当前位置: 仪器信息网 > 行业主题 > >

人造单染色体真核细胞

仪器信息网人造单染色体真核细胞专题为您整合人造单染色体真核细胞相关的最新文章,在人造单染色体真核细胞专题,您不仅可以免费浏览人造单染色体真核细胞的资讯, 同时您还可以浏览人造单染色体真核细胞的相关资料、解决方案,参与社区人造单染色体真核细胞话题讨论。

人造单染色体真核细胞相关的论坛

  • 【分享】科学家揭秘“急性癌症”成因:染色体“爆炸”破坏DNA

    据英国《每日邮报》1月7日报道,英国科学家找到了“急性癌症”的形成原因:细胞内的染色体发生“爆炸”破坏了DNA,从而让人有可能在短时间内患上癌症。相关论文发表于《细胞》。传统理论认为癌症是人体经历成千上万次的细胞突变后,慢慢演化的结果。但英国著名的疾病研究机构桑格研究所的新发现推翻了这种看法。这暗示了不管人们怎么努力保持身体健康,也不能保证命运不会拿他们开玩笑。同时还说明了为什么有些人在体检时根本没发现癌症痕迹,但数月后突然就被诊断患上这种疾病了。桑格学院的科学家是通过研究750个肿瘤的遗传缺陷后得出以上结论的。其中大部分的案例都与传统理论相符,染色体的损坏是常年累积的结果。然而,其中至少有1/40的肿瘤不符合“标准模式”,有的染色体似乎是在一夜之间遭到破坏的。参与此项研究的坎贝尔博士称:“测验结果太让我们惊讶了。在一个细胞里面,染色体经过一次或者是多次爆炸成为碎片。如果这个细胞开始笨拙地修补,把碎片杂乱的缝合起来,这样就破坏了原来的DNA结构,为癌症的快速形成提供了条件。”坎贝尔博士表示:“这个细胞应该说‘好吧,我放弃’,而不是像对待昂贵的瓷器一样,把染色体拼接回去。细胞试图修复一个不可修复的东西,最后造出一个灾难性的、能让癌症更快形成的基因组。”这种“急性癌症”在骨癌里面特别常见,大概1/4的患者身上都能看到明显的染色体受损特征模式。科学家目前还不能肯定是什么引起了这种染色体“爆炸”,但有嫌疑的罪魁祸首包括X光和晒伤。坎贝尔博士称:“如果我们能了解根本的病因,或许就可以防止患上这种癌症。”http://www.dailymail.co.uk/health/article-1344740/Why-cancers-develop-instant--cells-explode-wreaking-havoc-DNA.html---科学网

  • 【求助】求 植物染色体的SEM样品制备方法 ?

    【求助】求 植物染色体的SEM样品制备方法 ?

    [em0803] [B]又送来几个样品, 说是要做植物细胞里的染色体观察[/B][color=#00008B]又是没接触过的样品,要怎么样制备啊?[/color]是不是要 去除掉细胞壁,用细胞内质的悬液来制备SEM样品啊?[em0813] [color=#DC143C]请教高人[/color][img]http://ng1.17img.cn/bbsfiles/images/2008/04/200804110922_84729_1630556_3.jpg[/img]

  • 【原创大赛】构建植物人工染色体的两种方法的比较

    21世纪以来,随着技术的发展,植物人工染色体技术迅速崛起,而目前最常用的两种构建人工染色体的方法就是“组装法”和“截短法”。“组装法”的研究起步较早,但是由于技术的限制,利用“组装法”构建植物人工染色体的进展一直不理想,到目前为止,也只有在玉米细胞中获得成功1]。然而这种人工构建的环状染色体与真核生物中正常存在的线形染色体相差甚远,因为不具有端粒结构,这种环状的人工染色体能否成为稳定的载体系统还有待进一步证实。与之相比,利用“截短法”构建植物人工染色体的的研究起步较晚,直至2006年才有关于利用“截短法”在玉米中构建植物人工染色体的报道[[url=http://bbs.instrument.com.cn/post.asp?forumid=487#_ENREF_2]2]。尽管如此,这种方法还是获得了很大成功,随后,科研人员相继在拟南芥[[url=http://bbs.instrument.com.cn/post.asp?forumid=487#_ENREF_3]3],大麦[[url=http://bbs.instrument.com.cn/post.asp?forumid=487#_ENREF_4]4],水稻[[url=http://bbs.instrument.com.cn/post.asp?forumid=487#_ENREF_5]5]中利用“截短法”构建了植物人工染色体,利用“截短法”构建植物人工染色体的研究获得了蓬勃的发展。然而,无论是“组装法”还是“截短法”都各自有其优缺点,笔者认为,“组装法”如果获得成功转化,并且能像常染色体一样稳定遗传,那么利用这种方法构建植物人工染色体周期短,后续应用方便。然而这一方法目前由于受到着丝粒在不同物种中的高度特异性,着丝粒区域的复杂性和难扩增性,以及遗传转化技术等多方面因素制约,使得其在植物中的研究和应用成功率极低,对于其相关的遗传稳定性也难以预料。“截短法”从目前的研究进展看,其可行性是毋庸置疑的,然而从众多的转基因事件中,筛选出转化受体生长发育等各方面性状不发生改变,同时在非常染色体上形成一对可稳定遗传的小染色体的过程也并非易事。不过笔者相信随着转化技术的进步,检测手段的简化和完善,利用“截短法”构建植物人工染色体用以改良作物必将获得长足进步和最终成功。[size=16px] [size=16px]

  • 新研究发现X染色体可以影响男性性别形成

    俗话说,每一个伟大的男人背后,都有一个伟大的女人。每一个精子的背后,也有一个X染色体在起作用。在人体中,Y染色体决定人的性别为男性,因此许多研究人员认为:男性发育过程中负责决定性别的相关基因都位于Y染色体上。但是现在有一个科研团队发现,X染色体(“女性染色体”)也可以在此过程中发挥重要的作用。X染色体包含了决定成为精子形成的大量的基因。这一发现改变了我们对性别形成的固有想法,至少在某种程度上X染色体在进化过程中扮演一个令人意外的角色。哺乳动物有一对性染色体。女性的X染色体有两个拷贝,男性有一个拷贝,与Y染色体形成对。而人体只需要X染色体一个拷贝发挥作用,所以在女性体内,第二个拷贝是被“关闭”的。约50年前,遗传学家Susumu Ohno提出,这样的关闭作用减缓了X染色体的进化进程,所以大多数哺乳动物中的X染色体都非常相似。剑桥大学怀特海德生物医学研究所的遗传学家David Page研究了经过80亿年的进化后,上述说法是否在老鼠和人类之间成立,Page和同事得到的研究结果发表在近日的 Nature Genetics杂志上。虽然这两个物种的基因组已经被解码,但这些DNA序列还存在一些缺陷和错误,特别是X染色体的缺陷和错误首先需要被填充和修复。Page的研究团队使用一个特殊的测序技术确定了缺口处的DNA碱基序列,这里包含很多的重复的DNA区域,而此前用现有的技术通过一次测序很难破译这些重复区域。然后,研究人员比较了小鼠和人类的X染色体基因。这两个物种的X染色体共同拥有800个左右的基因,这些共享基因,通常是是男性和女性相对稳定的基因,并且它们以单拷贝的形式存在。这些基因上发生的突变,能引发X-连锁隐性遗传病,例如血友病和杜氏肌营养不良症。与此同时,研究团队也发现了相较前人研究该染色体与众不同的、令人迷惑的一面。人类有144个X染色体基因是小鼠所没有的,而有197个基因是个小鼠基因是特有的。人类的144个基因中,有107个存在于X染色体重复序列中,这些基因的变化较为迅速。基于这样的证据,Page得出结论,在人类和老鼠祖先产生分离的时候,这些基因分化就出现了。“对于人类X染色体和老鼠X染色体上存在如此大量的非共享基因,我感到非常惊讶,” 密歇根大学的进化遗传学家Jianzhi Zhang说。这一发现表明,X染色体上基因可能随时都在变化。基因改变时,就会影响进化,Page认为X染色体基因效用可能是特别强劲的。例如,一些先前发现的X染色体基因,似乎已经在小鼠的形态发育上发挥了作用。他和他的同事调查了八个人类男性和女性的身体组织来观察X染色体基因如何发挥作用。“在许多情况下,这些非共享的基因在女性体内甚至没有表达,” Page说。相反,它们在决定精子形成的睾丸却表现得非常活跃。“我们认为X染色体过着双重的生活,” 其一,它是稳定的,像前人研究描述的一样;其二,它在不停变化并影响男性特征。Page表示,在其它基因上,重复区域在治疗癌症和其他疾病中已经具有了巨大的生物医学意义,他希望其他研究人员能进一步探索X染色体的重复区域是否同样重要,特别是在男性的繁衍和睾丸癌治疗方面。但目前,我们必须先知道这些基因的功能,了解它们对健康和形态的影响。但有一件事是肯定的,人们将开始关注X染色体的进化。http://www.ibioo.com/data/attachment/portal/201307/23/202226bu6vaasv3g6lwfs0.jpg参考文献http://www.ibioo.com/data/attachment/portal/201307/23/202226i11s7d9xysyswvvy.gifIndependent specialization of the human and mouse X chromosomes for the male germ line作者:Jacob L Mueller et al. We compared the human and mouse X chromosomes to systematically test Ohno's law, which states that the gene content of X chromosomes is conserved across placental mammals1. First, we improved the accuracy of the human X-chromosome reference sequence through single-haplotype sequencing of ampliconic regions. The new sequence closed gaps in the reference sequence, corrected previously misassembled regions and identified new palindromic amplicons. Our subsequent analysis led us to conclude that the evolution of human and mouse X chromosomes was bimodal. In accord with Ohno's law, 94–95% of X-linked single-copy genes are shared by humans and mice; most are expressed in both sexes. Notably, most X-ampliconic genes are exceptions to Ohno's law: only 31% of human and 22% of mouse X-ampliconic genes had orthologs in the other species. X-ampliconic genes are expressed predominantly in testicular germ cells, and many were independently acquired since divergence from the common ancestor of humans and mice, specializing portions of their X chromosomes for sperm production.

