当前位置: 仪器信息网 > 行业主题 > >

匹兹堡分析化学和光谱应用会

仪器信息网匹兹堡分析化学和光谱应用会专题为您整合匹兹堡分析化学和光谱应用会相关的最新文章,在匹兹堡分析化学和光谱应用会专题,您不仅可以免费浏览匹兹堡分析化学和光谱应用会的资讯, 同时您还可以浏览匹兹堡分析化学和光谱应用会的相关资料、解决方案,参与社区匹兹堡分析化学和光谱应用会话题讨论。

匹兹堡分析化学和光谱应用会相关的方案

  • 近红外光谱和气相色谱-质谱联用分析烟用爆珠
    烟用爆珠是嵌在卷烟滤嘴中的一粒或多粒脆性胶囊,胶囊中包裹了特色香精香料及适量溶剂液体,能够延缓挥发性香味物质的自然损失,实现卷烟抽吸过程中特色香味物质人为可控释放。随着爆珠卷烟销量的增长,对烟用爆珠的研究日益增多。GC-MS法虽然能够获取烟用爆珠内含物中挥发性及半挥发性化学成分信息,结合指纹图谱能够分析烟用爆珠的质量稳定性,但其前处理及分析费时费力,对样品具有破坏性。采用近红外光谱技术法结合SIMCA可以快速判别不同类型烟用爆珠,LDA模型可将3种类型不同批次的烟用爆珠有效分开 同时,采用GC-MS法对烟用爆珠内含物中挥发性及半挥发性化学成分进行定性分析。
  • 啤酒中苦味质和总糖检测方案(紫外分光光度计)
    简介啤酒可谓是人类最古老也最为流行的饮料, 考古证据表明, 啤酒距今已有7000多年的历史。 经过数个世纪的发展, 啤酒制造业已成为以大型跨国公司为主导的数十亿美元的产业。 无论是手工啤酒抑或是大批量产啤酒, 要正确制备、 开发新品并确保批次间的品质。为控制啤酒的口味和质量, 酿酒师会进行一系列测试, 证明并维持其一致性。 酿酒师协会和政府机构已合作制定了一系列指导方针, 用于重要特定参数的测定。 虽然酒精含量是最为常见的标准, 但他们还对许多其它参数进行了测量和记录, 如总糖含量、 蛋白质含量、 颜色、 多酚、 双乙酰及苦味质等。 测试所需设备包括HPLC 、 色谱、 光谱技术等, 而色谱仪器价格昂贵且需要训练有素的技术人员。 而紫外-可见光谱法测试简单、 仪器物美价廉, 更受测试人员的青睐。背景紫外-可见光谱法是测试多种材料的最基本技术, 通常用于多种化合物的定性和定量测定, 如共轭有机化合物、 过渡金属配合物和生物大分子, 因其灵活性、易用性以及实验室仪器普遍性, 成为啤酒酿造中重要质控 (QC) 参数的测定方法。 美国酿造化学家协会(ASBC)、 欧洲啤酒酿造协会 (EBC)、 公职分析化学者协会 (AOAC) 及其他团体已开发并参照了多种设定方针, 专门针对啤酒中特定参数的紫外-可见测试, 以期实现对啤酒品质进行测定和控制。紫外-可见光谱法测定下列特性:• 啤酒花中 α -酸和 β -酸• 花青素• 苦味质• 色度• 双乙酰• 乙醇(乙基乙醇)• 游离氨基氮 (FAN)• 碘• 蛋白质• 亚硫酸盐• 总糖• 总多酚因为啤酒制造中质控的一致性对于确保高品质产品非常重要, 所以在每次生产中进行高品质数据的采集和准确报告非常关键。 Thermo Scientific Evolution 200系列紫外-可见分光光度计操作简便、 性能卓越, 在始终提供高品质数据方面具有独特优势, 同时无需操作员培训, 是该应用的理想之选。紫外-可见光谱法非常适合多项参数的分析, 本应用指南描述了啤酒苦味质和总糖的分析方法和结果。 分析所用样品取自购自 Northern Brewer™ (Roseville, MN)的啤酒套组, 并按照供应商说明制备。 样品包括:Black IPA, Lakefront IBA, Lakefront Fixed Gear及 NutBrown Ale。 下文详述了两种方法的样品制备、 分析和结果等内容。
  • 近红外光谱技术应用于煤炭热值、灰分、挥发分和固定碳定量分析
