg。标准工作曲线见图1。[align=center][color=black]图1 甲硝唑工作曲线[/color][/align][color=black]2.5 方法的精密度和回收率 [/color]以5g空白蜂蜜样品作为本底,分别加入高、中、低3种不同浓度标准应用液,得到浓度为1[color=black]μg/kg[/color]、5μg/kg、20μg/kg的加标样品,充分混匀后按样品处理方法进行处理,平行测定6次,计算其加标回收率和相对标准偏差(RSD),加标回收率分别为87%~96.3%,RSD在2.23~6.17%之间,结果表明,此方法具有良好的准确性和精密度。[color=black]2.6 样品检测[/color][font=calibri][size=13px] [/size][/font][color=black]采用本方法对市售30份不同蜂蜜样品进行检测,其中1份检出甲硝唑残留,含量是0.27 [/color]μg/kg,检出率为3.3%。3 结论本研究建立了超高效[url=https://insevent.instrument.com.cn/t/5p][color=#3333ff]液相色谱[/color][/url]法—串联质谱法测定蜂蜜中甲硝唑的含量的方法,样品前处理采用乙酸乙酯提取,固相萃取柱富集和净化,净化效果好,提取效率高。不同蜂蜜样品基质效应使甲硝唑在质谱中存在不同程度的基质抑制效应,实际测定中蜂蜜的种类繁多,若使用外标法定量应尽量使用与待测样品基质相同的样品作基质匹配工作曲线,基质不同需要配置不同的曲线系列,大大增加了工作量。本研究采用同位素内标法定量,降低了样品的基质效应的影响,只需配置一套工作曲线,提高了工作效率。本方法快速、准确、灵敏,能够满足日常蜂蜜样品中甲硝唑残留的大批量检测。参考文献[1]梁明.超高效[url=https://insevent.instrument.com.cn/t/5p][color=#3333ff]液相色谱[/color][/url]-串联质谱法对蜂蜜中氯霉素和甲硝唑残留的测定分析[J].中国高新科技,2019(17):72-73.[2]张晓艺,张秀尧,蔡欣欣,李瑞芬.超高效[url=https://insevent.instrument.com.cn/t/5p][color=#3333ff]液相色谱[/color][/url]联用三重四极杆质谱法同时测定蜂蜜中氯霉素、甲硝唑和林可霉素[J].预防医学,2019,31(02):212-216.[3]周贻兵,吴坤,李磊,林野,刘利亚.超高效[url=https://insevent.instrument.com.cn/t/5p][color=#3333ff]液相色谱[/color][/url]-串联质谱法测定蜂蜜中甲硝唑[J].理化检验(化学分册),2017,53(08):946-949.[4]丁燕玲,陈彤,黄婷,钟名琴,吴雯娟,罗燕.超高效[url=https://insevent.instrument.com.cn/t/5p][color=#3333ff]液相色谱[/color][/url]-串联质谱法测定鸡肉中甲硝唑、二甲硝唑及其代谢物的方法研究[J].广东化工,2018,45(13):245-248+252.[5]王春民,张秋萍,吴春霞.超高效[url=https://insevent.instrument.com.cn/t/5p][color=#3333ff]液相色谱[/color][/url]-串联质谱法检测蜂蜜中的甲硝唑含量[J].食品安全质量检测学报,2016,7(05):1813-1817.[6]章剑,李昌安,李建伟,董骏,张克才.固相萃取-超高效[url=https://insevent.instrument.com.cn/t/5p][color=#3333ff]液相色谱[/color][/url]-串联质谱法同时测定蜂蜜样品中氯霉素和甲硝唑[J].安徽预防医学杂志,2018,24(01):16-20.[7]刘伟,张楠,李兵,范赛,屠瑞莹,吴国华,薛颖,赵榕.固相萃取-超高效[url=https://insevent.instrument.com.cn/t/5p][color=#3333ff]液相色谱[/color][/url]-同位素稀释串联质谱法测定蜂蜜中的甲硝唑和氯霉素[J].分析科学学报,2017,33(01):145-148.[8]肖国军,蔡超海,王生,覃玲.固相萃取高效[url=https://insevent.instrument.com.cn/t/5p][color=#3333ff]液相色谱[/color][/url]串联质谱法同时测定蜂蜜中甲硝唑、氯霉素、甲砜霉素和氟甲砜霉素残留[J].中国卫生检验杂志,2018,28(01):22-25.[9]高何刚,杜赛,王瑞,陈理.超高效[url=https://insevent.instrument.com.cn/t/5p][color=#3333ff]液相色谱[/color][/url]-串联质谱法测定蜂蜜中氯霉素和甲硝唑残留[J].预防医学,2017,29(09):969-972.[10]高何刚.超高效[url=https://insevent.instrument.com.cn/t/5p][color=#3333ff]液相色谱[/color][/url]一串联质谱法测定蜂蜜中氯霉素和甲硝唑残留[J].广东化工,2017,44(15):255-256.[11]图雅,崔建平,赵宏.同位素内标-超高效[url=https://insevent.instrument.com.cn/t/5p][color=#3333ff]液相色谱[/color][/url]-串联质谱法测定蜂蜜中氯霉素及甲硝唑[J].中国食品卫生杂志,2017,29(04):450-453.

