当前位置: 仪器信息网 > 行业主题 > >

紧凑型聚变体积中子源

仪器信息网紧凑型聚变体积中子源专题为您整合紧凑型聚变体积中子源相关的最新文章,在紧凑型聚变体积中子源专题,您不仅可以免费浏览紧凑型聚变体积中子源的资讯, 同时您还可以浏览紧凑型聚变体积中子源的相关资料、解决方案,参与社区紧凑型聚变体积中子源话题讨论。

紧凑型聚变体积中子源相关的论坛

  • 【分享】新西兰修订紧凑型荧光灯和电视机的能效标准

    2011年6月7日,新西兰经济发展部发布G/TBT/N/NZL/55号通报:能源效率(用能产品)法规2002的目录1和2修正提案。此次修订的产品是紧凑型荧光灯和电视机,其主要内容如下:紧凑型荧光灯l 能源效率(用能产品)法规2002的目录1修正提案将:1.将紧凑型荧光灯增加到“产品分类”栏,及2.列出了补充的标准,将规定紧凑型荧光灯的测试方法和新的最低性能标准(MEPS)。l 拟议的紧凑型荧光灯的补充标准是:1.澳大利亚/新西兰联合标准AS/NZS 4847.1:2010 普通照明用自镇流灯 – 第1部分:测试方法 – 能源性能将增加到目录1的“测试标准”栏中。2.澳大利亚/新西兰联合标准AS/NZS 4847.2:2010普通照明用自镇流灯 – 第2部分:最低能源性能标准(MEPS)要求将增加到目录1的最低能源性能标准(MEPS)栏中。电视机l 能源效率(用能产品)法规2002的目录1和目录2的修正提案将:1.将电视机增加到“产品分类”栏中;及2.列出了补充的标准,将规定电视机的测试方法,以及新的最低能源性能标准(MEPS)和标签规定。拟议的电视机补充标准是:1.澳大利亚/新西兰联合标准AS/NZS 62087.1:2010 音频、视频及相关设备的功率消耗- 第1部分:测量方法将增加到目录1和2的“测试标准”栏中。2.澳大利亚/新西兰联合标准AS/NZS 62087.2.2:2010音频、视频及相关设备的功率消耗- 第2.2部分:关于电视机的最低能源性能标准(MEPS)和能源等级标签要求将增加到目录1和2的最低能源性能标准(MEPS)栏中。受上述要求规管的、在新西兰制造或进口到新西兰的、并且在该标准生效之日或之后销售的所有设备,必须符合相关标准中规定的要求。该提议将不早于2011年8月28日生效。上述这些标准将协调新西兰的相关要求与澳大利亚已经生效的要求保持一致。电视机的测试方法与IEC 62087, Ed.2.0 (2008)保持一致。紧凑型荧光灯的方法也引用了国际标准,诸如国际电工委员会(IEC)和国际照明委员会(CIE)标准。现行的能源效率(用能产品)法规2002参见:http://www.legislation.govt.nz/regulation/public/2002/0009/latest/whole.html?search=ts_regulation_energy+efficiency_resel&p=1#dlm108730。

  • E+H紧凑型电导率测量仪表Smartec CLD134

    E+H紧凑型电导率测量仪表Smartec CLD134卫生型和无菌环境中环形电导率测量系统E+H紧凑型电导率测量仪表Smartec CLD134是适应于食品、饮料和生命科学领域的电感式电导率测量系统。传感器和变送器集成的紧凑式结构抗干扰且易于使用。系统本体采用食品天然PEEK材料,无接头、无缝结构设计,通过卫生型认证,可以满足上述行业中极其苛刻的卫生要求。Smartec CLD134是确保产品和过程最高安全性和质量的最佳选择。E+H紧凑型电导率测量仪表Smartec CLD134的优势独特的卫生型设计,无二次污染风险取得卫生型应用和无菌场合所有卫生认证生物适应性认证符合USP Cl.VI标准符合 EG 2023/2006 和 1935/2004标准CIP和SIP适用封装式,无接头设计,经久耐用E+H紧凑型电导率测量仪表Smartec CLD134是用于测量食品&饮料行业和生命科学领域的环形电导率:管道系统中介质/介质之间的相分离回流管道中的CIP处理过程控制CIP清洗剂重制过程中的浓度控制管道系统、灌瓶装置、质保系统中的产品监测泄露监测采用以下通信协议和接口:0/4...20mAHARTPROFIBUS DPPROFIBUS PA [color=#ffffff][b]更多参考:E+H http://www.china-endress.com[/b][/color]

  • 【国产好仪器讨论】之厦门锐思捷科学仪器有限公司的锐思捷紧凑型中央纯水系统—INSPIRE (INSPIRE)

    http://www.instrument.com.cn/show/Breviary.asp?FileName=C225403%2Ejpg&iwidth=200&iHeight=200 厦门锐思捷科学仪器有限公司 的 锐思捷紧凑型中央纯水系统—INSPIRE (INSPIRE)已参加“国产好仪器”活动并通过初审。自上市以来,这款产品已经被多家单位采用,如果您使用过此仪器设备或者对其有所了解,欢迎一起聊聊它各方面的情况。您还可以通过投票抽奖、参与调研等方式参与活动,并获得手机电子充值卡。【点击参与活动】 仪器简介: 锐思捷RSJ新款紧凑型中央纯水系统——INSPIRE系列 产品介绍INSPIRE是锐思捷推出的最新一个系列的中等产量实验室中央纯水系统(70-200L/H),适合中小规模实验室集中供水的需求。它不但集当今最先进的水纯化工艺于一身,同时也凝聚了锐思捷多年的纯水系统应用和设计经验。产品特色高度紧凑的模块化设计INSPIRE系统具有灵活的模块组合方式以适合不同客户的应用需求,利于摆放、易于升级。整机采用防锈工艺/材料,外部风格一致,底部制动脚轮的设计简便了设备的放置和安装,同时具备同等产量、配置最小占地的特点,全系列主机 + 500L水箱 + 双泵供水(如上图),设备占地2bar情况下,其产水主机功率500W),只相当于传统工艺的1/4。极低运行成本INSPIRE系统的日常消耗品极少,通常情况下,系统可达到Ⅱ级纯水产出平均消耗品¥0.02/升的水平。先进的技术应用INSPIRE-S200E采用先进的RO+EDI直连技术,RO产水直接作为EDI的进水,无需中间水箱和加压泵,减少中间处理环节的同时避免了二次污染。系统具有特色恒产量控制功能,能够很大程度上克服水温变化导致的系统产量波动。全数字指标监测数字信号实时监测进水压力、进水温度、工作压力、工作温度、回水流速、浓水流速、产水流速、RO膜截留率、RO进水电导率、RO产水电导率、EDI产水电导率及分配管网电导率等多达十数项指标。可靠的安全性能严格执行水电分离设计原则,同时配备水质不合格排放/报警、高/低压保护、高/低液位保护、电器过载保护、紫外失效报警、系统运行参数异常报警和保护,以及全方位漏水保护等功能。高性能控制系统INSPIRE系统使用西门子可编程控制器(PLC)实现自动控制,并采用7”彩色中文触控屏执行多级界面人机互动,系统全面采用数字化传感器实时监测各项运行指标,运行数据使用大容量SD卡记录,支持USB接口打印。同时,还支持有线/无线远程控制升级。技术参数 1. 进水要求:市政自来水; 2. 产水级别:GB6682 III级/II级/I级(超纯水) 3 . 系统产量:RO+RO——70/150L/H(25℃) RO+EDI——200L/H(5-35....【了解更多此仪器设备的信息】

  • 【求助】急需“镅-铍中子源”的中子湿度计

    [size=4]我研究试验急需一台“镅-铍中子源”的中子湿度计,我想打听其测湿范围能达到多少,精度又是多少,能否用于散粒物料的湿度检测,其价格是多少啊?还有就是如何就此写一个实用新型专利啊?[/size]

  • “人造太阳”背后的技术挑战——欧盟发布聚变示范电站设计开发路线图

    2013年01月23日 来源: 中国科技网 作者: 郑焕斌 http://www.stdaily.com/stdaily/pic/attachement/jpg/site2/20130122/021358868035328_change_chd31233_b.jpg 今日视点 据《科学》杂志网站近日报道,欧盟负责聚变研发工作的机构——欧洲聚变发展协会(EFDA)发布了欧盟聚变示范电站(DEMO)设计与开发路线图,计划于2050年建成一座未来可供工业界使用的原型聚变电站。该路线图列出了一份令人生畏的技术清单,其中包括全球聚变科学家和工程师未来数十年需要努力应对的若干技术挑战。 ITER将是聚变发电的主要突破 2006年,由中国、欧盟、印度、日本、俄罗斯、韩国和美国等7个成员国参加的“国际热核聚变实验堆(ITER)计划”正式启动。聚变反应堆利用的是氢同位素(氘和氚)的核聚变反应所释放的能量,这也是太阳和其他恒星的能量来源。利用可控聚变能是解决全球能源和环境问题的一个重要途径,而实现聚变反应堆商业化运行需要三个阶段:即建造ITER装置并据此进行科学和工程研究;设计、建造与运行聚变示范电站;建造商业化聚变反应堆。ITER装置是一个能产生大规模核聚变反应的超导托克马克,俗称“人造太阳”。其中心是高温氘氚等离子体环,等离子体环在屏蔽包层的环型包套中,屏蔽包层将吸收核聚变反应产生的所有中子。根据该计划目前的进展,建造于法国的聚变反应堆将于6年后投入运行,它被认为是人类发展聚变能的主要突破。 在聚变反应堆中,需要利用强磁体、无线电波和粒子束等将聚变燃料等离子体压缩并加热到至少1.5亿摄氏度,使等离子体发生聚变反应。这需要消耗巨大能量,但迄今为止尚没有一座反应堆能够产生净能量增益(即产出能量大于输入能量)。科学家期望ITER能够突破上述障碍,输入50兆瓦(1兆相当于100万)的能量可以产生500兆瓦的聚变功率,其持续时间可保持数分钟。但这仅是一种科学验证,ITER本身将不能被用来发电,发电重任将交给其后继者——聚变示范电站。 然而,目前研究人员才刚开始考虑聚变示范电站的设计工作。从目前的各种迹象来看,聚变示范电站的设计和建造工作将不会被纳入全球性的合作计划。最近韩国宣布它正在从事聚变示范电站(K-DEMO)的初步设计工作;中国也已开始设计“中国聚变工程测试反应堆”,这是介于ITER和聚变示范电站之间的中间步骤。欧洲聚变发展协会制定的路线图虽并未排除国际合作,但将所有研究工作限定在欧盟2014年到2020年聚变预算范围之内。 欧盟聚变示范电站研发路线图 该路线图认为,人类在利用聚变发电方面取得进展的关键在于ITER,因此需要倾力确保其成功,其中包括研究现有小型反应堆的各种运营方案。路线图指出,最大的技术挑战是如何从未来的聚变反应堆中排除核反应后的废气。 ITER和其他类似的现代反应堆底部都有一个偏滤器,其作用之一就是从等离子体容器中卸去乏燃料。当等离子体接触到偏滤器固态表面时,它将吸收大量热量。ITER偏滤器是由不锈钢制成,外表用钨层覆盖。在研究用反应堆中,由于其正常运行时的能量较低,且每次运行时间最多为数分钟,这种偏滤器可以正常工作。但聚变示范电站在正常运行时将会持续产生吉瓦级(1吉瓦等于1000兆瓦)的能量,常规的偏滤器无法承受如此高的热载。因此,路线图指出,研究人员必须开发其他备用设计方案。替代方案可能会设法扩大等离子体与偏滤器的接触面积以减少热载,或允许等离子体在接触偏滤器前辐射出更多热量。欧洲聚变发展协会指出,未来需要利用现有合适的托克马克装置或专门新建的测试设施对替代方案进行测试。 另一个技术挑战是,利用何种材料制造 反应堆内等离子体容器的结构、表面覆层和面向等离子体部件。聚变堆中等离子体发射的高能中子、电磁辐射对上述材料具有强烈作用,因而需要开发出能够在数十年内承受中子不间断轰击的材料,但现有中子源的强度都不能满足这种测试的需求。科学家正在研发一种以基于加速器的中子源(ITER计划的一部分),但欧洲聚变发展协会认为不久就需要研发其他中子源。 欧洲聚变发展协会还需要对“产氚包层(也称实验包层)”进行深入研究。产氚包层是等离子体容器壁的一部分,反应堆产生的中子在此将锂转变为核燃料氚。需要开发替代方案的包层设计,以应对拟在ITER进行测试的包层设计可能出现的失败。该路线图要求工业界更多地参与聚变示范电站的各项设计和建造工作,因为一旦这些工作完成之后,工业界就必须承担发展聚变能的重任。此外,还需要加强等离子体理论和建模等各项工作。 作为最主要的备用计划,路线图倡导继续坚持仿星器的设计和开发工作。仿星器是一种替代性聚变反应堆,其最大优点是能够连续稳定地运行。上世纪60年代当托克马克受到人们青睐时,对其重视程度有所降低。德国的温特尔斯坦仿星器7-X(即W7-X)将于2014年建成,科学家在W7-X反应堆安装了一种叫“仿星器”的设备,旨在模仿恒星内部持续不断的核聚变反应。(记者 郑焕斌 综合外电) 《科技日报》(2013-1-23 二版)

