当前位置: 仪器信息网 > 行业主题 > >

无人机遥感遥测实验室

仪器信息网无人机遥感遥测实验室专题为您整合无人机遥感遥测实验室相关的最新文章,在无人机遥感遥测实验室专题,您不仅可以免费浏览无人机遥感遥测实验室的资讯, 同时您还可以浏览无人机遥感遥测实验室的相关资料、解决方案,参与社区无人机遥感遥测实验室话题讨论。

无人机遥感遥测实验室相关的论坛

  • 无人机就业的十大方向

    无人机就业的十大方向

    [back=url(&][/back]#无人机 [img=,690,460]https://ng1.17img.cn/bbsfiles/images/2022/07/202207111853574154_8809_5665336_3.png!w690x460.jpg[/img]中国无人机市场潜力有多大,无人机就业前景就有多火爆!仅仅十年时间,中国民用无人机市场规模飞速增长。有数据显示,到2023年,中国无人机市场规模将达到968亿元,其中军用无人机规模约350亿元,民用无人机规模将达620亿元,占比将突破六成以上。随着无人机市场规模的惊人增长,无人机就业热度持续飙升!2022年全国民航工作会议报告中提到,截至2021年,全国共有无人机相关企业1.27万家,实名登记无人机达到83万家,累计飞行时间达到千万小时量级。随着人社部正式公布无人机驾驶员成为新职业,在国家政策的支持下,选择学习无人机已不再以兴趣为主,更多人以就业为目的,通过学习掌握无人机技术,实现无人机行业就业。[img=,690,495]https://ng1.17img.cn/bbsfiles/images/2022/07/202207111854265808_9723_5665336_3.jpg!w690x495.jpg[/img]无人机在各行各业应用十分广泛,与之催生的细分领域就业机会非常丰富,当下无人机就业主要有以下十大方向:1、农林植保、农林病虫害监测与防治;2、电力巡线、线架线、风车巡检;3、石油管道巡线、移动基站;4、航拍、数字遥感,空中检查;5、国土资源勘查、测绘、水资源勘查;6、应急救援、公安反恐、国土监测;7、交通路口监控、高速公路巡查;8、保险勘查、环保监测;9、影视/广告拍摄;10、无人机试飞、测试、维修等。广电计量咨询与培训事业部无人机培训中心是中国民航局官方授权的无人机培训机构,是全国首批无人机行业“两证同考”(民航局CAAC无人机驾驶员执照及AOPA无人机驾驶员合格证)的培训机构,拥有丰富的无人机培训与应用服务经验,拥有完善的无人机教学设备与雄厚的教学资源,采用理论加实操相结合的教学方法,让学员顺利通过无人机考试。课程全国招生、师资力量雄厚、考证通过率高![back=url(&][/back][back=url(&][/back][align=center][i][/i][/align][b]无人机就业的十大方向[/b][align=center][i][/i][/align][b]无人机就业的十大方向[/b]#无人机 中国无人机市场潜力有多大,无人机就业前景就有多火爆!仅仅十年时间,中国民用无人机市场规模飞速增长。有数据显示,到2023年,中国无人机市场规模将达到968亿元,其中军用无人机规模约350亿元,民用无人机规模将达620亿元,占比将突破六成以上。随着无人机市场规模的惊人增长,无人机就业热度持续飙升!2022年全国民航工作会议报告中提到,截至2021年,全国共有无人机相关企业1.27万家,实名登记无人机达到83万家,累计飞行时间达到千万小时量级。随着人社部正式公布无人机驾驶员成为新职业,在国家政策的支持下,选择学习无人机已不再以兴趣为主,更多人以就业为目的,通过学习掌握无人机技术,实现无人机行业就业。无人机在各行各业应用十分广泛,与之催生的细分领域就业机会非常丰富,当下无人机就业主要有以下十大方向:1、农林植保、农林病虫害监测与防治;2、电力巡线、线架线、风车巡检;3、石油管道巡线、移动基站;4、航拍、数字遥感,空中检查;5、国土资源勘查、测绘、水资源勘查;6、应急救援、公安反恐、国土监测;7、交通路口监控、高速公路巡查;8、保险勘查、环保监测;9、影视/广告拍摄;10、无人机试飞、测试、维修等。广电计量咨询与培训事业部无人机培训中心是中国民航局官方授权的无人机培训机构,是全国首批无人机行业“两证同考”(民航局CAAC无人机驾驶员执照及AOPA无人机驾驶员合格证)的培训机构,拥有丰富的无人机培训与应用服务经验,拥有完善的无人机教学设备与雄厚的教学资源,采用理论加实操相结合的教学方法,让学员顺利通过无人机考试。课程全国招生、师资力量雄厚、考证通过率高!通用航空企业经营许可证(无人机)目前,广电计量推出了无人机考证限时优惠活动,优惠额度超过千元,具体情况如图[img=,664,1354]https://ng1.17img.cn/bbsfiles/images/2022/07/202207111854464792_1883_5665336_3.jpg!w664x1354.jpg[/img]01、限时优惠时间:5月25日-7月24日02、招生范围:全国招生03、可享受优惠课程注:具体优惠价格请详询客服人员确认04、可考证书:民航局CAAC无人机驾驶员执照及AOPA无人机驾驶员合格证

  • 有没有想要考无人机持证上岗的小伙伴呢?

    [img=,560,401]http://tiebapic.baidu.com/tieba/pic/item/a044ad345982b2b7f8da0e1f74adcbef77099ba7.jpg?tbpicau=2022-07-16-09_7cb1e625dc1511482649c86b380832ca[/img]无人机在各行各业应用十分广泛,与之催生的细分领域就业机会非常丰富,当下无人机就业主要有以下十大方向:1、农林植保、农林病虫害监测与防治;2、电力巡线、线架线、风车巡检;3、石油管道巡线、移动基站;4、航拍、数字遥感,空中检查;5、国土资源勘查、测绘、水资源勘查;6、应急救援、公安反恐、国土监测;7、交通路口监控、高速公路巡查;8、保险勘查、环保监测;9、影视/广告拍摄;10、无人机试飞、测试、维修等。[img=,388,553]http://tiebapic.baidu.com/tieba/pic/item/9a504fc2d5628535a5e2e5fad5ef76c6a6ef63ee.jpg?tbpicau=2022-07-16-09_ee700a6be1d4f9a838805e9f7af9e73e[/img]有需要可以扫码或打电话滴滴我哟! 联系人:王老师,19860074164(微信同号)

  • 无人机喷洒农药缺液提醒

    无人机喷洒农药缺液提醒

    [size=18px]现代农业,已经是使用无人机喷农药,成了一种常见的农用设备,大大的提高了效率。 无人机喷洒农药操作十分简单,且体积轻巧,很大几率会喷洒一半之后,就没农药可喷。这个时候就需要有一个提醒,即缺液提醒。实现无人机装载农药的水箱如何实现缺液提醒?可以使用光电式水位传感器进行检测,有一体式和非接触式,一体式有耐腐蚀材质,和不耐腐蚀材质,而非接触式需要在水箱上设计一个棱镜,水箱可移动,可根据实际情况进行选择。可以及时的识别内部的液位情况,以此进行智能控制。[/size][align=center][size=18px][img=,605,375]https://ng1.17img.cn/bbsfiles/images/2022/04/202204241543282751_9181_4008598_3.jpg!w605x375.jpg[/img][/size][/align][size=18px]当液体低于此位置的时候,传感器会发出信号提醒缺液,此时可以通过云端告知用户,便可以及时添加农药。[/size]

  • 农药喷洒无人机如何实现缺液提醒

    农药喷洒无人机如何实现缺液提醒

    [size=24px][font=宋体]随着现代农业的不断发展,从以前的人工演变成现在的智能机器,例如喷洒农药,以前都是人工喷洒,耗时耗力,而且还会喷洒的不均匀,现在常用的无人机进行农药喷洒,大大的提高了效率还节省了人力。在无人机工作时,装农药的水箱里农药会逐渐减少,因为无人机的承载能力有限,所以会出现农药喷洒到一半就没有了的情况,而我们又没法看到,这就需要有一个缺液提醒,那么如何才能实现缺液提醒功能呢?[/font][font=宋体]我们可以在水箱的低液位处安装一个[url=http://www.eptsz.com/Products.aspx?CategoryID=2][b]液位传感器[/b][/url],当水箱里液体低于液位传感器感应点时,[b]传感器[/b]则会发出信号提醒缺液,可以通过无人机控制器告知用户及时加液。[/font][/size][font=宋体][size=24px]因为农药都是带有腐蚀性的,我们可以应用[url=http://www.eptsz.com/Products.aspx?CategoryID=2][b]光电液位传感器[/b][/url]进行检测。光电液位传感器体积小、功耗低、内置光学电子元件、无机械运动部件、寿命长、支持个性化机型定制。[img=,388,253]https://ng1.17img.cn/bbsfiles/images/2022/07/202207070940503718_1035_4008598_3.png!w388x253.jpg[/img][/size] [size=24px]——深圳市能点科技有限公司[/size][/font]

  • 光电水位开关在无人机喷洒农药中的缺液提醒作用

    光电水位开关在无人机喷洒农药中的缺液提醒作用

    [size=18px]传统农业,都是采用人工喷洒,不仅会出现喷洒不均匀,而且也费人力物力,特别是大面积的农作物的农药喷洒工作。在现代的农业中,常见用无人机进行农药喷洒,大大增高了效率和减少人力。在无人机喷洒农药工作中,水箱中的农药会随着工作逐渐减少,因无人机的体积也不是很大,通常水箱承载能力是有限的,因此可能会出现,无人机飞一半,农药就没的情况,但是没法认为看到,所以就需要在无人机上面实现一个功能,缺液提醒。缺液提醒可以使用水位开关实现,那么可以使用什么类型的水位开关呢?光电式水位开关,体积小,且有耐腐蚀材质,安装方式多样化,可上、下、斜、侧安装,可靠性以及精度都高,且头部光滑,容易清理,不易积垢,适用于此应用场景。而使用浮子水位开关,则会因其机械式运作,长时间使用,传感器积垢,出现卡死现象,相较于光电式水位开关,更不适用于此应用场景。[/size][align=center][size=18px][img=,629,386]https://ng1.17img.cn/bbsfiles/images/2022/04/202204261755129099_2741_4008598_3.png!w629x386.jpg[/img][/size][/align][size=18px][/size]

  • 无人机喷药机缺液提醒如何实现?