    随着国家对节能减排的要求越来越严格,热值、灰分、挥发分和固定碳等煤炭的质量指标不仅是热量指标的要求,也是环保的要求;煤炭分析的速度也是用煤单位多年探索的一项重要技术,传统煤炭热量分析主要采用量热仪,灰分、挥发分和固定碳测定采用马弗炉,分析周期长,耗能大,分析步骤需要严格控制,很多燃煤企业多年来一直在探索利用激光、中子法等技术进行煤炭快速分析,但激光和中子法对仪器安全防护要求高,使用成本也很高,而采用傅里叶近红外技术对煤炭的热值、灰分、挥发分、固定碳的进行快速分析研究近几年取得了一定进展。近红外光谱分析技术具有以下优点:1、分析速度快:任何样品的近红外光谱测试时间都可以再1分钟内完成;2、样品处理简单:样品最多可能进行简单的物理处理,如磨粉等;无需进行化学处理;3、操作简单:样品无需称重等复杂的计量测试和化学处理;只需对样品进行简单的光谱扫描;4、人为操作误差小:无称重、稀释、定容等操作,避免了操作流程上带来的偶然误差;5、绿色环保:近红外测试过程无需化学试剂,无化学反应过程,无污染;6、能实现现场在线实时测试:采用在线近红外分析技术,可以实现实时在线分析。
  • 拉曼光谱在药物API晶型及粒度分析中的应用
    化学原料药物(API,active pharmaceutical ingredient)的多晶型现象和粒度影响着药物的理化稳定性、制剂中药物的溶解度、溶出率、生物利用度以及生产工艺的可开发性。在新药研发和药物一致性评价中,API的晶型鉴别和粒度评价是其中关键一环。对于固体原料药和制剂中原料药的晶型分析,常用的方法为X射线粉末衍射法,其对粉末API样品的颗粒度有一定的要求,通常需要研磨处理。对于制剂中的API晶型分析时,由于某些常用辅料如甘露醇、乳糖、蔗糖等也存在多个晶型,可能会存在一定干扰,增加测试和分析难度。拉曼光谱技术是一种无需样品制备、非接触的快速分析技术,对于低频振动的检测具有明显的优越性,甚至可检测到分子的晶格振动,其谱带强度与待测物浓度的关系遵守比尔定律,也可用于化合物定量分析。与X射线粉末衍射法相比,制样简单,非接触检测,避免了制样过程对晶型的影响,从分子结构水平上识别物质及其晶型结构。赛默飞DXR2系列显微拉曼光谱仪具有先进的自动化光学控制系统、高灵敏度、智能化检测方式、优异的光谱分辨率和空间分辨率,轻松进行晶型鉴别、共晶分析、混晶定量等。此外,赛默飞DXR2xi显微拉曼成像光谱仪因其优异的空间分辨和高速的数据处理能力,不但可以满足晶型的常规鉴别分析,混晶、共晶分析,也可快速实现粒度统计及分布分析,提供更丰富的信息,助力仿制药一致性评价和新药研发。
  • 拉曼光谱在药物API晶型及粒度分析中的应用
    化学原料药物(API,active pharmaceutical ingredient)的多晶型现象和粒度影响着药物的理化稳定性、制剂中药物的溶解度、溶出率、生物利用度以及生产工艺的可开发性。在新药研发和药物一致性评价中,API的晶型鉴别和粒度评价是其中关键一环。对于固体原料药和制剂中原料药的晶型分析,常用的方法为X射线粉末衍射法,其对粉末API样品的颗粒度有一定的要求,通常需要研磨处理。对于制剂中的API晶型分析时,由于某些常用辅料如甘露醇、乳糖、蔗糖等也存在多个晶型,可能会存在一定干扰,增加测试和分析难度。拉曼光谱技术是一种无需样品制备、非接触的快速分析技术,对于低频振动的检测具有明显的优越性,甚至可检测到分子的晶格振动,其谱带强度与待测物浓度的关系遵守比尔定律,也可用于化合物定量分析。与X射线粉末衍射法相比,制样简单,非接触检测,避免了制样过程对晶型的影响,从分子结构水平上识别物质及其晶型结构。赛默飞DXR2系列显微拉曼光谱仪具有先进的自动化光学控制系统、高灵敏度、智能化检测方式、优异的光谱分辨率和空间分辨率,轻松进行晶型鉴别、共晶分析、混晶定量等。此外,赛默飞DXR2xi显微拉曼成像光谱仪因其优异的空间分辨和高速的数据处理能力,不但可以满足晶型的常规鉴别分析,混晶、共晶分析,也可快速实现粒度统计及分布分析,提供更丰富的信息,助力仿制药一致性评价和新药研发。
