当前位置: 仪器信息网 > 行业主题 > >

组分表征

仪器信息网组分表征专题为您整合组分表征相关的最新文章,在组分表征专题,您不仅可以免费浏览组分表征的资讯, 同时您还可以浏览组分表征的相关资料、解决方案,参与社区组分表征话题讨论。

组分表征相关的资讯

  • 吕海涛课题组在著名药物分析杂志JPBA发表经典名方四逆散核心化学组分群精表征的最新结果
    仪器信息网讯 中药现代研究的重要一环,就是化学组分群的体外精准辨识和定量表征,其将为后续有效成分的精准鉴定和功能表征提供关键化学物质基础和品控保证。  经典名方四逆散出自张仲景的《伤寒杂病论》由柴胡、白芍、枳实和甘草四味中药材按照1:1:1:1的配伍比例,组方而成。该方具有透邪气,解郁,疏肝理气和散外邪之功效。本课题组重点开展四逆散防治肝脏系统疾病的组分中药研究。  鉴于四逆散功能组分鉴定与功能表征的现实需要,上海交通大学吕海涛课题组开发建立基于UHPLC-MS/MS (QTOF combined with TQ) based chemical profiling method, 并结合标准品同参质谱多维数据的精确验证,首次对四逆散的核心化学组分群进行精准鉴定和定量表征,实现37个核心组分的精准鉴定和同时精准定量,将为其后续功能组分表征和药理学评价提供关键化学物质基础和品控保障。Capturing chemical features  Precision Identification  Origin AlignmentsThe Hub of Chemicals  上述最新研究结果,吕海涛课题组已起草研究论文论文“Precision-characterization and quantitative determination of main compounds in Si-Ni-San with UHPLC-MS/MS based targeted-profiling method”,已被爱思唯尔旗下著名药物分析杂志Journal of Pharmaceutical and Biomedical Analysis正式接收。重庆大学田甜博士和2016级联合培养硕士研究生徐欣(交大-龙中医,已毕业)为论文共同第一作者,2017级联合培养硕士生张文华(交大-龙中医,已毕业)和2016级联合培养本科生李弦(交大-重大,已毕业)参与发表,上海交大吕海涛研究员和重庆大学田甜博士为共同通讯作者。论文原链接:点击了解更多
  • 材料基因研究仪器——高通量连续组分外延薄膜制备及原位局域电子态表征系统
    p    strong 仪器信息网讯 /strong 材料对于推动生产力发展和社会进步起着举足轻重的作用。关键材料的研发周期更是直接决定了相关领域的发展进程。材料基因组技术的出现为快速构建精确的材料相图,缩短材料的研发周期带来了希望。 /p p   中国科学院物理研究所/北京凝聚态物理国家研究中心技术部电子学仪器部郇庆/刘利团队一直致力于科研仪器装备的自主研发 超导国家重点实验室金魁/袁洁团队专注于基于高通量组合薄膜技术的新超导体探索和物理研究。两团队经多年合作成功研制并搭建了一台高通量连续组分外延薄膜制备及原位局域电子态表征系统。作为目前国际上最先进的第四代高通量实验设备,审稿人和项目验收专家组均给予了高度评价,认为该设备实现了研究应用和核心技术上的创新突破,解决了现有技术的诸多缺陷和不足,将成为材料基因研究的重要工具,并有望在推动多个领域的前沿研究中发挥重要作用。 /p p style=" text-align: center " img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202002/uepic/042ce1da-8ab9-46b9-8bb1-eb602327463f.jpg" title=" 组合激光分子束外延-扫描隧道显微镜联合系统:(a)三维设计图;(b) 实物照片.jpg" alt=" 组合激光分子束外延-扫描隧道显微镜联合系统:(a)三维设计图;(b) 实物照片.jpg" / /p p style=" text-align: center " 组合激光分子束外延-扫描隧道显微镜联合系统:(a)三维设计图;(b) 实物照片 /p p   该系统采用的关键技术为研发团队首次提出,核心部件均自主研发,具备多项独特优点: /p p   1)采用专利的旋转掩膜板设计,避免累积误差和往复运动的问题,大大提高了系统运行精度和稳定性 /p p   2)特殊设计的STM扫描头能够实现大范围XY移动(& gt 10 mm)和高精度定位(定位精度优于 1 μm) 3)完备的传递设计可实现样品、针尖、靶材的高效传递,并易于未来功能扩展。 /p p   该仪器研发历时4年多,设计版本多达50多个,并完成了全面的性能测试。他们利用自研系统制备了高质量的梯度厚度FeSe样品,得到可靠的超导转变温度随厚度的演变关系。在HOPG样品、金单晶样品、BSCCO样品以及原位生长FeSe样品表面均获得了高清原子分辨图像,并测量了BSCCO样品局域超导能隙扫描隧道谱。目前,该系统已用于研究高温超导机理问题和新型超导材料探索。 /p p   组合薄膜制备技术作为材料基因组核心技术之一经历了三个发展阶段,即共磁控溅射技术、阵列掩膜板技术和组合激光分子束外延技术。目前,组合薄膜生长往往采用往复平行位移掩膜板的方式,这样不可避免造成累积误差,直接影响到薄膜制备过程中组分控制的精度。此外线性掩膜板反复变向及加减速操作也会加速机械部分磨损,降低系统稳定性。另一方面,目前对组合薄膜高通量快速表征技术也存在不足,很多传统方法无法直接用于组合薄膜表征。以扫描隧道显微镜(STM)为例,其对样品表面清洁度具有很高的要求,通常需要原位解理或制备样品 此外,有限的样品移动范围和不具备精确定位功能限制了STM在组合薄膜表征上的应用:大多数商业化STM样品移动范围一般仅为数毫米且不具备定位功能。对于连续组分薄膜性质的研究来说,实际的测量位置与样品组分是一一对应的,失去了位置坐标就失去了组分的信息。因此,发展更加精确的高通量薄膜制备和原位表征手段十分必要,并对包括超导材料在内的多个前沿研究领域具有重要意义。 /p p    /p p br/ /p
  • 珀金埃尔默公司与中科院上海硅酸盐研究所材料谱学组分表征与应用课题组共建“半导体材料质谱分析联合实验室”
    2024年5月16日,珀金埃尔默公司与中国科学院上海硅酸盐研究所材料谱学组分表征与应用课题组今日正式宣布成立“半导体材料质谱分析联合实验室”,并举行挂牌仪式。此次合作聚焦于半导体材料的前沿研究与应用开发,旨在加速新材料的发现与产业化进程,推动半导体产业的技术革新。珀金埃尔默亚太市场总监王海鉴, 中区销售经理张亮, 上海硅酸盐研究所材料谱学组负责人汪正出席本次活动。 △揭牌仪式 活动中,珀金埃尔默亚太市场总监王海鉴表示: “ 半导体技术是现代科技的基石,对于推动信息技术、能源转换和存储等关键领域的发展至关重要。我们非常荣幸能与上海硅酸盐研究所材料谱学组这样顶尖的科研团队合作,共同建立‘半导体材料质谱分析联合实验室’。这一联合实验室将集合我们在材料分析技术和硅酸盐所在材料科学的深厚研究实力,为半导体材料的突破性进展提供强大的创新引擎。 ” △珀金埃尔默亚太区市场部总监 王海鉴先生发言 中国科学院上海硅酸盐研究所材料谱学组分表征与应用课题组组长汪正在致辞中表示: “ 通过与珀金埃尔默的紧密合作,我们期望能够整合双方在材料表征、分析测试以及应用开发方面的优势资源,构建一个开放、高效的研发平台。这不仅将促进半导体材料科学的基础研究,更将加速科研成果的转化应用,为国家半导体产业发展注入新鲜活力。” △中国科学院上海硅酸盐研究所 汪正研究员发言 未来,双方将依托“半导体材料质谱分析联合实验室”这一平台,深化在高端人才交流、技术培训、科研项目等方面的合作,共同探索半导体材料的无限可能,为全球科技进步贡献中国智慧和力量。 实验室照片 △PerkinElmer NexION 5000G ICP-MS 实验室照片 △PerkinElmer NexION 2000G 左滑查看更多信息 关于珀金埃尔默 珀金埃尔默是一家全球性的分析服务和解决方案提供商,其业务范围包括领先的OneSource现场和实验室服务业务,服务于生物制药、食品、环境、安全和应用终端市场,旨在加速科学成果的取得。自1937年以来,PerkinElmer一直是实验室分析和管理的可信赖合作伙伴,如今通过广泛的原子吸收光谱、分子光谱和色谱仪器、耗材和试剂来完善其服务范围。公司拥有逾6,000名全职员工,为35多个国家的客户提供服务。 欲了解更多信息,请访问: www.perkinelmer.com 关于上海硅酸盐研究所 谱学组分表征与应用课题组 中国科学院上海硅酸盐研究所材料谱学组分表征与应用课题组是国内最早开展原子吸收、发射光谱、等离子体质谱相关理论和应用研究的课题组之一,多年来一直从事无机材料成份表征和研究工作。课题组现有工作人员7人,博士3人,拥有高级职称人员4人,在读博士和硕士研究生近10人。 现有光谱仪器(电感耦合等离子体发射光谱仪(ICP-OES)、激光诱导击穿光谱仪(LIBS)、原子荧光光谱仪(AFS)和原子吸收光谱仪(AAS)),质谱仪(ICP-MS)、色谱仪(离子色谱仪(IC)和液相色谱仪(LC))、比表面和孔径分析仪及总有机碳/总氮分析仪等20台套大型仪器设备,其总价值已超过2000万元。 课题组曾先后负责科技部国家仪器研制重大专项、中科院仪器研制项目和仪器,设备功能开发技术创新项目、国家自然科学青年和面上基金和上海科委基金等。在国内外学术刊物Chem. Eng. J.,Anal. Chem., J. Anal. At. Spectrom.,Spectrochim. Acta Part B,Anal. Chim. Acta等发表论文100余篇,是国际和国内期刊《Atomic Spectroscopy》、《Chinese Chemical Letters》、《光谱学与光谱分析》和《理化检验-化学分册》编委。出版学术专著2部,建立国家标准3项,行业标准5项,企业标准10余项。获授权国内专利20余项,美国专利1项。2010和2018年两次获得中国分析测试协会科学技术奖励( 排名均为第一)。 欲了解更多信息,请访问: http://www.sic.cas.cn/zcbm/kybm10/ktzjj/ceshi2/ 关注我们
  • 高分子表征技术专题——光散射技术在高分子表征研究中的应用
    2021年,《高分子学报》邀请了国内擅长各种现代表征方法的一流高分子学者领衔撰写从基本原理出发的高分子现代表征方法综述并上线了虚拟专辑。仪器信息网在获《高分子学报》副主编胡文兵老师授权后,也将上线同名专题并转载专题文章,帮助广大研究生和年轻学者了解、学习并提升高分子表征技术。在此,向胡文兵老师和组织及参与撰写的各位专家学者表示感谢。更多专题内容详见:高分子表征技术专题高分子表征技术专题前言孔子曰:“工欲善其事,必先利其器”。 我们要做好高分子的科学研究工作,掌握基本的表征方法必不可少。每一位学者在自己的学术成长历程中,都或多或少地有幸获得过学术界前辈在实验表征方法方面的宝贵指导!随着科学技术的高速发展,传统的高分子实验表征方法及其应用也取得了长足的进步。目前,中国的高分子学术论文数已经位居世界领先地位,但国内关于高分子现代表征方法方面的系统知识介绍较为缺乏。为此,《高分子学报》主编张希教授委托副主编王笃金研究员和胡文兵教授,组织系列从基本原理出发的高分子现代表征方法综述,邀请国内擅长各种现代表征方法的一流高分子学者领衔撰写。每篇综述涵盖基本原理、实验技巧和典型应用三个方面,旨在给广大研究生和年轻学者提供做好高分子表征工作所必须掌握的基础知识训练。我们的邀请获得了本领域专家学者的热情反馈和大力支持,借此机会特表感谢!从2021年第3期开始,以上文章将陆续在《高分子学报》发表,并在网站上发布虚拟专辑,以方便大家浏览阅读. 期待这一系列的现代表征方法综述能成为高分子科学知识大厦的奠基石,支撑年轻高分子学者的茁壮成长!也期待未来有更多的学术界同行一起加入到这一工作中来.高分子表征技术的发展推动了我国高分子学科的持续进步,为提升我国高分子研究的国际地位作出了贡献. 借此虚拟专辑出版之际,让我们表达对高分子物理和表征学界的老一辈科学家的崇高敬意!光散射技术在高分子表征研究中的应用Laser Light Scattering and Its Applications in Polymer Characterization作者:郑萃,刘芷君,梁德海 作者机构:中国石化北京化工研究院,北京,100013 北京大学化学与分子工程学院,北京,100871作者简介:梁德海,男,1971年生. 1994年获南开大学环境科学系理学学士,同年进入南开大学化学系攻读硕士. 2001年在美国纽约州立大学石溪分校获得理学博士学位,并留任博士后. 2006年加入北京大学化学与分子工程学院高分子科学与工程系,任副教授;2012年任教授. 2011年得到教育部新世纪优秀人才计划的支持,2015获得Elsevier第九届冯新德高分子奖最佳文章奖. 研究方向为高分子溶液物理,主要项目包括:基于生物大分子的非平衡态原始细胞模型的构筑及动态行为研究;多肽诱导脂质体膜内吞及外吐机理研究;大分子拥挤及限制作用的定量化研究.摘要光散射技术是高分子领域中重要的表征手段之一. 静态光散射和动态光散射的结合能够获得丰富的关于高分子的信息,如重均分子量、回转半径、第二维里系数、流体力学半径、尺寸分布、分子链构象等. 除合成高分子外,光散射技术同样适用于研究生物大分子、微生物、胶体、纳米粒子、病毒、囊泡等在溶液或悬浮液中的行为. 本综述重点介绍稀溶液中静态光散射和动态光散射的历史、基本理论和实验技巧. 对于浓溶液适用的交叉相关技术和扩散波谱技术以及固体光散射也做简要介绍. 为了帮助初学者更好地理解并掌握光散射技术,综述的最后介绍了4个应用实例:动、静态光散射相结合跟踪研究线团到密实球的转变过程,光散射确定超支化分子的标度关系,时间可分辨的光散射来剖析聚合诱导胶束化的机理,以及去偏振动态光散射研究纳米粒子在生物介质中的聚集行为.AbstractLaser light scattering (LLS), which includes static light scattering (SLS) and dynamic light scattering (DLS), has been widely applied in characterization of polymer samples in dilute solutions. SLS measures the angular dependence of the excess scattered intensity, from which the weight average molecular weight, radius of gyration, and second viral coefficient are obtained. DLS measures the intensity-intensity time correlation functions, from which the hydrodynamic radius and size distribution are obtained. The combination of SLS and DLS enables information on chain conformation. Beside synthetic polymers, LLS is also suitable for the solutions and suspensions of biopolymers, microbial, colloids, nanoparticles, virus, and vesicles. The history, theory, and experimental techniques of SLS and DLS specific for dilute solutions are summarized. In recent years, the cross-correlation techniques, diffusing wave spectroscopy, and other related techniques have been developed to expand LLS to study samples in semi-dilute and even concentrated solutions. These techniques, as well as solid light scattering, are also briefly introduced in this review. In the last, we provide four typical examples of light scattering experiments: the coil-to-globule transition as studied by the combination of SLS and DLS, the scaling of hyperbranched polymers as determined by LLS, the polymerization-induced micellization process as monitored by time-resolved LLS, and the aggregation of nanoparticles in biological media as investigated by depolarized DLS.关键词光散射  高分子表征  分子量  回转半径  相关函数KeywordsLaser light scattering  Polymer characterization  Molecular weight  Radius of gyration  Correlation function 1光散射技术的发展简史人们对光散射的认识最早可以追溯到1869年著名的丁达尔(Tyndall)凝胶散射实验. 1871年,瑞利对空气中的光散射现象进行了理论研究[1],推导出了球形粒子的散射公式,解释了晴空蓝和夕阳红的成因[2]. 之后,德拜(Debye)和甘(Gans)分别把瑞利的散射理论拓展到了非球形粒子[3] 和大尺寸的粒子[4],完善了气体中粒子的光散射理论.在液体等凝聚相(condensed phase)中,散射强度的实测值通常比瑞利理论的预测值小一个数量级以上,这是由散射波的相消干涉造成的. 针对这种现象,斯莫鲁霍夫斯基(Smoluchowski)和爱因斯坦(Einstein)[5]从密度涨落的角度出发,提出了光散射的涨落理论(fluctuation theory of light scattering),极大地拓展了光散射的应用范围. 1940年前后,德拜和齐姆(Zimm)将涨落理论与溶液中的高分子表征相结合,实现了光散射对高分子的分子量、分子尺寸、分子形状和分子间相互作用的测量[6].静态光散射(static lightscattering, SLS)也称为弹性光散射,是指不考虑散射波长(或能量)变化的光散射. 1914年,布里渊(Brillouin)预测固体中热声波的散射光频率会出现双峰分布,后被实验所证实,从而开启了人们对准弹性光散射,即动态光散射(dynamic light scattering, DLS)的研究. 由于对光源单色性的苛求,动态光散射技术直到1960年前后激光光源趋于成熟之后,才得到了较好的发展. 1964年,佩科拉(Pecora)[7]利用高分子溶液中散射光的频率变化,计算出了高分子的扩散系数,并得到了高分子的流体力学半径、链柔顺性等信息.当溶液中粒子的浓度增加到一定程度时,就会发生多重散射,即散射光再次或多次与粒子发生作用. 这种浓度下溶液的光散射理论较为复杂. 近年来,科学家们针对这类体系设计了许多特殊的方法或仪器,如折射率匹配法(1991年)[8],微样品池法(1998年)[9,10]、光纤准弹性散射法(fiber optical quasi elastic light scattering, FOQELS,1991年)[11,12]、时间交叉相关法(1981年)[13]、3D交叉相关法(1999年)[14]、互相关法(1997年)[15]等. 2006年,得益于电荷耦合器件(charge coupled device,CCD)以及计算机的发展,基于光斑(speckles)的互相关法得到了实质性发展[16],得以对亚浓溶液或浓溶液进行较为深入的研究. 当溶液体系达到浑浊状态时,极其严重的多重散射使得光在体系中的行进可以按扩散过程来处理,扩散波谱(diffusing wave spectroscopy, DWS)理论应运而生[17],基于该理论的技术可适用于多种不同的浑浊体系.固体介质中也存在光散射现象,但在原理和应用等方面与溶液中的光散射都有很大差别. 固体中很容易产生严重的多重散射,且固体表界面的强烈散射常会对内部的散射造成严重干扰,这些都使得固体的光散射结果难以解读. 早在1922年,布里渊[18]就用光散射对固体振动进行了研究,但这不是严格意义的弹性光散射. 1960年斯坦因(Stein)[19]优化了垂直偏振光散射方法,极大地简化了散射结果,使得固体光散射在测定聚合物的链取向和晶体结构的研究中得到广泛应用[20,21].2光散射原理2.1气体光散射光的本质是电磁波,含有周期变化的电场E. 原子或分子在电场作用下会发生极化,强度与极化率α相关. 原子在周期性变化的电场中会被周期性地极化,从而转变为一个次级光源,向周围发射同频率的电磁波,即散射光(图1).Fig. 1Scattered light generated by a scatterer as it is induced to be an oscillating dipole in the incident beam. θ is the scattering angle, and the inset shows the angular dependence of the scattered light from small particles, such as atoms or molecules. The polarization of incident beam is not considered.