  • Y染色体数据分析研究取得进展

    中科院昆明动物所在张亚平院士带领下,该所彭旻晟、贺军栋、樊隆等人开发出针对DNA芯片数据中Y染色体单核苷酸多态性位点的分析策略。相关研究11月27日在线发表于《欧洲人类遗传学》。 随着全基因组关联分析广泛应用于人类遗传学工作之中,相关的DNA芯片(微阵列)也不断得到发展。许多Y染色体单核苷酸多态性位点(Y-SNPs)已被整合在DNA芯片中。然而,这些Y-SNPs数据在全基因组关联分析中都被弃之不顾,没有进行任何评估分析。  为此,研究人员运用开发的分析策略对来自114个缅甸人和3个尼日利亚人共117份男性样本DNA芯片数据中的2041个Y-SNPs进行了评估分析。基于数据过滤后提取出的369个Y-SNPs,研究人员构建了Y染色体单倍型类群树,解析出缅甸人群的父系遗传结构。  该结果得到基因分型实验和Y染色体重测序数据的支持,表明该策略切实可行。研究人员对分析中的数据格式转换、过滤和注释处理后发现,DNA芯片对Y-SNPs的检测灵敏度和准确性依旧有待提高,例如:芯片厂商可依据Y染色体重测序数据重新选择合适的Y-SNPs并设计相关探针。

  • 【原创大赛】利用“截短法”构建人工染色体的问题及应对策略

    植物人工染色体技术具有广泛的应用前景,然而,目前植物人工染色体技术尚处于其发展初期,仍然存在很多问题。首先,植物人工染色体的构建仍然依赖于常规的转基因技术,或者是农杆菌介导的遗传转化,或者是基于基因枪的粒子轰击的遗传转化,这就不可避免的存在常规遗传转化所存在的问题:转化目的片段插入的随机性,这是一个影响人工染色体构建乃至将来应用的一个重要问题。例如起始载体pWY86系列都是随机插入到某一染色体的某一位置,如果染色体组既包含常染色体,也包含B染色体或者附加染色体,那么目的片段的插入可能位于常染色体,亦可能位于其它染色体,到目前为止,还没有办法控制其特异的插入到某一特定染色体上。同样的,目的片段插入到染色体上的位置也是随机的,尚无办法控制其插入到染色体的特定位置,这些都为后续应用造成了一定的问题:首先,如果目的片段插入到常染色体上,并在插入位置发生端粒介导的染色体切割,这样会造成常染色体部分片段的缺失,对于二倍体植物,这种缺失常常是不能忍受的,大多会造成植株的严重发育不良,或者败育。即便是对于多倍体植物,某条常染色体片段的缺失也有可能造成生长性状的改变。固然我们可以筛选那些发生了端粒介导的染色体切割形成了小染色体,同时遗传性状又没有明显改变的植株,但这需要很大的工作量,同时,即使没有可见或可检测的性状改变也并不能表明不存在隐形的对受体植株的不良影响。同时,常染色体通常很大,靠一次或者几次端粒介导的染色体切割很难形成理想的人工小染色体,即切割后形成的人工染色体可能依然很大,不能满足后续应用要求。如果受体材料染色体组存在B染色体,对于构建植物人工染色体无疑是一个好消息,尤其是如果这些B染色体可以稳定遗传。B染色体通常长度较短,不编码任何功能基因,对于植株的生长发育无影响。如果我们的目的片段插入了B染色体并且发生了端粒介导的染色体切割,并且如果发生了切割的B染色体可以在后面的减数分裂中不被湮没,可以稳定的遗传给子代,那么对于研究者来说是一个巨大的好消息。因为通常认为B染色体对于植株是可有可无的,那么即使发生了端粒介导的染色体切割形成了植物人工小染色体也不会对受体植株造成影响,同时,由于B染色体本身长度较小,无功能,其自身性质就决定了它是构建植物人工小染色体的优良载体。但是B染色体较常染色体而言,通常数量少,长度短,如果基于常规遗传转化的随机性而言,目的片段插入到B染色体,并发生端粒介导的染色体切割的概率就小。幸运的是,Yu W等将pWY86质粒成功的导入了玉米的B染色体,并成功观察到了端粒介导的染色体切割的发生1],这为未来利用B染色体组构建植物人工染色体的研究带来了福音。然而,并不是所有植物物种都含有B染色体,并且,通常B染色体会随着减数分裂的进行而随机丢失或者增加1],这些无疑都给利用B染色体组构建植物人工染色体带来了麻烦。利用附加染色体构建植物人工染色体是又一个理想的选择。在自然界,很多物种都有附加系的存在,这些附加系多附加一对外源染色体,这些附加的外源染色体通常不会对植株发育造成影响,一些附加系很容易发生丢失,如黑麦的附加系[[url=http://bbs.instrument.com.cn/post.asp?forumid=487&FTTID=1#_ENREF_2]2],然而有一些附加系具有很好的遗传稳定性,那么这些含有可以稳定遗传的附加系材料就可以成为构建人工染色体的优良载体。例如本研究的受体材料甘蓝型油菜就有很多附加系[[url=http://bbs.instrument.com.cn/post.asp?forumid=487&FTTID=1#_ENREF_3]3],其中一些附加系就具有很好的遗传稳定性[[url=http://bbs.instrument.com.cn/post.asp?forumid=487&FTTID=1#_ENREF_4]4]。如果以这些遗传稳定的附加系作为转化受体,在转基因后代中筛选目的片段定位于附加染色体并且发生了端粒介导的染色体切割的转化株系,就可以利用这些株系作为进一步的转化或者杂交受体,进行位点特异性重组,实现多基因的定点整合,并且不影响转基因植株的遗传稳定性和生长发育等性状。[size=10pt][1] Yu, W., Han, F., Gao, Z., Vega, J.M. and Birchler, J.A. (2007). Construction and behavior of engineered minichromosomes in maize. Proceedings of the National Academy of Sciences 104, 8924-8929.[size=10pt][2] 任正隆[size=10pt]. (1991). 黑麦种质导入小麦及在小麦育种的利用方式[size=10pt]. 中国农业科学 24, 18-25.[size=10pt][3] 戚存扣,[size=10pt], 浦惠明,[size=10pt] and 傅寿仲[size=10pt]. (1995). 甘蓝型油菜[size=10pt]-埃塞俄比亚芥二体附加系植株形态及细胞学鉴定[size=10pt]. 作物学报 21, 717-722.[size=10pt][4] 戚存扣,[size=10pt], 高冠军,[size=10pt], 浦惠明,[size=10pt], 傅寿仲,[size=10pt] and 仲裕泉[size=10pt]. (2000). [font=宋