  • 分子光谱技术在异物分析检测中的应用
    近年来随着消费者对产品质量的要求越来越高,各个领域生产者对产品质量控制也越来越严格,对产品的质量控制不再只是局限于产品的性能或组分含量,在产品或生产过程中出现的异常物质也需进行严格控制,而对这些物质进行检测即为异物分析。异物分析是指对工业生产、存储、使用过程中出现的异物杂质或未知物进行成分分析,是专门分析产品上的微小嵌入异物或表面污染物、析出物进行成分定性的检测技术。寻找污染源或者污染环节,进行排除,改善生产体系,提高产品质量。藉此找寻污染源或配方不相容者,是改善产品最常用的分析方法之一。进而有效防止异物产生,减少企业经济损失,因此企业对异物分析和表面解析的需求量呈逐年上升的趋势。红外光谱技术、拉曼光谱技术同属于分子振动光谱范围,反映的是组成物质分子化学键振动信息,具有指纹识别的唯一性。即每种物质都有其独特的相对应的红外光谱和拉曼光谱,实现未知物质一一对应定性分析。同时拉曼光谱技术在异物分析上可以实现透明产品包裹体异物分析、无机物以及一些类似碳材料异物的检测定性。
  • 红外光谱分析在塑料成分比例研究中的应用
    红外光谱分析是一种广泛应用于材料科学、化学和物理学等领域的实验技术。对于塑料这种由多种有机高分子化合物组成的复杂材料,红外光谱分析能够提供有关其内部结构和化学成分的重要信息。尽管红外光谱分析在塑料成分分析中具有一定的局限性,例如无法提供准确的成分比例,但它仍然是一种重要的定性或半定量分析方法。
  • 化学纯度分析——Agilent Intuvo 9000 气相色谱仪与 FID 联用的技术优势
    单环芳烃是用于生产聚合物的重要通用化学品。ASTM 委员会 D16 针对许多这类化学品规定了纯度指标。ASTM D7405 方法使用气相色谱测量整体化学纯度和关键杂质含量,以此对这些指标提供支持。这些分析通常由生产技术人员执行,这类分析化学人员并非训练有素的分析化学家。为在简化方法的同时确保精密度,D7504 方法通过使用有效碳数 (ECN) 响应省略了样品前处理和仪器校准步骤。为使这种技术更高效,必须在单次运行中检测 10-4 至 99.5%(重量百分比)的样品组分。
  • Agilent Cary 630 FTIR 光谱仪对本科教学实验室提供支持
    红外光谱法是一项基础分析技术,要求物理化学、分析化学和有机化学专业的本科生必 须掌握原理并有机会使用。本科实验室需要 FTIR 光谱仪的设计能够满足多用户环境的需求。这种光谱仪应简单易用、灵活、耐用、可靠、紧凑且性价比高。Agilent Cary 630 FTIR 恰好符合这些要求。 Cary 630 FTIR 光谱仪可对多种材料和化学物质进行光谱测量。Cary 630 包括所有附件均采用紧凑设计,不仅可以测量液体、固体和气体,而且可对几乎所有传统应用领域进行分析。 学生通过简单培训即可使用 Cary 630 在分析或仪器实验室进行有机合成的相关定性分析或定量分析。 本应用简报介绍了 Cary 630 在典型的本科分析化学和物理化学实验中测定氯化氢或类似双原子气体属性方面的应用。
  • 酶、非酶分子的表面化学,光谱学研究及其应用
    采用立陶宛Ekspla公司的皮秒振动和频光谱测量系统(VS-SFG)对酶、非酶分子的表面化学,光谱学特性进行了实验研究并讨论了其可能的应用。
  • 近红外光谱分析技术在制药领域中的应用
