当前位置: 仪器信息网 > 行业主题 > >

微纳尺度生物分离分析

仪器信息网微纳尺度生物分离分析专题为您整合微纳尺度生物分离分析相关的最新文章,在微纳尺度生物分离分析专题,您不仅可以免费浏览微纳尺度生物分离分析的资讯, 同时您还可以浏览微纳尺度生物分离分析的相关资料、解决方案,参与社区微纳尺度生物分离分析话题讨论。

微纳尺度生物分离分析相关的论坛

  • 北京纳米跃升工程在宏观尺度超润滑领域取得突破

    塑料问答:近日,在北京市科委支持下,清华大学化工系魏飞教授团队与清华大学微纳米力学与多学科交叉创新研究中心、北京大学信息学院合作,在超润滑领域取得重大突破,在世界上首次检测到了大气环境下厘米以上长度碳纳米管管层间的超润滑现象。所实现的超润滑尺度比以前报道结果的最高值高出3个数量级,同时所得到的摩擦剪切强度比以前报道结果的最低值降低了4个数量级。相关成果发表在国际纳米领域权威学术期刊《自然—纳米技术》上。  摩擦现象一直是人类面临的最具挑战性的问题之一。全世界约1/3至1/2的一次性能源由摩擦过程消耗;工业发达国家因摩擦磨损造成的损失高达GDP的5%-7%。在微观尺度,由于材料比表面积增大,使得摩擦现象更加显著,界面摩擦成为制约器件性能和寿命的关键因素。解决摩擦磨损问题的根本途径是实现固体界面之间的极低摩擦甚至零摩擦,即超润滑。过去二十年中所发现的超润滑现象主要是在纳米尺度和高真空条件下实现的,实现宏观尺度上的超润滑不仅要求固体表面具有超高的模量,而且要求在宏观尺度上原子级平整,无缺陷与位错,如此苛刻的条件使得人们普遍认为大尺度下几乎不可能实现超润滑。  碳纳米管从结构上看是由石墨烯卷曲而成,理论研究表明,当碳纳米管存在哪怕只有一个原子级别的缺陷时,其管壁间摩擦力就会急剧增大。经过近十年的努力,魏飞教授团队在制备长达数厘米且无缺陷的碳纳米管的制备方面取得了一系列突破,发展了单根碳纳米管的纳米颗粒标记技术,这些工作为宏观尺度超润滑工作奠定基础。在上述基础上,魏飞团队首先在光学显微镜下通过用微弱气流吹动碳纳米管的方法观察到了碳纳米管管壁之间快速相对运动的奇妙现象,进而利用扫描电镜下的微纳米操纵平台进行双壁碳纳米管内层的可控抽出,并测量了管壁间的超低摩擦力。研究发现,双壁碳纳米管的管壁之间存在着超低的摩擦力,并且这种摩擦力与碳纳米管的长度没有关系,即无论多长的碳纳米管,其内层都可以被轻易地抽出来。  这项工作被《自然—纳米技术》杂志审稿人评价为里程碑式原创性工作,对于研究和控制摩擦力做出了重大的、创造性的贡献,为下一代全碳电子器件构筑、超润滑机械开发以及超高速微纳米机械、电子器件制备提供了基础。转自塑料问答

  • 深圳先进院在微尺度声操控研究方面取得新进展

    中科院深圳先进技术研究院医工所郑海荣研究团队在微尺度声操控方面取得新的进展。5月4日,相关研究成果发表在美国物理联合会期刊Applied Physics Letters上。精确无创地操控微纳米尺度的生物粒子及药物颗粒,是物理声学的热点研究领域之一。随着超声局部给药的不断发展,利用声波精确的操控药物载体得到了广泛的关注。该研究首次利用声波实现了超声造影剂的可编程精确操控,空间分辨率可达2.2 µm。研究人员利用驻波的势阱效应,将超声造影微泡聚集并捕获在势阱的位置,使其排列成网格结构;通过调节入射声源的相对相位,改变驻波场中势阱的位置,实现超声造影微泡的连续移动,并且每次移动的距离和方向均可精确控制;利用可编程声操控,将超声造影微泡富集、移动、停驻在靶向区域,提高局部药物的浓度,实现靶向给药的目的。本工作的意义在于通过精确的操控,有助于研究细胞与超声造影微泡的相互作用,进一步理解超声给药的机理如声孔效应、空化效应等,同时也为超声给药治疗提供了一种具有重要应用价值的新方法,为发展新型超声给药治疗仪器奠定了基础。上述研究工作得到国家自然科学基金委,以及科技部973计划前期研究专项的支持。