  • 超高效液相色谱法的优点

    要实现超高效液相色谱分析,除必须制备出装填粒度小于2μm固定相的色谱柱外,还必须提供高压溶剂输送单元、低死体积的色谱系统、快速的检测器、快速自动进样器和高速数据采集、控制系统等,才能促成超高效液相色谱的实现。超高效液相色谱的优点基于1.7μm小颗粒技术的超高效液相色谱与人们熟知的高效液相色谱(HPLC)技术,具有相同的分离原理。不同的是,超高效液相色谱不仅比HPLC具有更高的分离能力,而且结束了人们多年不得不在速度和分离度之间取舍的历史。使用超高效液相色谱可以在很宽的线速度、流速和反压下进行高效的分离工作,并获得优异的结果。提高分离度超高效液相色谱发挥了1.7μm颗粒提供柱效增高的全部优越性。尤其是1.7μm颗粒提供的柱效比5μm颗粒提高了3倍。因为分离度与粒度的平方根成反比,1.7μm颗粒的分离度比5μm颗粒提高了70%。在梯度分离中也具有同样的优越性。提高分析速度由于超高效液相色谱系统采用1.7μm颗粒,柱长则可以比使用5μm颗粒时缩短3倍而保持柱效不变,而且使分离在高3倍的流速下进行,结果使分离时间缩短而分离度保持不变。提高检测灵敏度浓缩样品和采用各种高灵敏度的检测器都能提高灵敏度,而在超高效液相色谱中通过减小颗粒度,使色谱峰变得更窄,信噪比(S/N)增大,灵敏度得到额外的提高。提高质谱离子化效率减小基质效应[url=https://insevent.instrument.com.cn/t/Yp][color=#3333ff]LC-MS[/color][/url]已经是液相色谱发展的主流,能够充分发挥LC高分离度和MS高灵敏度的优势,超高效液相色谱与MS的联用使这种优势更加明显:一方面,超高效液相色谱系统达到最佳线速度时,其流动相流速一般在0.25~0.50ml/min之间,这与质谱能承受的流速更加匹配(API接口一般能承受0.20ml/min),使离子化效率增加,而新的nano超高效液相色谱的流量更可低至200nl/min,可以不需分流而直接进入质谱 另一方面,超高效液相色谱的分离度比HPLC有很大提高,其色谱峰扩展很小,峰浓度很高,这样不但有利于化合物的离子化,同时有助于与基质杂质分离,在一定程度上能降低基质效应,从而使灵敏度和重现性得到提高。