    无人机喷药机缺液提醒如何实现?

    [align=left][size=18px]目前无人机喷农药已经成了一种常见的农用设备,极大程度上减轻了人工喷洒所带来的人力,而且使用无人机喷药,也解决了手工喷洒不均匀的现象。[/size][/align][align=left][size=18px] [/size][/align][align=left][size=18px]无人机喷洒农药的话,操作简单,从几米低空飞行,但是无人机的体积不是很大,所装载的农药有限,很大几率会喷洒一半之后,就没农药可喷。这个时候就需要有一个提醒,即缺液提醒。[/size][/align][align=left][size=18px] [/size][/align][align=left][size=18px]实现水箱缺液提醒,可以使用水位传感器进行检测,可以及时的识别内部的液位情况,以此进行智能控制。[/size][/align][align=left][size=18px] [/size][/align][align=left][size=18px]在此应用上可以使用耐腐蚀的光电式水位传感器进行检测,将水位传感器安装在水箱的低液位处,当液体低于此位置的时候,传感器会发出信号提醒缺液,此时可以通过云端告知用户,便可以及时添加农药。[/size][/align][align=center][size=18px] [img=,466,269]https://ng1.17img.cn/bbsfiles/images/2022/04/202204231613086182_3594_4008598_3.jpg!w466x269.jpg[/img][/size][/align][align=left][size=18px] [/size][/align][align=left][size=18px] [/size][/align][align=right][/align]

  • 可降解的无人机

    无人机广泛应用在军方侦察、信息采集和环境监测等领域,不过,倘若意外坠毁,留下的残骸不仅可能给某些敏感的环境造成污染,也是在告诉对方“你被盯住了”。但美国发明一种生物无人机,生物无人机或许能够避免这些问题,因为它在降解后,就变成了一小洼黏液。“没人知道这到底是糖水洒了留下的痕迹,还是原本有一架飞机。“

  • 【“仪”起享奥运】新时期生态环境遥感监测发展思路与举措

    [font=&][color=#666666]近年来,遥感技术发展推动了国家生态环境监测能力的显著提升,生态环境遥感监测作为新质生产力,已成为生态环境保护和生态文明建设不可或缺的技术手段和重要支撑。本文系统阐述了我国生态环境遥感监测的发展现状、面临的形势与需求,分析了现有生态环境遥感监测存在的问题,提出了新时期生态环境遥感监测的发展思路,认为今后需进一步完善生态环境立体遥感监测网络,对标美丽中国建设要求构建遥感监测业务体系,创新运用卫星、无人机、塔基、巡航车船和地面监测设备等构成的“天空地海一体化”协同监测手段,推动形成监测精准、支撑全面、央地联动、智慧高效的生态环境遥感监测协同工作机制。[/color][/font]

  • 【“仪”起享奥运】遥感测绘技术在区域生态环境水污染监测中的应用研究

    [font=&][color=#666666]探究遥感测绘技术在区域生态环境水污染监测中的应用效果。选择某大型水库作为研究区,选用八旋翼无人机、野外便携式光谱仪等作为试验仪器,采集遥感数据。对采集数据实施传感器辐射定标、影像去噪、场地辐射校正、几何校正、水陆分界等预处理,获取多个波段的对应光谱反射率数据。基于LSTM构建含2个隐含层的水质参数遥感反演模型,反演水质参数,实现区域生态环境水污染监测。反演结果表明:该水库的pH、MnO[/color][/font][font=&][size=12px][color=#666666]-[/color][/size][/font][font=&][size=12px][color=#666666]4[/color][/size][/font][font=&][color=#666666]、NH[/color][/font][font=&][size=12px][color=#666666]3[/color][/size][/font][font=&][color=#666666]-H等含量均存在超标问题,并且反演结果比较准确。该方法可以有效检测生态环境水污染。[/color][/font]

  • 瑞士车顶无人机完成首次物流网络交付

    上周一架无人机降落在瑞士苏黎世的一辆梅赛德斯-奔驰面包车车顶上,成功地完成了瑞士航空物流网络的首次交付。无人机运输的包裹包含来自瑞士电子商务初创企业Siroop的一些美味咖啡。交付由自动机场系统公司Matternet进行协调,该公司希望最终通过基于自动机场的物流无人机系统在医院、诊所和实验室之间运输实验室样本。[align=center][img]http://mmbiz.qpic.cn/mmbiz_jpg/qxWb0nuiadrvGLJK2wicpFtialoA5W10ia8Lj6fUJMZoqsUoz7DIbpI0gMZ8wIc040juawqyvc11S88tGy9ywwWBWQ/640?wx_fmt=jpeg&tp=webp&wxfrom=5&wx_lazy=1[/img][/align] 瑞士将开始使用无人机和面包车上的机场系统进行为期三周的试验。自2015年以来,Matternet和梅赛德斯-奔驰母公司戴姆勒一直在探索使用面包车作为航空包裹运输的滚动分销中心。 货车装备车顶自动机场,无人机通过GPS定位货车,机场空管系统扫描空域并发送光电信号精确引导车顶无人机降落。看下面动图,无人机在机场精确着陆引导信号的帮助下落在面包车车顶机场上,但机场还太原始,缺乏夹持锁定机构和防风保护罩,集装箱自动装卸系统也没看见,需逐步改进,细心的观众可自行与下面的地面自动机场的视频对比。车顶自动机场技术难度比地面机场大很多,能在高速运动的车顶可靠降落才是真功夫![align=center][img]http://mmbiz.qpic.cn/mmbiz_gif/qxWb0nuiadrvGLJK2wicpFtialoA5W10ia8LI8iavWowebhvWJ8qAXOnBuGMGRptLibDia36GcGvtFF90GKGdvRLkmJtw/0?wx_fmt=gif&tp=webp&wxfrom=5&wx_lazy=1[/img][/align] Matternet公司总部位于加利福尼亚州门洛帕克,其3月被批准在瑞士人口密集地区操作无人机。上周,该公司推出了首个地面Matternet Station自动机场:占地面积约为2平方米,可安装在屋顶或地面上,采用漏斗式辅助定位,配专用集装箱设计无人机,换电池和包裹完全自动化,见下面视频,这个地面机场比车顶机场完善实用很多。[align=center][img]http://mmbiz.qpic.cn/mmbiz_jpg/qxWb0nuiadrvGLJK2wicpFtialoA5W10ia8LN7zq5rye5ljPOcI2RovaBwsvSjGzibEpumAVGHtEeiaDflgK95JnAfzg/640?wx_fmt=jpeg&tp=webp&wxfrom=5&wx_lazy=1[/img][/align] 戴姆勒不是唯一一家有兴趣使用其车辆加装无人机车顶机场的汽车制造商。江苏启飞是无人机应用解决服务商!今年早些时候,福特公布了一个新的货运概念,通过无人驾驶电动货车和无人机协同合作来运输货物。