  • 中国科大张斗国教授团队在单个纳米尺度物体无标记光学显微成像方面取得新进展

    近日,中国科学技术大学物理学院光电子科学与技术安徽省重点实验室张斗国教授课题组提出并实现了一种基于矢量光场调控原理的动量空间偏振滤波器件。将该滤波器件安装于传统无标记光学显微镜的出射端,它可以对出射光场的背景噪声进行高效抑制,进而采集到单个纳米尺度物体的高对比度、高信噪比光学显微图像。研究成果以“Cascaded momentum-space-polarization filters enable label-free black-field microscopy for single nanoparticles analysis”为题在线发表在综合性学术期刊《美国国家科学院院刊》(PNAS)。[align=center][img=,600,174]https://img1.17img.cn/17img/images/202403/uepic/18c3b2c4-6d3d-4349-b5d2-5c096ac0f32f.jpg[/img][/align]单纳米级物质的无标记光学成像对于各种生物医学、物理和化学研究极为重要。其中一个核心挑战是背景强度远远大于单个纳米物体的散射光强度。在这里提出了一种由级联动量空间偏振滤波器组成的光学模块,它可以进行矢量场调制,阻挡大部分背景场,使背景几乎变黑;相反,只有一小部分散射被阻挡,从而明显提高成像对比度。为了解决这个问题,张斗国教授课题组设计并实现了一种动量空间偏振滤波器件,它可在动量空间进行矢量场偏振调控,大幅度过滤、抑制各类背景噪声,只有单个纳米尺度物体的光散射信号能透过该滤波器件,被探测器采集到,从而实现了单个纳米尺度物体的高对比度、高信噪比的成像探测。[align=center][img=,500,508]https://img1.17img.cn/17img/images/202403/uepic/b5f63213-6cee-41d0-8519-3a9bc7fc69aa.jpg[/img][/align]作为一种应用展示,该动量空间偏振滤波器件被加载到传统全内反射显微镜(Total internal reflection microscopy, TIRM)的出射端,用于单个纳米尺度物体的成像与传感。加载该滤波器后,TIRM被转化为黑场光学显微镜(Black field microscopy (BFM),相对于常规的无标记暗场光学显微镜,BFM具有更低(更黑)背景噪音,更高探测灵敏度)。BFM可以实时记录了此变化过程,证明BFM可应用于单个纳米颗粒化学反应过程的实时记录,为实时探测单个纳米尺度物体物性演化过程中所发生的物理-化学反应探测提供了新型光子学技术。该动量空间滤波器件的突出特点是:在不改变显微镜内部结构的情况下,它可以使常规的无标记光学显微镜,如表面等离激元共振显微镜、TIRM等近场光学显微镜,具有黑场成像功能,从而大幅度提升其对单个纳米尺度物体的探测灵敏度。本研究工作所发展黑场显微镜为单个纳米颗粒的分析提供了新平台,有望在生物学、物理学、环境科学和材料科学等领域得到广泛应用。该研究工作得到了科技部,国家自然科学基金委、安徽省科技厅、唐仲英基金会等项目经费的支持。相关样品制作工艺得到了中国科学技术大学微纳研究与制造中心的仪器支持与技术支撑。[来源:仪器信息网] 未经授权不得转载[align=right][/align]

  • 纳米原子尺度,衬度成像机制,信息提取

    应用透射电子显微镜观察纳米结构在纳米-原子尺度的细节,需要采用何种衬度成像机制;在霍地图像信息的同时,在纳米尺度综合分析方面,还有哪些信息可以同时提取出来?

  • 最新技术讲解!多维气相色谱及微尺度分析测试新方法的研究与应用

    最新技术讲解!多维气相色谱及微尺度分析测试新方法的研究与应用

    “多维[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]及微尺度分析测试新方法的研究与应用”网络会议![b][img]https://simg.instrument.com.cn/bbs/images/default/em09507.gif[/img]9月5日正式开讲!特邀资深专家进行讲解~报告主题:[color=#cc0000]多维[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]技术特点及在复杂样品分析中的应用[/color][color=#cc0000] 基于探针电喷雾Paternò-Büchi光化学反应的微尺度脂质组学技术研究及应用[/color]免费报名链接:[url]https://www.woyaoce.cn/webinar/meeting_4443.html[/url]课程详情咨询请添加测小二微信号cexiaoer2018 [img=,253,253]https://ng1.17img.cn/bbsfiles/images/2019/08/201908301703303161_1126_3348354_3.jpg!w253x253.jpg[/img][/b]

  • 【分享】世界首个三维等离子标尺制成 在纳米尺度测结构

    最近,美国能源部劳伦斯-伯克利国家实验室与德国斯图加特大学研究人员合作,开发出了世界首个三维等离子标尺,能在纳米尺度上测量大分子系统在三维空间的结构。该标尺有助于科学家在研究生物的关键动力过程中,以前所未有的精度来测量DNA(脱氧核糖核酸)和酶的作用、蛋白质折叠、多肽运动、细胞膜震动等。研究论文发表在最新一期《科学》杂志上。  随着电子设备和生物学研究对象越来越小,人们需要一种能测量微小距离和结构变化的精确工具。此前有一种等离子标尺,是基于电子表面波(也叫“等离子体”)开发出的一种线性标尺。当光通过贵金属,如金或银纳米粒子的限定维度或结构时,就会产生这种等离子体或表面波。但目前的等离子标尺只能测量一维距离长度,在测量三维生物分子、软物质作用过程方面还有很大局限,其中等离子共振由于辐射衰减而变弱,多粒子间的简单耦合产生的光谱很模糊,很难转换为距离。  而新型三维等离子标尺克服了上述困难。该三维等离子标尺由5根金质纳米棒构成,其中一个垂直放在另外两对平行的纳米棒中间,形成双层H型结构。垂直的纳米棒和两对平行纳米棒之间会形成强耦合,阻止了辐射衰减,引起两个明显的四极共振,由此能产生高分辨率的等离子波谱。标尺中有任何结构上的变化,都会在波谱上产生明显变化。另外,5根金属棒的长度和方向都能独立控制,其自由度还能区分方向和结构变化的重要程度。   研究人员还用高精度电子束光刻和叠层纳米技术制作了一系列样品,将三维等离子标尺放在玻璃的绝缘介质中,嵌入样品进行测量,实验结果与计算出来的数据高度一致。与其他分子标尺相比,这种三维等离子标尺建立在化学染料和荧光共振能量转移的基础上,不会闪烁也不会产生光致褪色,在光稳定性和亮度上都很高。  谈到应用前景,该研究领导者、伯克利实验室负责人鲍尔·埃利维塞特说,这种三维等离子标尺是一种转换器,可将其附着在DNA或RNA链多个位点,或放在蛋白质、多肽的不同位置,再现复杂大分子的完整结构和生物过程,追踪这些过程的动态演变。(科技日报)

