当前位置: 仪器信息网 > 行业主题 > >

汽车自动驾驶安全标准

仪器信息网汽车自动驾驶安全标准专题为您整合汽车自动驾驶安全标准相关的最新文章,在汽车自动驾驶安全标准专题,您不仅可以免费浏览汽车自动驾驶安全标准的资讯, 同时您还可以浏览汽车自动驾驶安全标准的相关资料、解决方案,参与社区汽车自动驾驶安全标准话题讨论。

汽车自动驾驶安全标准相关的资讯

  • 为您提供高效、精准的称量——奥豪斯助力自动驾驶零件的生产
    Defender 5000电子台秤,帮助客户避免人为错误,提高工作效率,使工厂获得了更好的质量控制,进而提升客户的满意度! 1885年卡尔本茨制成了世界上的第一辆三轮汽车,自此,汽车行业一直充满着天马行空般的创造力。当下,人们讨论最多的热点话题,莫过于自动驾驶。在飞机行业中,“自动驾驶”已经使用了几十年。在环境与设备条件均满足的情况下,飞行员可以设定并允许飞机在旅行进行巡航,以实际自动飞行。通过“自动驾驶”,飞行员的工作负荷可以在很大程度上得到减轻。现在,随着自动驾驶技术的发展,汽车行业也迅速开始转向,出现了很多可以自动驾驶的汽车。驾驶员可以决定并允许汽车在某段旅程中,如高速公路,执行自动驾驶。 自动驾驶的系统不仅需要智能的软件支持,同时也需要强大的硬件与结构件支持,所以,市场上涌现了很多杰出的自动驾驶零件供应商。为在激烈的市场竞争中争取一席之地,供应商们都在想尽各种办法提高其生产效率,减少客诉。L是生产自动驾驶零件的著名供应商之一,他们的自动驾驶零件产品P通常是放在一个大盒子里,可以容纳30件。每天交付数百个箱子,总计数百件。但他们也有时会接到客户抱怨说,包装箱内少放了1件或2件,每种零件重量通常在几十克到上百克不等。 奥豪斯Defender® 5000台秤帮助L完美地解决这个问题。在检重模式下,Defender 5000可以不但可以精确地进行重量的检查,还可以进行数量的检查。通过检数,可以保证箱内的零件数量与出厂规定数量一致。以15kg型号为例,该型号的最大显示分辨率为 0.5g,其计数的零件最小平均单重(APW)可达0.025g,除此之外,Defender 5000 还可以通过多次的称量,对平均零件单重进行优化,进而确保精度的计数精度。计数的结果可以通过三色报警清晰显示出来,如果检数合格,绿灯亮,如检数过低或过高,而对应的黄灯或红灯会亮起,同时可以设置蜂鸣器发出报警,提醒操作者。对于QC人员,可以非常容易地判断包装是否合格;同时,通过标配的RS232接口连接标签打印机,将合格的结果打印到标签上,如计数结果、平均件重、日期和时间、产品名称、编号以及可追溯性的条形码等信息。Defender 5000支持5万条数据库存储,可以将零件的信息全部存储在在库文件中,方便随时调用。Defender 5000电子台秤,帮助客户避免人为错误,提高工作效率,使工厂获得了更好的质量控制,进而提升客户的满意度!
  • 自动驾驶热潮下,分子束外延市场将爆发
    近年来自动驾驶技术频频引发舆论关注,更是成为了资本市场的新宠,无数资本巨头、科技企业切入自动驾驶赛道,并开发各种配套解决方案。9月22日,华为发布《智能世界2030》报告,其中对未来十年的智能世界进行了系统性描绘和产业趋势的展望。在智能出行方面,华为预测,到2030年,全球电动汽车占所销售汽车总量的比例将达50%,中国自动驾驶新车渗透率达20%,整车算力将超过5000 TOPS,C-V2X渗透率达 60%。华为认为,当前汽车电动化、智能化的大潮已经不可阻挡。在智能化方面,随着自动驾驶汽车由L2、L3向L4、L5迈进,华为指出公交车、出租汽车、低速物流、垂直行业运输(物流车、矿车)等领域有望率先实现自动驾驶商业化。比如在低速开放道路上,自动驾驶汽车在物流配送、清洁消杀、巡逻等领域已经取得了积极的成果。在高速以及港口或物流园区等半封闭道路上,由于行驶环境相对单一,路线较为固定,降低了对自动驾驶系统所要处理的行驶环境的复杂度,加之卡车司机还存在成本高、易超负荷运载、超工时工作的风险,对自动驾驶也有较大的需求。而多家专注于无人干线物流的自动驾驶技术提供商也已纷纷表明今年将量产L3自动驾驶卡车,助力重卡行业降本增效。自动驾驶发展热潮下,各类传感器迎来新的增长点自动驾驶的安全性,是其能否实现大规模应用的核心影响因素。为此,主机厂和自动驾驶方案提供商不断试验在汽车上融合多种传感器,光学相机、激光雷达和毫米波雷达是目前搭配使用最广泛的三种传感器。此外,红外传感器也在汽车自动驾驶领域的方案里频频出现,得到了广泛关注。苹果公司在今年 3 月公布的一项汽车夜视系统专利中,就应用了近红外波传感器和长红外波传感器;此外,滴滴自动驾驶联合沃尔沃推出的新一代 L4 级自动驾驶测试车 " 滴滴双子星 " 中,也配备了 1 个红外摄像头。业界有观点认为,2022-2023 年将是 L2 级及以上自动驾驶汽车大规模采用红外热像仪的时间节点。红外在驾驶辅助及自动驾驶中的应用可能兴起,将带来红外传感器新的增长点。探测器用半导体材料需求将助推MBE市场爆发激光雷达、红外传感器等探测器的制造都离不开相关的半导体材料。据了解,由于器件的生产需要MBE做外延,虽然MBE不适合量产,但在生长探测器材料的时候需要生长本征材料,一般MBE生长出来的本征材料会比MOCVD的要好,比如GaAs,InGaAs,InP的本征材料,究其原因是MOCVD用的是有机源,在分解生长的时候不可避免的带入杂质,影响本征材料的Hall参数。随着自动驾驶汽车市场爆发,对探测器,特别是红外传感器的需求强烈。目前MBE数量比MOCVD少得多得多,相关市场将爆发。值得注意的是,LPE生长出的本征材料特性比MBE的还要好,但由于人才缺口等因素,相关技术并未在国内铺开。目前高品质的激光探测器一般都出自日本。
  • 探寻自动驾驶系统眼中的那束光
    激光雷达(LiDAR)是自动驾驶交通工具中防撞传感器的重要组成部分。它通过激光扫描并感应从障碍物表面反射回来的光,从而对障碍物距离进行测量。在无人驾驶的状态下,激光雷达如同自动驾驶系统的眼睛,可以检测到路面交通信号灯,道路宽度,迎面驶来的汽车,穿行马路的行人或者其他突发状况,并准确获取目标的三维信息,具有分辨率高、抗干扰能力强、探测范围广等特点。 自动驾驶系统激光雷达传感器 激光雷达防撞传感器的视角是一个重要的性能参数,当激光雷达被安装在汽车里的时候,视角需要尽可能大,以能覆盖车前方更宽的区域,使得自动驾驶系统具有更优异的避障性能。 自动驾驶汽车激光雷达防撞传感器示意图 穿透传感器保护罩的激光波长范围及强度会随着入射光角度的和传感器安装的位置而改变。因此十分有必要对不同入射角下的透过率光谱进行表征及评价。 岛津UV-3600i Plus紫外可见近红外分光光度计上加载可变角绝对反射/透射附件可对雷达传感器的保护罩进行角度相关的测试,进而对激光雷达传感器中所使用激光波长的选择提供重要参考。 岛津UV-3600i Plus紫外可见近红外分光光度计 通过对可变角附件带刻度的样品台进行旋转调节,可以得到不同角度入射的光。如下图,入射光角度分别为35°、45°及55°。 不同入射光角度下的透过率曲线 由图中可见,当入射光角度变化的时候,保护罩的透过光波长及强度会发生变化,并随着入射角的变大发生峰形的蓝移。为了避免入射光角度改变的影响,激光雷达防撞传感器中所使用的激光波长应位于960nm附近,即上图三条谱线平坦区域的相交处,此时透过保护罩的入射光不会因为角度的改变而出现较大的光强波动,从而保证成像的准确性。
  • Teledyne Flir和Ansys合作推进热成像技术在驾驶辅助和自动驾驶系统中的集成应用
    帮助车辆改善在所有天气和照明条件下的环境感知能力,对于减少全球创纪录的车祸死亡人数以及实现更安全的自动驾驶汽车(AV)系统至关重要。2023年6月,美国州长公路安全协会(GHSA)预计,2022年全美有7508名行人死于交通事故,这是自1981年以来美国行人死亡人数最高的一年。车辆环境感知工程师可以利用热成像数据和计算机模拟来提高系统性能,加速高级驾驶辅助系统(ADAS)和AV系统的开发目前,将长波红外数据集成到车辆现有传感器套件中,成为改进ADAS和AV系统的有效手段之一。热探测能够填补车辆环境感知能力的缺陷,通过与可见光相机、雷达以及激光雷达(LiDAR)传感器配合使用提供冗余。据麦姆斯咨询报道,为了支持更高效的ADAS和AV系统,传感、成像及相机制造商Teledyne Flir正在与工程模拟软件开发商Ansys合作,利用热成像数据促进系统开发,改进车辆面向行人的自动紧急制动系统。Ansys AVxcelerate Suite现在可以与Thermal by Flir一起提供,成为车辆感知系统设计师的一款新工具,促进热成像功能在ADAS和AV传感器堆栈中的集成,提高感知算法的准确性。凭借该工具,工程人员可以模拟数百万英里利用热像仪提供关键数据的场景,在拥挤和低对比度环境(如雾或烟雾等)中检测行人。环境温度影响热成像性能简化数据整合AVxcelerate获得了Flir的Prism AI的有力支持,该软件可以在内部开发过程中用作主要感知或参考软件。Prism AI工具套件提供了与Teledyne Flir的Conservator数据生命周期管理软件,以及被合作伙伴称为“行业最大热成像和可见光训练数据集”的简化数据整合。Teledyne Flir产品管理副总裁Mike Walters表示:“Ansys AVxcelerate Suite是感知工程师利用热成像数据挽救生命的另一个关键工具。从学术界到汽车原始设备制造商,各机构现在都可以拥有从虚拟世界到物理世界的完整生态系统,以构建挽救生命的热成像系统。”Flir推出用于毒品快速分析的便携式探测器此外,Flir Defense近期还宣布推出了Griffin G510x便携式化学品探测器,专门用于在现场行动中分析并识别爆炸物和毒品(包括芬太尼)。这款新版本基于广受欢迎的G510系统,可使急救人员和执法部门在五分钟内确认并识别街头毒品。Griffin G510x设计用于检测芬太尼等毒品Griffin G510平台是一款便携式气相色谱-质谱仪系统,被全球多国公共安全团队广泛用于现场实时确认化学威胁。新款G510x的改进,使操作人员能够识别复杂混合物中的微量毒品(现在已经成为新常态)。芬太尼和甲苯噻嗪组合镇静剂等阿片类药物,对使用者和急救人员都构成严重威胁。G510x可以在常见止痛药中发现混合浓度低至2%的芬太尼,而其他系统可能只能检测到止痛药。Flir Defense集成检测系统副总裁Mark Blanco表示:“芬太尼及其他毒品夺走了很多人的生命,正在摧毁各地的社区。G510x为全球执法部门提供了一款强大的新工具,可以在现场识别危险的毒品,帮助将其从我们的街道上清除。”G510x的板载化学品数据库每三到六个月更新一次,可对3500多种非法药物、代谢物和其他相关化合物进行验证性分析。其230毫米(9英寸)的触摸显示屏可引导用户提示,并能够在穿戴防护装备的情况下进行操作。
  • 工信部发布2022年汽车标准化工作要点(附汽车测试技术网络大会)
    3月18日,工业和信息化部装备工业一司发布2022年汽车标准化工作要点,含五大方面,15项内容。全文如下:2022年汽车标准化工作要点2022年汽车标准化工作坚持以习近平新时代中国特色社会主义思想为指导,全面贯彻党的十九大和十九届历次全会精神,立足新发展阶段,完整、准确、全面贯彻新发展理念,按照《国家标准化发展纲要》《新能源汽车产业发展规划(2021—2035年)》等文件要求,紧贴汽车技术发展趋势和行业实际需求,践行使命担当,奋力开创汽车标准化工作新局面,为汽车产业高质量发展提供坚实支撑。一、持续完善标准顶层设计,加强各方统筹协调1.健全完善汽车技术标准体系。进一步优化汽车行业“十四五”技术标准体系,持续完善新能源汽车、智能网联汽车等重点领域标准体系建设指南,研究制定智能网联汽车测试装备标准体系,加快构建汽车芯片标准体系。2.统筹推进汽车标准化工作。高度重视汽车标准的交叉融合问题,推动建立跨行业跨领域工作协同机制,进一步强化行业协同、上下联动,大力推动电动汽车充电、汽车芯片、智能网联汽车等重点领域标准的统筹协调,不断提升标准工作开放性和透明度。3.强化标准全生命周期管理。加强标准技术来源和行业需求研究,鼓励行业机构、业界企业、社会公众等提出标准需要和意见建议;持续加大标准宣贯的广度和深度,通过深度解读标准内容和要求支撑做好贯彻实施工作;开展重点标准实施效果阶段性评估,立足我国政府管理及产业发展趋势持续提升标准质量水平。二、加快新兴领域标准研制,助力产业转型升级4.新能源汽车领域。启动电动汽车动力蓄电池安全相关标准修订工作,进一步提升动力蓄电池热失控报警和安全防护水平;加快推进电动汽车远程服务与管理系列标准研究,修订燃料电池电动汽车碰撞后安全要求标准,进一步强化电动汽车安全保障。开展混合动力电动汽车最大功率测试方法标准预研,推进纯电动汽车和混合动力电动汽车动力性能试验方法、驱动电机系统技术要求及试验方法等标准制修订,持续完善电动汽车整车及关键部件标准体系。开展动力蓄电池耐久性标准预研,推进动力蓄电池电性能、热管理系统、排气试验方法及动力蓄电池回收利用通用要求、管理规范等标准研究,促进动力蓄电池性能提升和绿色发展。全面推进燃料电池电动汽车能耗及续驶里程、低温起动性能、动力性能试验方法等整车标准以及燃料电池发动机性能试验方法、车载氢系统技术条件等关键系统部件标准研究,支撑燃料电池电动汽车关键技术研发应用及示范运行。加快构建完善电动汽车充换电标准体系,推进纯电动汽车车载换电系统、换电通用平台、换电电池包等标准制定;开展电动汽车大功率充电技术升级方案研究和验证,加快推进电动汽车传导充电连接装置等系列标准修订发布。5.智能网联汽车领域。开展汽车软件在线升级管理试点,组织信息安全管理系统等标准试行验证,完成软件升级、整车信息安全和自动驾驶数据记录系统等强制性国家标准的审查与报批。推动智能网联汽车自动驾驶功能要求、设计运行条件及车载定位系统等L3及以上通用要求类标准草案编制,完成封闭场地、实际道路及模拟仿真等试验方法类标准的制定发布,面向L2级组合驾驶辅助系统开展标准验证试验,有力支撑智能网联汽车企业及产品准入管理工作。加快推进信息安全工程、应急响应、数据通用要求、车载诊断接口、数字证书及密码应用等安全保障类重点标准制定,进一步强化智能网联汽车信息安全、网络安全保障体系建设。优化完善车辆网联功能技术标准子体系,推进基于LTE-V2X的车载信息交互系统、基于网联功能的汽车安全预警场景应用以及相应交互接口规范等标准的研究和立项,协同推动智慧城市网联基础设施相关标准制定,支撑智能网联汽车与智慧城市基础设施、智能交通系统、大数据平台等的互通互联。分阶段完成智能网联汽车操作系统系列标准制定,开展符合我国交通特征的测试设备等标准研制工作。6.汽车电子领域。完成无线通信终端、毫米波雷达、主/被动红外等关键系统部件标准审查和报批,加快推进免提通话和语音交互标准制定,启动车载事故紧急呼叫系统、车载卫星定位系统、抬头显示系统、激光雷达等标准研制立项,满足不断增长的车载电子系统标准需求。推进整车及零部件电磁兼容基础通用标准修订立项,启动整车天线系统射频性能评价、整车辐射发射限值、人体电磁曝露、车辆雷电效应和整车天线系统通信性能等标准预研。完成车辆预期功能安全、车辆功能安全审核及评估方法、电动汽车用驱动电机系统功能安全等标准制定,进一步完善功能安全与预期功能安全标准体系。7.汽车芯片领域。开展汽车企业芯片需求及汽车芯片产业技术能力调研,联合集成电路、半导体器件等关联行业研究发布汽车芯片标准体系。推进MCU控制芯片、感知芯片、通信芯片、存储芯片、安全芯片、计算芯片和新能源汽车专用芯片等标准研究和立项。启动汽车芯片功能安全、信息安全、环境可靠性、电磁兼容性等通用规范标准预研。三、强化绿色技术标准引领,支撑双碳目标实现8.能源消耗量领域。完成轻型、重型商用车第四阶段燃料消耗量限值标准征求意见,加快推进乘用车第六阶段燃料消耗量、电动汽车能量消耗量限值标准制定。开展高效电机等乘用车循环外技术装置评价方法标准研究,启动乘用车道路行驶能源消耗量监测规范标准预研。完成轻型汽柴油车、可外接充电式混合动力电动汽车和纯电动汽车能源消耗量标识标准审查和报批。9.碳排放领域。开展道路车辆温室气体管理通用要求、术语定义、碳中和实施指南等基础通用标准研究和立项。推进车辆生产企业及产品碳排放及核算办法相关标准研究和立项。启动汽车产品碳足迹标识、电动汽车行驶条件温室气体碳减排评估方法标准预研。四、完善整车基础相关标准,夯实质量提升基础10.汽车安全领域。推动燃气汽车燃气系统安装规范、间接视野装置性能和安装等标准发布,加快灯光系列标准整合以及机动车乘员用安全带及固定点、机动车儿童乘员用约束系统等标准修订。推进乘用车制动系统、前后端防护装置、顶部抗压强度、行人碰撞保护、侧面碰撞乘员保护、后碰撞燃油系统安全要求、防盗装置等标准制修订,进一步强化乘用车安全要求。做好商用车驾驶室乘员保护标准宣贯实施,推动客车座椅及其车辆固定件强度标准发布,加快商用车驾驶室外部凸出物标准、专用校车安全、专用校车学生座椅及其车辆固定件强度等标准制修订,持续推进危险物品运输车辆、爆炸品和剧毒化学品车辆等危化品运输车辆标准整合,开展轻型汽车/商用车辆电子稳定性控制系统(ESC)标准实施评估及强制性实施的可行性分析,不断提高商用车安全水平。进一步完善车辆事故与质量评价标准体系,启动汽车故障模式和事故分类等标准预研。11.传统整车领域。围绕自卸半挂车栏板高度、45英尺集装箱列车长度等内容进行调研,适时启动GB 1589《汽车、挂车及汽车列车外廓尺寸、 轴荷及质量限值》标准修订工作。配合GB7258《机动车运行安全技术条件》标准修订,启动空气悬架车辆评价、提升桥车辆技术要求等支撑性标准的研制。加快推进汽车列车性能要求和试验方法标准修订,开展主挂自动连接、连接装置强度、货物隔离装置及系固点等标准预研。开展3.5t以下轻型挂车标准体系研究,根据行业需求开展相关标准制修订。推进车辆操控、主动降噪、结构耐久、车内外提示音等方面标准预研。12.零部件领域。推进空气悬架、推力杆、高度控制阀、自动变速器、电子辅助转向系统(EPS)、多种类型传感器、执行器和控制器等关键零部件标准研究与制修订。开展新型塑料及复合材料的车辆零部件质量标准研究制定。加快压缩天然气(CNG)汽车35MPa压力关键部件等标准升级。五、全面深化国际交流合作,提高对外开放水平13.加强全球技术法规制定协调。全面跟踪联合国世界车辆协调论坛(WP.29)动态及趋势,切实履行《1998年协定书》缔约国义务及自动驾驶与网联车辆工作组、电动汽车安全工作小组副主席等职责,牵头先进驾驶辅助系统部件、自动驾驶功能要求、自动驾驶测评方法、数据记录系统、电动汽车安全、氢燃料电池车辆安全、车载电池耐久性等重点法规项目规划与研制工作,适时提出中国提案。推动1-2项中国标准进入全球技术法规候选纲要,持续提升国际法规协调工作的参与度与贡献度。14.深度参与国际技术标准制定。切实履行国际标准化组织道路车辆委员会(ISO/TC22)自动驾驶测试场景、车载雷达特别工作组召集人以及国际电工委员会电动车辆电能传输系统委员会(IEC/TC69)等相关国际标准项目负责人职责,加快推进自动驾驶测试场景、车载毫米波雷达探测性能评价、动力蓄电池系统功能安全、汽车电子/电气部件传导骚扰试验方法等国际标准研究,重点推动乘用车外部保护、负压救护车、安全玻璃、燃料电池汽车低温冷启动及最高速度等国际标准立项并新建1-2个国际标准工作组,持续提升中国标准国际化影响力。15.务实推进中外标准交流合作。充分利用多双边合作机制与平台,巩固并扩大在新能源汽车、智能网联汽车等领域的国际标准和法规协调工作成果,共同提出国际标准法规提案,联合开展相关标准法规制定活动,推动形成国际标准化共识。贯彻落实“一带一路”倡议,与重点沿线国家开展汽车标准化交流、培训等活动,促进国内外标准化机构间的对话合作,推动中国标准“走出去”。汇集行业多方资源力量,不断扩充国际协调专家队伍,实现国际协调资源共享和专家有序管理。第四届“汽车检测技术”网络大会我国是世界汽车产销第一大国,据中汽协预测,2021年中国汽车总销量为2610万辆,同比增长3.1%;与之相对应的汽车召回量也有所增长,据国家市场监督管理总局统计,2021年国内乘用车企召回缺陷汽车851.91万辆。面对严峻的市场环境,主机厂和零部件厂高度重视整车品质的提升。针对整车和组件的测试及质量监控,已经贯穿汽车产品开发的各个环节。基于此,仪器信息网联合中国汽车工程学会汽车材料分会,将于4月13-14日组织举办第四届“汽车检测技术”网络大会,为汽车产业链用户搭建一个即时、高效的交流和学习的平台,推动我国汽车测试行业健康发展,助力汽车产业持续提升安全性、可靠性、耐久性及高质量制造。免费报名:https://www.instrument.com.cn/webinar/meetings/automobile2022/扫码免费报名参会会议赞助:15718850776(微信同号)刘老师会议日程报告时间报告题目报告人4月13日上午 零部件失效分析09:00-09:30机械传动零部件失效诊断技术研究及其制造设计的改进应用潘安霞中车戚墅堰机车车辆工艺研究所有限公司09:30-10:00更新中欧波同10:00-10:30高强度零部件延迟开裂问题探讨唐刚比亚迪汽车工业有限公司10:30-11:00电子探针在汽车材料分析中的应用岛津11:00-11:30检验分析报告中的图片表达问题探讨刘柯军汽车工程学会材料分会理化及失效专业委员会4月13日下午 零部件测试技术14:00-14:30汽车橡胶材料测试(拟)苍飞飞国家橡胶轮胎质量监督检验中心14:30-15:00汽车零部件清洁度测试技术谢宇中汽研汽车检验中心(天津)有限公司15:00-15:30赞助席位15:30-16:00汽车几何尺寸测量(拟)邵双运北京交通大学理学院16:00-16:30赞助席位16:30-17:00更新中冯继军东风商用车技术中心工艺研究所17:00-17:30车内空气污染检测技术胡玢北京市劳动保护科学研究所 4月14日上午 新能源汽车测试技术(上)09:00-9:30动力电池全生命周期测评技术研究谢先宇上海机动车检测认证技术研究中心有限公司9:30-10:00动力电池安全性测试技术马天翼中国汽车技术研究中心有限公司10:00-10:30更新中基恩士10:30-11:00驱动电机测试技术与研究(拟)吴诗宇重庆车辆检测研究院有限公司11:00-11:30赞助席位11:30-12:00电动汽车车载充电机(OBC)与充电桩电源新技术王正仕浙江大学4月14日下午 新能源汽车测试技术(下)14:00-14:30数字射线成像(DR)及工业CT检测技术在新能源汽车关键零部件上的应用郑小康中车戚墅堰机车车辆工艺研究所有限公司14:00-16:30更新中
  • 新能源汽车引领下年更新159条标准——2021汽车材料及零部件测试标准盘点
    2021年可谓标准“元年”,中共中央、国务院印发《国家标准化发展纲要》,将推动标准化与科技创新互动发展作为重要任务之一,研究制定新能源汽车、智能网联汽车和机器人等领域关键技术标准,推动产业变革。我国是汽车产销第一大国,随着新能源汽车、智能网联汽车技术的快速发展和应用,充分发挥标准的引领和规范作用,已成为支撑我国汽车产业转型升级和高质量发展的推动力。回顾过去这一年,我国批准发布大量汽车标准,本文就国家标准、行业标准及主流团体标准进行了简要盘点,以飨读者。国家标准国家标准分为强制性标准和推荐性标准两种,强制性标准主要包括汽车的安全性标准、汽车排放物的控制标准、汽车操声限制标准、汽车燃油消耗量限制标准等。2021年,由全国汽车标准化技术委员会(SAC/TC114)归口管理的国家标准共58项。序号标准号标准名称发布日期实施日期1GB 17675-2021汽车转向系 基本要求2021/2/202022/1/12GB 19578-2021乘用车燃料消耗量限值2021/2/202021/7/13GB 26512-2021商用车驾驶室乘员保护2021/2/202022/1/14GB/T 39851.2-2021道路车辆 基于控制器局域网的诊断通信 第2部分:传输层协议和网络层服务2021/3/92021/10/15GB/T 39895-2021汽车零部件再制造产品 标识规范2021/3/92021/10/16GB/T 39897-2021车内非金属部件挥发性有机物和醛酮类物质检测方法2021/3/92021/10/17GB/T 39896-2021厢式货车系列型谱2021/3/92021/10/18GB/T 32694-2021插电式混合动力电动乘用车 技术条件2021/3/92021/10/19GB/T 26779-2021燃料电池电动汽车加氢口2021/3/92021/10/110GB/T 19753-2021轻型混合动力电动汽车能量消耗量试验方法2021/3/92021/10/111GB/T 19237-2021汽车用压缩天然气加气机2021/3/92021/10/112GB/T 18386.1-2021电动汽车能量消耗量和续驶里程试验方法 第1部分:轻型汽车2021/3/92021/10/113GB/T 39901-2021乘用车自动紧急制动系统(AEBS)性能要求及试验方法2021/3/92021/10/114GB/T 39899-2021汽车零部件再制造产品技术规范 自动变速器2021/3/92021/10/115GB 9656-2021机动车玻璃安全技术规范2021/4/302023/1/116GB 40164-2021汽车和挂车 制动器用零部件技术要求及试验方法2021/4/302022/1/117GB/T 40032-2021电动汽车换电安全要求2021/4/302021/11/118GB/T 31498-2021电动汽车碰撞后安全要求2021/8/192022/3/119GB/T 40432-2021电动汽车用传导式车载充电机2021/8/192022/3/120GB/T 40494-2021机动车产品使用说明书2021/8/192022/3/121GB/T 40499-2021重型汽车操纵稳定性试验通用条件2021/8/192022/3/122GB/T 40501-2021轻型汽车操纵稳定性试验通用条件2021/8/192022/3/123GB/T 40509-2021汽车转向中心区操纵性过渡特性试验方法2021/8/192022/3/124GB/T 40507-2021乘用车 自由转向特性 转向脉冲开环试验方法2021/8/192022/3/125GB/T 40512-2021汽车整车大气暴露试验方法2021/8/192022/3/126GB/T 40521.1-2021乘用车紧急变线试验车道 第1部分:双移线2021/8/192022/3/127GB/T 40521.2-2021乘用车紧急变线试验车道 第2部分:避障2021/8/192022/3/128GB/T 38146.3-2021中国汽车行驶工况 第3部分:发动机2021/8/192022/3/129GB/T 40429-2021汽车驾驶自动化分级2021/8/192022/3/130GB/T 24347-2021电动汽车DC/DC变换器2021/8/192022/3/131GB/T 40428-2021电动汽车传导充电电磁兼容性要求和试验方法2021/8/192022/3/132GB/T 34015.4-2021车用动力电池回收利用 梯次利用 第4部分:梯次利用产品标识2021/8/192022/3/133GB/T 40433-2021电动汽车用混合电源技术要求2021/8/192022/3/134GB/T 40430-2021道路车辆 基于控制器局域网的诊断通信 符号集2021/8/192022/3/135GB/T 34015.3-2021车用动力电池回收利用 梯次利用 第3部分:梯次利用要求2021/8/192022/3/136GB/T 14172-2021汽车、挂车及汽车列车静侧倾稳定性台架试验方法2021/8/192022/3/137GB/T 40822-2021道路车辆 统一的诊断服务2021/10/112022/5/138GB/T 40861-2021汽车信息安全通用技术要求2021/10/112022/5/139GB/T 5334-2021乘用车 车轮 弯曲和径向疲劳性能要求及试验方法2021/10/112022/5/140GB/T 39851.3-2021道路车辆 基于控制器局域网的诊断通信 第3部分:排放相关系统的需求2021/10/112022/5/141GB/T 33598.3-2021车用动力电池回收利用 再生利用 第3部分:放电规范2021/10/112022/5/142GB/T 38775.7-2021电动汽车无线充电系统 第7部分:互操作性要求及测试 车辆端2021/10/112022/5/143GB/T 12678-2021汽车可靠性行驶试验方法2021/10/112022/5/144GB/T 27840-2021重型商用车辆燃料消耗量测量方法2021/10/112022/5/145GB/T 19754-2021重型混合动力电动汽车能量消耗量试验方法2021/10/112022/5/146GB/T 40712-2021多用途货车通用技术条件2021/10/112022/5/147GB/T 40711.2-2021乘用车循环外技术/装置节能效果评价方法 第2部分:怠速起停系统2021/10/112022/5/148GB/T 38775.5-2021电动汽车无线充电系统 第5部分:电磁兼容性要求和试验方法2021/10/112022/5/149GB/T 40578-2021轻型汽车多工况行驶车外噪声测量方法2021/10/112022/5/150GB/T 12535-2021汽车起动性能试验方法2021/10/112022/5/151GB/T 40625-2021汽车加速行驶车外噪声室内测量方法2021/10/112022/5/152GB/T 5909-2021商用车 车轮 弯曲和径向疲劳性能要求及试验方法2021/10/112022/5/153GB/T 40711.3-2021乘用车循环外技术/装置节能效果评价方法 第3部分:汽车空调2021/10/112022/5/154GB/T 39037.1-2021用于海上滚装船运输的道路车辆的系固点与系固设施布置 通用要求 第1部分:商用车和汽车列车(不包括半挂车)2021/10/112022/5/155GB/T 40711.4-2021乘用车循环外技术/装置节能效果评价方法 第4部分:制动能量回收系统2021/10/112022/5/156GB/T 40855-2021电动汽车远程服务与管理系统信息安全技术要求及试验方法2021/10/112022/5/157GB/T 40857-2021汽车网关信息安全技术要求及试验方法2021/10/112022/5/158GB/T 40856-2021车载信息交互系统信息安全技术要求及试验方法2021/10/112022/5/1行业标准汽车行业标准主要包括汽车整车、发动机及各大总成的性能要求、技术条件等表明产品本身质量水平的标准。