  • 染色体芯片技术大幅提高试管婴儿成功率

    目前,我国试管婴儿技术的成功率平均仅为50%多,最大瓶颈就在于产前染色体异常的筛查。记者昨日获悉,今年3月成立的染色体芯片产前诊断联合实验室(CMA),利用针对中国人群定制的染色体芯片,能够检测出在常规染色体检测中显微镜下无法识别的基因缺陷,可筛查出200多种已知的染色体微缺失或微重复引起的疾病。这一技术不仅可通过产前诊断达到优生目的、降低流产率,而且将会使试管婴儿的成功率整体提高两成达70%,尤其是将会使高龄女性做试管婴儿的成功率提高五成。http://www.ibioo.com/data/attachment/portal/201308/25/094237zntmsn8tmz7tzmit.jpg技术:染色体芯片技术可查缺陷基因据广州医科大学附属第三医院广东省产科重大疾病重点实验室主任、广州妇产科研究所副所长孙筱放教授介绍,随着强制婚检的取消,近年来新生儿出生缺陷率明显升高。目前已知的出生时严重出生缺陷婴儿染色体异常的比率只有10%。而国外学者通过高通量、高分辨率的染色体芯片技术研究发现,大量以前无法确定遗传改变的出生缺陷,实际上都是由常规染色体检查显微镜下无法识别的基因组微缺失和微重复引起的。“正是这个原因,我们与香港中文大学成立了染色体芯片产前诊断联合实验室。”她说,“我们现在已经可以检测出200多种已知的染色体微缺失或微重复引起的各种疾病。我们还可以结合DNA测序技术对已知各种单基因疾病进行诊断。这项技术在全国范围内都属于领先的。”故事1:十次试管婴儿都失败来自湖北的阿丹和阿强(均为化名)结婚十年来一直没有怀上孩子,两人为此焦虑不已。近年来,求子心切的他们居然连续做了十次试管婴儿,但都以失败而告终。每次将胚胎植入之后,他们都满怀希望地等待,但无一例外,没有一次能够怀到“瓜熟蒂落”。漫长的求子之路,让他们身心俱疲。尤其是阿丹,经历了十次“煎熬”之后,精神“几近崩溃”,身体也经受了太多的损伤。他们为什么总不成功?他们还有希望吗?他们抱着最后一线希望来到广医三院。专家解读:植入前做检测 妊娠率可达80%“对于做试管婴儿的夫妻来说,压力之大非外人所能想象,尤其是做了几次不成功的夫妻。”广州医科大学附属第三医院生殖医学中心主任刘见桥教授介绍,“在传统的技术中,胚胎植入前遗传学诊断只能检测少数几条染色体是否异常。但事实上,每一条染色体都有可能发现异常,只是以前很多其他的染色体异常没有筛查出来,所以即使不健康的胚胎也会被植入。”刘见桥说,目前,该院与美国休斯敦生殖医学中心合作,率先开展了利用染色体芯片技术对植入前胚胎筛查,可以检测全部染色体组的异常数目。“通过这种筛选的胚胎,妊娠率可提高到80%。”“目前我们可以做到的是,在胚胎植入前就可以对全部染色体组进行检测,然后进行筛查,再把健康的胚胎植入体内。”刘见桥说,无论是什么年龄阶段的女性,最后的成功率都可达70%,这就大大减少对女性身心的伤害,也为患者免去了许多不必要的经济损失,尤其是对于高龄女性而言,成功率更提高了五成。故事2:孕妈担心再生先心娃今年30岁的周洁(化名)怀孕20周了,然而,新生命并未给她带来多少喜悦,相反,更多的是忐忑和纠结。原因就是她曾经生育过一个患有一种先天性心脏畸形而且面部发育也不正常的女儿。第二个孩子会不会也出现畸形呢?这个胎儿究竟是去还是留呢?周洁来到广医三院的生殖医学中心,医生抽了她患病的女儿外周血和腹中胎儿的羊水分别进行染色体芯片检查。结果发现她女儿的3号染色体有一段较长的微重复,正是这一重复区域,导致了她的先天性疾病。而她腹中胎儿的染色体芯片结果并没有跟她女儿相同的变异区域,说明胎儿再患这种先天性心脏畸形的概率较低。目前,她腹中的胎儿的确也发育良好,未见明显畸形。她终于可以放心地把孩子怀下去了。专家解读:可对比染色体差异并作去留判断“在常规的染色体检测中,一般只是显微镜下识别基因缺陷,有很多缺陷是无法识别的。”广医三院妇产科研究所实验部副主任、CMA实验室负责人范勇介绍,而使用该院正在使用的染色体芯片,不仅能够检测和比较患儿和胎儿的染色体差异,更重要的是,通过结果分析,可能对胎儿的去留作出准确的判断,消除了妊娠者及其家属的顾虑。“染色体芯片技术与传统染色体分析技术相比,具有集高通量和高分辨率的优势,目前已被加拿大遗传学会、欧洲遗传学会和美国遗传学会推荐作为遗传学诊断的首选手段。”范勇说,染色体芯片分析还可以进一步地检测患者双亲,以明确某一类的先天性缺陷的致病变异来源。“这对于指导患者再次怀孕具有很重大的临床意义。”范勇说,实验室成立三个月以来,已为230多名孕妇进行了该项技术检查,确诊十余例染色体结构异常胎儿。

  • 【原创大赛】人工染色体简介

    人工染色体指人工构建的含有天然染色体基本功能单位的载体系统。包括酵母人工染色体(YAC)、细菌人工染色体(BAC)以及后来的人类人工染色体(HAC)和植物人工染色体(PAC)等多种类型。人工染色体的出现,为基因组图谱制作,基因图位克隆,动物的基因治疗,植物的多基因转化提供了有用的工具。酵母人工染色体(Yeast artificial chromosome, YAC)1983年,Murray和Szostak1]在大肠杆菌质粒pBR322中插入酵母的着丝粒、自主复制序列、选择性标记及四膜虫核糖体RNA基因rDNA(Tr)末端序列,并转化酵母菌,构建成了酵母人工染色体。YAC载体一般能够容纳500 kb,甚至1 Mb大小的染色体片段[[url=http://bbs.instrument.com.cn/post.asp?forumid=487&threadid=&postid=&title=&action=&FTTID=1&hasReadRelease=yes#_ENREF_2]2, [url=http://bbs.instrument.com.cn/post.asp?forumid=487&threadid=&postid=&title=&action=&FTTID=1&hasReadRelease=yes#_ENREF_3]3]。目前,在多种高等生物中均构建了高质量的YAC文库。YAC可用于大规模基因组测序和物理图谱构建。例如,美国科学家利用YAC完成了人Y染色体及21q的物理图谱并进行了相应的测序工作[[url=http://bbs.instrument.com.cn/post.asp?forumid=487&threadid=&postid=&title=&action=&FTTID=1&hasReadRelease=yes#_ENREF_4]4]。然而,YAC具有一些缺陷,克隆外源基因易出现嵌合体;部分克隆不稳定,在传代培养中可能会发生缺失或重排;YAC与酵母染色体具有相似的结构,因此难与酵母染色体区分开[[url=http://bbs.instrument.com.cn/post.asp?forumid=487&threadid=&postid=&title=&action=&FTTID=1&hasReadRelease=yes#_ENREF_2]2, [url=http://bbs.instrument.com.cn/post.asp?forumid=487&threadid=&postid=&title=&action=&FTTID=1&hasReadRelease=yes#_ENREF_3]3]。细菌人工染色体(Bacterial artificial chromosome, BAC)[/si

  • 【转帖】细胞》:果蝇细胞中发现五种主要染色质类型

    100 kb)——是一种新类型(被命名为黑色)。尽管黑色染色质域相对基因贫乏——它们包含了大于4000个基因,Filion等人发现这些基因没有或只有非常有限的转录活性。插入黑色区域的报道转基因通常都是受阻遏的,这意味着黑色染色质的活性抑制了转录。在胚胎细胞的沉默黑色区域中的基因在一些其他的组织中也有表达,因此研究人员推测这种形式的染色质或许与发育调控有关,至少是部分相关。DamID数据的分类同时表明,常染色质包含有两个截然不同的类型。黄色和红色染色质都含有蛋白质和组蛋白改变——这是转录活性区域的特点——并产生大量的mRNA,但是红色染色质携带了几种对于这种染色质而言是独一无二的调节蛋白质,包括核小体改造Brahma。同样,尽管是类似水平的转录,组蛋白H3在赖氨酸36上的三甲基化——这之前被描述为转录延伸的一种普遍的标记——被高度富集于黄色区域中的基因,但在红色染色质中却没有。有趣的是,活性染色质的这两种形式可能反映了不同基因类型的完全不同的调控机制:黄色染色质中的基因具有占优的广泛表达,并具有基本的细胞功能,然而红色染色质区域中的基因则更加特殊。研究人员在最近出版的《细胞》杂志上报告了这一研究成果。研究人员指出,与染色质有关的蛋白质被广泛保存于物种中,因此很可能这种分类将广泛适用。新区域类型的更多研究将为染色质如何帮助控制基因表达提供一个更微妙的观点。(群芳)《科学时报》 (2010-11-03 A4 国际)

  • 一组洋葱根尖染色体的照片。

    一组洋葱根尖染色体的照片。

    [img=,690,520]http://ng1.17img.cn/bbsfiles/images/2018/01/201801300826338324_3945_1633232_3.jpg!w690x520.jpg[/img][img=,690,511]http://ng1.17img.cn/bbsfiles/images/2018/01/201801300825152536_5967_1633232_3.jpg!w690x511.jpg[/img][img=,690,520]http://ng1.17img.cn/bbsfiles/images/2018/01/201801300825503312_9987_1633232_3.jpg!w690x520.jpg[/img]最近闲得无聊,制作了一套洋葱根尖染色体的压片,照了几张比较典型的染色体照片发上来大伙看看。固定液为卡诺,盐酸60度水解15min,改良本分品红染色5min,酒精盐酸分色,压片进行观察并照相,照相机为荣耀7[img]http://simg.instrument.com.cn/bbs/images/default/em09502.gif[/img]

  • 分散染色体观测用分散物镜是什么

    想买台显微镜测试石棉,国标GB/T 23263里要求物镜为分散染色体观察用分散物镜,问了几家显微镜厂家都不知道是什么东西?哪位高人可以指点下啊。

  • 【原创】染色液的工作原理

    染色液具有醋酸洋红染色方便的优点,还具有席夫试剂只对核和染色体染色的优点,且染色效果稳定可靠。此液适于动植物各种大小的染色体、体细胞染色体和减数分裂染色体,并具有相当牢固的染色性能,保存性好,室温下两年不变质。

  • 苏木精染色的大蒜根尖

    苏木精染色的大蒜根尖

    [img=,690,517]https://ng1.17img.cn/bbsfiles/images/2019/01/201901220814231064_5867_1633232_3.jpg!w690x517.jpg[/img][img=,690,517]https://ng1.17img.cn/bbsfiles/images/2019/01/201901220813260621_1523_1633232_3.jpg!w690x517.jpg[/img]最近在一位朋友那里看到一张用苏木精染色的染色体压片,材料是大蒜根尖。压片非常漂亮,细胞核、染色体被染成了蓝黑色,其他细胞器基本未着色,对比清晰。向朋友请教染色方法,他也想不起来了。网上有哪位高人做出来过,能告诉我一下染色的方法吗?谢谢。