单原子产生的散射光强Is由原子的极化率α和入射光波长λ决定. 另外,在空间某点测定的散射光强还与观测点到散射点的距离r有关. 1871年,瑞利推导出如下的散射公式:其中I0为入射光强度. 单个原子、分子和粒子在空气中的散射光强都可以用公式(1)描述. 对于多粒子体系,可表示为体积V中存在N个散射粒子,如果粒子尺寸小(半径小于入射光波长的1/20),且数目较少,粒子之间的散射光不发生干涉,散射光强可表示为:公式(2)表明,散射光强度与波长的4次方成反比,波长短的蓝色光的散射明显强于波长更长的红色光,因此天空在阳光的照耀下显示为蓝色.2.2溶液光散射光散射技术在溶液体系中具有非常广泛的应用. 在稀溶液中,利用静态光散射技术能够测定散射粒子的绝对分子量M、回转半径Rg、第二维里(Virial)系数A2等信息;利用动态光散射技术能够测定散射粒子的流体力学半径Rh及其分布等信息. 光散射技术在亚浓溶液或浓溶液中也发挥了重要作用,但该类体系中的多重散射使得散射理论变得十分复杂. 本文重点介绍稀溶液中的光散射理论,对非稀溶液体系的散射理论只做简要介绍.2.2.1稀溶液中的静态光散射在稀溶液中,根据Clausius-Mossoti公式,可将难以测量的极化率α转化容易测量的折光指数n:其中n0是纯溶剂的折光指数,M为粒子的绝对分子量,NA为阿伏伽德罗(Avogadro)常数,c (=MN/VNA)为质量浓度. 值得一提的是dn/dc, 即溶液折光指数n对溶液质量浓度c的导数,称为折光指数增量,可以用专有仪器测定,或是从相关手册[22]中查到. 当dn/dc = 0时,预示体系中测不到反映溶质结构信息的光散射信号.对于dn/dc ≠0的单组分体系,将公式(3)代入(2)中,可得到瑞利散射公式:其中H称为光学常数,R为瑞利比.忽略由溶剂自身密度涨落引起的散射. 根据涨落理论,散射光强I仅与光学常数H、质量浓度c和渗透压π相关,并遵循如下的关系式:根据van’t Hoff关系式:其中,M为溶液中粒子的绝对分子质量,A2为第二维里系数,用来定量描述溶剂-溶质之间的相互作用. 将公式(6)代入(5)中,可以得到:式(7)中只有2个未知数M和A2. 理论上只要测量2个不同浓度溶液的散射光强I,就可以计算得到粒子的绝对分子量M和第二维里系数A2. 但是,由于每一台光散射仪的探测器面积和探测器到样品的距离都可能不同,激光束的粗细和样品池的大小也可能存在差异,因此对于同一个样品,每台光散射仪得到的信号都可能是不同的. 仪器测得的光强,必须要转化为绝对散射光强,才可以进行下一步的计算. 在实际操作中,常用瑞利比R代替I,并考虑以下这些影响因素:第一步,偏振校正. 取决于样品的性质,散射光的偏振方向会发生变化,且会影响散射光强的大小. 偏振的校正较复杂[23]. 目前绝大多数光散射仪均使用了VV偏振散射设计,即入射光与观测的散射光都是垂直(vertical)偏振的,相应的散射光强标记为Rvv.第二步,散射体积校正. 常见的散射仪器一般用小孔和狭缝来限制检测器接收的散射光. 激光束中被小孔或狭缝截留的光路在空间中所占的体积称为散射体积(图2). 对于同一个体系,散射体积越大,测得的散射光越强. 在激光光束和小孔或狭缝固定的情况下,散射体积与散射角θ (入射光矢量与散射光矢量的夹角)存在sinθ的定量关系. 因此在静态光散射实验中,在θ角测定的散射光强需要进行sinθ的校正.Fig. 2Geometry of a typical laser light scattering setup (top view).第三步,净剩光强校正. 公式(7)中的光强是散射粒子自身的光强,在溶液中又称净剩光强,即溶液的散射光强Isolution减去溶剂的散射光强Isolvent.在实验中,以瑞利比Rvv已知的标准溶剂为参照,在同一台散射仪器上进行样品的测量是最常用的做法. 例如温度为T时,样品在θ角的瑞利比RTθ 通过以下公式得到:其中ITθ、RTθ、nT为样品在温度T下的净剩光强、瑞利比和折光指数,I25θ,standard、R25θ,standard和n25standard分别为标准溶剂在25 oC的散射光强、瑞利比和折光指数,也可以选用其他温度的配套数值. 当样品溶液和标准试剂的折光指数不同时,也需要进行校正. 狭缝和小孔所对应的指数分别为1和2. 甲苯是目前最常用的标准试剂,25 °C和632.8 nm波长下的瑞利比为8.70×10-6 cm-1. 甲苯与苯在不同波长和温度下的瑞利比可以从参考文献中查阅[24,25].将散射光强用瑞利比表示后,公式(7)可改写为:公式(9)适用于描述小粒子(尺寸小于波长的1/20)在溶液中的散射行为. 通常测量多个浓度下的Rvv值,将Hc/Rvv对c作图,从拟合直线的截距和斜率中分别求得M和A2值.当高分子的尺寸较大时,同一高分子内部不同重复单元的散射光会发生干涉现象,从而导致散射光强出现了散射角度的依赖性(图3). 从光强角度依赖性数据可以反推粒子的尺寸和形状. 具体做法是在公式(9)的基础上,引入与散射角度相关的形状因子(form factor)P,其中包含了粒子的尺寸和结构信息.Fig. 3Interference pattern of light scattered from two segments in a large particle or polymer chain. The inset shows the angular dependence of the scattered light.在光散射中,习惯上使用散射矢量q表示散射角. 散射矢量q定义为散射光波矢量与入射光波矢量的差. q与散射角度θ之间的数值关系为[24]:由式(10)可知,散射矢量q的单位为长度的倒数. 在波长和溶液体系固定的前提下,q是由散射角θ决定的变量,此时形状因子可相应地记为P(q). 经P(q)修正后的散射光强公式为[23]:对于小粒子而言,P(q) = 1,与散射角度无关.用回转半径Rg来描述高分子的尺寸,当qRg 1时,不同形状粒子的P(q)存在较大差别[23,26].回转半径为Rg的无规高分子线团:半径为R的均匀实心球:半径为R的空心薄球壳:半径为R的薄圆盘:其中J1为一阶贝塞尔函数.长度为L的细圆柱:其中Si(x)为sinus积分函数:通过测定待研究体系的形状因子P(q),并与标准体系进行对比,就能够判断粒子的构象并确定其特征尺寸参数. 当体系浓度足够小,2A2c一项相对于1/MP(q)可以忽略时,公式(11)可转化为:即:在公式(22)中,M/Hc是与散射角θ或散射矢量q无关的量. 因此,测定各个散射角度下的Rvv,用零角度的数值归一化,再对q作图就得到了P(q)曲线. 为了提高用P(q)确定体系构象的准确性,尽量选用窄分布的样品,并在测定时覆盖尽可能宽的散射角度.利用静态光散射来测定共聚物比均聚物要复杂很多. 由公式(4)可知,决定体系散射性能及强度的内在因素是dn/dc. 共聚物等体系包含有2种或2种以上的组分. 当这些组分的(dn/dc)不同时,散射方程将急剧地复杂化. 以AB两嵌段共聚物为例,体系总的(dn/dc)AB = wA(dn/d
  • 高分子表征技术专题——二维相关红外光谱分析技术在高分子表征中的应用
    2021年,《高分子学报》邀请了国内擅长各种现代表征方法的一流高分子学者领衔撰写从基本原理出发的高分子现代表征方法综述并上线了虚拟专辑。仪器信息网在获《高分子学报》副主编胡文兵老师授权后,也将上线同名专题并转载专题文章,帮助广大研究生和年轻学者了解、学习并提升高分子表征技术。在此,向胡文兵老师和组织及参与撰写的各位专家学者表示感谢。更多专题内容详见:高分子表征技术专题 高分子表征技术专题前言孔子曰:“工欲善其事,必先利其器”。 我们要做好高分子的科学研究工作,掌握基本的表征方法必不可少。每一位学者在自己的学术成长历程中,都或多或少地有幸获得过学术界前辈在实验表征方法方面的宝贵指导!随着科学技术的高速发展,传统的高分子实验表征方法及其应用也取得了长足的进步。目前,中国的高分子学术论文数已经位居世界领先地位,但国内关于高分子现代表征方法方面的系统知识介绍较为缺乏。为此,《高分子学报》主编张希教授委托副主编王笃金研究员和胡文兵教授,组织系列从基本原理出发的高分子现代表征方法综述,邀请国内擅长各种现代表征方法的一流高分子学者领衔撰写。每篇综述涵盖基本原理、实验技巧和典型应用三个方面,旨在给广大研究生和年轻学者提供做好高分子表征工作所必须掌握的基础知识训练。我们的邀请获得了本领域专家学者的热情反馈和大力支持,借此机会特表感谢!从2021年第3期开始,以上文章将陆续在《高分子学报》发表,并在网站上发布虚拟专辑,以方便大家浏览阅读. 期待这一系列的现代表征方法综述能成为高分子科学知识大厦的奠基石,支撑年轻高分子学者的茁壮成长!也期待未来有更多的学术界同行一起加入到这一工作中来.高分子表征技术的发展推动了我国高分子学科的持续进步,为提升我国高分子研究的国际地位作出了贡献. 借此虚拟专辑出版之际,让我们表达对高分子物理和表征学界的老一辈科学家的崇高敬意!二维相关红外光谱分析技术在高分子表征中的应用Applications of Two-dimensional Correlation Infrared Spectroscopy in the Characterization of Polymers本文作者:侯磊,武培怡 作者机构:东华大学化学化工与生物工程学院,上海,201620作者简介:武培怡,男,1968年生. 1985年,南京大学化学系获学士学位,1998年,德国ESSEN大学获博士学位. 1998~2000年在日本触媒研究中心从事研究工作,2000~2017年任复旦大学高分子科学系教授,2017年起任东华大学化学化工与生物工程学院教授. 2001年入选上海市科委启明星计划、上海市教委曙光计划,2003年入选上海市科委白玉兰科技人才计划,2004年入选上海市科委启明星跟踪计划,获得国家杰出青年基金资助、上海市引进海外高层次留学人员专项资金资助,2005年度入选教育部首届新世纪人才计划,2007年入选上海市优秀学科带头人计划,2016年入选英国皇家化学会会士,2017年获陶氏化学“Dow Innovation Challenge Award”. 主要研究方向包括二维相关光谱在聚合物体系中的应用、智能仿生材料、聚合物功能膜等.摘要二维相关光谱作为一种先进的光谱分析方法,具有提高谱图分辨率、解析动态过程等优势,近来在高分子表征中引起了越来越多的关注. 高分子体系涉及了丰富的相互作用和复杂的结构,分子光谱是常用的表征手段,而借助二维相关光谱分析技术,能够有效识别精细结构、判别动态变化机制,从而显著丰富和完善分析结果. 本文重点围绕二维相关红外光谱,简述了发展历史和基本原理,随后结合实际过程,介绍了相关实验和分析技巧,最后列举了其在高分子表征中的典型应用,展示了二维相关红外光谱分析的特点,具体涉及温度响应高分子的响应机制、可拉伸离子导体中复杂相互作用、小分子在聚合物基质中的扩散、天然高分子的结构表征等研究. 希望通过本文的介绍,能够帮助读者更好地理解二维相关光谱,进一步拓展其在高分子领域中的应用.AbstractTwo-dimensional correlation spectroscopy (2Dcos) is an advanced analysis method, which holds great advantages in improving spectral resolutions and interpreting dynamic processes, and has attracted great attention in the field of polymers. Molecular spectroscopy is frequently applied in the characterization of polymers, which involves abundant molecular interactions and complex structures. Under the help of 2Dcos analysis, fine structures as well as dynamic mechanisms within the polymer systems can be effectively identified, thus significantly enriching and improving the analysis results. In this paper, we will mainly focus on the two-dimensional correlation infrared spectroscopy (2DIR). Firstly, the history and basic principles of 2Dcos are briefly introduced. Then, some relevant experimental and analytical techniques are presented based on the actual process. Finally, typical applications of 2DIR in the polymer characterization are demonstrated and the features thereinto are also shown. Particularly, the response mechanisms of temperature-responsive polymers, complex molecular interactions in stretchable ionic conductors, diffusion processes of small molecules in polymer matrix and structures of natural polymers are investigated. It is hoped that this paper will help readers better understand 2Dcos and further expand its applications in the field of polymers.关键词分子光谱   二维相关光谱   高分子   分子相互作用 KeywordsMolecular spectroscopy   Two-dimensional correlation spectroscopy   Polymer   Molecular interactions  高分子材料体系涉及丰富的相互作用和多级结构,这是决定材料最终性能的关键. 分子光谱(红外、拉曼光谱)作为表征高分子材料的常用手段,一方面可以检测不同化学结构/组分所对应的官能团,依据特征吸收峰强度和位置,实现对高分子化学结构的鉴别,另一方面,可以基于不同官能团特征吸收峰的强度和位置变化,判别基团所处的物理或化学环境,实现对体系中复杂相互作用的解析. 随着高分子材料的发展,体系趋向多样化、多功能化,而传统的一维分子光谱存在谱峰重叠严重、分辨能力有限等问题,一定程度限制了分子光谱在复杂高分子体系的应用拓展.二维相关光谱(Two-dimensional correlation spectroscopy,2Dcos)作为一种先进的光谱分析手段,尤其适合于从分子水平探讨各类外扰作用下复杂高分子体系涉及的结构和相互作用变化. 相较于传统的一维光谱,二维相关光谱的优势在于:(1)对于包含许多重叠峰的复杂谱图,起到图谱简化的作用;(2)通过将原始谱图在第二维度上延伸,能够明显提高原始一维谱图的分辨率;(3)谱峰的相关性可帮助判断体系中的相互作用以及峰归属;(4)可用于确定外界刺激下不同过程的发生次序. 本文首先将结合二维相关光谱的发展历史,介绍其基本原理. 其次,围绕动态谱图获取和二维相关分析,介绍二维相关光谱的一些实验和分析技巧. 最后,结合具体体系,重点阐述二维相关光谱在高分子表征中的应用.1 基本原理1.1 发展历史二维相关光谱分析方法的基本概念最早起源于核磁共振(NMR)领域. 二维核磁共振(2DNMR)谱通过多脉冲技术激发核自旋,采集原子核自旋弛豫过程的衰减信号,最后经双重傅里叶变换得到[1]. 通过将核磁信号扩展到第二维度,可以显著提高谱图的分辨率,并且有效简化包含许多重叠峰的复杂光谱. 与此同时,通过选择相关的光谱信号,可以鉴别和研究分子内/间的相互作用. 尽管二维光谱技术在核磁领域取得了快速发展,却在很长一段时间内未能深入到其他光谱分支,如红外、拉曼、紫外-可见吸收、荧光光谱等. 阻碍二维光谱技术发展的一个根本原因在于多重射频脉冲的二维核磁技术可以成功地在精密而昂贵的核磁仪器上实施,却不能在普通的红外、拉曼和紫外-可见吸收等光谱仪器上实现. 因为这类光谱的时间标尺(time scale)远小于核磁共振[2]. 一般来说,核磁时间标尺数量级在毫秒到微秒之间,而红外吸收光谱观察分子振动的时间标尺在皮秒数量级,因此产生二维红外光谱必须采用特殊的新途径.二维相关光谱概念上的突破是由特拉华大学(University of Delaware)的化学家Noda[3,4]提出的. 他把核磁实验中的多重射频励磁看作是一种对体系的外扰(外部扰动). 施加于体系的外扰可以多种多样,如热、磁、机械、电场、化学甚至声波等. 每种外扰对体系的影响是独特而有选择性的,并由特定的宏观刺激和分子相互作用的机理所决定. 因此,包含在动态光谱中的信息类型是由外扰的方式和电磁波的种类所决定的. 外扰的波形没有任何限制,从简单的正弦波、脉冲、到随机的噪音或静态的物理量(如时间、温度、压力等)的变化均可应用于外扰. 由此,Noda设计出一种完全不同的二维光谱实验技术,他用外扰来激发被检测体系的分子,由于被激发分子的弛豫过程慢于振动光谱的时间标尺,因而可使用时间或温度等外扰分辨振动光谱(红外、拉曼)技术来跟踪研究被检测体系受外界扰动而产生的动态变化,结合数学中的相关分析技术,将原有的光谱信号扩展到第二维度,从而得到二维相关光谱(如图1所示). 二维相关光谱实际研究的就是动态光谱的变化[5,6]. 此后,随着二维相关光谱技术的发展,逐渐在荧光光谱、X射线衍射谱、凝胶渗透色谱等也得到了应用. 总体而言,二维相关光谱分析在红外光谱中的应用最为成功,这主要是由于红外光谱的信噪比相对较高,具有高灵敏度、高选择性和非破坏性等特点,能够在分子结构和链段运动等方面提供丰富信息. 另一方面,红外光谱的谱峰重叠严重,解析起来存在一定困难,二维相关光谱的引入可以很好地解决这一问题. Fig. 1 Acquisition procedure of generalized 2D correlation spectra. In the 2D synchronous and asynchronous spectra, red colors represent positive intensities while green colors represent negative ones.1.2 计算原理二维相关光谱考虑外扰变量下(如时间、温度、压力、浓度、电场、磁场等)光谱强度y(v, p)的变化情况,其中v为光谱变量,可以为任何光谱量化的参数,如红外波数、拉曼位移、紫外波长、X射线散射角等,p为外扰变量,可以是任意合理的物理或化学变量,如时间、温度、压力、电场强度、浓度、pH、离子强度等. 对于体系在一定外扰区间(1~N)下引起的动态光谱y˜(v, p)定义为[2,5]:y¯(v)为体系的参考光谱,通常选为平均谱. 参考光谱的定义为实际过程中,可以选择某一个参考点p = Pref处的光谱作为参考光谱. 参考点可以是实验的初始状态或结束状态,也可以直接简单地设为0,这种情况下,动态光谱即为我们观察到的光谱强度.二维相关强度X(v1, v2)表示在外扰变量区间内,对光谱变量v1和v2光谱强度变化y˜(v, p)的函数进行比较. 由于相关函数是计算2个互不依赖的光谱变量v1和v2处强度的变化,因此可以将X(v1, v2)转变为复数形式[2]:这里,组成复数的相互垂直的实部和虚部分别称作同步和异步二维相关强度. 同步二维相关强度Ф(v1, v2)表示随着p值的变化,v1和v2处光谱强度的相似性变化,而异步二维相关强度Ѱ(v1, v2)则表示光谱强度的相异性变化.二维相关光谱的快速计算方式在于对动态光谱进行Hilbert-Noda变换,将其从外扰域转换到频率域上,最终得到二维相关光谱[2,5].二维相关同步谱:二维相关异步谱:其中Mjk代表Hilbert-Noda转变矩阵的第j行第k列的元素,表示为:1.3 解谱规则二维相关光谱图包含同步谱和异步谱2类,图1展示了典型的同步和异步谱图.1.3.1 二维相关光谱同步谱图二维相关光谱同步谱图表现了给定2波数v1和v2处光谱强度的同步或者一致变化. 同步谱图沿对角线(对应于光谱坐标v1 = v2)方向对称,其中相关峰可以出现在对角线上,也可以出现在对角线外. 落在对角线上的相关峰称作自动峰,自动峰强度对应于外扰过程中光谱变化的自相关函数. 在同步谱中,自动峰的强度始终为正,代表了对应波数下光谱强度动态波动的整体程度. 所以,在动态谱图中表现出更大程度强度变化的区域对应的自动峰越强,而那些基本保持不变的峰自动峰强度小甚至没有自动峰. 交叉峰处于同步谱图的非对角线区域,表现了不同波数光谱信号的同步变化. 这样一种同步的变化,反过来,预示着2波数间可能存在一定的相关性. 尽管自动峰的强度始终为正,但交叉峰的强度可正可负. 如果2波数的交叉峰为正,说明这2个波数对应的光谱强度在外扰下同时增加或者同时降低;如果两波数的交叉峰为负,说明这2个波数对应的光谱强度一个增加另一个降低.1.3.2 二维相关光谱异步谱图异步谱图呈现了2个给定波数v1和v2处光谱强度的异步或者相继变化,它关于对角线反对称. 异步谱图中只有交叉峰,而无自动峰. 异步交叉峰只有在2个给定波数的光谱强度发生异相(如延迟或加快)变化时才出现. 这一特点尤其可以帮助区分光谱中的来源不同的重叠峰. 