  • 【求助】我研究试验急需一台镅-铍中子源中子湿度计

    [size=4]高手们: 我研究试验急需一台镅-铍中子源中子湿度计,我想具体了解它的一些性能,主要是能否在散粒物料中进行水分监测,其监测的范围是多大?精度又能达到多少?我需要测试的样品湿度监测要求为5%-10%,可有更好的测试仪器,还有就是如何对其进行防腐保护,那个探头要如何设计才会更具有适用性,最后我想知道其价格是多少,在哪能买到该产品? 测得的慢中子数具体与物料中总的含氢量又是一个什么关系,而对于复阻抗湿度测量法中的两复阻抗的差值与被测材料的未知含水量存在一种什么关系?有没有什么更好的方法可以进一步提高其精度?谢谢高手们了,急急急![/size]我的邮箱:zhangmegzu@126.com

  • 我国聚变激光驱动器世界先进 5纳秒内输出16千焦耳激光能量

    最新发现与创新 中国科技网 四川绵阳7月20日电(记者盛利)记者从中国工程物理研究院激光聚变研究中心获悉,该中心19日进行的大口径高通量激光驱动器实验平台出光试验中,单束出光能量第三次超过16千焦,达到16.523千焦,这标志着我国走独立技术路线、自主设计研制的激光驱动器达到世界先进水平,成为继美国、法国之后第三个迈入“单束万焦耳出光”俱乐部的国家。 在空气洁净度为一万级的中心实验室,记者看到由放大系统、空间滤波器、光束反转器、光传输管道等组成的实验平台,约2米高、近100米长,与神光Ⅲ-原型装置等大型激光装置相比略显紧凑,如同一辆小型货运机车。“别看它麻雀虽小,但五脏俱全,能力很大,单束出光能量是神光Ⅲ原型装置的5倍。”中心三部副主任郑奎兴说,达到世界先进水平的该设备,放大器的小信号增益达到世界领先的每厘米5.28%,瞬间输出功率超出全国发电站发电功率的总和。运行中能量仅为百毫焦耳的“种子”光进入放大器后,将在管道、放大系统、反转器中往返数次,能量放大近8万倍,最终在5纳秒内输出16千焦耳的激光能量。 郑奎兴说,该实验平台研制的一项突出成就在于,通过自主研制的仿真模拟软件设计等,成功实现设备总体构型创新,有效克服了我国单元器件工艺不足的难题,走出了一条以“U型反转器”等系列创新工艺技术为代表的“中国大口径高通量激光驱动器之路”,出光能量、光束质量均达到国际先进水平。 记者了解到,参与该项目的一线科研人员平均年龄在30岁以下。80后科研人员赵普军说,能够投身这项与世界“比肩”的重大项目,感觉“很自豪”“很提气”。 郑奎兴表示,成功实现万焦耳输出,展现了我国高功率固体激光装置建设的设计研制能力,及其关键单元技术发展水平。 《科技日报》(2012-7-21 一版)

  • 浅谈核聚变发电

    一、核聚变的原理  核聚变,又称核融合,是指由质量小的原子,比方说氘和氚,在一定条件下(如超高温和高压),发生原子弹互相聚合作用,生成中子和氦,并伴随着巨大的能量释放的一种核反应形式。原子核中蕴藏巨大的能量。由较轻的原子核变化为较重的原子核,称为核聚变,就像我们每天见到的发光发热的太阳。二、核聚变发电的优势  我们目前所使用的常规能源都存在着种种缺陷,如环境的污染、资源不可再生而面临的枯竭,而风能和太阳能所能提供的电力也是有限的,利用核裂变原理而建成的核电站所产生的核废料都要严格监测,不然就会贻害千年。  核聚变发电的优势则相当明显了,就海洋中的氘资源几乎是取之不尽用之不竭,核聚变最理想的氦3虽然在地球上找不到,但在月球上却是应有尽有,所以不用担心面临能源枯竭的问题。  相比核裂变,核聚变所释放出来的能量就要强得多,而且不会产生放射性的核废料,所产生的核辐射也要小得多,因此,核聚变是一种清洁高效的能源。可以这样认为:核聚变电站可以一劳永逸地解决全球变暖问题。  核能是一种令人生畏的能量,原子核虽然小,但微小的质量亏损在乘以光速的平方后将会获得巨大的能量(质能方程E=mc2),只要我们能够控制住它,将这股能量缓缓放出,将会获得比核裂变更加巨大的能量。三、核聚变发电的难点  核聚变有着我们现有能源没有的优点,但是直到目前为止,人类还没有完全掌握到控制它的技术,要想获得核聚变装置必须突破非常多的瓶颈。  核聚变的反应需要近亿摄氏度的高温才能进行,原子弹爆炸可以达到这个温度,所以第一颗氢弹爆炸的时候是首先利用原子弹爆炸的高温来触发核聚变的起燃器。不过到目前,激光技术的发展使得核聚变“点火”的问题得到了解决的可能,除此以外,超高额的微波加热也可以达到这个温度。  其次,核聚变进行的高温下具有很高的内能,也就意味着将会出现各种各样的能量丧失机制。聚变的方式也存在着各种各样的不稳定性。这些基本科学问题没有解决,核聚变发电就实现不了。  而且,装置材料问题是核聚变发电必须要解决的问题,聚变产生的中子撞击、核聚变原料的沉积也会对装置材料产生破坏,如果解决不了,即使建成了核聚变反应堆也不知道能够运行多久。  还有就是它的辐射问题,即使相对核裂变的辐射要小,也还是存在着,这也给核聚变制造了一个大障碍。四、未来核聚变发电的走向  当我们的常规能源枯竭,风能、太阳能不能满足我们的需要,核聚变发电就是我们的明日之星。如今不少国家都在研究受控热核反应的理论和技术,美国、俄罗斯、日本和西欧国家都取得了进展。中国也在积极发展核聚变技术,并且称为世界上第一个建成并正真运行的全超导非圆截面的核聚变试验装置,已经处于世界领先水平。  也许在未来的二十年内,我们可以看到核聚变发电的曙光。在更远一点的时间,我们会获得可以真正有价值的核聚变电站。

  • 【转帖】国产散射系统问世 聚变实验堆有了新型"体温计"

    记者9日从中科院合肥物质研究院等离子体所了解到,国际公认的最为准确的电子温度和密度诊断系统——汤姆逊散射诊断系统在我国新一代“人造太阳”实验装置EAST成功建成并调试运行。  中科院合肥物质研究院等离子体所汤姆逊散射研究小组专家介绍,目前这套25道汤姆逊散射诊断系统,为国内最先进水平,已基本可以提供等离子体电子温度和密度分布结果。  汤姆逊散射诊断系统可以在热核聚变实验中给出等离子体电子温度和密度的空间分布,是国际公认的最为准确的测量电子温度的方法,也是技术难度最高的几个热核聚变装置诊断之一。由于其重要性,几乎所有热核聚变装置都大力发展汤姆逊散射诊断系统。  EAST芯部25道汤姆逊散射诊断系统将为EAST物理研究、运行及其他诊断的标定提供可靠的手段。从事核能聚变实验研究长达35年,专门从事物理实验工作与诊断技术发展的美国通用原子公司等离子体物理实验学家谢中立教授说,这些进展来之不易。  等离子体所专家介绍,EAST芯部25道汤姆逊诊断系统的研制是等离子体所几代科技人员经过十多年的努力取得的阶段性成果。目前该系统离世界最先进水平尚有距离,项目组成员还将继续努力进一步对该系统进行改进和完善。  中国是国际热核聚变实验反应堆(ITER)的参与国之一。2006年9月,中国科学家耗时8年、耗资2亿元人民币的EAST建成并投入运行。在第一轮实验中,科学家们获得了电流超过500千安、时间近5秒的圆形截面高温等离子体。EAST成为世界上第一个同时具有全超导磁体和主动冷却结构的核聚变实验装置。它的建成使中国迈入磁约束核聚变领域先进国家行列。

  • 气相色谱测混合溶剂出峰位置太紧凑

    [color=#444444]想测定一种混合溶剂,不知道里面是什么,做了[url=https://insevent.instrument.com.cn/t/Mp]气相[/url]看看有几种物质,可是保留时间对于的峰太紧凑了,怎么才能让保留时间间隔大点好做[url=https://insevent.instrument.com.cn/t/bp][color=#3333ff]气质联用[/color][/url]测定物质?大神求教啊[/color]

  • 安捷伦推出全新紧凑型气相色谱 能耗直降50%

    全新的直观气相色谱解决方案改善了用户体验 2016年 8月31日,北京——安捷伦科技公司(纽约证交所:A)今日宣布为其行业领先的气相色谱系列增添一名新成员。Agilent Intuvo 9000 气相色谱解决方案为用户提供全新的创新技术,帮助实验室实现运营、科学和经济目标。http://img1.17img.cn/17img/images/201608/insimg/57c61068-b90d-4e6d-b907-0eb45a6b13a6.jpg从左至右依次为:安捷伦科技大中华区化学分析市场经理祝立群、安捷伦科技大中华区渠道业务总监何峻、安捷伦科技气相色谱产品经理David Johnson、安捷伦科技资深研发科学家James McCurry、安捷伦科技副总裁兼消耗品事业部总经理Michael Feeney、安捷伦科技中国气相色谱产品商业化经理虞恩润http://img1.17img.cn/17img/images/201608/noimg/e003c465-b4a5-4f8f-a87a-d854c3772fd9.jpgIntuvo 9000  与客户共同开发、依客户需求而设计的 Intuvo 9000 能够化繁为简,使复杂技术变得易于使用。快速接头技术使密封垫圈成为历史,芯片式保护柱技术延长了色谱柱寿命,并且再也无需切割色谱柱,从而避免了由色谱柱切割维护引起的保留时间偏移问题。  凭借 Intuvo 芯片式流路技术和智能 ID 钥匙,Intuvo 9000 系统能够自动识别已安装组件并自动配置方法。由于无需复杂设置和额外计算器,类似柱中反吹等复杂操作将变得常规。  触摸屏用户界面提供系统状态与实时数据显示,并可引导用户完成常规维护操作。 通过智能手机或平板电脑即可远程连接,实验室管理人员可实时查看系统状态。  这款全新系统(特别在与质谱联用时)是高通量合同实验室以及应对食品、环境、化学、制药和法医检测领域中复杂样品基质的实验室的最佳选择。http://img1.17img.cn/17img/images/201608/noimg/9a3ad0d3-69ff-4d96-b40d-187513617ac0.jpg安捷伦工作人员现场答疑  安捷伦气相色谱部门副总裁兼总经理 Shanya Kane 谈道;“我们认真聆听世界各地客户的意见,借此拉开创新的序幕。Agilent Intuvo 9000 气相色谱系统非常智能,它能够让实验室技术人员获得气相色谱专家般的体验。因此,实验室管理人员将充分体验到分析效率的提升,业务负责人也将获得更高的经济收益。”  安捷伦总裁兼首席执行官 Mike McMullen 谈道:“在过去的 50 多年中,安捷伦一直是气相色谱领域的市场领导者。凭借这一历史传承以及广泛的行业合作伙伴和市场专家网络,安捷伦通过将革新技术带给客户而致力于实现另一次飞跃。”http://img1.17img.cn/17img/images/201608/noimg/861e459c-2821-405d-9701-863a8d91ff9f.jpg发布会现场  关于安捷伦科技公司  安捷伦科技公司(纽约证交所:A)是生命科学、诊断和应用化学市场领域的全球领导者,是致力打造美好世界的顶级实验室合作伙伴。安捷伦与全球 100 多个国家的客户进行合作,提供仪器、软件、服务和消耗品,产品可覆盖到整个实验室工作流程。在 2015 财年,安捷伦的净收入为 40.4 亿美元,全球员工数约为 12000 人。