  • 【原创大赛】常规转基因技术和人工染色体技术优缺点的比较

    植物转基因技术已经成为现代分子生物学研究中的最重要手段。在过去的十几年里,植物转基因技术获得了重大发展,新型和更为有效的转化方法应运而生。尽管如此,农杆菌介导的遗传转化和基因枪法进行的遗传转化仍然是最重要的两种转化方法。农杆菌转化广泛应用于在谷类及双子叶植物。同时,其他转基因技术也迅速发展,如显微注射法、激光微束穿刺法、PEG 法、花粉管通道法、超声波法、阳离子转化法等1][/sup]。常规转基因技术具有很多优点。农杆菌介导的遗传转化成本低,不需要复杂的仪器设备,转化效率高,适用范围广,插入片段大。正因为具有以上优点,农杆菌转化是目前应用最为广泛的转化方法。基因枪法对转化受体要求低,几乎可适用于所有植物物种,方法快速简单;然而基因枪设备要求高,转化成本相对较高,这在一方面限制了基因枪法的使用。同时利用基因枪法获得的转化子通常具有多个转基因拷贝,粒子轰击也常会造成目的片段的断裂失活,转化子出现嵌合体频率高,这些也都在一定程度上限制了基因枪法的使用。其它方法在应用上都存在一定的局限性,或者是操作复杂,或者是适用的物种少。然而不管使用哪种常规方法,都有共同的局限性:1)插入位置的随机性,由于这种随机性的存在,可能导致转化受体发生性状上的改变,如败育,生长不良等等。2)常规的转基因技术多是进行单性状基因的转入,很难将控制多个性状的多个基因同时转入一种作物中,更难将整条复杂代谢途径中的所有基因引入作物中,很难产生新的复杂性状或代谢产物。3)外源基因在转入作物时,往往因整合进内源基因而破坏该内源基因的功能;同时转化的随机性使转入的外源基因受到整合区域上游或下游调控元件的影响,很难进行操控1]。相比之下,植物人工染色体技术具有很多优势:1)植物人工染色体单独成对存在于转化受体,并且稳定遗传给子代,不会影响和破坏其他染色体的结构和功能。2)植物人工染色体采用位点特异重组技术可以将目的基因定点整合到人工染色体的特定位置,不会破坏受体内源基因的功能,也不会受到整合区域上下游的影响。3)植物人工染色体可以承载多个基因,甚至编码复杂代谢网络的众多基因[[url=http://bbs.instrument.com.cn/post.asp?forumid=487&threadid=&postid=&title=&action=&FTTID=1&hasReadRelease=yes#_ENREF_2]2]。正是这些优势的存在,使得植物人工染色体技术当仁不让的成为第三代植物转基因技术,并具有广泛的应用前景。 [size=10pt][1] Barampuram, S. and Zhang, Z.J. (2011). Recent advances in plant transformation. Methods Mol Biol 701, 1-35.[size=10pt][2] Yu, W., Han, F. and Birchler, J.A. (2007). Engineered minichromosomes in plants. Curr Opin Biotechnol 18, 425-31.

  • 【求购】自动液基细胞制片染色系统

    【求购】自动液基细胞制片染色系统

    ◆产品特点 1、真正高效全自动:全球独家全自动多动能制片染色一体化设备,标本处理、制片、染色一次完成。 2、杜绝拖带污染:使用一次性加样针脱针系统和自动独立滴染湿式染色系统,杜绝了传统染色可能造成的交叉污染。 3、提取黏液包裹细胞:采用梯度离心分离及红细胞处理裂解和黏液消化技术三合一有效提取细胞及诊断成份,富集细胞及诊断成份,保证诊断细胞不丢失。 4、捕获病变细胞:根据人体不同类型细胞比重不同的特点,尤其是病变细胞比重大、沉降速度快,从而最大程度地捕获病变细胞和具诊断价值的成份,提高检出率。 5、薄层细胞均匀分布:基液使细胞均匀悬浮,保证随机性,任意取样涂片都具有代表性,形成均匀分布的真正薄层细胞涂片。 6、无需前处理:直接上机,标本无需前处理,三合一独家技术,细胞结构保存更完好,操作更加方便,省时高效,较国内外同类方法机型自动化程度更高。 7、高品质诊断保障:三合一独家技术有效提取细胞及诊断成份,完全清除黏液、红细胞等干扰成份,有利于病变细胞的鉴别诊断。 8、强大而简捷微机界面:人机对话式中文界面,可选择妇科及非妇科,不同数量及不同染色方法,操作更加方便,功能强大 9、绿色环保:不含一点甲醛,对于临床一线操作人员身体没有损害,无需采取特殊的防护。http://ng1.17img.cn/bbsfiles/images/2011/06/201106231242_301156_2324710_3.jpg

  • 常见的真核细胞翻译的起动因子的功能

    常见的真核细胞翻译的起动因子的功能 各种版本的教材和专著上写的常见的真核细胞翻译的起动因子的功能太乱了,我根据Michael B.Mathews, Nahum Soneberg,John W.B.Hershey,Translational Control onBiology and Medicine,Cold Spring Harbor Laboratory Press, 2007, 整理了出来。1.eIF1:起始密码子的识别:(1)使不正确的密码子与反密码子配对解离并且correct parings in poor sequence contexts in P site,(2)介导40S亚基对于正确的AUG密码的辨识的相关反应。参与确保起始密码子选择的忠实性(与原核的IF3相似)。2.eIF1A:与原核生物的IF1功能相似,eIF1A可以占领真核细胞的核糖体A位(40S亚基),并使得40S亚基的一些结构域的相对位置发生变化。此外,eIF1A与eIF1还能够增强eIF3将80S核糖体解离为40S和60S亚基的活性。3.eIF2:携带(Met-tRNAi Met)与40S亚基结合,形成三元复合体(40S complex),eIF2有GTPase活性。eIF2结合上的GTP水解为GDP+Pi的反应由eIF5介导,结合上eIF2的GDP与GTP交换反应由eIF2B介导。4.eIF2B:结合在eIF2的GDP更换为GTP的反应由eIF2B催化,否则eIF2B上的GDP掉下来换上GTP的过程非常缓慢。5.eIF3:有依赖性RNA的(RNA independent)解离80S核糖体为40S和60S亚基的活性,此活性可被eIF1A加强,部分地被eIF1增强。eIF3能够结合到60S亚基的内表面的平台部位(platform),并且锁住40S亚基到达18Sr RNA元件(18r RNA属于40S亚基的通道),18Sr RNA元件位于40S亚基与60S亚基的内部接触面(inter subunit),并且象一座桥一样连接40S亚基中的B2b和B2d。eIF3的另外功能:促进mRNA的结合与核糖体40S亚基的结合。6.eIF4F:eIF4A,Eif4E和eIF4G各一个分子组成一个完整的eIF4F分子。7.eIF4A:RNA helicase,使mRNA去除二级结构,其本身是较低的非持续性的螺旋酶(nonprocessive helicase),其酶活性能够被eIF4B所活化。也可以认为eIF4B是eIF4A的cofactor,eIF4B可能是增加了eIF4A与mRNA的亲合性而增加了eIF4A的RNA螺旋酶活性。8.eIF4B:与eIF4A共同行使RNA螺旋酶活性,去除mRNA的二级结构。9.eIF4E:真核mRNA的5'-帽子的结合蛋白。10.eIF4G:连结eIF4E与PAB。11.eIF5:与eIF2结合时会增强eIF2的GTPase活性,eIF5也是核糖体依赖性的GTPase。eIF5的GAP功能对40S亚基与60S亚基的结合是一个必需的先决条件(prerequisite),至少在细胞内是如此,因为敲除了酵母细胞eIF5基因会削弱翻译起并且引起48S前起始复合物(PTCs)的堆积。12.eIF5B:有GTPase活性,eIF5B结合上GTP但未水解时,会占领核糖体40S亚基的A位。eIF5B的功能与原核的eIF2近似,eIF5B有很弱的结合Met-tRNAi Met活性。13.eIF6:亚单位解聚,结合于60S亚单位。参考:Michael B.Mathews, Nahum Soneberg,John W.B.Hershey,Translational Control onBiology and Medicine,Cold Spring Harbor Laboratory Press, 2007, P113, P91-P94, P100-P101, P103, P110-P111, P116, P104-105, P114, P250-P251, P253-254,P319。

  • 【分享】科学家发现细胞分裂新机制

    瑞典乌普萨拉大学的科学家近日发现了一种细胞分裂的新型机制,这一成果将促进人们深入了解人类细胞的关键性进程,以及生命整体的进化系统。具体报告见于10月28日美国《国家科学院学报》在线版。   德国学者魏尔肖"一切细胞来自细胞"的著名论断认为,个体的所有细胞都是由原有细胞分裂产生的,这是活细胞繁殖其种类的过程。传统细胞分裂通常包括核分裂和胞质分裂两步。在核分裂过程中母细胞把遗传物质传给子细胞。在单细胞生物中细胞分裂就是个体的繁殖,而在多细胞生物中细胞分裂则是个体生长、发育和繁殖的基础。   此次新型分裂机制的发现,得益于一种名为"耐热嗜酸古细菌"的奇特微生物。"耐热嗜酸古细菌"属于古菌,是除细菌和真核生物以外的另一种生物域。古菌与细菌多有类似,但只具有几个真核细胞的特性,多生活在较极端的生态环境里。此次研究所用的"耐热嗜酸古细菌",就是科学家们从美国黄石国家公园的温泉中分离而来的。   科学家在观察"耐热嗜酸古细菌"的过程中,发现它在进行细胞分裂前,会有3个基因被激活。这3个基因分别编码的蛋白质则在细胞中间联合,在新隔离出的染色体之间逐渐的压缩细胞,直至形成两个子细胞,这种机制与目前已知的其他分裂蛋白截然不同。   研究小组认为,"耐热嗜酸古细菌"所代表的生物类型十分特殊,其80摄氏度的热酸性生存环境,对于科学研究具有极高价值。这种崭新分裂机制,亦是数年来生物学界的第一次发现。相关理论模型一旦建立,便可用于研究生命起源问题,如地球早期的酷热环境、其他行星上的极端状态等,并发现其中可能存在的生命。