  • 微纳形貌分析利器——4D微纳形貌动态表征DHM

    微纳形貌分析利器——4D微纳形貌动态表征DHM

    科研史上前所未有的观测手段——数字全息DHM可高速实时测量三维形貌,达到了亚纳米精度。克服了传统AFM、CLSM等需要扫描进行三维成像的特性。 表征透明/半透明三维形貌Ø 测量厚度从几纳米到几十微米Ø 可测最高三层透明薄膜Ø 测量薄膜折射率Ø 微纳器件动态三维形貌时序图(1000fps), 还可测频率响应(高达25MHz) 主要应用北京大学 搭建平面应变鼓膜实验平台测量纳米薄膜的动态力学性能天津大学 微结构表面形貌和运动特性测量华中科技大学 微纳制造与测试,微小光学元件检测,微电子制造封装与测试清华大学 透射式全息显微镜,测量透明样品形貌,还可以测量材料光学参数、内部结构以及缺陷杂质等 • 超快速高精度的三维成像,大面积三维形貌表征,表面粗糙度,MEMS振动测量分析,表征微流体器件和微颗粒三维追踪测试配合MEMS Analysis Tool、光学反射软件Reflectometry Analysis等专用软件实现更多功能[img=,600,400]http://ng1.17img.cn/bbsfiles/images/2017/10/201710131406_01_1546_3.gif[/img][img=,384,216]http://ng1.17img.cn/bbsfiles/images/2017/10/201710131407_01_1546_3.gif[/img][img=,690,]http://ng1.17img.cn/bbsfiles/images/2017/10/201710131406_02_1546_3.jpg[/img]

  • 济南微纳受邀参加《粒度分析动态光散射法》国家标准宣贯会

    济南微纳受邀参加《粒度分析动态光散射法》国家标准宣贯会我国在纳米材料相关基础标准已发布实施多项,新技术转化的标准的宣贯工作迫在眉睫,为提高科研技术人员的研究分析能力,相互交流研究心得,同时为执行标准做好充分的准备,北京粉体技术协会、全国颗粒表征与分检及筛网标准化技术委员会、全国纳米技术标准化技术委员会于2013年11月26日在北京国家纳米科学中心联合举办纳米测试标准系列讲座。作为中国颗粒测试技术的领航者的济南微纳颗粒仪器股份有限公司,被选为系列宣贯的第一讲。与会期间我司陈栋章总工将进行《粒度分析动态光散射法》GB/T 29022-2012/ISO 22412:2008的讲座。欢迎业内广大新老客户及关系单位届时参与此次盛会。济南微纳受邀参加此次会议力验证评定,是国家权威部门对微纳多年来不懈努力所取得成绩的认可。济南微纳将不负所望,秉承自身作为中国颗粒测试技术的领航者的职责,为广大用户提供优异的仪器与满意的服务,继续为中国粒度测试技术赶超世界一流水平做出不懈努力。微纳仪器http://www.jnwinner.com

  • 微纳形貌分析利器——4D微纳形貌动态表征

    微纳形貌分析利器——4D微纳形貌动态表征

    科研史上前所未有的观测手段——数字全息可高速实时测量三维形貌,达到了亚纳米精度。克服了传统AFM、CLSM等需要扫描进行三维成像的特性。 表征透明/半透明三维形貌Ø 测量厚度从几纳米到几十微米Ø 可测最高三层透明薄膜Ø 测量薄膜折射率Ø 微纳器件动态三维形貌时序图(1000fps), 还可测频率响应(高达25MHz) 主要应用北京大学 搭建平面应变鼓膜实验平台测量纳米薄膜的动态力学性能天津大学 微结构表面形貌和运动特性测量华中科技大学 微纳制造与测试,微小光学元件检测,微电子制造封装与测试清华大学 透射式全息显微镜,测量透明样品形貌,还可以测量材料光学参数、内部结构以及缺陷杂质等 • 超快速高精度的三维成像,大面积三维形貌表征,表面粗糙度,MEMS振动测量分析,表征微流体器件和微颗粒三维追踪测试配合MEMS Analysis Tool、光学反射软件Reflectometry Analysis等专用软件实现更多功能[img=,690,]http://ng1.17img.cn/bbsfiles/images/2017/10/201710131349_01_1546_3.jpg[/img][img=,600,400]http://ng1.17img.cn/bbsfiles/images/2017/10/201710131350_01_1546_3.gif[/img][img=,384,216]http://ng1.17img.cn/bbsfiles/images/2017/10/201710131351_01_1546_3.gif[/img][img=,384,216]http://ng1.17img.cn/bbsfiles/images/2017/10/201710131354_01_1546_3.gif[/img][img=,384,216]http://ng1.17img.cn/bbsfiles/images/2017/10/201710131351_04_1546_3.gif[/img][img=,384,]http://ng1.17img.cn/bbsfiles/images/2017/10/201710131358_01_1546_3.jpg[/img]

  • 微纳形貌分析利器——4D微纳形貌动态表征DHM

    微纳形貌分析利器——4D微纳形貌动态表征DHM

    科研史上前所未有的观测手段——数字全息DHM可高速实时测量三维形貌,达到了亚纳米精度。克服了传统AFM、CLSM等需要扫描进行三维成像的特性。 表征透明/半透明三维形貌Ø 测量厚度从几纳米到几十微米Ø 可测最高三层透明薄膜Ø 测量薄膜折射率Ø 微纳器件动态三维形貌时序图(1000fps), 还可测频率响应(高达25MHz) 主要应用北京大学 搭建平面应变鼓膜实验平台测量纳米薄膜的动态力学性能天津大学 微结构表面形貌和运动特性测量华中科技大学 微纳制造与测试,微小光学元件检测,微电子制造封装与测试清华大学 透射式全息显微镜,测量透明样品形貌,还可以测量材料光学参数、内部结构以及缺陷杂质等 • 超快速高精度的三维成像,大面积三维形貌表征,表面粗糙度,MEMS振动测量分析,表征微流体器件和微颗粒三维追踪测试配合MEMS Analysis Tool、光学反射软件Reflectometry Analysis等专用软件实现更多功能[img=,600,400]http://ng1.17img.cn/bbsfiles/images/2017/10/201710131410_01_1546_3.gif[/img][img=,690,]http://ng1.17img.cn/bbsfiles/images/2017/10/201710131410_02_1546_3.jpg[/img][img=,384,216]http://ng1.17img.cn/bbsfiles/images/2017/10/201710131410_03_1546_3.gif[/img][img=,384,216]http://ng1.17img.cn/bbsfiles/images/2017/10/201710131410_04_1546_3.gif[/img]