2021年,由全国汽车标准化技术委员会(SAC/TC114)归口管理的行业标准共9项。序号标准号标准名称发布日期实施日期1QC/T 1149-2021大件运输专用车辆2021/5/172021/10/11QC/T 1152-2021电动摩托车和电动轻便摩托车用DC/DC变换器技术条件2021/8/212022/2/12QC/T 1153-2021汽车紧固连接螺栓轴力测试 超声波压电陶瓷片法2021/8/212022/2/13QC/T 1154-2021汽车微电机用换向器2021/8/212022/2/14QC/T 1155-2021汽车用USB功率电源适配器2021/8/212022/2/15QC/T 1156-2021车用动力电池回收利用 单体拆解技术规范2021/8/212022/2/16QC/T 271-2021微型货车防雨密封性试验方法2021/8/212022/2/17QC/T 550-2021汽车用蜂鸣器2021/8/212022/2/18QC/T 62-2021摩托车和轻便摩托车减震器2021/8/212022/2/19QC/T 942-2021汽车材料中六价铬的检测方法2021/8/212022/2/1团体标准本文仅整理由中国汽车工程学会(CSAE)批准发布的团体标准,共92项。中国汽车工程学会标准化工作最早始于2006年,2014年入选首批团体标准试点单位。以下标准自发布之日起生效。序号标准号标准名称发布日期1T/CSAE 172-2021电动乘用车剩余里程准确度评价试验方法2021/2/262T/CSAE 173-2021基于道路载荷谱的汽车用户使用与试验场试验相关性分析评价规程2021/3/293T/CSAE 174-2021汽车产品可靠性增长开发指南2021/3/294T/CSAE 175-2021汽车可靠性设计的用户定义方法2021/3/295T/CSAE 176-2021电动汽车电驱动总成噪声品质测试评价规范2021/3/296T/CSAE 177-2021电动汽车车载控制器软件功能测试规范2021/4/127T/CSAE 179-2021汽车用高韧性热镀铝硅合金镀层热冲压钢板技术要求2021/4/128T/CSAE 180-2021轻型汽车道路行驶工况2021/4/129T/CSAE 40-2021乘用车塑料前端框架技术条件2021/4/1210T/CSAE 178-2021电动汽车高压连接器技术条件2021/5/1311T/CSAE 181-2021汽车室内润滑脂气味测试及评价方法2021/5/1312T/CSAE 182-2021汽油机油低速早燃性能测试方法2021/5/1313T/CSAE 184-2021电动汽车动力蓄电池健康状态评价指标及估算误差试验方法2021/5/1314T/CSAE 185-2021自动驾驶地图采集要素模型与交换格式2021/5/1315T/CSAE 186-2021电动汽车动力蓄电池箱火灾用气体防控装置2021/5/1316T/CSAE 183-2021燃料电池堆及系统基本性能试验方法2021/6/1117T/CSAE 75.2-2021汽车防锈包装规程 第2部分:动力总成及其主要零部件2021/6/1118T/CSAE 191-2021全球典型地区气候环境老化严酷度分级2021/6/1119T/CSAE 192-2021汽车零部件电镀和涂装实验室 通用技术要求2021/6/1120T/CSAE 193-2021汽车用自攻螺钉在热塑性塑料上拧紧扭矩性能试验方法2021/6/1130T/CSAE 199-2021汽车用高真空压铸铝合金减振器支座技术条件2021/6/3031T/CSAE 200-2021汽车用铝合金直锻工艺轮毂技术条件2021/6/3032T/CSAE 201-2021汽车用薄钢板冲压极限减薄率测试方法
  • 工信部发布2021年汽车标准化工作要点
    2021年汽车标准化工作,将深入贯彻落实《新能源汽车产业发展规划(2021-2035年)》《国家车联网产业标准体系建设指南(智能网联汽车)》等要求,进一步聚焦重点领域、注重协同创新、强化应用牵引,持续健全完善汽车标准体系,为汽车产业高质量发展提供坚实支撑。一、强化规划引领,注重顶层设计1.加快“十四五”标准体系建设。按照国家战略规划和汽车专项规划要求,完成汽车行业“十四五”标准体系建设方案,建立新能源汽车和智能网联汽车“十四五”标准体系,并明确分阶段具体建设目标。2.完善汽车标准化工作路线图。发布《中国电动汽车标准化工作路线图》(第三版),并做好宣贯和实施工作;结合自动驾驶技术应用情况,启动先进驾驶辅助系统标准制定路线图(第二版)修订工作。3.研究建立汽车行业智能制造标准体系。贯彻落实国家智能制造总体建设规划部署,构建涵盖基础共性、关键技术和细分应用等具体领域的汽车行业智能制造标准体系。二、聚焦重点领域,优化标准供给(一)加快战略性新兴领域汽车标准研制1.新能源汽车领域。强化电动汽车安全保障,开展电动汽车整车、动力电池及换电等安全标准实施效果评估,推动传导充电安全要求、碰撞后安全要求等标准发布实施。注重电动汽车整车综合性能提升,加快电动汽车动力性、远程服务与管理、纯电动乘用车技术条件等标准制修订。聚焦燃料电池电动汽车使用环节,推动燃料电池电动汽车能耗及续驶里程、低温冷启动、动力性能、车载氢系统、加氢枪等标准制修订。加快关键部件创新突破,开展动力蓄电池、超级电容器、驱动电机系统、绝缘栅双极型晶体管(IGBT)模块等标准制修订。支撑换电模式创新发展,推动换电车辆车载换电系统互换性、换电通用平台、换电电池包及其附件、电池包与车辆和换电站通信等标准预研。支撑电动汽车绿色发展,开展动力电池回收利用通用要求、可梯次利用设计指南等标准预研,完成动力电池回收服务网点标准制定。2.智能网联汽车领域。适应新技术发展趋势,加快推进整车信息安全、软件升级、自动驾驶数据记录系统等强制性国家标准的立项和制定工作;强化基础性标准支撑,完成智能网联汽车术语定义推荐性国家标准征求意见,启动并持续推进信息安全工程、操作系统等基础类标准制定工作;紧跟行业技术应用情况,完成驾驶员注意力监测、车门开启提醒等辅助驾驶系统的审查和报批工作,推动组合驾驶辅助、自动泊车等重点功能标准制定工作;围绕智能网联汽车多场景应用,加快自动驾驶应用功能要求和场地、道路试验方法等标准的制定出台,研究港口、配送等特定应用需求相关标准;针对自动驾驶功能使用差异性,开展自动驾驶功能产品说明书、自动驾驶使用者培训等方面的标准化需求探索与研究。3.汽车电子领域。重点推进车载事故紧急呼叫、车载卫星定位系统、免提通话及语音交互等标准的立项及研制工作,加快无线通信终端、毫米波雷达、激光雷达、主/被动红外探测系统等关键通信及感知部件标准的制修订进程,深入开展车用芯片、车用存储器、车用传感器等核心半导体和元器件标准研究;统筹推进基础通用类电磁兼容标准制修订工作,启动电磁兼容性要求和试验方法、整车天线系统性能评价等标准的制修订预研;有序推进功能安全、预期功能安全、功能安全审核评估方法、ASIL等级确定方法等基础支撑类标准的制修订工作;加快车载以太网标准体系建设及标准项目研究工作;开展电驱动系统车规环境评价、48V供电系统电气要求等国际标准转化工作。(二)持续完善传统汽车与基础领域标准4.汽车节能领域。启动下一阶段乘用车燃料消耗量评价方法及指标标准、电动汽车能量消耗率限值标准的预研及立项;持续推进轻型、重型商用车辆燃料消耗量限值标准的修订,完成重型商用车辆电动汽车能量消耗量和续驶里程试验方法标准的审查和报批;开展高效电机、停缸技术等乘用车循环外技术装置评价方法标准的预研;完成轻型汽柴油车、可外接充电式混合动力电动汽车和纯电动汽车能源消耗量标识标准的制定。5.传统整车领域。协调推进整车定义、分类相关标准研究,完成汽车和挂车类型的术语和定义标准修订。对标国际标准相关要求,组织开展整车性能测试、参数测量、驾乘操控舒适性等标准预研。立足汽车车外噪声污染控制,积极推进整车异响、主动降噪、倒车提示音等标准研究。围绕货运设备和运输模式转型发展,修订完善半挂车、主挂连接互换性等相关标准。加强高压压缩天然气汽车(CNGV)标准研究,做好相关标准制修订。6.汽车安全领域。重点开展行人保护、汽车前后端保护、乘用车顶部抗压强度、侧面碰撞保护、后碰撞安全要求、安全带和约束系统、儿童约束系统、外部凸出物、客/校车座椅强度等整车及零部件强制性国家标准的修订完善,推进被动安全标准要求升级。开展驾驶员前方视野、防盗装置、乘用车外部防护、车辆事故救援指南等标准预研及制修订,提升一般安全标准要求。聚焦行业痛点和管理需要,推动车辆外廓尺寸、轴荷及质量限值标准评估修订,开展牵引车和汽车列车匹配性相关标准预研,稳步推进危险货物运输车辆安全标准修订,加快乘用车制动系统标准修订,开展悬架V形推力杆、高度控制阀、乘用车空气悬架等关键部件标准研究。(三)开展绿色低碳及智能制造相关标准研究7.绿色低碳领域。完善汽车生产过程清洁化、生命周期能源低碳化、产品设计绿色化标准子体系,汽车再制造及再利用标准子体系,车用动力电池综合利用标准子体系,开展车辆生产企业及产品全生命周期碳排放及核算办法系列标准的研究,推动汽车清洁化生产和使用。8.智能制造领域。以推进智能化技术在汽车研发设计、生产制造、仓储物流、经营管理、售后服务等关键环节深度应用为重点,研究制定汽车行业智能制造领域的术语和定义、智能制造能力成熟度评估要求、汽车行业标识应用指南等基础标准,以及大规模个性化定制、新能源汽车数字化车间、汽车行业工业控制系统安全管理要求等关键技术相关标准;考虑标准化工厂和数字化工厂建设需求,开展数据采集流转和分析、生产工艺及工序、虚拟仿真、数字化系统、规模化定制等相关标准研究。(四)研究制定摩托车领域技术标准9.摩托车领域。根据摩托车行业技术发展趋势及产业发展需求,开展摩托车联网及电子防盗相关标准研究;完善摩托车轮毂电机标准体系,开展高速电机系统标准研制;加快电动摩托车与外部电源传导连接安全要求标准制定立项;组织电动摩托车充换电系统系列标准研究。三、深化国际合作,加强标准法规协调1.发挥多双边合作机制作用。充分利用已经建立的多双边合作机制平台,聚焦新能源汽车、智能网联汽车等领域,组织标准化路线图合作研究,共同提出国际标准法规提案,联合开展相关测试验证活动。贯彻落实“一带一路”国家战略,通过与相关国家和地区组建专家组、开展系列培训等方式,促进国内外标准化机构间的对话合作,积极推动中国标准“走出去”。2.深度参与全球技术法规制定。切实履行联合国世界车辆协调论坛(WP.29)框架下自动驾驶与网联车辆工作组副主席以及自动驾驶功能要求、电动汽车安全、电动汽车与环境、燃料电池电动汽车、噪声等非正式工作组联合主席及副主席职责,深入参与各工作组框架下技术法规的制定与协调,推动电动汽车安全第二阶段全球法规发布实施,全面参与动力电池耐久性、燃料电池安全等全球技术法规的研究制定;持续推进智能网联汽车法规框架完善和具体技术法规制定,深入参与自动驾驶验证方法(VMAD)、数据记录系统(EDR/DSSAD)、信息安全和软件升级 (TFCS/OTA)、自动转向功能(ACSF)等国际法规协调;深度参与联合国法规UN R117(轮胎滚动噪声、滚阻和湿抓地)修订工作,积极贡献“中国方案”。3.加强国际国外标准协同。密切跟踪国际标准化组织道路车辆委员会(ISO/TC22)和国际电工委员会电动车辆电能传输系统委员会(IEC/TC69)及其下属工作组的标准化工作进展情况,完成IEC/SMB/SEG11未来可持续交通系统评估组研究任务。履行ISO自动驾驶测试场景工作组召集人职责,推动自动驾驶测试场景系列标准制定工作,明确测试场景标准后续工作计划,与其他国家和地区共同推动标准立项和制定工作。加快汽车外部灯具防雾涂层应用和安全玻璃材料透光度确定方法两项国际标准工作进程,重点推进整车及零部件EMC测试、乘用车外部保护、负压救护车等中国牵头的国际标准制修订项目立项。
  • “两会”汽车领域提案:聚焦“碳中和”目标 发展新能源汽车
    3月11日,十三届全国人大四次会议闭幕。作为国民经济重要支柱产业的汽车产业,依然是今年热议的焦点之一。国内汽车市场开始由增量市场转向存量市场,竞争进一步加剧;同时,在新技术浪潮下,中国汽车产业也从处于高速增长向高质量增长转变的新阶段。汽车领域代表就新形势下行业如何发展提出诸多提案,其中,“碳中和”目标下的新能源汽车如何发展成为被重点关注的领域;同时,推动汽车芯片国产化、智能网联汽车发展亦成为高频词。一、新能源汽车吉利集团李书福:中汽数据测算,2019年我国交通行业碳排放在12亿吨左右,其中商用车保有量仅占我国汽车保有量的12%左右,却制造了道路交通碳排放的56%。根据《中国移动源环境管理年报2020》数据,2019年全国货车氮氧化物(NOx)、颗粒物(PM)排放分别占汽车排放总量的83.5%、90.1%。汽车行业要实现碳排放达峰及排放污染物治理,货车的电动化势在必行。换电模式为货车电动化提供了可行的能量补给方式,国家也发布了一系列政策推动货车的电动化及换电模式示范运行,但目前货车电动化仍面临车辆最大总质量、整车长度等法规方面的障碍。针对货车电动化级重卡换电新模式、新业态发展过程中遇到的实际困难,建议对原标准GB1589-2016《道路车辆外廓尺寸、轴荷及质量限值》中质量及长度限值作补充规定。上汽集团陈虹:氢能源作为脱碳和未来清洁能源的重要解决方案之一,已经成了当下很多国家关注的重点。但是,目前氢能产业在制氢、储氢、运氢、加氢等各个环节发展受制于当前法规政策的种种限制。为此,陈虹建议:一是从国家层面尽快形成统一的中国氢能战略规划。二是在氢能管理政策法规层面有所突破。三是扩大全国碳排放权交易市场配额管理的减排项目范围和碳交易的试点范围,将工业副产氢提纯、可再生能源制氢及加氢站项目纳入减排项目范围,以进入国家碳排放权交易市场,提高绿色制氢项目受益范围,引导社会对于绿色制氢项目的投资积极性。四是在氢燃料电池汽车示范城市群对使用绿氢(可再生能源产生的氢能)进行一定时期的专项补贴。长城汽车王凤英:为实现2030年碳达峰及2060年碳中和的目标,保障国家能源安全,我国需发展车用氢能产业,推动燃料电池汽车示范运行规模,提高可再生能源制氢比例,以加快推进低碳减排。但我国氢能产业战略导向尚不明朗,支持政策尚不完善,加氢站管理缺位,车用氢能供给体系尚不健全,关键材料和零部件自主化能力还不足,整车制造及氢气价格过高导致产业化进程受阻。为支撑燃料电池汽车规模化示范应用,我国亟需解决产业发展所暴露出的种种问题此外,王凤英还建议推动中国新能源汽车产业全球化发展。她认为,发展新能源汽车已成为全球车企转型共识,国际竞争日益激烈。从产业、技术和商业模式的发展规律来看,中国新能源汽车加快全球化发展,有利于抢先占领全球化用户心智,改变汽车产业国际分工格局,提升国际竞争力。二、车用芯片长安汽车朱华荣:由于汽车核心芯片主要依赖进口,随着国际局势风云变化、全球半导体原材料和产能日益紧张、新冠疫情对供应链影响等,汽车芯片存在随时断供风险,且将成为阶段性和结构性问题长期存在,汽车芯片逐渐成为我国汽车工业发展中的主要‘卡脖子’环节。朱华荣表示,在保证产业链稳定供应基础上,建议国家出台积极政策来推动汽车芯片国产化,维护汽车供应链安全。具体包括,设立汽车产业核心芯片及生产设备国产化重大专项;强化激励政策鼓励企业加大投入;支持主机厂在整车开发过程中与国内汽车芯片商尽早开展汽车芯片定制化研发;加强行业标准制定等。广汽集团曾庆洪:中国汽车要强国应先“强芯”,要集中人力、财力、物力解决芯片问题,加强关键零部件产业链建设,坚持自主创新和开放合作两个不动摇,分别解决长期和短期问题。奇瑞汽车尹同跃:突破车载芯片“卡脖子”技术,应强化产业生态融合。他建议,明确车载芯片国产化率发展目标,加大芯片产业链建设、重点扶持及知识产权保护力度;从标准、规范、人才、技术层面给予芯片行业、零部件行业与整车以支持;在产业链生态上给与政策鼓励以及资金支持,推动芯片生态与部件生态、整车生态融合发展。上汽集团陈虹:单靠市场一股力量很难推动车规级芯片国产化,需要形成政府牵头,整车企业联合,针对头部芯片企业开展重点扶持的策略。他建议,在消费级芯片企业的扶持政策基础上,加大对车规级芯片行业的扶持力度,使整车和零部件企业“愿意用、敢于用、主动用”。同时,制定车规级芯片“两步走”的顶层设计路线,实现车规级芯片企业从外部到内部的动力转换。三、智能网联汽车广汽集团曾庆洪:现行交通安全法规是基于完全由人驾驶的车辆而设立的,智能驾驶汽车实际应用仍面临许多合法性难题;同时,还存在自动驾驶汽车道路测试缺乏操作指引,各地测试牌照没有形成互认机制,测试时间和资金成本高;受制于道路基础设施限制和车与外部信息交互(V2X)设备的装配率低,智能网联汽车暂时只能着重发展“单车智能”的技术路线方向,网联化发展进程较慢等发展智能网联汽车,法律法规要走在前面。曾庆洪建议,要尽快完善现行交通安全法规,确认“机器驾驶人”的法律主体资格;加快自动驾驶相关技术标准的编制和发布;完善现行自动驾驶汽车道路测试相关政策法规等。长城汽车王凤英:在我国现行相关法律法规中,产品管理、交通管理、责任界定、保险监管、网络安全管理、地理信息管理等方面的部分规定,不能完全适用于智能网联汽车,存在一些制约智能网联汽车商用化落地的“矛盾点”和可能触发潜在风险的“空白点”。王凤英建议,加快形成跨部门、跨行业、跨领域的统筹协调机制;加快推进智能网联汽车法律法规制修订工作;处理好科技进步与法律稳定性之间的关系。奇瑞汽车尹同跃:近年我国C-V2X得到快速发展,但由于各示范区场景、设备、方案的不同特点,作为主机厂端推进多场景应用会付出多重的准入及通讯协议匹配投入。因此,尹同跃建议,建立国家级测试示范区测试车辆上路准入结果互认机制;各国家级测试示范区使用统一的C-V2X通讯技术;国家层面推进车企上市新车具备嵌入式的蜂窝连接功能;建立芯片底层交互标准;鼓励地方建立C-V2X应用示范区,推动智能网联汽车产业发展,在政策和资金方面给予支持。此外,在促进L3级自动驾驶技术落地方面,尹同跃认为,L3级别自动驾驶应在低速场景下积极探索、先行先试,通过低速场景行驶里程,积累自动驾驶工况,为高速自动驾驶做技术储备等。四、汽车及零部件材料分析与测试评价网络大会我国是世界汽车产销第一大国,汽车产业可在实现碳达峰、碳中和目标中起中流砥柱作用,尤其是汽车轻量化、新能源汽车发展是大势所趋,对于节能减排有着积极意义。同时,汽车产品全生命周期评价 (LCA)可以对汽车全生命周期所产生的物耗、能耗与排放进行系统分析与科学评估。基于此,仪器信息网将于2021年3月16-17日组织召开第三届“汽车及零部件材料分析与测试评价技术”网络会议,特设汽车零部件测试技术、汽车新材料测试技术、新能源汽车测试技术、汽车全生命周期评价4个分会场。本次会议为期2天,20余位报告人将于云端为我们带来一场关于汽车测试评价技术的行业盛会!目前,一汽、重汽、比亚迪、蔚来、广汽、上汽、东风、福特、福田、华晨等知名车企,首钢、包钢、本钢、武钢、东北特钢等各大钢厂已报名,剩余免费名额不足100席,报名从速!无需下载报名软件与付费,长按识别下方二维码或点击报名链接即可免费报名。一键报名:https://www.instrument.com.cn/webinar/meetings/car2021/
  • 激光雷达:技术概述-漫反射目标在测试和校准高级驾驶辅助系统 (ADAS) 中的作用
    作者:Pro-Lite Technology Ltd 产品经理 Russell Bailey 和 Labsphere Inc 首席技术专家兼产品营销经理 Greg McKee图1 激光雷达激光雷达是一项成熟的技术,越来越多地部署在消费产品和无人驾驶车辆中。LIDAR 是 Light Detection And Ranging 的首字母缩写词。激光雷达系统已经使用了 50 多年,但直到最近,此类系统的成本仍使它们无法在大众市场中广泛应用。尽管雷达在自动驾驶汽车技术(例如自适应巡航控制系统)中被广泛应用,但LIDAR被认为是驾驶员辅助汽车的首选传感器,因为它可以精确地映射位置和距离,从而检测小物体和3D成像。它使用带有飞行时间感应的脉冲激光和固态光来测量距离。激光雷达系统的表征要求在宽反射率动态范围内补偿传感器对脉冲激光或固态光水平的响应。为此,需要使用已知和稳定反射率的大面积反射率漫反射目标板。Labsphere(蓝菲光学)的Permaflect漫反射涂层目标板,范围从5%到94%的反射率,使汽车制造商 OEM 及其供应商能够在广泛的环境条件下表征和校准其 LIDAR 系统。图2 Labsphere(蓝菲光学)的Permaflect漫反射涂层目标板激光雷达技术激光雷达最基本的形式是激光测距仪,自20世纪80年代以来已广泛应用于军事应用。激光测距仪由一个脉冲激光器(发射器)和一个光电探测器(接收器)组成。测距仪的设计可精确测量距离(所谓的“测距”),主要测量激光脉冲被反射和接收到探测器所花费的时间(这被称为“飞行时间”测量)。测距仪对准目标物并发射激光脉冲。激光击中目标,被散射,并且一部分反射光由探测器测量。由于光速非常精确,因此可以非常精确地测量测距仪和目标物之间的距离。更先进的激光雷达系统使用相同的原理,但使用光学和移动或多个探测器在二维中映射目标。这些系统通常每秒脉冲数千次,每秒可以探测到数千个点。分析该点云的数据可以创建目标区域的准确映射。激光雷达的工作方式类似于雷达和声纳,它们分别使用无线电波和声波。来自雷达和声纳的数据可用于以类似方式映射周围环境,但激光雷达系统使用的是较短波长的红外辐射,而不是较短波长的无线电波。由于使用的波长较短,激光雷达测量比雷达更准确。部署在自动驾驶汽车上的激光雷达系统通常使用扫描激光束和闪光技术来测量空间中相对于传感器的 3D 点。这些激光雷达系统通常每秒发射数千个激光脉冲,以便车辆可以对行人和其他车辆等障碍物做出反应。激光雷达允许自动驾驶汽车以高精度、高分辨率和长检测距离传送和接收物体和周围环境的反射光。目前正在开发更先进的 AI(人工智能)系统,用来预测车辆和行人路径,并做出相应反应。当您将 LIDAR 数据与定位信息(使用 GPS 或类似信息)相结合时,您就可以全面映射车辆周围环境。激光雷达的性能在很大程度上取决于所使用的激光功率和波长。出于安全原因,可使用的激光功率有一个上限。在没有更高的激光功率的情况下,你可以使用更高灵敏度的探测器,或者使用波长延伸到更远的红外(IR)的激光。由于现有激光器的技术成熟,通常使用的波长为850nm、905nm或1550nm。1550nm激光比其他选择更安全,因为超过1400nm的红外辐射不会再通过眼睛的角膜,所以不会聚焦在视网膜上,但因水对1550nm的光吸收较强,1550nm要求更多的功率来补偿。消费电子产品和自动驾驶汽车中的激光雷达激光雷达作为关键性技能与摄像头系统和其他传感器一起在自动化中应用。激光雷达系统已经在专业测绘和相关应用中商用多年。然而,直到最近几年,激光雷达才变得越来越普遍,这主要是由于自动驾驶汽车应用(无人驾驶汽车)需要更小、更便宜的设备。自上世纪90年代初以来,激光雷达已作为自适应巡航控制的基础应用于半自动驾驶汽车,而激光雷达首次应用于自动驾驶汽车是在2005年。在消费电子领域,最新一代的 Apple iPad Pro(以及现在的 iPhone 12 Pro)已将 LIDAR 传感器集成到其摄像头阵列中,专门用于成像和增强现实 (AR) 应用。LIDAR 传感器可使 iPad 正确解析真实物体相对于由相机阵列成像的 AR 物体的位置。AR 还处于起步阶段,因此 LIDAR 在智能手机和其他消费设备上的应用还有待观察,但人们对为专业应用开发的 AR 产生了极大的兴趣,其中 LIDAR 可以成为非常有用的增强功能。专业 AR 的应用多种多样,从帮助仓库工人找到最快、最安全的路径到所需零件,到辅助工程师了解复杂维修的过程。这些应用中的激光雷达可精确定位和对齐,这对于任何需要高精度的应用都很重要。漫反射目标板在激光雷达系统测试与标定中的作用多年来,Pro-Lite 和Labsphere(蓝菲光学)多年来使用漫反射板一直在支持开发 LIDAR 系统开发。Labsphere(蓝菲光学) 更紧凑的 Spectralon® 漫反射目标板通常被军方用于测试激光测距仪。精确校准的光谱反射率与近朗伯(漫反射)反射率相结合,意味着对于这些应用,您有一个准确性、重复性的漫反射目标板可在实验室或现场测试您的系统。用于更大规模测绘或自动驾驶汽车应用的激光雷达系统需要更大的目标区域。由于大多数自然物体都会漫反射光线,因此 Labsphere (蓝菲光学)的漫反射材料是用户的自然选择,可以提供质量保证、现场测试和比较。Labsphere(蓝菲光学) 开发了 Permaflect 目标板,以满足对大面积、耐用和光学稳定目标板材料的需求。大的漫反射目标板尺寸(标准尺寸高达 1.2m x 2.4m)与校准的光谱反射率数据相结合,可以精确测量 LIDAR 范围。在 100m、200m、300m 等长距离测试距离内,则需要更大的目标板来反映目标上具有代表性的点数。Permaflect 是一种喷涂漫反射涂层,可以将其应用于大面积或 3D 形状,从而可以模拟真实世界的物体。现实世界中很少有物体像目标面板一样平坦,因此 Permaflect 涂层物体可以实现可重复的近朗伯反射率水平,例如,可以应用于人体模型以模拟行人。图3 Labsphere(蓝菲光学) Permaflect 喷涂人体模型LIDAR 漫反射目标板通常部署在室外,因此随着时间的推移,当漫反射目标板的表面暴露在大气中时,可以预期校准的反射率值会出现一些漂移。Labsphere (蓝菲光学)的漫反射材料易于清洁。为了考察是否有反射率的下降,可以使用校准的反射率计(“反射率计”),它可原位测量漫反射目标板反射率并将红外反射率的任何变化考虑到内。漫反射目标板反射率的变化将直接影响测量范围。下图显示了不同漫反射目标板反射率水平范围内反射率变化对测量范围的影响。反射率的微小变化会对较低反射率目标板的测量范围产生很大影响。例如,如果目标板的反射率从5%降低到 4%,则原先 300 m的测量范围将下降到30 m。实时了解情况发生的方法是测量目标板的反射率,然后根据此调整修正您的计算。图4 Labsphere (蓝菲光学)漫反射板反射率测试仪(反射率计)图5 在300nm波长下对物体反射率进行距离测量的模拟灵敏度Labsphere(蓝菲光学) 的激光雷达反射仪套件就是为满足这一要求而开发的。这款手持式反射计测量测量在三个波长(使用可互换的 850nm、905nm 或 1550nm LED)中的8°/半球反射率。观看Labsphere 视频库中的短视频。这可用于验证 Permaflect 目标板或测试 LIDAR 系统的任何其他对象的反射率。图6 Labsphere 开发了 Permaflect 漫反射目标板,以满足对大面积、耐用和光学稳定漫反射目标板材料的需求。
  • 吉利汽车安全技术试验室正式挂牌