  • 瑞士万通发布861紧凑式高级离子色谱仪

    在不久前刚刚结束的PITTCON2005展会上,瑞士万通推出一款全新的861紧凑式高级[url=https://insevent.instrument.com.cn/t/3p][color=#3333ff]离子色谱仪[/color][/url],该型产品在对进样峰和碳酸盐峰的抑制方面得到了极为显著的改善。 861同时采用了两种高性能的抑制技术,即:用于化学抑制的第二代Metrohm抑制模块(MSM II)和最新开发的Metrohm CO2抑制器(MCS)。两种技术的使用保证了分析结果的准确和高重复性。 就阴离子的定量分析而言,碳酸盐峰干扰的去除对于得到精确的分析结果是非常重要的。而对于进样峰的抑制,则大大改善了对于诸如氟化物中阴离子快速洗提分析的效果,同时,也使得大体积进样成为可能。 无论抑制技术使用与否,861使用的电导检测器的检出范围均从5ppb溴酸盐一直到500ppm磷酸盐。应用领域包括:废水、饮用水或是地表水的标准阴离子,土壤中的高氯酸盐,工业废水(造纸)中的亚硫酸盐、硫酸盐和硫代硫酸盐,电站冷却水中的氯化物、亚硝酸盐、硝酸盐和硫酸盐,可乐类饮料中的磷酸盐和柠檬酸盐,爆炸物中的氰酸盐、叠氮化物和氯酸盐等。 861型[url=https://insevent.instrument.com.cn/t/3p][color=#3333ff]离子色谱[/color][/url]可完全由个人电脑控制,随机软件可同时完成仪器控制以及数据处理,并且具备“傻瓜”式的鼠标控制功能。

  • 耀变体加热对解析宇宙结构的形成具重要意义

    中国科技网讯 据物理学家组织网5月15日报道,来自德、加、美的联合科研团队发现,宇宙中的漫射气体能够从耀变体处吸收明亮的高能伽马射线放射,并为其强劲加热。这一令人惊讶的结果对于解析宇宙结构的形成具有重要意义。相关研究报告发表在近日出版的《天体物理学杂志》等刊物上。 耀变体是一种密度极高的高变能量源,其被假定为是处于寄主星系中央的超大质量黑洞。虽然可见光和无线电波等辐射穿越宇宙毫无问题,但高能伽马射线却不一样。这种特殊的辐射能够与星系放射出的可见光相互作用,使其变成基本粒子。最初,这些基本粒子会以近光速的速度运动,但随着其因为周围的漫射气体而减速,它们的能量将转化为热量,如同其他的制动过程一样,因此粒子周围的气体能被有效加热。处于平均密度的气体温度将提升10倍,而较稀疏区域的气体温度则可比预想的提高100多倍。 德国海德堡理论研究所(HITS)的科研人员表示,耀变体改写了宇宙的热演化史。在类星体的光谱中,存在着各种各样的“森林线”,它们源自宇宙中发生的密度波动,而“森林”则源于宇宙早期阶段中性氢对紫外线的吸收。额外的加热过程可电离中性氢,同时也意味着对类星体放射的紫外线吸收减少。如果气体变热,“森林线”也会随之拓展,这种效果代表了一个衡量早期宇宙温度的绝佳机会。 科研人员检查了新假设的加热过程,并利用超级计算机详细模拟了宇宙的结构发展。在宇宙进化中,最密集的波动将坍塌形成星系和星系团,漫射的气体则因为过热而无法坍塌,从而促使矮星系的形成趋缓甚至完全被抑制。这也是解决另一星系形成理论难题的关键:为什么我们在银河系附近以及气体密度较低的区域仅能观测到屈指可数的矮星系。 研究负责人、HITS的伏尔克·斯普林吉教授解释说,耀变体的加热过程十分令人兴奋,因为这种单独的效应能同时解决数个有关宇宙结构形成的谜题。下一步,科研团队还计划进一步改进这一模拟模型,以便更深入地了解耀变体的特性及其对当前宇宙的影响和意义。(张巍巍) 《科技日报》(2012-05-17 二版)

  • 12SA系列超紧凑、薄型DC-DC转换器PICO

    [url=https://www.leadwaytk.com/article/5411.html]PICO[/url][font=Calibri][font=宋体]的[/font][font=Calibri]12SA[/font][font=宋体]系列超紧凑、薄型[/font][font=Calibri]DC-DC[/font][font=宋体]转换器选用超小型封装模块。可以提供高效率和出色的负载调整,并且在[/font][font=Calibri]-[/font][font=宋体]在[/font][font=Calibri]25°C[/font][font=宋体]至[/font][font=Calibri]70°C[/font][font=宋体]的温度范围内工作,无需电气降额或热管散热。[/font][/font][font=宋体]特征[/font][font=宋体]超小型机壳[/font][font=宋体]带中心抽头的单输出[/font][font=宋体][font=宋体]隔离、非稳压、[/font][font=Calibri]3W [/font][font=宋体]输出功率[/font][/font][font=宋体][font=Calibri]1500Vdc [/font][font=宋体]输入[/font][font=Calibri]/[/font][font=宋体]输出隔离[/font][/font][font=宋体]输入过压关闭[/font][font=宋体][font=宋体]高效化:高至[/font][font=Calibri]87%[/font][/font][font=宋体]严苛的负载调整[/font][font=宋体]低输出纹波[/font][font=宋体][font=宋体]高输入[/font][font=Calibri]/[/font][font=宋体]输出隔离[/font][/font][font=宋体]内部温度保护[/font][font=宋体][font=宋体]宽操作温度:[/font][font=Calibri]-25[/font][font=宋体]°[/font][font=Calibri]C [/font][font=宋体]至 [/font][font=Calibri]+70[/font][font=宋体]°[/font][font=Calibri]C[/font][/font][font=宋体]提供插接式和表面贴装技术版本[/font][font=Calibri][font=宋体]深圳市立维创展科技是[/font]PICO[font=宋体]公司总代理,致力为客户提供高品质、高质量、价格公正的电源模块产品。[/font][font=Calibri]PICO[/font][font=宋体]产品原装进口,质量保证,[/font][/font][font=宋体]如若需要[/font][font=Calibri]PICO[font=宋体]产品欢迎[/font][/font][font=宋体]点击右侧客服[/font][font=Calibri][font=宋体]咨询[/font][/font][font=宋体]!!![/font]

  • 色谱柱的安装需什么技巧?所谓的死体积怎么测定呢?

    色谱柱安装技巧不多,只要接头和柱头匹配,确实拧紧不漏就可以了,但也要注意不要拧得太紧以至于损伤螺纹。所谓死体积就是完全不保留的物质出峰时从进样到流过色谱柱的总体积,一般用极性非常强的尿嘧啶的出峰来测定。死体积包括柱体积(色谱柱内溶剂能占据的空腔体积)和柱外体积两部分。从厂商这里买到色谱柱,柱体积已经是固定了,你能尽量避免减少的是柱外体积。进样器内死体积、毛细管长度、毛细管和色谱柱连接紧凑与否,保护柱或在线滤器产生的死体积大小,都对这个有影响。样品在柱内, 除扩散外,还有和填料作用引起的组分分离;但样品在柱外,那就只有扩散这个使柱效下降的因素了。 所以,要取得好的分离效率,柱外体积应该是越小越好。峰有时候前延,有时候拖尾,一般不是色谱柱的问题,应该是样品和色谱柱填料的作用问题,可以说如果色谱柱类型选择没问题,关键就是色谱条件的选择。包括进样量、样品溶剂、流动相组成(包括添加剂)、流动相pH以及柱温,都对峰形有影响。另外测定分子量较大的多肽,用样品老化平衡色谱柱很重要,分子量越大的物质,需要平衡时间越长。如果柱子没平衡好,峰形也可能会不正常。所以最好把你具体的测定条件也列一下,也便于有针对性的分析原因。