于是,外扰过程中,混合物中的不同组分、材料中的不同相或者化学基团经历不同的变化对光谱强度的贡献能够得以辨别. 即使是2个谱带靠的很近,只要它们的瞬间特征或者时间依赖光谱强度变化模式存在本质不同,它们之间便会出现异步交叉峰. 所以异步交叉峰的出现意味着这些谱带有着不同的来源或者是不同分子环境下的官能团. 异步谱图的交叉峰可正可负,而异步谱图中交叉峰的符号可以用来辅助判断谱带在外扰过程中的变化次序.1.3.3 二维相关光谱读谱规则利用同步和异步谱图的交叉峰,可以获得外扰条件下光谱强度发生变化的先后次序关系. 为方便表述,将同步谱图中(v1, v2)处的峰强度记为Φ(v1, v2),将异步谱图中(v1, v2)处的峰强度记为Ψ(v1, v2). 根据Noda规则[5]:(1)当Φ(v1, v2) 0时,如果Ψ(v1, v2) 0,则v1谱带处的强度变化发生先于v2谱带处的强度变化(表示为v1→v2),而如果Ψ(v1, v2) 0,则v2→v1;(2)当Φ(v1, v2) 0时,如果Ψ(v1, v2) 0,则v2→v1,而如果Ψ(v1, v2) 0,则v1→v2. 简单说来,如果(v1, v2)在同步和异步谱图的交叉峰符号一致(都为正或者都为负),则v1→v2;如果(v1, v2)在同步和异步谱图的交叉峰符号不一致(一个为正而另一个为负),则v2→v1.2 实验技巧二维相关光谱作为一种有效的光谱分析手段,是针对一系列动态光谱的数学分析,具体可分为2个过程:动态谱图获取和二维相关分析. 本节将结合实际操作过程,介绍二维相关红外光谱的一些实验和分析技巧.2.1 动态谱图获取2.1.1 样品制备对于固体聚合物样品,溴化钾压片法制备的样品可直接用于透射红外光谱测试;另外,还可使用溶液铸膜(solution casting)法在红外窗片上直接制备得到适合透射红外光谱测试的薄膜. 对于溶液样品,主要应考虑样品的密封问题,避免测试过程中溶剂的挥发. 此外,水溶液或者水凝胶样品,为避免H2O分子的红外吸收对高分子链上C―H和C=O基团吸收峰的影响,可以用D2O作溶剂.2.1.2 测试条件测试模式方面,为得到高信噪比的红外光谱图,一般使用透射模式进行数据采集. 特殊的样品也可选用其他附件,例如对样品表面进行研究时可选用ATR附件. 测试条件方面,为兼顾扫描时间和信噪比,可设置红外谱图分辨率为4 cm-1,扫描次数为32次.2.1.3 测试环境二维相关光谱的特点在于只对光谱的变化敏感,能够显著放大一系列动态光谱的变化情况. 不论样品浓度、厚度如何,如果其处于静态,不发生变化,则对应的二维相关光谱无任何信号. 因此,为了使二维相关光谱的信号只来源于样品本身的结构变化,需要保证测试过程中环境的相对稳定,排除测试环境变化引起的水或二氧化碳吸收峰变化的干扰. 通常,可以借助干燥空气或者氮气吹扫,待测试环境稳定后进行背景采集,随后开展一系列动态光谱的采集.2.2 二维相关光谱分析将采集的一系列动态光谱在特定的软件上进行数学处理,即可得到二维相关光谱同步和异步谱图. 目前,能够快速获得二维相关光谱的软件种类很多[7],大都是免费获取或者是商业化的软件,包括2D Shige、TDCOS、Mat2DCorr、2DCS、Midas 2010、R corr2D、Python Scikit Spectra、Python NumPy等. 关于二维相关光谱的谱图分析,重点在两部分:精细结构的分辨和动态过程的解析. 二维相关光谱异步谱可以区分光谱中来源不同的重叠峰,将异步谱中谱峰对应的波数进行基团归属,即可分辨体系的精细结构. 此外,通过结合同步谱和异步谱交叉峰的符号,可以获得外扰条件下光谱强度发生变化的先后次序关系. 为了方便解析复杂体系谱峰响应的先后次序,根据Noda规则,本课题组提出了一种简便的判断方式[8]. 如表1、2所示,分别读出了图1异步谱中所有谱峰对应的波数及其在同步和异步谱中交叉峰的符号(强度正负),之后将其对应一一相乘,结果如表3所示. 该表中每一个正值都代表它所对应的横轴的波数先于或快于纵轴的波数响应,而每一个负值代表它所对应的横轴的波数后于或慢于纵轴的波数响应. 基于此,可以直观地得出对应动态过程的谱峰响应次序(“→”表示先于或快于):1647→1628→1622→1615 cm-1.Table 1 Signs of cross-peaks in synchronous spectrum (corresponding to Fig. 1).Table 2 Signs of cross-peaks in synchronous spectrum (corresponding to Fig. 1).Table 3 The final results of multiplication on the signs of each cross-peak in synchronous and asynchronous spectra.3 典型应用基于二维相关光谱在判断精细结构和解析动态过程的优势,本节将结合本课题组的研究工作,介绍二维相关光谱在高分子表征中的应用,主要涉及温度响应高分子的响应机制、可拉伸离子导体中复杂相互作用、小分子在聚合物基质中的扩散机理等.3.1 温度响应高分子的响应机制温度响应高分子能够在外界温度发生变化时改变自身的物理或化学性质,形成对环境的感应并产生反馈,在智能传感、药物缓释、可控驱动、过滤分离、智能窗户等领域得到了广泛关注和应用[9~11]. 温度响应高分子的响应过程往往源于分子结构或链构象的变化,分子光谱(红外、拉曼光谱)对分子基团及相应的相互作用十分敏感,非常适合于研究其中的响应机理. 传统的一维分子光谱存在谱峰重叠严重、分辨能力低以及难以捕捉动态过程等不足,借助二维相关光谱分析,可以对温度响应高分子的精细结构和动态响应机制进行深入解析,探讨其中的构效关系.聚(N-异丙基丙烯酰胺)(PNIPAM)在水溶液中呈现LCST (lower critical solution temperature)型转变,即升温过程发生相分离,相转变温度约为32 ℃[12]. PNIPAM分子链同时存在亲水的酰胺基团和疏水的碳链骨架、异丙基侧基,利用变温红外光谱对PNIPAM水溶液升温过程进行跟踪,观察到vas(CH3)和vs(CH2)吸收峰波数的降低以及Amide I区域1625和1649 cm-1处吸收峰的相互转化,表明聚合物链C―H基团的脱水和分子间/内氢键C=O… H―N的形成. 基于二维相关光谱分析,获取了PNIPAM水溶液相分离的微观动力学机理:温度升高首先发生侧基CH3的两步脱水,随后是主链的塌缩和聚集,最后为酰胺氢键的形成,并最终导致了相分离[13].PNIPAM的LCST型转变对溶剂组成也十分敏感. 尽管水和甲醇都是PNIPAM的良溶剂,但在两者以一定比例混合的状态下对PNIPAM则为不良溶剂. 例如:当甲醇和水的体积比为0.35:0.65时,PNIPAM在该混合溶剂中的LCST约为-7.5 ℃,这种现象称为“共不溶”现象. 利用红外光谱和二维相关光谱分析研究PNIPAM在水/甲醇混合溶剂中温度响应行为[14],传统一维红外光谱分析表明,相比于纯水溶液,PNIPAM链在水/甲醇混合溶剂中处于塌缩的状态,并且PNIPAM和甲醇的相互作用明显被削弱了,这主要归因于混合溶剂中水-甲醇团簇的形成导致了PNIPAM链水合位点的减少. 进一步的二维相关红外光谱分析证实了水-甲醇团簇对PNIPAM链水合过程的抑制作用.除此之外,本课题组还探讨了其他LCST型聚合物的转变机理[15~19]、共聚(无规共聚、嵌段共聚)结构对温敏聚合物相变行为的影响[20~22]、温度响应水/微凝胶的体积转变过程[23~25]等,相关工作已进行过系统总结[26,27],这里不再赘述.水凝胶结构与生物组织十分相近,在仿生皮肤等领域获得了广泛关注. 将两性离子单体与丙烯酸(acrylate acid, AA)共聚,通过调节盐浓度,制备得到具有优异可塑性、可拉伸性、自愈合性的超分子聚电解质水凝胶[28]. 同时,聚电解质的离子传输性质赋予了水凝胶对温度、应变、应力的多重感知功能. 基于对干态和湿态凝胶的红外光谱解析,获取了该水凝胶涉及的丰富的分子间/内相互作用,包括聚丙烯酸(PAA)链段羧基之间的氢键相互作用、两性离子链段中磺酸根与季铵盐的静电相互作用、PAA链段羧酸根和两性离子链段季铵盐的静电相互作用等,而这些丰富的分子间/内相互作用是该超分子水凝胶力学性能的决定性因素. 在此基础上,用甲基丙烯酸(methyacrylate acid, MAA)取代丙烯酸,即在PAA链段引入疏水的α-甲基,通过调节MAA和两性离子单体的比例,实现了超分子水凝胶在LCST和UCST (upper critical solution temperature)行为之间的转变[29],如图2所示. 具体地,当两性离子单体与MAA质量比大于1时,聚合物在水溶液中表现出UCST行为;当两性离子单体与MAA质量比等于1时,聚合物在宽的温度范围(10~80 ℃)内均不溶于水;两性离子单体与MAA质量比小于1时,聚合物在水溶液中表现出LCST行为. 同时,LCST和UCST可以通过两性离子和MAA单体的共聚比例方便地进行调节. 二维相关红外光谱从分子水平有效揭示了这一体系独特相行为的产生原因. 结果表明,羰基氢键结构的转化是LCST型水凝胶相行为的驱动力,而磺酸根涉及相互作用(水合作用、静电作用等)的变化是UCST型水凝胶相行为的驱动力.Fig. 2 (a) The chemical structure of the polyzwitterion Turbidity curves and typical photos for the (b) UCST- and (c) LCST-type hydrogels Temperature-dependent FTIR spectra (d, e) and 2D correlation spectra (f, g) of typical UCST- and LCST-type hydrogels (Reprinted with permission from Ref.[29] Copyright (2018) American Chemical Society).在天然的阳离子多糖(季铵化壳聚糖)中原位聚合亲水的阴离子单体(AA),构筑了具有温度、pH、机械力、电学等刺激响应行为的双网络聚电解质水凝胶. 该水凝胶同时集成了生物相容、离子传输、黏附、可拉伸、自愈合等多种功能,可作为仿生离子皮肤用于监测压力、温度、pH、电信号等刺激引起的生理信号变化[30]. 值得注意的是,该离子皮肤具有温度可调的黏附性,即升温黏附强度提升,降温黏附强度下降,例如水凝胶在猪皮上37 ℃下的黏附强度是20 ℃下的5.5倍,且具有良好的循环稳定性,这主要源于聚电解质水凝胶的UCST型转变. 季铵化壳聚糖由疏水主链和亲水的季铵盐基团组成,具有两亲性结构,通过改变聚合过程中AA组分的比例,可以实现对双网络聚电解质水凝胶相变行为的调控. 利用温度分辨红外光谱及二维相关分析对水凝胶的温度响应机理进行研究,结果表明体系的UCST型转变源于焓变驱动的季铵化壳聚糖与PAA链段间离子相互作用的解离和氢键作用的增强. 关于水凝胶的黏附性,涉及了丰富的分子相互作用,如PAA与基体间的氢键、季铵化壳聚糖与基体间的疏水相互作用、离子相互作用等. 二维相关红外光谱分析表明,升温相变过程中离子对解离,释放了大量解离的羧基,促使了PAA链段中羧基二聚体之间强氢键以及与季铵化壳聚糖链段羟基之间氢键的形成,提高了水凝胶的强度. 同时,水凝胶中羧基二聚体的形成有利于氨基的质子化,从而改善了组织黏附性.聚甲基丙烯酸(PMAA)在合适的水环境中也可表现出LCST型相转变[31]. 通过在PMAA水溶液中引入AlCl3等无机盐,调节盐浓度,实现了体系相转变温度的广泛可调,并构筑了具有多级结构、可实现紫外-可见-红外宽谱带光管理的新型水玻璃. 该水玻璃不仅可以可逆地切换可见光区域的透射率,阻挡紫外和红外光,还具有缺口不敏感性、自我修复断裂和划痕的功能. 借助二维相关红外光谱可对该水玻璃的动态响应机制进行解析,经分析,PMAA链段上不同化学基团在升温过程的响应次序为:α-甲基→亚甲基→羧基,表明疏水的α-甲基的脱水合是该体系相转变过程的驱动力,导致了聚合物主链的塌缩以及羧基之间氢键结构的解离. 此外,温度分辨小角X射线散射(SAXS)、微小角中子散射(VSANS)光谱证实了聚合物链塌缩引起的散射强度增加,从而产生可见光透过率的变化.一些聚电解质复合物在水溶液中也表现出热致相转变行为[32]. 通过调节典型聚电解质复合物——聚苯乙烯磺酸盐/聚二烯丙基二甲基铵在溴化钾水溶液中的浓度,同时观察到了LCST和UCST型相转变现象:低浓度下,聚电解质复合物呈现UCST型固液相转变;高浓度下,聚电解质复合物则表现为LCST型液液相分离. 基于温度分辨拉曼光谱和二维相关光谱分析,深入研究了体系中的水合效应和阴-阳离子相互作用. 研究发现,在水溶液中,聚电解质复合物的阴-阳离子相互作用呈现2种状态:直接接触型离子对(contact ion pairs, CIPs)和溶剂分离型离子对(solvent-separated ion pairs, SIPs). 聚合物浓度较低时,疏水的聚电解质链段使得阴-阳离子直接结合,CIPs占主导,而温度的升高导致了CIPs的解离,从而引起体系的UCST型转变;聚合物浓度较高时,CIPs比例低,升温导致了阴-阳离子的结合,从而引起体系的LCST型转变. 二维相关拉曼光谱分析则给出了相转变过程中的基团衍化次序,进一步揭示了聚电解质复合物两种截然不同的相转变机理:UCST型体系升温呈现出阴-阳离子相互作用逐渐减弱的解离过程,即“CIPs→SIPs→自由离子”,而LCST型体系升温呈现出阴-阳离子相互作用逐渐增强的缔合过程,即“自由离子→SIPs→CIPs”(图3). Fig. 3 2D correlation synchronous and asynchronous Raman spectra of polyelectrolyte complexes with (a) UCST- and (b) LCST-type transitions (c) Schematic illustration of the phase transition mechanisms (Reprinted with permission from Ref.[32] Copyright (2020) American Chemical Society).将温度响应聚合物引入分离膜,能够赋予膜材料温度响应功能,实现可控的物质分离[33]. 利用温敏性聚N-乙烯基己内酰胺(PVCL)和非温敏性聚乙烯基吡咯烷酮(PVP)协同稳定金属有机框架(MOF)纳米片,并进一步抽滤得到层层堆叠的温度响应纳米片复合膜. 其中PVCL提供温敏性,PVP提供支撑作用,PVCL和PVP的协同作用使得在升降温循环过程中,层间纳米孔道体积既可以同步增大和缩小,而层间距维持稳定. 所得MOF纳米片复合膜水通量及对染料截留能力具有温度敏感性. 温度升高,PVCL链塌缩使得层间纳米孔道体积增大,因而水通量增大,且升降温循环过程稳定性良好. 将尺寸相近的3种染料分子(亮绿、中性红、结晶紫)混合液进行过滤测试发现,随温度升高,尺寸较小的亮绿和中性红分子截留率下降明显高于结晶紫. 值得注意的是,对不同温度下滤液的紫外-可见光谱进行二维相关光谱分析,可以得到不同染料随温度升高的流出顺序:亮绿→中性红→结晶紫,证实了复合膜中纳米孔道尺寸随温度升高而逐渐增大. 利用二维相关红外光谱进一步对纳米片复合膜的温度响应机制进行了解析,结果显示,PVCL链段在升温过程的脱水和塌缩作为复合膜温敏行为的驱动力,降低了MOF纳米片的界面润湿性,最终导致纳米孔道的变化,而PVP链段在这一过程中并未发生明显变化,主要起到层间支撑作用(图4).Fig. 4 (a) Temperature-dependent FTIR spectra of the composite membrane (30-60 ℃). The arrows indicate the spectral variation trends at different wavenumbers (b) 2D correlation synchronous (left) and asynchronous (right) spectra of the composite membrane (c) Schematic illustration of the "smart" membrane separation performance (Reprinted with permission from Ref.[33] Copyright (2020) Springer Nature).3.2 可拉伸离子导体中复杂相互作用的揭示生命系统的生理活动与离子传导密切相关,譬如皮肤和神经纤维须通过离子传导电信号实现环境感知和运动反馈. 可拉伸离子导体是模拟弹性生物组织离子传输的重要材料,在仿生皮肤、人工肌肉、可拉伸储能、软机器人等领域取得了广泛应用.在进行可拉伸离子导体的构筑时,往往需要兼顾力学和离子传导等性能,其中涉及了丰富的分子相互作用. 本课题组围绕可拉伸离子导体,在对体系分子内/分子间相互作用机理的研究基础上,提出了一系列调控力学、电学和光学性质的分子设计. 例如:利用纳米级无定形矿物粒子和天然多糖的离子作用,调节物理交联PAA的黏弹性,所构筑的仿生皮肤可以快速自修复,且具有更高的应力响应灵敏度[34];基于AA和两性离子共聚物,选择结构匹配的离子液体,通过带电荷基团之间的离子协同效应构筑了导电纳米通道,氢键作用实现了导电通道和动态交联网络之间的协同效应,所制备的本征可拉伸导体材料透明性好、可拉伸性能突出(10000%)[35];基于聚阴离子和聚阳离子间的弱氢键相互作用构筑了一种聚离子弹性体,所得聚离子弹性体高度透明,具有接近生物组织的力学性能和感知功能,并且可以实现同步的致动和反馈效果[36];利用含氟聚离子液体与离子液体之间的离子-偶极和离子-离子相互作用,设计了一种可水下通信的光学伪装离子凝胶,该离子凝胶透明、力学性能可调、可3D打印,且具有水下自愈合、水下黏附、导离子等功能[37]. 二维相关红外光谱的优势在于从动态过程中识别体系的精细结构和复杂相互作用,因而是研究离子凝胶/弹性体中分子相互作用机制的有效手段.通过合理调控分子间/内相互作用,设计制备了一种基于天然小分子α-硫辛酸(α-thioctic acid, TA)的可涂覆离子凝胶油墨(图5)[38]. 在离子液体1-乙基-3-甲基咪唑硫酸乙酯([EMI][ES])存在的条件下,TA室温即可进行浓度诱导的自发开环聚合,得到稳定、透明、高拉伸且自愈合的离子凝胶弹性体. 该弹性体易溶于乙醇,因而能够方便地涂覆到任意表面,赋予涂覆体稳定的离子导电能力和应变感知功能. 利用红外光谱等手段探讨了离子凝胶中离子液体对聚硫辛酸(polyTA)的稳定机制:相比于纯的polyTA体系,离子凝胶的COOH伸缩振动区域在1734 cm-1出现了明显的肩峰,而离子液体的S=O伸缩振动峰在离子凝胶中呈现了明显的红移,表明polyTA的羧基与硫酸乙酯阴离子形成了COOH… [ES]氢键. 分子动力学模拟结果表明了COOH… [ES]氢键的热力学稳定性,同时该氢键能够有效降低polyTA的势能. 因此,离子液体主要通过阴离子ES与polyTA基间形成强氢键而稳定polyTA. 二维相关红外光谱则揭示了离子凝胶升温过程不同化学基团的响应次序:COOH… [ES]氢键→羧酸二聚体→自由羧基,说明COOH… [ES]氢键对温度变化最敏感,进一步证实了COOH… [ES]氢键对于稳定polyTA离子凝胶的重要作用. Fig. 5 (a) Schematic illustration of the COOH[ES] H-bonding in the ionogel (b) ATR-FTIR spectral comparison among ionogel, [EMI][ES] and neat polyTA (c) Temperature-variable FTIR spectra of the ionogel in the C=O stretching region from 25 °C to 151 °C Perturbation-correlation moving window (d) and 2D correlation synchronous and asynchronous spectra (e) generated from (c). (Reprinted with permission from Ref.[38] Copyright (2021) Wiley).受指纹结构启发,构筑了一种具有共形和可重复编辑褶皱结构的本征可拉伸离子导电芯鞘纤维[39],其中,纤维芯层为离子凝胶弹性体,鞘层为氟橡胶,芯鞘界面借助共价交联网络和离子-偶极相互作用实现协同拓扑互锁和物理黏附. 经过表面褶皱结构的优化,该离子纤维拉伸应变感知灵敏度(gauge factor)可提升至10以上,超过了绝大多数可拉伸离子导体应变传感器. 利用红外光谱对离子凝胶芯层的分子相互作用进行研究,发现其中涉及了离子液体阳离子咪唑环上C―H与聚合物侧基乙氧基间的氢键、聚合物链段C=O间的偶极-偶极相互作用、离子液体阴-阳离子间的弱静电相互作用等,而这些都对离子凝胶的高拉伸行为做出了重要贡献. 基于对芯层和鞘层力学性能的研究,发现表面褶皱形成的主要原因在于,高模量的氟橡胶鞘层弹性回复率显著低于离子凝胶芯层,在应变回复过程中造成了芯层和鞘层的界面失稳. 随着预应变的增加,弹性回复率差异变大,从而导致更加密集的褶皱结构. 此外,形成的表面褶皱可通过加热至60 ℃完全消除,从而赋予纤维可重复编辑褶皱的能力. 二维相关红外光谱揭示了离子凝胶芯层高温下残余应变的消除主要源于聚合物链段C=O间偶极-偶极相互作用的减弱和构象重排,而氟橡胶鞘层由C―F间偶极-偶极相互作用锚定的链构象也可以通过加热消除.通过在强氢键交联的PAA网络中引入熵驱动的弱交联两性离子超分子网络,产生竞争机制,设计制备了一系列透明、抗冻、保湿、黏附、高拉伸、高回弹、自愈合、应变硬化、导质子、可重复加工等综合性能优异的离子皮肤(图6)[40]. 不同于传统水凝胶和离子凝胶,该离子弹性体不含大量溶剂,仅含有少量达到吸湿平衡的水分子,这使得分子间的羧酸二聚体氢键足以交联PAA分子链而形成强交联网络,而弱交联的两性离子超分子网络则提供柔性. 