    近红外光谱区域是人们发现的第一个非可见光谱区域,它是由Hershel在1800年所观察到[1]。但是由于缺乏仪器基础,直到上世纪50年代以前,近红外光谱技术一直没有得到实际应用。上世纪50年代中期以后,随着简易近红外光谱仪的出现及美国农业部的Karl Norris等人所做的工作,使近红外光谱技术在农副产品分析中得到广泛应用[2]。20世纪60年代后,由于中红外光谱技术的快速发展和应用,加之近红外光谱技术自身的灵敏度低、抗干扰性差等缺点,使人们淡漠了该技术在分析测试中的应用。1983年,Wetzel称之为“光谱技术中的沉睡者(Sleeper among spectroscopic techniques)” [1]。80年代以后,随着计算机技术、化学计量学技术及仪器分析技术的发展和应用,人们重新认识了近红外光谱的价值,并使其发展成为了一门独立的分析技术,1988年成立了国际近红外光谱协会(CNIRS)[3]。由于应用领域的不断扩展,McLure在1994年发表了一篇题为“The giant is running strong”的论文[1]。1998年,Davies撰文讨论了近红外光谱技术的潜在用途和发展趋势,并将其描述为光谱领域中“从沉睡者变为了启明星(from sleeping technique to the morning star of spectroscopy)”的技术[4]。我国对近红外光谱技术的研究起步较晚,但1995年以来有关这一技术的应用研究逐步增多。目前,已有中国石化研究总院和北京第二光学仪器厂开发出商用近红外光谱仪[5]。药品生产过程的质量控制要求,为了确保最终产品的质量稳定均一,需要对从原料接收到产品出库的整个物料流通过程进行全程监测。近红外光谱分析技术的特点决定了其在这一领域可以发挥重要作用。
  • 红外光谱在高分子材料老化研究中的应用
    在高分子材料的使用过程中,由于受到热、氧、水、光、微生物、化学介质等环境因素的综合作用,高分子材料的化学组成和结构会发生一系列变化,物理性能也会相应变坏,如发硬、发粘、变脆、变色、失去强度等,这些变化和现象称为老化,材料老化是一个复杂的过程,涉及到物理、化学和生物学等多个方面。这个过程通常导致材料的性能下降,甚至失去其功能。因此,了解材料老化的机制和进程对于提高材料的使用寿命和性能至关重要。红外光谱是一种常用的分析技术,可以提供材料老化过程中的分子结构和化学键信息,帮助我们深入理解这个过程。
  • 显微拉曼光谱在电化学中的应用原位锂离子电池研究
    介绍在电化学中,利用显微拉曼光谱实现原位分析的方法。显微拉曼光谱的应用范围非常广泛,在电化学中,研究人员利用这项技术实现原位分析,追踪一些动态现象。锂离子聚合物电池的循环机制可以理解为在聚氧化乙烯(PEO)和锂盐组成的聚合物电解质中的离子传输,以及锂离子在V2O5负中的插入和脱出。借助于显微拉曼光谱,可以获得与这些行为相关的信息,实现对电池中相关过程的监控。
  • 应用案例|近红外光谱在石化产品分析中的应用
    传统检测方法由于流量、压力以及算法等因素在应用中受到限制,现在以光谱为手段的石化产品分析技术应用面越来越宽。原子光谱可分为X射线、紫外荧光以及可见光;分子光谱可分为近红外、中红外、太赫兹以及核磁共振,可进行分子官能团的分析。分子光谱技术逐渐成为油品及石化产品分析的主流技术。
  • 食用油成分拉曼光谱分析解决方案
    食用油不仅是营养的主要来源,也是食品工业重要的基础材料。与动物脂肪相比,植物油中单不饱和脂肪酸和多不饱和脂肪酸的含量较高,因此其重要性与日俱增。在本应用说明中,使用拉曼光谱仪结合化学计量学软件分析了橄榄油、山茶油、花生油、葵花籽油和菜籽油的主要成分。
  • 赛默飞世尔分子光谱:傅立叶近红外FT-NIR在半成品酒及成品酒质量检测上的应用