    3月8日,位于杭州的吉利汽车安全技术试验室正式挂牌。这是继长安、长城、比亚迪等少数几家自主品牌之后,又一家自建安全技术试验室,进行整车安全碰撞试验的车企。   据了解,吉利汽车安全技术实验室,是集主被动安全技术为一体的全方位安全试验中心。该安全技术实验室规划占地面积达70亩。按规划分三期建设,目前实验室一期工程已建设完毕并投入使用,建成了实车碰撞试验室,可以满足整车安全开发的基本要求,拥有进行中国及欧盟体系下所有整车ncap法规碰撞试验的能力。实验室第二阶段正在建设中,完成后将拥有翻滚试验能力,能够模拟所有实际道路交通事故,并建成操纵稳定性试验场,还将开发完成自动驾驶仪。而第三阶段完工后,将拥有各种不同角度的碰撞相容性实验能力,最终形成集主被动安全技术于一体,具有国际先进水平的汽车一体化安全技术开发及实验平台。   不仅如此,吉利还成立了浙江省汽车安全技术重点实验室委员会,邀请了中国工程院院士郭孔辉、同济大学朱西产教授、华南理工大学兰凤崇教授、清华大学张金换教授、中国汽车技术研究中心刘玉光高级工程师等国内汽车界专家为学术会委员,为吉利安全技术提供方向建议和技术指导。   吉利汽车每年销售收入的10%,都会被用于研发工作。GTSM整车全方位安全管理系统已经成为吉利角逐中国汽车市场的核心竞争力。自主研发的BMBS爆胎监测与制动系统,能够即时监测汽车轮胎气压、温度变化,特别是在汽车轮胎爆胎后能够自动实施安全救助,避免爆胎后交通灾难的发生。2008年,BMBS一亮相就被评为世界汽车主动安全技术领域十大事件,2010年被汽车工业协会评为“年度创新技术大奖”。   据介绍,到2015年,吉利将有数十款新车上市,而安全作为吉利产品的一大卖点和技术吉利的核心内涵,将成为品质吉利的主标签。吉利集团副总裁、吉利汽车研究院院长赵福全在接受记者采访时表示,吉利将以“保四争五”为安全开发目标,也就是说,以后吉利包括经济型轿车在内的所有新开发的车型,都将至少达到C-NCAP碰撞四颗星成绩,其中80%的车型将争取达到C-NCAP碰撞五颗星成绩。赵福全表示,吉利完全有信心有实力完成这个庄重的承诺,吉利将说到做到。   在吉利汽车安全技术试验室挂牌当日,吉利在全国媒体面前举行了一场帝豪EC7(配置 图库 口碑 论坛 4S店)的正面碰撞试验。从几部分的碰撞来说,“头部”得到了4分,“胸部”得到3.8分,“腹部”和“骨盆”都是满分4分,这个总成绩截至目前还是自主品牌的最高分值。在去年第四批C-NCAP的碰撞测试中,帝豪EC7以46.8分的成绩斩获五星。据统计,从2008年到2010年的三年中,共有39款自主品牌车型参加C-NCAP碰撞测试,获得五星的只有5款,其中吉利熊猫、帝豪EC7均获得了5星安全评价。
  • 我国成立汽车标准化研究院 聚焦汽车前瞻技术标准化研究
    11月28日,中国汽车标准化研究院在天津成立,这是目前我国唯一的专业从事汽车标准化研究与应用的科研机构。据了解,中国汽车标准化研究院将负责汽车领域的国家标准、行业标准的技术管理,对外代表中国参与联合国及其他国际汽车标准的法规协调及制定。未来将聚焦10余项汽车前瞻技术的标准化研究,推动制定80余项新标准项目。与汽车产业发达国家及“一带一路”沿线国家开展的国际汽车标准制定达到15项。中国汽车技术研究中心党委书记、董事长 安铁成:我们将强化前瞻技术及标准化基础研究,围绕自动驾驶、网络安全以及电动汽车安全、燃料电池等汽车重点领域,加快新标准研究制定并积极推动国际汽车标准法规协调。工业和信息化部相关负责人指出,目前我国累计发布实施了1400多项汽车产业标准,并在国际标准法规领域中占有一席之地。工业和信息化部装备工业一司副司长 郭守刚:坚持融合发展,推动汽车与5G、大数据、信息通信等跨领域标准协同,推动形成汽车与相关产业统筹推进的标准化工作。国家市场监督管理总局相关负责人同时表示,下一步,将进一步推动汽车标准的国际化建设。国家市场监督管理总局标准创新管理司司长 肖寒:推进中国汽车标准与国际标准体系兼容,贡献中国方案。
  • Teledyne FLIR和法雷奥就汽车安全系统热成像达成协议
    近日,法雷奥(Valeo)和Teledyne FLIR公司开始战略合作,将热成像技术引入汽车行业,以提高道路使用者的安全。双方已于2023年底从一家全球领先的汽车OEM获得了一份重要合同,交付其作为新一代高级驾驶员辅助系统(ADAS)驾驶员辅助技术的新型热像仪,以提高车辆和道路安全。图片来源:法雷奥法雷奥和Teledyne FLIR将推出首款用于夜视ADAS的ASILB级热成像技术。该系统将补充法雷奥的各种传感器,并依靠法雷奥的ADAS软件堆栈来支持乘用车、商用车以及自动驾驶汽车的夜间自动紧急制动(AEB)等功能。法雷奥与热成像技术公司Teledyne FLIR强强联手,打造下一代汽车安全多光谱传感器融合系统。法雷奥将利用其在汽车视觉系统方面的丰富专业知识,集成Teledyne FLIR热视觉技术,并为OEM提供完整的夜视解决方案,包括基于法雷奥人工智能和图形可视化堆栈的感知软件。图片来源:法雷奥“法雷奥拥有市场上最广泛的感知解决方案组合,我们期待与Teledyne FLIR合作,将热成像技术添加到我们的产品中,”法雷奥舒适和驾驶辅助总裁Marc Vrecko表示。“这款新摄像头及其感知软件将补充我们的产品,并提高ADAS和自动驾驶车辆系统的整体性能,为道路使用者带来更多安全,尤其是在夜间。”Teledyne FLIR副总裁兼总经理Paul Clayton表示:“从售后驾驶员辅助技术到自动驾驶机器人出租车,Teledyne FLIR在开发热成像并将其融入汽车安全系统方面不断取得巨大进步。我们与法雷奥的合作使我们能够使热成像技术广泛应用于从乘用车到半挂卡车的交通运输中,让更多的驾驶员和自动车辆安全系统能够在完全黑暗、杂乱的环境和其他现有传感器无法看到的恶劣天气下看清东西。”
  • 重庆市建设世界级智能网联新能源汽车产业集群发展规划 (2022—2030年)
    重庆市人民政府关于印发重庆市建设世界级智能网联新能源汽车产业集群发展规划(2022—2030年)的通知渝府发〔2022〕38号各区县(自治县)人民政府,市政府各部门,有关单位:现将《重庆市建设世界级智能网联新能源汽车产业集群发展规划(2022—2030年)》印发给你们,请认真贯彻执行。重庆市人民政府  2022年8月19日  (此件公开发布)重庆市建设世界级智能网联新能源汽车产业集群发展规划(2022—2030年)为推动我市汽车产业新能源化、智能网联化、高端化、绿色化发展,加快建成世界级智能网联新能源汽车产业集群,根据《新能源汽车产业发展规划(2021—2035年)》(国办发〔2020〕39号)、《重庆市国民经济和社会发展第十四个五年规划和二○三五年远景目标纲要》,特制定本规划。规划期为2022—2030年。一、发展趋势和现状当前,新一代科技革命驱动汽车从交通工具向智能终端转变,促使汽车产业与互联网、信息通信、能源等行业深度融合,并加速向新能源化和智能网联化发展,为全球经济发展注入新动能。从发展趋势来看,纯电动、增程式混合动力、插电式混合动力、燃料电池是未来汽车动力系统的主要技术路线。汽车软件和人工智能的技术和价值将越来越成为汽车产品的核心竞争力。以单车智能实现高度自动驾驶、完全自动驾驶的技术路线,将逐步向“车、路、网、云、图”一体协同发展。加快发展新能源汽车,是推动汽车智能网联化的重要基础,智能网联将赋能新能源汽车比传统汽车更具竞争力和吸引力。从国内形势来看,全球智能网联新能源汽车产业发展相关的新能源、大数据、电子信息等资源正加速向国内集聚,我国智能网联新能源汽车已经进入快速发展新阶段,市场渗透率持续快速攀升,预计到2025年,将达到40%以上;到2030年,智能网联新能源汽车将成为市场主流。从我市形势来看,重庆是全国主要汽车生产基地之一,传统汽车产业已形成“1+10+1000”优势集群,正加快向新能源化、智能网联化转型升级,智能网联新能源汽车产销规模增长迅速,“大小三电”(电控系统、驱动电机、动力电池,电制动、电转向、电空调)等核心配套已有较好基础,具有西部地区最为完整的智能网联新能源汽车产业链。我市拥有复杂的山地地形交通场景,智能网联新能源汽车的测试、应用在全国处于领先水平,正加快推进国家级车联网先导区、国家电动汽车换电模式示范城市、国家氢燃料电池汽车示范城市三大应用场景建设。在机械、电子、材料、工业互联网等领域具备较好产业基础和丰富资源。拥有适合于人才宜居宜业的产业、住房、医疗、教育等支持政策。总体看,我市智能网联新能源汽车产业已具备加快发展的基础和条件,但仍面临档次不高、规模不大、配套不强等问题。二、总体要求(一)指导思想。以习近平新时代中国特色社会主义思想为指导,深入贯彻党的十九大和十九届历次全会精神,全面落实习近平总书记对重庆提出的营造良好政治生态,坚持“两点”定位、“两地”“两高”目标,发挥“三个作用”和推动成渝地区双城经济圈建设等重要指示要求,认真贯彻落实市第六次党代会精神,服务国家战略,加快汽车整车和零部件向新能源化、智能网联化、高端化、绿色化转型发展,聚焦智能网联新能源汽车整车及零部件、智能网联创新应用、汽车软件和人工智能、基础设施及服务等核心领域,以科技创新为动力,以关键技术为支撑,以龙头企业为带动,以融合发展为重点,以特色园区为载体,形成特色鲜明、相对完整、服务全国、辐射全球的产业链供应链体系,打造高水平汽车产业研发生产制造基地,努力建成世界级智能网联新能源汽车产业集群。(二)基本原则。政府引导,市场主导。充分发挥市场在资源配置中的决定性作用,坚持企业市场主体地位,更好发挥政府宏观调控引导作用,完善产业政策,规范产业发展秩序,推动产业协调发展。创新驱动,重点突破。深入实施创新驱动发展战略,完善以企业为主体、市场为导向、产学研用协同的技术创新体系,推进技术、管理、体制和模式等创新,全面提升创新能力,实现重点领域和关键核心技术的突破发展。跨界融合,协同推进。推动汽车与互联网、大数据、云计算、智能交通、人工智能等领域跨界融合,推进研发、制造和服务一体化发展,注重整车与零部件协同发展,突出全产业链协同创新,创新业态模式,构建新型产业生态。统筹布局,集群发展。进一步优化汽车产业布局,构建市级层面统筹推进、各区县(自治县,以下简称区县)特色发展的产业格局,着力建设一批特色产业园区,加快推进产业集聚向集群发展转型提升。开放包容,合作共赢。持续扩大高水平对外开放,坚持国内国际市场“双循环”,加强“走出去”和“引进来”结合,促进国际国内合作,深度融入全球产业链和价值链体系。绿色转型,低碳发展。落实国家碳达峰、碳中和战略部署,探索汽车产业碳达峰、碳中和目标和路径,推动汽车产业绿色低碳发展。(三)发展愿景。到2025年,初步形成世界级智能网联新能源汽车产业集群雏形,智能网联新能源汽车产销量占全国比重达到10%以上。打造一批全国领先的智能网联新能源汽车整车企业和品牌、引育一批关键零部件企业、创建一批创新平台、突破一批关键技术、搭建一批应用场景,基本形成智能网联新能源汽车产业新生态,智能网联新能源汽车产业链、供应链服务全国,并具有一定国际辐射能力。到2030年,建成世界级智能网联新能源汽车产业集群,智能网联新能源汽车产销量在全国的占比进一步提升,产业规模达到全球一流水平。打造1—2家全球一流的智能网联新能源汽车企业和品牌;聚集一批先进的零部件企业,形成全球一流的智能网联新能源汽车产业链生态;引育一批具有突出创新实力的研发机构,打造全球一流的智能网联新能源汽车技术创新体系;营造“近者悦,远者来”的宜居宜业环境,建成全球一流的智能网联新能源汽车创新人才集聚高地;建设全球一流的基础设施,打造全球一流的智能网联新能源汽车体验之都,智能网联新能源汽车产业链、供应链、创新链具备较强的国际辐射能力。三、重点任务(一)提升整车新能源和智能网联化水平。1.持续扩大生产规模。根据国家政策导向,继续加强优质项目招商引资,聚集更多市场竞争力较强的智能网联新能源汽车整车企业。支持我市整车企业围绕智能网联新能源汽车领域,加快推动新项目建成投产、新产品投放上量、新品牌发展壮大,进一步加大市场拓展力度,持续扩大产销规模。2.全面加快向新能源动力转型。加快推动以化石燃料为动力的传统汽车制造向新能源汽车转型升级,落实国家汽车新能源化的相关技术路线。乘用车重点发展纯电动、增程式混合动力和插电式混合动力汽车,商用车重点发展纯电动、增程式混合动力和燃料电池汽车。3.提升汽车智能网联水平。推动整车企业坚持软硬件协同攻关,提升自动驾驶技术研发应用水平,加快实现组合驾驶辅助、有条件自动驾驶向高度自动驾驶、完全自动驾驶升级。鼓励企业积极探索发展飞行汽车。4.提升企业研发能力。支持整车企业实施软件定义汽车研发策略,与信息通讯技术(ICT)、互联网等行业公司跨界协同,大力提升集成控制水平和正向开发能力。鼓励整车企业研发新能源化、智能网联化关键技术,开发先进适用的智能网联新能源汽车产品,研发投入达到全国领先水平。5.强化标准引领作用。支持整车企业建立健全企业自主的研发、制造、质量、服务等技术和管理标准,打造企业标准竞争优势。支持整车企业积极参与国家和地方智能网联新能源汽车相关标准制定,争取将企业标准转化为行业标准。6.建立新型“整车—零部件”合作关系。发挥整车企业龙头带动作用,进一步开放配套市场,吸引零部件企业集聚。推动零部件企业根据整车企业需求,提升同步开发能力,积极开展超前研发。支持整车企业深化与核心供应商在研发、技术、产品、资本等层面的协同,建立优势互补、风险共担、收益共享的利益共同体,打造全新智能网联新能源汽车平台和品牌。专栏1 加快突破智能网联新能源汽车整车关键技术新能源方向。以纯电动汽车、增程式混合动力汽车、插电式混合动力汽车、燃料电池汽车为技术创新方向,加快研发新一代模块化高性能整车平台,攻关纯电动汽车底盘一体化设计、多能源动力系统集成技术,突破整车智能能量管理控制、轻量化、低摩阻等共性节能技术,提升电池管理、充电连接、结构设计等安全技术水平,提高新能源汽车整车综合性能。智能网联方向。研发复杂环境融合感知、智能网联决策与控制、信息物理系统架构设计等关键技术,突破车载智能计算平台、高精度地图与定位、车辆与车外其他设备间的无线通信、线控执行系统等核心技术。(二)完善汽车零部件供应链体系。1.壮大新能源汽车零部件产业。聚焦“大小三电”关键零部件及基础原材料,加快重大项目引育、产业化落地,做大新能源汽车零部件产业规模,构建中高端新能源汽车配套产业链。2.培育智能网联汽车零部件产业。引育车规级芯片、传感器、雷达等核心零部件企业,提升感知、决策、交互、执行等关键总成配套能力,形成可满足高度自动驾驶需求的零部件供应链。支持ICT零部件企业积极融入汽车行业,发展“汽车+信息通讯”融通的新型零部件企业。3.推动传统零部件企业转型升级。加快实施传统零部件体系再造工程,支持传统汽车零部件企业发挥自身优势,转型生产智能网联新能源汽车零部件。支持重点零部件企业申报国家级和市级“专精特新”企业、“小巨人”企业、单项冠军企业等称号,打造全球领先的汽车零部件企业。专栏2加快突破智能网联新能源汽车零部件关键技术新能源汽车零部件。突破高集成度电池、电池包封装、电池管理控制等技术,加快下一代电芯技术研发及产业化。探索新一代车用电机驱动系统解决方案,研发高效高密度、多合一电驱电机等技术及产品,突破高压平台架构关键技术。加强燃料电池系统短板攻关,加快高可靠燃料电池电堆及其关键材料研发。智能网联汽车零部件。突破高算力车载芯片、低成本高性能激光雷达、4D成像毫米波雷达、车载摄像头等复杂环境感知产品技术,加强车机系统、车载大屏、抬头显示等技术研究,推进车载网关、车载智能网联终端(T—BOX)等车用通信产品研发。传统零部件转型升级。加快高效增程式混合动力、插电式混合动力发动机技术以及高效率集成电驱动系统研发,突破高效节能热管理、电制动、电转向等技术,开展高性能镁铝合金、高强度钢、碳纤维复材等关键材料产业化应用,突破热成形、激光拼焊、边缘软化等材料加工工艺技术。(三)加快推进自动驾驶及车联网创新应用。1.建设技术研发创新体系。加快基础平台和技术创新平台建设,突破自动驾驶及车联网关键核心技术。推动车联网与智慧城市融合发展,打造高度自动驾驶功能的技术支撑体系,推进智能化与网联化深度融合,实现车路云一体化协同发展。组织实施重大科技成果转化示范项目,推动自动驾驶及车联网科技成果加速产业化。2.推动自动驾驶及车联网规模化应用。推动自动驾驶和车联网应用场景统一规划、建设、运营。持续推进重庆(两江新区)国家级车联网先导区建设,打造车路云协同创新样板区。统筹推进全市自动驾驶政策先行区建设,率先开展无人驾驶汽车商业化运营,支持在渝开展首创性、全球化、特色鲜明的运营示范项目,实现自动驾驶汽车和车联网场景大规模应用,打造全球领先的应用示范区。3.推进自动驾驶及车联网数据应用。支持建设和扩容各类综合、专业车路云网图数据中心,促进各类数据平台互联互通,推动道路基础设施、通信基站、车联网平台和应用服务等信息交互与数据共享。推进智慧出行、智能调度、先进感知监测等系统综合应用,探索数据商业化应用模式,提升智慧交通建设管理水平。引育一批高精度地图、数据分析、出行服务、金融保险等领域数据服务企业,持续提升数据应用和增值服务能力。专栏3 加快突破智能网联关键技术突破新型电子电气架构、多车型适配的标准化硬件平台、智能网联汽车操作系统、智能驾驶算法、智能座舱等车端关键技术。突破高可靠、低时延的多源信息融合边缘计算技术,长时域、高可信的多目标识别与跟踪等路端关键技术,以及混合交通情况下的多层级群智决策与控制等车路协同关键技术。强化边云协同与动态交通大数据赋能研究,保障基础平台充分发挥跨域融合、分层解耦、分级共享的支撑作用。重点突破蜂窝车联网(C—V2X)单播组播、业务连续性、规模化运维等关键技术。推进高精度地图和北斗高精度定位、超宽带室内定位及相关新型定位定姿技术深度融合。(四)加快培育汽车软件与人工智能产业。1.积极培育关键软件。鼓励整车企业承担汽车软件领域的国家科技重大专项和重点研发计划,加强智能座舱、视觉算法、操作系统、自动驾驶等技术研发,培育一批具有自主知识产权的软件产品和解决方案。鼓励整车企业打造应用生态,推进定位导航、远程车控等车载应用集聚发展。大力发展基于空中下载技术(OTA)的增值服务。发展工业软件,提升汽车智能制造水平。2.推动人工智能在汽车领域应用。鼓励加强算法研究,建设公共算法服务平台,构建从研发到应用的算法生态。推进智能网联汽车云控基础平台建设,实现人、车、路、环境的数据融合,提升车辆对动态交通环境的数据感知能力。通过交通基础设施之间的数据互联与协同,实现从局部到整体的行车策略优化。3.加快基础硬件产业化突破。以整车需求为牵引,聚焦车规级芯片,重点支持设计、制造、封装和材料项目建设。加快高算力车规级芯片的研发、应用,推动高性能车载计算平台发展。积极引育优势企业,做大做强智能传感器产业。大力发展T—BOX项目,推进T—BOX装配应用。专栏4 加快突破汽车软件与人工智能关键技术汽车软件。推进智能网联汽车操作系统、整车分布式硬件抽象与虚拟化、高可信运行环境、编译工具、车载容器、中间件等底层核心技术攻关,加强自动驾驶、智能座舱、智能车控、智能云控平台、OTA等关键软件产品研发,突破汽车研发设计软件、生产控制软件、业务管理软件等工业软件技术。汽车人工智能。加快智能座舱芯片、自动驾驶芯片、毫米波雷达、微波雷达、激光传感器、导航传感器等基础硬件研发,推进机器学习、知识图谱、类脑智能计算、模式识别、自然语言处理、生物特征识别等关键技术攻关,实现复杂环境下的智能视觉感知、多传感器融合、决策规划及控制等技术突破。(五)加快打造体验之都。1.丰富试车场测试体验。提升现有汽车试验场在智能网联、人工智能等领域的测试水平,支持新建汽车试验场按照自动驾驶封闭测试场地的有关标准开展建设,为自动驾驶和车联网的开发、测试、验证提供全面服务。2.提升道路智能化体验。基于重庆复杂山地、高温气候的条件特征,在主要城市道路和高速公路部署感知、联网、交互、计算设备,加快现有道路网联化改造,实现蜂窝车联网基本覆盖,形成城市级的智能化道路环境,打造全国最具特色、最为丰富的车路协同体验场景。3.打造汽车文化赛事体验。整合汽车消费、试乘试驾汽车服务等主要功能,融合旅游地产、商务办公、文化体验、餐饮住宿、购物休闲等配套服务,建设汽车主题公园。支持举办国际汽车论坛、国际汽车赛事等,提升产业发展软实力和国际影响力。4.提升充换电加氢服务体验。推动充换电加氢综合能源站与新零售业态融合共建,创新商业模式,重新定义用户体验及充换电加氢生态,打造多元化服务业态共生的充换电加氢服务生态圈。5.优化新兴技术应用体验。推动5G、人工智能、大数据等新兴技术在智能网联新能源汽车领域广泛应用,加快智能网联新能源汽车产业与能源、交通、金融等行业深度融合,提升汽车改装、二手车交易等传统汽车后服务市场的数字化水平,发展汽车健康管理等新业态,构建模式创新的体验场景。专栏5 加快突破各类场景体验支撑技术充分依托现有数字经济产业园、协同创新区等创新平台,坚持软硬件协同攻关,突破新型电子电气架构、多源传感信息融合感知、功能安全和信息安全、车用无线通信网络、高精度时空基准服务等共性交叉技术,持续加强自主学习控制、边缘计算、大数据分析、类脑计算、机器视觉、语音识别等核心技术研究与攻关。(六)加快基础设施及服务体系建设。1.加强规划布局。加快制定完善充换电站、加氢站、储能设施、泊车场所等基础设施建设的相关规划和实施意见,加强政府引导,鼓励市场主体积极参与,协同推进基础设施建设。2.推进“三网”融合。通过在能源互联、交通电气化及数字化等方面统筹规划、协同建设和高效运营,推动能源网、交通网、信息网平台融合、数据互通,形成广泛互联、开放共享的新能源汽车基础设施体系。3.加快充换电和加氢基础设施建设。加快推动高速公路、乡村场镇、停车场站、居民小区等区域充电设施全覆盖。鼓励建设综合能源站,布局新一代800伏以上大功率高压充电站,持续提升成渝“电走廊”充电能力,形成“适度超前、布局合理、智能高效”的充电服务网络。推进国家电动汽车换电模式示范城市建设,加速换电站布局,推动换电标准化、共享化,形成与换电汽车推广应用相匹配、适度超前、区县全覆盖的换电网络。创建国家氢燃料电池汽车示范城市,支持重点区县在园区、高速公路服务区、港口等示范区域布局建设加氢站,扩容成渝“氢走廊”,提升氢燃料电池汽车示范运营的支撑能力。专栏6 加快突破基础设施及服务体系关键技术加快有序充电、反向补能、化工余热与废气资源高效制氢等关键技术突破,提升优化大功率充电,储氢、运氢与加氢,一体化大功率氢燃料电池系统技术。开展新一代废旧动力电池自动智能化拆解技术研发。建设以新能源为主体的新型智慧电力系统,发展车网互动等储能技术。加快智慧车库系统改造建设,推广代客泊车技术应用。(七)构建全面高效的智能网联新能源汽车安全体系。1.强化安全监管。全面落实企业负责、政府监管、行业自律、社会监督相结合的安全生产机制,强化生产者责任延伸制度。加强对充换电和加氢设施建设和运营单位的安全监管。支持汽车整车和汽车软件企业提升系统安全防护能力,完善数据安全管理制度。鼓励行业组织加强技术交流,指导企业不断提升安全水平。2.保障产业链供应链稳定。聚焦车规级芯片、应用开发软件等“卡脖子”环节,加快提升智能网联新能源汽车配套能力。支持整车企业加强与核心供应商的利益协同,加快零部件配套体系集聚发展,适当扩大核心零部件的应急仓储规模,建立极端情况下供应链备份预案,确保维持正常生产能力。四、重点工程(一)实施科技创新工程。1.打造重要创新载体。引导重点企业联合科研院所、高等院校,完善和组建技术创新联盟,推进产学研协同创新。积极培育智能网联新能源汽车领域的国家级产业创新中心、技术创新中心、制造业创新中心等研发机构,加快建设国家车联网信息安全技术创新中心、国家氢能动力工程研究中心、西部科学城智能网联汽车创新中心、5G融合创新中心等重点项目。鼓励企业积极争取国家级技术创新项目,大力引进国内外知名研发机构。2.加强关键人才引育。支持企业与高校、科研院所加强合作,加快引进和培养软件架构师、车规级芯片设计师、卓越工程师等紧缺高级人才,以及汽车软件、轻量化和电池原材料等基础研发人才。鼓励高校围绕产业发展需求,推进汽车与计算机、软件、新材料等跨学科建设,加快建设重庆高等工程师学院。孵化科技型初创企业、创新团队,培育领军型、成长型、初创型企业家。3.提升创新转化能力。推动企业与科研院所、高等院校形成更为紧密的合作创新关系,建立以企业为主体、市场为导向、产学研相结合的研发创新和专利技术转移转化运作机制。完善市、区两级企业创新公共服务平台体系,建立企业高价值专利培育中心,发展企业与科技创新机构的融合发展平台,提升专项服务能力,为企业技术创新和研发机构创新成果转化提供精准高效服务。(二)实施智能制造工程。1.加快提升智能制造基础能力。加快在产品研发、生产制造等关键环节实施数字化改造,建设应用计算机辅助设计、产品生命周期管理等信息系统,加大数字化装备应用力度,提升企业关键环节数字化水平。支持整车企业搭建智能制造平台,助推企业间产能共享,提升全市汽车整车产能利用率。2.加强新一代信息技术融合应用。推动企业信息系统与生产设备互联互通,开展系统间集成应用。鼓励龙头企业建设“一链一网一平台”,建设工业互联网平台,构建数据协同网络,建设供应链协同等应用服务平台,带动上下游企业协同发展。支持“5G+”工业互联网、创新示范智能工厂等创新应用示范项目,鼓励企业创建全球灯塔工厂,打造创新示范标杆。(三)实施质量提升工程。1.提升质量控制能力。推进企业加强技术研发、质量监测、成本控制、营销服务等能力建设。引导企业实施质量提升计划,以全面提高服务水平为突破口,以降低汽车故障率和稳定达标排放为目标,充分利用互联网、大数据等先进技术,建设汽车质量评估体系,持续提升产品品质和服务能力。2.加强品牌培育和产权保护。引导企业实施品牌战略,强化品牌内涵设计和推广工作,提高品牌竞争力和品牌价值。加强专利、商标等知识产权保护,严厉查处违法侵权行为,严厉打击假冒伪劣产品。充分发挥宣传媒体的舆论正向引导作用,助力企业提升品牌影响力。3.增强质量服务能力。发挥中国汽车工程研究院、招商局检测车辆技术研究院在测试评价、研发验证等领域的技术资源优势,完善计量标准、检验检测等质量基础设施建设,推进质量基础设施“一站式”服务。(四)实施绿色低碳工程。1.打造标杆示范企业。支持重点企业积极参与国家汽车产品生态设计评价标准制定。在汽车产品设计、生产、使用、回收等环节,落实绿色发展理念,打造行业绿色发展的标杆示范企业。2.加快建设零碳工厂。支持企业推进能源结构调整,建设工厂储能、利用的内循环体系,加快低碳工艺应用,严格污染物排放管控,提升污水、废气、废料的处理和回收利用水平,建设零碳工厂。3.开展产品再制造。支持企业围绕车辆制造的全生命周期,扩大可再生、轻量化材料使用规模。采用大数据、智能化手段,开展零部件再制造示范试点。加强旧件回收、制造及检测管控,建立循环再生体系。4.发展动力电池回收利用产业。鼓励开展废旧动力电池安全梯次利用。支持电池产业链企业与科研机构联合攻关,开展新一代废旧动力电池回收利用技术和自动智能化拆解技术研发及产业化示范。(五)实施融合发展工程。1.推动与物流运输业加快融合。支持整车企业充分整合产业链上下游物流需求,进一步优化提升运输效率,与物流企业建立互利共赢的长期战略合作关系,推动双方设施设备衔接、业务流程协同,标准规范、信息资源等关键环节深度融合。2.推动国内国际市场加快融合。推动智能网联新能源汽车企业加强国内国际交流合作。持续引进优质整车、零部件、研发、测试、应用、运营、基础设施建设等领域企业。支持企业利用市外优质人才资源设立研发中心,加强出口目标国相关标准、认证、检验监管等制度研究,加大国际市场开拓力度,推动产品出口逐步向品牌及技术输出等价值链高端环节转移。3.推动与智慧出行加快融合。深化智慧城市基础设施与智能网联汽车协同发展,构建智慧出行服务平台。建立完善全程电子化、智能化的出行服务体系,探索推进自动驾驶客运出行服务,建设具有全球竞争力的智慧出行服务生态。4.推动与金融保险业加快融合。支持整车企业抢抓市场机遇,围绕智能网联新能源汽车的购车、用车、修车、卖车等环节,发展汽车金融、汽车租赁、汽车保险等业务。加快扩大市场参与主体范围,推动绿色信贷创新,鼓励企业持有电池、储能设施、充电桩等资产,探索绿色资产融资新模式。五、保障措施(一)强化统筹协调。建立由市政府分管副市长任召集人的全市智能网联新能源汽车产业发展协调机制,研究解决有关问题,定期向市政府专题汇报。市推动汽车产业转型发展工作专班负责统筹相关单位,推动落实具体工作。(二)加强人才保障。充分发挥企业主体作用,强化行业主管部门服务保障,用好用实“鸿雁计划”“重庆英才计划”等人才政策,研究完善智能网联新能源汽车产业人才专项政策。支持职业院校与企业结对发展,推动职业教育与智能网联新能源汽车产业深度融合。鼓励和引导高校进行学科调整和新工科建设,培养智能网联新能源汽车行业急需人才。(三)强化金融支持。加强政银企合作,构建多元化投融资体系。建立重点企业和重大项目推介机制,做大直接融资规模。发挥政府产业投资基金引导作用,设立汽车行业专项基金。鼓励金融机构增加智能网联新能源汽车行业的中长期贷款投放额度。支持企业通过发行企业债券等方式拓宽融资渠道。大力推动优质企业上市融资。(四)加大政策扶持。市经济信息委、市发展改革委、市科技局、市交通局、市商务委、市大数据发展局等部门要从部门专项资金中安排预算,支持世界级智能网联新能源汽车产业集群建设。市经济信息委加强政策统筹,对智能网联新能源汽车产业重大项目按照“一企一策”“一项目一政策”给予支持。鼓励重点区县制定相应的专项支持政策。(五)打造宣传平台。持续办好重庆国际车展、自动驾驶挑战赛等品牌活动,策划举办全球性、全国性的智能网联新能源汽车专业会议。围绕我市智能网联新能源汽车产业发展的重大政策、成果等,积极开展新闻发布、企业走访等宣传活动,支持企业开展产品发布、试乘试驾等推广活动,积极营造我市智能网联新能源汽车产业健康有序发展的良好舆论氛围。(六)加强招商引资。市经济信息委加强招商统筹,市招商投资局做好招商服务协调工作,市级有关部门要将智能网联新能源汽车产业的招商引资工作作为重要任务,按职能分工加快推动落实。重点区县要根据产业基础和资源禀赋情况,建立专业招商团队,全力推进智能网联新能源汽车产业的招商引资工作。市、区两级加强联动,提高智能网联新能源汽车产业的招商引资效率和水平。(七)创建特色园区。鼓励和支持有条件的区县和开发区积极创建优势突出、特色鲜明的智能网联新能源汽车特色产业园区,打造形成“1”个整车、“N”个配套的“1+N”园区体系,强化示范带动,优化空间布局,形成区域联动、优势互补、协调发展的良好格局。
  • 揭秘欧菲光光学镜组——如何应用于驾驶安全?