通过红外光谱、核磁共振谱和力学松弛等实验探讨了这一二元网络体系中的分子相互作用. 其中,具有较低pKa值的两性离子的存在使得PAA轻度去质子化,游离的质子是主要载流子. 去质子化的PAA与两性离子的阳离子端也可以发生离子缔合. 利用变温红外光谱并结合二维相关光谱分析,验证了体系中的3种主要分子相互作用,并根据它们对于温度的响应顺序判别了其结合强度,即PAA链段羧酸二聚体氢键 PAA-甜菜碱离子相互作用 甜菜碱-甜菜碱离子相互作用,这一光谱表征结果为该离子皮肤强弱协同竞争网络的分子设计提供了重要依据. Fig. 6 (a) Temperature-variable FTIR spectra of PAA/betaine ionic elastomer upon heating (b) 2D correlation synchronous and asynchronous spectra generated from (a) FTIR (c) and 1H-NMR (d) spectra of PAA, betaine, and PAA/betaine (e) Schematic illustration of PAA/betaine elastomer and the order of interaction strength among the three main interacting pairs (Reprinted with permission from Ref.[40] Copyright (2021) Springer Nature).3.3 小分子在聚合物基质中的扩散聚合物生产和加工的许多工序都涉及小分子物质在聚合物基体的扩散,研究这类扩散行为具有重要的理论和实践意义. ATR-FTIR光谱可对小分子在聚合物基质中的扩散过程进行实时、原位、快速、多组分检测,能够同时获取扩散系数和分子层面相互作用等信息. 扩散装置示意图如图7所示,聚合物基体处于ATR晶体和扩散物质之间,当扩散物质从聚合物基体的上表面扩散至下表面时即可被检测到. 随着时间的增加,与扩散物质相关的特征吸收峰强逐渐增大直至扩散平衡(扩散谱图,图7(b)). 以扩散时间为横坐标、扩散物质特征吸收峰强度/面积为纵坐标作图,即可得到扩散曲线(图7(c)). 结合二维相关光谱分析,可以提供动态扩散过程结构与相互作用的变化信息,有助于解析扩散机制[41~45].Fig. 7 (a) Schematic illustration of the diffusion experiments by ATR-FTIR spectroscopy (b) typical diffusion spectra (c) a typical diffusion curve.基于朗伯比尔定律和菲克扩散模型,Fieldson等[46]建立了基于ATR-FTIR光谱测试计算扩散系数的公式:其中这里,At为扩散时间t时,特征红外吸收峰的强度或面积;A∞为扩散达到平衡时,特征红外吸收峰的强度或面积;L为聚合物薄膜基体的厚度;D为扩散剂的扩散系数;γ为光波在聚合物基体中渗透深度的倒数,可表示为:其中,θ (θ = 45o)为红外光的入射角;n1和n2分别为聚合物和ATR晶体的折光指数;λ为红外光的波长. 基于以上扩散方程对ATR-FTIR光谱测试得到的扩散曲线进行拟合,即可得到相关扩散系数. 此外,根据曲线拟合情况可以判断该扩散过程的扩散模型.利用时间分辨ATR-FTIR光谱并结合二维相关光谱分析技术对水分子在乙基纤维素(EC)基薄膜中的扩散行为进行系统研究[47]. 分析表明,水分子在EC中的扩散行为符合菲克扩散模型,通过对扩散曲线的拟合计算得到了相关的扩散系数. 此外,探讨了EC中增塑剂(柠檬酸三乙酯)含量对水分子扩散行为的影响,结果表明,增塑剂的添加不影响水分子的扩散模型,主要起到加速水分子扩散的作用,这主要源于增塑剂的加入改善了EC链的活动性而提高了EC基体的自由体积(free volume). 利用二维相关光谱对水分子羟基伸缩振动区域扩散谱图进行解析,观察到在整个扩散过程中,主要存在着4种类型的水分子,即本体水(强氢键作用)、团簇水(中等强度氢键作用)、相对自由的水分子(弱氢键作用)以及自由的水分子(极弱氢键作用). 依据Noda规则,判别出不同状态水分子扩散的先后顺序:团簇水→本体水→相对自由的水分子或自由的水分子,表明扩散首先来自体积较小、相对弱氢键结合的团簇水,其次才是大量的本体水,而随着扩散过程的进行,部分水分子与聚合物基体相互作用而脱离团簇水或本体水,产生了(相对)自由的水分子.EC被广泛用作药物包衣材料以实现药物缓释的功能,利用ATR-FTIR光谱对药物分子在EC基薄膜中的扩散行为进行实时监测可以有效模拟这一药物缓释过程(图8),从而为EC基药物包衣材料的配方优化提供理论指导[48]. 扩散谱图直观呈现了体系中各组分的变化情况,包括水分子(1637 cm-1)和药物分子(1569 cm-1)特征吸收峰强度的上升,增塑剂(1737 cm-1)特征吸收峰强度的下降等,表明水分子和药物分子在EC基薄膜中的扩散以及薄膜中增塑剂的部分溶解. 定量分析结果表明,扩散主要包含3个阶段:(A)水分子扩散;(B) EC膜吸水饱和,水扩散停止并溶解EC基体中的致孔剂;(C) 随着致孔剂的溶解,EC薄膜中形成孔道,使得药物分子和水分子共同扩散,同时增塑剂溶解. 二维相关红外光谱分析结果进一步证实了C阶段的各组分变化顺序:水分子扩散→药物分子扩散→增塑剂溶解,并且显示药物分子始终处于水合状态. 此外,通过改变药物分子的水溶性、致孔剂的种类以探讨膜配方对扩散行为的影响,结果表明随着致孔剂水溶性的增加和/或药物分子水溶性的降低,B阶段将缩短甚至消除. Fig. 8 (a) Time-resolved ATR-FTIR spectra collected during the water and drug diffusion (b) 2D correlation synchronous and asynchronous spectra during the diffusion of Stage C (c) Schematic illustration of water and drug diffusion across the EC-based film (Reprinted with permission from Ref.[48] Copyright (2015) Elsevier).氢氧化物/尿素是溶解纤维素的重要组合,其中尿素可稳定纤维素的疏水部分,有利于形成包合物从而促进纤维素的溶解. 在分子层面上,尿素溶液对纤维素的作用机理尚不明确. 采用ATR-FTIR光谱并结合二维相关光谱衍生的外扰相关移动窗口(perturbation-correlation moving window,PCMW)技术研究了不同浓度尿素水溶液(0,20 wt%、40 wt%和50 wt%)在黏胶纤维膜中的扩散行为,在分子水平揭示了尿素溶液的动态扩散行为以及与黏胶纤维的相互作用机制[49]. 从扩散谱图的变化规律以及对应的扩散曲线看,尿素溶液的扩散过程可大致分为2个步骤,水分子首先通过黏胶纤维膜,随后带动尿素分子一起通过. PCMW谱图显示,尿素浓度越高,尿素分子扩散滞后现象越明显. 根据菲克扩散模型,尿素分子在黏胶纤维膜的扩散系数随尿素浓度的增加而减小. 在红外光谱中,特征谱峰出现位移表明相应官能团相互作用的变化. 基于扩散过程Amide Ⅲ(尿素)和CH2-O(6)H伸缩振动(纤维素)的峰位移变化趋势,尿素水溶液在黏胶纤维中的扩散过程可以概括为:首先水分子破坏黏胶纤维膜无定形区的氢键网络,与羟基形成新的纤维素-水氢键,随后尿素分子在水分子的“桥连”作用下形成纤维素-水-尿素氢键,从而间接作用于纤维素. 低浓度下,水分子相对含量较大,可以快速打开扩散通道带动尿素分子通过黏胶纤维膜. 而高浓度下,尿素分子发生聚集且固定了大量水分子,从而在宏观上延缓了尿素溶液的扩散.热转移印花是纺织品印花方法之一,本质上是分散染料向聚酯纤维动态扩散的过程. 借助ATR-FTIR光谱对分散红9 (DR 9)在聚对苯二甲酸乙二醇酯(PET)薄膜中的扩散过程进行了原位跟踪,模拟了热转移印花过程,并结合二维相关光谱探讨了分散染料-分散染料、分散染料-PET相互作用机制,在分子水平上阐释了其扩散机理(图9)[50]. DR 9在PET薄膜中的扩散过程符合菲克扩散模型. 温度越高,扩散速度越快,这主要归因于:(1) 温度升高导致了PET基体自由体积的增加和分子链热运动的增强;(2) DR 9在高温下分子运动的增强. 此外,将不同温度下的扩散系数按照Arrhenius公式进行线性拟合,可以计算得到DR 9在PET中扩散活化能为15.33 kJ/mol. 通过对扩散过程中不同阶段的红外谱图进行对比,观察到了体系中存在丰富的分子间/内相互作用,包括PET和DR 9的C=O基团间偶极-偶极相互作用、芳香基团间π-π相互作用以及DR 9分子内氢键等. 二维相关红外光谱分析进一步细化了扩散体系中不同化学基团的分子间/内相互作用及其在扩散过程中的变化情况. 高温下,随着DR 9分子热运动增强,DR 9分子之间的相互作用减弱. 借助DR 9和PET中C=O基团之间的偶极-偶极相互作用,DR 9扩散进入PET基体. 在扩散过程中,DR 9中形成了较强的分子内氢键,从而提高了DR 9的平面性,促进了扩散过程. 随着越来越多的DR 9分子扩散到PET基体中,DR 9和PET的芳香基团之间的π-π相互作用成为主导,DR 9的分子内氢键减弱. Fig. 9 (a) Time-resolved ATR-FTIR spectra and (b) 2D correlation synchronous and asynchronous spectra of DR 9 diffusion in PET at 140 ℃ (c) Schematic diagram of DR 9 diffusion into PET (Reprinted with permission from Ref.[50] Copyright (2020) American Chemical Society).采用时间分辨ATR-FTIR光谱对不同温度下碳酸丙烯酯(PC)-双三氟甲磺酰亚胺锂(LiTFSI)在聚偏氟乙烯-六氟丙烯共聚物(P(VDF-HFP))中的扩散行为进行了原位监测,同时获得了凝胶聚合物电解质中各扩散组分的扩散系数和分子层面相互作用信息[51]. 基于PC中C=O伸缩振动区域的二阶导数分析,推断出PC在凝胶电解质主要存在四种状态,即与P(VDF-HFP)发生偶极-偶极相互作、PC分子间发生偶极-偶极相互作用、与锂离子发生强离子-偶极相互作用、与锂离子发生弱离子-偶极相互作用. 同时,LiTFSI参与的分子相互作用也得以识别,包括锂离子与PC中C=O之间的离子-偶极相互作用,锂离子与P(VDF-HFP)中C―F之间的离子-偶极相互作用、TFSI-的溶剂化作用等. 扩散过程中,首先是PC分子以溶剂团簇的形式扩散进入P(VDF-HFP),PC分子中的C=O与P(VDF-HFP)中的C―F发生偶极-偶极相互作用,一定程度减弱了P(VDF-HFP)聚合物链间的偶极-偶极相互作用,从而有利于锂盐的扩散. 随后,借助锂离子与C=O的离子-偶极相互作用,锂离子随着PC分子扩散进入P(VDF-HFP),TFSI-在扩散过程中也一直处于溶剂化状态. 这里,PC分子既充当了增塑剂的角色,同时也是离子(包括阴离子和阳离子)扩散的载体. 本工作在分子水平上揭示了PC-LiTFSI在P(VDF-HFP)的传导机制,对高性能凝胶聚合物电解质的结构设计和性能优化具有一定的指导意义.3.4 天然高分子的结构表征海藻酸钠(SA)作为一类天然多糖,生产成本低、无毒且具有良好的生物相容性、可降解性,在食品工业、制药、纺织印染等领域得到了广泛应用. 随着实验室和工业对SA的日趋重视,理解SA内部的氢键结构也变得越发重要. 利用红外光谱对SA升温过程特征基团的变化进行原位监测,结合二维相关光谱等分析手段从分子水平研究了SA体系的相互作用机制,探讨了温度扰动下SA分子间/内、SA与水分子间氢键结构的演变历程[52]. 研究发现,加热过程可分为30~60 ℃和60~170 ℃ 2个阶段:第一阶段为弱氢键结合的水分子脱除,第二阶段为强氢键结合的水分子脱除. 二维相关红外光谱结果表明:30~60 ℃区间内,随脱水过程发生,SA与水分子的氢键逐步断裂,SA中C―OH和COO-基团逐渐参与形成分子间/内氢键(O3H3⋯O5和O2H2⋯O=C―O-),因此水分子的存在一定程度破坏了SA中原有的氢键结构;60~170 ℃区间内,强结合水脱除,SA与水分子的氢键进一步断裂,同时SA分子间/内氢键相互作用逐步减弱,出现了部分相对自由的C―OH和COO-基团(图10). 由于相对自由的COO-比C―OH更早出现,可以推测C―OH形成的分子间/内氢键相互作用比COO-更强.Fig. 10 2D synchronous and asynchronous spectra of the SA film during heating between (a) 30-60 °C and (b) 60-170 °C (c) Schematic illustration of the heat-induced hydrogen bonding transformation in the SA film[52] (Reprinted with permission from Ref.[52] Copyright (2019) Elsevier).多元羧酸与纤维素的羟基反应,能使纤维素大分子间形成立体的交联网络结构,从而赋予棉纤维织物抗皱性能. 1,2,3,4-丁烷四羧酸(BTCA)作为一类典型的用于棉纤维织物抗皱整理的多元羧酸,其与纤维素的酯化过程受到了广泛关注,但其中关于分子水平相互作用机制及动态反应机理仍不清晰. 利用FTIR光谱对加热过程中纤维素与BTCA在催化剂次亚磷酸钠(SHP)作用下的酯化反应过程进行原位跟踪,并借助二维相关光谱分析技术探讨了该反应的分子机理,重点关注了分子层面相互作用机制以及反应全过程中的化学基团转变历程[53]. 分析表明,室温下,体系中的O―H和C=O等极性基团有强氢键相互作用. SHP存在时,碱金属离子(Na+)与羧基反应并将其转化为相应的羧酸盐,从而一定程度削弱了BTCA间的氢键相互作用. 在30~100 ℃的加热过程中,体系中的氢键部分断裂,导致一些O―H和C=O处于相对自由的状态. 这里,SHP的存在和加热过程都会导致体系中氢键相互作用的减弱,从而使相应的化学基团更自由,有利于酸酐生成和酯化反应. 当加热至100 ℃以上后,羧酸盐和自由羧酸开始脱水形成环酐. 一旦形成环酐,就会与纤维素大分子链上的O―H反应生成酯. 通过逐步成酐和酯化反应过程,BTCA实现了对纤维素的交联. 该结果对多元羧酸的抗皱整理工艺优化及寻找更有效的多元羧酸类抗皱整理剂和催化剂具有一定的指导作用.4 总结与展望本文主要介绍了二维相关光谱的基本原理、实验和分析技巧等,并结合具体的体系(如温度响应高分子、可拉伸离子导体、小分子在聚合物中的扩散过程、天然高分子等),简述了二维相关光谱在高分子表征中的应用. 这里,二维相关光谱不仅能够有效鉴别高分子体系涉及的丰富相互作用,还能提供外扰作用下动态过程发生的分子机制. 相关研究结果一方面有助于启发新型功能高分子材料的结构设计,另一方面也可以为实际工艺过程的配方优化和参数调整提供指导.二维相关光谱作为一种先进的光谱分析手段,在高分子材料体系的表征中得到了越来越多的关注. 随着高分子材料涉及的体系越来越复杂、功能越来越强大,这为二维相关光谱的应用提供了更多的机遇,但同时也带来了更多的挑战. 在后续的研究工作中,二维相关光谱分析可以重点关注以下几方面:(1) 光谱手段的多样性. 目前关于二维相关光谱在高分子体系中的应用主要是基于中红外光谱,关注的是分子层面相互作用信息. 一方面,中红外光谱也有一定的局限性,例如低浓度溶液体系信号弱、水的吸收峰干扰严重等. 对于中红外光谱难以表征的体系,可以尝试其他分子光谱手段,如拉曼光谱、近红外光谱等,开展二维相关光谱分析. 另一方面,其他光谱手段,包括荧光光谱、圆二色谱、紫外-可见吸收光谱、X射线衍射谱等,都可以进行二维相关光谱分析,以获取多层面丰富的结构信息. 目前,这些光谱在处理二维相关分析时,大部分因信噪比低而导致噪音被显著放大,使得结构解析变得困难,如何有效解决这一问题是丰富二维相关分析光谱手段的关键.(2) 外扰变量的丰富性. 时间、温度便于控制,是目前获取动态光谱最常用的外扰变量. 然而,影响高分子结构和性能的因素是多种多样的,例如湿度变化能够引起高分子力学性质的改变、紫外光照射可以引起高分子的老化等,尤其是刺激响应高分子,可以对温度、压力、电场、磁场、pH、浓度等丰富的外扰产生响应,引起物理或化学性质的变化. 最近,Li等[54]利用二维相关红外光谱研究了乙醇诱导聚丙烯酰胺/Pluronic 127水凝胶相分离的机理,获取了氢键解离和无定形-结晶转变等信息. 因此,利用二维相关光谱探讨不同刺激下高分子结构的演变机制,将进一步拓宽二维相关光谱的应用范围. 需要注意的是,对于测试过程无法原位施加的外扰变量,应尽量避免其他因素改变而引起的光谱变化,否则将影响二维相关光谱分析结果的真实性和可靠性.(3) 多种分析手段的关联. 一方面,通过二维相关光谱交叉谱的计算和解析,可以将不同分析手段所得结果进行关联,这能够帮助理解高分子不同层面结构的内在联系. 另一方,二维相关光谱分析结果涉及丰富的相互作用和结构变化,经过与其他分析表征手段的结果进行比对和相互验证,可有效加深人们对二维相关光谱分析结果的理解. 参考文献1Ernst R R, Bodenhausen G, Wokaun A. Principles of Nuclear Magnetic Resonance in one and Two Dimensions. Oxford: Clarendon Press, 19872Noda I, Dowrey A, Marcott C, Story G, Ozaki Y. Appl Spectrosc, 2000, 54(7): 236A-248A. doi:10.1366/0003702001950454 3Noda I. J Am Chem Soc, 1989, 111(21): 8116-8118. doi:10.1021/ja00203a008 4Noda I. Appl Spectrosc, 1990, 44(4): 550-561. doi:10.1366/0003702904087398 5Noda I. Appl Spectrosc, 1993, 47(9): 1329-1336. doi:10.1366/0003702934067694 6Noda I. Anal Sci, 2007, 23(2): 139-146. doi:10.2116/analsci.23.139 7Park Y, Jin S, Noda I, Jung Y M. J Mol Struct, 2020, 1217: 128405. doi:10.1016/j.molstruc.2020.128405 8Sun S, Tang H, Wu P, Wan X. Phys Chem Chem Phys, 2009, 11(42): 9861-9870. doi:10.1039/b909914j 9Kim Y J, Matsunaga Y T. J Mater Chem B, 2017, 5(23): 4307-4321. doi:10.1039/c7tb00157f 10Chilkoti A, Dreher M R, Meyer D E, Raucher D. Adv Drug Deliv Rev, 2002, 54(5): 613-630. doi:10.1016/s0169-409x(02)00041-8 11Weber C, Hoogenboom R, Schubert U S. Prog Polym Sci, 2012, 37(5): 686-714. doi:10.1016/j.progpolymsci.2011.10.002 12Tang L, Wang L, Yang X, Feng Y, Li Y, Feng W. Prog Mater Sci, 2021, 115: 100702. doi:10.1016/j.pmatsci.2020.100702 13Sun B, Lin Y, Wu P, Siesler H W. Macromolecules, 2008, 41(4): 1512-1520. doi:10.1021/ma702062h 14Sun S, Wu P. Macromolecules, 2010, 43(22): 9501-9510. doi:10.1021/ma1016693 15Sun S, Wu P. J Phys Chem B, 2011, 115(40): 11609-11618. doi:10.1021/jp2071056 16Wang H, Sun S, Wu P. J Phys Chem B, 2011, 115(28): 8832-8844. doi:10.1021/jp2008682 17Sun B, Lai H, Wu P. J Phys Chem B, 2011, 115(6): 1335-1346. doi:10.1021/jp1066007 18Sun S, Wu P. Macromolecules, 2013, 46(1): 236-246. doi:10.1021/ma3022376 19Zhang B, Tang H, Wu P. Macromolecules, 2014, 47(14): 4728-4737. doi:10.1021/ma500774g 20Hou L, Wu P. Soft Matter, 2014, 10(20): 3578-3586. doi:10.1039/c4sm00282b 21Hou L, Wu P. Soft Matter, 2015, 11(14): 2771-2781. doi:10.1039/c5sm00026b 