  • 【网络会议】:2015年9月23日 纳米尺度下的力学性能:见微知著

    【网络会议】:2015年9月23日 纳米尺度下的力学性能:见微知著

    【网络会议】:纳米尺度下的力学性能:见微知著【讲座时间】:2015年09月23日 14:00【主讲人】:魏伯任学历:成功大学机械工程学博士,现职:海思创公司应用科学家研究领域。【会议介绍】纳米尺度下力学性质的测试一直是科研界与工业界关注的重要问题。随着测试技术往与其他性质相互串连的方向发展,其应用层面更是不断地朝不同领域扩展。今日的纳米压痕早已不再只是硬度与弹性模量的测试,在结合相对应技术架构的搭配之下,已经能够针对接口特性、破裂韧性、高温蠕变、残余应力等进行高精度与高分辨率的测试。 现阶段的复合技术已经够在多方面获得进展,如接口附着能、表面能、多层膜的破裂韧性等等。除了在学术理论技术方面的进展之外,在工业应用方面也因应各种生产需求,朝针对产品整体面向的质量管控与良率监控的自动化方向发展。。-------------------------------------------------------------------------------1、报名条件:只要您是仪器网注册用户均可报名,通过审核后即可参会。2、报名并参会用户有机会获得100元手机充值卡一张哦~3、报名截止时间:2015年09月23日 13:304、报名参会:http://www.instrument.com.cn/webinar/meeting/meetingInsidePage/16665、报名及参会咨询:QQ群—379196738http://ng1.17img.cn/bbsfiles/images/2017/10/2015042911235201_01_2507958_3.jpg

  • 电泳微流控芯片:生物分析的里程碑

    电泳微流控芯片是一种结合了电泳和微流控技术的创新型生物分析工具。该技术整合了微流体学的优势,通过微小尺度的通道、电场和高度灵活的流动控制,实现了对生物分子的高效分离、检测和分析。[align=center][img=图片]https://img1.17img.cn/17img/images/202404/uepic/434f44d0-8ac9-452a-bfa1-fd7840c0c1cc.jpg[/img][/align][b]——技术原理——[/b]电泳原理:在电解质溶液中,位于电场中的带电离子在电场力的作用下,以不同的速度向其所带电荷相反的电极方向迁移的现象。电泳微流控芯片技术可以分为两种主要类型:毛细管电泳和芯片上电泳。毛细管电泳利用单根毛细管作为分离通道,而芯片上电泳则将电泳所需的缓冲液、电极等组件集成到一个微流控芯片上,实现设备的微小化和自动化。这种集成化设计使得电泳微流控芯片具有高通量、高效率、低样品消耗和快速分离等优点。电泳微流控芯片的原理主要基于电场驱动下的带电粒子在微尺度流道中的迁移与分离。具体来说,电泳微流控芯片利用微加工技术在芯片上构建微米级的流道,这些流道用于容纳电泳缓冲液。当在芯片两端施加电场时,缓冲液中的带电粒子(如DNA、蛋白质等)会根据其电荷和电场方向发生迁移。不同带电粒子由于其电荷、质量和形状的差异,在电场中的迁移速度会有所不同,从而实现粒子的分离。[b]——应用领域——[/b]电泳微流控芯片的应用领域非常广泛,涵盖了多个重要的科学和工业领域。以下是其主要的应用领域:1、生物医学:在生物医学领域,电泳微流控芯片技术主要用于DNA片段、多肽、蛋白质等生物分子的分离和分析。它被认为是后基因时代中最有希望攻克蛋白质研究、基因临床诊断等科学难题的分离分析手段之一。此外,电泳微流控芯片技术也被用于[url=https://insevent.instrument.com.cn/t/jp][color=#3333ff]PCR[/color][/url]反应,可以大大简化操作步骤,显著提高检测效率。2、新药物合成与筛选:电泳微流控芯片技术在新药研发过程中发挥着重要作用。它可以用于药物分子的分离和筛选,从而加速新药的研发进程。3、食品和商品检验:电泳微流控芯片技术可以用于食品中添加剂、污染物等的检测和分析,确保食品的安全和合规性。同时,它也可以用于商品的质量控制和检验。4、环境监测:在环境监测领域,电泳微流控芯片技术可用于水、土壤、空气等环境样本中有害物质的检测和分析,为环境保护和污染治理提供科学依据。5、刑事科学:电泳微流控芯片在法医学中具有重要的应用,特别是在DNA分离、检测和分析方面,对于个体身份的鉴定和犯罪现场的物证分析具有重要意义。6、其他科学领域:此外,电泳微流控芯片技术还广泛应用于军事科学、航天科学等其他重要科学领域,为这些领域的研究和发展提供了强大的技术支持。[b]——优势——[/b]1、高分辨率和快速分离:微流控芯片中的通道尺寸小,因此具有较高的分辨率和更快的分离速度。这使得它能够在短时间内准确地分离和识别出各种生物分子,如DNA、蛋白质等。2、低样品和试剂消耗:由于微流控芯片中的流体通道尺寸微小,所需的样品和试剂量大大减少。这既降低了分析成本,也减少了生物样本的浪费,对于珍贵的生物样本尤其重要。3、高通量分析能力:微流控芯片可以并行处理多个样品,实现高通量分析。这大大提高了分析效率,使得在短时间内能够处理更多的样本,适用于大规模的生物分子分析任务。4、易于集成和自动化:电泳微流控芯片可以与其他技术(如质谱联用)实现联合分析,进一步提高分析的准确性和灵敏度。此外,微流控芯片技术易于实现自动化,减少了人为操作的误差,提高了分析的准确性和可靠性。5、微型化和便携性:电泳微流控芯片采用微型化设计,使得整个分析系统更加紧凑和便携。这使得它可以在现场进行实时分析,无需复杂的实验室设备,为现场检测和即时分析提供了便利。[b]保利微芯公司简介[/b]保利微芯科技有限公司隶属中国保利集团公司,由保利置业集团有限公司投资,设计研发微流控生物芯片,公司具备技术先进的微流控生物芯片设计制造能力,已形成创新性的、技术领先的微流控芯片整体解决方案。可以承接国内外芯片设计、应用公司的微流控芯片生产订单,为即时诊断(POCT)、基因测序、环境保护、食品安全和科学研究等应用领域的客户提供有核心竞争力的高性价比芯片产品。[来源:保利微芯][align=right][/align]