  • 【分享】绝缘油体积电阻率测定法

    绝缘油体积电阻率测定法 DL 421—91 中华人民共和国能源部1991-10-04批准 1992-04-01实施 本标准适用于测定绝缘油、抗燃油等液体介质的体积电阻率(cm)。 1 方法概要 体积电阻是施加于试液接触的两电极之间的直流电压与通过该试液的电流比,即  R=U /I (1) 式中 R——液体介质的体积电阻,; U——电极间施加的电压,V; I——通过试液的电流,A。 体积电阻率是液体介质在单位体积内的电阻的大小,用?表示,以下简称电阻率。 2 引用标准 2.1 GB 5654 液体绝缘材料工频相对介电常数、介质损耗因数和体积电阻率的测量。 2.2 GB 7597 电力用油(变压器油、汽轮机油)取样方法 3 仪器和材料 3.1 绝缘油电阻率测试仪 测试的范围108~1016?cm,仪器的测量误差不大于±10%。 3.2 电阻率测试仪恒温装置 包括配套的电极杯,温度能在50~100℃范围内自由调节。温控精确度±0.5℃。 3.3 电极杯 3.3.1 系采用复合式电极杯,结构紧凑,体积小,零部件容易拆洗,在重新装配时能不改变电极杯的电容量。保护电极和测量电极的绝缘应良好,能承受2倍试验电压。电极杯的规格和结构分别见表1和图1。 表 1 电极杯规格表 名 称 电极杯型号Y-30 Y-18电极材料 不锈钢 不锈钢绝缘材料 聚四氟乙烯 石英玻璃电极间距,mm 3.0 2.0空杯电容,pF 18 18样品量,mL 30 18工作电压,V 1000 500 3.3.2 电极材料采用不锈钢,电极表面经抛光精加工,支撑电极的绝缘采用聚四氟乙烯(或熔融石英、高频陶瓷等),具有足够的机械强度和低损耗因素,并具有耐热、不吸油、不吸水 图 1 Y型复合式电极杯 1—屏蔽帽;2—测温孔;3—螺母;4—绝缘板; 5—屏蔽环;6—排气孔;7—内电极;8—外电极 和良好的化学稳定性。 3.3.3 为避免外部电磁场的干扰,引线、加热器和电极都应加有金属屏蔽。 3.4 秒表 准确到0.1s。 3.5 试剂和材料 3.5.1 溶剂汽油、石油醚或正庚烷。 3.5.2 磷酸三钠。 3.5.3 洗涤剂。 3.5.4 蒸馏水。 3.5.5 绸布或定性滤纸。 3.5.6 玻璃干燥器。 3.5.7 0~100℃水银温度计。 3.5.8 干燥箱。 4 准备工作 4.1 电极杯的清洗 4.1.1 拆洗电极。先拧去屏蔽帽,再松开内电极的压紧螺母(屏蔽环可不必拆)。各部件先用溶剂汽油(或石油醚)清洗,再用洗涤剂洗涤(或在5%~10%的磷酸三钠溶液中煮沸5min),取出用自来水冲洗至中性,最后用蒸馏水洗涤2~3次。 4.1.2 测试合格样品后的电极杯,可用被试样品清洗2次后测量。 4.1.3 也可用超声波清洗器清洗电极杯各部件。 4.2 电极杯的干燥 将清洗好的电极杯部件,置于105~110℃干燥箱中干燥2~4h,取出放入干燥器中冷却至室温(不可直接用手取拿,应戴干净布手套)。 4.3 电极的装配和检查 4.3.1 把内电极螺杆插入绝缘板中心孔内,用螺母拧紧(不可用扳手,以免拧得过紧致使绝缘板变形,只要拧牢即可。操作时应戴干净布手套)。 4.3.2 拧上屏蔽罩。 4.3.3 检查电极杯是否清洁干燥。电极杯的空杯绝缘电阻应大于1015?。 4.3.4 检查电极杯的空杯电容(可用电容表测量,精确到0.1pF。测量值应减去屏蔽电容,取电极杯的有效电容值)。 4.4 样品的准备 4.4.1 采样。采样可按GB 7597规定进行,并应保证样品不受污染,不受潮。样品瓶应密封、避光保存。除有特殊要求外,在试验前不再经过滤和干燥。 4.4.2 试验前。先把样品瓶倾斜并慢慢摇动,使试样均匀(不可使样品产生气泡)。然后用干净的绸布或滤纸擦净瓶口,并倒出一些试样冲洗瓶口,再将试样徐徐倒入电极杯至刻度线,放入内电极,轻轻旋转并来回拉动内电极数次,取出内电极,倒去电极杯内的全部试样,重复上述操作2~3次。 4.4.3 将试样徐徐倒入电极杯至刻度线,插入内电极。用白布或滤纸揩净电极杯外部的污垢,再把电极杯置于恒温器中恒温。 4.4.4 试验环境:湿度不大于70%。 5 试验步骤 5.1 打开主机和恒温器电源,升温到90℃。 5.2 试样温度:绝缘油规定为90±0.5℃。 试样在升温中,应不断地轻轻拉出和摇动内电极,使样品受热均匀。当样品温度到90℃后,继续恒温30min,再进行测量。 5.3 把测量头插入内电极插口。 5.3.1 试验电压:Y-30型电极杯为1000V,Y-18型电极杯为500V。 5.3.2 调整零位。 5.3.3 测量。测20s(?1)和60s(?2)时的电阻率。 5.3.4 复位,电极杯进行放电。 5.4 复试时,应先经过放电5min,然后再测量。若测试结果误差大,应重新更换样品试验,直至两次试验结果符合精密度要求。 5.5 说明: 5.5.1 测量过程中的倍率一般放在1012?cm档。测试过程中应减少频繁的切换(因切换时可引起读数的波动,造成误差)。如果倍率不合适,需切换倍率开关引起读数偏差时,则作为预测数据。 每杯试样重复测定次数,不得多于3次。 5.5.2 按“测试”键后,电极杯上就自动加有电压,不得再触及电极杯和加热器,以防触电。 5.5.3 抗燃油和其他液体介质的测试温度,可按使用要求确定。 6 计算 使用自动型电阻率测试仪时,测量结果为直读数。若用其他的高阻计测量时,则可按下式计算: p1、2=KR (2) K=11.3C0式中 p1、2——为试样的电阻率,cm; K——为电极杯的电极常数; R——试样的电阻值,; C0——电极杯的空杯电容,pF。 7 精密度 7.1 重复性 电阻率p2×1012?cm>1时,不大于25%。 p2×1012?cm≤1时,不大于15%。 7.2 再现性 电阻率 p2×1012?cm>1时,不大于35%。 p2×1012?cm≤1时,不大于25%。 8 报告的取值守则(按表2) 表 2 报告的取值守则 电阻率(p1、2×1012cm) 取值守则100~500 保留1010~100 取整数<10 取二位数 附 录 A 绝缘油介质损耗因数的试验方法(电阻率法) (参考件) A 1 方法概要:绝缘油在交变电场作用下,可产生极化和电导损耗,即介质损耗。经大量的实验可知,绝缘油的偶极损耗是极微的,可忽略不计,即使油质已严重老化,电导损耗仍是主要的。 绝缘油在直流电场作用下作定向运动,产生热而造成电能损耗,其中一些极性分子,在外加电场的作用下,顺电场方向排列,产生极化电流,由于采用的电极杯,极化时间仅15~20s,能区别电容充电时间,因此选择这段时间测试的电阻率,也就能反映绝缘油电导和极化损耗,可按以下公式计算:  (A1) 式中 =2f; , C——电极杯充油后的电容值,F; R——绝缘油的电阻值,; f——频率,Hz。 A2 使用20s所测得电阻率,换算成油介质损耗因数。因为是换算到工频50Hz时的油介质损耗因数,所以 (A2) 式中 p1——绝缘油的电阻率,cm; ——绝缘油的介电常数; a——油杯的转换系数(Y-18、Y-30型的a=1.1)。 A3 p1应为20s的测量值,复试时应重新更换油样。 ________________ 附加说明: 本标准由能源部化学专业标准化技术委员会提出。 本标准由能源部西安热工研究所技术归口。 本标准由江苏省无锡供电局负责起草。 本标准的主要起草人杨元祥、陈明益。

  • 激光核聚变接近临界点 世界能源结构将改写

    2012年08月28日 来源: 环球科学杂志http://www.stdaily.com/stdaily/pic/attachement/jpg/site2/20120828/000ffed6147811a64f5b38.jpg美国国家点火装置的工程师正在检查核聚变反应炉。  国家点火装置(NIF)接近能量临界点,一旦成功,世界能源结构将被改写。但目前,NIF仍然面临一系列不确定性。  撰文 埃里克•汉德(Eric Hand)  翻译 刘荣  或许在今年,美国国家点火装置(National Ignition Facility,NIF)将变得名副其实。这个耗资35亿美元的装置坐落在美国加利福尼亚州的劳伦斯利弗莫尔国家实验室内,能产生世界上最大的激光束,用来爆聚(implode,从内部引爆)一个氢同位素标靶,触发核聚变,产生的能量将比输入的多得多。NIF的管理人员认为,为了达至临界点或者说“点燃反应堆”, 他们进行了两年的工作,现在可以说是胜利在望。项目主管艾德•摩西(Ed Moses)表示:“我们完全有能力在2012财政年度内取得成功。”  然而,这种方式仍然属于惯性约束核聚变(inertial confinement fusion),就算整个项目取得成功,也面临着不确定的未来。实验成功是否就意味着,美国能源部会把它开发成一种经济可行的能源呢?如果是的话,那么NIF激光触发核聚变的方法是否是最佳方案呢?3月7日,美国国家科学院专家小组提交的一份中期报告总结道,现在下结论还言之过早。报告还建议核聚变科学家继续寻找引燃核燃料的替代性技术。  美国新墨西哥州洛斯阿拉莫斯国家实验室的等离子物理学家格伦•乌尔登(Glen Wurden)同意报告的观点,并认为研究惯性约束核聚变的科学家不应该把宝全压在激光触发法上。他认为:“可控核聚变技术完全不成熟。”他指出,另一种核聚变方式——磁约束核聚变(magnetic confinement fusion)以及这种方式的标志性项目、耗资210亿美元的国际热核聚变实验堆(ITER)也遇到了很多困难,以至于研究停滞不前。ITER进展迟缓,研究费用不断膨胀,都归咎于一项不成熟的技术,即托卡马克装置(tokamak,受控热核反应装置),这是一个面包圈状的笼子,里面的强力电磁铁禁闭着一个核聚变等离子体。  尽管科学家最初信心百倍,计算机模型模拟也非常有利,NIF项目同样没能按预期进度前行。乌尔登表示:“科学家以为‘点燃’反应堆犹如探囊取物。”然而,NIF对氢同位素进行加温加压的过程麻烦不断。在一个叫做间接传动(indirect drive)的过程中,多束激光束会从橡皮擦大小的“辐射空腔”(hohlraum,一个金质圆筒)的两个开口射入,使其内部产生X射线。之后,由X射线来加热并挤压辐射空腔内的核燃料(氢同位素标靶),触发核聚变。然而,在辐射空腔内部,激光与等离子体之间发生了意料之外的涡流交互作用,吸收了来自激光束的能量。这会抵消很多能量,使NIF的激光能量输出达不到点燃反应堆所必须的极限阈值。  不管怎样,NIF的研究团队已经进入了稳定的实验阶段。18个月前,当科学家开始向点火目标推进时,该设施仅完成了预想中点火必要条件的1%。现在,完成度已经到达10%,而且进程正在加快:仅今年1月就有创纪录的57次轰击。研究团队同时也在探索一系列调整方案,包括用铍或金刚石替代塑料来包裹核燃料,以及改变辐射空腔的材质或形状。摩西表示,他们还可能把NIF的极限能量从1.8兆焦(只有达到这个能量级别,才能做到“收支平衡”)提升到2.2兆焦。  但如同美国国家科学院的报告所指出的,其他方法可能会提供一个更简单的途径来点燃反应堆,最终成为一个有实用价值的电厂。那么谁在为这些研发付钱呢?美国及世界范围内大多数惯性约束反应堆的研究,都是由涉及国家安全和武器研发的联合企业所资助的,它们研究核聚变是为了武器开发,而不是用于民用电厂。现在,激光惯性约束核聚变研究受美国能源部下属的国家核安全局(NNSA)监管,NNSA的主要职责是负责管理核储备。  而在能源部的科学办公室,几乎没有资金划拨给惯性约束核聚变的研究。大多数资金都用在支持磁约束核聚变上,而且越来越多的资金给了ITER项目。马里兰州盖瑟斯堡的美国聚变能协会(Fusion Power Associates)是一个核能倡导团体,负责人斯蒂芬•迪恩(Stephen Dean)认为,就算专家小组的最终报告认为,惯性约束核聚变能源项目可行,这项研究还是很难在科学办公室找到一席之地。迪恩表示:“我想,能源部会直接无视它,明显他们只对ITER情有独钟,而且正疯狂地想要拯救这个项目。”  如果NIF的科学家能在2013拿到他们所需的4.6亿美元经费,他们就能探索其他方案。比如,美国罗切斯特大学的等离子物理学家团队打算调整NIF的激光,这样他们就能不使用辐射空腔,而直接爆聚一个氢同位素标靶。  但NIF的科学家并没有坐等替代方法的出现。早在点火装置之前,他们就积极准备着下一个项目,一个叫做激光惯性聚变能(Laser Inertial Fusion Energy,LIFE)的示范电站。民用电厂要经济实用,生产的能量必须比每次轰击标靶所输入的能量多50倍以上,而且必须提高重复使用效率,从一天数次轰击变为每秒15次,但这绝非易事。  事实上,这个多孔状的NIF设施就是LIFE的反应室的放大模型,而LIFE的反应室是模块化的,这种模块小到足以装进卡车。NIF的设计使用的是上千只巨大的频闪灯管来为玻璃激光器充能,LIFE则将使用小巧的、晶体管充能发光体。摩西反驳了激光作为未来的核聚变电厂的驱动力还言之尚早的说法。他认为,通过对用于民用电子产品上的激光和晶体管的投资,市场和公众已经做出了选择。如果回顾一下过去,那么“人们会发现,晶体管和激光是具有划时代意义的发明”。  LIFE的项目主管麦克•杜恩(Mike Dunne)认为,他们的电厂单个造价大概40亿美元,可在本世纪20年代初为电网提供数亿瓦特的电能,要比科学家预计的、第一座磁约束核聚变电厂的出现时间至少早10年。回忆起几年前在一个学术会议上,向磁约束核聚变的研究者介绍LIFE项目的理念时,摩斯说道:“他们反应相当激烈地说,‘这不可能’。他们当时就被这个项目的雄心壮志所震撼,如今他们仍会感到震撼。”  本文由《科学美国人》中文版《环球科学》授权转载