  • 【原创大赛】无人机高光谱内置推扫影像快速拼接方法

    【原创大赛】无人机高光谱内置推扫影像快速拼接方法

    [color=#333333]高光谱遥感具有光谱分辨率高、波段范围窄、图谱合一、连续成像等特点,能够区分出地物光谱的细微差别,探测到其他宽波段遥感无法探测的信息。因此,高光谱遥感在生态、大气、海洋、农业、林业、矿业等诸多应用领域具有非常大的优势。近年来随着成像光谱仪硬件技术不断发展,成像光谱仪的体积越来越小、重量越来越轻、成本越来越低,因而利用成像光谱仪获取高光谱影像更为方便、快捷。随着无人机技术的日益成熟,基于无人机平台的新型遥感技术异军突起,得到科研工作者的青睐,从而将成像光谱仪与无人机高度集成获取地物无人机成像高光谱影像成为新的研究热点。[/color][color=#333333] [/color][color=#333333]然而由于无人机航拍受飞行高度,相机本身参数的影响,单张无人机影像所覆盖的区域面积不大,需要对多张影像进行拼接,才能有效地覆盖研究区域。无人机载高光谱影像图幅较小,为每幅影像单独添加控制点信息工作量大、耗时长,而对影像统一添加控制点信息将大大缩短工作时间,提高工作效率。近年来,学者们对无人机影像数据的拼接做了很多研究,主要方法有基于姿态参数(POS数据)的拼接、基于非特征的拼接和基于特征的拼接等,其中无人机影像的拼接大部分是针对RGB图像或者多波段图像,而针对无人机高光谱影像的拼接方法较少,特别是对于无人机高光谱内置推扫获取的高光谱影像数据,目前还没有研究者对其拼接方法进行研究。[/color][color=#333333] [/color][color=#333333]鉴于目前对无人机高光谱影像数据拼接技术存在的不足之处,本文旨在研究一种低空无人机载高光谱影像自动拼接方法,其具有易于实现、拼接精度高、光谱畸变小等优点,可实现无地面控制点的无人机载高光谱影像的自动拼接,以解决当前单幅无人机载高光谱遥感影像图幅过小的问题。[/color][b][color=#333333]1 [/color][color=#333333]仪器设备与数据处理流程[/color][color=#333333]1.1 [/color][color=#333333]数据采集设备[/color][/b][color=#333333] [/color][color=#333333]本次试验地点在北京市大兴区南六环外黄村镇李村,无人机采用大疆无人机M600 Pro,在无人机平台上搭载的自主研发的高光谱成像仪GaiaSky-mini。无人机高光谱影像获取时间为2017年11月8日下午的12:00-14:00,天气为晴,无人机飞行高度为400米,采用的是2*4 binning方式获取高光谱影像(2是空间维的,4是光谱维),高光谱影像的空间分辨率约为20cm,此次飞行共获取24景高光谱影像数据,每景高光谱影像数据代表的地面幅宽约为190米*190米,面积约为36100平方米,其中每景高光谱影像数据之间的横向重叠率为50%,纵向重叠率为40%。[/color][b][color=#333333]1.2 [/color][color=#333333]数据的预处理与分析[/color][/b][color=#333333] [/color][color=#333333]无人机高光谱影像的预处理在SpecView软件中进行,包括镜像变换、黑白帧校准、大气校正。[/color][b][color=#333333]1.3 [/color][color=#333333]无人机高光谱影像拼接流程[/color][/b][color=#333333] [/color][color=#333333]对消除大气、水汽等因素影响的高光谱影像计算其波段信噪比,根据其信噪比的峰值筛选出特征波段,然后基于SIFT算法对选出的特征波段提取特征点并对特征点进行匹配,图像拼接过程中利用经纬度信息及墨卡托投影(Mercator)纠正图像的变形,同时利用重投影空三(Reproj)算法细化高光谱相机参数。在高光谱影像拼接之前选择是否对拼接图像进行匀色,最后得到拼接好的高光谱影像数据。[/color][b][color=#333333]1.4 [/color][color=#333333]高光谱影像拼接效果检验[/color][/b][color=#333333] [/color][color=#333333]为了准确地验证高光谱影像拼接结果的有效性,提取了拼接结果重叠区域和非拼接图像相同经纬度的8个采样点的光谱反射率,利用光谱角填图(SAM)、波谱特征拟合分类法(SFF)及二进制编码(BE)对拼接前后、是否匀色的光谱曲线进行匹配与相似性计算,得到一个0-1的匹配度分值,结果总分值越高,则相似性越好。[/color][b][color=#333333]2 [/color][color=#333333]高光谱影像拼接结果分析[/color][color=#333333]2.1 [/color][color=#333333]高光谱拼接图分析[/color][color=#333333] [/color][/b][color=#333333]以高光谱拼接图像的任意三波段作为RGB(R:red,G:green, B:blue)伪彩色合成图为例,从图1可知,从总体上看,对图像特征点明显的区域,是否选择匀色对高光谱影像的拼接无显著差异。但在特征点不显著区域则图像显示差异较大,如图2可知,对拼接图像是否采用匀色对高光谱影像的“图”有较为显著的差异,显然在采用匀色对拼接结果的“图”效果更好,而匀色是否对高光谱影像的“光谱”有较大的影响,则需要进一步的分析验证。[/color][align=center][color=#333333] [/color][img=,32,32]https://bbs.instrument.com.cn/xheditor/xheditor_skin/blank.gif[/img][img=,491,317]https://ng1.17img.cn/bbsfiles/images/2019/10/201910301711364656_1384_488_3.png!w491x317.jpg[/img][/align][align=center][color=#333333]图1 高光谱影像拼接前后效果图(以RGB伪彩色为例)[/color][/align][align=center][img=,404,223]https://ng1.17img.cn/bbsfiles/images/2019/10/201910301711509831_6894_488_3.png!w404x223.jpg[/img][/align][align=center][color=#333333]图2 高光谱影像重叠区域拼接匀色与否对比[/color][/align][b][color=#333333]2.2 [/color][color=#333333]高光谱影像拼接光谱分析[/color][/b][color=#333333] [/color][color=#333333]为了进一步验证高光谱影像拼接结果的有效性,本文提取了拼接结果重叠区域中典型地物(如植被、土壤、房屋等)的8个采样点的光谱反射率及拼接前2景图像对应位置的光谱反射率进行对比分析,这8个采样点的光谱反射率曲线如图3所示。图3中第一条光谱和第二条光谱代表的是拼接前2景图像重叠区相同位置的光谱反射率,未匀色和匀色分别代表的是未匀色和匀色拼接图像相应位置的光谱反射率。从图3可知,反射率较高的地物,其拼接前后的光谱重叠率较高,如第三类和第六类地物;而反射率较低的地物,其拼接前后的光谱差异较大,如第七类地物所示。总体而言拼接前后高光谱图像的光谱反射率曲线相似度非常高,拼接后其光谱反射率曲线保留了未拼接前高光谱图像的反射率曲线的大部分信息。[/color][align=center][img=,467,450]https://ng1.17img.cn/bbsfiles/images/2019/10/201910301712198573_4784_488_3.png!w467x450.jpg[/img][/align][align=center][img=,32,32]https://bbs.instrument.com.cn/xheditor/xheditor_skin/blank.gif[/img][img=,470,450]https://ng1.17img.cn/bbsfiles/images/2019/10/201910301712340082_5650_488_3.png!w470x450.jpg[/img][/align][align=center][color=#333333]图3 8个采样点拼接前光谱曲线与拼接后光谱曲线对比分析[/color][/align][b][color=#333333]2.3 [/color][color=#333333]高光谱影像拼接前后光谱匹配度分析[/color][/b][color=#333333] [/color][color=#333333]在高光谱影像的实际应用中不仅注重空间信息更加注重其光谱信息,因此为了更为准确地验证拼接方法的有效性,分别选用光谱角填图(SAM)、波谱特征拟合分类法(SFF)及二进制编码(BE)对拼接前后、是否匀色的光谱曲线进行匹配与相似性计算,得到一个0-1的匹配度分值, SAM、SFF和BE三者总分值越高,则相似性越好,具体计算结果如表1所示。[/color][color=#333333] [/color][color=#333333]从表1可以看出,在SAM方面,在8个采样点中,未匀色拼接结果图像的匹配度最小值为0.959,最大值为1,匀色拼接结果图像的匹配度最小值为0.958,最大值为0.995;在SFF方面,在8个采样点中,未匀色拼接结果图像的匹配度最小值为0.881,最大值为0.999,匀色拼接结果图像的匹配度最小值为0.807,最大值为0.995;在BE方面,在8个采样点中,未匀色拼接结果图像的匹配度最小值为0.942,最大值为1,匀色拼接结果图像的匹配度最小值为0.883,最大值为1;在SAM、SFF和BE三者总分值方面,在8个采样点中,未匀色拼接结果图像的匹配度最小值为2.826,最大值为2.999,匀色拼接结果图像的匹配度最小值为2.801,最大值为2.985,因此是否对高光谱图像的拼接结果采用匀色处理,对其光谱并无太大影响。[/color][color=#333333] [/color][color=#333333]不同采样点之间,当利用第一条光谱作为基准对其他光谱曲线进行匹配分析时,得出的匹配结果与利用第二条光谱作为基准对其他光谱曲线进行匹配分析时不一样,这是因为两景图像虽然有着重叠区域,但是受空间分辨率的影响,并不能保证存在重叠区的高光谱图像,其相应像素代表的地面物体完全相同,因此光谱曲线存在差异是正常的。为减少两景图像重叠区相同像素光谱的差异性,在选择采样点时尽量选择周边较为均一的地物。[/color][align=center][color=#333333]表1 影像拼接前后其光谱相似度评价[/color][/align] [table=327][tr][td=1,10] [align=center]采样点1[/align] [/td][td=1,2] [align=center][b] [/b][/align] [/td][td=4,1] [align=center]光谱匹配度鉴定结果[/align] [/td][/tr][tr][td]SAM[/td][td]SFF[/td][td]BE[/td][td]总分[/td][/tr][tr][td=5,1] [align=center]第一条光谱[/align] [/td][/tr][tr][td] [align=center]第二条光谱[/align] [/td][td] [align=center]0.965[/align] [/td][td] [align=center]0.883[/align] [/td][td] [align=center]1[/align] [/td][td] [align=center]2.848[/align] [/td][/tr][tr][td] [align=center]未平滑[/align] [/td][td] [align=center]0.959[/align] [/td][td] [align=center]0.901[/align] [/td][td] [align=center]1[/align] [/td][td] [align=center]2.859[/align] [/td][/tr][tr][td] [align=center]平滑[/align] [/td][td] [align=center]0.958[/align] [/td][td] [align=center]0.897[/align] [/td][td] [align=center]1[/align] [/td][td] [align=center]2.856[/align] [/td][/tr][tr][td=5,1] [align=center]第二条光谱[/align] [/td][/tr][tr][td] [align=center]第一条光谱[/align] [/td][td] [align=center]0.965[/align] [/td][td] [align=center]0.889[/align] [/td][td] [align=center]1[/align] [/td][td] [align=center]2.854[/align] [/td][/tr][tr][td] [align=center]未平滑[/align] [/td][td] [align=center]0.971[/align] [/td][td] [align=center]0.881[/align] [/td][td] [align=center]1[/align] [/td][td] [align=center]2.853[/align] [/td][/tr][tr][td] [align=center]平滑[/align] [/td][td] [align=center]0.973[/align] [/td][td] [align=center]0.872[/align] [/td][td] [align=center]1[/align] [/td][td] [align=center]2.845[/align] [/td][/tr][tr][td=1,8] 采样点2[/td][td=5,1] [align=center]第一条光谱[/align] [/td][/tr][tr][td] [align=center]第二条光谱[/align] [/td][td] [align=center]0.987[/align] [/td][td] [align=center]0.951[/align] [/td][td] [align=center]0.994[/align] [/td][td] [align=center]2.933[/align] [/td][/tr][tr][td] [align=center]未平滑[/align] [/td][td] [align=center]0.983[/align] [/td][td] [align=center]0.955[/align] [/td][td] [align=center]1[/align] [/td][td] [align=center]2.938[/align] [/td][/tr][tr][td] [align=center]平滑[/align] [/td][td] [align=center]0.983[/align] [/td][td] [align=center]0.949[/align] [/td][td] [align=center]0.994[/align] [/td][td] [align=center]2.927[/align] [/td][/tr][tr][td=5,1] [align=center]第二条光谱[/align] [/td][/tr][tr][td] [align=center]第一条光谱[/align] [/td][td] [align=center]0.996[/align] [/td][td] [align=center]0.993[/align] [/td][td] [align=center]1[/align] [/td][td] [align=center]2.989[/align] [/td][/tr][tr][td] [align=center]未平滑[/align] [/td][td] [align=center]0.987[/align] [/td][td] [align=center]0.930[/align] [/td][td] [align=center]0.994[/align] [/td][td] [align=center]2.911[/align] [/td][/tr][tr][td] [align=center]平滑[/align] [/td][td] [align=center]0.970[/align] [/td][td] [align=center]0.880[/align] [/td][td] [align=center]0.994[/align] [/td][td] [align=center]2.845[/align] [/td][/tr][tr][td=1,8] 采样点3[/td][td=5,1] [align=center]第一条光谱[/align] [/td][/tr][tr][td] [align=center]第二条光谱[/align] [/td][td] [align=center]1[/align] [/td][td] [align=center]0.999[/align] [/td][td] [align=center]1[/align] [/td][td] [align=center]2.999[/align] [/td][/tr][tr][td] [align=center]未平滑[/align] [/td][td] [align=center]1[/align] [/td][td] [align=center]0.999[/align] [/td][td] [align=center]1[/align] [/td][td] [align=center]2.999[/align] [/td][/tr][tr][td] [align=center]平滑[/align] [/td][td] [align=center]0.995[/align] [/td][td] [align=center]0.995[/align] [/td][td] [align=center]1[/align] [/td][td] [align=center]2.985[/align] [/td][/tr][tr][td=5,1] [align=center]第二条光谱[/align] [/td][/tr][tr][td] [align=center]第一条光谱[/align] [/td][td] [align=center]0.995[/align] [/td][td] [align=center]0.990[/align] [/td][td] [align=center]1[/align] [/td][td] [align=center]2.985[/align] [/td][/tr][tr][td] [align=center]未平滑[/align] [/td][td] [align=center]0.995[/align] [/td][td] [align=center]0.990[/align] [/td][td] [align=center]1[/align] [/td][td] [align=center]2.985[/align] [/td][/tr][tr][td] [align=center]平滑[/align] [/td][td] [align=center]0.995[/align] [/td][td] [align=center]0.990[/align] [/td][td] [align=center]1[/align] [/td][td] [align=center]2.985[/align] [/td][/tr][tr][td=1,8] 