  • 模仿蝴蝶翅膀的微观结构 科学家开发出纳米尺度光子晶体

    科技日报讯 据物理学家组织网9月3日(北京时间)报道,澳大利亚斯威本科技大学和德国埃尔朗根-纽伦堡弗里德里希·亚历山大大学(FAU)的一个国际研究团队,通过模仿蝴蝶翅膀的微观结构,开发出一种小于人类头发丝宽度的纳米级光子晶体设备,能同时适用于线性和圆形偏振光,使光通信更迅捷更安全。 该光子晶体可以同时分割左、右圆形偏振光,其设计灵感来自于卡灰蝶,也称为黄星绿小灰蝶。它的翅膀里具有三维纳米结构,赋予其充满活力的绿色。其他昆虫也有可提供色彩的纳米结构,但卡灰蝶却有着一个重要的不同。斯威本大学的马克·特纳博士说:“这种蝴蝶的翅膀包含一个互连的纳米级螺旋弹簧巨大阵列,形成了独特的光学材料。我们用这个概念来开发光子晶体装置。” 光子晶体相当于微型偏振分光镜。偏振分光镜用于现代技术,如电信、显微镜和多媒体。但天然晶体只适用于线性偏振光,不能用于圆形偏振光。研究人员利用三维激光纳米技术,使得该光子晶体具有了天然光子晶体没有的特性,从而能适用于圆偏振光。这种微型设备包含了超过75万个微小的聚合物纳米棒。 斯威本大学微光电中心主任顾敏(音译)教授说:“我们相信已经创建了第一个纳米尺度的光子晶体手性分光镜。它有可能成为开发集成光子电路的一种有用的电子元件,在光通信、影像学、计算机信息处理技术和传感中发挥重要作用。该技术为转向纳米光子器件提供了新的可能性,使我们朝着开发可以克服超高速光网络带宽瓶颈的光学芯片更近了一步。” 该研究成果已经发表在最新一期的《自然·光子学》杂志上。(记者华凌) 总编辑圈点 自然比人的想象更丰富。看似无奇的绿光,来自一种光学装置设计者从未见过的复杂结构。卡灰蝶翅膀里的天下无双的怪异阵列,是纯属偶然的基因变异数亿年积累的产物。而有想象力的科学家,在它的启发下,制造出地球上从未存在过的光学奇观。模仿自然的美,是人类创造的原动力。 《科技日报》(2013-09-04 一版)

  • 【文献进展】纳米技术在生物医学中的应用

    摘 要 纳米技术与生物化学、分子生物学整合将对21世纪的生物医学产生深刻的影响。它将利用生物大分子进行物质的组装、分析与检测技术的优化、并将药物靶向性与基因治疗等研究引入微型、微观领域,用纳米生物技术检测是否患有癌症只用几个细胞。  关键词 纳米技术;纳米生物学;DNA纳米技术  20世纪80年代才开始研究的纳米技术在90年代获得了突破性进展。最近美国《商业周刊》列出了21世纪可能取得重大突破的三个领域:一是生命科学和生物技术;二是从外星球获取能源;三是纳米技术。所谓纳米技术(Nanotechnology)是指在小于100 nm的量度范围内对物质和结构进行制造的技术,其实就是一种用单个原子、分子制造物质的科学技术[1]。纳米技术在新世纪将推动信息技术、生物医学、环境科学、自动化技术及能源科学的发展,将极大的影响人类的生活,衣、食、住、行、医疗等方面。本文将围绕纳米技术给21世纪的生物医学可能带来影响作一概述。  1 纳米生物学的研究对象  有人把在纳米尺度(水平)上研究生命现象的生物学叫做纳米生物学。纳米结构通常指尺寸在1 nm~100 nm范围的微小结构。1纳米等于10-9m,即1m的十亿分之一。我们知道,细胞具有微米(10-6m)量级的空间尺度,生物大分子具有纳米量级的空间尺度。在它们之间的层次是亚细胞结构,具有几十到几百纳米量级的空间尺度。显然在纳米水平上研究生命现象的纳米生物学,它的研究对象就是亚细胞结构和生物大分子体系。由于纳米微粒的尺寸一般比生物体内的细胞、红细胞小得多,这就为生物学研究提供了一个新的研究途径即利用纳米微粒进行细胞分离、疾病诊断,利用纳米微粒制成特殊药物或新型抗体进行局部定向治疗等。

  • 微纳仪器成功参加2013年全国高教仪器设备展示会

    微纳仪器成功参加2013年全国高教仪器设备展示会2013年秋季全国高教仪器设备展示会于2013年10月24日在湖南国际会展中心隆重开幕,济南微纳颗粒仪器股份有限公司作为全国粒度分析仪的领航者受邀参加了此次会议。会议由中国高等教育学会主办,中国高等教育学会实验室管理工作分会协办,湖南省高等教育学会高校实验室管理专业委员会承办。此次展会促进了教学科研仪器设备更好地服务于区域高等学校的建设,全面提高高等教育质量。此次展会为期三天,来自全国各大院校的专家教授及来自全国各地的经销商参加了此次展会,期间济南微纳颗粒仪器股份有限公司在展示自己高新技术产品的同时,也与各大高校,经销商及同行业进行了深度的交流,进一步把握了行业信息,更准确的把握了市场需要,对济南微纳今后顺应市场需求,为广大高等院校技术科研提供更高精尖的激光粒度分析仪起到了促进作用。促使我们紧跟时代潮流和市场步伐,全面发挥济南微纳的在颗粒粒度测量方面的领航者作用。为早日达成高等教育结构更加合理,实验室器材更加先进,办学质量显著提升,建成一批有特色、高水平的高等学校实验室的目标贡献微纳人自己的力量。色、高水平的高等学校实验室的目标贡献微纳人自己的力量。--------------- 中国颗粒测试技术的领航者---------------济南微纳颗粒仪器股份有限公司是专门研发、生产、销售颗粒测试相关仪器设备的高科技企业。主要产品激光粒度仪,粒度仪,粒度分析仪,激光粒度分析仪,纳米激光粒度仪,颗粒图像分析仪,喷雾激光粒度仪等。