    近几年来发展起来的傅立叶近红外(FT-NIR)分析技术被公认为一种高效、方便、无损的绿色分析技术,已经在农业、食品、制药和化学等领域中发挥着越来越重要的作用。在国外酿酒行业,近红外技术也已经有了非常广泛的应用。在日本近红外光谱技术已用于日本米酒的酸度、氨基酸、总糖和酒精含量,Prapatsorn Tipparat 等人应用流动注射- 近红外光谱分析饮料酒中的乙醇含量,L. Sauvage应用近红外光谱测定白葡萄酒中的痕量金属元素,D. Cozzolino 等人应用近红外分析技术测定红葡萄酒发酵过程中苯酚含量的变化,M.urbao-cuadredc等人用近红外光谱仪在线检测葡萄酒发酵过程中15种参数。而在中国,由于中国酿酒生产工艺相对来说更为传统和复杂,近红外技术的应用才刚刚起步。
  • 赛默飞双三元液相色谱在环境、食品饮料、工业产品及药物代谢的应用
    赛默飞世尔科技双三元液相色谱系统,双三元系统是UltiMate® 3000系列色谱的卓越组合,通过共享自动进样器、柱温箱、软件实现两套分析系统的功能。无论是常规分析、微量分析或纳升级分析,双三元系统均能提供完美的解决方案。UltiMate® 3000系列色谱仪凭借其卓越的性能、创新的理念、丰富的配置, 在2006年匹兹堡展会上荣获IBO金奖。
  • 为药物制剂提供清晰和无比快速的化学成像分析——Agilent 8700 LDIR 激光红外成像系统
    在药物固体制剂配方开发期间,诸如盐交换、多晶型、水合、温度和压力等因素会影响片剂的溶出性质和稳定性,甚至还会影响疗效。拉曼、FTIR 和 NIR 成像等分子光谱技术常用于固体制剂(片剂)成分分布的可视化。所得图像用于解决片剂生产过程中可能出现的问题或用于支持药物制剂配方开发。遗憾的是,这些传统光谱技术通常需要花费相当长的时间并且用户需要具有高水平的专业知识来获得详细的图像。这意味着片剂的化学成像通常仅供专业光谱学家使用。
  • Spectrum Two反式脂肪红外光谱分析包
    反式脂肪是包含一个或多个反式双键(图1)的单不饱和脂肪或多不饱和脂肪。牛羊等哺乳动物的奶制品和肉制品中含有少量的反式脂肪(占脂肪总量的2~5%),其余存在于植物酥油和人造奶油等加工过的部分氢化的脂肪中。食用反式脂肪会提高罹患心脏疾病的风险,因此越来越多的压力迫使食品生产者降低合成反式脂肪的使用,并且清楚标注产品中反式脂肪的含量。一些国家(例如瑞士、丹麦和奥地利)的监管机构对食物成分中反式脂肪的含量有严格的限制,而在美国、加拿大、南美洲大部分国家、韩国、台湾和香港等国家和地区,强制要求标注食品中反式脂肪的含量。上述规定引发了对能够快速、直接测量脂肪和油脂中反式脂肪的分析方法的需求。气相色谱方法的灵敏度很好,但是在样品处理过程中需要进行耗时的酯交换反应,以得到便于分析的脂肪酸甲酯(FAME)。与众不同的分子结构使得反式脂肪的红外光谱具有一个独特的吸收谱带,该谱带在其他类型的脂肪和油脂的红外光谱中都不存在。根据这一特性,美国油类化学家学会(AOCS)建立了一套标准分析方法——AOCSCd 14e-09——使用傅里叶变换红外光谱与衰减全反射(ATR)采样技术测定食用油脂和脂肪中的反式脂肪含量。
  • 坚固的外腔二极管激光器及其在水蒸气和饱和吸收铷光谱中的应用
    与传统激光器相比,二极管激光器通常体积小、结构紧凑、可靠、易于操作,适用于电子高频调制和温度调谐。然而,许多商用标准二极管激光器的调谐特性远非理想。采用法布里-珀罗(FP)标准激光二极管的ECDL可以提供一种有吸引力的替代方案。这项工作的目的是优化Littman和Littrow配置(方案1)中ECDL的优化设计,以用于坚固的传感器应用。用水蒸气和铷饱和吸收光谱法演示了ECDL的性能。方案1展示了Littman和Littrow ECDL的设计。对于Littrow配置,安装衍射光栅,使一阶衍射光反射回激光器,而零阶衍射光耦合。对于Littman配置,以一阶衍射的光通过一个误差或棱镜反射回光栅。在这两个设计中,都使用了带有和不带有抗反射(ar)涂层的激光二极管。