  • 超高效液相色谱_线性离子阱/静电场轨道阱高分辨质谱法快速检测化妆品中22种功效成分

    熊陈思慧等建立了超高效液相色谱_线性离子阱/静电场轨道阱高分辨质谱法同时测定化妆品中的22种功效成分,样品采用甲醇超声提取C18 色谱柱 (100mm *2.1 mm,1.8μm)分离,以0.1% (v/v)甲酸水溶液和乙腈为流动相进行梯度洗脱 在正离子模式下以保留时间和一级母离子精确质量数进行定量分析以高能碰撞诱导解离获得的二级碎片离子精确质量数进行确证结果表明该方法线性关系良好检出限LOD 为 0.003~2.01mg/kg,定量限LOQ 为 0.02~4.36mg/kg水乳霜 种基质中 个添加水平的回收率范围为63.2%~125.1%相对标准偏差为0.18%~10.9%对标示含有烟酰胺抗坏血酸葡糖苷咖啡因泛醇及甘草类光果甘草根茎叶甘草根胀果、甘草根、麦冬根人参根黄芪根虎杖根苦参根地黄根积雪草茶叶提取物的54批样品进行检测标示单体功效成分的样品均有检出标示不同植物提取物的46批样品中24批检出植物提取物的功效成分,该方法简便快速定性定量可靠适用于化妆品中22种功效成分的定量测定。 文章具体内容见附件

  • 关于高效液相色谱仪和质谱联用仪的区别

    [b][color=#444444]实验室准备购买一台高效液相用来检测食品中添加剂和兽药残留等项目,但是在标准中看到添加剂的检测用高效液相色谱仪(带紫外检测器),在药物残留上用的是“液相色谱串联四极杆质谱仪”和高效液相色谱仪。听说现在现在都用质谱联用仪了,请问高效液相色谱仪和质谱联用仪是一回事吗?到底买哪个能够满足要求?[/color][/b]

  • 【资料】熊猫分享--超高效液相色谱-电喷雾质谱法结合同位素稀释技术检测动物源性食品中的六溴环十二烷异构体

    超高效液相色谱-电喷雾质谱法结合同位素稀释技术检测动物源性食品中的六溴环十二烷异构体 施致雄 封锦芳 李敬光 赵云峰 吴永宁   建立了使用超高效液相色谱-电喷雾四极杆质谱(UPLC-ESI-MS)结合同位素稀释技术准确测定动物源性食品中六溴环十二烷(HBCD)的3种非对映异构体的方法。试样在加入同位素内标13C-HBCD后进行索氏提取,提取液去除脂肪后经硅胶固相萃取柱浓缩、净化后,通过Waters ACQUITY UPLCTMBEH C18色谱柱分离,以甲醇-乙腈混合液和水为流动相进行梯度洗脱。在UP[url=https://insevent.instrument.com.cn/t/Yp][color=#3333ff]LC-MS[/color][/url]分析过程中以保留时间和母离子信息进行定性,选择离子记录(SIR)方式定量。该法对于所测试的鲜奶、鱼肉等样品,检出限为0.1~0.4ng/g,定量限为0.4~1.2ng/g。对于加标鱼肉样品,添加水平为0.6,2.0和6.0ng/g时,3种被测物的加标回收率为92.9%~99.3%,相对标准偏差为3.1%~8.0%。【作者单位】:中国疾病预防控制中心营养与食品安全所 首都医科大学公共卫生与家庭医学学院 中国疾病预防控制中心营养与食品安全所 中国疾病预防控制中心营养与食品安全所 中国疾病预防控制中心营养与食品安全所 北京100050 首都医科大学公共卫生与家庭医学学院 北京100069 北京100069 北京100050 北京100050 北京100050 首都医科大学公共卫生与家庭医学学院 北京100069【关键词】:超高效液相色谱 电喷雾质谱 同位素稀释 六溴环十二烷异构体 食品【基金】:国家高技术研究发展计划(“863”计划)专题课题(No.2006AA06Z043) “十一五”国家科技支撑计划重大项目(No.2006BAK02A10) 北京市教育委员会科技发展计划项目(No.KM200810025022).【分类号】:TS207【DOI】:CNKI:SUN:SPZZ.0.2008-01-000【正文快照】:  1,2,5,6,9,10-六溴环十二烷(hexabrom ocy-c lododecane,HBCD)是一种非芳香的溴代环烷烃,主要用作添加性的阻燃剂添加在热塑性塑料中,最终产品主要为苯乙烯树脂。另外在纺织品涂层、电缆线、橡胶粘合剂及不饱和聚酯的生产中也有应用。[img]http://www.instrument.com.cn/bbs/images/affix.gif[/img][url=http://www.instrument.com.cn/bbs/download.asp?ID=107349]超高效液相色谱-电喷雾质谱法结合同位素稀释技术检测动物源性食品中的六溴环十二烷异构体[/url]