22Sun W, An Z, Wu P. Macromolecules, 2017, 50(5): 2175-2182. doi:10.1021/acs.macromol.7b00020 23Hou L, Ma K, An Z, Wu P. Macromolecules, 2014, 47(3): 1144-1154. doi:10.1021/ma4021906 24Li T, Tang H, Wu P. Soft Matter, 2015, 11(10): 1911-1918. doi:10.1039/c4sm02812k 25Sun S, Hu J, Tang H, Wu P. J Phys Chem B, 2010, 114(30): 9761-9770. doi:10.1021/jp103818c 26Sun S, Wu P. Chinese J Polym Sci, 2017, 35(6): 700-712. doi:10.1007/s10118-017-1938-1 27Sun Shengtong(孙胜童), Wu Peiyi(武培怡). Materials Science and Technology(材料科学与工艺), 2017, 25(1): 1-9. doi:10.11951/j.issn.1005-0299.20160386 28Lei Z, Wu P. Nat Commun, 2018, 9(1): 1134. doi:10.1038/s41467-018-03456-w 29Lei Z, Wu P. ACS Nano, 2018, 12(12): 12860-12868. doi:10.1021/acsnano.8b08062 30Shi X, Wu P. Small, 2021, 17(26): 2101220. doi:10.1002/smll.202101220 31Lei Z, Wu B, Wu P. Research, 2021, 2021: 4515164. doi:10.34133/2021/4515164 32Ye Z, Sun S, Wu P. ACS Macro Lett, 2020, 9(7): 974-979. doi:10.1021/acsmacrolett.0c00303 33Jia W, Wu B, Sun S, Wu P. Nano Res, 2020, 13(11): 2973-2978. doi:10.1007/s12274-020-2959-6 34Lei Z, Wang Q, Sun S, Zhu W, Wu P. Adv Mater, 2017, 29(22): 1700321. doi:10.1002/adma.201700321 35Lei Z, Wu P. Nat Commun, 2019, 10(1): 3429. doi:10.1038/s41467-019-11364-w 36Lei Z, Wu P. Mater Horiz, 2019, 6(3): 538-545. doi:10.1039/c8mh01157e 37Yu Z, Wu P. Adv Mater, 2021, 33(24): 2008479. doi:10.1002/adma.202008479 38Wang Y, Sun S, Wu P. Adv Funct Mater, 2021, 31(24): 2101494. doi:10.1002/adfm.202101494 39He C, Sun S, Wu P. Mater Horiz, 2021, 8(7): 2088-2096. doi:10.1039/d1mh00736j 40Zhang W, Wu B, Sun S, Wu P. Nat Commun, 2021, 12(1): 4082. doi:10.1038/s41467-021-24382-4 41Shen Yi(沈怡), Peng Yun(彭云), Wu Peiyi(武培怡), Yang Yuliang(杨玉良). Progress in Chemstry(化学进展), 2005, (3): 499-513. doi:10.3321/j.issn:1005-281X.2005.03.016 42Liu M, Wu P, Ding Y, Chen G, Li S. Macromolecules, 2002, 35(14): 5500-5507. doi:10.1021/ma011819f 43Tang B, Wu P, Siesler H W. J Phys Chem B, 2008, 112(10): 2880-2887. doi:10.1021/jp075729+ 44Wang M, Wu P, Sengupta S S, Chadhary B I, Cogen J M, Li B. Ind Eng Chem Res, 2011, 50(10): 6447-6454. doi:10.1021/ie102221a 45Lai H, Wang Z, Wu P, Chaudhary B I, Sengupta S S, Cogen J M, Li B. Ind Eng Chem Res, 2012, 51(27): 9365-9375. doi:10.1021/ie300007m 46Fieldson G T, Barbari T A. Polymer, 1993, 34(6): 1146-1153. doi:10.1016/0032-3861(93)90765-3 47Hou L, Feng K, Wu P, Gao H. Cellulose, 2014, 21(6): 4009-4017. doi:10.1007/s10570-014-0458-1 48Feng K, Hou L, Schoener C A, Wu P, Gao H. Eur J Pharm Biopharm, 2015, 93: 46-51. doi:10.1016/j.ejpb.2015.03.011 49Dong Y, Hou L, Wu P. Cellulose, 2020, 27(5): 2403-2415. doi:10.1007/s10570-020-02997-y 50Yan L, Hou L, Sun S, Wu P. Ind Eng Chem Res, 2020, 59(16): 7398-7404. doi:10.1021/acs.iecr.9b07110 51Li H, Hou L, Wu P. Chinese J Polym Sci, 2021, 39(8): 975-983. doi:10.1007/s10118-021-2571-6 52Hou L, Wu P. Carbohydr Polym, 2019, 205: 420-426. doi:10.1016/j.carbpol.2018.10.091 53Hou L, Wu P. Cellulose, 2019, 26(4): 2759-2769. doi:10.1007/s10570-019-02255-w 54Li Y, Wang D, Wen J, Liu J, Zhang D, Li J, Chu H. Adv Funct Mater, 2021, 31(22): 2011259. doi:10.1002/adfm.202011259 《高分子学报》高分子表征技术专题链接:http://www.gfzxb.org/article/doi/10.11777/j.issn1000-3304原文链接:http://www.gfzxb.org/thesisDetails#10.11777/j.issn1000-3304.2021.21362DOI:10.11777/j.issn1000-3304.2021.21362
  • 国际在线研讨会—多维颗粒表征 (LUM)
    2021年1月27日至29日,Erlangen合作研究中心(CRC1411) -“颗粒产品设计”,2045优先项目 -“工业精细颗粒系统的高度特异性,多维组分化” 与德国LUM公司联合举办了一个关于颗粒系统多维表征的国际研讨会。来自工业以及学术界的专家将使用最新技术和最新开发的方法来探讨多维粒子表征的现状。 第六部分的分散体的沉降分析第二环节,Dietmar Lerche教授将给大家介绍“分析离心技术的进展 - 纳米颗粒的多维表征”,届时会结合LUMiSizer新的多波长功能做相关的分析。 参加研讨会是免费的,但必须注册才能通过ZOOM登录在线活动。 有关更多信息和注册信息,请扫描二维码访问以下研讨会网站链接: 注册成功后会收到会议详细内容,注册截至时间为2021年1月24日德国时间24时。 本次在线研讨会的官方语言为英语,时间为德国当地时间。 下面是3天的会议议程:
  • 专家约稿|表界面科学设备在原位材料制备及结构表征中的应用:STM及XPS
    根据热力学分子自由程理论,即使是达到标准大气压亿分之一的真空环境 (10-3 Pa),也存在着在一秒钟内彻底污染清洁样品表面的可能。对性质活泼的纳米材料表面,易潮解的氧化物以及对碳氢化合物亲合性比较好的样品,无论预处理如何精细,在把样品暴露环境的那一刻,整个表面就已经彻底改变。想要认识在此之前发生的过程对表面的影响也就无从谈起。因此一套互联表征仪器需要真正的具备原位表征能力。比较形象的理解如下图1所示,原位、特别是使役条件下的表征仪器,可以在一定程度上实现对材料在工况下的结构、化学组分等的研究,有利于理解所观测到的现象是由于何种原因所引起。因此,发展使役条件、生长环境中样品表面结构、化学性质检测是非常重要和必要的。图1. 不同观测条件下所研究对象的状态。从左到右分别是离线观测、准原位观测和使役条件下的观测。对于高质量的材料制备,其在各类基底上的生长可以理解是一个“催化反应”过程,催化反应的机理研究最大的困难在于表征设备和真实情况之间的鸿沟,如时间鸿沟、材料鸿沟、压力鸿沟、温度鸿沟等。实现真实反应条件下与各类表征平台的对接,从而达到高效表征,协同工作,减少测试周期,提高测试精确度和信息完整程度。对于目前研究的材料生长机理,关注重点包括前驱体在衬底上的初始状态、中间态、成核、扩散、聚集、相变、长大到单晶,分子束外延与扫描隧道显微镜的真空互联系统满足了上述需求,每一个过程所需要的信息包含结构形貌和化学组分。结构形貌:扫描隧道显微镜(Scanning Tunneling Microscopy,STM);化学组分:包含两部分,一是反应过程中所产生的、脱附的组分;另一个是留在衬底表面上的组分。前者可以用质谱仪来实时检测,后者可以用X-射线光电子能谱仪(X-ray photoelectron spectroscopy, XPS)来观测。各类设备的特点:1、 高温近常压STM优点:(1)工作气氛可到100mbar;(2)工作温度可达1300 K(真空);10 mbar气氛下可达250 ºC;(3)快速扫描(大于10帧/秒);(4)原位质谱联用;缺点:因高温高压而丧失部分分辨率,难以获得原子分辨;图2. (A)高温近常压STM的实物照片(图片来自材料科学与纳米技术中心,University of OSLO);(B)SPECS的reactor STM的原位反应池和STM探头实物图;(C)石墨烯在金属表面的生长过程实时高压高温STM原位图片。图2(A)所示的反应STM(高温、近常压STM)位于挪威的奥斯陆大学(University of OSLO)材料科学与纳米技术中心,其制造商为Leiden Probe microscopy(The Reactor STM - Department of Chemistry (uio.no))。笔者博士后期间所在的布鲁克海文国家实验室的CFN(功能纳米材料研究中心)也有一台同样配置的Reactor STM。主要包含HP stage(高压STM扫描部件),其中的反应池由于较小的体积可以非常快速的实现气氛与真空之间的转换;独特的控制器可以实现20帧/秒的速度;最优条件下最高气压可达5bar,最高温度可达300 ℃。另一款经典的reactor STM是SPECS Aarhus 150系统(SPM Aarhus 150 NAP | SPECS (specs-group.com)),SPM的扫描头安装于原位的反应池中,高温加热是以卤素灯为热源,其工作范围是超高真空中850 K,10 mbar气氛为550 K。图2B是该经典系统的实物图。此外,扫描头中搭配有进光口,可以实现光催化反应的原位监测。如图2C所示,在室温下,干净的Cu(111)表面上,甲烷吸附后无团簇形成,加热后在金属表面上逐渐形成小的团簇,并均匀的铺展在表面上,终止气体的通入,继续加热金属,可以观测到不同尺寸的石墨烯岛,再进一步升高衬底温度,小的岛会在表面上移动聚集形成较大尺寸的石墨烯,再通入甲烷气体,在边界上继续反应,使石墨烯岛长大逐渐形成单层石墨烯。2021年,美国Lawrence Berkeley National Laboratory表面催化反应的领军人物Miquel Salmeron与以色列Weizmann Institute of Science的Baran Eren在国际最知名的Chemical Review上发表了题为“高压扫描隧道显微镜”的综述文章,概述了在过去20年内,随着扫描隧道显微镜在表面催化领域中的发展,以晶体表面在mTorr到近常压的气体存在的条件下表面结构的变化为主题,提出了高压STM这一新工具在未来表面科学研究中的重要性。目前,全球近常压扫描隧道显微镜的厂家主要有SPECS、Leiden Probe等。国产扫描隧道显微镜设备目前依然以极低温为主。2、XPS图3. 将制备腔体与XPS联用,外加质谱检测。(A)真空样品制备腔与XPS一体化系统;(B)联用质谱;(C)近常压XPS原位检测示意图。XPS的发明贡献了两个诺贝尔物理学奖,其中1905年爱因斯坦解释了光电现象,并因此获得了1921年的诺贝尔物理学奖。瑞典物理学家Kai Siegbahn将XPS发展为一个重要分析技术,并获得了1981年的诺贝尔物理学奖。值得一提的是,其父亲Karl Siegbahn在1924年也获得过诺贝尔物理学奖“鉴于其发现并研究X-射线光谱-for his discoveries and research in the field of X-ray spectroscopy”。美国惠普公司于1969年制造了世界上首台商业单色X射线光电子能谱仪。1962年,Imperial College London的David Turner等人又研制了紫外光电子能谱仪(Ultraviolet photoelectron spectroscopy, UPS),利用紫外光研究价带电子状态,与XPS互相补充。XPS目前已经成为了一种常规的材料化学组分分析手段,由于其表面灵敏性,特别适合于表面分析,已经成为几乎所有高校和研究院所分析测试中心的标配仪器。与近常压STM相对应的,在表面反应中也需要近常压的XPS来实时探测表面化学组分的变化。我国第一台近常压XPS系统是由原中国科学院上海微系统与信息技术研究所的刘志研究员课题组搭建,该设备是基于SPECS的近常压系统进行定制化升级,能够实现在样品环境气压最高20 mbar的条件下的光电子能谱原位测量。样品最高可以加热到800K,能够满足大部分催化反应、固-气界面等研究。随着我国科研投入的不断加大,国家对基础科研和大科学装置中心的投入,表面科学研究团队的不断发展也得益于这一类先进表征技术的发展,包括上海光源、苏州纳米所的真空互联Nano-X等都建有非常全面的表面科学研究平台。图3A所示是包含样品制备系统的XPS,含离子源(用于清洗单晶表面);加热台(除气、晶化表面);各类蒸发源(包括金属、非金属等,材料生长);LEED(低能电子衍射仪,表征样品晶化结构);原位氧化系统等;在生长腔内靠近样品处导入收集管与质谱系统连接,实时分析样品制备过程中所产生物质的化学成分(图3B)。图3C是近常压XPS系统的示意图,可以在近常压的反应氛围下监测在材料生长过程中样品表面上发生的化学变化,与质谱信息相对应,实现化学组分的分析。3、低温STM(含q-Plus AFM功能)超高真空低温STM的优点为超高分辨率,可达亚Å。超高稳定性,4K液氦温度下可以实现谱学测量,如拓扑态、能带、缺陷态、边界态、电荷分布等的实空间测量。对于STM而言,只有在低温环境中实现谱学测量的条件下才真正发挥了其独一无二的功能。仪器实物图如图4A所示,包含扫描腔、制样腔和进样腔,其中扫描腔外部较高的不锈钢杜瓦是为储存如液氮、液氦等制冷剂以实现扫描头和样品的极低温,从而实现高质量图、谱测试。样品托和扫描头的改进满足多尺度研究,如低温条件下的原位沉积。图4B所示,在腔体外部所放置的蒸发源可以聚焦到样品表面,实现原位生长和原位观测,对于分子或小尺寸纳米颗粒有独特优势;除此之外,样品托上可以改装成包含栅极、电压、电流接口的模型器件,可以在电场条件下原位监测样品表面电学信号的改变。组合q-plus AFM实现单原子键成像:2009年瑞士苏黎世IBM研究中心L. Gross等人首次报道了利用在AFM针尖上吸附单个CO分子获得了具有化学键分辨的分子结构图像,如图4C(右)所示,从上到下分别是并五苯的分子结构,STM图和AFM图像,针尖修饰的AFM图像可以清晰的分辨出分子中的五个苯环(Science, 2009, 325, 1110)。图4. (A)低温扫描隧道显微镜实物图(Omicron);(B) 上:可以进行原位沉积的扫描腔;下:可加电场的样品托设计图;(C)左:Q-plus AFM针尖托实物图(Omicron);右:并五苯分子的结构示意图、STM和AFM图像;(D)C26H14在Ag(100)表面上加热后发生脱氢反应的产物STM和AFM图像。自此之后,STM研究领域又开辟了一个崭新的方向,也赋予了STM更加突出的化学键分辨优势。因此,目前许多低温STM系统中都选配qPlus AFM配件用于化学键的成像。如图4D所示是C26H14前驱体分子在Ag(100)表面上脱氢聚合过程中化学键的变化(Science, 2013, 340, 1434)。从STM图上仅仅可以看出形貌的变化(第一排),AFM图像可以清晰的分辨出过程产物的不同键合情况(第二排)。最近越来越多的研究工作表明q-Plus AFM在研究反应过程中间产物中所发挥出的独特作用。笔者在准备草稿时,7月14日第377卷Science中有两篇文章均是利用q-Plus AFM实现了可控的表面化学反应操控和表征,以及超高分辨的水合质子的结构区分。在qPlus非接触原子力显微镜领域中,我国科学家江颖教授长期致力于超高分辨的SPM系统的研制和开发,近年来在表面二维冰的结构和动力学研究中取得了一系列突破性成果。4、展望以光源、“Nano-X” 真空互联实验站为代表的大科学装置中心及各研究院、大学科研平台中,根据其科研特色和研究方向,逐渐形成了材料生长、测试分析、器件加工、性能表征等大型设备互联的科学装置。主要解决了超高真空中样品易氧化、低温样品稳定性等难题,具有传统超净间无法比拟的优势。完全排除了外界环境因素的干扰,实现原子尺度下材料的本征性质及器件性能的表征。对新材料,特别是下一代先进半导体材料、量子信息材料的制备与表征具有重要意义。我们也需要认识到,从光源、互联站、到分析测试中心,再到每一个课题组的平台设施,国外进口的设备占比不低于50%,特别是高端的制造和表征设备。随着我国科研投入的增加,创新型企业如雨后春笋般不断涌现,在表界面科学相关领域,如费勉仪器的分子束外延系统、低温样品台;玻色子的低温扫描隧道显微镜、中科艾科米的无液氦系统等,也逐渐在国内甚至国际的表界面、凝聚态物理、在位化学等研究领域崭露头角。也希望国内各大研究院、所、高校等在购置相关设备时,可以考虑国产厂商,一起参与到我国重大仪器设备的自主研发中。作者简介牛天超,北航杭州创新研究院(余杭)研究员。2013年博士毕业于新加坡国立大学,之后分别在中科院上海微系统所、美国布鲁克海文国家实验室、南京理工大学和上海交通大学从事研究工作。主要研究方向是基于分子束外延生长制备和扫描隧道显微镜表征的二维材料生长机理及表面功能化研究。第一及通讯作者在包括Adv. Mater., J. Am. Chem. Soc., 和Prog. Surf. Sci.等期刊发表研究论文及综述30余篇。目前正在筹建中法航空大学(筹)理学院新型量子物态平台。参考资料:1、M. Salmeron, B. Eren, High-pressure scanning tunneling microscopy. Chem. Rev. 121, 962-1006 (2021).2、F. Albrecht,S. Fatayer, I. Pozo, I. Tavernelli, J. Repp, D. Peña, L. Gross, Selectivity in single-molecule reactions by tip-induced redox chemistry. Science 377, 298-301 (2022).3、Y. Tian, J. Hong, D. Cao, S. You, Y. Song, B. Cheng, Z. Wang, D. Guan, X. Liu, Z. Zhao, X.-Z. Li, L.-M. Xu, J. Guo, J. Chen, E.-G. Wang, Y. Jiang, Visualizing eigen/zundel cations and their interconversion in monolayer water on metal surfaces. Science 377, 315-319 (2022).4、苏州纳米真空互联实验站5、K. Bian, C. Gerber, A. J. Heinrich, D. J. Müller, S. Scheuring, Y. Jiang, “Scanning probe microscopy”, Nat Rev Methods Primers 1, 36 (2021).6、L. Gross, F. Mohn, N. Moll, P. Liljeroth, G. Meyer, The chemical structure of a molecule resolved by atomic force microscopy. Science 325, 1110-1114 (2009).