  • 解秘男女有别的人类诱导多能干细胞

    7月6日,Cell Stem Cell杂志报道,来源于男性和女性的人类诱导多能干细胞,在表观遗传稳定性和癌基因的表达方面均有较大的差异。  虽然人类诱导多能干细胞(hiPSCs)在再生医学中具有巨大潜力,他们的表观遗传变异性表明,有些hiPSCs细胞系可能不适合人类治疗。目前对hiPSCs进行质量评估的基准很有限。  本研究表明,X染色体失活标记可以用来将表观遗传学上独特的hiPSCs和表型上独特的hiPSCs区分开来。XIST(X-inactive specific transcript)是一个X染色体上的胎盘哺乳动物的X染色体失活过程中发挥主要效应的RNA基因。Xist表达的缺失与X-连锁癌基因的表达上调、细胞在体外加速增长,在体内较差的分化密切相关。  在X染色体失活潜力的差异可导致女性hiPSC细胞系在表观遗传学上的差异,而男性hiPSC细胞系一般彼此相似,并且不过度表达癌基因。  生理水平的氧气含量和组蛋白去乙酰化酶(HDAC)抑制剂均不能促进女性hiPSC细胞系的培养。  在X染色体失活潜力的差异可导致女性hiPSC细胞系在表观遗传学上的差异,而男性hiPSC细胞系一般彼此相似,并且不过度表达癌基因。推荐关注:磷酸化特异性ELISA试剂盒 反义寡核苷酸类  生理水平的氧气含量和组蛋白去乙酰化酶(HDAC)抑制剂均不能促进女性hiPSC细胞系的培养。  据此,研究者得出这样的结论:在培养条件下,女性hiPSCs的表观遗传稳定性比男性的较差;Xist的丢失可能导致质量不理想的干细胞系。

  • 【转帖】细胞生物学发展史

    1677年荷兰Antonie van Leeuwenhoek (1632-1723)显微镜学家、微生物学,用简单显微镜观察到动物的“精虫”(细胞)。1665年英国Hooke Robert(1635-1703)博物学家提出细胞和细胞结构的概念。1827年贝尔发现哺乳类的卵子,对细胞本身进行认真的观察。1838年描施莱登述了细胞是在一种粘液状的母质中,经过一种像是结晶样的过程产生的,并且把植物看作细胞的共同体。在他的启发下施万坚信动、植物都是由细胞构成的,并指出二者在结构和生长中的一致性。1845年德国动物学家西博尔德(1804-1885)断定原生动物都是单细胞的。1852年德国病理学家菲尔肖(1821-1902)在研究结缔组织的基础上提出“一切细胞来自细胞”的名言,并且创立了细胞病理学。1867年德国植物学家霍夫迈斯特对植物,分别比较详细地叙述了间接分裂。1873年施奈德对动物,分别比较详细地叙述了间接分裂。1875年德国植物学家施特拉斯布格首先叙述了植物细胞中的着色物体,而且断定同种植物各自有一定数目的着色物体;1880年巴拉涅茨基描述了着色物体的螺旋状结构,翌年普菲茨纳发现了染色粒。1882年德国细胞学家弗勒明在发现了染色体的纵分裂之后提出了有丝分裂这一名称以代替间接分裂。施特拉斯布格把有丝分裂划分为直到现在还通用的前期、中期、后期、末期;他和其他学者还在植物中观察到减数分裂,经过进一步研究终于区别出单倍体和双倍体染色体数目。1882年捷克动物生理学家浦肯野提出原生质的概念。1888年瓦尔代尔才把核中的着色物体正式命名为染色体。1891年德国学者亨金在昆虫 的精细胞中观察到 X染色体。1902年史蒂文斯、威尔逊等发观了 Y染色体。1900年重新发现孟德尔的研究成就后,遗传学研究有力地推动了细胞学的进展美国遗传学家和胚胎学家摩尔根(1866—1945)研究果蝇 的遗传,发现偶尔出现的白眼个体总是雄性;结合已有的、关于性染色体的知识,解释了白眼雄性的出现,开始从细胞解释遗传现象,遗传因子可能位于染色体上。细胞学和遗传学联系起来,从遗传学得到定量的和生理的概念,从细胞学得到定性的、物质的和叙述的概念,逐步产生出细胞遗传学。此外,发现了辐射现象、温度能够引起果蝇突变之后,因突变的频率很高更有利于染色体的实验研究。辐射之后引起的各种突变,包括基因的移位、倒位及缺失等都司在染色体中找到依据。利用突变型与野生型杂交,并且对其后代进行统计处理可以推算出染色体的基因排列图。广泛开展的性染色体形态的研究,也为雌雄性别的决定找到细胞学的基础。20世纪40年代后,电子显微镜得到广泛使用,标本的包埋、切片一套技术逐渐完善,才有了很大改变。开始逐渐开展了从生化方面研究细胞各部分的功能的工作,产生了生化细胞学。

  • 细胞周期的测定原理与操作步骤

    一、原理细胞周期指细胞一个世代所经历的时间。从一次细胞分裂结束到下一次分裂结束为一个周期。细胞周期反应了细胞增殖速度。单个细胞的周期测定可采用缩时摄影的方法,但它不能代表细胞群体的周期,故现多采用其他方法测群体周期。测定细胞周期的方法很多,有同位素标记法、细胞 计数法等,这里介绍一种利用BrdU渗入测定细胞周期的方法。BrdU(5-溴脱氧尿嘧啶核苷)加入培养基后,可做为细胞DNA复制的原料,经过两个细胞周期后,细胞中两条单链均含BrdU的DNA将占l/2,反映在染色体上应表现为一条单体浅染。如经历了三个周期,则染色体中约一半为两条单体均浅染,另一半为一深一浅。细胞 如果仅经历了一个周期,则两条单体均深染。计分裂相中各期比例,就可算出细胞周期的值。http://img.dxycdn.com/trademd/upload/asset/meeting/2013/08/27/A1377590583.jpg二、仪器、用品与试剂1. 仪器、用品:同常规细胞培养2. 试剂:BrdU(1.0 mg/ml),甲醇、冰醋酸,Giemsa染液,秋水仙素,2×SSC液三、操作步骤1. 细胞生长至指数期时,向培养液中加入BrdU,使最终浓度为10 μg/ml。2. 44小时加秋水仙素,使每ml中含0.1 μg。3. 48小时后常规消化细胞至离心管中,注意培养上清的漂浮细胞也要收集到离心管中。4. 常规染色体制片。5. 染色体玻片置56 ℃水浴锅盖上,铺上2×SSC 液,距紫外灯管6 cm处紫外照射30分钟。6. 弃去2×SSC液,流水冲洗。7. Giemsa液染色10分钟,流水冲洗,晾干。8. 镜检100个分裂相,计第一、二、三、四细胞期分裂指数。9. 计算:细胞 周期(Tc)=48/(小时)附:(1)BrdU配制: BrdU 10 mg十双蒸水10ml 4 ℃下避光保存。(2)2×SSC配制: NaCl 1.75克,柠檬酸三钠,2H2O 0.88克,加水至100 ml,4 ℃保存。

  • 【转帖】染色的基本原理!

    【转帖】染色的基本原理!

    染色就是利用染料在组织切片上给与颜色,使其与组织或细胞内的某种成分发生作用,经过透明后通过光谱吸收和折射,使其各种微细结构能显现不同颜色,这样在显微镜下就可显示出组织细胞的各种成分。染色剂与组织细胞相结合而使组织细胞着色的过程与物理和化学作用两者都有关系。 一.染色的物理现象 1.溶解性: 这种染色最典型的例子就是脂肪染色,苏丹类染色剂为脂溶性染料,它可以被脂质溶解,使脂质着色,就是利用染色剂在脂质中的溶解度大于在酒精等溶剂中的溶解度这一特性。因此,当苏丹类的酒精溶液与组织细胞中的脂质接触时,染色剂就从溶液中“转移”到脂质中去,而使脂质着色。 2.吸附作用: 较大物体有从周围介质吸附小颗粒到自身的特性。有些染色则是染色剂分子通过渗透和毛细管作用而被吸收或沉淀到组织,细胞的小孔中去而着色的。例如活性炭吸附各种分子,甚至胶质和微生物等较大的颗粒一样。 二.染色的化学反应 酸性染料和碱性染料的染色作用常是对立的,而不是一致的。任何染料均可电离,离解出阳离子或阴离子。酸性染料中的酸性部分有染色作用的是阴离子;碱性染料中的碱性部分有染色作用的是阳离子,细胞内同时含有酸性和碱性物质,酸性物质与碱性染料中的阳离子相结合,如细胞核(含有核酸)黏液和软骨基质呈酸性部分被盐基性染料苏木素所染、反之碱性物质与酸性染料的阴离子相结合,如细胞浆及其内部的某些颗粒物质被酸性染料伊红所染。染料的颜色基不是在阳离子,就是在阴离子上,这些离子将因组织反应不同而发生化学结合,如显示含铁血黄素的普鲁士兰反应是最典型的例子。但是,大量染色的化学反应并不象铁反应那样明确,实际情况远为复杂。这是因为蛋白质分子是个分子量自几万至几百万的大分子,每个分子中含有很多阳离子和阴离子基因,在等电点时能形成游离的两性离子,如:[img]http://ng1.17img.cn/bbsfiles/images/2009/02/200902201138_134240_1643419_3.jpg[/img]P为蛋白质,是具有两性的胶体物质。它呈酸性或碱性与环境的PH值有关,如溶液的PH值小于该蛋白质的等电点则此溶液对该种蛋白质即为酸性,蛋白质就带正电,将被酸性染色剂所着色。反之,溶液的PH值大于蛋白质的等电点,则此溶液对该蛋白质来说即为碱性,蛋白质带负电,将被带有阳离子的染色剂所浸染。在日常工作中,长久固定于甲醛的组织切片,往往染色不良,尤其是核的着色欠佳。这是因为固定液甲醛氧化生成甲酸,组织亦随之变为酸性,所以不易被苏木素所着色,补救的办法是,先用流水冲洗组织块,然后用碱性溶液如稀氨酒精等处理使之中和,恢复正常PH值后再进行染色。大多数染色的原理至今仍未搞清楚。有些可能是物理的,有些可能是化学的,有些则可能两种机制都起作用,正因为人们对染色的原理还没有完全掌握,所以目前还不能很好地运用原理来控制它。在相当程度上要凭借工作经验。因此“染色”成为技术性很强的一项工作。在进行每一种染色方法时,必须注意不断地有意识地去积累经验,从成功与失败中去真正掌握该染色技术。