采样点4[/td][td=5,1] [align=center]第一条光谱[/align] [/td][/tr][tr][td] [align=center]第二条光谱[/align] [/td][td] [align=center]1[/align] [/td][td] [align=center]0.999[/align] [/td][td] [align=center]1[/align] [/td][td] [align=center]2.999[/align] [/td][/tr][tr][td] [align=center]未平滑[/align] [/td][td] [align=center]0.978[/align] [/td][td] [align=center]0.881[/align] [/td][td] [align=center]0.989[/align] [/td][td] [align=center]2.848[/align] [/td][/tr][tr][td] [align=center]平滑[/align] [/td][td] [align=center]0.968[/align] [/td][td] [align=center]0.882[/align] [/td][td] [align=center]0.972[/align] [/td][td] [align=center]2.821[/align] [/td][/tr][tr][td=5,1] [align=center]第二条光谱[/align] [/td][/tr][tr][td] [align=center]第一条光谱[/align] [/td][td] [align=center]0.968[/align] [/td][td] [align=center]0.886[/align] [/td][td] [align=center]0.972[/align] [/td][td] [align=center]2.826[/align] [/td][/tr][tr][td] [align=center]未平滑[/align] [/td][td] [align=center]0.968[/align] [/td][td] [align=center]0.886[/align] [/td][td] [align=center]0.972[/align] [/td][td] [align=center]2.826[/align] [/td][/tr][tr][td] [align=center]平滑[/align] [/td][td] [align=center]0.981[/align] [/td][td] [align=center]0.837[/align] [/td][td] [align=center]0.983[/align] [/td][td] [align=center]2.801[/align] [/td][/tr][tr][td=1,8] 采样点5[/td][td=5,1] [align=center]第一条光谱[/align] [/td][/tr][tr][td] [align=center]第二条光谱[/align] [/td][td] [align=center]1[/align] [/td][td] [align=center]0.996[/align] [/td][td] [align=center]0.972[/align] [/td][td] [align=center]2.968[/align] [/td][/tr][tr][td] [align=center]未平滑[/align] [/td][td] [align=center]0.994[/align] [/td][td] [align=center]0.991[/align] [/td][td] [align=center]0.942[/align] [/td][td] [align=center]2.927[/align] [/td][/tr][tr][td] [align=center]平滑[/align] [/td][td] [align=center]0.994[/align] [/td][td] [align=center]0.981[/align] [/td][td] [align=center]0.883[/align] [/td][td] [align=center]2.859[/align] [/td][/tr][tr][td=5,1] [align=center]第二条光谱[/align] [/td][/tr][tr][td] [align=center]第一条光谱[/align] [/td][td] [align=center]0.991[/align] [/td][td] [align=center]0.931[/align] [/td][td] [align=center]1[/align] [/td][td] [align=center]2.922[/align] [/td][/tr][tr][td] [align=center]未平滑[/align] [/td][td] [align=center]0.985[/align] [/td][td] [align=center]0.903[/align] [/td][td] [align=center]0.994[/align] [/td][td] [align=center]2.882[/align] [/td][/tr][tr][td] [align=center]平滑[/align] [/td][td] [align=center]0.981[/align] [/td][td] [align=center]0.890[/align] [/td][td] [align=center]0.994[/align] [/td][td] [align=center]2.866[/align] [/td][/tr][tr][td=1,8] 采样点6[/td][td=5,1] [align=center]第一条光谱[/align] [/td][/tr][tr][td] [align=center]第二条光谱[/align] [/td][td] [align=center]0.991[/align] [/td][td] [align=center]0.970[/align] [/td][td] [align=center]1[/align] [/td][td] [align=center]2.961[/align] [/td][/tr][tr][td] [align=center]未平滑[/align] [/td][td] [align=center]0.991[/align] [/td][td] [align=center]0.970[/align] [/td][td] [align=center]1[/align] [/td][td] [align=center]2.960[/align] [/td][/tr][tr][td] [align=center]平滑[/align] [/td][td] [align=center]0.978[/align] [/td][td] [align=center]0.927[/align] [/td][td] [align=center]1[/align] [/td][td] [align=center]2.905[/align] [/td][/tr][tr][td=5,1] [align=center]第二条光谱[/align] [/td][/tr][tr][td] [align=center]第一条光谱[/align] [/td][td] [align=center]0.991[/align] [/td][td] [align=center]0.971[/align] [/td][td] [align=center]1[/align] [/td][td] [align=center]2.961[/align] [/td][/tr][tr][td] [align=center]未平滑[/align] [/td][td] [align=center]0.987[/align] [/td][td] [align=center]0.956[/align] [/td][td] [align=center]1[/align] [/td][td] [align=center]2.944[/align] [/td][/tr][tr][td] [align=center]平滑[/align] [/td][td] [align=center]0.982[/align] [/td][td] [align=center]0.942[/align] [/td][td] [align=center]1[/align] [/td][td] [align=center]2.923[/align] [/td][/tr][tr][td=1,8] 采样点7[/td][td=5,1] [align=center]第一条光谱[/align] [/td][/tr][tr][td] [align=center]第二条光谱[/align] [/td][td] [align=center]0.979[/align] [/td][td] [align=center]0.940[/align] [/td][td] [align=center]0.977[/align] [/td][td] [align=center]2.896[/align] [/td][/tr][tr][td] [align=center]未平滑[/align] [/td][td] [align=center]0.994[/align] [/td][td] [align=center]0.981[/align] [/td][td] [align=center]0.994[/align] [/td][td] [align=center]2.970[/align] [/td][/tr][tr][td] [align=center]平滑[/align] [/td][td] [align=center]0.990[/align] [/td][td] [align=center]0.969[/align] [/td][td] [align=center]0.994[/align] [/td][td] [align=center]2.954[/align] [/td][/tr][tr][td=5,1] [align=center]第二条光谱[/align] [/td][/tr][tr][td] [align=center]第一条光谱[/align] [/td][td] [align=center]0.979[/align] [/td][td] [align=center]0.936[/align] [/td][td] [align=center]0.977[/align] [/td][td] [align=center]2.892[/align] [/td][/tr][tr][td] [align=center]未平滑[/align] [/td][td] [align=center]0.989[/align] [/td][td] [align=center]0.968[/align] [/td][td] [align=center]0.983[/align] [/td][td] [align=center]2.940[/align] [/td][/tr][tr][td] [align=center]平滑[/align] [/td][td] [align=center]0.985[/align] [/td][td] [align=center]0.955[/align] [/td][td] [align=center]0.983[/align] [/td][td] [align=center]2.923[/align] [/td][/tr][tr][td=1,8] 采样点8[/td][td=5,1] [align=center]第一条光谱[/align] [/td][/tr][tr][td] [align=center]第二条光谱[/align] [/td][td] [align=center]0.990[/align] [/td][td] [align=center]0.930[/align] [/td][td] [align=center]1[/align] [/td][td] [align=center]2.920[/align] [/td][/tr][tr][td] [align=center]未平滑[/align] [/td][td] [align=center]0.985[/align] [/td][td] [align=center]0.910[/align] [/td][td] [align=center]0.983[/align] [/td][td] [align=center]2.877[/align] [/td][/tr][tr][td] [align=center]平滑[/align] [/td][td] [align=center]0.981[/align] [/td][td] [align=center]0.899[/align] [/td][td] [align=center]0.983[/align] [/td][td] [align=center]2.863[/align] [/td][/tr][tr][td=5,1] [align=center]第二条光谱[/align] [/td][/tr][tr][td] [align=center]第一条光谱[/align] [/td][td] [align=center]0.996[/align] [/td][td] [align=center]0.974[/align] [/td][td] [align=center]1[/align] [/td][td] [align=center]2.970[/align] [/td][/tr][tr][td] [align=center]未平滑[/align] [/td][td] [align=center]0.990[/align] [/td][td] [align=center]0.949[/align] [/td][td] [align=center]0.983[/align] [/td][td] [align=center]2.923[/align] [/td][/tr][tr][td] [align=center]平滑[/align] [/td][td] [align=center]0.981[/align] [/td][td] [align=center]0.889[/align] [/td][td] [align=center]0.983[/align] [/td][td] [align=center]2.853[/align] [img=,32,32]https://bbs.instrument.com.cn/xheditor/xheditor_skin/blank.gif[/img][/td][/tr][/table][b][color=#333333]2.4 [/color][color=#333333]图像拼接效率对比[/color][/b][color=#333333] [/color][color=#333333]为了验证无人机高光谱影像的拼接效率,本文选取了两台笔记本的电脑,分别是Dell7520和ThinkPad T440P对24景、50景、120景、500景无人机高光谱影像进行拼接,如表2所示。研究结果表明,硬件配置较好的DeLL7520拼接效率远远高于硬件配置较差的ThinkPad T440P,在处理24景无人机高光谱影像拼接时,DeLL7520比ThinkPad T440P处理速度快4个小时;在处理50景无人机高光谱影像拼接时,DeLL7520比ThinkPad T440P处理速度快7.7个小时;在处理120景和500景无人机高光谱影像时,ThinkPadT440P处理速度显然更慢,甚至出现笔记本卡死/蓝屏重启,而DELL7520则正常拼接。[/color][align=center][color=#333333]表2 硬件配置及图像拼接效率对比[/color][/align][table=323][tr][td=2,1] 笔记本[/td][td]DELL7520[/td][td]ThinkPad T440P[/td][/tr][tr][td=1,4] 硬盘配置[/td][td]CPU[/td][td]i7-7700HQ[/td][td]I7-4710MQ[/td][/tr][tr][td]内存[/td][td]64GB[/td][td]16GB[/td][/tr][tr][td]硬盘[/td][td]SSD[/td][td]SSD[/td][/tr][tr][td]显卡[/td][td]NVIDIA Quadro M2200,4GB[/td][td]NVIDIA GeForce GT 730M+Intel GMA HD 4600, 1GB[/td][/tr][tr][td=1,4] 效率对比[/td][td]24景[/td][td]1小时[/td][td]5小时[/td][/tr][tr][td]50景[/td][td]1.8小时[/td][td]9.5小时[/td][/tr][tr][td]120景[/td][td]3.5小时[/td][td]20小时,进程1/3[/td][/tr][tr][td]500景[/td][td]8.5小时[/td][td]笔记本卡死[/td][/tr][/table][b][color=#333333]3 [/color][color=#333333]结论[/color][/b][color=#333333] [/color][color=#333333]本文对消除大气、水汽等因素影响的高光谱影像计算其波段信噪比,并根据其信噪比的峰值筛选出特征波段,利用SIFT算法对选出的特征波段提取特征点并对特征点进行匹配,墨卡托投影(Mercator)纠正图像的变形以及重投影空三(Reproj)算法细化高光谱相机参数的方法对无人机高光谱影像进行自动拼接并对拼接结果进行匀色,同时运用SAM、SFF和BE光谱匹配算法验证了高光谱影像拼接算法的可行性。研究表明本文提出的无人机高光谱影像拼接算法解决了当前单幅无人机载高光谱影像图幅过小的问题,且对无控制点的无人机载内置推扫式的高光谱遥感影像可实现自动拼接,且拼接效果好、精度高、光谱畸变小,研究结果为其他无人机载高光谱遥感影像的自动拼接提供借鉴,同时无人机高光谱影像的拼接结果可应用于大范围的高光谱遥感影像分类与识别、土地利用/覆盖分类、精细农业、环保、矿产矿物勘测等多种领域中。[/color][b][color=red]本文参考文献[/color][/b][color=#333333]:黄宇,陈兴海,刘业林,等.无人机高光谱内置推扫影像快速拼接方法.测绘地理信息,2019,44(05):24-28.[/color]