  • 近年来我国近红外光谱分析技术的研究与应用进展
    对我国近10年来近红外光谱分析技术的研究与应用进展作了较为详细的综述,包括近红外光谱仪器研制、化学计量学方法及软件开发和在各领域的实际应用。根据国际上近红外光谱分析技术的现状和国内实际情况,提出了今后我国近红外光谱分析技术的发展方向。
  • 近红外光谱分析技术在化工分析领域的应用
    近红外光谱技术为应用有机化学物质,在波长为780~2526nm的近红外光谱区的电磁波的光学特征,能够对化学成分含量进行快速检测。现在,应为各项科学技术的进步和提升,近红外光谱的发展有了更大的进步,对于该项技术的应用,在农业、矿业以及医疗中有着广泛的应用,尤其是在化工分析领域有着巨大的价值作用,促进了化工行业的发展。
  • 拉曼光谱技术在爆炸物检测领域的应用
    拉曼光谱技术应用到爆炸物检测领域,重点分析了显微激光共聚焦拉曼光谱技术、表面增强拉曼光谱技术、便携式拉曼光谱技术在爆炸物检测分析领域的应用。
  • 骨骼样本成分“快照”-- 拉曼光谱无损分析
    拉曼光谱是研究生物组织(如骨骼)一项极好的技术,因为它可以应用于固定和新鲜的样本,只需最少的样品制备;拉曼光谱允许进行无损化学分析,利用光谱,为我们提供丰富的信息。在本篇中,我们使用爱丁堡共聚焦显微拉曼光谱仪RM5观察不同类型的骨样本
  • 赛默飞世尔分子光谱:傅立叶变换红外(FT-IR)显微光谱在法医学及犯罪实验室纤维及毛发分析中的应用
    法医学和犯罪实验室所涉及的样品从药物到纤维,而其中一些样品非常微小,所以通常应用光学显微镜来协助检测从犯罪现场收集到的这些证据。光学显微镜的可视化能为测试者提供证据的清晰图片,尤其是在显微水平。然而,有时为了证实某嫌疑人到底是否有罪,需要更多的信息。因此,急需一种既能提供可视化信息又能提供化学信息的,而且可靠又灵活的分析技术。 在显微尺度已经证实了傅立叶变换红外光谱(FT-IR)对法医学家是一种非常有价值的工具。FT-IR显微光谱可进行快速、无损地分析10微米尺度的样品,大大拓展了常规FT-IR光谱的应用。新型的Thermo Scientific NicoletTM iNTM 10红外显微镜是光学显微镜跟完整的FT-IR的一个强大的整合系统。Nicolet iN10为法医学家提供了一款可进行违禁药品、毛发、纤维、油墨和油漆的可视化和化学分析的工具。Nicolet iN10的整合设计无需外部额外的光谱仪,是一款强大的、紧凑的FT-IR显微镜。 证据对于任一诉讼案件都是至关重要的一个因素。通过软件验证了FT-IR显微镜显微性能的独特能力,首次为检测者和陪审团提供了可靠的数据。Nicolet iN10无需液氮即可运行,允许实验室在任何场所快速进行证据检测。OMNICTM PictaTM软件即使对于未经培训过的显微镜工作者操作起来也非常简便、快捷。强大的向导能指导使用者通过反射、透射以及衰减全反射等模式进行分析。
  • 高分子材料的中红外光谱鉴别
    红外光谱(IR)非常适用于高分子原材料和终产品的定性分析、高分子混合物的成分定量分析以及中间产品分析。红外光谱是一种可靠、快速、成本低廉的分析方法。本应用报告描述了典型高分子样品红外光谱测试和解析的几种方式,并将其应用于一些工业用高分子材料的识别。结构紧凑、坚实耐用的Spectrum Two™ FT-IR光谱仪支持多种适用于高分子材料分析的透射和反射采样附件,配置的高分子资源包(PolymerResource Pack)更可以提供全面的样品信息和使用建议,从而协助您以最简便的方式获得高品质的光谱并提取全面有效的信息。