  • 超高效液相色谱?串联质谱法快速测定化妆品中 87 种禁用原料

    胡  贝等建立了超高效液相色谱? 串联质谱测定化妆品中 87 种禁用原料的方法,其适用于水基类、乳液膏霜类和油基类 3 种常见化妆品基质。 实验对提取溶剂、提取时间及色谱、质谱条件进行了考察。 水基类和乳液膏霜类化妆品用乙腈分散、50% 乙腈水溶液超声提取,油基类化妆品用正己烷分散、70% 乙腈水溶液涡旋提取;采用 CORTECSC18 色谱柱( 150 mm×2. 1 mm, 2. 7 μm) 进行分离,以乙腈和 0. 1% 甲酸水溶液为流动相进行梯度洗脱,流速为 0. 3mL / min,柱温为 40 ℃ ,进样量为 2 μL。 采用电喷雾电离( ESI) 源,在多反应监测( MRM) 模式下采集数据,利用基质匹配标准曲线进行定量分析。 结果表明,87 种禁用原料在各自的线性范围内具有良好的线性关系, 相关系数( r) >0. 99,检出限( LOD) 为 0. 07 ~ 0. 38 μg / g,定量限( LOQ) 为 0. 21 ~ 1. 15 μg / g。 3 种化妆品基质中 87 种禁用原料在低、中、高 3 个加标水平下的加标回收率为 81. 7% ~ 115. 4% ,相对标准偏差( RSD, n = 6) 为 0. 4% ~ 9. 9% 。 采用该方法对 349 批化妆品样品进行测定,共发现 8 批阳性样品,检出成分分别为甲氧苄啶、特比萘芬、萘甲唑啉、7? 甲 氧基香豆素和 7? 甲基香豆素。 本方法前处理过程简便,定性、定量可靠,可用于测定化妆品中 87 种禁用原料,能够为化妆品的快速风险筛查和国家标准的制修订提供技术支撑。 文章具体内容见附件

  • 22.8 高效液相色谱-电喷雾-质谱法分析补骨脂中化学成分

    22.8 高效液相色谱-电喷雾-质谱法分析补骨脂中化学成分

    【作者】 刘亚男; 王跃飞; 韩立峰; 潘桂湘; 王虹;【Author】 LIU Ya′nan,WANG Yuefei,HAN Lifeng,PAN Guixiang,WANG Hong(Engineering Research Center of Modern Chinese Medicine Discovery and Preparation Technique Traditional Chinese MedicineResearch Centre of Tianjin University of Traditional Chinese Medicine,Tianjin 300193,China)【机构】 天津中医药大学中医药研究院现代中药发现与制剂技术教育部工程研究中心;【摘要】 目的:建立补骨脂药材中化学成分的高效液相色谱-电喷雾质谱分析方法。方法:采用DiamonsilTMC18(4.6 mm×250 mm,5μm)色谱柱;流动相0.05%甲酸水溶液-乙腈,梯度洗脱;流速1 mL.min-1;柱温30℃;DAD扫描范围190~400nm;检测波长246 nm。Finnigan电喷雾离子阱多级质谱仪;正离子检测模式;ESI喷雾电压4 500 V;鞘气(N2)流速60个单位;辅助气(N2)流速20个单位;毛细管温度350℃;毛细管电压19 V,扫描范围m/z90~800。结果:补骨脂中化学成分获得了较好的分离和检测,共鉴定出2个香豆素苷,3个香豆素,8个黄酮和1个单萜酚类成分。结论:该方法灵敏度高、分离度好,适用于补骨脂药材中化学成分的快速定性鉴定。 http://ng1.17img.cn/bbsfiles/images/2012/07/201207301609_380605_2379123_3.jpghttp://ng1.17img.cn/bbsfiles/images/2012/07/201207301609_380606_2379123_3.jpg

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制