  • 加州将从1月1日起禁止若干类含有害物质的灯具

    贸发网消息,加利福尼亚州将从2012年1月1日起禁止销售或生产高强度放电灯以及长度超过9英寸的紧凑型荧光灯(CFL)。原因是这些灯具内中的有害物质水平超出了欧盟RoHS指令(第2002/95/EC号指令)中的标准。RoHS指令涵盖下的有害物质物质包括:铅(0.1%最大容许浓度,MCV)、汞(0.1% MCV)、镉(0.01% MCV)、六价铬(0.1% MCV)、聚溴联苯(0.1% MCV)、聚溴二苯醚(0.1% MCV)。深圳华通威国际检验有限公司,是中国合格评定国家认可委员会(CNAS)、美国实验室认可协会(A2LA)认可实验室,国家质检总局(AQSIQ)、中国计量认证(CMA)认可检验机构,具备国际电工委员会(IEC)CB资质,中国检验认证集团(CCIC)下属综合性实验室,是深圳市 “高新技术企业”。此文章摘自WTO检验检疫信息网

  • 【分享】橡胶硫化仪的加工特性

    橡胶硫化仪,FDR(平面圆盘硫化仪)是在规定的温度下,混合橡胶放在上下平板模腔之间并施以正弦波扭矩振动时,随着橡胶的硫化测定其扭矩的变化;可根据最大扭矩、最小扭矩、焦烧时间、硫化时间、粘弹性等其他因素的变化求出硫化特性的试验仪器。由于装有可达到正确的正弦波振动的圆锥回转驱动装置和四个加热器,实现了实验结果的优越的精度和再现性。  由于各个零配件彻底的总体设计,采用能适合各种测试场所的紧凑型结构的最先进的橡胶硫化仪。

  • 【分享】核聚变伸手可及?

    最近在美国加州所作的实验使得研究人员距离惯性聚变点火(这是加温并压缩一种燃料的策略,它可使科学家们在未来掌控核聚变的强大能量)的成功又近了一步。这种强有力的聚变在恒星中会自然地发生,但科学家们在实验室环境中还没有掌控这种强有力的能量。如今,SiegfriedGlenzer及其同事已经证明,这种聚变点火所需要的条件实际上可在他们的实验室中实现。研究人员将192条高能激光束对准一个小容器(其中装有氘与氚的混合物)。据专家披露,其在内爆的时候可激发燃烧的聚变等离子体以及可利用能量的外泄。Glenzer及其同事将该容器加温到330万开氏度,这样,他们为迈出下一大步铺平了道路:对一个充满燃料的容器进行点火和内爆。

  • 受控自持续核聚变或现新曙光——美科学家推导出核聚变“热密度界限”方程

    科技日报 2012年05月03日 星期四 本报驻美国记者 毛黎http://bbs.myboyan.com/attachment/Fid_78/78_235857_3fb134cbe8e3d91.jpg托卡马克核聚变环装置 长期以来,有一神奇的现象导致研究人员无法实现可控自持续核聚变反应。然而,最近美国物理学家表示,他们可能找到了解决该谜团的途径。研究人员认为,如果新提出的解决方式被实验验证是正确的话,那么将帮助人们消除核聚变发展的一个主要障碍,使核聚变成为清洁且丰富的电力来源。 核聚变遭难题 美国能源部普林斯顿等离子体物理实验室的科学家在一项深入分析中,将目标锁定于核聚变实验中高温带电气体——等离子体内那些微小的、如同气泡的、被称为岛屿的区域。这些岛屿含有能让等离子体降温的杂质。科学家认为,正是这些岛屿构成了人们熟悉的“热密度界限”问题的基础,它阻碍了核聚变反应堆最高效运行。 当等离子体的温度和密度足够高时,包含在其中的原子核结合并释放出能量,形成了人们所说的核聚变。然而,在托卡马克环实验反应堆中的等离子体达到神秘的“热密度界限”时,等离子体能旋转形成闪光,温度下降。 科学家认为,等离子体中出现众多岛屿带来了双重破坏。除了导致等离子体温度下降外,这些岛屿还如同防护罩那样阻止更多的能量来加热岛屿内的等离子体。当从岛屿中溢出的能量超过人们能够通过欧姆加热过程为等离子体添加的能量时,平衡被打破。当岛屿生长到足够大时,用于帮助加热和束缚等离子体加热的电流出现崩溃,等离子体四散开来。 大卫·盖茨是美国能源部普林斯顿等离子体物理实验室的物理学家,他和实验室博士后研究员、来自麻省理工学院等离子体科学核聚变中心的访问学者路易斯·德尔嘎多-阿帕瑞奇欧共同提出了解决核聚变“热密度界限”问题的方案。盖茨表示,令人不解的是为何给等离子体增加更多的热能却仍然无法让其达到更高的热密度,这点十分关键,因为热密度是实现核聚变的重要参数。 归纳出新知 盖茨称他们偶然发现的理论为“10分钟‘啊哈’时刻”。通过将注意力放在等离子体中的岛屿和带走能量的杂质,他们在办公室白板上推算出了对应的方程式。杂质源于等离子体冲击托卡马克环壁时产生的粒子。德尔嘎多-阿帕瑞奇欧表示,当等离子体的密度达到神秘的“热密度界限”时,等离子体中便出现了众多含有杂质的岛屿并发生瓦解。 麻省理工学院物理学家马丁·格林沃德推导出描述“热密度界限”的方程,因而“热密度界限”也称“格林沃德界限”。对出现“热密度界限”的原因,格林沃德有着自己的解释,他认为,当湍流出现能引起等离子体边缘冷却并将过多离子挤压进等离子体核心狭小空间的起伏时,就会出现“热密度界限”,导致电流不稳定和崩溃。他表示,有相当多的证据能够验证他的观点,但同时他承认其观点也有不足之处,并欢迎新的思想。盖茨和德尔嘎多-阿帕瑞奇欧提出的理论代表着试图解决“热密度界限”的新途径。 盖茨和德尔嘎多-阿帕瑞奇欧将过去数十年中人们掌握的线索整合起来建立了他们的研究模型。盖茨本人是1993年在位于英国阿宾顿的卡尔汉姆核聚变能源中心做博士后研究时首次听说“热密度界限”的。早期,“热密度界限”曾以卡尔汉姆核聚变能源中心科学家简·胡吉尔命名,胡吉尔向盖茨详细地介绍了“热密度界限”。 对于等离子体岛屿问题,科学家曾单独地发表了论文。上世纪80年代中期,法国物理学家保罗-亨利·芮布特在一次会议上介绍了辐射形成的岛屿,但是没有刊登在杂志上。大约10年后,德国物理学家沃尔夫冈·苏特偌普推测岛屿与“热密度界限”相关。盖茨表示,苏特偌普虽然没有将等离子体岛屿直接与“热密度界限”联系起来,但是他的研究文章事实上启发了自己的研究。1996年,盖茨与苏特偌普同在德国马普等离子体物理研究所从事过托卡马克实验,转年才进入普林斯顿等离子体物理实验室工作。 2011年初,关于等离子体岛屿问题几乎从盖茨脑海中消失。然而,与德尔嘎多-阿帕瑞奇欧进行的一次涉及Alcator C-Mod托卡马克中等离子体发生岛屿的交谈,重新点燃了他对该问题的兴趣。德尔嘎多-阿帕瑞奇欧提到普林斯顿等离子体物理实验室的科学家在上世纪80年代首次观察到等离子体中出现螺丝锥形状气团的现象,德国物理学家亚瑟·韦勒为报告此现象的第一人。 在交谈后,盖茨让德尔嘎多-阿帕瑞奇欧查阅芮布特和苏特偌普的文章。8个月后,德尔嘎多-阿帕瑞奇欧给盖茨发送了一份电子邮件,阐述了螺丝锥形状气团的行为。最让盖茨感到激动的是暗示着“热密度界限”的岛屿生长方程,它是对英国物理学家保罗·卢瑟福基于上世纪80年代相关研究推导出的方程式进行修改而来。盖茨认为,如果苏特偌普对岛屿的认识是准确的,那么这个方程应该描述的是“热密度界限”。 盖茨和德尔嘎多-阿帕瑞奇欧在办公室中进行演算时发现,他们并不需要整个方程式,仅仅将重点集中在等离子体电子密度和岛屿热辐射,便推导出描述热损耗超过电子密度的方程式。这转而帮助他们寻找到了有望是隐藏在“热密度界限”背后的机理。 在谈及科学家过去为何没能获得类似的热密度界限理论时,盖茨认为,答案在于相关的研究思想渗透或传播至科学界的过程。热辐射形成岛屿的观点从没有公开得到大量的报道,人们仅仅视其为有趣的观点。人们通常通过出版物传播信息,然而“热密度界限”的理念最初没有传播开来。 盖茨和德尔嘎多-阿帕瑞奇欧希望能够在麻省理工学院名为Alcator C-Mod的托卡马克核聚变环装置以及圣地亚哥通用原子公司的DⅢ-D托卡马克环上,通过实验验证他们的理论。其中的目标之一是他们打算了解能否通过直接向等离子体的岛屿注入能量让其具有更高的密度。如果能够提高密度,那么未来的托卡马克环就能达到极高的热密度,实现核聚变所需的1亿摄氏度的温度。 征服“热密度界限”难题将为未来托卡马克环装置实现自持续核聚变反应发电提供改进的途径,这其中包括取代国际热核实验反应堆(ITER)的核聚变装置。国际热核实验反应堆由欧共体、美国及其他5个国家共同支持建造,其造价达200亿美元。 (本报华盛顿5月1日电)

  • Brookfield TC-650AP恒温水浴的特点

    技术参数温度范围:温度下限:室温:-20℃ 温度上限:+200℃温度精度:0.01℃控制器:AP水浴容量:7L最大流量:16LPM内部工作区体积:6.18×5.59×5.0体积:21.3×8.7×24.3重量:90磅性能特点TC-650AP恒温水浴的特点:紧凑型-外形小巧占、地面积小、可放置在实验台上或台下7L 水浴容量专为使用水浴夹套的仪器而设计可容纳600mL烧杯无需外扫毒水源即可单机操作设置操作简便采用SD或AP控制键时可自动控制样品温度