  • 环保领域“无人机+气体传感器”作为环境监测的有效手段

    无人机环境监测技术如何应运而生当前,我国多地区面临大气环境质量改善巨大压力。对此,业内人士表示,只有精确找到本地污染物排放来源,结合地理、气象、环境衍生等众多原因综合分析,才能实现大气污染治理精准决策和快速应对。但由于大气污染具有涉及区域范围较大、区域之间污染物传输量大、污染源种类多、污染因子相对复杂等特点,环境监管难度非常大。传统的空气自动监测站的站房用地面积大,加上其成本及后期运营费用较高,因此很难进行大面积、精密化布点,并且基本上“说不清污染来源“。即使花大价钱采取空气监测站加密的方式进行监控,但以点位进行布置的监测数据始终很难判断污染源迁移和扩散情况,更无从确定污染发生的直接源头。地方政府需要一套快速、高效监测系统进行实时监控,克服人工、视频、监测站等监管存在的数据支撑不足等问题,实现精准监控,以满足大气污染治防治需求。“大区域”“精准”“高效快速”,无人机技术仿佛就是面对这样的关键词而生的。无人机在大气环境监测方面的应用,目前主要有以下三个方向一、无人机+可见光相机目前在环保方面应用最广的,就是传统的无人机+可见光云台, 不可否认,单纯的相机甚至变焦相机已经能够给环境监测带来新的思路,但是可见光相机对大气污染物的观测仅停留在拍照、视频阶段,缺乏精准监测数据作为支撑,并且受光照、雨雾、摄像头低分辨率等因素的影响,只能对污染浓度较大的可见性污染源如黑烟囱、秸秆焚烧等进行监控。 常规可见光载荷在环保方面只能算是锦上添花,环监人员难以有效的进行使用,买回来,用不着,最后只会沦为展示道具。[url=http://news.isweek.cn/wp-content/uploads/2019/04/bbd793b3.jpg][img=bbd793b3,484,300]http://news.isweek.cn/wp-content/uploads/2019/04/bbd793b3-484x300.jpg[/img][/url]二、搭载红外成像仪的无人机[url=http://news.isweek.cn/wp-content/uploads/2019/04/672482.jpg][img=672482,554,292]http://news.isweek.cn/wp-content/uploads/2019/04/672482.jpg[/img][/url]在环保应用方面,搭载红外成像仪的无人机,可以使无人机在夜间条件下进行监测,热像仪的热分布可视化、测温等特性能够较有效地发现夜间生产的企业,可作为遏制夜间偷排的一种手段。 某企业日间(可见光)和夜间(热成像)风机影像 但是热像仪同样受到环境条件的影响过大,并且,不同种类的企业的热分布形式不一、排放温度与排放量没有必然的关联,相关模型复杂需要长久的比对和监测才能得出检测结论,难以满足环监的迫切需求。三、无人机+气体传感器“无人机+气体传感器”即通过无人机搭载多种因子(如VOCs、SO2、PM2.5)的高精度气体监测传感器或者气体采集装置,在测区进行大范围的巡查,以寻找污染特征因子的监测方式。 随着技术的进步,便携式传感器精度已经达到可以接受的程度,尤其基于光离子化检测器(PID)方法的传感器,其检出限、精度甚至可以达到ppb级别,已经足够满足测量大气污染物浓度的要求。ISweek工采网推荐的英国alphansense传感器,专门为大气监测领域推出了环境空[url=https://insevent.instrument.com.cn/t/bp][color=#3333ff]气质[/color][/url]量传感器,包括有毒气体传感器A4/B4系列、[url=https://www.isweek.cn/144.html]光离子气体传感器[/url]PID-AH以及PM2.5、PM10传感器OPC-N3,目前已在大气监测领域得到了广泛的应用。在理论支撑方面,长江学者彭仲仁教授带领的上海交通大学智能交通与无人机应用研究中心早在2011年已经对无人机在空气监测方面的应用进行了研究,其《基于无人机(UAV)技术的城市空[url=https://insevent.instrument.com.cn/t/bp][color=#3333ff]气质[/color][/url]量4-D监测研究》、《基于无人机观测的PM2.5垂直分布规律研究》等多篇论文已经被多次引用。在实际应用方面,目前成都、唐山、宁夏等地区率先使用无人机进行监测,协助环监执法,同时环监大队根据无人机的发现进行查处了不少违法企业 。根据目前的无人机环境监测发展趋势,无人机搭载气体传感器是最快的发展防线。在监测结果呈现上,无人机+气体传感器数据呈现可视化,还不够环境监查执法非常讲究时效性,企业的违法偷排情况可能只会出现在某个时间段、甚至只是某一个瞬间,这也是环监取证难、执法难的原因之一。 无人机气体传感器在大气污染调查工作中会得到大量的实测数据,传统利用excel进行数据分析与管理的办法不仅无法直观展现污染物的空间分布形态,大量的数据需要多个工作日的处理和分析才能得出相关结论,难以为下一步的监测管理和治理工作提供决策支持。而可视化处理能够充分挖掘数据隐含的空间关联,揭示气体污染物的迁移转化规律,有助于科研人员、监察机构、科学直观地判读与分析大气污染情况, 高效快速的检测方式可为后续的一系列的治理措施提供支撑依据,节约人力成本。