  • 植物细胞原生质体制制备与融合

    植物细胞原生质体制制备与融合2006-11-20 17:14植物细胞原生质体制制备与融合1、原生质体常现的杂交育种由于物种间难以逾越的天然屏障而举步维艰。科学家们受细胞全能性理论及组织培养成功的启示,逐渐将眼光转向细胞融合,试图用这种崭 图3-2新的手段冲破自然界的禁钢。1937年michel率先实施植物细胞融合的试验。如何去除坚韧的细胞'接成了牛物学工作者必须解决的首要难题。196O年该领域终于出现了重大突破。由英国诺丁汉大学Cocking教授领导的小组率先利用真菌纤维素酶,成功地制备出了大量具有高度活性可再生的番茄幼根细胞原生质体,开辟了原生质体融合研究的新阶段。植物细胞原生质体是指那些已去除全部细胞壁的细胞。2、原生质体制备(1)取材与除菌 为了让制得的原生质体一般都生活力较强,再生与分生比例较高。常用的外植体包括:种子根。子叶、下胚轴、胚细胞、花粉母细胞、悬浮培养细胞和嫩叶。对外植体的除菌要因材而异。悬浮培养细胞一般无需除菌。对较脏的外植体往往要先用肥皂水清洗再以清水洗2~3次,然后浸人 70%酒精消毒后,再放进 3%次氯酸钠处理。最后用无菌水漂洗数次,并用无菌滤纸吸干。(2)酶解 现以叶片为例说明如何制备植物原生质体。①配制酶解反应液:反应液应是一种PH值在5·5~5·8的缓冲液,内合纤维素酶0.3%~3.0%以及渗透压稳定剂、细胞膜保护剂和表面活性剂等,②酶解:除菌后的叶片 撕去下表皮 切块放人反应液 不时轻摇 (条件25℃~30℃,2~4h)反应液转绿。反应液转绿是酶解成功的一项重要指标,说明已有不少原生质体游离在反应液中。经镜检确认后应及时终止反应,避免脆弱的原生质体受到更多的损害。(3) 分离 在反应液中除了大量的原生质体外,尚有一些残留的组织块和破碎的细胞。为了取得高纯度的原生质体就必需进行原生质体的分离。可选取200~400目的不锈钢网或尼龙布j叭i过滤除渣,也可采用低速离心法或比重漂浮法直接获取原生质体。(4) 洗涤刚分离得到的原生质体往往还含有酶及其他不利于原生质体培养。再生的试剂,应以新的渗透压稳定剂或原生质体培养液离心洗涤2~4次。 (5) 鉴定 只有经过鉴定确认已获得原生质体后才能进行下阶段的细胞融合工作。由于已去除全部或大部分细胞壁,此时植物细胞呈圆形。如果把它放人低渗溶液中,则很容易胀破。也。'厂月荧光增白剂染色后置紫外显微镜下观察,残留的细胞壁呈现明显荧光。通过以上观测,基本上可判别是否原生质体及其百分中 此外,尚可借助台盼蓝活细胞染色、胞质环流观察以及测定人、作用、呼吸作用等参数定量检测原生质体的活力。4、 原生质体的融合(1)化学法诱导融合 化学法诱导融合无需贵重仪器,试剂易于得到,因此一直是细胞融合的主要方法。尤其是聚乙二醇(PEG)纳合成钙高pH诱导融合法已成为化学法诱导细胞融合的主流。以下简介此方法(在无菌条件下进行):按比例混合双亲原生质体-----滴加 PEG溶液,摇匀,静置----滴加高钙高pH值溶液,摇匀,静置-----滴加原生质体培养液洗涤数次-----离心获得原生质体细胞团一筛选、再生杂合细胞。(2)物理法诱导融合 1979年Senda等发明了微电极法诱导细胞融合。1981年Zi。。mann等提出了改进的平行电极法,现简介如下:将双亲本原生质体以适当的溶液悬浮混合后,插入微电极,接通一定的交变电场。原生质体极化后顺着电场排列成紧密接触的珍珠串状。此时瞬间施以适当强度的电脉冲,则使原生质体质膜被击穿而发生融合。电激融合不使用有毒害作用的试剂,作用条件比较温和,而且基本上是同步发生融合。只要条件摸索适当,亦可获得较高的融合率。上述操作实际上是供体与受体原生质体对等融合的方法。由于双方各具几万对基因,要筛选得到符合需要且能稳定传代的杂合细胞是相当困难的。最近,有人提出以X射线、伽玛射线。纺锤体毒素或染色体浓缩剂等对供体原生质体进行前处理。轻剂量处理可造成染色体不同程度的丢失、失活、断裂和损伤,融合后实现仅有少数染色体甚至是DNA片段的转移;致死量处理后合u可能产生没再仅体万染色体w划她旋余种。利用这种价值不对称融合方法,大大提高了融合体的生存率和可利用率。经过上述融合处理后再生的细胞株将可能出现以下几种类型.2) 亲本双方的细胞核和细胞质能融洽地合为一体,发育成为完全的杂合植株。这种例子不多。3) 融合细胞由一方细胞核与另一方细胞质构成,可能发育为核质异源的植株。亲缘关系越远的物种,某个亲本的染色体被丢失的现象就越严重。 4) 融合细胞由双方胞质及一方核或再附加少量他方染色体或DNA片段构成。④原生质体融合后两个细胞核尚未融合时就过早地被新出现的细胞壁分开。以后它们各自分生长成嵌合植株。5、 杂合体的鉴别与筛选双亲本原生质体经融合处理后产生的杂合细胞,一般要经含有渗透压稳定剂的原生质体培养基培养(液体或固体),再生出细胞壁后转移到合适的培养基中。待长出愈伤组织后按常规方法诱导其长芽、生根、成苗。在此过程中可对是否杂合细胞或植株进行鉴别与筛选。 (1) 杂合细胞的显微镜鉴别 根据以下特征可以在显微镜下直接识别杂合细胞:若一方细胞大,另一方细胞小,则大。小细胞融合的就是杂合细胞;若~方细胞基本无色,另一方为绿色,则自绿色结合的细胞是杂合细胞;如果双方原生质体在特殊显微镜下或双方经不同染料着色后可见不同的特征,则可作为识别杂合的标志;发现h述杂合细胞后可借助显微操作仪在显微镜下直接取出,移置再牛培养基培养。(2)以互补法筛选杂合细胞 显微鉴别法虽然比较可信,但实验者有时会受到仪器的限制,工作进度慢且未知其能否存活与个长 遗传互补法则可弥补以上不足。 遗传互补法的前提是获得各种遗传突变细胞株系。白化互补:不同基山叨的白化突变株出aBxAh,可互补为绿色细胞株AaBb。生长互补:甲细胞株缺外源激素A不能生长,乙细胞株需要提供外源激素B才能生长,则甲株与乙株融合,杂合细胞在不含激素A、B的选择培养基上可能生长。抗性互补筛选:假如某个细胞株具某种抗性(抗青霉素)另一个细胞株具另一种抗性(如抗卡那霉素),则它们的杂合株将可在含上述两种抗生素的培养基上再生与分裂。这种筛选方式即所谓的抗性互补筛选。代谢互补筛选:根据碘代乙酚胺能抑制细胞代谢的特点,用它处理受体原生质体,只有融合后的供体细胞质才能使细胞活性得到恢复,等等。 (3)采用细胞与分子生物学的方法鉴别杂合体 经细胞融合后长出的愈伤组织或植株,可进行染色体核型分析、染色体显带分析、同功酶分析以及更为精细的核酸分子杂交、限制性内切酶片段长度多态性(RFLP,见8.2.2.2)和随机扩增多态性DNA(RAPD)分析,以确定其是否结合了双亲本的遗传素质。(4)根据融合处理后再生长出的植株的形态特征进行鉴别质。