  • 便携式中子剂量仪 中子剂量当量率仪

    便携式中子剂量仪 中子剂量当量率仪

    RAM-800 中子剂量当量率仪采用高灵敏的进口He3管作为探测器,反应速度快。该便携式中子剂量仪使用方便;灵敏度高、抗γ性能好、能量响应特性好,即可用作便携式仪器又可用作固定式中子剂量监测仪。此外便携式中子剂量仪通过配套的RenRiNeutron中子剂量率管理软件可将存储的数据读出后分析。该[url=http://www.zgfangfuyuan.com/product/szjcly/167.html]便携式中子剂量仪[/url]适用于环保、化工、石油、医疗、进出口商检、核电、加速器、中子源和其他安检、边境控制、海关检测等需进行中子辐射检测的场合。[img=中子剂量仪,660,550]http://ng1.17img.cn/bbsfiles/images/2016/07/201607061132_599440_3098478_3.jpg[/img]功能特点:1、中子剂量率,中子累积剂量均可测量。2、高灵敏度,宽测量范围,良好的能量响应特性。3、数字及标尺显示剂量率状态。4、中、英文双语菜单式操作界面。5、数字式LCD液晶显示,高亮背光功能。6、可存储800条剂量率,能随时查看,断电不丢失。7、USB数据接口,可将数据上传到计算机。8、剂量率超阈值后声、光报警功能。9、超阈值报警、阻塞报警、探测器故障报警功能。10、电池电量实时显示。11、标配:RenRiNeutron中子剂量率管理软件。技术规格: 1、测量类型:中子射线2、探测器: 进口3He正比计数管3、中子测量范围:剂量率:0.1μSv/h ~100mSv/h累积剂量:0.01μSv ~10Sv4、能量范围:中子0.025eV~16MeV5、慢化材料:聚乙烯球6、角响应:±20%7、测量时间:1~120秒可编程设置8、中子灵敏度:大约 1.4 CPS/μSv/h9、伽玛灵敏度:对伽玛射线不灵敏(相对Co-60 的100mSv/h的伽玛射线内)11、报 警 阈: 0.25、2.5、10、20(μSv/h)或自行设置12、显示单位: 剂 量 率:μSv/h、μGy/h、μR/h;累计剂量:nSv;计数率:CPS13、通讯:USB通讯接口,仪器可存储800条数据,并可导出到RenRiNeutron软件14、使用环境:温度-15℃~+50℃、相对湿度(在40℃温度下)≤95%15、电源和功耗:2节标准1号电池(或充电电池)整机耗电≤120mW 16、重量和尺寸:约 300×250×245 (mm)、约7.8Kg17、RenRiNeutron中子剂量率管理软件提供文字表格、曲线图形显示联系人:张经理 13720045883相关内容:http://www.zgfangfuyuan.com/product/szjcly/167.html相关内容:http://www.fsybyq.com/product/zzjcy/167.html

  • 中国散裂中子源(CSNS)通用粉末衍射仪(GPPD)的TOPAS同时精修模型

    中国散裂中子源(CSNS)通用粉末衍射仪(GPPD)的TOPAS同时精修模型

    [font='Microsoft YaHei',sans-serif][color=black][back=white][/back][/color][/font][font='Microsoft YaHei',sans-serif][color=black][back=white]1. [/back][/color][/font][font='Microsoft YaHei',sans-serif][color=black][back=white]衍射仪分类[/back][/color][/font][font='Microsoft YaHei',sans-serif][color=black][/color][/font][font='Microsoft YaHei',sans-serif][color=black][back=white]包括常规的实验室粉末衍射仪,所有衍射仪的本质都是一样的,即测量衍射强度随样品晶面间距的函数。常规的实验室粉末衍射仪使用单色[/back][/color][/font][font='Microsoft YaHei',sans-serif][color=black][back=white]X[/back][/color][/font][font='Microsoft YaHei',sans-serif][color=black][back=white]光,将晶面间距[/back][/color][/font][font='Microsoft YaHei',sans-serif][color=black][back=white]d[/back][/color][/font][font='Microsoft YaHei',sans-serif][color=black][back=white]分散到不同的衍射角度[/back][/color][/font][font='Microsoft YaHei',sans-serif][back=white]2[font='Microsoft YaHei',sans-serif]θ[/font][/back][/font][font='Microsoft YaHei',sans-serif][color=black][back=white]。描述这个[/back][/color][/font][font='Microsoft YaHei',sans-serif][back=white]d~2[font='Microsoft YaHei',sans-serif]θ[/font][/back][/font][font='Microsoft YaHei',sans-serif][color=black][back=white]分散关系的公式即布拉格方程。恒定波长中子衍射与之一样。这两者称为角度分散衍射([/back][/color][/font][font='Microsoft YaHei',sans-serif][color=black][back=white]Angular Dispersive Diffraction[/back][/color][/font][font='Microsoft YaHei',sans-serif][color=black][back=white])。此时布拉格方程写为:[/back][/color][/font][back=white]d=[font='Microsoft YaHei',sans-serif][color=black]λ[/color][/font][/back][font='Microsoft YaHei',sans-serif][color=black][back=white]/2/Sin([/back][/color][/font][color=black][font='Microsoft YaHei',sans-serif][color=black]θ[/color][/font][font='Microsoft YaHei',sans-serif][color=black])[/color][/font][/color][font='Microsoft YaHei',sans-serif][color=black][back=white],[/back][/color][/font][font='Microsoft YaHei',sans-serif][color=black][back=white]λ[/back][/color][/font][font='Microsoft YaHei',sans-serif][color=black][back=white]已知,通过测量[/back][/color][/font][font='Microsoft YaHei',sans-serif][color=black][back=white]θ[/back][/color][/font][font='Microsoft YaHei',sans-serif][color=black][back=white]来计算样品的晶面间距[/back][/color][/font][font='Microsoft YaHei',sans-serif][color=black][back=white]d[/back][/color][/font][font='Microsoft YaHei',sans-serif][color=black][back=white]。[/back][/color][/font][font='Microsoft YaHei',sans-serif][color=black][/color][/font][font='Microsoft YaHei',sans-serif][color=black][back=white]而飞行时间中子衍射与能量色散[/back][/color][/font][font='Microsoft YaHei',sans-serif][color=black][back=white]X[/back][/color][/font][font='Microsoft YaHei',sans-serif][color=black][back=white]射线衍射相似,属于将晶面间距[/back][/color][/font][font='Microsoft YaHei',sans-serif][color=black][back=white]d[/back][/color][/font][font='Microsoft YaHei',sans-serif][color=black][back=white]分散到不同波长[/back][/color][/font][font='Microsoft YaHei',sans-serif][color=black][back=white]λ[/back][/color][/font][font='Microsoft YaHei',sans-serif][color=black][back=white]或能量[/back][/color][/font][font='Microsoft YaHei',sans-serif][color=black][back=white]E[/back][/color][/font][font='Microsoft YaHei',sans-serif][color=black][back=white]轴上,这两者称为能量色散衍射([/back][/color][/font][font='Microsoft YaHei',sans-serif][color=black][back=white]Energy Dispersive Diffraction[/back][/color][/font][font='Microsoft YaHei',sans-serif][color=black][back=white])。[/back][/color][/font][font='Microsoft YaHei',sans-serif][color=black][back=white]此时衍射角[/back][/color][/font][font='Microsoft YaHei',sans-serif][back=white]2[font='Microsoft YaHei',sans-serif]θ[/font][/back][/font][font='Microsoft YaHei',sans-serif][color=black][back=white]固定且已知,通过测量衍射束的波长[/back][/color][/font][font='Microsoft YaHei',sans-serif][color=black][back=white]λ[/back][/color][/font][font='Microsoft YaHei',sans-serif][color=black][back=white]或能量[/back][/color][/font][font='Microsoft YaHei',sans-serif][color=black][back=white]E[/back][/color][/font][font='Microsoft YaHei',sans-serif][color=black][back=white]来计算样品的晶面间距[/back][/color][/font][font='Microsoft YaHei',sans-serif][color=black][back=white]d[/back][/color][/font][font='Microsoft YaHei',sans-serif][color=black][back=white]。在实际操作中,能量[/back][/color][/font][font='Microsoft YaHei',sans-serif][color=black][back=white]E[/back][/color][/font][font='Microsoft YaHei',sans-serif][color=black][back=white]与波长[/back][/color][/font][font='Microsoft YaHei',sans-serif][color=black][back=white]λ[/back][/color][/font][font='Microsoft YaHei',sans-serif][color=black][back=white]成反比,所以能量色散[/back][/color][/font][font='Microsoft YaHei',sans-serif][color=black][back=white]X[/back][/color][/font][font='Microsoft YaHei',sans-serif][color=black][back=white]射线衍射的布拉格方程写为[/back][/color][/font][font='Microsoft YaHei',sans-serif][back=white]d=6.2/E/Sin([font='Microsoft YaHei',sans-serif]θ[/font][/back][font='Microsoft YaHei',sans-serif][color=black])[/color][/font][/font][font='Microsoft YaHei',sans-serif][color=black][back=white]。其中[/back][/color][/font][font='Microsoft YaHei',sans-serif][color=black][back=white]E[/back][/color][/font][font='Microsoft YaHei',sans-serif][color=black][back=white]单位为[/back][/color][/font][font='Microsoft YaHei',sans-serif][color=black][back=white]KeV[/back][/color][/font][font='Microsoft YaHei',sans-serif][color=black][back=white],[/back][/color][/font][font='Microsoft YaHei',sans-serif][color=black][back=white]d[/back][/color][/font][font='Microsoft YaHei',sans-serif][color=black][back=white]单位为[/back][/color][/font][font='Microsoft YaHei',sans-serif][color=black][back=white]?[/back][/color][/font][font='Microsoft YaHei',sans-serif][color=black][back=white]。在飞行时间中子衍射中,中子的飞行时间反比于中子飞行速度;中子飞行速度又反比于其波长;所以飞行时间正比于晶面间距。在实际操作中,飞行时间中子衍射的布拉格方程写为[/back][/color][/font][font='Microsoft YaHei',sans-serif][color=black][back=white]TOF=t0*d^0+t1*d^1+t2*d^2[/back][/color][/font][font='Microsoft YaHei',sans-serif][color=black][back=white],即允许二阶多项式拟合,拟合常数[/back][/color][/font][font='Microsoft YaHei',sans-serif][color=black][back=white]t0[/back][/color][/font][font='Microsoft YaHei',sans-serif][color=black][back=white],[/back][/color][/font][font='Microsoft YaHei',sans-serif][color=black][back=white]t1[/back][/color][/font][font='Microsoft YaHei',sans-serif][color=black][back=white],[/back][/color][/font][font='Microsoft YaHei',sans-serif][color=black][back=white]t2[/back][/color][/font][font='Microsoft YaHei',sans-serif][color=black][back=white]对每个探测器[/back][/color][/font][font='Microsoft YaHei',sans-serif][color=black][back=white]bank[/back][/color][/font][font='Microsoft YaHei',sans-serif][color=black][back=white]是固定的。