  • 大昌华嘉成功举办“吸附表征技术的新进展”研讨会
    大昌华嘉公司于2013年4月24日在浙江大学(玉泉校区)成功举办的&ldquo 吸附表征技术的新进展&rdquo 研讨会。 会议邀请BEL公司海外销售经理Joji Sonoda博士介绍最新的吸附表征技术进展,大昌华嘉吸附产品经理樊润将同步翻译。Joji Sonoda博士详细讲解多组分气体竞争吸附,低温化学吸附,纳克级吸附测量系统最新的相关应用,以及吸附过程分析仪如何测试等压吸附线和等温吸附线,并将介绍全球第一台IRMS-TPD 红外质谱连用TPD测定Brosnted酸和Lewi酸的应用。 美国麦奇克旗下的拜尔有限公司(BEL)是一家研究生产容量法气体吸附分析仪的专业制造厂商。第一台多功能催化剂表征分析仪,首创全自动蒸汽吸附系统,开发了容量法高压吸附仪,(容量法)多组分气体和/或蒸汽混合气体吸附仪,吸附过程分析仪,痕量气体吸附仪等,极大地丰富了表面吸附表征方法,同时也为拜尔公司高品质的产品和服务赢得了口碑。 大昌华嘉商业(中国)有限公司科学仪器部专业提供分析仪器及设备,独家代理众多欧美先进仪器,产品范围包括:颗粒,物理,化学,生化,通用实验室的各类分析仪器,在中国的石油,化工,制药,食品,饮料,农业科技等诸多领域拥有大量用户,具有良好的市场声誉。
  • Orbitrap高分辨质谱助力mRNA疫苗表征
    今日看点mRNA疫苗在新冠疫情中得到了广泛关注,Moderna及Pfizer/BioNTech的mRNA疫苗获得FDA的紧急使用授权,掀起新一轮的mRNA疫苗研发热潮。与依靠抗原或减毒病毒刺激免疫系统产生免疫反应的传统疫苗不同,mRNA疫苗本身并不含有抗原,而是以编码抗原的mRNA为主要成分。这些编码抗原的mRNA能在细胞内被翻译为抗原蛋白,从而引发免疫反应。相比传统疫苗,mRNA疫苗成本低、研发灵活性高、生产效率高,且具有相对较高的安全性,应用前景广阔[1]。对于此类新型疫苗,需严格的质量控制以确保产品的安全性尤为重要。其质量属性包括稳定性、完整性、纯度和同质性等。如图1所示,从mRNA构造、体外翻译及转染,到体内免疫,色谱、质谱、qPCR、电泳等多种表征手段被用于质量评估[2]。其中高分辨质谱技术对于mRNA的深入表征(加帽效率、修饰、测序等)、杂质分析(siRNA、DNA、宿主残留蛋白)有着重要应用。图1:mRNA疫苗的质量控制和基于细胞的功能评估的工具(点击查看大图)01mRNA的加帽反应效率评估mRNA前体的加工包括了在其5' 端加上7-甲基鸟苷(m7G),称之为“帽”。这种加帽步骤可增加mRNA稳定性,使其避免被核糖核酸酶降解。加帽步骤会产生多种结构(如图2a),最常见的被称为“Cap0结构”(只含m7G),即鸟嘌呤环上的N-7位置甲基化;而如果下游邻位核苷酸上的核糖也被甲基化,则为“Cap1”,再下游的则为Cap2”(甲基化均发生在核糖的2' 羟基上)。在脱磷酸的过程中,也会产生单磷酸、双磷酸、三磷酸等多种相关杂质。图2a.加帽反应(点击查看大图)Oribitrap高分辨质谱由于其高分辨率、高灵敏度及高质量精度可以准确地对mRNA加帽效率进行评估。全长的mRNA直接通过LC-MS分析往往由于分子量太大而无法得到精确表征,通常会使用RNAse酶切结合磁珠分离的方法获得5’端的加帽短链,如图2b所示[3]。图2b.mRNA分离纯化步骤(点击查看大图)RNAseH酶切及磁珠纯化分离后,所得的5’端mRNA酶解片段经过Orbitrap高分辨质谱分析,结果检测到未加帽组分、加帽1组分及少量在第二个A酶切位点得到的加帽1组分,包括单磷酸、二磷酸及三磷酸修饰杂质,且得到同位素基线分离的高质量谱图(如图3a、3b所示)。图3a.5’端mRNA 酶解片段TIC及质谱图(点击查看大图)图3b.5’端mRNA 酶解片段理论及实测质量(点击查看大图)通过加入内标未加帽三磷酸mRNA,确认了质谱定量方法的可行性及准确性。对各加帽组分及未加帽组分形态进行质谱峰面积定量,从而得到5’加帽比例(图3c)。图3c.质谱非标定量法计算mRNA加帽比例(点击查看大图)MRM方法用于mRNA加帽定量分析质谱MRM方法可用于组织及细胞培养基中的mRNA加帽修饰检测,具有高通量及高灵敏等优势。组织或细胞培养基中的mRNA经过nucleaseP1酶解及磁珠纯化,可得到加帽二核苷酸,(m7)GpppN(m)[4]。对11个帽二核苷酸修饰变异体建立MRM方法(图4a),可实现每种变异体的色谱分离及质谱定量(图4b)。图4a.MRM质谱方法参数(点击查看大图)图4b.11个帽二核苷酸修饰变异体的提取离子流图(点击查看大图)其中,对于m7GpppG及GpppGm形式的同分异构体,在液相及一级质谱上均无法分辨,而m7GpppG的特征子离子m/z635.9可将其区别于GpppGm,从而建立MRM方法定量分析,且方法灵敏度高(图5)。图5:(a)连续稀释的合成帽二核苷酸的峰面积测量;(b)连续稀释的合成帽二核苷酸GpppA的峰面积;(c) m7GpppG和GpppGm子离子信息;(d)连续稀释的合成帽二核苷酸m7GpppG的峰面积;(e)补偿m7GpppG和GpppGm的共享离子.(点击查看大图)该方法可快速准确定量细胞中存在的mRNA帽结构,评估不同的加帽结构形态在不同组织或细胞中的含量变化(图6)。Orbitrap的定量能力可与三重四极杆相媲美,其PRM定量灵敏度高、准确性好,也可用于mRNA帽结构的定量分析中。图6:从小鼠肝脏、活化的CD8T细胞、心脏和大脑分离的mRNA帽二核苷酸的丰度(点击查看大图)02mRNA末端多聚腺苷酸Poly A 尾检测真核mRNA通常在其3' 末端带有一段多聚腺苷酸尾(PolyA tail),根据种类的不同,其长度可能在20到200多个碱基之间变化。PolyA tai会被多聚腺苷酸结合蛋白(poly(A)+ tail-binding protein,PABP)辨识并保护住,因此在mRNA的翻译和稳定性中也起着重要的调节作用。通常是在体外转录过程中直接从编码DNA模板或通过使用polyA聚合酶将最jia长度的polyA添加到mRNA中。PolyA的提纯方法类似5’加帽核酸片段,具体步骤可参考文献[5]。纯化后的polyA通常是含有不同长度腺苷酸的混合物,随着碱基个数的增加,HPLC液相方法的分辨率很难将不同长度的polyA完全分开,而Orbitrap高分辨质谱可以准确对其长度分布进行表征和相对定量。图7a.不同碱基长度的PolyA色谱图(b)理论100-merPloy A质谱解卷积结果(点击查看大图)相比二代测序,高分辨质谱作为互补表征技术,能够快速准确地分析RNA序列,同时对于翻译后修饰的种类、位点及含量进行深入表征。此外,也能对RNA代谢产物进行定性及定量分析。
  • 2020年颗粒测试与表征仪器新品盘点(23款)
    2020年伊始,新冠疫情爆发,全球经济被按下了“暂停键”。疫情期间,科学仪器企业伸出援手共同抗疫的同时,也在苦练内功、研发新品,迎接“春天”的到来。纵观2020年中国颗粒测试市场,新产品层出不穷,创历年新高,仪器信息网特此盘点了20余款颗粒测试与表征仪器新品,以飨读者。(特别声明:受限于时间与资源,新品盘点范围仅限本网收录的不完全统计,如有遗漏,欢迎补充完善)2020年,颗粒测试与表征仪器新品种类繁多,涉及纳米粒度仪及Zeta电位分析仪、图像粒度粒形分析仪、颗粒计数器、筛分仪、比表面及孔径分析仪、多组分竞争吸附仪、化学吸附仪等。纳米粒度仪及Zeta电位分析仪(1)马尔文帕纳科2020年8月,马尔文帕纳科发布Zetasizer Advance 系列新品,包括Zetasizer Ultra、Zetasizer Pro、Zetasizer Lab三种型号,且每种型号又分为Blue Label和Red Label 两个版本,均可进行颗粒粒度、Zeta电位和分子量分析。2021年1月15日,马尔文帕纳科超级品牌日将线上直播发布 Zetasizer Advance,具有多种创新设计的新品即将揭开神秘面纱,点击下方图片查看详情。(2)HORIBAViewSizer 3000ViewSizer™ 3000 实现了纳米颗粒追踪分析技术的突破性提升,包括特有的照射和检测方法,使得各种尺寸纳米颗粒的可视化、粒径和数量浓度测量成为可能。仪器创新点:1)仪器配备三种波长激光光源,激光功率可调,实现宽分布样品粒径的精确测量;2)特有的样品池设计可实现样品体系的快速混合,且清洗方便;3)荧光模块可实现样品中各组分粒径分布及颗粒数量与比例的测量;4)运用重力沉降原理扩展仪器的粒径测量上限。(3)德国飞驰 A22 NeXTAnalysette 22 NeXT于2020年6月正式上市,用户可根据需求自行选择测量范围:Analysette 22 NeXT 微米型测量范围为0.5–1500μm,能满足大多数常规样品的测量需求;Analysette 22 NeXT纳米型测量范围拓展至0.01-3800μm,测量精度极高,附加的检测器能够灵敏地分辨极小的颗粒。该新品操作和清洗非常简单,分析时间短,具备可靠的测量结果和重复性,还可以记录额外的测量数据如湿法分散过程中体系的温度及PH值。(4)东曹 LENS3东曹生命科学新推出的LenS3多角度光散射检测器为测量合成聚合物、多糖、蛋白质和生物大分子分子量(MW)和回转半径(Rg)提供了革新的解决方案。仪器创新点: 1)采用了创新的光路设计,可以在10°、90°和170°三个固定角度进行光散射测量;2)可以测量小至2nm样品的散射光的角不对称性,远低于目前的检测极限。(5)美国PSS PSS Nicomp 380 N3000 PlusNicomp 380 N3000系列纳米激光粒度仪是在原有的经典型号380DLS基础上升级配套而来,相对于上一代产品,配件选用材料进行升级,配套软件版泵升级,检测速度升级,检测精度升级。其配套粒度分析软件复合采用了高斯(Gaussian)单峰算法和拥有专利技术的 Nicomp多峰算法,对于多组分、粒径分布不均匀分散体系的分析具有独特优势。(6)美国MAS CHDF4000型CHDF4000高分辨率纳米粒度仪采用毛细管流体分离技术(CHDF),用于测量粒径在5nm-2μm 范围内胶体的真实粒度分布(PSD),还可以用来分析多组分的复杂粒度体系,并不需要作出任何假设。另外,该粒度仪样品用量很少,小于1ml即可。 Zeta-APSZeta-ASP为一款高浓度胶体和乳液的特性参数检测仪,可以测试粒径、Zeta电位、滴定、电导等。此仪器对于高达60%(体积)浓度的样品,无需进行稀释或样品前处理,即可直接测量,甚至对于浆糊凝胶、水泥以及其它仪器很难测量的材料都可直接进行测量。 ZetaFinder ZF400型ZetaFinder ZF400 高浓度Zeta电位分析仪采用专门的电动声波振荡技术,可完成非凡的电动测量结果,从而避免了传统的微电泳技术的许多限制和局限。该仪器可同时测量Zeta电位、PH、电导、温度等指标,样品在测量时甚至可以进行滴定操作,并且可以在任何pH值下分析固体、不透明或半透明样品。(7)丹东百特 BT-90+BT-90+纳米粒度仪是丹东百特在BT-90纳米粒度仪基础上,全新开发的测量纳米颗粒粒度及其分布的纳米粒度测试系统,可实现亚纳米至微米范围的准确检测。BT-90+具有极佳的功能扩展能力,除了可以检测颗粒的粒径之外,还具备检测体系的粘度、颗粒之间的相互作用力、温敏材料的温度变化趋势等能力。(8)广州贝拓DLS 90DLS90纳米粒度仪具有极速测量和标准测量两种模式,极速测量模式下,最快可以10s给出测量结果。该仪器采用光子计数级的高精度光电倍增管和集成的光子相关器,配备精确的温控系统,采样时间最短可达100ns,可测量粒径范围低至1nm图像粒度粒形分析仪(1)FlowCam FlowCam 5000CFlowCam 5000C是Fluid Imaging Technologies公司于2020年3月发布的新品,该仪器可通过40+种形态参数表达所测颗粒的尺寸和形状,获得高质量颗粒图像和基于图像直测获得的定量数据,每分钟可分析成千上万个颗粒,是一款高效率、高性价比的颗粒检测仪器。(2)梅特勒-托利多 EasyViewer 400梅特勒-托利多全新发布的EasyViewer 400是一款探头式工具,功能更加强大、分辨率更高、探头尺寸更长,为测量高浓度体系、更小颗粒、透明液滴和颗粒、中试放大提供高效解决方案。该工具无需取样、稀释或备样,测量快速,简单易用,可一键生成报告,具有高分辨率(980nm)、更窄景深、背光光源三大亮点。无论是实验室研发还是中试放大,均可实时在线捕捉高分辨率晶体、颗粒和液滴尺寸、形貌的演变过程,对于科研人员理解机理、优化过程、快速决策扮演着重要的角色,广泛应用于制药、化工等多种领域。颗粒计数器(1)美国PSS FMS AccuSizer 780 OL-NDFMS AccuSizer 780 OL-ND 在线颗粒计数器使用基于光阻法的单颗粒光学传感技术(SPOS)原理,对检测样本不仅仅可以给出粒度分布(PSD),更可以获得颗粒数量(COUNT)。该仪器全自动化工作,无需人工进样,完美解决了自动取样和自动检测两大难题。(2)德国TOPAS LAP 323LAP-323气溶胶粒径谱仪利用双波长光散射技术测试颗粒物粒径和数量分布,采用两个不同波长的激光二极管对颗粒进行测试,分辨率更高,结果数据更准确。此外,该设备还具有集成度高、智能化流量控制、设计紧凑、使用便捷等特点。筛分仪格瑞德曼 AJ200空气筛分仪AJ200适用于颗粒样品的粒度分离、团聚样品的分散,该产品具有特殊喷嘴设计,转速可调,适用于更加广泛的应用条件。创新点:1)气流喷嘴可以转动,保证样品充分流动;2)真空度可手动或自动调节气流压力,确保不同颗粒粉末准确结果 ;3)德国吸尘器,超低静音,功率大效率高。比表面及孔径检测类仪器(1)麦克仪器 ASAP 2425ASAP 2425多站式全自动比表面与孔隙分析具有六个独立分析站,不同于市面上大多数仪器,可同时分析样品,也可独立分析,可在一小时内完成六个BET比表面分析;拥有12个独立的样品脱气站,即一个样品的制备不会影响另一个样品的脱气和分析。用户可选配低比表面积型号(氪气分析)和微孔型号,其中,低比表面积型号可精确测量低表面积材料( 1 m2/g);微孔型号则包括1mmHg 传感器,增强了微孔表征性能。(2)精微高博 TB系列TB系列比表面积及孔径同步分析仪在使用过程中,多个样品共用同一杜瓦瓶、同一气源进行测试分析,可保证分析测试的准确性和重复性,真正实现多站间无差异化分析。独有的Vtech技术融合了Vspace冷自由空间控制技术、Vlevel液氮面控制技术、Vstable稳定测试技术、Vctrl防抽飞控制技术,使得TB系列产品的测试效率更高,测试结果更重复、更稳定,更能满足大孔材料的测试需求。(3)贝士德 BSD-MAB该吸附穿透曲线分析仪自带的热导检测器可测定不同实验条件的双组份的吸附穿透曲线,如不同吸附剂,不同温度,不同压力,不同床层厚度,不同气体浓度,不同穿透流量等;连接色谱或质谱可完成三组分及三组分以上的多组分竞争性吸附、选择性吸附以及置换吸附等测试;可实现吸附剂对ppm级别浓度的TVOC、SO2及NH3等污染气体的吸附测试,尤其适用于吸附剂对室内、车内等环境中微量污染气体吸附性能的评价及吸附相关参数的测定。(4)理化联科 iPore400iPore 400型能同时测定6个样品,并对另外六个样品进行独立地脱气处理,可代替氪吸附完成超低比表面样品的测定,为医药行业尤其是进入药典的药品、电池材料以及3D打印常用金属粉末等超低比表面样品的测试,提供全新解决方案,同时还可以对膜的孔径进行测定。 iPore600iPore 600型能在测定3个微孔样品的同时,独立地对另外六个样品进行脱气,具有两套独立的真空系统,适合高校及研究单位对超微孔材料和微介孔材料的比表面及孔径进行精确分析,可广泛应用于电池材料、金属粉末、固体药物制剂(原料药API及其辅料)等超低比表面样品的质量控制和研发。 iChem 700iChem 700全自动程序升温化学吸附仪可用于对催化剂材料进行TPD、TPR、TPO、TPRx、脉冲化学吸附、催化剂处理、脉冲校准和动态BET比表面分析等,以对催化剂材料的酸碱度、酸碱分布、活性金属分散度、金属与载体的相互作用等进行分析,此外,可配置在线色谱仪,连续对TPRx产物进行定性和定量监测以及对脱附气体的浓度进行检测。
  • 高分子表征技术专题——扫描电镜技术在高分子表征研究中的应用
    2021年,《高分子学报》邀请了国内擅长各种现代表征方法的一流高分子学者领衔撰写从基本原理出发的高分子现代表征方法综述并上线了虚拟专辑。仪器信息网在获《高分子学报》副主编胡文兵老师授权后,也将上线同名专题并转载专题文章,帮助广大研究生和年轻学者了解、学习并提升高分子表征技术。在此,向胡文兵老师和组织及参与撰写的各位专家学者表示感谢。更多专题内容详见:高分子表征技术专题高分子表征技术专题前言孔子曰:“工欲善其事,必先利其器”。我们要做好高分子的科学研究工作,掌握基本的表征方法必不可少。每一位学者在自己的学术成长历程中,都或多或少地有幸获得过学术界前辈在实验表征方法方面的宝贵指导!随着科学技术的高速发展,传统的高分子实验表征方法及其应用也取得了长足的进步。目前,中国的高分子学术论文数已经位居世界领先地位,但国内关于高分子现代表征方法方面的系统知识介绍较为缺乏。为此,《高分子学报》主编张希教授委托副主编王笃金研究员和胡文兵教授,组织系列从基本原理出发的高分子现代表征方法综述,邀请国内擅长各种现代表征方法的一流高分子学者领衔撰写。每篇综述涵盖基本原理、实验技巧和典型应用三个方面,旨在给广大研究生和年轻学者提供做好高分子表征工作所必须掌握的基础知识训练。我们的邀请获得了本领域专家学者的热情反馈和大力支持,借此机会特表感谢!从2021年第3期开始,以上文章将陆续在《高分子学报》发表,并在网站上发布虚拟专辑,以方便大家浏览阅读.期待这一系列的现代表征方法综述能成为高分子科学知识大厦的奠基石,支撑年轻高分子学者的茁壮成长!也期待未来有更多的学术界同行一起加入到这一工作中来.高分子表征技术的发展推动了我国高分子学科的持续进步,为提升我国高分子研究的国际地位作出了贡献.借此虚拟专辑出版之际,让我们表达对高分子物理和表征学界的老一辈科学家的崇高敬意!扫描电镜技术在高分子表征研究中的应用ApplicationsofScanningElectronMicroscopyinPolymerCharacterization作者:郑鑫,由吉春,朱雨田,李勇进作者机构:杭州师范大学材料与化学化工学院,杭州,311121作者简介:李勇进,男,1973年生.1996年和1999年在同济大学分别获学士和硕士学位,2002年获上海交通大学博士学位.2002~2011年,历任日本产业技术综合研究所JSPS博士后和研究员.2011年加入杭州师范大学,主要从事高分子材料成型加工研究.先后获得高分子成型加工新锐创新奖(2017年)、冯新德高分子奖提名奖(2018年和2020年)、国际高分子加工学会(PPS)的MorandLambla奖(2019年)、浙江省自然科学奖(2020年)等.摘要扫描电子显微镜(scanningelectronmicroscope,SEM)是表征高分子材料微观结构及其组成信息重要的手段之一,具有操作简便、信号电子种类多样且对样品损伤较小等特点.本文系统阐述了SEM的工作原理,通过与透射电子显微镜(transmissionelectronmicroscope,TEM)进行比较,突出了其优势与特色.详细讨论了该技术的测试方法,包括样品制备、仪器参数设定、操作技巧与图像处理,并揭示了获得高质量SEM图像的关键技术.介绍了SEM不同的信号电子成像、SEM与其他仪器联用及SEM原位分析技术在高分子材料表征中的应用与进展.最后,对SEM的发展趋势进行了展望.AbstractScanningelectronmicroscopy(SEM)isoneofthemostimportanttoolsforthecharacterizationofpolymermaterials' microstructureandcomposition.First,itiseasytooperate thentherearevariouselectronicsignalsavailablewhichcontaindifferentsampleinformationforSEMimaging besides,therearelittlesampledamageduringSEMobservation.Inthiswork,theworkingprincipleofSEMwaselucidatedsystematically.Also,acomparisonwasmadebetweenSEMandTEMwithrespecttoworkingprinciple,resolutionandmagnification,viewanddepthoffield,samplepreparation,sampledamageandpollution.Therefore,theadvantagesandfeaturesofSEMwerehighlighted.Inaddition,theexperimentmethodsofSEMwereillustratedindetail,includingsamplepreparation,instrumentparametersettings,operationskillsandimagetreatment.ThekeyfactorswhichdeterminesthequalityofSEMimagewererevealed.ThemainapplicationsofSEMinpolymercharacterizationwereintroduced.Specifically,thesecondaryelectronsimagingwasusedtoinvestigatethemicrostructureofpolymercomposition,compatibilityofpolymerblends,crystalstructureofpolymer,morphologyofpolymerporousmembrane,biocompatibilityofpolymermaterial,self-assemblebehaviorofpolymerandsoon.Besides,thebackscatteredelectrons,characteristicX-ray,transmittanceelectronswerealsousedtorevealthemorphologyandcompositioninformationofpolymersystems.ThecombinationofSEMwithRamanspectrometerandFocusedionbeamandtheinsituSEMtechniqueswereillustrated.Finally,therecenttrendsofSEMdevelopmentwereprospected.