    欧菲光早在2015年就进军智能汽车领域,深度布局自动驾驶、车身电子和仪表中控,以光学镜头、摄像头为基础,不断丰富产品矩阵布局,已经在新势力中占据一席之地。随着车载行业的发展,ADAS、DMS等技术逐渐成熟。其中,DMS需要实时监测驾驶员头部、面部等表情及动作,并针对驾驶员疲劳和分神状态进行预警,预警状态包括闭眼、低头、打哈欠、左顾右盼、抽烟、打电话等。为使在夜间、逆光等高挑战性光照环境下,DMS同样能够准确的监测到驾驶员的头部、面部等表情及动作,亟需一种具有高像素高分辨率的摄像装置。为此,欧菲光于2019年12月30日申请了一项名为“一种光学镜组、摄像头模组及终端”的发明专利(申请号: 201911403710.8),申请人为天津欧菲光电有限公司。图1 光学镜组结构示意图图1为本发明提出的光学镜组结构示意图,成像光学镜组包括第一透镜110、第二透镜120、第三透镜130、第四透镜140和第五透镜150,五个透镜沿光轴从物面到像面依次设置。第一透镜具有正屈折力,其物侧面的曲率半径为正,像侧面的曲率半径为负,焦距为f1,光学镜组的焦距为f, 1<f1/f<3。第一透镜靠近物面,为正透镜,能够为系统提供正屈折力,可聚 焦入射光束,有利于光学镜组采集的图像信息有效的传递至像面。第二透镜具有负屈折力,其物侧面的曲率半径为负,像侧面的曲率半径为正,于光轴处的厚度为CT2,CT20.3。通过对第二透镜于光轴处的合理限定,能够保证透镜的可加工性。第三透镜具有正屈折力,其物侧面的曲率半径为负,像侧面的曲率半径为负,物侧面的曲率半径的倒数为cuy s5,物侧面的光学有效径为map s5,像侧面的曲率半径的倒数为cuy s6,像侧面的光学有效径为map s6,满足以下条件式:|(cuy s5)*(maps5)-(cuy s6)*(map s6)|/20 .05。通过将以上四个数据进行合理限定,能够控制弯月型透镜的加工难易程度,保证弯月型透镜的工艺能力。第四透镜具有正屈折力,其物侧面的曲率半径为正,像侧面的曲率半径为负。第三透镜的像侧面与第四透镜的物侧面于光轴上的距离为d34,第三透镜的像侧面于第四透镜的物侧面的光学有效区的最大周边于光轴上的投影点的距离为Ed34,Ed34/d34<20。通过对以上数据的合理限定,能够实现对第三透镜的像侧面和第四透镜的物侧面的曲率大小的控制,有利于系统的小型化。同时因第三透镜的像侧面和第四透镜的物侧面均为凸面,还能够在保证高像素的前提下,避免两个凸面弯曲过大,避免组装过程中发生碰撞,能够提升组装良率。第五透镜具有负屈折力,其物侧面的曲率半径为负,像侧面的曲率半径为负或像侧面为平面,像侧面的曲率半径为Rs10,Rs10-20,有利于边缘解析以及便于组装,减小偏心,扩大后焦。当第五透镜的像侧面为平面时效果更佳。简而言之,欧菲光的光学镜组专利,通过设置具有正屈折力的第一透镜以及具有负屈折力的第二透镜和第五透镜,将其用在DMS中,能够准确、实时的抓取驾驶员的信息,为驾驶安全提供保障。欧菲光是一家国内领先的精密光电薄膜元器件制造商,一直持续加强新型技术领域产品的开发,在光学领域的布局不断延伸。未来以欧菲光为代表的智能汽车领域核心供应商有望做大做强,成为国内智能汽车行业的领军力量。
  • 小鹏汽车装上激光,寻求打败特斯拉?
    根据中国汽车工业协会预测中国新能源汽车2023年总销量为900万辆,同比增加35%,渗透率也来到35%,市占率已连续8年全球第一,当中长期关注中国新能源车发展的小伙伴们,对于「蔚小理」一词肯定不陌生,分别代表中国电动车第一梯队三大厂「蔚来」、「小鹏」、「理想」,此三大厂在面对特斯拉挟带FSD自动驾驶的锋芒竞争之下,三大厂也分别发展各家自动驾驶的领域, 例如小鹏的XNGP、蔚来的NAD、理想的NOA,甚至连华为都有自己的ADS,而其中2014年总部位于广东的小鹏汽车(英语:XPeng Motors,NYSE:XPEV,港交所:9868)自今年(2023)3月31日起,下放XNGP第一阶段功能给旗下G9及P7i Max版车主,实现广州、深圳和上海开放城市NGP功能, 同时在全国范围内所有无高清地图的城市开放直行红绿灯识别起停、跨线绕行障碍能力,标榜领先同行一至两年之优势,让自动驾驶系统进入一个相当重要分水岭,也意味着L2级驾驶辅助的功能基本上已经成为标配,只待法律法规的完善,更高等级L3或L4级自动驾驶指日可待。猫腻藏在细节中,什么是X-NPG呢? 身为第一梯队「蔚小里」三巨头之一,为何小鹏汽车自动驾驶副总裁吴新宙赶在采访中表示他们能够领先同行一到两年的自动驾驶技术呢?跟今年3月底小鹏汽车搭载2颗RoboSense速腾聚创M系列激光雷达全新一代智能辅助驾驶系统XNPG的P7i车款横空出世有着密切关系。还记得去年小鹏汽车在G9发布会上预告将推出首全场景辅助驾驶系统X-NPG一事,自驾车领域像炸了锅般的热议。那么,什么是X-NPG呢? 提到X-NPG前,得先说说小鹏既有的高速NGP与城市NGP两个自动驾驶技术,NGP是Navigation Guided Pilot的简称,翻译为中文则是导航辅助驾驶的意思,也就是当用户在小鹏车辆的车机上设置终点并发起导航后,再向下拨杆两下激活功能,车辆则会自动按照导航路线前往目的地。这项技术受限于硬件与算力与即时性问题,须搭配高精度的高级驾驶辅助地图图资来辅助自动驾驶系统,也以因应不同场景的区分为高速NGP与城市NGP两种,高速NGP适用于高速路、城市快速路上,而城市NGP适用于城市主、支干道等复杂情境道路下运用,透过高速NGP与城市NGP两套技术,小鹏汽车已经相当不错的自动驾驶成效。 小鹏汽车先前采用的NGP系统需要搭配高精度的驾驶辅助地图才能发挥有效自动驾驶,但面对没有地图图资覆盖的区域,采用纯NGP系统的车辆就无法启用自动驾驶功能,或面临交通路况变化较为复杂的地区,纯城市NGP的自动驾驶系统,对于路况临场反应上能力上就较为欠缺,有数据显示,相比于高速NGP,城市NGP的代码量是6倍,感知模型数量是4倍,预测/规划/控制相关代码量则提升至88倍,显见其难度骤然倍增,况且城市NGP目前仅开放广州、上海等部分区域,宛如笼中自动驾驶。 然而面对特斯拉FDS无须图资配合的纯视觉辨识自动驾驶系统在此情况下的竞争优势,小鹏汽车于今年随着最新车款小鹏P7i上市,推出的全新一代自动驾驶X-NGP系统,将2颗升级搭载双Orin-X芯片的RoboSense速腾聚创M系列激光雷达整合入一体化的大灯内,克服以往NGP需要辅助地图的限制,达到即时LiDAR激光雷达识别效果,使自动驾驶技术可运用在没有辅助地图图资涵盖的地区,让小鹏汽车自动驾驶再也不是「笼中鹏鸟」,可以「自己」开出广州、深圳、上海等地,而且M系列激光雷达独具智能凝视功能,可以在高速、城区等更多复杂场景,动态切换扫描方式,改变扫描形态,帮助智能辅助驾驶系统自如应对密集车流、人车混行、异形路障等各种复杂场景,精准感知异形路障。在双M系列激光雷达等强大感知硬件的支持下,无论日夜,XNGP可以实现无高精地图环境中全场景智能辅助驾驶,覆盖日常通勤所需的所有动作,可精准判断车道位置、车距和道路障碍物,在城区可以完成通过十字路口、转向掉头、变道超车、绕行障碍、主动避让行人和非机动车等动作,而在高速、城区快速道路上,XNGP全场景智能辅助驾驶更是接近零接管。 小鹏汽车是中国首家在量产车型上搭载激光雷达的车企,其XPILOT 3.5系统配备了两颗激光雷达,分别为美国Velodyne公司的VLP-16和Livox公司的Horizon。这两款激光雷达都是16线的,但采用了不同的扫描方式,VLP-16是旋转式的,Horizon是固态的,通过融合两种激光雷达的数据,大幅提高了感知的精度和实用性。顺道一提的是,理想汽车也将激光雷达和Lidar Pilot功能作为标配。死背地图与理解路况之争: 如今自动驾驶技术发展宛如进入了一个十字路口,有人向左转有人向右转,海外的传统厂商比如BBA目前的路线是坚持开发并实现在ODD限定场景之下的L3级自动驾驶。例如早前奥迪A8L上发布的60km/h以下的L3,奔驰在德国和美国内华达州获取的了L3执照,并且奔驰的L3已经在量产车中搭载,许多知名供应商也走上了这条线路。  而小鹏的XNGP以及理想汽车等多数新进的新能源车辆制造商等,则走上了另外一条道路,在更广阔的的地区范围推广最高级别的辅助驾驶,摆脱高精地图的鸟笼局限,在全局规划和局部规划之间找到最小集合,将自动驾驶技术推往L3甚至L4领域。 在OOD(全稱Operational Design Domain)條件下的限定场景自动驾驶与采用无须高精地图图资的厂商技术之争,宛如学生时代,背诵考古题应试与理解反映学习的两个流派之争,高精地图虽在特定范围内能发挥一定效果,但当前面临的鲜度、监管、成本等问题,短期内,高精地图很难实现全国城市道路的覆盖,比起采用无图资流派而言,更像是一种过渡时期的替代方案;然而采取无图资技术的自动驾驶技术,相当高比例仰赖高性能激光雷达的运用,搭载激光雷达的车辆仿佛拥有了实时产生高精度辅助地图之能力,更是自动驾驶在安全议题上,最底层、有效的一道防线,比起背诵地图,让车辆长出一双千里眼更为安全。激光雷达的未来\不可不知的SPAD 越来越多的车辆自动驾驶技术的生产商,为了朝向L5等级自动驾驶最终目的,走向以激光雷达作为解决方案,而小鹏汽车也在当中开了响亮的第一枪,这个早在你我手中的i-phone就已经实现的激光d-Tof技术市场将快速进入白热化,激光雷达当中关键模块SPAD单光子雪崩式二极体的开发,其性能与成本将是左右自动驾驶技术的关键,除前期就深耕已久的Sony、Canon等国际一线大厂外,随着激光雷达应用场日渐增多,不只仅仅自动驾驶技术领域、手机脸部扫描、连相机、扫地机器人、高尔夫球测距仪等等都加速采用激光雷达,也使得越来越多的厂商投入SPAD的开发,积极布局准备分食这块大饼。 然目前有关于SPAD开发过程中的效率量测,许多厂家仍是以自组量测设备与自架量测环境作为修正开发的依据,此举除耗时费力,增加研发人力的负担,更难以有客观标准结果作为厂商与客户双方沟通及验收依据,光焱科技将十年以上光学经验,依照欧洲机器视觉协会(EMVA)所订定之EMVA1288标准,打造出全球第一台可针对SPAD晶圆及晶片等级的专用量测设备SPD2200,除可量测全光谱光谱响应(SR, Spectral Responsivity)、全光谱量子效率(EQE, External Quantum Efficiency)、全光谱光子探测率(PDP, Photon Detection Probability)、暗计数DCR (Dark Count Rate)崩溃电压BDV (Break-Down Voltage),更针对SPAD的Jitter、Afterpulsing Probability、Diffusion tail、SNR特性进行分析,SPD2200整合了所有先进光学与电学系统,搭配光焱科技多年光感测器测试与分析的经验,提供完整与便利的软体控制介面与分析功能。 SPD2200可帮助您节省系统搭设的时间成本,并大幅减少测试结果不确定性以提升良率,加快产品的开发周期,提升产品的竞争力。SPD2200_新型单光子侦测器特性分析设备
  • “新能源汽车”重点专项2021申报指南:拟安排8.6亿元启动18个项目
    5月11日,科学技术部发布国家重点研发计划“新能源汽车”等“十四五”重点专项2021年度项目申报指南。“十四五”国家重点研发计划深入贯彻落实党的十九届五中全会精神和“十四五”规划,坚持“四个面向”总要求,积极探索“揭榜挂帅”等科技管理改革举措,全面提升科研投入绩效。“新能源汽车”重点专项2021年度项目申报指南本重点专项总体目标是:坚持纯电驱动发展战略,夯实产业基础研发能力,解决新能源汽车产业卡脖子关键技术问题,突破产业链核心瓶颈技术,实现关键环节自主可控,形成一批国际前瞻和领先的科技成果,巩固我国新能源汽车先发优势和规模领先优势,并逐步建立技术优势。专项实施周期为5年。2021年度指南部署坚持问题导向、分步实施、重点突出的原则,围绕能源动力、电驱系统、智能驾驶、车网融合、支撑技术、整车平台6个技术方向,按照基础前沿技术、共性关键技术、示范应用,拟启动18个项目,拟安排国拨经费8.6亿元。其中,围绕全固态金属锂电池技术方向,拟部署不超过3个青年科学家项目,拟安排国拨经费不超过1500万元,每个项目500万元。原则上共性关键技术类项目,配套经费与国拨经费比例不低于1:1;示范应用类项目,配套经费与国拨经费比例不低于2:1。1. 能源动力1.1 全固态金属锂电池技术(基础前沿技术,含青年科学家项目)研究内容:全固态电池中电极(正极、负极)与固体电解质界面稳定化与自修复机制;微结构固态复合正极(含活性材料、 电解质、电子导电介质等)中电子、离子的输运特性;具有导电骨架结构的金属锂负极和固态电池中界面/结构对锂沉积形态的影响;超薄高离子电导率固体电解质层制备技术及面离子输运均匀性、机械强度、与正负极界面兼容性;新型电池结构、干法电极、新型电解质层制备方法及封装方式;电池内部温度/力学/电 化学场以及失效破坏等实验表征技术及固态电池综合评价方法。考核指标:固态复合正极比容量>400mAh/g;复合金属锂负极比容量>1500mAh/g;固体电解质厚度<15μm,室温电导率>1mS/cm,锂离子迁移数>0.8;全固态金属锂电池:容量>10Ah,比能量>600Wh/kg,循环寿命≥500 次。有关说明:支持一般项目的同时,并行支持不超过3个不同技术路线(互相之间、与一般项目之间技术路线均明显不同)的青年科学家项目;实施周期不超过5年。1.2 车用固体氧化物燃料电池关键技术(基础前沿技术)研究内容:针对不同燃料场景需求的车用燃料电池发电系统,研究固体氧化物燃料电池(SOFC)关键部件、电堆、系统设计及集成技术,主要包括:优化电极微观结构,研究高性能、高可靠电池结构设计及可控制备技术;优化连接体材料及结构,开发低成本连接体加工及涂层致密化技术;开发高一致性、长寿命电堆组装技术,形成千瓦级电堆批量制造能力;研发氢气、天然气、醇类等不同燃料处理技术及关键部件;集成不同燃料应用 场景的SOFC系统,研究系统快速启动响应技术,研究系统在模拟行驶工况下的应用安全。考核指标:建立车用SOFC关键部件、电堆与系统技术及理论体系。完成高性能、高可靠电池的结构设计和验证,电流密度 ≥300mA/cm2条件下,电压衰减≤4‰/千小时(运行时间≥1000h);形成低成本金属连接体及涂层材料加工工艺,连接体高温服役5000h,ASR≤30mΩ‧cm2;掌握SOFC电堆组装技术,单电堆功率≥1.0kW,电堆功率密度≥1.0kW/L,电效率≥60%;完 成氢气、天然气以及醇类等为燃料的SOFC系统开发,额定发电功率≥50kW,启动3分钟达50%输出功率,发电效率≥55%(DC,LHV),建立系统安全性能评价体系。有关说明:实施周期不超过 5 年。1.3 高密度大容量气氢车载储供系统设计及关键部件研制 (共性关键技术)研究内容:针对燃料电池重型车辆长途续航需求,研究车载储氢瓶、车载储氢系统设计、制造和检测技术,研究不同工况下大容量储氢的释放和泄露规律,研制车载70MPa大容量IV型瓶、集成瓶阀、储氢系统调压阀组、储氢系统控制器、氢气泄漏探测传感器等,形成高压力、大容量车载储氢系统。针对大功率燃料电池发动机供氢需求,研究大流量、高动态等复杂工况条件下供氢系统集成与控制技术,研制氢气流量控制阀组、循环引射器、机械循环泵等核心部件。针对燃料电池重型车辆快速加注需求,研究加氢口预冷高压大流量气氢在车载系统中的扩散、增压、升温等规律,获得稳定匹配与安全阈值控制技术,定义各部位材质循环加载要求、车载储氢系统受氢口与加氢枪的机械接口方式,开发面向高可靠、高安全的氢燃料快速加注操作流程、接插连接规范及通信协议。考核指标:车载70MPa大容量IV型瓶储氢系统有效储氢质量≥32kg,氢气泄漏率≤10mL/h,供氢能力≥7g/s,系统服役寿命≥10年;形成相应气瓶与瓶阀的自主知识产权及产品标准,制 定系统零部件、总体结构、集成设计等安全设计准则。其中,70MPa氢Ⅳ型瓶满足T/CATSI 02007—2020要求、容积≥400L,单瓶质量储氢密度≥6.8wt%,单位储氢能力碳纤维使用量<10.7kg/kg H2;集成瓶阀设计压力≥70MPa,内置电磁阀寿命≥50000次, 瓶阀功耗≤8W,瓶阀质量≤1.2kg,瓶阀集成电磁开关装置、过流量装置、超温超压泄放装置(TPRD)、温度检测装置和手动操作装置;调压阀组循环寿命≥50000次,输出压力波动范围10~15%,波动持续时间≤10s,输出流量≥7g/s,质量≤1.2kg;车载氢系统控制器具备独立加氢模式、红外通讯、6路以上氢安 全检测通道,具备加氢状态控制与停车氢安全巡检策略;加氢口及加氢枪加注速率≥7.2kg/min,加氢口使用寿命≥20000次,加 注过程瓶内气温≤85℃。大流量氢气流量控制阀组最大喷射流量≥7g/s(阀组流量),内外氢气泄露率≤0.3mL/h@30bar,耐久性: 喷射阀开闭次数不小于4亿次(比例电磁阀全开闭次数不小于500万次);大流量氢循环引射器压升≥50kPa,引射比≥2.2,电堆功率覆盖范围60~400kW;大流量氢气循环泵系统压升≥50kPa(采用氢气混合气体,循环流量≥3000slpm,氢气浓度≥90%),功耗≤1.5kW,效率≥46%,噪音≤70dB,寿命≥20000h。建立快速加注机械接口标准、通信协议和加注操作规范,并形成标准送审稿;加注协议标准符合国际通用需求。2. 电驱系统2.1 基于新材料和新器件的电驱动系统技术(基础前沿技术)研究内容:在电驱动系统集成与控制方面,研究SiC电驱动系统新结构、多物理场集成和全域高效控制方法,研究SiC电驱动系 统电磁兼容特性及抑制方法,解决SiC电驱动系统在高密度集成和高效控制的基础科学问题。开展新型电驱系统技术测试与分析,完成电驱系统前沿技术对标评价;开展车用服役条件下电驱系统功率器件、电机绝缘和轴承等系统致命故障检测、诊断和预测方法研究,形成电驱系统健康管理技术体系和标准规范。在新材料与新器件方面,研究高性能超级铜线(包括但不限于基于铜合金和铜/纳米管等复合材料的高性能超级铜线)及电机绕组制备技术,探索大电流SiC MOSFET芯片载流子输运性能高温骤降机理和抑制栅介质界面缺陷等可靠性增强方法,研究超低杂散参数/高效散热的SiC模 块与组件协同优化技术,实现材料与器件优化。考核指标:超级铜线在20℃的电阻率≤1.90×10-8Ωm,180℃的电阻率≤2.57×10-8Ωm,并应用于高性能电机样机;1200V SiC MOSFET单芯片通流能力≥ 250A@150℃,导通压降≤2.5V@250A/150℃,最高结温250℃ , 阈值电压偏移≤0.1V@150℃;SiC电机控制器峰值功率体积密度≥70kW/L@峰值功率300kW,EMC 达CISPR等级4要求;提交电驱系统产品对标测试与技术分析报告共5份,每年样本量2套,提交电驱系统健康管理标准规范1项。有关说明:实施周期不超过5年。2.2 高性能轮毂电机及总成技术(共性关键技术)研究内容:在高性能轮毂电机及总成方面,突破轮毂电机与制动、转向和悬架系统深度集成与转矩矢量分配技术难题,实现轮毂电机系统性能、功率密度和转矩密度的持续提升,为全新电动化底盘开发和产业化提供核心零部件支撑;在高密度轮毂电机方面,研究高密度轮毂电机的电磁机热声等多物理场协同设计与仿真、故障诊断与容错控制、转矩脉动抑制、噪声抑制和可靠性与耐久性验证方法,开发轮毂电机的新材料、新结构和新工艺技 术(包括冷却结构、动密封等)。考核指标:轮毂电机总成30s峰值转矩重量比≥20N∙m/kg;轮毂电机总成系统最高效率≥92%,系统CLTC工况综合使用效率≥80%;轮毂电机在额定转速点(额定转矩转折点),1米噪声总声压级≤72dB(A),防护等级不低于IP68,冲击振动标准不低于传统轮毂指标,电磁兼容性能满足Class4级及以上,轮毂电机总成产品实现装车运行。形成可靠性与耐久性测试规范。2.3 混合动力专用发动机及高效机电耦合技术(共性关键技术)研究内容:研究高效清洁燃烧(包括但不限于新型喷射、高EGR率、新型点火、高压缩比、可变机构技术等)结构优化、高效热管理、高效后处理、先进控制策略、低摩擦和低噪声等混合动力专用发动机技术,开发出热效率高、排放好的混合动力专用发动机;研究新型构型、一体化机电集成、高效传动、高效热管理、动态控制和低噪声等机电耦合技术,开发出高效率、高集成、低成本的机电耦合变速箱。研究先进混动控制系统、高效混动控制策略、混动专用电机及电池、高压安全管理、测试验证等混动总成技术,实现总成高效和高可靠性,通过整车高效优化控制实现整车级行业领先动力和能耗指标。考核指标:专用发动机最高热效率≥45%,整车排放满足国六b+RDE;机电耦合系统机械传动效率≥95%,机电耦合系统综合效率≥85%(注:WLTC工况电平衡工况下的发电和驱动的加权综合效率);产品可靠性及寿命满足整车要求,实现装车运行。所搭载的整车0~100km/h加速时间≤7s,A级车在电量维持模式下油耗≤0.0018×(CM-1415)+3.8L/100km。混合动力专用高效发动机在额定功率下,1米噪声总声压级≤90dB(A);机电耦合系统在其基速点(转矩转折点),1米噪声总声压级≤78dB(A), 完成产品公告的量产车。3. 智能驾驶3.1 多域电子电气信息架构(EEI)技术(基础前沿技术)研究内容:构建基于服务的车路云网一体化集中式电子电气信息架构,探索高内聚、低耦合架构新形式,研究混合关键级任务调度与分配机理,建立域内、域间高可靠软件动态资源共享协议,探索车辆终端、边缘节点和云平台算力分配技术和通用应用开发架构,形成域内、域间、车云标准接口,实现软件模块复用以及整车软件管理;研究C-V2X和车载网络融合的新型架构底层软件设计关键技术,研究车载以太网和时间敏感网络等通信机制,设计高带宽、低时延、高可靠的软件信息系统构架,构建数据远程分析、诊断、调校与升级一体化技术平台;研究电子电气架构安全冗余体系,基于多维度安全设计方法,构建故障检测、主动重构控制及可靠高效的多层纵深防御体系;研究电子电气架构评估与实时性仿真分析技术,建立多层级、一体化电子电气架构测试验证体系,搭建车路云网一体化集中式电子电气信息架构测试平台;研究电子电气信息架构集成应用,实现技术应用与示范。考核指标:架构支持车路云一体化协同的高级别自动驾驶系统,可实现软硬件独立和域间协同计算,架构支持算力集中的弹性中央计算平台和分布区域管理控制器实现整车软件定义功能开发,形成具有自主知识产权的标准化软硬件接口≥400 个,接口包括:智能化传感器接口,原子服务接口,车—云标准接口和车与路侧设备接口等,标准接口支持2种以上的操作系统。电子电气架构一体化技术平台支持C-V2X信息交互,车辆相关软件升级时间≤20分钟,车载网络通讯速率可达10Gbit/s,时间敏感业务流转发时延小于50微秒,时间同步精度小于20纳秒。具有高可靠的冗余防失效机制,形成架构冗余设计准则和预期功能安全的解决方案。满足复杂电磁环境下的电磁安全要求,通过GB/T 18387和GB 34660标准 测试。建立信息安全纵深防御设计准则和防护策略。形成整车电子电气架构仿真、评估、优化和测试验证评价体系。在2家以上整车企业获得应用,完成相关技术标准或草案 3 项。有关说明:实施周期不超过5年。3.2 学习型自动驾驶系统关键技术(共性关键技术)研究内容:研究人车路广义系统的多尺度场景理解技术,开发交通参与者的长时域行为预测系统;自动驾驶感知—决策—控制功能在线进化学习技术,研发模型与数据联合驱动的高效迭代求解算法,开发通用的建模、优化与分析软件;研究自动驾驶系统的高实时车载计算装置,包括低功耗异构计算架构、分布式高效任务管理、策略模型压缩/编译/部署等关键技术;研制多维驾驶性能分析系统与训练平台,包括边缘场景的自然驾驶数据库、 以安全性为核心的驾驶性能评估模型、支持虚拟交通场景的半实物在环训练等;开发自动驾驶系统学习功能集成与测试验证技术,包括符合车规级标准的开发方法及测试流程,功能优化、故障诊断、远程监控、人机交互等辅助模块,以及封闭测试场和开放示范道路的试验。考核指标:典型交通参与者行为预测时域不少于5s,长时域 轨迹预测误差≤0.6m(横向)和≤2m(纵向);支持L3级及以上自动驾驶功能的自我进化训练,涵盖典型道路场景≥5类和交通参与者≥4类,在线学习系统的更新周期≤30min;车载计算装置运行L3级及以上自动驾驶算法模块时,单位功耗算力≥2Tops/W,主要功能模块平均延迟150ms;边缘场景的自然驾驶 样本片段≥1万个,边缘场景类型≥80类,自动驾驶性能评估模 型的准确性≥90%;训练平台支持≥100个交通节点虚拟交通场景,支持不少于20辆实车的封闭测试场或开放示范道路的验证; 制定国家/行业标准≥3项。3.3 智能汽车预期功能安全技术(共性关键技术)研究内容:研究智能汽车预期功能安全认知技术,包括与场景理解紧密相关的感知认知和决策规划等系统的性能局限分析技术、结合系统正向开发流程的危害分析及风险评估技术,构建面向智能汽车的预期功能安全量化评估模型;研究预期功能安全实时防护技术,构建预期功能安全实时监测与防护系统;研究降低预期功能安全风险的机器学习成长系统关键技术,包括面向自动驾驶机器学习成长平台的数据系统以及面向大数据的预期功能安 全高性能云计算技术;研究人机交互的预期功能安全关键技术,包括车内外人机交互的预期功能安全防护技术及其功能模拟技术;研究预期功能安全场景库建设及测试评价技术,包括场景库测评优先子集和覆盖梯度研究、搭建预期功能安全仿真测试模型,研究预期功能安全量化与测试评价技术,建立预期功能安全试验验证规范及标准。考核目标:开发预期功能安全实时防护系统一套,实现预期功能安全的实时保障,并在不少于20个边缘场景下进行技术验证;搭建面向大数据的数字孪生高性能云计算平台1套;开发自动驾驶系统预期功能安全分析、仿真测评和管理工具软件1套;开发有条件自动驾驶及以上级别的智能网联汽车预期功能安全测试案例库1套,测试用例≥300条;搭建预期功能安全实车测试平台1个;完成≥100万公里实车道路数据采集,构建预期功能安全场景≥1000个;完成预期功能安全量化开发及测试评价体系标准或草案1项。