  • 回顾:复亚智能无人机自动机场高低温测试及结露测试

    回顾:复亚智能无人机自动机场高低温测试及结露测试

    复亚智能智方A30固定式机场及S10小型机场通过专业测试,获得专业机构认证,以科学、准确的实验数据证明复亚智能自动机场具备很强的耐寒、耐热能力,可以在高湿环境下运行。  目前,工业无人机市场呈爆发式增长趋势,与无人机机场相结合的自动飞行系统已被大量应用于电力巡检、光伏巡检、水务巡逻、交通巡逻等场景,不断深入实际应用。无人机自动巡检作业都在户外进行,无人机机场作为无人化巡检应用的载体,大多部署在人烟稀少的郊野,环境恶劣,气候多变,很大地考验着无人机机场的稳定性和安全性。复亚智能委托第三方专业检测机构,通过实验舱模拟极高温、极低温以及高湿度环境,仿真还原户外恶劣条件,确保自动机场的电子器件在极端环境下的稳定运行。[align=center][img=,600,600]https://ng1.17img.cn/bbsfiles/images/2022/05/202205091656013559_379_1385_3.jpg!w600x600.jpg[/img][/align]  [b][url=http://www.instrument.com.cn/netshow/SH101384/]高低温测试[/url][/b]:  我国幅员辽阔,气候差异较大。在东北三省,零下十几摄氏度的冰雪期持续4~6个月,在这样的环境下,户外设备元器件容易出现冻坏、冻裂、故障失效等问题,导致设备无法使用。而在华中、华南地区的夏季正午,室外直射温度超过50℃,对设备运行的耐温性提出了严苛要求,长时间高温容易导致设备元器件加速老化,出现故障。  在高温测试中,实验舱内迅速升温至50℃,对自动机场进行持续高温烘烤,同时自动机场还不间断地进行机身启动、停机坪起降、舱门关合等全流程运行工作,还原机场在夏季高温环境中持续工作的情况。  在长时间高温测试中,无人机机场内置的大功率工业空调发挥了作用,其很大的热管理系统,根据实验舱内的实时温度,采用隔热、风冷、温度补偿等措施,实现智能化调节,保持机场温度恒定。实验结束后,无人机自动机场仍能正常运行工作。  在低温测试中,实验舱内降温至-40℃,考验自动机场在严寒天气下的抗冻性。  实验舱温度降至-40℃:  高低温实验证明了复亚智能自动机场具备很强的耐寒、耐热能力。  结露实验:  在珠三角、长三角等沿海地区,由于沿海及近海的空气潮湿,水汽中还夹杂着悬浮的粉尘颗粒、盐雾颗粒,形成具有较强的腐蚀性露珠,凝结在机场外壁,对机械、电子设备的寿命影响较大。同时,潮湿的环境导致空气电阻骤然下降,电子器件发生击穿打火,从而短路损坏,导致无法开机。因此,结露实验对于精密的机械设备而言,更是很大挑战。  机场在高湿度环境下工作:  在机身设计之初,复亚智能充分考虑到了水汽与灰尘、盐雾等因素,为避免其对主板、电机、工控机等重要零部件造成侵蚀,专门采用防盐雾、防附着的涂层工艺,使机身耐受时间长、抗腐蚀性强。同时,机场防潮防水结构抵御了水汽对机舱内部的入侵,机场空调启动了抽湿程序,避免了内外壁温差导致舱内水汽凝结,保证电子设备正常运行。  结露实验须在相对湿度为95%的初始环境中进行,快速升温、降温,让水蒸气充分凝结,以形成高低温交变、高湿度的环境。在结束长时间的结露实验后,机场主板、电机、工控机等重要部件未发生腐蚀或短路的现象,机舱外部涂层完好无损,机场正常运行。  结露实验结束后,水汽从实验舱冒出:  对于用户而言,产品的可靠性和稳定性压倒一切,否则,一起小故障可能就是一起生产大事故。因此,toB市场的角逐,本质上就是产品品质的角逐,是核心技术的角逐。复亚智能始终将产品质量作为高质量发展的根本,不断深入行业需求,持续打造高品质无人机自动机场,解放人工,提升效率,拓展无人机的应用范围。

  • MB7052超声波传感器在无人机上如何工作

    [align=center][/align]无人机相信大家都知道,在很多领域都有应用的,周期汪峰求婚章子怡的时候就是用的无人机给的婚戒,可以说是很浪漫了。还有像无人机喷洒农药等,都说明科技的进步带给人类的改变是巨大的。说到无人机那么就必须要提一下超声波传感器了,这个是无人机中很重要的一个零件。OFweek Mall中MaxBotix 无人机超声波传感器-MB7052应用的是相对比较多的一种传感器了,它是如何运转的呢?超声波传感器已成功应用于多旋翼无人机中。许多用户对于超声波传感器在多旋翼无人机飞行过程中如何可靠地工作存在疑问,这是一个充满挑战性的应用环境。最明显的问题是,超声波传感器周围的气流紊乱,这是由螺旋桨产生的噪音。电机所使用的电能(电流安培数)通常共用相同的微控制器,控制飞行和读取超声波传感器,因此很可能传导电噪声。另外,电子的电流通常是迅速开启和关闭也可能辐射电噪声,和常见的对讲机如ZigBee XBee等。此外,一些多旋翼无人机存在机架的振动。总之,这些问题是实质性的,只纠正一个问题,而忽视其他问题可能无法提供可靠的操作。空气扰动螺旋桨引起大量的空气湍流,但它们以可预测的方式进行。应避免将超声波传感器直接安装在螺旋桨涡流中。通过将超声波传感器安装在远离螺旋桨的位置,将获得最佳的操作和结果。如果使用超声波传感器测量到地面的距离,通常安装传感器的最佳位置是机身下方和机身中心附近。机体是多旋翼无人机支持部件如电机、APM、布线等其他成分。一个强大的电动无人机的测量表明,这种效应引起的传感器接收到的信号能量降低,有时超过十倍!这类问题一般是通过使用MaxBotix 无人机超声波传感器克服,但通过细心的安装,一一般都能成功使用超声波传感器。你还可以做出可视化效果,在你的眼睛前面放一个冰块,然后看着它。当然,你可以看到冰块,但大部分光线是指向或来自其他地方的。空气扰动的作用类似于光穿过冰块的路径,以不稳定的方式改变声波的方向和强度。超声波传感器包含范围:[color=#333333]气体流量传感器丨微型压力传感器丨绝对压力变送器丨微量氧传感器丨[/color][color=#333333]数字温湿度[/color][color=#333333]传感器丨煤气检测传感器丨气压感应器丨一氧化碳传感器丨h2传感器丨压阻式压力变送器丨硫化氢传感器丨co2气体传感器丨光离子传感器丨ph3传感器丨百分氧传感器丨bm传感器[/color][color=#333333]丨[/color][color=#333333]风速传感器丨voc传感器丨[/color][color=#333333]光纤应变传感器[/color][color=#333333]丨位置传感器丨[/color][color=#333333]meas压力[/color][color=#333333]传感器丨[/color][color=#333333]称重传感[/color][color=#333333]器丨甲烷传感器丨微流量传感器丨光纤应变传感器丨称重传感器丨三合一传感器丨sst传感器丨gss传感器丨ch4传感器丨氟利昂传感器丨硫化物传感器丨o3传感器丨双气传感器丨[url=http://mall.ofweek.com/2133.html]超声波传感器[/url]丨一氧化氮传感器丨透明度传感器丨二氧化硫传感器丨氰化氢传感器丨煤气检测传感器丨燃气检测传感器丨电流氧传感器[/color]

  • 关于林格曼浓度图是否可以和无人机相结合?

    原本测林格曼浓度,是可以用测烟望远镜或者是林格曼浓度图法进行监测的。现在无人机这么发达,是否可以在无机机的镜头上安装有林格曼浓度的刻度镜片,用无人机飞到烟囱旁进行拍照,照片实时传输到手机端进行读取判别是否超标。这种可行吗?唯一的问题是,监测方法需要另外开发。

  • 柔翼无人机真的能消除雾霾吗?

    为利用航空平台开展重雾消除工作,中国研制的柔翼无人机即将进行首轮消雾试验,有望早日以其载荷量大、飞行时间长等优势投入雾霾天气防治工作。以上是新华网的消息,这雾飘来飘去的,还真不知道如何做到消雾霾的效果的?

  • 天津海关首次使用无人机开展水尺计重

    最近几年,我国资源类大宗散货进口量猛增,货物到港后短重情况并不少见。记者10日获悉,天津海关首次使用无人机辅助观测船舶水尺,无人机在南疆港岸边的“明和”轮甲板上缓缓升空,随即悬停在海面上空开始工作,把清晰的船舶水尺标记实时传送到甲板上工作人员手中的平板电脑里。[align=center][img=,600,400]http://www.stdaily.com/cxzg80/guonei/2019-07/10/776641/images/79bdf90c97c4410e90ef06fcd1337176.jpg[/img][/align] 据天津海关所属天津南疆海关工作人员介绍,水尺计重的原理是根据阿基米德定律,以船本身为计量工具,通过观测船舶吃水,求得船舶的实际排水量和船用物料重量,以间接对船载货物进行计量的一种方法,可谓现代版曹冲称象。但传统的利用拖轮进行水尺计重的方法一直存在鉴定现场无法复原、鉴定结果追溯困难的弊端,工作效率不高,人员安全也存在风险。为进一步改进工作方法、提高工作效率、服务港口发展,天津海关致力于推进水尺计重信息化改革,最终提出方案,借助无人机这双会飞的“眼睛”进行观测,解决水尺计重难题。 据介绍,无人机辅助水尺计重的最大好处,是可以全程视频记录鉴定过程、有效还原工作现场,一旦发生货物短重情况可为国内企业索赔提供有力支撑,对船方也有一定的约束作用。同时,传统的拖轮检测水尺,拖轮单次使用费用约为1300元人民币,应用无人机之后单次成本减少至780元人民币,降低了企业的经济成本。在保障一线作业人员安全的前提下,原本需40分钟左右的观测时间减少至20分钟,也可提高通关效率,可谓“一举三得”。