  • 植物细胞原生质体制制备与融合

    植物细胞原生质体制制备与融合1、原生质体常现的杂交育种由于物种间难以逾越的天然屏障而举步维艰。科学家们受细胞全能性理论及组织培养成功的启示,逐渐将眼光转向细胞融合,试图用这种崭 图3-2新的手段冲破自然界的禁钢。1937年michel率先实施植物细胞融合的试验。如何去除坚韧的细胞'接成了牛物学工作者必须解决的首要难题。196O年该领域终于出现了重大突破。由英国诺丁汉大学Cocking教授领导的小组率先利用真菌纤维素酶,成功地制备出了大量具有高度活性可再生的番茄幼根细胞原生质体,开辟了原生质体融合研究的新阶段。植物细胞原生质体是指那些已去除全部细胞壁的细胞。2、原生质体制备(1)取材与除菌 为了让制得的原生质体一般都生活力较强,再生与分生比例较高。常用的外植体包括:种子根。子叶、下胚轴、胚细胞、花粉母细胞、悬浮培养细胞和嫩叶。对外植体的除菌要因材而异。悬浮培养细胞一般无需除菌。对较脏的外植体往往要先用肥皂水清洗再以清水洗2~3次,然后浸人 70%酒精消毒后,再放进 3%次氯酸钠处理。最后用无菌水漂洗数次,并用无菌滤纸吸干。(2)酶解 现以叶片为例说明如何制备植物原生质体。①配制酶解反应液:反应液应是一种PH值在5·5~5·8的缓冲液,内合纤维素酶0.3%~3.0%以及渗透压稳定剂、细胞膜保护剂和表面活性剂等,②酶解:除菌后的叶片 撕去下表皮 切块放人反应液 不时轻摇 (条件25℃~30℃,2~4h)反应液转绿。反应液转绿是酶解成功的一项重要指标,说明已有不少原生质体游离在反应液中。经镜检确认后应及时终止反应,避免脆弱的原生质体受到更多的损害。(3) 分离 在反应液中除了大量的原生质体外,尚有一些残留的组织块和破碎的细胞。为了取得高纯度的原生质体就必需进行原生质体的分离。可选取200~400目的不锈钢网或尼龙布j叭i过滤除渣,也可采用低速离心法或比重漂浮法直接获取原生质体。(4) 洗涤刚分离得到的原生质体往往还含有酶及其他不利于原生质体培养。再生的试剂,应以新的渗透压稳定剂或原生质体培养液离心洗涤2~4次。 (5) 鉴定 只有经过鉴定确认已获得原生质体后才能进行下阶段的细胞融合工作。由于已去除全部或大部分细胞壁,此时植物细胞呈圆形。如果把它放人低渗溶液中,则很容易胀破。也。'厂月荧光增白剂染色后置紫外显微镜下观察,残留的细胞壁呈现明显荧光。通过以上观测,基本上可判别是否原生质体及其百分中 此外,尚可借助台盼蓝活细胞染色、胞质环流观察以及测定人、作用、呼吸作用等参数定量检测原生质体的活力。4、 原生质体的融合(1)化学法诱导融合 化学法诱导融合无需贵重仪器,试剂易于得到,因此一直是细胞融合的主要方法。尤其是聚乙二醇(PEG)纳合成钙高pH诱导融合法已成为化学法诱导细胞融合的主流。以下简介此方法(在无菌条件下进行):按比例混合双亲原生质体-----滴加 PEG溶液,摇匀,静置----滴加高钙高pH值溶液,摇匀,静置-----滴加原生质体培养液洗涤数次-----离心获得原生质体细胞团一筛选、再生杂合细胞。(2)物理法诱导融合 1979年Senda等发明了微电极法诱导细胞融合。1981年Zi。。mann等提出了改进的平行电极法,现简介如下:将双亲本原生质体以适当的溶液悬浮混合后,插入微电极,接通一定的交变电场。原生质体极化后顺着电场排列成紧密接触的珍珠串状。此时瞬间施以适当强度的电脉冲,则使原生质体质膜被击穿而发生融合。电激融合不使用有毒害作用的试剂,作用条件比较温和,而且基本上是同步发生融合。只要条件摸索适当,亦可获得较高的融合率。上述操作实际上是供体与受体原生质体对等融合的方法。由于双方各具几万对基因,要筛选得到符合需要且能稳定传代的杂合细胞是相当困难的。最近,有人提出以X射线、伽玛射线。纺锤体毒素或染色体浓缩剂等对供体原生质体进行前处理。轻剂量处理可造成染色体不同程度的丢失、失活、断裂和损伤,融合后实现仅有少数染色体甚至是DNA片段的转移;致死量处理后合u可能产生没再仅体万染色体w划她旋余种。利用这种价值不对称融合方法,大大提高了融合体的生存率和可利用率。经过上述融合处理后再生的细胞株将可能出现以下几种类型.2) 亲本双方的细胞核和细胞质能融洽地合为一体,发育成为完全的杂合植株。这种例子不多。3) 融合细胞由一方细胞核与另一方细胞质构成,可能发育为核质异源的植株。亲缘关系越远的物种,某个亲本的染色体被丢失的现象就越严重。 4) 融合细胞由双方胞质及一方核或再附加少量他方染色体或DNA片段构成。④原生质体融合后两个细胞核尚未融合时就过早地被新出现的细胞壁分开。以后它们各自分生长成嵌合植株。5、 杂合体的鉴别与筛选双亲本原生质体经融合处理后产生的杂合细胞,一般要经含有渗透压稳定剂的原生质体培养基培养(液体或固体),再生出细胞壁后转移到合适的培养基中。待长出愈伤组织后按常规方法诱导其长芽、生根、成苗。在此过程中可对是否杂合细胞或植株进行鉴别与筛选。 (1) 杂合细胞的显微镜鉴别 根据以下特征可以在显微镜下直接识别杂合细胞:若一方细胞大,另一方细胞小,则大。小细胞融合的就是杂合细胞;若~方细胞基本无色,另一方为绿色,则自绿色结合的细胞是杂合细胞;如果双方原生质体在特殊显微镜下或双方经不同染料着色后可见不同的特征,则可作为识别杂合的标志;发现h述杂合细胞后可借助显微操作仪在显微镜下直接取出,移置再牛培养基培养。(2)以互补法筛选杂合细胞 显微鉴别法虽然比较可信,但实验者有时会受到仪器的限制,工作进度慢且未知其能否存活与个长 遗传互补法则可弥补以上不足。 遗传互补法的前提是获得各种遗传突变细胞株系。白化互补:不同基山叨的白化突变株出aBxAh,可互补为绿色细胞株AaBb。生长互补:甲细胞株缺外源激素A不能生长,乙细胞株需要提供外源激素B才能生长,则甲株与乙株融合,杂合细胞在不含激素A、B的选择培养基上可能生长。抗性互补筛选:假如某个细胞株具某种抗性(抗青霉素)另一个细胞株具另一种抗性(如抗卡那霉素),则它们的杂合株将可在含上述两种抗生素的培养基上再生与分裂。这种筛选方式即所谓的抗性互补筛选。代谢互补筛选:根据碘代乙酚胺能抑制细胞代谢的特点,用它处理受体原生质体,只有融合后的供体细胞质才能使细胞活性得到恢复,等等。 (3)采用细胞与分子生物学的方法鉴别杂合体 经细胞融合后长出的愈伤组织或植株,可进行染色体核型分析、染色体显带分析、同功酶分析以及更为精细的核酸分子杂交、限制性内切酶片段长度多态性(RFLP,见8.2.2.2)和随机扩增多态性DNA(RAPD)分析,以确定其是否结合了双亲本的遗传素质。(4)根据融合处理后再生长出的植株的形态特征进行鉴别质。

  • 图文解说流式细胞仪及其技术应用

    4.1 流式细胞仪基本原理1. 生物学颗粒分析原理① 流式细胞技术是在单细胞水平上,对于处在快速直线流动状态中的大量细胞或生物颗粒进行多参数、快速的定量分析和分选的技术,现已成为现代医学研究最先进的分析技术之一。应用流式细胞仪对于处在快速直线流动状态中的细胞或生物颗粒进行快速的、多参数的定量分析和分选的技术称为流式细胞术。② 生物学颗粒包括大的免疫复合物、DNA、RNA、蛋白质、病毒颗粒、脂质体、细胞器、细菌、霉菌、染色体、真核细胞、杂交细胞、聚集细胞等,所检测的生物颗粒的理化性质包括细胞大小、细胞形态、胞浆颗粒化程度、DNA含量、总蛋白质含量、细胞膜完整性和酶活性等。③ 流式细胞仪是以激光为光源,集流体力学技术、电子物理技术、光电测量技术、计算机技术以及细胞荧光化学技术、单克隆抗体技术为一体的新型高科技仪器。 ④ 流式细胞仪是在荧光显微镜技术、血细胞计数仪和喷墨技术的基础上发展起来的。⑤ 鞘液和样品流在喷嘴附近组成一个圆柱流束,与水平方向的激光束垂直相交,染色的细胞受激光照射后发出荧光,这些信号分别被光电倍增管荧光检测器和光电二极管散射光检测器接收,经过计算机储存、计算、分析这些数字化信息,就可得到细胞的大小、活性、核酸含量、酶和抗原的性质等物理和生化指标。2. 流式细胞仪细胞分选原理在压电晶体上加上频率为30kHz的信号,使液柱断裂成一连串均匀的液滴。当某类细胞的特性与要分选的细胞相同时,流式细胞仪就会在这类细胞形成液滴时给含有这类细胞的液滴充以特定的电荷,带有电荷的液滴向下落入偏转板间的静电场时,依所带电荷的符号分别向左偏转或向右偏转,落入指定的收集器内,从而达到细胞分类收集的目的。4.2 流式细胞仪的分类和基本结构1. 流式细胞仪的分类流式细胞仪根据功能不同可分为临床型(亦称台式机)和科研型(亦称大型机)。流式细胞仪根据其结构不同又可分为一般流式细胞仪和狭缝扫描流式细胞仪。http://www.care100.com/yqxjpkc/images/112.gif