  • 微纳米粉捕集装置

    微纳米粉捕集装置

    [font=仿宋_GB2312][size=19px]将待分离粉末加入到电磁筛分部分最上部,承筛部分放置筛孔为微米的筛网(如10、20微米)。[/size][/font][font=仿宋_GB2312][size=19px]筛网层上面有机玻璃盖,通过管路联接到微纳米物质分离捕集器。这是一款内置双层粗孔片和超细滤膜的配件,可将微纳米微粒和大于上层筛孔直径的物料分离。[img=,554,283]https://ng1.17img.cn/bbsfiles/images/2023/12/202312011653556947_148_1812435_3.png!w554x283.jpg[/img][/size][/font][font=仿宋_GB2312][size=19px]捕集器另一端联接真空泵。工作时,真空泵提供负压传输到筛分仪,筛分仪超声装置可将原料粉团聚体打开,并将堵塞的筛孔打开,有利于三维震动的筛分部分将物料快速筛下,扬起微细粒颗粒的作用,空气和纳微米颗粒由筛分仪向真空泵运移,纳微米颗粒最终在捕集器中分离富集[/size][/font][font=宋体][size=19px]。[img=,156,409]https://ng1.17img.cn/bbsfiles/images/2023/12/202312011654144101_1924_1812435_3.png!w156x409.jpg[/img]本装置特点:[font=Wingdings]u [/font][font=宋体]电磁驱动,清洁能源[/font][font=Wingdings]u [/font][font=宋体]三维抛掷筛分,速度快,重复性高[/font][font=Wingdings]u [/font][font=宋体]操作简便,功率、振幅可调节[/font][font=Wingdings]u [/font][font=宋体]独有S型压盘设计,可快速拆卸筛子,筛分效率高[/font][font=Wingdings]u [/font][font=宋体]采用单向夹具,可快速压紧[/font][font=Wingdings]u [/font][font=宋体]连续、精微、间断三种震动模式可选[/font][font=Wingdings]u [/font][font=宋体]干法、湿法筛分可选[/font][/size][/font]

  • STEM下纳米尺度特征的元素面分布图

    STEM下纳米尺度特征的元素面分布图

    研究人员采用带STEM模式的场发射透射电镜观察Cu-Zn-S化物,并采用电制冷X-Max80能谱仪(大面积能谱仪,更适合观察纳米结构)对该结构进行观察,获得元素面分布图,最小尺度约5nm。该结果发表于2012年的Angewandte Chemie应用化学中,并选为当期的封面。http://ng1.17img.cn/bbsfiles/images/2013/02/201302161855_425531_2512186_3.jpghttp://ng1.17img.cn/bbsfiles/images/2013/02/201302161855_425532_2512186_3.jpg

  • 高校科研院所刚刚发布了广州分析测试中心-. 环境污染物迁移转化职位,坐标广州市,速来围观!

    [size=16px][color=#ff0000][b][url=https://www.instrument.com.cn/job/position-80677.html]立即投递该职位[/url][/b][/color][/size][b]职位名称:[/b]广州分析测试中心-. 环境污染物迁移转化[b]职位描述/要求:[/b]承担并完成广东省科学院人才引进项目;以第一作者发表中科院大区SCI二区及以上论文或卓越期刊论文不少于3篇,申请发明专利不少于1件三、基本要求1. 应届毕业或近3年获得学位的博士,年龄不超过35岁,全脱产在站工作;2. 具有相关研究背景,且有较好的科研业绩,能独立展开科学研究并具有良好的职业道德。 四、岗位待遇1. 基本年薪20万元(广东省科学院人才引进项目执行期间基本年薪25万元),超出标准的成果另享受丰厚的奖励,上不封顶;2. 提供周转住房,解决广州市户口;3. 根据考核情况优先纳入事业编制。[b]公司介绍:[/b] 清华大学生物微流控与药物分析实验室,致力于发展微纳流体操控的新原理新技术,并将其应用于微纳尺度的输运、组装和生物制造,模拟组织器官的微结构和微环境,结合原位光谱成像分析和质谱联用分析等检测技术,构建生命分析和生物医学研究的新模型,发展微流控生命分析的原理、方法及装置,参与生命科学前沿基础研究,服务于药品质量与安全、新药研发、临床检测等国家重大需求。课题组负责人梁琼麟教授,于2000年、2005...[url=https://www.instrument.com.cn/job/position-80677.html]查看全部[/url][align=center][img=,178,176]https://ng1.17img.cn/bbsfiles/images/2021/08/202108160948175602_3528_5026484_3.png!w178x176.jpg[/img][/align][align=center]扫描二维码,关注[b][color=#ff0000]“仪职派”[/color][/b]公众号[/align][align=center][b]即可获取高薪职位[/b][/align]

  • 高校科研院所诚聘国高材分析测试中心-分析测试行业专家,坐标广州市,你准备好了吗?