关键词扫描电子显微镜  高分子材料  微观结构  组成信息  应用KeywordsScanningelectronmicroscopy  Polymermaterial  Microstructure  Composition  Application 材料的宏观特性是由其组分及微观结构决定的,因此,深入了解材料的微观结构,明确微观结构与宏观特性之间的内在联系对于开发新材料、提升已有材料性能是至关重要的.电子显微镜技术是探测微观世界的重要研究手段之一,在材料的研究和发展历程中发挥了巨大的作用.电子显微镜是在光电子理论的基础上发展起来的,包括扫描电子显微镜(scanningelectronmicroscope,SEM)和透射电子显微镜(transmissionelectronmicroscopy,TEM)两大类.二者在结构、工作原理、对样品的要求等方面有着本质的区别.下文将对其进行详细阐述.由于二者的成像原理不同,所反映出来的样品信息也不尽相同,因此在实际应用中,往往需要二者相互配合,才能揭示材料最真实的微观结构.与TEM相比,SEM具有更大的视野和景深,样品制备相对简单且对样品厚度要求不严格,并且不容易造成样品的损伤和污染,是快速表征材料微观形貌结构的首选技术.自1965年第一台商用扫描电镜问世以来,经过不断的创新、改进和提高,扫描电镜的种类和应用领域也在不断拓展[1].现有的扫描电镜主要包括钨丝/六硼化镧扫描电镜(SEM)、场发射扫描电镜(FESEM)、扫描透射电镜(STEM)、冷冻扫描电镜(Cryo-SEM)、环境扫描电镜(ESEM)等[2].此外,通过配置功能附件,如X射线能谱仪、X射线波谱仪、阴极荧光谱仪、二次离子质谱仪、电子能量损失谱仪、电子背散射衍射仪等,许多扫描电镜除了研究材料微观结构之外,还兼具微区物相分析的功能[3].鉴于扫描电镜在材料微观结构表征中的重要作用,本文将从扫描电镜的结构与工作原理出发,通过与透射电镜进行对比,突出其性能和特点;详细讨论扫描电镜的实验方法与操作技巧,揭示获得高质量扫描电镜图像的关键技术;总结扫描电镜在高分子材料表征中的应用与最新进展;最后,对扫描电镜的发展趋势进行展望.1扫描电镜的结构与特点1.1扫描电镜的结构扫描电镜的内部结构较为复杂,可分为电子光学系统、样品仓、信号电子探测系统、图像显示与记录系统、真空系统这5个主要部分[3].下文将针对这5个主要部分详细展开.扫描电镜实物图及其主要部件如图1所示.Fig.1TheHitachiS-4800cold-fieldemissionSEManditsmaincomponents.1.1.1电子光学系统电子光学系统主要包括电子枪、聚焦透镜、扫描偏转线圈等.其作用是产生用于激发样品产生各种信号的电子束.为了获得较高的信号强度和图像分辨率,通常要求电子束具有较高的亮度、稳定的束流及尽可能小的束斑直径.因此,电子光学系统是扫描电镜中尤为重要的组成部分.电子枪阴极用来提供高能电子束,常见的有钨丝电子枪、六硼化镧电子枪和冷/热场发射电子枪.表1汇总了几种电子枪的性能及相关参数[4].Table1Severalelectrongunsandthemainperformanceparameter.由电子枪阴极发射的电子束初束尺寸通常较大,需通过聚焦透镜将其大幅度缩小方可照射样品并获得较高分辨率的扫描图像.聚焦透镜分为强激磁、短焦距的聚光镜和弱激磁、长焦距的物镜,二者均通过磁场作用改变电子射线的前进方向而使电子束产生汇聚.扫描系统是扫描电镜一个独特的结构,包含扫描发生器、扫描偏转线圈和放大倍率变换器,其作用是使电子束在样品表面和显示屏中作光栅状同步扫描,以获得样品表面形貌信息.这即是扫描电镜的工作原理,可简单总结为“光栅扫描,逐点成像”.下文将对其进行进一步说明.此外,通过改变电子束在样品表面的扫描振幅还可获得不同放大倍数的扫描图像.1.1.2样品仓样品仓位于物镜的下方,用于放置样品和信号探测器.内设样品台,并提供样品在X-横向、Y-纵向、Z-高度3个坐标方向的移动,以及样品绕自身轴旋转R和倾斜T的动作.通过对这5个自由度的选择性控制,可以实现对样品全方位的观察.其中“Z”方向的距离称为工作距离,通常在2~50mm范围内,工作距离越大,观察的视野越大.1.1.3信号电子探测系统信号探测系统包括信号探测器、信号放大和处理装置及显示装置,其作用是探测样品被电子束激发出的各种信号电子,并经放大转换为用以调制图像的信号,最终在荧光屏上显示出反映样品特征的图像.图2给出了电子束激发样品所产生的主要信号电子,包括二次电子(SE)、背散射电子(BSE)、特征X射线、透射电子(TE)、俄歇电子(AS)、阴极荧光(CL)等,及其所反映的样品性能特征的示意图.而不同的信号电子要用不同的探测系统,目前扫描电镜的探测器有电子探测器、阴极荧光探测器和X射线探测器三大类.Fig.2Theoverviewofmainsignalelectronsgeneratedduringtheinteractionbetweenelectronbeamandsample.1.1.4图像显示与记录系统图像显示与记录系统由显像管和照相机组成.显像管的作用是将信号探测系统输出的调制信号转换成图像显示在阴极射线荧光屏上,并由照相机将显像管显示的图像、放大倍率、标尺长度、加速电压等信息拍摄到底片上.1.1.5真空系统为了确保电子光学系统能正常、稳定地工作,防止样品污染,电子枪和镜筒内部都需要严格的真空度.以场发射扫描电镜为例,通常要靠一台机械泵、一台分子泵和一台离子泵联合完成.真空度越高,入射电子的散射越少,电子枪阴极的寿命越长,同时高压电极间放电、打火等风险隐患也会降低.1.2扫描电镜的性能和特点扫描电镜和透视电镜是分析材料微观形貌的2种常用表征手段.为了明确扫描电镜性能和特点,本文将扫描电镜与同为电子显微镜的透射电镜进行全方面比较说明.1.2.1成像原理结合扫描电镜的结构,其成像原理如下:在高压作用下,由电子枪阴极发射出的电子束初束,经聚光镜汇聚成极细的电子束入射到样品表面的某个分析点,与样品原子发生相互作用而激发出各种携带样品特征的信号电子,通过相应的探测器接收这些信号电子,经放大器放大后进行成像,即可分析样品在电子束入射点处的特征.同时,通过扫描线圈驱动入射电子束在样品表面选定区域作从左到右、从上到下的光栅式扫描,实现对选定区域每个分析点的采样,从而产生一幅由点构成的图像.其工作原理如图3(a)所示.扫描电镜是信号电子成像,主要用来观察样品表面形貌的立体(三维)图像.Fig.3SchemeofthestructureandimagingprincipleforSEM(a)andTEM(b).作为电子显微镜的另一大类,透射电镜的总体工作原理与扫描电镜有着显著差别[2].在透射电镜中,由电子枪发射出的电子束初束同样通过聚光镜汇聚成极细的电子束照射在极薄的样品(50~70nm)上.与扫描电镜不同的是,透射电镜通过穿过样品的电子,即透射电子,来反映样品的内部结构信息.携带了样品信息的透射电子经过物镜的汇聚调焦和初级放大后,形成第一幅样品形貌放大像;随后再经过中间镜和投影镜的2次放大,最终形成三级放大像,以图像或衍射谱的形式直接投射到荧光屏上,通过配有电荷耦合器件(chargecoupleddevice,CCD)的相机拍照或直接保存在计算机硬盘中.其工作原理如图3(b)所示.透射电镜是透射成像,用来观察样品在二维平面内的形态和内部结构.1.2.2分辨率和放大倍数分辨率表示对物点的分辨能力,指的是能够清晰地分辨2个物点的最小距离.显微镜的理论分辨率(γ0)可用贝克公式(公式(1))表述.显然,仪器所用光源波长越短,分辨率越高.根据德布罗意公式(公式(2))和能量公式(公式(3)),电子显微镜的电子束波长随加速电压增加而缩短,进而明显提高电子显微镜的分辨率.而仪器的有效放大倍率(M有效)与仪器的理论分辨率是直接相关的.由公式(4)可知,仪器分辨率越高,有效放大倍率越大.当仪器分辨率确定后,其有效放大倍率也随之确定.因此,分辨率才是评价显微镜的核心指标.而我们通常意义上说的放大倍率实际是图像放大倍率,也即屏幕输出比(M)(公式(5)).在超高真空条件下,扫描电镜的水平和垂直分辨率分别可达0.14和0.01nm.放大倍数从10倍到1.5×106倍连续可调;透射电镜的最高分辨率可达0.1nm,放大倍数从几百倍到1.5×106倍连续可调.式中λ为光源波长,n为显微镜内介质的折光率(真空环境时n=1),α为透镜孔径半角.式中h为普朗克常数,m为电子质量,v为电子运动速度.式中e为电子电荷量,U为加速电压.式中γe为人眼分辨率(0.2mm).式中Lm为荧光屏成像区域边长(通常为10cm),Ls为电子束在试样上的扫描区域边长.1.2.3视野和景深视野指的是能看到的被检样品的范围,与分辨率和放大倍率有关;景深指可获得清晰图像的深度范围.扫描电镜的视野(10mm~10μm)比透射电镜(1mm~0.1μm)大得多,景深也比透射电镜大.如图4所示,扫描电镜图像更有立体感,更适合观察样品凹凸不平的细微结构[5].Fig.4TheSEM(a)andTEM(b)imagesforthesamesample(ReprintedwithpermissionfromRef.[5] Copyright(2019)ElsevierLtd.).1.2.4样品制备扫描电镜的样品制备比较简单,对样品的厚度要求不严格,不导电的样品要经过镀膜导电处理(后文将以高分子材料为例,详细介绍扫描电镜样品的制备方法),强磁性样品需消磁后方可观察;而对于透射电镜来说,电子必须穿过样品才能成像,因此样品要很薄,通常要经过特殊的超薄切片进行制备,过程相对复杂.1.2.5样品的损伤和污染在用扫描电镜观察样品时,照射在样品上的束流(10-10~10-12A)、电子束直径(5nm)和加速电压(2kV)都较小,故电子束能量较低.此外,电子束在样品上做光栅状扫描,因此观察过程中对样品的损伤和污染程度较低;而使用透射电镜时,为了使图像有足够的亮度,要用较强的束流(~10-4A)和加速电压(100kV),因此电子束能量较高,且固定照射在样品的某处,因此引起样品的损伤程度较大,易造成样品和镜筒的污染.综上所述,扫描电镜的性能和特点显著,如成像立体感强,放大倍数范围大、分辨率高,不仅对样品具有普适性,且制样简单,观察时对样品的损伤和污染小,此外还可以通过调节和控制各种影响成像的因素和参数来改善图像质量(详见下文),因此是观察材料显微结构的重要工具.2实验方法与技巧要获得一幅优质的扫描电镜图像,需掌握样品制备技术、熟知操作要点并对图像进行必要的处理.下文将以高分子材料为例,对扫描电镜的实验方法与操作技巧进行阐述.2.1样品制备高分子材料扫描电镜样品的制备方法根据要观察的部位、样品形态及高分子本身的性质有所不同.观察块状或薄膜样品表面时,只需将大小合适的样品表面朝上用导电胶黏贴在样品台上;观察块状或薄膜样品内部结构时,通常要将样品置于液氮中,通过淬断获得维持形貌的断口,然后再将断口朝上用导电胶固定在样品台上进行观察.对于较薄且自支撑性较差的薄膜样品,可带支撑层一起淬断.如将载有纳米纤维膜的锡箔纸,或将纤维膜浸水之后进行淬断,更便于得到其断面.此外,黏贴样品时应尽量保持样品平稳、牢固,减少样品与导电胶之间的缝隙,以增加其导电和导热性.有时,为了分辨高分子复合体系的组分分布情况,还需要对样品进行适当的刻蚀,利用选择性溶剂去除复合体系中的某一相,以暴露更多微观细节[6~8],之后再进行清洗、干燥、黏贴、镀膜等步骤.观察粉末样品时,要保证粉末与样品台粘接牢固,在样品仓抽真空时不会飞溅导致电镜污染.根据粉末样品的尺寸,可选择用干法或湿法来制备扫描样品.其中,干法适用于制备尺寸大于2μm的粉末样品.通常在导电胶上负载薄薄一层粉末样品后,要用洗耳球等从不同方向吹掉粘接不牢固的粉末;湿法适用于制备尺寸在2μm以下的粉末样品.首先选择合适的分散液(如水、乙醇等),将粉末样品通过超声处理均匀地分散在其中,随后用滴管将样品溶液滴加到硅片上,待溶剂挥发后固定在样品台上进行下一步处理.对于导电性好的高分子样品,只要用导电胶将要观察的部位朝上粘接在样品台上即可观察[9,10];而大部分高分子材料都是绝缘的,经过高能电子束的持续扫描,样品表面会产生电荷积累,不仅会排斥入射电子,还会干扰信号电子,影响探测器对信号电子的接收,造成图像晃动、亮度异常、出现明暗相间的条纹等现象.这就是所谓的“荷电效应”[11~13].为了解决这个问题,除了要用导电胶将其粘接在样品台上,还可以选择对其进行镀膜处理以提高样品的导电性[11].通常,5nm的镀膜厚度足以改善样品的导电性.对于具有特殊结构的样品,如表面不致密或者起伏较大的样品,可以适当增加镀膜厚度.常用的镀膜材料有碳膜、金膜、银膜、铂膜等.其中,金膜二次电子产率高、覆盖性好,在中低倍(1.5×104倍)以下观察时较常使用.在进行更高放大倍数、更高分辨率分析时,通常会选择颗粒较小的铂膜或金-铂合金膜.而镀膜可以通过真空镀膜和离子溅射镀膜技术来实现.镀膜层的厚度以能消除荷电效应为准.但是,镀膜会掩盖一些样品的微观形貌细节,使得观察结果产生偏差;此外,对于还要进行能谱分析的样品,镀膜也会对结果产生不利影响.此时,可以选择在低压模式下对样品进行观察(详见3.4节),即使不镀膜也可以观察到细微的结构.当使用常规扫描电镜观察时,磁性样品要预先消磁,所有样品还需要经过彻底的干燥处理后方可观察.2.2实验技巧2.2.1仪器参数样品制备完成后,需要对扫描电镜进行操作,调整相应的参数,获取扫描电镜图像.通常,一幅优质的扫描电镜图像要能够清晰、真实地反映样品的形貌,需具备较高的分辨率、适中的衬度、较高的信噪比、较大的景深等.其中,信噪比指一个电子设备或者电子系统中信号与噪声的比例.当扫描过程中采集的信号电子数量太少时,仪器或测试环境的噪声太大,信噪比太低,会导致显示屏上出现雪花状噪点,从而掩盖了样品图像的细节.而较高的分辨率是高质量扫描电镜图像的首要特征.此外,图像的分辨率、衬度、信噪比、景深等特征之间是相互关联的,通过调整电镜的参数可以改变上述特征发生不同效果的变化.(1)加速电压加速电压升高,束斑尺寸减小,束流增大,有利于提高图像的分辨率和信噪比.此外,升高加速电压还能提高二次电子的发射率,但与此同时,电子束对样品的穿透厚度增加,电子散射增强,这些反而会导致图像模糊、分辨率降低.因此,应根据样品的实际情况进行适合的选择.对于高分子材料来说,由于其耐热性和导电性均不佳,为了避免观察、拍摄过程中样品发生热损伤及荷电效应导致图像不清晰,应适当采取较低的加速电压.(2)束流束流是表征入射电子束电子数量的参数,束流与束斑直径之间的关系可用公式(6)表示:其中,i束流,d是束斑直径,β是电子源的亮度,α是电子探针的照射半角.由此公式可知,当其他参数不变时,束流增大,束斑尺寸也会相应变大,此时分辨率会下降,而由于束流增大有利于激发出更多的信号电子,故信噪比提高.所以,束流对分辨率和信噪比的影响是相反.通常,随着观察的放大倍数增加,图像清晰度所要求的分辨率也要增加,因此可适当减小束流,而信噪比可以通过其他途径,如延长扫描时间等手段来弥补.(3)工作距离工作距离是指物镜最下端到样品的距离,对入射至样品表面的电子束的束斑尺寸有直接影响.缩短工作距离可以减小束斑尺寸,进而提高图像分辨率.然而,缩短工作距离会导致电子束入射半角α增大,因此景深变小,图像立体感变差.因此,要得到高分辨率的图像时,需选择较小的工作距离(5~10mm);而要观察立体形貌时,可选用较长的工作距离(25~35mm),获得较大的景深.(4)物镜光阑物镜是扫描电镜中最靠近样品的聚光镜,多数扫描电镜在物镜上都设有可动光阑,用于遮挡非旁轴的杂散电子并限定聚焦电子束的发散角,同时还兼具调节束斑尺寸的功能.所用的光阑尺寸越小,被遮挡的杂散电子越多,在一定的工作距离下,孔径半角越小,因此景深变大,图像立体感变强,同时束斑尺寸减小,图像分辨率提高.另一方面,光阑孔径小会导致入射电子束束流减小,激发出的信号电子数量减少,导致信噪比变差.因此,对于放大倍率不高的扫描样品,或者需要使用能谱仪对样品微区进行化学组成成分分析时,应选用较大孔径的光阑,获得较大的束流和较高的信噪比.通过上述分析可知,影响扫描电镜图像质量的各个因素之间是有内在联系的,在实际操作过程中,需根据样品的自身性质及拍摄的具体需求选择合适的条件参数.2.2.2操作要点为了获得高质量的扫描电镜图像,除了选择合适的仪器参数,还应掌握正确的操作方法.(1)电子光学系统合轴在扫描电镜中,由电子枪阴极发射的电子束通过聚光镜、物镜及各级光阑,最终汇聚成电子探针照射到样品表面并激发出电子信号.其中,到达样品表面的电子束直接决定了扫描电镜的图像质量.因此,在观察样品前必须使上述各部件的中轴线与镜筒的中轴线重合,使得电子束沿中轴线穿行,将光学系统的像差减到最小,这就是“合轴”‍.合轴主要通过镜筒粗调和电子束微调来实现.镜筒粗调又称机械合轴,一般仪器安装后会由专业的维修工程师进行操作.此外,仪器使用过程中发现光斑偏离过大也需要进行机械合轴.以日立SU8000扫描电镜为例,通过调节对应位置的螺丝和旋钮,依次进行电子枪、聚光镜光阑、物镜光阑、各级聚光镜、像散合轴等,此时屏幕中心应会出现一个既圆又亮的光斑,说明机械合轴完成.随后,还要利用扫描电镜的对中电磁线圈所产生的磁场拖动电子束进行精确合轴,又称电子对中.相较于机械对中,电子对中幅度小、合轴精确度高,一般在完成机械对中的基础上进行.实际使用扫描电镜时,如在调焦或消像散时发现图像位置移动,说明电子束对中出现问题,需对其进行校正.电子对中可通过倾斜(tilt)和平移(shiftX/Y)实现.Tilt用于调整电子束的发射倾斜角度,ShiftX/Y用于电子束平面X、Y方向的移动.在调整过程中注意观察图像的亮度,亮度最大时调整结束.(2)放大倍数和视野选择根据观察要求,选择合理的放大倍数及视野,确保观察部位具有科学意义,通过观察到的样品形貌能够回答要解决的研究问题.此外,所观察的画面和角度要符合传统的美学观点,同时具有良好的构图效果.(3)电子束聚焦和相散消除电子束聚焦和相散消除是电镜操作中最核心的步骤.聚焦是指通过旋转Focus旋钮调节物镜的励磁电流,使其在欠焦、正焦、过焦这3种状态下反复切换,并通过对比图像的清晰度来确认正焦的位置,此时束斑直径最小.调焦过程中电子束在样品表面的变化如图5所示.在过焦和欠焦状态下,图像在相互垂直的方向上出现拉长的现象,且在正焦状态下也不清晰,此时就表明出现了像散.在消除像散时,首先要把图像聚焦到正焦状态,随后通过调节消像散器的X、Y旋钮,辅以调焦操作,并观察图像是否被拉长,再根据实际情况,重复上述过程,直到图像清晰为止.图5也展示了不同聚焦状态下有无像散的电子束斑形状及尺寸.显然,消除像散后正焦时电子束斑尺寸更小,因此此时的图像具有更高的清晰度.Fig.5Theshapeandsizechangeofelectronbeamduringfocusingprocessbeforeandaftertheastigmatismbeingeliminated.(4)衬度和亮度调整图像中最大亮度和最小亮度的比值就是图像的衬度,也称对比度或反差,可通过改变扫描电镜中光电倍增管的电压进行调整.亮度则是通过改变电信号的直流成分进行调节.实际上,反差增强时直流成分也会增加,因此相应地亮度也会提高.在进行扫描电镜观察与拍摄时,应交替调节衬度和亮度,保证图像具有清晰的细节和适当的明暗对比.(5)扫描速度调整扫描速度要结合样品自身的性质与观察要求进行调整.通常情况下,低倍观察时用快速扫描,高倍观察时用慢速扫描.当图像要求高分辨率时常用慢速扫描.对于导热性和导电性较差的高分子材料,为避免热损伤和荷电效应,通常要采用快速扫描.(6)样品台角度调整表面较为光滑的样品通常其形貌衬度较弱,通过调整样品台的角度,可以使更多二次电子离开倾斜的样品表面,提高信号电子的强度(如图6所示),进而改善图像衬度和分辨率[14].Fig.6TheSEescapedfromthehorizontal(a)andtilted(b)sample.(7)图像拍摄在实际观察与拍摄时,通常要先在较低的倍率下对整个样品进行观察,之后选择具有代表性的区域再进行放大.遵循“高倍聚焦、低倍拍照”的原则,在高于所需拍摄放大倍数的状态下(1.2~2倍放大倍数)进行聚焦,后回调至所需放大倍数进行拍照,可获得清晰度更高的图像.此外,为了使SEM图像更具有代表性和准确性,一方面,要对具有代表性的观察区域进行一系列放大倍数的拍摄,此时可按从高倍率到低倍率的顺序进行拍摄,过程中无需反复执行电子束聚焦的步骤,仍可获得高清晰度的图像;另一方面,也要进行多点观察,即对样品不同区域进行观察.2.3图像处理图像处理是指在探测器的后续阶段,通过各种图像处理技术,对图像的衬度、亮度或噪声等进行改善,获得一幅细节更清晰、特征更明显的图像.在此过程中,不应改变样品的原始信息.表2总结了仪器参数和操作要点对图像质量的影响[3,4].Table2TheinfluencefactorsoftheSEMimagesandthecorrespondingadjustment.3扫描电镜在高分子材料表征方面的主要应用总体而言,扫描电镜是一个功能十分强大的测试平台,除了最基本的成像功能之外,通过搭配不同的信号电子探测器,或与其他仪器(如拉曼光谱、单束聚焦离子束系统等)联用,或引入原位分析手段等方法,可以对材料的微观结构、元素、相态等进行分析.3.1不同信号电子在高分子材料表征方面的应用常用于高分子材料表征的信号电子为二次电子(SE)、背散射电子(BSE)、特征X射线、透射电子(TE).其中,SE、BSE和特征X射线对样品厚度没有要求,当高能电子束入射至样品后,这3类信号电子的逃逸深度及大致对应的扫描电镜图像分辨率如图7所示[15].