[/back][/color][/font][font='Microsoft YaHei',sans-serif][color=black][back=white]2. [/back][/color][/font][font='Microsoft YaHei',sans-serif][color=black][back=white]用标样为每个探测器[/back][/color][/font][font='Microsoft YaHei',sans-serif][color=black][back=white]bank[/back][/color][/font][font='Microsoft YaHei',sans-serif][color=black][back=white]标定[/back][/color][/font][font='Microsoft YaHei',sans-serif][color=black][back=white]t0[/back][/color][/font][font='Microsoft YaHei',sans-serif][color=black][back=white],[/back][/color][/font][font='Microsoft YaHei',sans-serif][color=black][back=white]t1[/back][/color][/font][font='Microsoft YaHei',sans-serif][color=black][back=white],[/back][/color][/font][font='Microsoft YaHei',sans-serif][color=black][back=white]t2[/back][/color][/font][font='Microsoft YaHei',sans-serif][color=black][back=white]中国散裂中子源[/back][/color][/font][font='Microsoft YaHei',sans-serif][color=black][back=white](CSNS)[/back][/color][/font][font='Microsoft YaHei',sans-serif][color=black][back=white]通用粉末衍射仪[/back][/color][/font][font='Microsoft YaHei',sans-serif][color=black][back=white](GPPD)[/back][/color][/font][font='Microsoft YaHei',sans-serif][color=black][back=white]是一台飞行时间中子衍射设备,配备了三台探测器,分别安放在衍射角[/back][/color][/font][font='Microsoft YaHei',sans-serif][color=black][back=white]2[/back][/color][/font][font='Microsoft YaHei',sans-serif][color=black][back=white]θ[/back][/color][/font][font='Microsoft YaHei',sans-serif][color=black][back=white]= 150°[/back][/color][/font][font='Microsoft YaHei',sans-serif][color=black][back=white],[/back][/color][/font][font='Microsoft YaHei',sans-serif][color=black][back=white]90°[/back][/color][/font][font='Microsoft YaHei',sans-serif][color=black][back=white],[/back][/color][/font][font='Microsoft YaHei',sans-serif][color=black][back=white]15°[/back][/color][/font][font='Microsoft YaHei',sans-serif][color=black][back=white]的位置,同时记录衍射数据。通常在测量未知样品前,于相同衍射条件下测量某全球承认的标样(如[/back][/color][/font][font='Microsoft YaHei',sans-serif][color=black][back=white]NIST SRM 640e [/back][/color][/font][font='Microsoft YaHei',sans-serif][color=black][back=white]硅粉[/back][/color][/font][font='Microsoft YaHei',sans-serif][color=black][back=white] [/back][/color][/font][font='Microsoft YaHei',sans-serif][color=black][back=white]等),通过三台探测器分别记录的衍射谱校准其对应的三套[/back][/color][/font][font='Microsoft YaHei',sans-serif][color=black][back=white]t0[/back][/color][/font][font='Microsoft YaHei',sans-serif][color=black][back=white],[/back][/color][/font][font='Microsoft YaHei',sans-serif][color=black][back=white]t1[/back][/color][/font][font='Microsoft YaHei',sans-serif][color=black][back=white],[/back][/color][/font][font='Microsoft YaHei',sans-serif][color=black][back=white]t2[/back][/color][/font][font='Microsoft YaHei',sans-serif][color=black][back=white]以及峰形参数。[/back][/color][/font][font='Microsoft YaHei',sans-serif][color=black][back=white][/back][/color][/font][font='Microsoft YaHei',sans-serif][color=black][back=white]附件[/back][/color][/font][font='Microsoft YaHei',sans-serif][color=black][back=white]1[/back][/color][/font][font='Microsoft YaHei',sans-serif][color=black][back=white]的[/back][/color][/font][font='Microsoft YaHei',sans-serif][color=black][back=white]TOPAS[/back][/color][/font][font='Microsoft YaHei',sans-serif][color=black][back=white]精修模型,同时精修这三台探测器记录的谱图,下载后请将后缀名改为[/back][/color][/font][font='Microsoft YaHei',sans-serif][color=black][back=white]inp,再导入TOPAS运行[/back][/color][/font][font='Microsoft YaHei',sans-serif][color=black][back=white]。[/back][/color][/font][font='Microsoft YaHei',sans-serif][color=black][back=white] [/back][/color][/font][font='Microsoft YaHei',sans-serif][color=black][back=white]TOPAS[/back][/color][/font][font='Microsoft YaHei',sans-serif][color=black][back=white]运行后应产生如下的同时精修谱图:[img=,690,349]https://ng1.17img.cn/bbsfiles/images/2023/10/202310171344050217_925_1986542_3.png!w690x349.jpg[/img][/back][/color][/font][font='Microsoft YaHei',sans-serif][color=black][back=white][/back][/color][/font][font='Microsoft YaHei',sans-serif][color=black][back=white]调整[/back][/color][/font][font='Microsoft YaHei',sans-serif][color=black][back=white]TOPAS[/back][/color][/font][font='Microsoft YaHei',sans-serif][color=black][back=white]的[/back][/color][/font][font='Microsoft YaHei',sans-serif][color=black][back=white]X[/back][/color][/font][font='Microsoft YaHei',sans-serif][color=black][back=white]轴,可将上图转换为[/back][/color][/font][font='Microsoft YaHei',sans-serif][color=black][back=white]d[/back][/color][/font][font='Microsoft YaHei',sans-serif][color=black][back=white]坐标或[/back][/color][/font][font='Microsoft YaHei',sans-serif][color=black][back=white]Q[/back][/color][/font][font='Microsoft YaHei',sans-serif][color=black][back=white]坐标。可见各探测器[/back][/color][/font][font='Microsoft YaHei',sans-serif][color=black][back=white]Bank[/back][/color][/font][font='Microsoft YaHei',sans-serif][color=black][back=white]的测量[/back][/color][/font][font='Microsoft YaHei',sans-serif][color=black][back=white]Q[/back][/color][/font][font='Microsoft YaHei',sans-serif][color=black][back=white]值和[/back][/color][/font][font='Microsoft YaHei',sans-serif][color=black][back=white]d[/back][/color][/font][font='Microsoft YaHei',sans-serif][color=black][back=white]值的大致范围如下所列。[/back][/color][/font][font='Microsoft YaHei',sans-serif][color=black][back=white]探测器[/back][/color][/font][font='Microsoft YaHei',sans-serif][color=black][back=white]bank1[/back][/color][/font][font='Microsoft YaHei',sans-serif][color=black][back=white]([/back][/color][/font][font='Microsoft YaHei',sans-serif][color=black][back=white]2[/back][/color][/font][font='Microsoft YaHei',sans-serif][color=black][back=white]θ[/back][/color][/font][font='Microsoft YaHei',sans-serif][color=black][back=white]=150[/back][/color][/font][font='Microsoft YaHei',sans-serif][back=white]°):[font='Microsoft YaHei',sans-serif]Q: 3-31 ([/font][/back]?^-1) d: 2 - 0.2 ?[/font][font='Microsoft YaHei',sans-serif][color=black][back=white]探测器[/back][/color][/font][font='Microsoft YaHei',sans-serif][color=black][back=white]bank2[/back][/color][/font][font='Microsoft YaHei',sans-serif][color=black][back=white]([/back][/color][/font][font='Microsoft YaHei',sans-serif][color=black][back=white]2[/back][/color][/font][font='Microsoft YaHei',sans-serif][color=black][back=white]θ[/back][/color][/font][font='Microsoft YaHei',sans-serif][color=black][back=white]=90[/back][/color][/font][font='Microsoft YaHei',sans-serif][color=black][back=white]°):[/back][/color][/font][font='Microsoft YaHei',sans-serif][color=black][back=white]Q: 1.5-12.5 (?^-1) d: 4 - 0.5 ?[/back][/color][/font][font='Microsoft YaHei',sans-serif][color=black][back=white]探测器[/back][/color][/font][font='Microsoft YaHei',sans-serif][color=black][back=white]bank3[/back][/color][/font][font='Microsoft YaHei',sans-serif][color=black][back=white]([/back][/color][/font][font='Microsoft YaHei',sans-serif][color=black][back=white]2[/back][/color][/font][font='Microsoft YaHei',sans-serif][color=black][back=white]θ[/back][/color][/font][font='Microsoft YaHei',sans-serif][color=black][back=white]=15[/back][/color][/font][font='Microsoft YaHei',sans-serif][color=black][back=white]°):[/back][/color][/font][font='Microsoft YaHei',sans-serif][color=black][back=white]Q: 0.3-12.5 (?^-1) d: 25- 0.5 ?[/back][/color][/font][font='Microsoft YaHei',sans-serif][color=black][back=white]用户可对照查看是否包含待测样品的特征峰位置。 [/back][/color][/font][font='Microsoft YaHei',sans-serif][color=black][back=white]3. [/back][/color][/font][font='Microsoft YaHei',sans-serif][color=black][back=white]对实际样品的精修[/back][/color][/font][font='Microsoft YaHei',sans-serif][color=black][back=white]针对标样的精修完成后,将附件1模型的所有仪器参数(包括TOF_x_axis_calibration中已校准的三套[/back][/color][/font][font='Microsoft YaHei',sans-serif][color=black][back=white]t0 t1 t2[/back][/color][/font][font='Microsoft YaHei',sans-serif][color=black][back=white]和 TOF_Exponential和tof_sample_peakshape中的仪器峰形参数)前全部加上感叹号[/back][/color][/font][font='Microsoft YaHei',sans-serif][color=black][back=white]![/back][/color][/font][font='Microsoft YaHei',sans-serif][color=black][back=white]固定。 用实际样品的晶体结构替代[/back][/color][/font][font='Microsoft YaHei',sans-serif][color=black][back=white]Si [/back][/color][/font][font='Microsoft YaHei',sans-serif][color=black][back=white]的晶体结构。任何额外的峰形展宽均应来自于实际被测样品。[/back][/color][/font][font='Microsoft YaHei',sans-serif][color=black][back=white][/back][/color][/font][back=white]本模型所需的衍射数据已上传到附件[font='Microsoft YaHei',sans-serif][color=black]2[/color][/font][/back][font='Microsoft YaHei',sans-serif][color=black][back=white],方便[/back][/color][/font][color=black][font='Microsoft YaHei',sans-serif][color=black]TOPAS[/color][/font][font='Microsoft YaHei',sans-serif][color=black]用户自己练习:)[/color][/font][/color][font='Microsoft YaHei',sans-serif][color=black][back=white] [/back][/color][/font][font='Microsoft YaHei',sans-serif][color=black][back=white]参考文献:[/back][/color][/font][font='Microsoft YaHei',sans-serif]中国散裂中子源通用粉末衍射仪介绍[/font][font='Microsoft YaHei',sans-serif][url]https://user.csns.ihep.ac.cn/spectrometer/detail/2[/url][/font][font='Microsoft YaHei',sans-serif]精修[/font][font='Microsoft YaHei',sans-serif]TOF[/font][font='Microsoft YaHei',sans-serif]数据的[/font][font='Microsoft YaHei',sans-serif]TOPAS[/font][font='Microsoft YaHei',sans-serif]模型实例:[/font][font='Microsoft YaHei',sans-serif][url=https://topas.awh.durham.ac.uk/doku.php?id=time_of_flight_tof_isis_instrument_standard_files&s%5b%5d=hrpd]https://topas.awh.durham.ac.uk/doku.php?id=time_of_flight_tof_isis_instrument_standard_files&s[]=hrpd[/url][/font]