  • 微生物染色技术

    染色方法  微生物染色方法一般分为单染色法和复染色法两种。前者用一种染料使微生物染色,但不能鉴别微生物。复染色法是用两种或两种以上染料,有协助鉴别微生物的作用。故亦称鉴别染色法。常用的复染色法有革兰氏染色法和抗酸性染色法,此外还有鉴别细胞各部分结构的(如芽胞、鞭毛、细胞核等)特殊染色法。食品微生物检验中常用的是单染色法和革兰氏染色法。1、单染色法  用一种染色剂对涂片进行染色,简便易行,适于进行微生物的形态观察。在一般情况下,细菌菌体多带负电荷,易于和带正电荷的碱性染料结合而被染色。因此,常用碱性染料进行单染色,如美兰、孔雀绿、碱性复红、结晶紫和中性红等。若使用酸性染料,多用刚果红、伊红、藻红和酸性品红等。使用酸性染料时,必须降低染液的PH值,使其呈现强酸性(低于细菌菌体等电点),让菌体带正电荷,才易于被酸性染料染色。  单染色一般要经过涂片、固定、染色、水洗和干燥五个步骤。  染色结果依染料不同而不同:  石碳酸复红染色液:着色快,时间短,菌体呈红色。    美兰染色液:着色慢,时间长,效果清晰,菌体呈兰色。  草酸铵结晶染色液:染色迅速,着色深,菌体呈紫色。2、革兰氏染色法  革兰氏染色法是细菌学中广泛使用的一种鉴别染色法,1884年由丹麦医师Gram创立。  细菌先经碱性染料结晶染色,而经碘液媒染后,用酒精脱色,在一定条件下有的细菌此色不被脱去,有的可被脱去,因此可把细菌分为两大类,前者叫做革兰氏阳性菌(G+),后者为革兰氏阴性菌(G—)。为观察方便,脱色后再用一种红色染料如碱性蕃红等进行复染。阳性菌仍带紫色,阴性菌则被染上红色。有芽胞的杆菌和绝大多数和球菌,以及所有的放线菌和真菌都呈革兰氏正反应;弧菌,螺旋体和大多数致病性的无芽胞杆菌都呈现负反应。  革兰氏阳性菌和革兰氏阴性菌在化学组成和生理性质上有很多差别,染色反应不一样。现在一般认为革兰氏阳性菌体内含有特殊的核蛋白质镁盐与多糖的复合物,它与碘和结晶紫的复合物结合很牢,不易脱色,阴性菌复合物结合程度底,吸附染料差,易脱色,这是染色反应的主要依据。  另外,阳性菌菌体等电点较阴性菌为低,在相同PH条件下进行染色,阳性菌吸附碱性染料很多,因此不易脱去,阴性菌则相反。所以染色时的条件要严格控制。例如,在强碱的条件下进行染色,两类菌吸附碱性染料都多,都可呈正反应;PH很低时,则可都呈负反应。此外,两类菌的细胞壁等对结晶紫—碘复合物的通透性也不一致,阳性菌透性小,故不易被脱色,阴性菌透性大,易脱色。所以脱色时间,脱色方法也应严格控制。本文来自检验地带网  革兰氏染色法一般包括初染、媒染、脱色、复染等四个步骤,具体操作方法是:  1)涂片固定。  2)草酸铵结晶紫染1分钟。  3)自来水冲洗。  4)加碘液覆盖涂面染1分钟。  5)水洗,用吸水纸吸去水分。  6)加95%酒精数滴,并轻轻摇动进行脱色,30秒后水洗,吸去水分。  7)蕃红梁色液(稀)染10秒钟后,自来水冲洗。干燥,镜检。  染色的结果,革兰氏正反应菌体都呈紫色,负反应菌体都呈红色。

  • 膜联蛋白(Annexin)是什么?膜联蛋白v染色原理及应用

    [font=宋体][font=宋体]膜联蛋白([/font][font=Calibri]Annexin[/font][font=宋体])是一类分布广泛的钙依赖性磷脂结合蛋白,与磷脂酰丝氨酸([/font][font=Calibri]PS[/font][font=宋体])能特异性结合,参与一系列[/font][font=Calibri]Ca2+[/font][font=宋体]依赖型的膜相关的过程,包括细胞的胞吐和内吞作用、囊泡运输、调节血液凝固以及炎症反应等多种生物学事件,在许多人类疾病的发病机制或进展中起着非常重要的作用。膜联蛋白[/font][font=Calibri]V[/font][font=宋体]([/font][font=Calibri]Annexin V[/font][font=宋体])染色是检测细胞凋亡的常用方法。[/font][/font][b][font=宋体][font=宋体]膜联蛋白[/font][font=Calibri]V[/font][font=宋体]染色原理及应用[/font][/font][/b][font=宋体] [/font][b][font=宋体][font=宋体]一、膜联蛋白[/font][font=Calibri]V[/font][font=宋体]染色原理[/font][/font][/b][font=宋体] [/font][font=宋体][font=宋体]膜联蛋白[/font][font=Calibri]V[/font][font=宋体]染色,也称为[/font][font=Calibri]Annexin V[/font][font=宋体]染色,是一种用于检测细胞凋亡的方法。其核心原理基于细胞凋亡过程中的一种生物化学变化。在正常细胞中,磷脂酰丝氨酸([/font][font=Calibri]PS[/font][font=宋体])只分布在细胞膜脂质双层的内侧。然而,当细胞开始凋亡时,这一分布会发生改变,磷脂酰丝氨酸会从细胞膜内侧翻到外侧。膜联蛋白[/font][font=Calibri]V[/font][font=宋体]是一种能够与这种外翻的磷脂酰丝氨酸特异性结合的蛋白。通过结合荧光物质,这种结合可以被检测和观察,从而确定哪些细胞正在经历凋亡。[/font][/font][b][font=宋体] [/font][font=宋体][font=宋体]二、膜联蛋白[/font][font=Calibri]V[/font][font=宋体]染色的应用[/font][/font][/b][font=宋体] [/font][font=宋体][font=宋体]①流式细胞术:膜联蛋白[/font][font=Calibri]V[/font][font=宋体]染色常用于流式细胞术中,以检测和分类正常细胞和凋亡细胞。通过流式细胞仪,可以快速分析大量细胞,并准确地识别出凋亡细胞。[/font][/font][font=宋体][font=宋体]②光学显微镜成像:膜联蛋白[/font][font=Calibri]V[/font][font=宋体]染色也可用于光学显微镜成像技术,这使得研究者能够在显微镜下直接观察细胞的形态变化,从而对凋亡过程有更深入的理解。[/font][/font][font=宋体][font=宋体]③与其他染色方法的结合:膜联蛋白[/font][font=Calibri]V[/font][font=宋体]染色可以与其他染色方法如碘化丙啶[/font][font=Calibri](PI)[/font][font=宋体]染色结合使用。[/font][font=Calibri]PI[/font][font=宋体]是一种能够进入凋亡晚期细胞核的染料,因此可以用于区分凋亡早期和晚期细胞。这种联合使用的方法能提供更全面的细胞凋亡信息。[/font][/font][font=宋体][font=宋体]④临床应用:膜联蛋白[/font][font=Calibri]V[/font][font=宋体]染色在许多临床领域中都有应用,例如肿瘤学、血液学和药理学等。它可以帮助研究者深入理解疾病的发展过程,评估新药物对细胞凋亡的影响,以及监测疾病的进展和治疗的效果。[/font][/font][font=宋体][font=宋体]总的来说,膜联蛋白[/font][font=Calibri]V[/font][font=宋体]染色是一种强大的工具,可以帮助科学家们更好地理解细胞凋亡的过程,从而为疾病的治疗和药物研发提供有价值的信息。[/font][/font][font=宋体] [/font][font=宋体]更多关于膜联蛋白详情可以关注[url=https://cn.sinobiological.com/][b]义翘神州[/b][/url]![/font][font=宋体] [/font][b][font=宋体][font=宋体]义翘神州:蛋白与抗体的专业引领者,欢迎通过百度搜索[/font][font=宋体]“义翘神州”与我们取得联系。[/font][/font][/b]

  • 漩涡混匀器在细胞质粒提取中的应用

    分子生物学(基因工程)的实验中,经常要做细胞质粒DNA的提取和检测工作,以便获得运载基因的载体DNA;或用于实行电泳检测分析,了解样品是否含有质粒DNA(包括重组质粒DNA),判断其分子量大小,区别不同质粒等等。因此质粒DNA的提取是基因工程实验中最常用的手段之一。质粒是一种染色体外的稳定遗传银子,大小从1kb到200kb不等,大多数来自细菌的质粒是双链、共价闭合环状的分子,并以超螺旋形式存在于宿主的细胞质中。它是细菌内的共生型遗传因子,主要发现于细菌、放线菌和真菌细胞中,质粒具有自主复制和转录能力,能在子代细胞中保持恒定的拷贝数,并表达所携带的遗传信息。质粒的分离是利用质粒DNA和染色体DNA在变性与复性中的差异来达到的目的。当菌体在NaOH和SDS溶液中裂解时,蛋白质与DNA发生变性,由于染色体DNA与质粒DNA拓扑构型不同,染色体DNA双螺旋结构解开,而共价闭合质粒DNA的氢键虽被断裂,但两条互补链彼此相互盘绕仍会紧密地结合在仪器。当加入中和液后,溶液pH恢复至中性,在高盐浓度的情况下,染色体DNA之间交联形成不溶性网状结构并与蛋白质SDS复合物等形成沉淀;不同的是质粒DNA复性迅速而准确,保持可溶状态而留在上清中。这样,通过离心可沉淀大部分细胞碎片、染色体DNA、RNA及蛋白质。除去沉淀后上清中的质粒可用酚氯仿抽提进一步纯化质粒DNA。前面提取质粒DNA的方法就是实验室常用的碱裂解法,该法的操作过程如下:首先讲含有质粒的细菌接种到培养基,经过大约12小时的恒温摇陪后弃去上清液,加入中和液后用漩涡混匀器将溶液充分混匀,然后加入碱液进行沉淀,这就是变性与复性,最后的操作就是实验室常用的沉淀的分离、纯化。分离、纯化DNA首先取上清液,加入分离液后采用漩涡混匀器混匀溶液,离心取上清液,加入无水乙醇后混匀,离心后弃上清液,干燥DNA即可。这个实验中常用到漩涡混匀器进行溶液混匀,意大利VELP公司推出多种型号的漩涡混匀器可满足每一个实验室的需要和安全标准。特别是红外漩涡混匀器,这是VELP公司的专利,该漩涡混匀器一旦检测到试管即自动开始震动混匀,不需要施加任何外力,震动速度可调,时间可设,漩涡混匀器稳定性高,非常适合细胞质粒提取实验。

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制