4. 车网融合4.1 智能汽车信息物理系统(CPS)技术(基础前沿技术)研究内容:面向智能汽车与信息通信及智能交通一体化,建立智能汽车信息物理系统基础理论,研究智能汽车信息物理系统架构体系构建、分析与构型优化方法;研究智能汽车信息物理融合机理,解构系统要素功能间协同机制与耦合规律,研究智能汽车信息物理系统建模方法;研究智能网联汽车信息物理系统开放性、涌现性和演进性特性,研究智能网联汽车信息物理系统全生命周期数字孪生重构设计与系统工程方法;研究智能汽车信息物 理系统测试验证与量化评估方法,建立智能汽车信息物理系统关键指标体系;研究智能汽车信息物理系统协同实现方法,构建典型参考系统以及系统确认方法。考核指标:建立智能汽车信息物理系统架构、特性分析、建模、设计、评估、验证、协同实现、系统确认与系统工程方法; 架构体系包含设计分析维度≥7个;总系统架构包含系统需求定义≥2000项,系统功能、逻辑和物理架构要素不少于4500个; 系统建模工具原型可支持不少于4个类别的模型融合;系统设计工具原型可支持不少于7个维度的系统全生命周期重构设计考量,且可支持不少于50个用户端的数据库并发访问修改和唯一设计版本溯源;智能汽车信息物理系统关键指标体系包含不少于7个维度的量化关键指标且总数不少于50个;智能汽车信息物理系统典型参考系统原型的可支持不少于16类智能汽车运行场景和不少于3000项测试用例的测试验证;完成相关理论著作不少于3项,技术指南或路线图不少于3项,完成系统工程应用手册1套。有关说明:实施周期不超过5年。4.2 高精度自动驾驶动态地图与北斗卫星融合定位技术(共性关键技术)研究内容:研究支持自动驾驶的高精度动态地图模型与架构,研究面向中国道路特点、支持增量更新与扩展的地图数据模型,建立动静态、变分辨率地图数据的表达与存储机制;研究面向量产车众包数据的地图在线更新技术,研究地图数据实时加密与偏转技术;研究基于地图感知容器的网联汽车协同感知技术,建立车—路—云网联信息的多源融合机制;研究车规级北斗定位芯片与车载多源定位终端技术,构建基于北斗及其增强系统的车 载定位、导航、授时一体化系统,研究融合视觉、惯导与地图的智能全息组合主动定位技术;研究自动驾驶地图与定位系统的车载软硬件集成技术。考核指标:地图模型支持动静态多层数据调用,包括自动驾驶感知与决策的应用接口协议,地图覆盖公里数≥1万公里;高精度地图每100米相对误差≤15厘米,基于专业采集车地图更新 准确率≥99%,基于众包数据地图更新准确率≥90%;超视距无盲区感知检测准确率≥90%,动态信息传输延迟≤1秒;基于车载北斗卫星定位终端,多源信息融合实现高精度定位,试验场条件下,静态高精度增强定位误差≤1厘米,动态高精度增强定位误差≤10厘米,有卫星信号覆盖的常规城市综合路况下,动态高精度增强定位误差≤20厘米;支持具备车路协同感知功能的高精 度地图示范区域2个以上,完成相关技术标准或草案≥5项。4.3 自动驾驶仿真及数字孪生测试评价工具链(共性关键技术)研究内容:“人—车—路—环”耦合的高保真建模仿真技术, 研究高精度传感器、动力学、环境建模技术和强耦合机制,研发支撑L3及以上自动驾驶实时仿真软件;融合自动驾驶场景及交通流特征的云端仿真技术,研究包含中国自动驾驶事故场景特性的宏微观一体化交通流建模与加速测试技术,开发场景批量生成与高并发大规模云计算测试平台;车—云—场协同的自动驾驶在线加速测试评估技术,研究基于交通流的驾驶员行为、自动驾驶车辆行为的云端协同与场地孪生连续测评技术;多车协同的整车交通在环数字孪生技术,研制高灵敏的驱动、制动、转向一体化整车级系统平台,研究“人—车—路—环”实时模拟与虚实融合交互集成测试技术;自动驾驶测试评价平台及工具链,研究驾驶智能性评级、缺陷自动识别与安全性能认证技术,构建标准化的工具软件及硬件平台。考核指标:高精度自动驾驶仿真软件的极限工况动力学模拟精度≥90%;开放道路自动驾驶事故场景案例≥1000例;云控平台数据规模支持PB级,仿真任务执行成功率≥99.9%,达到10000个/分钟用例生成速率及 10000个/小时用例测试速率;数字孪生测试系统支持车速200km/h,最大制动强度10m/s2,最大转向角 40°;数字孪生支持虚、实传感器信号叠加;工具链支持L3级以上自动驾驶全流程测试,完成相关技术标准或草案不少于2项, 服务自动驾驶车型不少于20个。5. 支撑技术5.1 汽车电控单元关键工具链开发(共性关键技术)研究内容:研发汽车电控单元模块级软件建模工具,实现基于模型的软件设计功能;研发汽车电控单元软件测试验证工具,实现软件测试验证的流程标准化、接口统一化、测试自动化;研发汽车电控单元软硬件集成测试与标定工具,实现电控软硬件功性能的在线优化;研发车辆通讯总线仿真与测试工具,实现对车辆通讯总线的功能测试和性能优化;开发基于云技术的汽车电控单元设计仿真平台与模型库,实现自主工具链的云端并行计算技术。考核指标:汽车电控单元软件开发及验证的关键工具链能够满足V型开发流程,研制覆盖软件建模、软硬件测试、通讯总线仿真与测试等环节的关键工具不少于4种;汽车电控单元模块级软件建模工具能够支持系统图形化建模、连续与离散仿真、状态机建模等不少于3项的基本功能;汽车电控单元软件测试验证工具支持图形化测试用例搭建、支持自定义测试用例库、测试用例库及测试计划统一管理等不少于3项基本功能;汽车电控单元软 硬件集成测试与标定工具能够支持不少于2种类型标定协议,支持用户可定制的图形标定界面,支持标定数据的记录以及刷写等 不少于3项基本功能;车辆通讯总线仿真与测试工具支持总线监测分析、总线激励、诊断服务等不少于3项基本功能;自主开发工具的云上服务平台实现云端用户登录不少于1000人次/12个月,工具链包含的云端模型库中有效模型数量不少于50个。5.2 关键车规级芯片的测试技术和评价体系研究(共性关键技术)研究内容:研究车规控制、通讯、计算、安全、存储芯片在车载使用要求下的可靠性、电磁兼容性测试技术,设计开发基于FPGA半实物平台和芯片实物平台的车规芯片功能安全测试用例库及测试技术;针对智能驾驶使用要求,研究车规计算芯片的算力、能耗测试技术;针对网联驾驶使用要求,研究车规信息安全芯片基于国密算法安全保证能力的信息安全测试技术;搭建车规控制、通讯、计算、安全、存储芯片测试平台,建立其在车载使用要求下的评价方法和评价体系。考核指标:搭建支持多样本(≥20个)同步试验、试验温度范围-40~250℃、湿度相对湿度65%、压力≥15psig(磅/平方英寸)的环境应力试验系统,以及可施加电源(电压范围0~20V且分辨率10mV)偏置的寿命试验系统;搭建EMC测试环境,支持传导干扰(20Hz~108MHz)、辐射干扰(20Hz~40GHz)、HBM_ESD(10kV)、电源间断跌落实验(时间≤1ms);搭建支持1024数字通道资源,5G通讯速率,激励电压范围-0.5~+1.5V且分辨率为10μV的ATE测试系统;开发车规计算芯片测试系统,支持GPU/AI 等多种架构车规计算芯片在不同系统配置下(内核可配置、主频测试精度最小100MHz)的算力测试(范围覆盖 5~20TFlops、5~300Tops)及能耗测试(最高精度0.1W);设计开发支持车规芯片半实物和实物芯片的功能安全测试系统,测试范围覆盖车规计算芯片的总线、存储、DDR、时钟、IO、中断等硬件模块及底层软件,完成1~2款芯片功能安全测试用例开发至少1000条;开 发车规信息安全芯片国密算法(SM1~SM4)检测系统,支持被测芯片≥5000次/秒签名验签测试,开发支持置信度(ɑ值0.02~0.05) 任意定义且不少于4个真随机源任意开关的随机数据采集及随机性水平的测试平台,开发信息安全测试用例(包含安全攻击用例)至少100条;在车规芯片测试方面形成5项以上标准提案。5.3 车载储能系统安全评估技术与装备(共性关键技术)研究内容:研究多场景全工况多因素耦合下电池系统安全性损伤机理、演变规律及评价技术,研究电池系统热失控热扩散评价技术,研究电池系统失效致灾危害评估技术,研究电池系统使用寿命与安全耦合机制与规律,建立动力电池多维度安全性评价体系和标准;研究动力电池系统高频失效行为的孕育演化机制和复现评估技 术,研究车端感知、线下检测、云端数据协同的在役动力电池系统 安全性风险评估技术;开发智能无损检测装备及软件。研究多场景多因素耦合下车载氢系统失效机理、失效模式及定量化安全评估技术;研究车载氢系统失效危害评估技术,建立 车载氢系统多维度安全性评价体系;研究氢气泄露可视化检测技 术,研究车载氢系统微量氢泄漏检测技术;研究车载氢系统安全风险在线监测方法。考核指标:建立动力电池多维度安全性评价体系和装备;开发在役动力电池系统安全性智能无损检测系统不少于2套,测试准确度不低于90%;搭建车载氢系统安全性定量化评价体系和在线监测系统,在商用车和乘用车上进行应用验证,在线监测系统安全响应时间小于1秒;车载氢系统微量泄漏检测精度高于50ppm;车载氢系统严重泄漏预判准确率>95%;形成5项以上动力电池系统和车载氢系统安全性评价相关标准提案。5.4 高效协同充换电关键技术及装备(共性关键技术)研究内容:研究车—桩(站)—云多层级充电物理信息网体系架构,大数据驱动的安全高效充电管理与控制技术,研发车桩(站)互联互通实时数据交互平台;研究基于用户行为识别与充电设施状态感知协同的充电负荷时空多维度预测方法,充换电设施网点布局与站点构型规划方法;研究车—桩—云协同信息服务的运营管理与决策理论方法,用户行为识别与充电设施状态感知协同的车群充电规划方法与引导技术;研究快换站多型号动力电 池包融合存储、识别和充电技术,快换电池包标准化技术,多车型、多型号电池包识别和匹配技术,研发可多车型共用动力电池快换设备;研究多功率等级兼容的无线双向充放电技术,研发大功率、高效率、智能适配的双向无线充放电装备。考核指标:建成车桩数据交互平台,实现跨平台车桩数据互联互通,跨平台的数据互通与调用平均响应时间≤1s,高并发服务能力≥200万个,接入充电桩≥100万个,车≥100万台,车型≥100个,抗DDoS攻击能力≥200G/s;数据传输可靠性>99.95%, 信息安全通过三级等保评测;构建城市公共充换电场站建设规划模型和技术规范;充电桩利用率提高≥30%,车辆充电等待时间降低≥30%;快换电池系统兼容电池包类型≥3种,可更换车型≥3个,电池更换时间≤90s;无线充放电系统双向功率≥30kW, 工作间隙≥20cm,输出电压范围 DC250-900V,10%到 100%负载 范围内系统效率≥92%,最高效率≥94%,满足多车型互操作性, 实现3个以上车型搭载验证。6. 整车平台6.1 纯电动客车/乘用车高效高环境适应动力平台技术(共性关键技术)研究内容:研究极寒环境整车低能耗自保温技术,高温高湿环境下动力平台高效冷却技术、高绝缘和高安全防护技术;研究多应用场景的电驱动系统、动力电池系统内部温度预测方法、温控回路智能高效控制技术;研究电驱动、动力电池以及乘员舱热管理系统间的能耗耦合机理,研究高效智能化热管理控制技术,研发多热源协同智能高效一体化热管理系统;研究多阀门多通道多冷却回路一体化、压缩机低温可靠性、可变制冷剂充注量等空 调技术,研发低温高效热泵空调系统;研究基于功能域的动力平台高效集中式控制技术、基于大数据的整车能量管理优化标定技术,研发基于自主核心芯片的多合一高压集成控制器和网联化整车综合控制系统,研发高环境适应动力系统平台和专用化底盘。考核指标:12米纯电动客车:整车能耗≤52kWh/100km (CHTC工况);全气候(环境温度范围覆盖-30~+55℃)续驶里程≥300km(CHTC 工况);-30℃环境下,车辆续驶里程不低于常温续驶里程的 85%,车辆冷启动时间≤8min,空调制热功率≥14kW,COP≥1.3。55℃环境下,空调制冷功率≥22kW,COP≥ 1.7;研制车型≥2个,30分钟最高车速≥100km/h,0~50km/h 加速时间≤15s,最大爬坡度≥25%,实现百辆级验证应用。B级乘用车:整车能耗≤14kWh/100km(CLTC工况);全气候(环境温度范围覆盖-30~+55℃)续驶里程≥500km(CLTC工 况);-30℃环境下车辆续驶里程不低于常温续驶里程的85%,车 辆冷启动时间≤5min,空调制热功率≥4kW,COP≥1.3。55℃环境温度下,空调制冷功率≥7.5kW,COP≥1.7;研制车型≥2个,最高车速≥180km/h;0~100km/h加速时间≤4s,满载最大爬坡度≥30%;实现千辆级验证应用。6.2 智能电驱动重载车辆平台关键技术及应用(示范应用)研究内容:开发智能电驱动重载车辆一体化平台架构,研究重载车辆的整车物理结构与电驱动系统、智能驾驶系统间的耦合机理与设计方法;开发面向恶劣环境的重载车辆智能驾驶系统, 研究颠簸路面大盲区多源传感器融合感知技术,研究强振动、重载荷等条件下车辆故障诊断及导向安全智能决策技术,研究大幅变载荷工况下车辆纵横向协调控制技术;面向复杂工况的重载车辆大功率智能电驱动系统开发,构建面向重载车辆的新型驱动系统拓扑结构,研究湿滑坡道下自适应力矩分配与预测型智能控制技术;开发面向多场景作业的智能电驱动重载车辆仿真验证平台,研究智能电驱动重载车辆的硬件在环仿真与编组作业模拟技术;开展典型场景下智能电驱动重载车辆的无人化协同作业示范 应用。考核指标:开发智能电驱动重载车辆的整车平台原理样机1套;小尺寸(0.5m×0.5m×0.5m)障碍物检测距离≥100m,距离检测误差≤0.3m,重载车辆在100吨及以上载重条件下停靠控制误差≤0.5m,可实现16%坡道的坡停坡起;开发自主可控的电驱动系统,与国际同类产品相比,特定场景与工况下综合能效提升20%,在 1km/h车速下仍可有效电制动;开发智能电驱动重载车辆仿真验证平台1套;在典型场景下开展不少于50台100吨及以上载重车辆的无人化协同作业示范运行,并稳定运行1年以上,与国际同类产品相比,平均能耗降低 15%;形成相关技术标准或草案1项。附件:“新能源汽车”重点专项2021年度项目申报指南.pdf揭榜挂帅榜单.pdf形式审查条件.pdf编制专家名单.pdf
  • 新能源汽车重点专项2021申报指南:拟6个技术方向启动19个任务
    2月1日,科技部发布“十四五”国家重点研发计划“新能源汽车”重点专项2021年度项目申报指南(征求意见稿)。本次征求意见重点针对指南方向提出的目标指标和相关内容的合理性、科学性、先进性等方面听取各方意见和建议。科技部将会同有关部门、专业机构和专家,认真研究收到的意见和建议,修改完善相关重点专项的项目申报指南。征集到的意见和建议,将不再反馈和回复。征求意见时间为2021年2月1日至2021年2月21日,修改意见请于2月21日24点之前发至电子邮箱gxs_njc@most.cn。附件:“十四五”国家重点研发计划“新能源汽车”重点专项2021年度项目申报指南(征求意见稿).pdf关于“新能源汽车”重点专项2021年度项目申报指南(征求意见稿)稿中提到,本重点专项总体目标是:坚持纯电驱动发展战略,夯实产业基础研发能力,解决新能源汽车产业卡脖子关键技术问题,突破产业链核心瓶颈技术,实现关键环节自主可控,形成一批国际前瞻和领先的科技成果,巩固我国新能源汽车先发优势和规模领先优势,并逐步建立技术优势。按照分步实施、重点突出原则,2021年度指南拟在能源动力、电驱系统、智能驾驶、车网融合、支撑技术、 整车平台6个技术方向,启动19个指南任务。1.能源动力1.1 全固态金属锂电池技术(基础研究)研究内容:全固态电池中电极(正极、负极)与固体电解质界面稳定化与自修复机制;微结构固态复合正极(含活性材料、电解质、电子导电介质等)中电子、离子的输运特性;具有导电骨架结构的金属锂负极和固态电池中界面/结构对锂沉积形态的影响;超薄高离子电导率固体电解质层制备技术及面离子输运均匀性、机械强度、与正负极界面兼容性;新型电池结构、干法电极、新型电解质层制备方法及封装方式;电池内部温度/力学/电化学场以及失效破坏等实验表征技术及固态电池综合评价方法。1.2 高安全、全气候动力电池系统技术(共性关键技术)研究内容:研究动力电池低温环境充放电性能衰减的电化学机理,研究加热方式、加热策略对电池安全、电池寿命的影响机制,研发动力电池系统无损极速加热新结构、新方法及其加热安全控制技术;研究全气候环境条件下动力电池系统安全充放电方法和控制管理技术,极端低温和高温条件下的耐候性,研发全气候电池系统技术;研究动力电池可靠性与车载振动、环境温度、动态载荷等交变应力的耦合关系及其疲劳损伤规律,高挤压强度下的安全性防护方法,电池系统故障诊断、安全评估与预警方法;研究动力电池系统热失控爆炸当量估计方法、热失控扩展路径及特性、热失控延缓和阻断控制机制;研发基于以上关键技术的高安全、全气候的新结构动力电池及动力电池系统。1.3 车用固体氧化物燃料电池关键技术开发(基础研究)研究内容:针对不同燃料场景需求的车用燃料电池发电系统,研究固体氧化物燃料电池(SOFC)关键部件、电堆、系统设计及集成技术,主要包括:优化电极微观结构,研究高性能高可靠长方形电池结构设计及可控制备技术;优化连接体结构及流场设计,开发低成本连接体加工及涂层致密化技术;开发一致性长寿命电堆组装技术,形成电堆批量制造能力;研发不同燃料处理技术及关键部件;开发不同燃料场景应用的SOFC冷热电联供系统,研究与SOFC耦合的快速启动响应技术,提出效率优化与冷热电管控策略。1.4 高密度大容量气氢车载储供系统设计及关键部件研制(共性关键技术)研究内容:针对燃料电池重型车辆长途续航需求,研究车载储氢瓶、车载储氢系统设计、制造和检测技术,研究不同工况下大容量储氢的释放和泄露规律,研制车载70MPa大容量IV型瓶、集成瓶阀、储氢系统调压阀组、储氢系统控制器、氢气泄漏探测传感器等,形成高压力、大容量车载储氢系统。针对大功率燃料电池发动机供氢需求,研究大流量、高动态等复杂工况条件下供氢系统集成与控制技术,研制氢气流量控制阀组、循环引射器、机械循环泵等核心部件。针对燃料电池重型车辆快速加注需求,研究加氢口预冷高压大流量气氢在车载系统中的扩散、增压、升温等规律, 获得稳定匹配与安全阈值控制技术,定义各部位材质循环加载要求、车载储氢系统受氢口与加氢枪的机械接口方式,开发面向高可靠、高安全的氢燃料快速加注操作流程、接插连接规范及通信协议。2.电驱系统2.1 基于新材料和新器件的电驱动系统技术(基础研究)研究内容:研究基于铜合金和铜/纳米管等复合材料的高性能超级铜线及电机绕组制备技术,探索大电流 SiC MOSFET芯片载流子输运性能高温骤降机理和抑制栅介质界面缺陷等可靠性增强方法,研究超低杂散参数/高效散热的SiC模块与组件协同优化技术,实现材料与器件优化。研究SiC电驱动系统新结构、多物理场集成和全域高效控制方法,研究SiC电驱动系统电磁兼容特性及抑制方法,解决SiC电驱动系统在高密度集成和高效控制的基础科学问题。开展新型电驱系统技术测试与分析,完成电驱系统前沿技术对标评价;开展车用服役条件下电驱系统功率器件、电机绝缘和轴承等系统致命故障检测、诊断和预测方法研究,形成电驱系统健康管理技术体系和标准规范。2.2 高性能轮毂电机及总成技术(共性关键技术)研究内容:高密度轮毂电机:研究高密度轮毂电机的电磁机热声等多物理场协同设计与仿真、故障诊断与容错控制、转矩脉动抑制、噪声抑制和可靠性与耐久性验证方法,开发轮毂电机的新材料、新结构和新工艺技术(包括冷却结构、动密封等)。轮毂驱动系统集成:突破轮毂电机与制动、转向和悬架系统深度集成与转矩矢量分配技术难题,实现轮毂电机系统性能、功率密度和转矩密度的持续提升,为全新电动化底盘开发和产业化提供核心零部件支撑。2.3 混合动力专用发动机及高效机电耦合技术(共性关 键技术)研究内容:研究结构优化、高压喷射、高压缩比、高效燃烧、电动气门、低摩擦和低噪声等混合动力发动机技术,开发出热效率高、排放好的混合动力专用发动机;研究新型构型、一体化机电集成、高效传动、高效热管理、动态控制和低噪声等机电耦合技术,开发出高效率、高集成、低成本的机电耦合变速箱。研究结构集成优化、动态协同控制、高压安全管理、测试验证等混动总成技术,实现总成高效和高可靠性。搭载专用动力电池,通过整车高效优化控制实现整车级行业领先动力和能耗指标。3.智能驾驶3.1 多域电子电气信息架构(EEI)技术(基础研究)研究内容:构建基于服务的车路云网一体化集中式电子电气信息架构,研究高内聚、低耦合架构技术,探索车辆终端、边缘节点和云平台算力分配技术和通用应用开发架构,形成域内、域间、车云标准接口,实现软件模块复用以及整车软件管理;研究C-V2X和车载网络融合的新型架构底层软件设计关键技术,研究车载以太网和时间敏感网络等通信技术,设计高带宽、低时延、高可靠的软件信息系统构架,构建数据远程分析、诊断、调校与升级一体化技术平台;研究电子电气架构安全冗余技术,基于多维度安全设计方法,构建故障检测、主动重构控制及可靠高效的多层纵深防御体系;研究电子电气架构评估与实时性仿真分析技术,建立多层级、一体化电子电气架构测试验证体系,搭建车路云网一体化集中式电子电气信息架构测试平台;研究电子电气信息架构集成应用,实现技术应用与示范。3.2 学习型自动驾驶系统关键技术(共性关键技术)研究内容:研究人车路广义系统的多尺度场景理解技术,开发交通参与者的长时域行为预测系统;自动驾驶感知-决策 -控制功能在线进化学习技术,研发模型与数据联合驱动的高效迭代求解算法,开发通用的建模、优化与分析软件;研究自动驾驶系统的高实时车载计算装置,包括低功耗异构计算架构、分布式高效任务管理、策略模型压缩/编译/部署等关键技术;研制多维驾驶性能分析系统与训练平台,包括边缘场景的自然驾驶数据库、以安全性为核心的驾驶性能评估模型、支持虚拟交通场景的半实物在环训练等;开发自动驾驶系统学习功能集成与测试验证技术,包括符合车规级标准的开发方法及测试流程,功能优化、故障诊断、远程监控、人机交互等辅助模块,以及封闭测试场和开放示范道路的试验。3.3 智能汽车预期功能安全技术(共性关键技术)研究内容:研究智能汽车预期功能安全认知技术,包括结合系统开发“V”字流程的正向危害分析、风险辨识以及机器学习算法不确定性及可解释性研究,构建预期功能安全量化评估模型;研究预期功能安全实时防护技术,构建预期功能安全实时监测与防护系统;研究降低预期功能安全风险的机器学习成长系统关键技术,包括面向自动驾驶机器学习成长平台的数据系统以及面向大数据的预期功能安全高性能云计算技术;研究人机交互的预期功能安全关键技术,包括车内外人机交互的预期功能安全防护技术及其功能模拟技术;研究预期功能安全场景库建设及测试评价技术,包括场景库测评优先子集和覆盖梯度研究、搭建预期功能安全仿真测试模型,研究预期功能安全量化与测试评价技术,建立预期功能安全试验验证规范及标准。4.车网融合4.1 智能汽车信息物理系统(CPS)技术(基础研究)研究内容:面向车路云网的智能汽车信息物理系统通信与系统动力学融合构型建模技术,研究异构可组合模型形式化表达和模块化开发技术,建立系统设计模型库;研究智能汽车和智能交通系统高效协同的体系架构框架构建技术,突破智能汽车信息物理系统架构设计和构型优化关键技术,建立系统需求、功能、逻辑和物理架构;研究智能汽车信息物理系统并发组件设计技术,研发可溯源连续传递数据库,建立系统云协作总体设计软件工具;研究实验系统评估和验证 技术,研发智能汽车信息物理系统在环半实物试验装置及测试案例集;研究智能汽车信息物理系统应用实现技术,研究建立智能汽车与智能交通系统协同的示范平台。4.2 高精度自动驾驶动态地图与北斗卫星融合定位技术 (共性关键技术)研究内容:研究支持自动驾驶的高精度动态地图模型与架构,研究面向中国道路特点、支持增量更新与扩展的地图数据模型,建立动静态、变分辨率地图数据的表达与存储机制;研究面向量产车众包数据的地图在线更新技术,研究地图数据实时加密与偏转技术;研究基于地图感知容器的网联汽车协同感知技术,建立车-路-云网联信息的多源融合机制;研究车规级北斗定位芯片与车载多源定位终端技术,构建基于北斗及其增强系统的车载定位、导航、授时一体化系统, 研究融合视觉、惯导与地图的智能全息组合主动定位技术;研究自动驾驶地图与定位系统的车载软硬件集成技术。4.3 自动驾驶仿真及数字孪生测试评价工具链(共性关键技术)研究内容:“人-车-路-环”耦合的高保真建模仿真技术, 研究高精度传感器、动力学、环境建模技术和强耦合机制, 研发支撑L3及以上自动驾驶实时仿真软件;融合自动驾驶场景及交通流特征的云端仿真技术,研究包含中国自动驾驶事故场景特性的宏微观一体化交通流建模与加速测试技术, 开发场景批量生成与高并发大规模云计算测试平台;车-云-场协同的自动驾驶在线加速测试评估技术,研究基于交通流的驾驶员行为、自动驾驶车辆行为的云端协同与场地孪生连续测评技术;多车协同的整车交通在环数字孪生技术,研制高灵敏的驱动、制动、转向一体化整车级系统平台,研究“人-车-路-环”实时模拟与虚实融合交互集成测试技术;自动驾驶测试评价平台及工具链,研究驾驶智能性评级、缺陷自动识别与安全性能认证技术,构建标准化的工具软件及硬件平台。5.支撑技术5.1 汽车电控单元关键工具链开发(共性关键技术)研究内容:研发汽车电控单元模块级软件建模工具,实现基于模型的软件设计功能;研发汽车电控单元软件测试验证工具,实现软件测试验证的流程标准化、接口统一化、测试自动化;研发汽车电控单元软硬件集成测试与标定工具, 实现电控软硬件功性能的在线优化;研发车辆通讯总线仿真与测试工具,实现对车辆通讯总线的功能测试和性能优化;开发基于云技术的汽车电控单元设计仿真平台与模型库,实现自主工具链的云端并行计算技术。5.2 关键车规级芯片的测试技术和评价体系研究(共性关键技术)研究内容:研究车规控制、通讯、计算、安全、存储芯片在车载使用要求下的可靠性、电磁兼容性测试技术,设计开发基于FPGA半实物平台和芯片实物平台的车规芯片功能安全测试用例库及测试技术;针对智能驾驶使用要求,研究车规计算芯片的算力、能耗测试技术;针对网联驾驶使用要求,研究车规信息安全芯片基于国密算法安全保证能力的信息安全测试技术;搭建车规车规控制、通讯、计算、安全、存储芯片测试平台,建立其在车载使用要求下的评价方法和评价体系。5.3 车载储能系统安全评估技术与装备(共性关键技术)研究内容:研究多场景全工况多因素耦合下电池系统安全性损伤机理、演变规律及评价技术,研究电池系统热失控热扩散评价技术,研究电池系统失效致灾危害评估技术,研究电池系统使用寿命与安全耦合机制与规律,建立动力电池多维度安全性评价体系和标准;研究动力电池系统高频失效行为的孕育演化机制和复现评估技术,研究车端感知、线下检测、云端数据协同的在役动力电池系统安全性风险评估技术;开发智能无损检测装备及软件。 研究多场景多因素耦合下车载氢系统失效机理、失效模式及定量化安全评估技术;研究车载氢系统失效危害评估技术,建立车载氢系统多维度安全性评价体系;研究氢气泄露可视化检测技术,研究车载氢系统微量氢泄漏检测技术;研究车载氢系统安全风险在线监测方法。5.4 高效协同充换电关键技术及装备(共性关键技术)研究内容:研究车-桩(站)-云多层级充电物理信息网体系架构,大数据驱动的安全高效充电管理与控制技术,研发车桩(站)互联互通实时数据交互平台;研究基于新能源汽车运行应用大数据的充电负荷时空多维度预测方法,充换电设施网点布局与站点构型规划方法;研究车-桩-云协同信息服务的运营管理与决策理论方法,用户行为识别与充电设施状态感知协同的车群充电规划方法与引导技术;研究快换站多型号动力电池包融合存储、识别和充电技术,快换电池包标准化技术,多车型、多型号电池包识别和匹配技术,研发可多车型共用动力电池快换设备;研究多功率等级兼容的无线双向充放电技术,研发大功率、高效率、智能适配的双向无线充放电装备。6.整车平台6.1 纯电动客车/乘用车高效高环境适应动力平台技术(共性关键技术)研究内容:研究极寒环境整车低能耗自保温技术,高温高湿环境下动力平台高效冷却技术、高绝缘和高安全防护技术;研究多应用场景的电驱动系统、动力电池系统内部温度预测方法、温控回路智能高效控制技术;研究电驱动、动力电池以及乘员舱热管理系统间的能耗耦合机理,研究高效智能化热管理控制技术,研发多热源协同智能高效一体化热管理系统;研究多阀门多通道多冷却回路一体化、压缩机低温可靠性、可变制冷剂充注量等空调技术,研发低温高效热泵空调系统;研究基于功能域的动力平台高效集中式控制技术、基于大数据的整车能量管理优化标定技术,研发基于自主核心芯片的多合一高压集成控制器和网联化整车综合控制系统,研发高环境适应动力系统平台和专用化底盘。6.2 智能电动重载车辆平台关键技术及应用(示范应用)研究内容:开发智能电驱动重载车辆一体化平台架构, 研究重载车辆的整车物理结构与电驱动系统、智能驾驶系统间的耦合机理与设计方法;开发面向恶劣环境的重载车辆智能驾驶系统,研究多尘、颠簸等场景下大盲区多源传感器融合感知技术,研究强振动、重载荷等条件下车辆故障诊断及导向安全智能决策技术,研究连续大长坡、大幅变载荷等工况下车辆纵横向协调控制技术;面向复杂工况的重载车辆大功率智能电驱动系统开发,构建面向重载车辆的主辅一体式永磁电机驱动系统拓扑结构,研究多态湿滑大坡道下自适应力矩分配与预测型智能控制技术;开发面向多场景作业的智能电驱动重载车辆仿真验证平台,研究智能电驱动重载车辆的硬件在环仿真与编组作业模拟技术;开展露天矿山等典型场景下智能电驱动重载车辆的无人化协同作业示范应用。