  • 【转帖】遥感技术在大气环境监测中的应用综述

    遥感技术具有监测范围广、速度快、成本低,且便于进行长期的动态监测等优势, 还能发现有时用常规方法难以揭示的污染源及其扩散的状态, 它不但可以快速、实时、动态、省时省力地监测大范围的大气环境变化和大气环境污染, 也可以实时、快速跟踪和监测突发性大气环境污染事件的发生、发展, 以便及时制定处理措施, 减少大气污染造成的损失。因此,遥感监测作为大气环境管理和大气污染控制的重要手段之一, 正发挥着不可替代的作用。1  大气环境遥感监测技术的基本原理遥感监测就是用仪器对一段距离以外的目标物或现象进行观测,是一种不直接接触目标物或现象而能收集信息,对其进行识别、分析、判断的更高自动化程度的监测手段。它最重要的作用是不需要采样而直接可以进行区域性的跟踪测量,快速进行污染源的定点定位,污染范围的核定,污染物在大气中的分布、扩散等,从而获得全面的综合信息。根据所利用的波段, 遥感监测技术主要分为紫外、可见光、反射红外遥感技术 热红外遥感技术和微波遥感技术三种类型。大气环境遥感监测作为遥感技术应用中较为重要的内容之一,在业务上不同于常规气象要素的监测。常规气象要素遥感监测[1 ] 主要是指测量大气的垂直温度剖面、大气的垂直湿度剖面、降水量及频度、云覆盖率(云量和云层厚度) 和长波辐射、风(风速和风向) 、地球辐射收支的测量等。而大气环境遥感则是监测大气中的臭氧(O3 ) 、CO2 、SO2 、甲烷(CH4 ) 等痕量气体成分以及气溶胶、有害气体等的三维分布。这些物理量通常不可能用遥感手段直接识别,但由于水汽、二氧化碳、臭氧、甲烷等微量气体成分具有各自分子所固有的辐射和吸收光谱特征,如影响水汽分布的主要光谱波长在017μm , O3在0155~0165μm 之间存在一个明显的吸收带等,因此我们实际上可通过测量大气散射、吸收及辐射的光谱特征值而从中识别出这些组分来。研究表明,在卫星遥感中,有两个非常好的大气窗可以用来探测这些组分,即位于可见光范围内的0140~0175μm 的波段范围和在近红外和中红外的0185μm、1106μm、1122μm、1160μm、2120μm 波段处。2  大气环境遥感监测技术的应用大气环境遥感监测技术按其工作方式可分为被动式遥感监测和主动式遥感监测,被动式遥感监测主要依靠接收大气自身所发射的红外光波或微波等辐射而实现对大气成分的探测 主动式遥感监测是指由遥感探测仪器发出波束、次波束与大气物质相互作用而产生回波,通过检测这种回波而实现对大气成分的探测。由于主动式大气探测仪器既要发射波束,又要接收回波,通常将这种方式称为雷达工作方式。根据遥感平台的不同,大气环境遥感监测又可分为天基、空基遥感和地基遥感。天基、空基遥感是以卫星、宇宙飞机、飞机和高空气球等为遥感平台,地基遥感则是以地面为主要遥感平台。本文将根据大气环境遥感监测技术的工作方式和遥感平台的不同,从四个方面来介绍大气环境遥感监测技术在实际中的应用。2. 1  大气环境的被动式空基遥感监测目前利用被动式空基遥感对大气环境监测主要包括:对臭氧层的监测,对大气气溶胶和温室气体如CO2 、甲烷(CH4 ) 的监测,对大气主要污染物、大气热污染源以及突发性大气污染事故如沙尘暴等的监测。大气环境污染主要体现在大气污染物上,大气污染物的种类约有数千种,已发现有危害作用而被人们注意到的有一百多种,其中大部分为有机物。本文为了论述的方便,将大气污染的主要污染物按污染区域及污染性质分为三大类,第一类为区域性污染的大气污染物,主要有二氧化硫、氮氧化物、大气颗粒物(包括可吸入颗粒物) 、有机污染物等 第二类为灾害性大气污染,如沙尘暴、有毒气体的泄漏等 第三类为在全球变化中起着不可忽视作用的污染物,如对流层气溶胶、臭氧(O3 ) 、CO2 、甲烷(CH4 ) 等。本文将针对以上三大类污染物来介绍被动式空基遥感在大气环境监测中的应用。21111  区域性大气污染物的被动式空基遥感监测利用遥感对大气环境进行监测的其中一个方面是对区域性大气污染物的监测,然而区域性大气污染信息是叠加于多变的地面信息之上的微弱信息,这些物理量通常不可能用遥感手段直接识别,提取非常困难,一般的地物提取方法均不实用。目前常用的方法主要有两类,一类是根据污染地区地物反射率发生变化,边界模糊的情况来对大气污染情况进行估计[2 ,3 ] 另一类是间接方法,主要根据树叶中SO2 等污染物含量与遥感数据中植被指数的关系估计大气污染的情况[4 ] 。王雪梅、邓孺孺等[5 ] 分析了卫星遥感像元信息构成的物理机制, 将像元信息概化为土壤、植被、水体等基本信息类型的线性集合与污染气体( SO2 ,NOx) 信息的简单叠加,首次从TM 卫星数据直接定量提取珠江口地区大气污染气体累加浓度信息。实验结果表明,所提取的污染信息满足精度要求。有学者[6 ,7 ] 用红外航片资料研究了环境污染区与植被的响应关系,指出受污染杨树与正常健康的杨树相比,光谱发射率在近红外波段(017~111) 有较大幅度的下降,而在红波段(016~017) 则有所增加,叶绿素指数也迅速减少,因此叶绿素指数可成为反映大气污染的一个重要指标。L. BRUZZONE[8 ] 等利用搭载在ERS - 2 卫星上的GOME 和ATSR - 2 传感器所接收到的数据,通过两种方法对生物燃烧排放到对流层中的NO2进行了计算,一种是假设这两种传感器所获得的数据与NO2浓度之间存在线性关系 另外一种是用基于辐射传输方程神经网络的非线性无参数方法来反演NO2 浓度。实验结果表明,这两种方法在实际反演NO2 浓度时效果较好。S. CORRADINI 等人[9 ] 根据aster 数据, 利用劈窗算法( the split2window technique) 计算了意大利Mt Etna 火山排放的SO2 ,试验证明,运用该方法可较为准确地计算出SO2的分布。21112  灾害性大气污染———沙尘暴的被动式空基遥感监测利用遥感技术对大气环境进行监测的另一个方面是对大气污染事故的监测,如对沙尘暴的监测。沙尘暴是严重的生态环境问题,同时也是严重的大气污染问题,它突发性强,危害巨大,当沙尘暴发生时,大量沙尘粒子悬浮于空中并随风移动,对人畜及环境造成极大危害。沙尘暴属于大气气溶胶的一种极端情况。在气象学中,沙尘暴是指强风从地面卷起大量沙尘,使空气很浑浊,水平能见度小于110km 的灾害性天气现象。周明煜等[10 ] 利用NOAAPAVHRR 资料分析了1993 年4月北京、天津上空沙尘暴特性,得到在沙尘暴发生时,AVHRR 可见光通道1 和可见光通道2 的反射率都有增加,沙尘暴强度越大,反射率增加越大,但仅给出了反射率增加的大小,而没有根据卫星反射率的变化对沙尘暴进行定量研究。目前对沙尘暴的遥感监测主要是利用GMS 和NOAAPAVHRR 数据,其研究表明, GMS 的红外通道数据有利于确定沙尘暴的位置,同时它所具有的高时间分辨率(1h) ,更有利于大尺度监测沙尘暴的运动轨迹[11~14 ] 。由于NOAAPAVHRR 数据不但可以监测到沙尘暴反射辐射特性[15 ,16 ] ,而且可以在较大尺度上监测到沙尘暴的时空分布[11 ,12 ] ,因此是目前沙尘暴研究和监测的主要遥感信息源。

  • 【转帖】遥感FTIR在大气环境监测中的新发展

    前言:遥感傅里叶变换红外光谱(RS-FTIR)是当前大气环境监测中的一种重要手段,它具有灵敏度高,选择性好,不需取样和样品的预处理,能够同时监测多种化合物,能提供远距离实时自动监测的优点,适用于大气有毒易挥发有机化合物(VOCs)的定性、定量测定和遥感实时动态监测。文章综述了南京理工大学现代光谱研究室近几年来在RS-FTIR大气环境监测领域的研究进展,包括化学计量学,计算机层析(CT),FTIR谱图解析,大气污染物空间浓度分布监测,被动式遥感监测等方面的最新研究成果。这些研究成果充分表明,遥感FTIR技术的快速发展和应用,促进了分析化学在时空上的延伸,在大气环境监测领域中必将有更广泛的应用前景。文献名称遥感FTIR在大气环境监测中的新发展Article Name英文(英语)翻译Advanced Development of Remote Sensing FTIR in Air Environment Monitoring;作者胡兰萍; 李燕; 张琳; 张黎明; 王俊德; AuthorHU Lan-ping~(1;2);LI Yan~(1);ZHANG Lin~1;ZHANG Li-ming~1;WANG Jun-de~11.Laboratory of Advanced Spectroscopy;Nanjing University of Science and Technology;Nanjing 210014;China2.Laboratory of Analytical Chemistry;School of Chemistry and Chemical Engineering;Nantong University;Nantong 226006;China;作者单位Author Agencies南京理工大学现代光谱研究室; 南京理工大学现代光谱研究室 江苏南京; 南通大学化学化工学院分析化学实验室; [s

  • LIBS遥测实验

    想问下有没有大佬有LIBS遥测实验或者近距离LIBS测试的经验最近测试遇到问题,我采用532nm的脉冲激光器激发LIBS,可是无论怎样调节时序,都避不开532波段的光谱用示波器测量控制激光器和光谱仪的时序,也不存在问题,现在无法确定是哪个环节出现问题了

  • 遥感监测可以做这么多事情呀

    遥感监测如今不仅在“特殊时期”发挥作用,而且已经成为全国环境监测的“常规军”,在秸秆焚烧、沙尘预警预测、颗粒物监测、雾霾监测方面都发挥了积极作用。目前,已有地方实践将卫星遥感监测与地面监测相配合,形成了立体化的环境监测网络。

  • 生物多样性监测也有了“新质生产力”