  • 了解核聚变有了新工具[图] X射线激光实验研究温稠密物质获得重要进展

    http://www.stdaily.com/stdaily/pic/attachement/jpg/site2/20121007/021349623688218_change_chd2a0_b.jpg 温稠密物质(warm dense matter)是在宇宙星体、地幔内部、实验室核聚变内爆过程中广泛存在的一类物质。因此,在实验室生成温稠密物质,研究它们的特性对模拟惯性约束核聚变、超新星爆炸和某些行星内部结构、地幔的物质演化和成矿机理等具有重要指导意义。 温稠密物质范围很宽,可以定义为热能小于或稍超过费米能状态的物质,是通常凝聚态物质和高温完全电离等离子体之间的一类物质,其电子处于部分电离、部分束缚的状态,成分包括自由和束缚电子、离子、原子、分子以及它们组成的束团,一般处于高压状态。通常这类物质具有高的能量密度特征。 极端X射线探测极端物质 内布拉斯加-林肯大学物理与天文学教授唐纳德·乌姆斯塔德说,要在实验室造出稠密等离子体,一般方法是迅速加热一个固体密度物质,如一薄层金属箔。如果加热速度足够快,就能达到使密度保持相对恒定,接近于通常固体密度值。超短脉冲激光是能将固体快速加热到稠密等离子体的首选。 最近,一个由牛津大学奥兰多·希瑞克斯塔和英、美、德、澳等国科学家组成的国际研究小组利用目前世界最强的X射线激光源——斯坦福大学的直线加速相干光源(LCLS)将铝箔在约80飞秒(1飞秒=10-15秒)内加热到70到180eV(约80到200万开氏度)。由于这么短时间内加热,压力达到几千万大气压,铝箔来不及膨胀,还几乎保持着原来固体密度,生成了温稠密等离子体,研究小组对其内部的电离情况进行了直接检测,并将相关结果以论文形式发表在《物理评论快报》上。 在以往实验中,所用激光只有近红外到紫外波长的激光,新实验用了完全不同的激光:X射线自由电子激光(XFEL)。相干X射线能量很高,达到千电子伏特以上,能将铝核K壳层电子直接击出原子,而红外光基本上只能激发外壳层电子。X射线还能更深地穿透材料,均匀照射整个目标,将其加热到100eV(百万开氏度以上),生成固体密度等离子体。 正如研究小组领导、牛津大学的贾斯廷·瓦克所说:“X射线激光非常关键,我们无法在别的地方进行这种实验。”LCLS为实验提供了特需条件:用于检测极端现象的严格受控的环境,相干X射线能量极高而且能精确调整,精确检测特殊固体密度等离子体属性的方法。 希瑞克斯塔等人检测了铝箔系统内高电荷离子的K壳层电离电子的荧光,反推内部压力电离下有效电离势连续降低的变化,发现实验结果和广泛使用的Stewart-Pyatt模型(1965年提出,简称SP模型)所预测的结果不符,却和更早的Ecker-Krll模型(1963年提出,简称EK模型)吻合的较好。研究人员指出,从研究核聚变能源到理解恒星内部的运行机制,这一结果将对许多领域产生重要影响。 两种模型的含义 推翻沿用半个世纪的模型意味着什么?理论的改换将会对哪些研究产生影响?为此科技日报记者还专门采访了中国科学院院士、北京大学应用物理与技术研究中心主任贺贤土。 贺贤土解释说,温稠密物质中存在复杂的电离效应,精确了解不同粒子的电离程度,可以很好了解强耦合下温稠密物质内各种粒子和束团的状态和成分,这对研究温稠密物质特性,如局部热动力学下状态方程和输运系数十分重要。 目前还没有一种满意的理论能很好描述温稠密物质性质。虽有好几种压力电离模型,但很难判断它们准确性,如何实验诊断难度很大。目前国际上很多数值模拟程序中都采用SP模型,它是用离子间距作为考虑有效屏蔽的平均离子模型的参量;而EK模型是用离子和自由电子密度之和表示粒子间距,作为考虑有效屏蔽的平均离子模型的参量。 希瑞克斯塔等人用两种模型预言温稠密物质的有效电离势发生连续下降的特性,表明了EK模型给出更大的下降,这对精确研究温稠密物质状态方程、电导系数和热导率、离子辐射等性质都有重要意义。 实验的重要性还在于他们筛选出了更好的模型。实验数据与EK模型吻合的更好,表明在计算等离子体密度时不能忽略电子的影响,考虑电子数量的模拟效果更好。但EK模型仍有不符合实验的地方,还需要更多实验和细节上的修正。这也体现了等离子体内部电离的复杂性。 贺贤土说,我国目前还没有像可调谐的千电子伏特以上能量相干的X射线自由电子激光器,上述实验由于条件的限制还无法开展。我们主要利用我国神光Ⅱ和神光Ⅲ原型激光器从整体上进行温稠密物质的状态方程等研究;理论上研究温稠密物质主要从量子统计出发研究它们的电离度、等离子体相变(PPT)、化学势、自能等物理量,并在密度泛函和Green函数等框架下理论研究它们的粒子数密度,进而获得了状态方程和输运系数,精确了解通常要从第一性原理出发进行数值模拟研究。 温稠密物质研究有广泛应用 热核聚变能源是人类理想的清洁能源。目前,实现可控核聚变主要有两种技术途径。一种是用托卡马克装置开展“磁约束聚变”的研究,另一种是激光驱动的惯性约束聚变(ICF)。ICF研究除了应用于聚变能源之外,还可用于国防和高能量密度物理基础科学研究。ICF靶丸在内爆过程中受压缩的燃料就是温稠密物质,因此,更好的模型对于指导我国的实验也是重要的参考。同时ICF研究使用的高功率、大能量纳秒脉冲激光器,以及能产生相对论等离子体的超短、超强皮秒和飞秒激光器,可以提供高能量密度物理研究的重要实验条件。它们不仅对ICF研究,而且对建立地球上天体物理模拟实验室、推动超高能精致台式加速器研究、地幔特性和成矿机理研究、超高能核物理研究等都具有十分重要意义。 贺贤土还指出,高能量密度物理是目前国际上快速发展的新兴学科。在我国,北京大学应用物理与计算研究中心在这一领域中重点开展了以下五个方面的研究:一是高能量密度状态下物质的特性,尤其是温稠密物质的研究;二是强场作用下原子的电离;三是强场下带电粒子加速研究;四是可压缩流体湍流与流体力学不稳定性研究;五是相关数学模型研究和计算机程序开发,目前已获得了大量有国际影响的成果。今年10月北京大学应用物理与计算研究中心还将主持召开高能量密度物理国际会议,国际上很多这一领域的著名科学家将来华参加这一盛会,进行学术交流和讨论合作研究。(记者 常丽君) 《科技日报》(2012-10-08 二版)

  • 【分享】我国科学家从玉米中提取出抗艾蛋白酶突变体

    可选择性杀伤HIV感染细胞,为HIV药物生产提供新思路经过多年的科技攻关,近日,香港中文大学教授邵鹏柱学科组与中科院昆明动物研究所研究员郑永唐学科组合作,从玉米中获得了一种能够选择性地杀伤艾滋病病毒(HIV)感染细胞的蛋白酶突变体。该研究成果为研发特异性靶向HIV感染细胞的新型抗HIV药物提供了新思路和新策略。 据悉,HIV存在潜藏机制可以长期潜伏在细胞中而逃逸宿主免疫系统的攻击,目前已上市的抗HIV药物均不能选择性地杀伤感染细胞而根除病毒。郑永唐认为,新的研究思路对开发新型抗HIV药物显得非常重要,研究具有选择性地杀伤HIV感染细胞而保护正常细胞不受伤害的抗艾滋病药物是极有前景的方向。 核糖体失活蛋白(RIPs)具有RNA N-糖苷酶活性,可以阻遏延长因子EF-1或EF-2与核糖体的结合,抑制蛋白质的生物合成。因此,RIPs具有很高的细胞毒性,常常被开发成为免疫毒素、抗病毒或抗肿瘤药物。RIP分为3类:I型、II型和III型。其中,III型RIP以玉米RIP为代表,先合成无活性的含有一段25氨基酸的内部失活结构域的前体蛋白,前体蛋白被切除该结构域后才成为有活性的核糖体失活蛋白。 在香港研究资助局、科技部“973”项目、国家重大科技专项、中科院等项目的资助下,邵鹏柱、郑永唐等对玉米RIP的内部失活结构域进行一系列的结构修饰和改造,获得了对HIV-1蛋白酶特异识别并激活的玉米RIP突变体。细胞水平实验的研究表明,突变体对未感染细胞毒性低,但突变体进入HIV-1感染细胞后则可被细胞内的HIV-1蛋白酶识别并切割去除失活结构域转变成为活性蛋白,从而选择性地杀伤HIV-1感染细胞。同时,通过增加突变体进入细胞的效率,对HIV-1感染细胞的杀伤力更强。突变体也可以被HIV-1蛋白酶耐药株的蛋白酶识别并激活,因此突变体对HIV-1蛋白酶耐药株感染细胞也有很好的选择杀伤性。

  • 【转帖】我国科学家从玉米中提取出抗艾蛋白酶突变体

    可选择性杀伤HIV感染细胞,为HIV药物生产提供新思路  经过多年的科技攻关,近日,香港中文大学教授邵鹏柱学科组与中科院昆明动物研究所研究员郑永唐学科组合作,从玉米中获得了一种能够选择性地杀伤艾滋病病毒(HIV)感染细胞的蛋白酶突变体。该研究成果为研发特异性靶向HIV感染细胞的新型抗HIV药物提供了新思路和新策略。  据悉,HIV存在潜藏机制可以长期潜伏在细胞中而逃逸宿主免疫系统的攻击,目前已上市的抗HIV药物均不能选择性地杀伤感染细胞而根除病毒。郑永唐认为,新的研究思路对开发新型抗HIV药物显得非常重要,研究具有选择性地杀伤HIV感染细胞而保护正常细胞不受伤害的抗艾滋病药物是极有前景的方向。  核糖体失活蛋白(RIPs)具有RNA N-糖苷酶活性,可以阻遏延长因子EF-1或EF-2与核糖体的结合,抑制蛋白质的生物合成。因此,RIPs具有很高的细胞毒性,常常被开发成为免疫毒素、抗病毒或抗肿瘤药物。RIP分为3类:I型、II型和III型。其中,III型RIP以玉米RIP为代表,先合成无活性的含有一段25氨基酸的内部失活结构域的前体蛋白,前体蛋白被切除该结构域后才成为有活性的核糖体失活蛋白。  在香港研究资助局、科技部“973”项目、国家重大科技专项、中科院等项目的资助下,邵鹏柱、郑永唐等对玉米RIP的内部失活结构域进行一系列的结构修饰和改造,获得了对HIV-1蛋白酶特异识别并激活的玉米RIP突变体。细胞水平实验的研究表明,突变体对未感染细胞毒性低,但突变体进入HIV-1感染细胞后则可被细胞内的HIV-1蛋白酶识别并切割去除失活结构域转变成为活性蛋白,从而选择性地杀伤HIV-1感染细胞。同时,通过增加突变体进入细胞的效率,对HIV-1感染细胞的杀伤力更强。突变体也可以被HIV-1蛋白酶耐药株的蛋白酶识别并激活,因此突变体对HIV-1蛋白酶耐药株感染细胞也有很好的选择杀伤性。  该研究成果已在国际学术期刊《核酸研究》(Nucleic Acids Research)上发表。

  • 【分享】我国科学家从玉米中提取出抗艾蛋白酶突变体

    经过多年的科技攻关,近日,香港中文大学教授邵鹏柱学科组与中科院昆明动物研究所研究员郑永唐学科组合作,从玉米中获得了一种能够选择性地杀伤艾滋病病毒(HIV)感染细胞的蛋白酶突变体。该研究成果为研发特异性靶向HIV感染细胞的新型抗HIV药物提供了新思路和新策略。据悉,HIV存在潜藏机制可以长期潜伏在细胞中而逃逸宿主免疫系统的攻击,目前已上市的抗HIV药物均不能选择性地杀伤感染细胞而根除病毒。郑永唐认为,新的研究思路对开发新型抗HIV药物显得非常重要,研究具有选择性地杀伤HIV感染细胞而保护正常细胞不受伤害的抗艾滋病药物是极有前景的方向。核糖体失活蛋白(RIPs)具有RNA N-糖苷酶活性,可以阻遏延长因子EF-1或EF-2与核糖体的结合,抑制蛋白质的生物合成。因此,RIPs具有很高的细胞毒性,常常被开发成为免疫毒素、抗病毒或抗肿瘤药物。RIP分为3类:I型、II型和III型。其中,III型RIP以玉米RIP为代表,先合成无活性的含有一段25氨基酸的内部失活结构域的前体蛋白,前体蛋白被切除该结构域后才成为有活性的核糖体失活蛋白。在香港研究资助局、科技部“973”项目、国家重大科技专项、中科院等项目的资助下,邵鹏柱、郑永唐等对玉米RIP的内部失活结构域进行一系列的结构修饰和改造,获得了对HIV-1蛋白酶特异识别并激活的玉米RIP突变体。细胞水平实验的研究表明,突变体对未感染细胞毒性低,但突变体进入HIV-1感染细胞后则可被细胞内的HIV-1蛋白酶识别并切割去除失活结构域转变成为活性蛋白,从而选择性地杀伤HIV-1感染细胞。同时,通过增加突变体进入细胞的效率,对HIV-1感染细胞的杀伤力更强。突变体也可以被HIV-1蛋白酶耐药株的蛋白酶识别并激活,因此突变体对HIV-1蛋白酶耐药株感染细胞也有很好的选择杀伤性。该研究成果已在国际学术期刊《核酸研究》(Nucleic Acids Research)上发表。(科学时报)

  • 鄙视一下中资源这个公司

    厦门中资源公司,一个搞域名注册的网站。发传真件做广告就不说了,还打电话骚扰我们,不买他的服务就威胁说会有别人抢注我们公司的域名而且态度还很拽。强烈鄙视这种靠歪门邪道做生意的公司[em18] [em18] [em18] 该公司网站http://www.zzy.cn/

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制