  • “新能源汽车”重点专项2022年度项目申报指南:拟拨5.08亿支持14项任务
    4月27日,科学技术部发布“新能源汽车”等一系列重点专项2022年度项目申报指南。2022 年度指南部署坚持问题导向、分步实施、重点突出的原则, 围绕能源动力、电驱系统、智能驾驶、车网融合、支撑技术、整车平台 6 个技术方向,按照基础研究类和共性关键技术类,拟部署 14 项指南任务,拟安排国拨经费 5.08 亿元。其中,围绕新体系动力电 池技术方向,拟部署 2 个青年科学家项目,拟安排国拨经费不超过 800 万元,每个项目不超过 400 万元。围绕自进化学习型自动驾驶系统关键技术、智能汽车预期功能安全实时防护及测试验证技术方向,拟部署 2 个青年科学家课题,每个课题不超过 300 万元。原则上基础研究项目和青年科学家项目不要求配套经费,共性关键技术项目要求配套经费与国拨经费比例不低于 2:1。项目统一按指南二级标题(如 1.1)的研究方向申报。除特殊说明外,每个项目拟支持数为 1~2 项,实施周期不超过 3 年。申报项目的研究内容必须涵盖二级标题下指南所列的全部研究内容和考核指标。基础研究类项目下设课题数不超过 4 个,项目参与单位总数不超过 6 家,共性关键技术类项目下设课题数不超过 5 个,项目参与单位总数不超过 10 家。项目设 1 名负责人,每个课题设 1 名负责人。 青年科学家项目不再下设课题,项目参与单位总数不超过 3 家。青年科学家项目设 1 名项目负责人,青年科学家项目负责人年龄要求,男性应为 1984 年 1 月 1 日以后出生,女性应为 1982 年 1 月 1 日以后出生。原则上团队其他参与人员年龄要求同上。 项目下设青年科学家课题的,青年科学家课题负责人及参与人员年龄要求,与青年科学家项目一致。 指南中“拟支持数为 1~2 项”是指:在同一研究方向下,当出现申报项目评审结果前两位评价相近、技术路线明显不同的情况时,可同时支持这 2 个项目。2 个项目将采取分两个阶段支持 的方式。第一阶段完成后将对 2 个项目执行情况进行评估,根据评估结果确定后续支持方式。1. 能源动力 1.1 新体系动力电池技术(基础研究,含青年科学家项目)研究内容:研发下一代锂离子电池关键材料与关键技术,包括新型高容量储锂电极材料的设计与低成本化制备方法,电极反应的电荷补偿、耦合机制和动力学提升技术,材料、电极的结构演化与稳定化策略,不燃性电解液、耐高温耐高电压隔膜的设计与应用技术,高面容量电极设计与制备方法;开展新体系电池的前瞻性研究,包括电池反应新原理与新机制,电极新材料与电池新结构,电极反应动力学调控机制与改善策略,电池性能衰退机 制与稳定化策略。1.2 固液混合态高比能锂离子电池技术(共性关键技术) 研究内容:研究高性能混合态电解质体系及高容量电极材料,正负极效率调控新原理和新技术;开发基于模型的极片/电池设计技术、极片/电池制造新工艺及新装备,研究内置传感器集成技术和高精度状态估计新方法;发展原位/实时表征新技术,研究失效机制和性能改进策略、热失控机理和防范机制,建立安全风险评估体系;开展配套应用和考核验证。1.3 无钴动力电池及梯次应用技术(共性关键技术) 研究内容:无钴低成本材料设计与制备,高强度隔膜和功能电解液开发;多孔电极结构和表界面的离子传输模型构建;适应于梯次利用的全新结构动力电池及系统设计与制造;研究多场景复杂工况下动力电池动态、快速、无损检测技术以及电池电性能与安全性能的演变规律,建立电池全生命周期性能评价方法和退役电池残值评估指标体系;研究动力电池梯级利用的指标和表征参数的健康阈值和安全阈值,建立退役电池梯次应用技术规范。1.4 乘用车用高功率密度燃料电池电堆及发动机技术(共性关键技术) 研究内容:开展高功率密度燃料电池发动机先进构型设计和匹配及系统仿真技术研究;研发适用于高功率密度燃料电池发动机的空压机、氢气循环系统等核心部件,以及先进热管理技术和低温快速启动技术;研究多维传感智能故障诊断和容错控制技术, 基于乘用车路谱的燃料电池动力系统测试评价及整车集成技术。 研究燃料电池发动机功率密度以及启动特性、稳态特性、动态响应特性等重要性能参数测试方法,并研究制定相关国家标准或指导性技术文件;研究乘用车燃料电池发动机批量化制造的装备技 术,形成批量化生产能力。 开展动态工况下电堆特性研究,采用高功率和高功率密度电堆架构与零部件的正向设计方法,研发适应高温低湿条件运行的 高性能、高动态响应膜电极技术,研发适应高电流密度的流场结 构、超薄低成本双极板技术,开发提高电堆一致性、可靠性以及装配效率的集成设计和密封设计方法,集成研发的催化剂、质子 膜、炭纸或扩散层、极板基材,研制燃料电池电堆,提出材料改进需求,形成批量化生产能力。1.5 商用车用大功率长寿命燃料电池电堆及发动机技术(共性关键技术) 研究内容:研发适用于重载车辆的大功率燃料电池发动机的高效长寿命供氢、供气、水热管理、DC/DC 等核心部件;研究重载车辆用大功率燃料电池发动机多功率模块控制技术;研究重载车辆燃料电池动力系统匹配与集成及系统仿真技术;开展大功率燃料电池发动机低温冷启动、环境适应性(高低温、高海拔)、电 磁兼容(EMC)等测试与评价方法研究,建立重载车辆燃料电池 发动机的快速测评规范。研究涵盖初始加载方法、循环工况加载方法、性能复测方法以及气密性和绝缘电阻复测方法,以及燃料电池发动机经耐久试验后的电压衰减、功率衰减、效率衰减等评价指标,并研究制定相关国家标准或指导性技术文件; 研究长寿命电堆的膜电极、双极板及其匹配技术,研究大功率电堆的高可靠集成和控制技术,研发电堆的长寿命控制策略和电堆高效运行操作边界设计方法及加速测试验证技术; 研究重载车辆燃料电池电堆及发动机批量化制造的装备技术,形成批量化生产能力。2. 电驱系统 2.1 先进驱动电机研发(共性关键技术)研究内容:开发驱动电机关键材料、零部件和驱动电机,具体包括:轻稀土或少(无)重稀土永磁体,低损耗高强度定转子铁芯,宽温变高速轴承,电磁线,高槽满率低交流电阻定子绕组, 高可靠绝缘系统及其高温耐电晕、高导热、兼容油冷介质的绝缘材料;开展电机性能、质量、成本平衡的关键设计技术,提升功率密度与效率和抑制振动噪声的优化设计,开展高效冷却技术与生产制造工艺研究等,开发高性价比车用电机并实现整车应用。2.2 先进电机控制器研发(共性关键技术) 研究内容:开展元器件关键技术及工艺和先进电机控制器关键技术的研发,具体包括:开发车规级碳化硅(SiC)功率芯片、 加压烧结封装和耐高温封装材料、高容积比耐高温电容器设计与封装技术以及电容膜;突破基于碳化硅—金属氧化物半导体场效 应管(SiC MOSFET)的电机控制器多物理场集成、驱动电机系 统高性能转矩控制、电磁兼容、振动噪声抑制控制和功能安全等 技术,开发基于高密度高能效 SiC 电机控制器,实现整车应用。3. 智能驾驶 3.1 自进化学习型自动驾驶系统关键技术(共性关键技术, 含青年科学家课题)研究内容:研究人车路广义系统的多尺度场景理解技术,开发交通参与者的长时域行为预测系统;研究自动驾驶感知—决策 —控制功能在线进化学习技术,研发模型与数据联合驱动的高效迭代求解算法,开发通用的建模、优化与分析软件;研究自动驾驶系统的高实时车载计算装置,包括低功耗异构计算架构、分布式高效任务管理、策略模型压缩/编译/部署等关键技术;研制多维驾驶性能训练平台,包括基于边缘场景的自然驾驶数据库、以安全性为核心的驾驶性能评估模型和支持虚拟交通场景的半实物在环训练等;开发自动驾驶系统学习功能集成与测试验证技术, 包括测试流程、功能优化、故障诊断、远程监控、人机交互等辅助模块。3.2 智能汽车预期功能安全实时防护及测试验证技术(共性关键技术,含青年科学家课题) 研究内容:研究智能汽车预期功能安全认知技术,包括与场景理解紧密相关的感知认知和决策规划等系统的性能局限分析技术、结合系统正向开发流程的危害分析及风险评估技术,构建面向智能汽车的预期功能安全量化评估模型;研究人机交互的预期功能安全关键技术,包括车内外人机交互的预期功能安全防护技术及其功能模拟技术;研究预期功能安全实时防护技术,构建基于车路云协同的预期功能安全实时监测与防护系统;研究降低预 期功能安全风险的机器学习成长系统关键技术,包括面向自动驾驶机器学习成长平台的数据系统以及面向大数据的预期功能安全高性能云计算技术;研究预期功能安全场景库建设及测试评价技术,包括场景库测评优先子集和覆盖梯度研究、搭建预期功能安全仿真测试模型,研究预期功能安全量化与测试评价技术,建立预期功能安全试验验证规范及标准。3.3 智能线控底盘平台及冗余控制技术(共性关键技术) 研究内容:研究满足自动驾驶、功能安全和信息安全的线控底盘平台系统的电子电气架构、高带宽实时通讯协议与技术;研究线控底盘的智能协同控制技术,包括不同典型场景(常规、越 野、极限)多余度底盘的非线性动态响应特性、多自由度动力学建模与解算方法、底盘集中信息处理方法、底盘全局状态识别方法、多执行系统协同与多目标优化的底盘智能控制算法;研究底盘失效运行技术,包括底盘系统失效模式、主冗切换及降级处理机制,底盘系统中的制动系统、转向系统的冗余设计,电控单元软硬件冗余设计,线控多执行系统协同容错控制技术;研究满足自动驾驶车辆需求的多余度线控执行系统集成优化技术,包括线控制动(如电机伺服助力、电磁阀)、线控转向(如六相电机、集 成电控动力单元)的关键部件技术;研制以底盘域控制器为核心的模块化、轻量化、集成化多余度线控底盘平台,形成智能线控底盘平台设计、建模、仿真和测评工具链,建立线控底盘平台多场景复杂工况、车云端结合的测试方法和评价体系。4. 车网融合 4.1 智能汽车云控平台关键技术(共性关键技术) 研究内容:研究车路云一体化云控平台架构,包括分析智能交通系统对边缘、区域、中心三级平台的需求,明确平台体系的迭代演进路线,构建平台逻辑架构和物理架构;研究云控基础硬件系统关键技术,包括边缘云智能运算硬件,车路云一体化通信及控制单元,非理想条件下的车路云信息交互及计算可靠支持技术;研究云控基础软件关键技术,包括车路云协同决策的多任务并行技术,车群控制协同及交通动态协同云控仿真技术,云端融合感知技术;研究面向高级别自动驾驶的车路云协同决策与控制技术,包括多层级群智决策机制,受限信息环境下车路云协同决策和规划方法,基于混合计算模式的边缘云协同技术;研究云控与非云控车辆混合交通云端优化技术,包括混合交通系统建模方法,云控性能随云控车辆渗透率变化的演化规律,不同渗透率下的混合交通系统云端优化技术;研究云控平台测试技术,包括建立多维度测试评价体系,覆盖车、路、云端的测试用例,测试评价规范和标准。5. 支撑技术5.1 智能汽车开发验证技术及装备(共性关键技术) 研究内容:研究典型交通参与者(含车辆、行人、非机动车 等)物理反射特性,研究高精度、高动态实时驱动控制技术,研发标准软体目标物及运动控制平台;研究抗信号干扰、耐碰撞的室内外高精度融合定位测量与驾驶机器人横纵向动态控制技术, 研发室内外多场景高精度运动参数测量系统与自动驾驶测试机器 人;研究多源传感数据高带宽、低延时、高同步采集与回注技术, 研究基于海量原始数据的自动驾驶算法测评技术,研发自动驾驶高保真数据采集回注与分析评价仪器;研究支持视觉、听觉、触觉的人机交互测试技术,研究智能座舱主客观量化评价方法,研发智能座舱集成测评系统。5.2 智能汽车场景库应用与多维测试评价技术(共性关键技术)研究内容:研究面向智能汽车通用功能设计运行域的场景库测试用例生成应用技术,建立基于不同来源场景库的场景分布和场景显著性分析方法,构建符合统一格式的基准测试场景库,提出驾驶场景评级理论方法和场景评价限值;研究光照、降雨、大雾等典型气象和复杂动静态交通流数字—物理融合模拟试验技术,开展模拟仿真技术拟真度研究,支持智能汽车整车及系统的安全性能测试;研究智能汽车信道衰落、电磁干扰等中国道路无 线环境物理模拟技术,基于智能汽车功能激活条件与失效表征分析,开发复杂无线环境下智能驾驶可靠性测试技术;研究面向网联车辆典型智能驾驶功能的封闭场地测试评价技术,研究智能汽车开放道路测试周期与场景覆盖度关联模型,提出智能汽车开放道路测试方法,开发高效率测试数据分析及评价工具集;集成融合气象、交通流、无线环境等多维复杂环境条件和封闭场地、开放道路等组合测试手段的智能汽车多维测试评价技术体系,研究制定相关技术规范和标准。6. 整车平台6.1 电动载货车多材料底盘结构轻量化关键技术开发(共性 关键技术)研究内容:突破电动载货车底盘与动力电池系统一体化全新构架集成设计技术;攻克电动载货车全铝车架纵、横梁断面多工况联合拓扑优化设计、车架疲劳寿命高精度预测与评价关键技术; 开发 2.0 吉帕高应力变截面钢板弹簧、低成本纤维增强复合材料板簧、热固性碳纤维复合材料传动轴、多材料电池箱设计制造关键技术;攻克电动载货车底盘系统超厚板异种材料连接接头高精度数值仿真、性能评价及耐蚀性处理核心技术;研发电动载货车混合材料底盘高精度、数字化全自动仿真预测软件及验证平台。“新能源汽车”重点专项2022年度项目申报指南.pdf“新能源汽车”重点专项2022年度项目申报指南形式审查条件要求.pdf
  • 机构:2027年全球汽车半导体市场将超过880亿美元
    IDC报告指出,随着高级驾驶辅助系统(ADAS)、电动汽车以及车联网的普及,对高性能计算芯片、图像处理单元、雷达芯片及激光雷达传感器等半导体的需求正日益增加,为汽车半导体行业带来新的增长机遇。IDC预计,到2027年,全球汽车半导体市场规模将超过880亿美元。随着单车半导体的价值不断增长,半导体企业在汽车产业链中的关注度和重要性进一步提升。IDC数据显示,2023年汽车半导体市场Top5厂商占据超过50%的市场份额。英飞凌以13.9%的市场份额领先;紧随其后的是NXP和ST,市场份额分别为10.8%和10.4%;德州仪器和瑞萨电子也表现强劲,分别占据了8.6%和6.8%的市场份额。具体的市场份额如下所示:IDC指出,汽车行业的变革推动了对高性能、高安全标准的半导体产品的需求增加。随着电动汽车和自动驾驶技术的持续发展,这些公司将继续在全球汽车半导体市场中扮演关键角色。
  • 国家智能网联汽车质量检验检测中心(湖南)于长沙揭牌
    作为2024互联网岳麓峰会的重磅主题论坛之一,“AI驱动 数实融合”大模型赋能数字经济论坛9日在长沙举行。国家智能网联汽车质量检验检测中心(湖南)在论坛现场揭牌,成为中南地区第一个、全国第四个智能网联国检中心。2024互联网岳麓峰会“AI驱动 数实融合”大模型赋能数字经济论坛9日在长沙举行。 张雪盈 摄此前,国家智能网联汽车(长沙)测试区与国家级车联网先导区均已落户长沙。国家智能网联汽车质量检验检测中心(湖南)的揭牌,标志着长沙已经有资质有能力为智能网联汽车产业相关企业提供全流程智能网联测试检验和研发验证服务,将加速推动区域内新质生产力发展。据了解,国家智能网联汽车质量检验检测中心(湖南)占地409亩,拥有直径300米的淋雨动态广场、长1.5公里的直线性能路、4种坡度(10%、20%、30%、60%)的标准坡道、长186米的涉水池、长300米的ABS试验路、长520米的车外噪声试验路等试验道路,还能模拟欧洲、北美、东南亚等地区多国海外道路测试场景,是场景齐全、功能完善、试验道路性能优秀的国内一流试验场,可支持开展各级别智驾研发测试、全球各国NCAP主动安全摸底测试、ECE法规测试、自动驾驶准入测试等服务。中国汽车工程研究院股份有限公司党委书记、董事长周玉林介绍,本次将国检中心布局在湖南湘江新区,是长沙抓住国家智能网联汽车“车路云一体化”应用试点城市机遇、打造全球研发中心城市的关键一子,能助推长沙智能网联汽车产业发展。“中国汽研也将进一步丰富‘车路云一体化’应用场景,加强与各生态企业间的交流合作,邀请更多生态企业汇聚湘江,支撑长沙智能网联汽车产业发展。”周玉林说。论坛上,湖南省数据标注产业联盟也正式宣告成立。首批成员包括24家行业企业、高校及科研院所,旨在推动数据标注服务的标准化、高效化,促进数据资源的共享与利用。联盟筹备期间已促成5项合作意向,合同总金额高达3.9亿元。
  • 半导体、新能源汽车表现亮眼 天准科技H1净利同比增长超40%
    8月18日,苏州天准科技股份有限公司发布2022 年半年度报告。报告期内公司实现营业收入 4.65亿元,比去年同期增长 25.09%;实现归属于母公司所有者的净利润 312.42 万元,比去年同期增长 41.45%;归属于上市公司股东的扣除非经常性损益的净利润345.81万元,同比扭亏为盈。主要会计数据本报告期(1-6月)上年同期本报告期比上年同期增减(%)营业收入465,019,744.47371,736,511.4925.09归属于上市公司股东的净利润3,124,203.412,208,624.5341.45归属于上市公司股东的扣除非经常性损益的净利润3,458,051.26-5,654,963.02不适用经营活动产生的现金流量净额-291,959,115.18-226,710.154.21不适用本报告期末上年度末本报告期末比上年度末增减(%)归属于上市公司股东的净资产1.509,489.905.421.539.875,198.22-1.97总资产2.746,542,490.872.591.476.461.375.98主要会计数据主要业务情况 2022 年公司持续开拓半导体及泛半导体、新能源汽车、消费电子三大领域,报告期内: (1)在半导体及泛半导体领域,实现营业收入 22,314.11 万元,同比增长 53.86%,占公司营业收入的 47.99%; (2)在新能源汽车领域,实现营业收入 8,304.82 万元,同比增长 32.11%,占公司营业收入的 17.86%; (3)在消费电子领域,实现营业收入 15,883.04 万元,同比下降 3.06%,占公司营业收入的34.16%。主要产品及服务情况公司主要产品为工业视觉装备,具体包括视觉测量装备、视觉检测装备、视觉制程装备和智能网联方案等。视觉测量装备,利用多种视觉传感器结合精密光机电技术,通过自主研发的机器视觉算法对 工业零部件进行高精度尺寸测量,包括实验室用离线式测量、工业流水线用在线式测量,广泛应用于包括消费电子、PCB、半导体在内的精密制造各行各业。 视觉检测装备,利用视觉传感器获取被检零部件的图像等信息,通过机器视觉算法、深度学习算法等技术手段,实现缺陷检测,并按照缺陷特性进行分类分级,代替目前普遍采用的人眼检测;可广泛应用于消费电子零部件、光伏硅片、半导体、PCB 等各领域产品及零部件的缺陷检测。 视觉制程装备,将机器视觉引导定位、智能识别、测量检测等功能融入到组装生产设备中, 在线实时指导生产环节,实现高精度的组装生产,显著提升生产效率、品质及智能化水平,主要产品包括点胶检测一体设备、LDI 激光直接成像设备、智能检测组装专机等,广泛应用于消费电子、PCB、新能源、汽车等领域。 公司深耕智能网联领域,逐渐发展出了智能驾驶域控制器、车路协同方案、AI 边缘计算平台等产品线。智能驾驶域控制器基于边缘计算芯片研发,应用于国内众多头部自动驾驶公司的无人物流车、无人出租车、无人巴士、无人工程车等车辆的前装和后装;车路协同方案基于边缘计算MEC 研发,提供多传感器融合感知全息路口解决方案,应用于多个国家级智能网联示范区;公司于 2022 年 6 月份与地平线正式达成深度合作,作为地平线征程 5 芯片的官方授权硬件 IDH合作伙伴,围绕高级别智能驾驶、车路协同等大交通领域开展技术研发与产品的深度合作,为智能汽车行业提供自动驾驶域控制器和舱驾一体中央计算控制器解决方案。 2022 年,公司进一步明确了新产品的选择标准,公司未来的新产品都将符合标准化、高技术门槛、大市场空间的特点。标准化产品将有效提升公司的研发、生产及服务的效率,进而提升盈利能力;开发高技术门槛的产品,更能发挥公司的技术优势,确保中长期的竞争力。
  • 汽车及汽车零部件强制认证执行标准发布