    “传统上,对于生物多样性的调查和监测多是通过人工在地面进行,范围有限、耗时耗力、周期较长。”全国政协委员、生态环境部卫星环境应用中心(下称“卫星中心”)首席科学家高吉喜告诉记者,“这次[b][color=#ff0000]两会新质生产力是热点词汇[/color][/b],而我们利用卫星、塔基、无人机、移动走航车和地面定点构建的‘五基’协同遥感技术,能够开展生物多样性调查和监测,效率更高,范围更大,也更可持续,可以被称为生物多样性监测领域的新质生产力。”近年来,我国生物多样性保护取得显著成效,但仍存在自然生态空间被挤占的现象,生物多样性下降趋势仍未得到根本遏制。为了提高生物多样性监测和评估能力,服务生物多样性现代化治理工作,卫星中心专门成立生物多样性遥感监测评估中心(下称“生物多样性遥感中心”),探索如何将遥感技术应用于常态化生物多样性监测和评估之中。通过遥感能看到动植物吗?答案是肯定的。遥感即遥远的感知,是通过非接触的方式获取物体信息的一种技术手段。“但是当前大家熟知的遥感技术主要停留在卫星遥感上。”高吉喜对“五基”遥感不同类型平台进行了介绍,主要包括天基卫星、空基遥感、低空无人机、走航巡护、地面定位观测,其中空基以高塔为搭载平台,走航巡护以车辆为搭载平台,加上地面视频等定位观测,能够直观监测到植物群落,识别并跟踪大型哺乳动物的活动轨迹。“‘五基’遥感技术在生物多样性监测中非常有优势。”其实早在十多年前,生物多样性遥感中心主任万华伟就曾做过相关的尝试。当时,她和团队成员注意到外来入侵物种互花米草在广西扩散的消息后,联合当地团队,通过高分辨率卫星和无人机遥感手段摸清了当地互花米草的分布范围和扩散趋势,为科学治理提供了技术支撑。“卫星遥感本身是一种比较宏观的监测手段,能够展现生态环境因子的分布状况和动态变化,在物种栖息地监测和评估上能发挥更大作用。”卫星中心工程师施佩荣告诉记者,卫星遥感作为远离地面的探测方式,能够进行“不打扰式”监测。几年前,万华伟就曾和北京大学吕植老师团队合作,利用高分辨率卫星遥感数据对雪豹栖息地进行监测,通过获取高精度地表覆盖状况及人类活动情况,结合已有的地面调查雪豹点位,分析出哪些地方更适宜雪豹生活以及这些适宜栖息地之间的连通状况,为进一步开展地面雪豹监测和生态廊道规划等保护措施提供支撑。“总的来说,当前的卫星遥感技术更侧重于对植被、水源等生境要素及其受威胁状况的实时监测。”万华伟告诉记者,[color=#ff0000]“近年来,随着我国高分系列卫星的发射,高分辨率的地表观测数据频次不断增加,高光谱、激光雷达等新型载荷的出现为天空地一体化监测提供了卫星数据保障,数据处理技术的提高也为物种多样性直接监测提供了可能。再加上地面观测、空基遥感和卫星遥感的多尺度融合,借助定位视频、红外相机、无人机高清相机等监测技术与设备,可从物种、群落、景观和生态系统等不同水平对生物多样性进行长时序、多层次的全面监测与系统研究,为更全面掌握生物多样性状况,以及分析典型区域、重要类群的中长期变化态势提供了方法支撑。”[/color]但目前生物多样性遥感监测仍存在短板,我国生物多样性遥感监测仍处于起步阶段,监测方法手段和标准还不统一。同时,物联网、大数据、云计算、人工智能等现代信息技术在生物多样性的应用尚处于起步阶段,需进一步加快应用,提升智能化监测水平。万华伟举了几个例子,“卫星数据受天气影响、无人机数据获取成本高、多尺度数据的协同高效分析不足等等,这些都是利用遥感技术对生物多样性监测过程中需要进一步攻关的问题。”“当前迫切需要加强基于‘五基’协同的生物多样性系统性监测网络布局,构建全国尺度生物多样性大数据平台,整合利用各级、各类、各区域已有生物多样性地面调查和监测的数据,借助天空地一体化生物多样性立体监测方法,形成常态化生物多样性保护监督监测机制。”高吉喜表示。“这样才能让‘五基’遥感这个生物多样性监测领域的新质生产力发挥最大效用。”[来源:中国环境][align=right][/align]

  • 【求助】遥感式汽车尾气分析仪

    现在听说北京、杭州、太原等城市都使用了遥感式汽车尾气监测车,请问哪位大侠知道他们使用的是哪个品牌,哪个公司生产或代理的呀,谢谢!

  • 【资料】我国资源环境监测中遥感技术应用现状及展望

    摘要:从大气污染、水环境、海洋、固体废气物、生态环境等方面阐述应用遥感技术进行环境监测的现状,并对环境遥感技术的发展趋势进行展望。关键词:环境遥感 环境监测 水环境 生态环境[img]http://bbs.instrument.com.cn/images/affix.gif[/img][url=http://bbs.instrument.com.cn/download.asp?ID=199212]我国资源环境监测中遥感技术应用现状及展望.rar[/url]

  • 【世界环境日】市政供水水质监测难点

    市政供水水质监测的难点主要体现在以下几个方面:1. 水源多样性与水质波动:市政供水水源通常包括地表水、地下水和引入的客水等,这些水源的水质因自然条件和人类活动的影响存在较大差异。同时,季节性变化、干旱、洪涝等自然灾害也会引起水质的波动,给监测工作带来挑战。2. 监测基础设施不足:在一些地区,监测基础设施建设不够完善,包括监测站点的布局、水质检测设备的更新和维护等方面存在不足,影响监测数据的准确性和时效性。3. 技术手段局限性:虽然现代监测技术如遥感技术、水质反演模型、无人机巡航等在水质监测中得到了应用,但这些技术手段仍有一定的局限性,例如遥感技术在云雾天气或夜晚无法有效监测,无人机巡航受限于续航能力和天气条件等。4. 数据处理与分析能力:监测所得的大量数据需要高效、准确的处理和分析,以转化为可操作的管理决策。在一些情况下,相关部门的数据处理和分析能力可能不足以应对复杂的数据信息。5. 人为因素影响:人为污染和操作不当等也会影响水质监测结果,例如污染源的排放、采样过程中的污染、实验室分析的误差等。6. 经济成本限制:高质量的水质监测需要投入大量的经济资源,包括设备购置、维护、人员培训等,这对财政预算是一大考验。7. 应急响应能力:对于突发的 water pollution incidents,需要迅速的应急响应和处理能力,以保障居民饮水安全。这要求监测系统具备快速反应的能力,同时在预案制定和资源配置方面也需要充分的准备。针对上述难点,需要不断完善市政供水水质监测体系,加强基础设施建设,提高技术水平和数据分析能力,同时强化监管和应急预案,确保市政供水的水质安全。

  • 【我们不一YOUNG】+水环境监测前沿科技之遥感技术水质监测

    [align=left][font=宋体][color=black][back=white]遥感技术利用卫星、飞机等遥感平台获取水体的光谱、热红外、雷达等数据,通过遥感技术对水体进行监测和分析。遥感传感器可以快速获取大范围的水质信息,包括水体温度、表层浊度、藻类水华等。通过遥感技术,可以对大面积水域进行连续监测,及时发现和预警水质异常变化。[/back][/color][/font][/align][align=left][font=宋体][color=black][back=white]遥感技术在硬件中需要设计参数获取与传输模块以及遥感图像视频的传输模块。再利用图像识别软件进行分析和监测。其优势有:[/back][/color][/font][/align][align=left][font=宋体][color=black][back=white]1.信息收集较为全面[/back][/color][/font][/align][align=left][font=宋体][color=black][back=white]由于遥感技术探测范围较大,航摄飞机高度可达[/back][/color][/font][font=宋体][color=black][back=white]10 km 左右,借助卫星进行的遥感监测更是能够覆盖3万多 km2的地面范围,所以在进行水环境监测之时就能够在很大程度上契合水环境的监测需要。[/back][/color][/font][/align][align=left][font=宋体][color=black][back=white]2.适用范围较广[/back][/color][/font][/align][align=left][font=宋体][color=black][back=white]遥感技术穿透能力强,无论是液体还是固体以及气体都逃脱不了遥感技术的感应和监测,所以即便是处于原始森林或者是山地中的流域也能够通过遥感技术实现水环境监测。[/back][/color][/font][/align][align=left][font=宋体][color=black][back=white]3.整体性较强[/back][/color][/font][/align][align=left][font=宋体][color=black][back=white]遥感设备能够进行立体动态监测,并且将监测结果以直观的航空影像呈现出来,检测过程保持了连续性,这使水环境监测不会局限于片面范围,而是使水环境以整体形式呈现在大家面前,使水环境实现了全面整体监测与辨识。[/back][/color][/font][/align][align=left][font=宋体][color=black][back=white]4.手段丰富,效率较高[/back][/color][/font][/align][align=left][font=宋体][color=black][back=white]遥感技术作为利用电磁波进行信息收集的作业,可根据不同水域的特点对波段和相关设备进行调整。作业过程中,相关人员可利用紫外线、红外线和微波波段等多样化的方法针对水环境进行信息收集,不仅能够对地表水的流域状况进行监测,还能够实现对地下水的信息收集。但是,目前遥感可以监测的参数仍然相对偏少,目前能监测的参数包括:油渍污染、水体富营养化监测、悬浮物的监测、热污染。[/back][/color][/font][/align]

  • 大气科学之气象观测==被动微波遥感

    被动微波遥感和微波遥感是同义词  微波遥感:是传感器的工作波长在微波波谱区的遥感技术,是利用某种传感器接受地理各种地物发射或者反射的微波信号,藉以识别、分析地物,提取地物所需的信息。   △常用的微波波长范围为0. 8~30厘米。其中又细分为K、Ku、X、G、C、S、Ls、L等波段。微波遥感的工作方式分主动式(有源)微波遥感和被动式(无源)微波遥感。前者由传感器发射微波波束再接收由地面物体反射或散射回来的回波,如侧视雷达;后者接收地面物体自身辐射的微波,如微波辐射计、微波散射计等。   △微波遥感的突出优点是具全天候工作能力,不受云、雨、雾的影响,可在夜间工作,并能透过植被、冰雪和干沙土,以获得近地面以下的信息。广泛应用于海洋研究、陆地资源调查和地图制图。   微波雷达可探测出目的物体的较细节的特征,通过对比数据库,可以分析出目标到底是什么。   紧缩场:可以让球形电磁波变成平面电磁波。   被动接收机的灵敏度大大高于主动接收机的灵敏度。

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制