  • 赛默飞世尔分子光谱:傅立叶变换红外(FT-IR)显微光谱在法医学及犯罪实验室纤维及毛发分析中的应用
    法医学和犯罪实验室所涉及的样品从药物到纤维,而其中一些样品非常微小,所以通常应用光学显微镜来协助检测从犯罪现场收集到的这些证据。光学显微镜的可视化能为测试者提供证据的清晰图片,尤其是在显微水平。然而,有时为了证实某嫌疑人到底是否有罪,需要更多的信息。因此,急需一种既能提供可视化信息又能提供化学信息的,而且可靠又灵活的分析技术。在显微尺度已经证实了傅立叶变换红外光谱(FT-IR)对法医学家是一种非常有价值的工具。FT-IR显微光谱可进行快速、无损地分析10微米尺度的样品,大大拓展了常规FT-IR光谱的应用。新型的Thermo Scientific NicoletTM iNTM 10红外显微镜是光学显微镜跟完整的FT-IR的一个强大的整合系统。Nicolet iN10为法医学家提供了一款可进行违禁药品、毛发、纤维、油墨和油漆的可视化和化学分析的工具。Nicolet iN10的整合设计无需外部额外的光谱仪,是一款强大的、紧凑的FT-IR显微镜。证据对于任一诉讼案件都是至关重要的一个因素。通过软件验证了FT-IR显微镜显微性能的独特能力,首次为检测者和陪审团提供了可靠的数据。Nicolet iN10无需液氮即可运行,允许实验室在任何场所快速进行证据检测。OMNICTM PictaTM软件即使对于未经培训过的显微镜工作者操作起来也非常简便、快捷。强大的向导能指导使用者通过反射、透射以及衰减全反射等模式进行分析。
  • 原子吸收光谱仪在铁矿石分析中的应用
    原子吸收光谱仪仅提供了微量金属元素分析的平台,仪器生产厂家没有提供具体的分析方法。我公司的原子吸收光谱仪自2000年8月安装后,我们对元素标液的配制、铁矿石分析的前期化学处理,干扰元素的消除以及原子吸收条件如灯 电流、燃烧头高、入射狭缝、助(燃)气压力等等,做了大量的试验工作,确定了最佳的分析条件,制定了内控标准《火焰原子吸收光谱分析法测定铁矿石中的钾、钠、铅、锌》。
  • LIBS+HSI光谱成像测量和数据融合技术应用于矿物特征和岩相学分析
    当前传统的矿物测定方法数据准确应用广泛,但是成本、人力及时间耗费高。为了满足开采策略和方法的新要求,矿物分析需构建高质量数据库,必须速度快、费用低,反而对准确度要求不高。近年来,包括HSI(高光谱成像技术)、LIBS(激光诱导击穿元素光谱分析技术)等在内的光谱成像技术日渐广泛地应用于矿物的种类识别和定量分析,由于非常契合上述数据库构建的要求,因而开启了岩相学和矿物学研究的新路径,为地理、构造地质、矿物、矿产勘查和加工等科学领域中的复杂过程研究提供了强大技术支撑。近日,我国“祝融号”火星车在火星乌托邦平原着陆区便是利用短波红外光谱等技术发现类似沉积岩的板状硬壳层富含含水硫酸盐等矿物。本文将介绍德国联邦地球科学和自然资源研究所(Wilhelm Nikonow et al.,2019)应用HSI、LIBS元素分布成像等光谱图像融合技术开展的矿物特征及岩相学分析研究,旨在为地球化学和矿物学科研工作者提供应用参考。
  • 粉末和谷物的近红外光谱分析
    NIR光谱广泛应用于食品工业和农业样品的组分分析。在农业和食品工业中,NIR光谱技术被用于固体加工过程,以控制诸如蛋白质、水分、纤维和脂肪等参数。在NIR波段测量到的光谱数据一般由较宽、通常相互重叠的波峰组成,这种宽峰的出现与样品的化学成分有关。在定量分析水分、脂肪或蛋白质时,需要考虑多个重要参数。从NIR光谱数据中得到的组分信息的准确性不仅取决于良好的校准模型,还依赖用典型光谱数据建立的光谱。有了准确稳定的校准模型,NIR光谱可用于快速分析生产线、实验室和野外的样品。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制