    为保证强制性产品认证制度的有效实施,现就汽车及汽车零部件产品强制性认证执行标准的有关要求公告如下:   一、新申请认证的产品需按照附表中所列标准要求(含实施日期要求)进行认证。   二、对于标准修订的情况,如果无新增试验项目,已获证产品无须再进行实验,可直接换发新版认证证书 对于新版标准实施前已经出厂、投放市场并且已经不再生产的获证产品,无需按新版标准重新进行确认和换发新版认证证书。   三、对于已获证产品,如标准已明确规定在生产产品实施过渡期的,持证人应在标准规定的日期前,依据相应标准完成认证证书的变更、换版工作 如标准规定的实施过渡期不足本公告发布后12个月的,持证人应在本公告发布后12个月内依据相应标准完成认证证书的变更、换版工作。   四、对于在本公告规定的各标准换版截止日期后,仍未完成证书换版工作的,认证机构应暂停相应产品的认证证书,逾期三个月仍未完成证书换版工作的,认证机构应撤销相应产品的认证证书。   五、各相关指定实验室应在2011年12月31日前,向我委认证监管部上报依据附表中所列标准检测能力情况,以及获得实验室资质认定和认可的情况。   表1.新修订的标准 序号 标准号及名称 发布日期 实施日期 认证标准执行日期规定 1 GB 11555-2009《汽车风窗玻璃除霜和除雾系统的性能和试验方法》(汽车认证实施规则试验项目编号:01—06,01-07) 2009.09.30 2011.01.01 无 2 GB 11550-2009 《汽车座椅头枕强度要求和试验方法》(汽车认证实施规则试验项目编号:02-04) 2009.09.30 2011.01.01 新认证的M1类车型,自2011年1月1日实施,新认证的M1类外的车型,本标准自2011年7月1日起实施;在生产M1类车型,自2012年1月1日实施,对于在生产的M1类外的车型,本标准自2012年7月1日起实施。 3 GB 11566-2009 《乘用车外部凸出物》(汽车认证实施规则试验项目编号:02-07)2009.09.30 2011.01.01 新认证车型,自2011年1月1日实施;对于在生产车型,自2012年1月1日实施。 4 GB 11552-2009《乘用车内部凸出物》(汽车认证实施规则试验项目编号:02—08) 2009.09.30 2012.01.01 新认证车型,自2012年1月1日实施;在生产车型,自2013年1月1日实施。 5 GB 16897-2010《制动软管的结构、性能要求及试验方法》(汽车认证实施规则试验项目编号:06-03) 2010.01.10 2011.07.01 无 6 GB/T 18332.1-2009《电动道路车辆用铅酸蓄电池》(汽车认证实施规则试验项目编号:02-20) 2009.05.06 2009.11.01 无 7 GB 7063-2011《汽车护轮板》(汽车认证实施规则试验项目编号:02-10) 2011.05.12 2012.01.01 对于新认证车型,自2012年1月1日实施;对于在生产车,自2014年1月1日实施。 8 GB 11557-2011《防止汽车转向机构对驾驶员伤害的规定》(汽车认证实施规则试验项目编号:02-14) 2011.05.12 2012.01.01 对于新认证车型,自2012年1月1日实施,对于在生产产品,自2013年1月1日实施。 9 GB 11568-2011《汽车罩(盖)锁系统》(汽车认证实施规则试验项目编号:01-15) 2011.05.12 2012.01.01 无 10 GB14023-2011《车辆、船和自由内燃机驱动的装置无线电骚扰特性 限值和测量方法》(汽车认证实施规则试验项目编号:03-06) 2011.07.29 2012.01.01 无   表2.新增的标准 序号 标准号及名称 发布日期 实施日期 认证标准执行日期规定 1 GB 26134-2010《乘用车顶部抗压强度》(汽车认证实施规则试验项目编号:01-21) 2011.01.14 2012.01.01 无 2 GB/T 14172-2009《汽车静倾翻稳定性台架试验方法》(汽车认证实施规则试验项目编号:01—03) 2009.03.23 2010.01.01 无 3 GB24315-2009《校车标识》(汽车认证实施规则试验项目编号:01-01-01) 2009.09.30 2010.01.01 无 4 GB 24406-2009《专用小学生校车座椅及其车辆固定件的强度》(汽车认证实施规则试验项目编号:02-03) 2009.09.30 2010.07.01 无 5 GB 24407-2009《专用小学生校车安全技术条件》(汽车认证实施规则试验项目编号:01-18) 2009.09.30 2010.07.01 新认证车型自2010年7月1日实施,其中第4.2条2012年1月1日实施。 6 GB 25990-2010《车辆尾部标志板》(汽车认证实施规则试验项目编号:04-15) 2011.01.10 2012.01.01 无 7 GB 25991-2010《汽车用LED前照灯》(汽车认证实施规则试验项目编号:04-02) 2011.01.10 2012.01.01 无 8 GB/T 24552-2009《电动汽车风窗玻璃除霜除雾系统的性能要求及试验方法》(汽车认证实施规则试验项目编号:01-06/07) 2009.10.30 2010.07.01 无 9 GB/T 24549-2009《燃料电池电动汽车 安全要求》(汽车认证实施规则试验项目编号:02-20) 2009.10.30 2010.07.01 无 10 GB/T 4094.2-2005《电动汽车操纵件、指示器及信号装置的标志》(汽车认证实施规则试验项目编号:01-12) 2005.07.13 2006.02.01 无 11 GB 26511-2011《商用车前下部防护要求》(汽车认证实施规则试验项目编号:02-22) 2011.05.12 2013.01.01 对新认证车型自2013年1月1日实施,对在生产产品自2015年1月1日实施。 12 GB 26512-2011《商用车驾驶室乘员保护》(汽车认证实施规则试验项目编号:02-23) 2012.01.01 2012.01.01 无 13 GB/T 18487.1-2001《电动车辆传导充电系统一般要求》(汽车认证实施规则试验项目编号:02-20) 2001.11.02 2002.05.01 无   二○一一年十一月二十五日
  • 市场监管总局(标准委)发布一批公共安全、绿色可持续、高新技术等领域重要国家标准
    市场监管总局(标准委)发布一批公共安全、绿色可持续、高新技术等领域重要国家标准近日,市场监管总局(标准委)围绕公共安全、绿色可持续、高新技术等领域,集中发布一批重要国家标准,充分发挥标准在经济社会发展中的支撑作用。在公共安全领域,《一次性口罩制造包装生产线 通用技术要求》国家标准,明确一次性口罩的分类,规定一次性口罩的尺寸要求、口罩带与口罩体连接处断裂强力要求以及成品合格率等,将大大提升一次性口罩自动化生产速度和品质,为疫情防控工作保驾护航。《消毒剂灌装生产线通用技术条件》国家标准,有利于提高消毒剂生产设备的安全性和稳定性,提高消毒剂产品质量,有效帮助企业快速提高消毒剂生产能力,为疫情防控源源不断地提供消毒剂产品做好保障支撑。新修订发布的《电动汽车碰撞后安全要求》国家标准,针对目前出现的动力电池安装于车辆后部导致碰撞时易起火爆炸的安全隐患,增加了车辆后部碰撞安全要求以及测试方法,同时修改了侧面碰撞的适用范围,完善了防触电保护要求,有利于提升我国电动汽车安全技术水平,切实保障消费者生命财产安全。《城市轨道交通消防安全管理》国家标准,从消防安全组织和职责、日常防火管理、消防设施管理、灭火和应急疏散预案与演练、消防宣传教育培训等方面对城市轨道交通消防安全提出要求,对于规范和提高我国城市轨道交通消防安全管理和水平、保障道路交通安全具有重要意义。此外,还发布了《海上设施防火与防爆设计评估原则》《核电厂安全级电力系统准则》《核电厂安全系统可靠性分析要求》《电气运行场所的人身安全约束指南》《电气安全 风险预警指南》《消防电子产品环境试验方法及严酷等级》等国家标准。在绿色可持续领域,《公用纺织品洗涤场所节水管理规范》国家标准,对用于酒店、医院等洗涤量、用水量较大的公用纺织品洗涤场所作出规范,加强其用水管理和定额管理,对于提高我国水资源利用效率、支撑节水型社会建设具有重要意义。《车用动力电池回收利用 梯次利用》等2项国家标准,能够指导企业开展动力电池梯次利用,规范梯次利用产品标识,促进资源最大化高效利用,避免新品电池制造带来的资源消耗、能源消耗和环境负荷物质,促进新能源汽车产业健康可持续发展。此外,还发布了《循环再利用涤纶生态技术要求》《公共机构能耗定额标准编制通则》《车用生物天然气》《果蔬类周转箱循环共用管理规范》《塑料》等系列国家标准。在高新技术领域,《汽车驾驶自动化分级》国家标准,综合考量动态驾驶任务、最小风险策略和设计运行范围等多个维度,将汽车驾驶自动化等级划分为0-5级,并提示相应级别下汽车用户应承担的驾驶任务,更加系统和全面地对分级进行描述,有利于增进消费者对自动驾驶技术的理解,改善消费者的滥用、误用现象,提升驾驶安全性。《深海油田钻采用高强韧合金结构钢棒》国家标准,可进一步提升我国深海油气钻采用合金结构钢的整体技术水平,加快产业发展,促进技术创新,增强产品的国内外市场竞争力。此外,还发布了《电动汽车用传导式车载充电机》《电动汽车用混合电源技术要求》《电动客车顶部接触式充电系统 第1部分:通用要求》《航天工程技术成熟度评价指南》《航天单机产品成熟度定级规定》等国家标准。
  • 多家红外热成像企业参与编制,推动国家标准《汽车用被动红外探测系统》发布实施
    近日,全国汽车标准化技术委员会正式发布了国家标准《汽车用被动红外探测系统》(GB/T 43249-2023),该标准自2018年开始历经5年时间,在各方组织的联合推动下,终于成功面世发布。众多红外热成像企业包括海康微影、睿创微纳、高德红外、飒特红外、轩辕智驾等,依托公司强大的科技实力与多年红外技术的沉淀,全程参与并大力支持该国标实施发行,推动红外热成像技术在汽车行业的应用和发展。什么是被动红外技术被动红外技术简单理解就是红外热成像技术,该技术最先在军事上应用,但随着市场需求的扩大和更多资本的投入,热成像技术逐渐扩展到预防检测、消防、制程控制、安防、汽车、环境监测等民用领域。被动式红外技术是利用大于绝对温度的物体自身会向外发射一定波长的红外光束的原理,并利用红外图像传感器来感知目标物,也就是热成像技术。其探测范围广、距离远、穿透性强、防强光照射。在汽车领域里,基于红外热成像技术的夜视系统可以大幅提升汽车夜间视觉感知能力。这一功能前些年由国外垄断与技术封锁,原本只在高端进口车型才有配置。近年来随着软硬件实现国产化,红外热成像夜视系统这只“旧时王谢堂前燕”已然“飞入”更多的寻常车型,并成为前装后装市场新的增长点。左图为可见光,右图为远红外《汽车用被动红外探测系统》标准实施的意义《汽车用被动红外探测系统》国家标准的实施,标志着车载红外热成像技术行业内的权威认可。车载红外热成像产品可广泛应用于乘用车、商用车、特种车、高铁和轨道交通的前装、后装及智能驾驶解决方案等,能解决雾霾雨雪等恶劣天气环境、夜间光照不良、眩光视线不佳等影响安全驾驶的重点问题,结合可见光摄像头、激光雷达、毫米波雷达等传感器实现多维感知,提升智能驾驶系统的安全性和可靠性。红外热成像的加速“上车”,将开启智能驾驶的新蓝海。
  • 上海汽车芯片工程中心和检测认证公共实验室揭牌,两平台作用何在?
    12月6日,在“车芯联动,创芯未来”2023上海市汽车芯片产业创新发展工作推进会上,上海汽车芯片工程中心、上海汽车芯片检测认证公共实验室揭牌。汽车芯片是汽车和集成电路两大产业的结合体。会上,上海汽车芯片产业联盟聚焦整车、零部件企业需求,发布了汽车芯片产品攻关榜单,涵盖MCU、SoC、传感器等多种类型,共计10款汽车芯片产品,拟通过揭榜挂帅方式,面向全国遴选优势企业开展技术攻关。相关整车、零部件与芯片企业围绕车规级MCU、高边驱动、隔离芯片、SoC芯片等汽车芯片产品进行了攻关项目签约。此举将充分发挥整车、零部件企业终端应用的引领作用,促进上下游产业链协同创新。12月6日,“车芯联动,创芯未来”2023上海市汽车芯片产业创新发展工作推进会举行。澎湃新闻记者 俞凯 图2025年将培育百家汽车芯片设计企业上海市经信委主任张英在推进会上介绍本市汽车芯片产业发展情况时透露,汽车和集成电路两大产业是上海战略性、支柱性、先导性产业,上海已布局8家整车企业、600余家国内外主要零部件企业,今年1-10月新能源汽车产量103万辆,占全国14%,集成电路产业规模超3800亿元,约占全国25%。上海“车芯联动”有着良好基础,在终端应用牵引上取得了一定成效。下阶段,上海将聚焦提升技术创新硬核力、场景应用支撑力、产业竞争软实力,进一步提升汽车芯片产业核心竞争力,力争到2025年形成较为完善的汽车芯片产业体系,培育2家以上汽车芯片IDM模式企业、100家以上芯片设计企业,构建涵盖芯片设计、制造、封装、测试、认证的车规级芯片产业完整体系,持续保持全国领先水平。张英表示,为实现上述目标,上海将加大汽车芯片供给能力,加大车用EDA研发力度,全面提升汽车芯片设计水平,加快补齐芯片封装测试能力,积极推进IDM发展模式;推动自主芯片装车应用,发挥整车、零部件企业的终端应用牵引作用,推动相关保险机构设计汽车芯片保险产品;打造汽车芯片产业生态,建设汽车芯片工程中心,建立汽车芯片检测认证平台,提升汽车芯片标准化能力,推动专业人才体系建设。两个平台的揭牌成立作用何在?本次揭牌的上海汽车芯片检测认证公共实验室,由上海机动车检测认证技术研究中心有限公司承建,将为汽车芯片产业链上下游企业提供AEC-Q检测、CNAS资质认可等服务。上海机动车检测中心副总经理苍学俊在接受采访时指出,汽车芯片跟传统的消费类电子芯片有很大不同,它种类特别多,应用环境又很苛刻,而且对安全的要求特别高,虽然占整车的比重价值不高,但它一旦发现问题,造成的损失和后果是很大的。所以汽车芯片的质量安全验证非常关键,今天揭牌成立的上海汽车芯片检测认证公共实验室,就是要打造一个能够对汽车芯片进行安全质量检验、检测、验证的公共服务平台。“其实,在汽车电子芯片的行业里面,大家在车规级验证过程中一直有一种误区,认为好像通过了一些车规的高低温、震动等环境检测就可以了。实际上更重要的,是要进行功能安全和信息安全的验证,避免一些安全风险,过去这一点往往被忽略。”苍学俊举例说,自动驾驶感知融合的处理芯片,如果在计算过程和逻辑处理上出现一些问题,就会造成很严重的安全后果。比如说它的一些通讯芯片,如果安全防护做得不到位,很容易被外界攻击,数据传输过程当中的安全性、完整性、有效性等都会受到损失。如果要发展自主的车规级芯片,检测验证这一关是非常关键的。澎湃新闻记者从推进会上同时了解到,上海汽车芯片工程中心作为一个第三方共性技术研究平台,致力于为汽车芯片产业链上下游企业提供设计研发、工艺协同优化、中试及小批量量产等服务,协助打造高可靠性的汽车芯片产品。上述两大平台的揭牌成立,有助于上海整个汽车芯片应用生态的形成,更好地促进供应链上下游融合发展。
  • 免驾照|飞行汽车已在广州布局 试验箱助力加速“起飞”
    p style=" text-align: justify text-indent: 2em " span style=" font-family: & quot times new roman& quot " strong 仪器信息网讯 /strong 近日,据外媒报道,亿航公司(EHang)已经和广州市政府达成战略合作,广州成为亿航全球首个空中交通试点城市,未来要在广州11区范围内部署亿航智能载人级自动驾驶飞行器的飞行试点和航线的落地。广州市政府表示,对亿航的这个试点项目十分有信心,会为该公司的自动驾驶飞行汽车项目提供大力支持。 /span /p p style=" text-align: center " img style=" max-width: 100% max-height: 100% width: 350px height: 195px " src=" https://img1.17img.cn/17img/images/201908/uepic/3a8080f2-1fad-4bf7-ab26-3f9c0cea3ea7.jpg" title=" 免驾照飞行汽车已在广州布局 试验箱助力加速“起飞”.jpg" alt=" 免驾照飞行汽车已在广州布局 试验箱助力加速“起飞”.jpg" width=" 350" height=" 195" border=" 0" vspace=" 0" / /p p style=" text-align: center " span style=" font-family: & quot times new roman& quot font-size: 14px " 图 |亿航公司飞行汽车展示(来源:汽车之家) /span /p p style=" text-align: justify text-indent: 2em " span style=" font-family: & quot times new roman& quot " strong 飞行汽车不用考驾照 /strong /span /p p style=" text-align: justify text-indent: 2em " span style=" font-family: & quot times new roman& quot " 众所周知,想开车,就不得不先考个驾驶证。但是对于还多人来说,听到考驾驶证也许多多少少也一点害怕,因为经常会听到别人说驾驶证是多难拿。对于年轻人来说还好,但是对于年纪大一点的学员就不是那么简单了。 /span /p p style=" text-align: center text-indent: 0em " img style=" max-width: 100% max-height: 100% width: 350px height: 263px " src=" https://img1.17img.cn/17img/images/201908/uepic/90c7483c-57f6-412a-bf07-11f9e7dc951b.jpg" title=" 免驾照飞行汽车已在广州布局 试验箱助力加速“起飞”.jpg" alt=" 免驾照飞行汽车已在广州布局 试验箱助力加速“起飞”.jpg" width=" 350" height=" 263" border=" 0" vspace=" 0" / /p p style=" text-align: center " span style=" font-family: & quot times new roman& quot font-size: 14px " 图 |考驾照难(来源:网络) /span /p p style=" text-align: justify text-indent: 2em " span style=" font-family: & quot times new roman& quot " 清华大学发动机热力学及流体力学专家张扬军是飞行汽车领域的知名人物,他认为飞行汽车有三大特征:即时垂直起降、地面行驶为主、智能无人驾驶。而且必然是智能无人驾驶。所以,开飞行汽车不用担心不会驾驶,也不用考驾照。 /span /p p style=" text-align: justify text-indent: 2em " span style=" font-family: & quot times new roman& quot " strong 全球多个国家正在积极研发飞行汽车 /strong /span /p p style=" text-align: justify text-indent: 2em " span style=" font-family: & quot times new roman& quot " 以2017年的数据,拥有市场竞争力并且已经投入生产飞行汽车的企业就有三家,分别是斯洛伐克的AeroMobil公司、美国的Terrafugia公司以及荷兰的PAL-V公司。2017年9月,腾讯以9000万美元领投德国飞行出租车初创公司Lillium;11月8日,波音公司宣布收购极光飞行科学公司(AuroraFlight Sciences)。 /span /p p style=" text-align: justify text-indent: 2em " span style=" font-family: & quot times new roman& quot " 根据《麻省理工科技评论》的一份不完全统计,世界范围内有近 20 款飞行汽车项目正在进行当中,从事飞行汽车研发的公司远远超过十家,包括多次出现在镜头前的Kitty Hawk、Lilium、Aeromobil、PAL-V、Uber、Airbu、EHang,以及公司创始人经常来中国“访问”的Terrafugia,还有Zee.Aero、Moller International、Volocopter等公司。 /span /p p style=" text-align: center text-indent: 0em " img style=" max-width: 100% max-height: 100% width: 500px height: 600px " src=" https://img1.17img.cn/17img/images/201908/uepic/c264c0bb-2bdf-43bf-b9c2-c0ca7f2a6539.jpg" title=" 免驾照飞行汽车已在广州布局 试验箱助力加速“起飞”.jpg" alt=" 免驾照飞行汽车已在广州布局 试验箱助力加速“起飞”.jpg" width=" 500" height=" 600" border=" 0" vspace=" 0" / /p p style=" text-align: center " span style=" font-family: & quot times new roman& quot font-size: 14px " 图 | 目前正在进行的飞行汽车计划 (来源:麻省理工科技评论) /span /p p style=" text-align: justify text-indent: 2em " span style=" font-family: & quot times new roman& quot " strong 飞行汽车普及道阻且长 /strong /span /p p style=" text-align: justify text-indent: 2em " span style=" font-family: & quot times new roman& quot " 根据各家公司目前所设计的飞行器或产品计划,飞行汽车主要是用于解决个人中短途的交通问题,也就是说,主要为城市内的短程交通提供服务。飞行汽车要真正飞上街头,诸多安全隐患都需要关注,比如如何规划交通路线、下雨天防雷、高楼层防噪音、日常防隐私泄露、防扰航等,这些问题都将成为飞行汽车实现大规模普及的“拦路虎”。 /span /p p style=" text-align: justify text-indent: 2em " span style=" font-family: & quot times new roman& quot " 飞行汽车是由许多个零部件组成的复杂产品,其产品可靠性也尤为重要,严苛的环境考验着飞行汽车的电子系统,电子设备的可靠性对整车的可靠性起主导作用。考虑到飞行汽车的使用环境包括了温度、湿度、振动、雨水、耐老化性能、电压波动以及电压冲击等因素,汽车电子产品环境试验的主要检测项目有供电环境试验、机械环境试验、气候环境试验、化学环境实验等,需用到针刺挤压试验机、跌落实验机、高低温试验箱、冷热冲击试验箱、盐雾腐蚀试验箱、淋雨试验箱、砂尘试验箱、光老化试验箱等仪器。 /span /p p style=" text-align: center " img style=" max-width: 100% max-height: 100% width: 350px height: 350px " src=" https://img1.17img.cn/17img/images/201908/uepic/528922f9-3f19-451e-ae4e-e224bf8b7820.jpg" title=" 免驾照飞行汽车已在广州布局 试验箱助力加速“起飞”.jpg" alt=" 免驾照飞行汽车已在广州布局 试验箱助力加速“起飞”.jpg" width=" 350" height=" 350" border=" 0" vspace=" 0" / /p p style=" text-align: center " span style=" font-size: 14px font-family: & quot times new roman& quot " 图 | a href=" https://www.instrument.com.cn/list/sort/45.shtml" target=" _self" style=" color: rgb(0, 112, 192) text-decoration: underline " span style=" font-size: 14px font-family: & quot times new roman& quot color: rgb(0, 112, 192) " 高低温试验箱 /span /a (来源:仪器信息网) /span /p p style=" text-align: justify text-indent: 2em " span style=" font-family: & quot times new roman& quot " strong 结语 /strong /span /p p style=" text-align: justify text-indent: 2em " span style=" font-family: & quot times new roman& quot " 在全球范围内,中国大多数城市的交通密集度是比较高的。飞行汽车项目可以凌驾在拥堵的公路之上,新增一个互不干预的交通基础设施层级。若飞行汽车能够普及,交通拥堵的情况也会成为过去式。 /span /p p style=" text-align: justify text-indent: 2em " span style=" font-family: & quot times new roman& quot " 对于飞行汽车,您是否期待呢? /span /p p br/ /p
  • 《国家汽车芯片标准体系建设指南(2023版)》(征求意见稿)发布