    [size=16px][color=#ff0000][b][url=https://www.instrument.com.cn/job/position-80681.html]立即投递该职位[/url][/b][/color][/size][b]职位名称:[/b]国高材分析测试中心-分析测试行业专家[b]职位描述/要求:[/b]1、岗位职责(1)收集调研本专业领域相关的测试情报,并进行深入的分析与解读,输出有价值的测试技术分析报告,供集团分析测试技术战略制定决策;(2)主导分析测试技术规划及落地推进;(3)参与行业内交流及项目合作;2、岗位要求(1)本科及以上学历,材料、化学、化工等相关专业,专业功底扎实;(2)5年及以上工作经验,有过检测行业从业经验/检测行业测试情报收集与研究经验等相关经验最佳,熟悉检测行业的发展趋势和关注测试技术前沿动态;(3)在测试情报及测试技术前沿动态收集方面有较为成熟的工具和方法;(4)个性积极主动,具备较强的钻研测试行业人脉及外部关系积累。[b]公司介绍:[/b] 清华大学生物微流控与药物分析实验室,致力于发展微纳流体操控的新原理新技术,并将其应用于微纳尺度的输运、组装和生物制造,模拟组织器官的微结构和微环境,结合原位光谱成像分析和质谱联用分析等检测技术,构建生命分析和生物医学研究的新模型,发展微流控生命分析的原理、方法及装置,参与生命科学前沿基础研究,服务于药品质量与安全、新药研发、临床检测等国家重大需求。课题组负责人梁琼麟教授,于2000年、2005...[url=https://www.instrument.com.cn/job/position-80681.html]查看全部[/url][align=center][img=,178,176]https://ng1.17img.cn/bbsfiles/images/2021/08/202108160948175602_3528_5026484_3.png!w178x176.jpg[/img][/align][align=center]扫描二维码,关注[b][color=#ff0000]“仪职派”[/color][/b]公众号[/align][align=center][b]即可获取高薪职位[/b][/align]

  • 高校科研院所诚聘广州分析测试中心博士后-复杂体系中多组分,坐标广州市,你准备好了吗?

    [size=16px][color=#ff0000][b][url=https://www.instrument.com.cn/job/position-80678.html]立即投递该职位[/url][/b][/color][/size][b]职位名称:[/b]广州分析测试中心博士后-复杂体系中多组分[b]职位描述/要求:[/b]承担并完成广东省科学院人才引进项目;以第一作者发表SCI二区论文不少于2篇,申请发明专利不少于1件三、基本要求1. 应届毕业或近3年获得学位的博士,年龄不超过35岁,全脱产在站工作;2. 具有相关研究背景,且有较好的科研业绩,能独立展开科学研究并具有良好的职业道德。 四、岗位待遇1. 基本年薪20万元(广东省科学院人才引进项目执行期间基本年薪25万元),超出标准的成果另享受丰厚的奖励,上不封顶;2. 提供周转住房,解决广州市户口;3. 根据考核情况优先纳入事业编制。[b]公司介绍:[/b] 清华大学生物微流控与药物分析实验室,致力于发展微纳流体操控的新原理新技术,并将其应用于微纳尺度的输运、组装和生物制造,模拟组织器官的微结构和微环境,结合原位光谱成像分析和质谱联用分析等检测技术,构建生命分析和生物医学研究的新模型,发展微流控生命分析的原理、方法及装置,参与生命科学前沿基础研究,服务于药品质量与安全、新药研发、临床检测等国家重大需求。课题组负责人梁琼麟教授,于2000年、2005...[url=https://www.instrument.com.cn/job/position-80678.html]查看全部[/url][align=center][img=,178,176]https://ng1.17img.cn/bbsfiles/images/2021/08/202108160948175602_3528_5026484_3.png!w178x176.jpg[/img][/align][align=center]扫描二维码,关注[b][color=#ff0000]“仪职派”[/color][/b]公众号[/align][align=center][b]即可获取高薪职位[/b][/align]

  • 高校科研院所诚聘广州分析测试中心博士后-环境污染物快速/,坐标广州市,你准备好了吗?

    [size=16px][color=#ff0000][b][url=https://www.instrument.com.cn/job/position-80676.html]立即投递该职位[/url][/b][/color][/size][b]职位名称:[/b]广州分析测试中心博士后-环境污染物快速/[b]职位描述/要求:[/b]承担并完成广东省科学院人才引进项目;以第一作者发表中科院大区SCI二区及以上论文不少于1篇,申请发明专利不少于3件三、基本要求1. 应届毕业或近3年获得学位的博士,年龄不超过35岁,全脱产在站工作;2. 具有相关研究背景,且有较好的科研业绩,能独立展开科学研究并具有良好的职业道德。 四、岗位待遇1. 基本年薪20万元(广东省科学院人才引进项目执行期间基本年薪25万元),超出标准的成果另享受丰厚的奖励,上不封顶;2. 提供周转住房,解决广州市户口;3. 根据考核情况优先纳入事业编制。[b]公司介绍:[/b] 清华大学生物微流控与药物分析实验室,致力于发展微纳流体操控的新原理新技术,并将其应用于微纳尺度的输运、组装和生物制造,模拟组织器官的微结构和微环境,结合原位光谱成像分析和质谱联用分析等检测技术,构建生命分析和生物医学研究的新模型,发展微流控生命分析的原理、方法及装置,参与生命科学前沿基础研究,服务于药品质量与安全、新药研发、临床检测等国家重大需求。课题组负责人梁琼麟教授,于2000年、2005...[url=https://www.instrument.com.cn/job/position-80676.html]查看全部[/url][align=center][img=,178,176]https://ng1.17img.cn/bbsfiles/images/2021/08/202108160948175602_3528_5026484_3.png!w178x176.jpg[/img][/align][align=center]扫描二维码,关注[b][color=#ff0000]“仪职派”[/color][/b]公众号[/align][align=center][b]即可获取高薪职位[/b][/align]

  • 高校科研院所正在寻找国高材分析测试测试研究工程师-力学仿真职位,坐标广州市,谈钱不伤感情!