    为系统部署和科学规划汽车芯片标准化工作,引领和规范汽车芯片技术研发和匹配应用,推动汽车芯片产业的健康可持续发展,我们组织有关单位编制完成了《国家汽车芯片标准体系建设指南(2023版)》(征求意见稿)(见附件1)。现公开征求社会各界意见,如有意见或建议,请填写《征求意见反馈信息表》(见附件2)发送至 KJBZ@miit.gov.cn (邮件主题注明:国家汽车芯片标准体系建设指南征求意见反馈)。公示时间:2023年3月28日-2023年4月28日联系电话:010-68205261《国家汽车芯片标准体系建设指南(2023版)》(征求意见稿)一、基本要求(一)指导思想坚持以习近平新时代中国特色社会主义思想为指导,全面贯彻党的二十大和历次全会精神,积极落实《国家标准化发展纲要》要求,加快推进科技强国、制造强国建设,构建跨行业、跨领域、适应我国技术和产业发展需要的国家汽车芯片标准体系,充分发挥标准的基础性、引领性和规范性作用,有序推进标准研制和贯彻实施,加速推动汽车芯片研发应用,支撑和保障汽车产业健康可持续发展。(二)基本原则立足国情,统筹资源。结合我国汽车芯片技术和产业发展的现状及特点,发挥政府主管部门在顶层设计、组织协调和政策制定等方面的引导作用,鼓励行业机构、上下游企业积极参与,协力制定政府引导和市场驱动相结合的建设方案,建立与国家芯片等元器件标准体系相衔接,适合我国国情的汽车芯片标准体系。基础先立,急用先行。分阶段规划布局汽车芯片标准体系建设重点任务,结合行业发展现状和未来应用需求,合理统筹技术标准的制修订工作进度,注重国家标准、行业标准与国外标准相协调,加快推进基础、共性和重点产品等急需标准项目的研究制定。创新驱动,融合发展。发挥标准在技术创新、成果转化、整体竞争力水平提升等方面的规范和引领作用,以产业创新发展需求为导向,充分融合汽车和集成电路行业在技术研发、产业化发展和市场推广等方面优势,加强行业统筹协调,推动汽车芯片产业健康有序发展。开放合作,协同推进。发挥汽车、集成电路标委会积极作用,构建统筹协调的工作机制,整合汇聚汽车、集成电路等行业优势资源,强化各方通力协作,注重与国际标准协调统一,以开放兼容的视野建立并持续完善汽车芯片标准体系,形成标准对技术进步与产业发展的有效支撑。(三)建设目标根据汽车芯片技术现状、产业应用需要及未来发展趋势,分阶段建立适用我国技术和产业需求、与国际标准协调统一的汽车芯片标准体系;优先制定基础、通用、重点产品等急需标准,推动汽车芯片共性技术发展;根据技术成熟度逐步推进产品应用和匹配试验标准制定,满足汽车产业发展需求。通过建立完善的汽车芯片标准体系,引导和推动我国汽车芯片技术发展和产品应用,培育我国汽车芯片技术自主创新环境,提升整体技术水平和国际竞争力,构建安全、科学、高效和可持续的汽车芯片产业生态。到2025年,制定30项以上汽车芯片重点标准,涵盖环境及可靠性、电磁兼容、功能安全及信息安全等通用要求,控制芯片、计算芯片、存储芯片、功率芯片及通信芯片等重点产品与应用技术要求,以及整车及关键系统匹配试验方法,以引导和规范汽车芯片产品实现安全、可靠和高效应用。到2030年,制定70项以上汽车芯片相关标准,实现基础、通用要求、产品与技术应用以及匹配试验等重点领域均有标准支撑,加快推动汽车芯片技术和产品健康发展。二、建设思路汽车芯片标准体系规范对象包括汽车用集成电路、分立器件、传感器和光电子等元器件及模块。为保证该标准体系的可读性和贯彻推广,采用行业惯常使用的名称“汽车芯片”作为该标准体系的名称。整体建设思路:基于汽车芯片技术结构,适应我国汽车芯片技术产业现状及发展趋势,形成从汽车芯片应用场景需求出发,以汽车芯片通用要求为基础、各类汽车芯片应用技术条件为核心、汽车芯片系统及整车匹配试验为闭环的汽车芯片标准体系技术结构。汽车芯片标准体系技术结构,以“汽车芯片应用场景”为横向出发点,包括动力系统、底盘系统、车身系统、座舱系统及智能驾驶五个方面;向上延伸形成基于应用场景需求的汽车芯片各项技术规范和试验方法,根据标准内容分为基础通用、产品与技术应用和匹配试验三类标准:基础通用类标准包含汽车芯片的共性要求;产品与技术应用类标准基于各类汽车芯片产品技术和应用特点分为多个技术方向,结合我国汽车芯片产业成熟度和发展趋势确定标准制定需求,制定相应标准;匹配试验类标准包含芯片与系统和整车两个层级的匹配试验验证。三类标准共同实现不同应用场景下汽车关键芯片从器件-模块-系统-整车的技术标准全覆盖,汽车芯片标准体系技术结构图如图1所示。图1汽车芯片标准体系技术结构图应用场景:芯片在汽车不同零部件系统、不同工作场景的功能性能差异较大,因此标准体系应充分考虑汽车芯片的应用场景。芯片在汽车上的应用场景按汽车主体结构,划分为动力系统、底盘系统、车身系统、座舱系统和智能驾驶。基础通用:基于汽车行业对芯片的可靠性、运行稳定性和安全性等应用需求,提取出汽车芯片共性通用要求,主要包括环境及可靠性、电磁兼容、功能安全和信息安全共4个基础通用性能要求。产品与技术应用:根据实现功能的不同,将汽车芯片产品分为控制芯片、计算芯片、传感芯片、通信芯片、存储芯片、安全芯片、功率芯片、驱动芯片、电源管理芯片和其他类芯片共10个类别,再基于具体应用场景、实现方式和主要功能等对各类汽车芯片进行技术方向和标准规划。其中,控制芯片包括,通用要求、发动机、底盘等技术方向;计算芯片包括,智能座舱和智能驾驶等技术方向;传感芯片包括,图像传感器、红外热成像、毫米波雷达、激光雷达、电流传感器、压力传感器、角度传感器等技术方向;通信芯片包括,蜂窝、直连、卫星、蓝牙、无线局域网(WLAN)、超宽带(UWB)、以太网等技术方向;存储芯片包括,静态存储(SRAM)、动态存储(DRAM)、非易失闪存(包括NOR FLASH、NAND FLASH、EEPROM)等技术方向;安全芯片包括通用要求等技术方向;功率芯片包括,绝缘栅双极型晶体管(IGBT)、碳化硅和金属-氧化物半导体场效应晶体管(MOSFET)等技术方向;驱动芯片包括,通用要求、功率驱动芯片、显示驱动芯片等技术方向;电源管理芯片包括,通用要求、电池管理系统(BMS)模拟前端芯片、数字隔离器等技术方向;其他类芯片包括电池管理系统基础芯片(SBC)等技术方向。匹配试验:汽车芯片在满足芯片通用性能要求和自身技术指标基础上,还应符合在汽车行驶状态下与所属零部件系统及整车的匹配要求,因此需要对芯片与系统和整车匹配情况进行试验验证。其中,整车匹配包括整车匹配道路试验、整车匹配台架试验2个技术方向。三、标准体系(一)体系架构依据汽车芯片标准体系的技术结构,综合各类汽车芯片在汽车不同应用场景下的性能要求、功能要求和试验方法,将汽车芯片标准体系架构定义为“基础”、“通用要求”、“产品与技术应用”、“匹配试验”四个部分,同时根据各具体标准在内容范围、技术要求上的共性和区别,对四部分做进一步细分,形成内容完整、结构合理、界限清晰的17个子类(如图2所示,括号内数字为体系编号)。图2汽车芯片标准体系架构(二)体系内容汽车芯片标准体系表见附件,涵盖如下标准类型及标准项目。1. 基础(100)基础类标准主要包括汽车芯片术语和定义标准。术语和定义标准主要用于统一汽车芯片领域的基本概念,对汽车芯片标准制定过程中涉及的常用术语进行统一定义,以保证术语使用的规范性和含义的一致性,为各相关行业统一用语奠定基础,同时为其他各部分标准的制定提供规范化术语支撑。汽车芯片术语和定义标准将在现行集成电路相关标准基础上,从芯片产品搭载在汽车上的实际功能和应用角度,对其特有术语进行定义和说明。2. 通用要求(200)通用要求类标准是对汽车芯片的主要共性要求和评价准则进行统一规范,主要包括环境及可靠性、电磁兼容、功能安全和信息安全等方面。环境及可靠性标准主要规范在复杂环境条件下汽车芯片或多器件协作系统的物理可靠性,预防可能发生的各种潜在故障,对芯片的可靠性提出要求,从而提高汽车芯片产品的稳定性。电磁兼容标准主要规范汽车芯片内部系统或多器件协作系统各主要功能节点及其下属系统在复杂电磁环境下的功能可靠性保障能力,其主要目的一是规定芯片电磁能量发射,以避免对其他器件或系统产生影响;二是规定芯片或多器件协作系统的电磁抗干扰能力,使其可在汽车电磁环境之中可靠运行。功能安全标准主要规范汽车芯片企业及芯片产品内部多功能模块的流程管理措施、技术措施等要求,其主要目的是避免系统性失效和硬件随机失效导致的不合理风险。信息安全标准主要规范汽车芯片应满足的信息安全需求和应具备的信息安全功能。通过芯片的信息安全设计、流程管理等措施,避免因攻击导致的芯片数据、外部接口及软硬件安全等受到威胁。3. 产品与技术应用(300)产品与技术应用类标准主要规范在汽车各零部件系统上应用的各类芯片,因其特有功能、性能等不同所应具备的技术指标要求及相应试验方法。此类标准涵盖,控制、计算、传感、通信、存储、安全、功率、驱动、电源管理和其他10个大类。控制芯片标准主要规范汽车上用于整车、发动机、底盘等系统的控制芯片的技术要求及试验方法。计算芯片标准主要规范汽车用于人机交互、智能座舱、视觉融合处理、智能规划、决策控制等领域执行复杂逻辑运算和大量数据处理任务的芯片的技术要求及试验方法。传感芯片标准主要规范感知环境及汽车各系统物理量,并按一定规律转换成可用输入信号的芯片的技术要求及试验方法。通信芯片标准主要规范汽车用于内部设备之间及汽车与外界其他设备进行信息交互和处理的芯片的技术要求及试验方法。存储芯片标准主要规范汽车用于进行数据存储的芯片的技术要求及试验方法。安全芯片标准主要规范汽车内部用于提供信息安全服务的芯片的技术要求及试验方法。功率芯片标准主要规范汽车用于各系统具有处理高电压、大电流能力的芯片的技术要求及试验方法。驱动芯片标准主要规范汽车用于驱动各系统主芯片、电路或部件进行工作的芯片的技术要求及试验方法。电源管理芯片标准主要规范汽车用于内部电路的电能转换、配电、检测、电源信号(电流、电压)整形及处理的芯片的技术要求及试验方法。其他类芯片标准主要规范不属于上述各类的汽车芯片的技术要求及试验方法。一般此类汽车芯片包括,尚在发展阶段的新技术、新产品,暂无法明确固定分类;或者对于汽车应用,该芯片数量较小,无法与上述芯片类别并列。4. 匹配试验(400)匹配试验类标准包括汽车芯片在所属零部件系统或整车搭载状态下的测试试验方法。系统匹配标准主要规范汽车各类芯片在所属零部件系统搭载状态下的功能及性能匹配试验方法,以检测汽车芯片在所属零部件系统上的工作情况。整车匹配标准主要规范汽车各类芯片在汽车整车搭载状态下的功能及性能匹配试验方法,以检测汽车芯片在整车工况下的工作情况。四、组织实施加强统筹组织协调。发挥好全国汽车标准化技术委员会、全国集成电路标准化技术委员会组织作用,组织成立汽车芯片标准联合工作组,加强与全国通信标准化技术委员会、全国信息技术标准化技术委员会、全国北斗卫星导航标准化技术委员会等标准化机构的工作协同,发挥标委会专业优势,做到以汽车行业实际应用需求为导向,充分调动科研院所、行业组织、相关企业及高等院校等单位的积极性,持续完善汽车芯片标准体系,加快推动各项标准制修订工作。强化行业沟通交流。聚焦汽车芯片领域,整合汽车产业链上下游优势资源力量,构建跨行业、跨领域、跨部门协同发展、相互促进的工作机制,集聚相关领域内标准化资源,建立满足发展需求、先进适用的汽车芯片标准体系。实施定期动态更新。加强汽车产业发展中急需的汽车芯片标准需求调研分析,明确汽车芯片技术要求和应用需求,结合汽车芯片技术创新和产业发展趋势,建立相关标准试验验证流程,持续完善汽车芯片标准体系,为推进汽车芯片产业发展和行业管理提供有力保障。深化国际交流合作。加强国际标准和技术法规跟踪研究,深化与国际标准化组织的交流与合作,积极参与联合国世界车辆法规协调论坛(UN/WP.29)、国际标准化组织(ISO)和国家电工技术委员会(IEC)等国际标准化活动,借鉴吸收国际先进标准法规,畅通国际标准及技术交流机制,在汽车芯片相关国际标准制定中发声献智。附件:1.《国家汽车芯片标准体系建设指南(2023版)》(征求意见稿)2. 征求意见反馈信息表工业和信息化部科技司2023年3月28日
  • 欧洲汽车芯片商对华依赖加深:33%收入来自中国市场
    随着美国及其盟国的先进半导体公司撤出中国,芯片市场中一个不那么尖端的领域正更多地转向世界第二大经济体。本季度的收益显示出,在库存过剩和西方对电动汽车的接受度放缓导致销售下滑的情况下,中国对汽车芯片制造业最大企业的重要性。过去两周,恩智浦(NXP)CEO Kurt Sievers将欧洲和美洲工业市场的疲软与今年中国电动汽车销量的“惊人增长”进行了对比。英飞凌CEO Jochen Hanebeck表示,尽管电动汽车市场从低迷中全面复苏仍遥遥无期,但中国的韧性帮助其实现了盈利。对于德州仪器(TI)来说,其所有五个产品市场的中国业务增长高达20%。报道称,随着地缘政治紧张局势蔓延至汽车领域,与中国的深化合作可能成为这些芯片制造商的一把双刃剑。欧盟和美国已对中国进口的电动汽车征收关税。中美在技术方面的紧张关系促使中国努力实现技术自给自足,尤其是在汽车芯片领域。由于这些芯片不依赖于最新的制造工艺,而且基本不受美国出口管制的影响,因此几乎没有什么可以阻止中国加快发展,并最终取代外国芯片制造商。研究人员John Lee和Jan-Peter Kleinhans在最近的一份报告中写道:“正如欧盟强大的汽车行业为英飞凌、恩智浦和意法半导体(ST)等欧洲汽车芯片领军企业提供支持一样,中国电动汽车行业在全球的领先扩张也推动了中国此类芯片供应商的发展。”他们表示,这有助于中国汽车制造商提高竞争力,“这可能会对欧洲企业和国家经济产生重大影响”。麦肯锡预测,到2030年,汽车芯片市场的价值将达到1500亿美元,这是欧洲在半导体行业中表现突出的一个领域。汽车芯片的扩张得益于日益复杂的技术,这些技术正在将汽车(尤其是电动汽车)变成车轮上的计算机,而信息娱乐、自动驾驶功能和安全功能现在完全依赖于微小的电子元件。中国是全球最大的电动汽车生产国和市场,总部位于深圳的比亚迪股份有限公司报告称,7月份乘用车交付量创下340800辆的纪录,较去年同期增长31%。然而,中国制造商主要依赖外国公司提供现代高端汽车所需的多种芯片,包括传感器、电源芯片以及微控制器单元(MCU),后者实际上是用于制动等功能的小型计算机。中国电动汽车销量领先John Lee和Jan-Peter Kleinhans表示,中国汽车芯片制造商目前只能满足国内约10%的需求。这对英飞凌、恩智浦和意法半导体来说是个好消息,它们各自的收入均有约三分之一来自中国。另外,对于瑞萨电子和德州仪器来说,这一比例分别约为25%和20%。中国已要求比亚迪和蔚来等电动汽车公司增加对本土汽车芯片制造商的采购,而中国正在建设的大多数新芯片制造厂都用于汽车。据报道,欧盟委员会担心其芯片制造商有可能在中国失去大量市场份额。虽然季度业绩通常不按地区细分,但本季度向投资者所做的报告让我们了解到中国对欧洲芯片制造商的重要性,尤其是在当前的困难时期:7月25日,总部位于东京的瑞萨电子因营业利润不尽如人意,股价出现15年来最大跌幅。英飞凌CEO Hanebeck在8月5日报告了令人失望的第三季度销售业绩,称西方市场的需求“不温不火”,同时指出中国是一个亮点,见证了“健康的消费需求,这对我们很有帮助,尤其是考虑到我们在中国的汽车市场第一大地位”。意法半导体在下调营收预期、导致其股价创四年来最大跌幅的同时,也强调了今年6月与中国吉利达成的一项长期协议的潜在好处,该协议将为吉利供应电动汽车用的碳化硅(SiC)功率器件,同时还将成立一个联合实验室,“以共享知识和探索创新解决方案”。去年,大众汽车宣布与三安光电成立合资企业,在中国生产碳化硅器件。与此同时,另一家汽车芯片制造商德国博世(Robert Bosch GmbH)在中国苏州签署了一份价值10亿美元、为期10年的合同,用于开发碳化硅功率模块。同样在去年,大众汽车宣布与中国自动驾驶芯片开发商地平线(Horizon Robotics)成立合资企业。由Reva Goujon领导的荣鼎集团研究人员在5月份的一份报告中表示:“欧洲汽车芯片制造商似乎正在追随德国汽车制造商的脚步,选择深化与中国企业的合作,作为在中国市场的保险政策。”问题在于,欧盟和美国是否准备对中国生产自己的汽车芯片的能力采取行动。今年4月,欧盟-美国贸易与技术委员会对中国“非市场经济政策和做法”表示担忧,这些政策和做法可能会导致对传统芯片的过度依赖,并表示他们可能会制定“联合或合作措施”来解决扭曲效应。芯片制造商当然意识到了其中的危险,但至少在公开场合他们表现出了不同程度的担忧。恩智浦CEO Sievers在7月23日表示:“我们都知道中国本土的竞争即将到来”,首先是“低端”MCU。他的解决方案是推动公司向更高性能处理器的发展。行业研究高级技术分析师Ken Hui表示,中国尝试实现芯片供应本地化“将是一个缓慢的过程,因为外国芯片制造商仍然提供高质量和可靠的产品”,而这在汽车市场是尤为重要的资产。鉴于中国新增的芯片制造产能比世界其他国家的总和还要多,赶上来可能只是时间问题。德州仪器CEO Haviv Ilan对中国的态度显然并不乐观。虽然他在7月24日表示“我们可以竞争,我们可以赢得业务”,但他承认竞争正在变得更加激烈。“我认为,如果我们认为这些人只是在做简单的部件,那就错了,”他说。“他们都是雄心勃勃、受过高等教育的竞争对手。”
  • 湖北省规划建设激光雷达计量检测能力,助跑新能源与智能网联汽车新赛道
    在新能源及智能网联汽车产业竞逐的新浪潮中,湖北正抢立潮头——我省新能源汽车产量继续保持高速增长,今年9月全省生产新能源汽车3.2万辆,相当于2020年全年产量,产量占全国的4.2%;今年5月在汉举行的新能源与智能网联汽车产业发展对接会上,总金额661.73亿元的30个重点项目花落湖北……科技赋能,让汽车变得“清洁”又“聪慧”;质量护航,使产业发展高效又安心。近年来,以计量、标准、检验检测与认证认可为代表的国家质量基础设施(NQI)发挥技术优势,积极推动技术成果转化与先行先试,助力湖北抢抓新机遇,打造万亿级汽车产业集群。建成电波暗室服务矩阵湖北省计量测试技术研究院(国家光电子信息产品质量检验检测中心)十米法电磁兼容实验室内。随着大门缓缓打开,一辆新能源汽车驶入实验室内。停入待检区域,车辆正对的是远处两根形状奇异的“天线”……这些试验是用来检验汽车对外界电磁辐射信号强弱以及对外界电磁辐射的抗干扰能力的,通常在电波暗室内进行。新能源汽车大量使用芯片和电子零部件,其电磁辐射信号强度直接关系到驾驶人及乘客的身体健康,以及汽车电子电气系统运行的稳定性,需要按相关标准进行检测,确保质量合格,方可通行市场。据了解,省计量院已构建起“十米法、三米法、一米法”电波暗室服务矩阵,建立覆盖世界主流标准的整车、汽车电子零部件全项电磁兼容测试服务能力。近年来,先后为极目电子、海微科技等汽车电子零部件企业的中控、显示屏等产品提供测试服务。同时,该院还承担着定期为全省充电桩定期“做体检”的任务。新能源汽车技术创新发展,离不开该院可靠的计量检测技术支撑。去年12月,湖北省新能源汽车产业计量测试中心正式在襄阳挂牌落成。该中心已建成覆盖充电桩计量检测、新能源汽车零部件计量检测、铅酸蓄电池检测、金属材料元素分析等全产业链计量测试和科技创新能力;湖北省汽车电子产品安全质量检验中心助力区域汽车电子生产企业在本地实现了研发验证、产品检测、整改咨询;以中汽研汽车检验中心(武汉)有限公司为建设主体的国家新能源汽车质量检验检测中心在数字化转型、驾驶场景试验场、移动污染源防治等领域具备行业领先优势……计量与检验检测,正全方位承托新能源汽车产业跃升之路。据省市场监管局统计,近年来,为服务新能源与智能网联汽车产业,我省共建设国家智能网联汽车质量检验检测中心(湖北)、国家新能源汽车质量监督检验中心等8家国家质检中心;建设湖北省氢燃料电池产品质量检验中心等7家省级质检中心,形成了服务新能源与智能网联汽车产业检验检测需求的全覆盖网络。建立新能源与智能汽车“标准高地”在钢缆牵引下,一辆车疾速撞向障碍物,随着一声巨响,车头瞬间变形……这样的硬核又刺激的碰撞试验,几乎每天都在位于襄阳的国家燃料电池汽车质量检验检测中心的新能源碰撞线频繁上演。新能源汽车已经成为未来汽车工业的发展方向。燃料电池汽车——污染极少、经济性强的新能源车“新宠”,通过催化剂作用,使氢氧在燃料电池中产生电化学反应而获得电能。想要保障燃料电池汽车的安全,就要对其进行完善的测试评价。国家燃料电池汽车质量检验检测中心的建设主体、襄阳达安汽车检测中心有限公司(以下简称“达安中心”),完成了国内首次带氢碰撞试验及车载氢系统检测,开发完成国内首套氢燃料电池汽车碰撞试验后氢泄漏量采集与计算系统。目前,达安中心正在牵头制定《氢燃料汽车碰撞后安全要求》团体标准,将填补国内燃料电池汽车碰撞相关标准的空白。随着一个个填补行业空白的标准出台,湖北正在探索打造新能源汽车领域的“标准高地”。2019年,湖北省新能源汽车标准创新联盟成立,省标准化与质量研究院作为68家相关领域企事业单位参与其中。该联盟明确了今后湖北省新能源汽车技术标准体系构建,以标准之力推动新能源汽车标准化、技术化和产业化。打造北斗应用产业中试公共服务平台北斗导航系统能够“借”给智能汽车一双“慧眼”,用来“看清”路况——智能驾驶需要定位导航、路径规划、环境感知、决策控制,可以说,定位导航技术决定着车辆高精度位置和姿态感知。实现雨雾极端天气驾驶情况监测、利用“高精地图采集+北斗系统”确保无人驾驶的安全性、实现厘米级精度定位、利用激光雷达系统进行无人驾驶的汽车的360度检测……这些都离不开“北斗星”的指引。眼下,省计量院正紧锣密鼓地进行着国家北斗应用产品质检中心的申建工作。该院还将在“十四五”期间申建国家时间频率计量中心湖北应用中心,建立高水平卫星导航北斗/GNSS高精度计量实验室。全力打造北斗应用产业中试公共服务平台,加强相关领域计量检测和认证能力建设,开展北斗应用产品的质量检测、入网认证等工作,推动湖北以北斗芯片、北斗终端、北斗智慧应用等为代表的北斗卫星导航产业集群加速发展,这一举措将为智能网联汽车发展添上强大助翼。加强激光雷达检测技术研究为更好服务新能源车、智能汽车产业发展,未来我省还将建设新能源车电磁兼容检测系统、车规芯片可靠性检测平台等技术基础项目,并加强电动汽车充电设施设备及零部件全寿命周期质量技术研究,吸引新能源车电动系统、电子零部件制造企业向湖北集聚。眼下,省计量院正在加强激光雷达检测技术研究,规划建设激光雷达相关计量检测能力资质。激光雷达被广泛用于无人驾驶和机器人领域,被誉为机器人的“眼睛”,通过发射激光来测量物体与传感器之间的精确距离,L4/L5级新能源车(安装自动辅助驾驶系统或实现全自动驾驶)及智能网联汽车上少不了它的身影。待建成相关计量检测资质后,将进一步推动激光雷达设备产业快速发展,助力“湖北造”新能源和智能汽车越来越“灵敏”。省市场监管局相关负责人透露,目前,我省正在以更集约、更强大的检验检测实力,建成辐射面广、功能齐全、服务优质的认证检验检测聚集区,打造新能源汽车、智能汽车及零部件检验检测、认证认可和标准制修订、人才培养等综合性“一站式”服务平台,让绿色成为湖北高质量发展的鲜明底色。
  • 电动汽车将引发三大产业变革 实现“碳中和”的核心突破口
    “碳中和”是中国与世界其他经济体的共同利益所在。而电动汽车将引发汽车、能源、人工智能三大产业变革。在这三大变革中,以电为主要驱动力的能源变革是实现“碳中和”的核心突破口。“电”这一行业正迎来一场产业变革,而这场变革的主角是亿万大众。具体而言,电动汽车推动了这场能源行业变革。燃油发动机被电机替代,电池取代了燃油,“交流电”与“直流电”可能再起争端,“直流电”在用户端更占上风,轻量化、小型化、智能化成为未来趋势。智慧交通与出行领域一直是愉悦资本深耕的投资根据地。愉悦资本从早年投资易车网,到后来支持蔚来汽车、摩拜单车、途虎养车等企业,再扩展到汽车充电、二手汽车配件及零部件再制造等循环经济领域,投资了能链集团、优信集团、源件星球等企业,进而支持了电动汽车智能化技术企业,如自动驾驶公司Momenta、激光雷达厂商Innovusion等。汽车在居民消费中占据较高比重。电动汽车产业则是被中国企业抓住的宝贵机遇。以“蔚小理”(蔚来、小鹏、理想三家车企)为代表的企业,成为中国电动汽车的拓荒者。在电动汽车如此大的产业崛起浪潮中,也出现了一些猜想:中国能否重现类似上世纪六七十年代日本汽车产业发展的情景?未来中国自造的电动汽车能否广泛出口到全球其他国家?这是一件让各方都充满期待的事。未来,电动汽车产业崛起将带来三大变革。首先是汽车行业的变革;其次是人工智能产业的变革,包括安防、辅助驾驶、自动驾驶等;最后是能源产业的变革。而能源正在成为新的基础设施,其变革将会引领几乎所有行业的变革。电动汽车引发的诸多变革中,特别重要的一项是充换电。电动汽车的充换电网络,会推动“电”整体发生一场巨大变革。以蔚来为例,其早年刚开始做充换电业务时,顶着不小的争议。到后来,国家能源局发布了由蔚来研究制定的相关换电行业标准。如今,换电网络已成为重要基础设施。截至今年7月4日,蔚来用户累计换电达到千万次。愉悦资本投资的能链智电于今年6月在美国纳斯达克上市。该公司探索创新发电场景,帮助充电桩运营商利用光伏为新能源汽车充电,实现清洁能源的自发自用,将绿电引入充电场站。其披露的数据显示,截至目前,其服务充电运营商超800家、充电站超3.3万座;2021年,充电量超过12亿度,约占中国公用充电市场18%。截至今年6月底,全国汽车保有量达3.1亿辆,意味着来自需求端的变革驱动力非常强劲。现在,全球企业家纷纷开展“碳中和”行动。被誉为“风险投资之王”的美国风险投资家约翰杜尔捐款11亿美元设立斯坦福可持续发展学院;2015年,微软公司联合创始人比尔盖茨建立了突破能源基金。2019年,美国纽约市前市长迈克尔布隆伯格向BeyondCarbon项目投资5亿美元,帮助关闭燃煤电厂。2020年,美国亚马逊公司创始人杰夫贝索斯捐赠100亿美元用于“BezosEarth Fund”计划,以应对全球气候变化。“碳”和“电”是同一枚硬币的不同面。实现“碳中和”的最大抓手是能源,电则是能源领域碳减排的核心突破口。统计显示,能源系统碳排放占比约为80%,其中电力系统碳排放占比超过40%。从宏大的叙事到落地生根,电动汽车的作用举足轻重。在实现“碳中和”的目标上,电动汽车将产生巨大的推动作用。电动汽车的普及提高了电池技术进步的边际贡献率,电池与储能技术的边际效应也在增加。同时,“电”的产业链升级正在启动,“碳”“电”交易市场正在形成,氢能与核能前途广阔。对于重构“电”行业,包括发电(风电、光电)、分布式储能、虚拟电网、输配电、调度等都在快速推进中。由于需求端市场巨大,哪怕是任何小的改进,都会产生经济效益。另外,二次电动化已经悄然启动。比如,愉悦资本投资的户外运动装备公司鱼尾科技,已经实现了用轻便、小型的设备为户外露营供电;水上运动智能硬件公司苇渡科技,研发了电动水翼冲浪板。能源正在与互联网/物联网、移动支付及中国制造一起,构成新基础设施,从而重构中国经济。在这一过程中,必将涌现出大量多样的“企业新物种”。中国创业潮历经了三个时代。第一个是启蒙时代,从1978年至1998年的20年,企业主要靠管理制胜。第二个是网络时代,从1998年至2018年的20年,互联网成为创业热土。第三个是新基础设施时代,从2018年开始,新能源、人工智能、物联网等一起形成了新基础设施,一批代表性的企业正在涌现。在“碳中和”引领的浪潮中,谁将是新的最伟大的企业与企业家?我们将拭目以待。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制