    [size=16px][color=#ff0000][b][url=https://www.instrument.com.cn/job/position-80679.html]立即投递该职位[/url][/b][/color][/size][b]职位名称:[/b]国高材分析测试测试研究工程师-力学仿真[b]职位描述/要求:[/b]1、岗位职责负责高分子材料产品的测试技术研究及改进相关工作,包含但不限于:(1)负责力学仿真或老化测试设备的拓展研究;(2)负责力学仿真或老化测试方法研究与流程的改进及优化。2、岗位要求(1)本科及以上学历,材料、化学、化工等相关专业,专业功底扎实;(2)具备5年及以上分析表征或者高分子材料研发工作经验,尤其在力学仿真或老化测试方面具有较强的专业积累;(3)高级工程师及以上职称优先;(4)熟悉实验室法律法规、分析测试技术开发的工具及流程;(5)个性积极主动,具备较强的钻研精神;[b]公司介绍:[/b] 清华大学生物微流控与药物分析实验室,致力于发展微纳流体操控的新原理新技术,并将其应用于微纳尺度的输运、组装和生物制造,模拟组织器官的微结构和微环境,结合原位光谱成像分析和质谱联用分析等检测技术,构建生命分析和生物医学研究的新模型,发展微流控生命分析的原理、方法及装置,参与生命科学前沿基础研究,服务于药品质量与安全、新药研发、临床检测等国家重大需求。课题组负责人梁琼麟教授,于2000年、2005...[url=https://www.instrument.com.cn/job/position-80679.html]查看全部[/url][align=center][img=,178,176]https://ng1.17img.cn/bbsfiles/images/2021/08/202108160948175602_3528_5026484_3.png!w178x176.jpg[/img][/align][align=center]扫描二维码,关注[b][color=#ff0000]“仪职派”[/color][/b]公众号[/align][align=center][b]即可获取高薪职位[/b][/align]

  • 高校科研院所刚刚发布了国高材分析测试中心职位,坐标广州市,速来围观!

    [size=16px][color=#ff0000][b][url=https://www.instrument.com.cn/job/position-80682.html]立即投递该职位[/url][/b][/color][/size][b]职位名称:[/b]国高材分析测试中心[b]职位描述/要求:[/b]1、岗位职责(1)负责制定所属区域销售计划;(2) 负责所属区域现有检测行业客户资源,定期做好工作拜访和关系维护工作;(3)负责开拓新的检测行业客户资源,并将客户需求传达给公司内部的检测团队负责实现;(4)完成季度和年度业务目标及业务拓展方案的落实;(5)定期搜索、分析检测行业市场信息,分析与跟进,并输出调研报告。2、岗位要求(1)本科及以上学历,专业不限,理工科和市场营销类专业优先;(2)具备检测行业销售经验,2年以上优先;(3)具备良好的沟通能力及客户服务意识;(4)个性积极主动,抗压能力强,较强的团队合作精神;(5)能接受频繁出差。薪酬配套1、薪酬激励:固定工资+项目奖金+项目股权,正式入职后定级,专家级年收入30-60万,销售精英上不封顶;2、人才政策:引进人才入户奖励2-5万元。员工福利1、广阔的发展晋升空间平台与丰富的学习培训机会,与院士、长江学者、获杰出青年基金资助者距离探讨交流;2、五天八小时工作制度,五险一金,带薪年假,节假日、生日慰问福利,工龄补贴为员工提供基础保障;3、福利住房,核心人员配车激励,子女入学安置,员工入户接收,优质餐饮为员工提供无忧保障;4、年度健康体检,完善的康体设施(健身房、篮球场、室内羽毛球场、瑜伽室等)让员工健康生活;5、杰出员工出国旅游,年度部门团队旅游,团年宴、中秋晚会等文艺活动,舞蹈、摄影等文体协会让员工拥有多彩生活。[b]公司介绍:[/b] 清华大学生物微流控与药物分析实验室,致力于发展微纳流体操控的新原理新技术,并将其应用于微纳尺度的输运、组装和生物制造,模拟组织器官的微结构和微环境,结合原位光谱成像分析和质谱联用分析等检测技术,构建生命分析和生物医学研究的新模型,发展微流控生命分析的原理、方法及装置,参与生命科学前沿基础研究,服务于药品质量与安全、新药研发、临床检测等国家重大需求。课题组负责人梁琼麟教授,于2000年、2005...[url=https://www.instrument.com.cn/job/position-80682.html]查看全部[/url][align=center][img=,178,176]https://ng1.17img.cn/bbsfiles/images/2021/08/202108160948175602_3528_5026484_3.png!w178x176.jpg[/img][/align][align=center]扫描二维码,关注[b][color=#ff0000]“仪职派”[/color][/b]公众号[/align][align=center][b]即可获取高薪职位[/b][/align]

  • 纳米压印设备商光舵微纳完成近亿元B+轮融资

    据致道资本官微消息,近日,致道资本已投项目——苏州光舵微纳科技股份有限公司(简称:光舵微纳)完成由国投创合投资的近亿元B+轮股权融资。作为国内领先的纳米压印技术完整方案提供商,光舵微纳经过多年的研发及市场应用推广,制造出了多款研发型纳米压印设备及全自动量产型纳米压印设备,实现了设备、耗材及工艺的全方位突破。纳米压印技术是微纳加工领域的一项关键底层技术,在国际半导体蓝图(ITRS)中,该技术被列为下一代半导体加工技术的重要代表之一。[img=图片]https://img1.17img.cn/17img/images/202401/uepic/35f3a9bc-4344-456c-bb7c-169186c68048.jpg[/img]光舵微纳在LED图形化衬底产业(LED-PSS)处于绝对的技术及市场领先地位,纳米压印设备及耗材已在客户端实现超过4000万片LED-PSS的大规模稳定量产,在此应用场景上实现了对尼康光刻机的产业化替代,并处于快速扩张阶段。同时,积极拓展纳米压印技术在高端半导体、AR衍射光波导、生物检测器件、消费电子等诸多重大[color=#686868]领域的产业化应用,并取得了重要进展。[/color][img=图片]https://img1.17img.cn/17img/images/202401/uepic/a55665c3-16b9-45c4-ad33-6ace1d7108bf.jpg[/img]此次融资完成后,光舵微纳将继续提升其核心研发团队的技术实力,积极研发应用于多个重要场景的高端纳米压印设备并进行广泛的市场开拓,进行产线扩充,推进纳米压印技术在更多应用领域的导入,打造从产品、系统到整体解决方案的商业模式,助力我国半导体制造产业的高速发展。[来源:致道资本][align=right][/align]

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制