而TE要求样品的厚度在100nm以下,因此需要超薄切片处理,且为了获得足够的衬度,通常要对共混物的其中一个组分进行染色处理.通过在SEM平台搭配不同的信号电子探测器,可以得到不同的SEM成像方式.Fig.7TheescapedepthofSE,BSEandcharacteristicX-rayandtheirapproximateimageresolution.3.1.1二次电子成像高能入射电子与样品原子核外电子相互作用使其发生电离形成自由电子,并克服材料的逸出功,离开样品的信号电子即为二次电子SE,其产额为每个入射电子所激发出的二次电子平均个数.二次电子是扫描电镜中应用最多的信号电子.由于其能量较低且容易损失,只有样品表面或亚表面区域所产生的二次电子才能离开样品到达探测器[16].此外,表面形貌的变化对二次电子产额影响较大,图8展示了不同表面形貌,如尖端、平面、斜面、空洞、颗粒等,对二次电子产额的影响.显然,凸出的尖端、较为倾斜的面以及颗粒在经电子束照射后逃逸的SE较多[17].在成像时,SE产额较多的表面形貌通常更亮.这种由于形貌差异导致的图像亮度不同而获得的图像衬度即为形貌衬度.二次电子提供的形貌衬度是扫描电镜最常用的图像衬度.通过搭配二次电子探测器,可以做如下研究:Fig.8SchemeoftheSEyieldondifferentsurfacemicrostructure.(1)高分子复合材料微观结构以高分子为基体,通过引入增强材料(如各种纤维[18~20]、晶须[21~23]、蒙脱土[24,25]、粒子[26~28]等)作为分散相,可以获得具有优异特性的复合材料.通常,其性能强烈依赖于增强材料的尺寸、分散性等.SEM在开发高性能高分子复合材料中发挥了重要作用.于中振等制备了一种具有良好电磁屏蔽性能的聚苯乙烯(PS)/热还原氧化石墨烯(TGO)/改性Fe3O4纳米粒子的复合材料[29].由扫描电镜图像可以清晰地分辨不同形貌的填料,如改性的零维Fe3O4颗粒结构(图9(a))与二维还原氧化石墨烯(RGO)的片层结构(图9(b)).此外,扫描电镜图像也能反映填料的分散情况.如图9(a),RGO在PS基体中表现出明显的聚集,而从图9(c)可见,TGO和改性的Fe3O4纳米颗粒(Fe3O4-60)在PS基体中可以很好地分散.图9(c)所显示的具有许多小空间的微观结构有利于电磁波的衰减.Fig.9SEMimagesof(a)PS/RGO,(b)PS/Fe3O4-60and(c)PS/TGO/Fe3O4-60composites(ReprintedwithpermissionfromRef.[29] Copyright(2015)ElsevierLtd.).刘欢欢等通过扫描电镜对MWCNTs在PP基体中的分散进行了观察,扫描电镜图像中PP基体和MWCNTs表现出明显的衬度差异(图10(a)),是由于二者不同的形貌造成的[30].在较暗的PP基体中出现了大块较亮的MWCNT团聚体,说明其分散性较差.通过引入马来酸酐接枝PP(MAPP)作为增容剂,同时引入Li-TFSI离子液体帮助MWCNTs分散后,图10(b)的扫描电镜图像呈现均一的衬度和亮度,说明此时MWCNTs在PP基体中的分散性有大幅改善.Fig.10SEMimagessofimpactfracturesurfaceofPP/MWCNTs(a)andPP/MWCNTs/Li-TFSI/MAPP(b)(ReprintedwithpermissionfromRef.[30] Copyright(2019)ElsevierLtd.).(2)高分子共混体系相容性对现有高分子材料进行共混是获得高性能新材料的有效途径.共混体系组分之间的相容性是共混改性的基础,其对共混体系的性能起到了决定性的作用[31].因此,对共混体系相容性的研究十分重要,通常要用多种方法,如DSC、FTIR、NMR、SEM等,从不同角度进行研究分析[32].其中,SEM可以直接反应共混物的相形貌,能粗略、直观表征共混体系的相容程度,因此相较于其他方法应用更为广泛.近年来,李勇进和王亨缇等针对不相容共混体系做了一系列工作,通过设计合成并添加反应性增容剂,制备了众多高性能功能化的高分子共混物[5,33~39].在其工作中,大量运用扫描电镜对增容共混体系的相结构、微区尺寸、两相界面等进行研究,并结合透射电镜与红外等其他表征手段,系统研究了不同反应性增容剂的增容机理.图11(a)的扫描电镜图像中,较大的分散相尺寸以及较差的界面黏附性说明了增容前的共混体系是完全热力学不相容的;加入反应性接枝共聚物作为增容剂后,分散相尺寸明显细化,并形成了双连续的相形貌,同时界面也有显著增强(如图11(b)所示).图11(c)的透射电镜图像同样印证了增容后共混体系相容性得到改善的结论[36].Fig.11(a)SEMimageofpolyvinylidenefluoride(PVDF)/poly(lacticacid)(PLLA)=50/50blendwithoutcompatibilizer SEM(b)andTEM(c)imagesofPVDF/PLLA=50/50blendwithcompatibilizer(ReprintedwithpermissionfromRef.[36] Copyright(2015)AmericanChemicalSociety).(3)高分子的晶态结构晶态和非晶态结构是高分子最重要的2种聚集态,其对材料的性能有着重要的作用.扫描电镜为研究高分子的结晶形态提供了更直观的视角[40~42].为了更清晰地观察晶体及其细微结构,如片晶等,通常要对样品进行选择性的刻蚀,以去除晶体中的无定形区[43~46].Aboulfaraj等用扫描电镜对等规聚丙烯(iPP)的球晶结构进行了详细的研究[46].扫描样品经抛光处理,得到平整、光滑的观察面,随后浸泡在含1.3wt%高锰酸钾、32.9wt%浓H3PO4和65.8wt%浓H2SO4的混合溶液中去除PP球晶中的无定型部分,经清洗、干燥、喷金后用扫描电镜进行观察.从图12(a)~12(d)的SEM图像中可以分辨出衬度明显不同的2种PP的球晶结构,其中暗的是α-球晶而亮的是β-球晶.之所以出现这种对比效果,与电子束照射在不同表面形貌的样品上时二次电子的产额不同有关.首先,α-球晶的片晶沿径向和切向交互贯穿呈互锁结构,因此刻蚀后表面平整,在进行扫描电镜观察时,入射电子的径向扩散很弱;作为对比,β-球晶以弯曲的片晶和束状晶体结构为特征,因此刻蚀后表面较为粗糙,可以产生更多的二次电子供探测器接收.通过调整样品台的旋转角度,可以根据衬度的变化清楚地分辨出PP的2种球晶.不同旋转角度对应不同二次电子的产额,如图12(e)和12(f)所示.Fig.12SEMimagesofPPplateobservedatdifferenttiltangles:(a)0°,(b)20°,(c)40°and(d)60° Schemeofthereflectionoflightraysbytheetchedsectionsofα‍-andβ‍-spherulitesunderconditionsofdirect(e)andlow-angle(f)illumination.(ReprintedwithpermissionfromRef.[46] Copyright(1993)ElsevierLtd.).傅强等用扫描电镜研究了高密度聚乙烯(HDPE)/多壁碳纳米管(MWCNTs)复合材料注塑样品从皮层到芯层的微观结构和晶体结构[44].扫描样品同样经过了刻蚀处理.扫描电镜图像明显揭示了复合材料中的纳米杂化shish-kebab晶体,其中CNTs作为shish,而HDPE的片晶作为kebab(图13).此外,由于注塑成型过程中的剪切梯度和温度梯度的影响,纳米杂化shish-kebab晶体结构沿着复合材料注塑样条厚度方向发生变化.Fig.13SEMmicrophotographofthenanohybridshish-kebabatthelayerof400μmalongthethicknessdirectionintheHDPE/MWCNTscomposite.ThesamplewasetchedbeforeSEMobservation.(ReprintedwithpermissionfromRef.[44] Copyright(2010)ElsevierLtd.).此外,扫描电镜在研究结晶-结晶[45,47~49]、结晶-非晶[50,51]聚合物共混体系中的晶体形态方面也有重要的应用.李勇进等系统研究了聚乳酸(PLLA)/聚甲醛(POM)结晶/结晶聚合物共混体系的结晶形态及结晶动力学,通过用氯仿刻蚀掉共混物中的PLLA组分,利用扫描电镜对POM的结晶形态、PLLA的分布等进行了研究[45].由图14可见明显的聚甲醛环带球晶结构,说明即使在PLLA存在的情况下,POM仍会发生结晶形成连续的晶体框架.此外,在POM的环带球晶中观察到许多周期分布的狭缝孔,说明此处原本是PLLA的聚集区.Fig.14SEMimagesobtainedfromquenched(a),141℃(b)and151℃(c)isothermallycrystallizedPOM/PLLA=50/50blendinwhichthePLLAwasetched.(ReprintedwithpermissionfromRef.[45] Copyright(2015)AmericanChemicalSociety).(4)高分子多孔膜的形貌表征膜分离技术是解决水资源、能源、环境等领域重大问题的有效手段,其核心是分离膜[52,53].高分子多孔膜是一类成本相对较低、应用较为广泛的分离膜,但由于其普遍疏水的特性,在实际应用中容易造成污染,导致膜孔堵塞,通量下降,分离效率降低等问题[54].广大专家学者发展了多种改性方法来提高高分子多孔膜的亲水性及防污性[55~59].扫描电镜在开发高性能多孔膜的过程中发挥了重要的作用.徐志康等利用扫描电镜对比了改性前后PP微孔膜的表面孔形貌变化[60];魏佳等研究了不同Gemini表面活性剂体系对多孔膜污染类型及堵塞指数的影响,并用扫描电镜对膜表面形貌和污损情况进行了观察[61];靳健等用扫描电镜表征了聚酰胺(PA)纳滤膜(NF)表面褶皱结构的形成过程[62].从图15的扫描电镜图像中可以清晰地分辨纤维结构、纳米颗粒结构、孔结构及随着反应时间延长所产生的形貌变化.Fig.15Thepreparationofpolyamide(PA)nanofiltration(NF)membranewithcrumpledstructures:Top-viewSEMimagesofpristinesingle-walledcarbonnanotube(SWCNTs)/polyethersulfone(PES)compositemembrane(a),polydopaminemodifiedMOFZIF-8nanoparticles(PD)/ZIF-8loadedSWCNTs/PEScompositemembrane(b)andmorphologychangeofthemembraneimmersedintowaterindifferenttimeafterinterfacialpolymerizationreactiononPD/ZIF-8nanoparticlesloadedSWCNTs/PEScompositemembrane(c-f)(Thescalebarofimagesis1μm).(ReprintedwithpermissionfromRef.[62] Copyright(2018)SpringerNatureLimited).(5)高分子材料的生物相容性聚醚砜(PES)是一类十分重要且应用十分广泛的生物医用膜材料,表现出优异的化学稳定性、机械性能及成膜性[63].然而,其疏水性极大地限制了其在临床领域的应用.为了提高PES作为血液透析膜的使用性能,赵长生等展开了一系列改性研究,旨在改善PES膜的血液相容性[64~66].通过扫描电镜观察血小板在生物材料表面的黏附情况是评估材料血液相容性的重要手段.由图16所示的扫描电镜图像可见,未改性的PES膜有较多的血小板黏附,说明血液相容性较差;而改性过后的PES膜血小板黏附情况有明显改善,对应了较好的血液相容性[65].Fig.16SEMmicrographsoftheadheredplateletsonsurfacesofPES(a)andmodifiedPESHMPU-2(b)andHMPU-8(c).(ReprintedwithpermissionfromRef.[65] Copyright(2014)ElsevierLtd.).(6)高分子自组装行为高分子自组装可以获得具有特定结构和功能的聚合物超分子体系.利用扫描电镜对其组装结构进行观察是揭示其构效关系的重要手段.ByeongduLee等合成了一系列不同接枝密度的嵌段共聚物,并利用SEM对的自组装形貌进行了研究[67].如图17所示,所合成的聚乳酸-聚苯乙烯嵌段共聚物(PLA-b-PS)自组装成了长程有序的片层状结构,且从扫描电镜图像中可以明显看出,随着接枝密度的降低,其片层尺寸也有明显的减小.SEM观察到的这种标度行为为嵌段共聚物及其材料的设计提供了新的思路.Fig.17SEMimagesofpoly(D,Llactide)‍-b-polystyrene(PLA-b-PS)with(a)z=1.00,(PLA)100-b-(PS)100 (b)z=0.75,(PLA0.75-r-DME0.25)110-b-‍(PS0.75-r-DBE0.25)110 (c)z=0.50,(PLA0.5-r-DME0.5)104-b-‍(PS0.5-r-DBE0.5)104 and(d)z=0.25,(PLA0.25-r-DME0.75)112-b-‍(PS0.25-r-DBE0.75),inwhichthegraftingdensities(z)changedbysubstitutingPLAwithendo,exonorbornenyldimethylester(DME)andPSwithendo,exonorbornenyldi-n-butylester(DBE).(ReprintedwithpermissionfromRef.[67] Copyright(2017)AmericanChemicalSociety).2004年,颜德岳和周永丰等创新性地制备了一类两亲性超支化多臂共聚物,其可以在丙酮溶剂中自组装成宏观多壁螺旋管,首次实现了具有不规整分子结构的超支化聚合物的溶液自组装及分子的宏观自组装[68].在之后的工作中,高超和颜德岳等利用这类两亲性超支化聚合物制备了具有高度有序蜂窝状孔结构的多孔膜,并用SEM对其结构进行了详细研究[69].从图18(a)的扫描电镜中可以明显观察到,几乎所有孔都是规整均匀的六边形孔,孔径宽度为5~6mm.此外,由图18(b)和18(c)可见,每个六边形单元都像一个有六面双层墙壁的巢室.这里应用了2个扫描电镜的观察技巧:图18(b)是将样品台倾斜了45°所观察到的形貌,而观察图18(c)时所使用的加速电压高于20kV,此时被顶层覆盖的下层骨架也可以显示出来.Fig.18RepresentativeSEMimagesofthehoneycombpatternedfilmspreparedfromanamphiphilichyperbranchedpoly(amidoamine)modifiedwithpalmitoylchloride(HPAMAM10KC16)onasiliconwafer(a-c).Thesamplewastilted45°intheimagesof(a)and(b).Theacceleratingvoltagewas20kVfor(c).Thescalebarsare20mm(a),2mm(b),5mm(c).(ReprintedwithpermissionfromRef.[69] Copyright(2007)Wiley-VCHVerlagGmbH&Co.KGaA,Weinheim).3.1.2背散射电子成像高能入射电子受到样品原子核的散射而大角度反射回来的电子称为背散射电子BSE,其产额为样品所激发的背散射电子数与入射电子数的比值.当加速电压大于5kV时,背散射电子产额可用公式(7)表示[3]:其中,φ为样品倾斜角,Z为原子序数.显然,背散射电子的产额随样品倾斜角和原子序数的增加而增加,尤其原子序数越高时,其对应的背散射电子图像越亮[70].这种由于原子序数差异导致的图像衬度称为成分衬度.通过在高分辨扫描电镜平台上搭配背散射电子探测器,不仅可以对高分子材料的总体相形态进行分析[71~73],还可以显示出更细节的片晶结构[74,75].其优势在于,BSE成像既不需要像TEM那样的超薄样品,也不需要像二次电子检测或原子力显微镜成像的高压,仍可以显示出较高的衬度、分辨率和信息量.张立群等用原位动态硫化的方法制备了一种可再生的热塑性硫化橡胶(TPV)作为3D打印材料,该TPV包含一种生物基弹性体PLBSI和聚乳酸PLA[72].SEM-BSE图像清晰了反映了动态硫化过程中共混体系的相态变化,其中PLA是亮相而PLBSI是暗相(如图19所示).此外,Bar等利用SEM-BSE观察了聚丙烯共聚物、乙丙共聚物等样品的片晶结构[75].不同于SE成像时通过形貌衬度观察结晶性高分子的晶体及其片晶结构,BSE成像则是通过成分衬度突出片晶形貌.Fig.19SEM-BSEmicrographsofpoly(lactate/butanediol/sebacate/itaconate)bioelastomers/poly(lacticacid)(PLBSI/PLA)(70/30)thermoplasticvulcanizate(TPV)samplescollectedatA(a),B(b),C(c),D(d),E(e)andF(f)pointintorquecurvewhichvariedwithblendingtime(g)andthechemicalreactionofinsitudynamicalvulcanization(h).(ReprintedwithpermissionfromRef.[72] Copyright(2017)ElsevierLtd.).3.1.3X射线能谱分析高能入射电子作用于样品后,部分入射电子打到核外电子上,使原子的内层(如K层)电子激发并脱离原子,而邻近外层(如L层)电子会填充电离出的电子穴位,同时产生特征X射线,如图20所示.该X射线的能量为邻近壳层的能量差(ΔE=EK-EL=hc/λkα)[3].由于不同原子壳层间的能量差值不同,因此利用能量色散X射线光谱仪(EDX)对特征X射线的能量进行分析,可以研究样品的元素和组成[76~80].需要注意的是,EDX通常用于分析原子序数比硼(B)大,含量在0.1%以上的样品,且加速电压必须大于被测元素线系的临界激发能,加速电压对分析的深度、面积、体积等起到重要影响.此外,EDX又包括3种分析方法:点分析、线扫描分析及面分布分析.其中,点分析是指高能入射电子固定在某个分析点上进行定性或定量的分析,当需要对样品中含量较低的元素进行定量分析时,通常只能选用点分析方法;线扫描可以分析样品中特定元素的浓度随特征显微结构的变化关系,是电子束沿线逐点扫描的结果;面分布分析则是指高能入射电子在某一区域做光栅式扫描得到元素的分布图像,又称Mapping图.背散射电子像可以通过图像衬度粗略反映出所含元素的原子序数差异,而特征X射线的Mapping图则可以精确反映出元素构成及其富集状态.在Mapping图中,不同元素可以用不同颜色进行区分,元素富集程度不同则元素的颜色深度不同,因此可以获得彩色的衬度图像.该衬度为元素衬度.在上述的3种分析方法中,点分析灵敏度最高,面分布分析灵敏度最低,但可以直接观察到相分布、元素分布的情况及均匀性.具体实验中,应根据样品自身特点及分析目的等选择合理的分析方法.图21(a)、21(b)和21(c)~21(e)分别为典型的EDX点、线、面分析结果[78,79].Fig.20ThegenerationmechanismofcharacteristicX-ray.Fig.21PointEDXscanonoutersurfaceoftheglassfiber(a)(ReprintedwithpermissionfromRef.[78] Copyright(2011)AmericanSocietyofCivilEngineers) lineEDXscanforCainglassfiber-reinforcedpolymer(GFRP)(b)(ReprintedwithpermissionfromRef.[78] Copyright(2011)AmericanSocietyofCivilEngineers) SEMimage(c)andthecorrespondingEDXmappingscanspectraofC(d)andF(e)elementofpoly(acrylicacid)graftedPVDF(G-PVDF)hollowfibermembrane.(ReprintedwithpermissionfromRef.[79] Copyright(2013)ElsevierLtd.).3.1.4透射电子成像当样品厚度低于100nm时,部分高能入射电子可以穿透样品,从样品下表面逃逸,这部分信号电子称为透射电子TE,其携带了样品内部的结构信息.扫描透射电子显微镜(STEM)是一种通过位于样品正下方的TE探测器接收TE信号的新型SEM,它同时具备了TEM信息量丰富和SEM分辨率较高的优势.在高分子材料表征中,可以利用STEM得到样品的内部形貌、化学成分及晶体结构等信息[36,81~85].如图22(a)和22(b)所示,STEM及其EDX元素分析为研究反应性增容体系的内部形貌及增容剂纳米胶束的分布提供了直观的图像[36];图22(c)的STEM图像揭示了嵌段共聚物的微相分离结构[84];此外,STEM还可用于观察聚合物的片晶结构,由于晶区密度高于无定形区密度,这种密度差提供了衍射衬度,故在STEM图像中晶区更明亮而无定形区较暗(图22(d))[83].Fig.22STEMimagesoftheselectivedispersionofnanomicellesinP((S-co-GMA)‍-g-MMA)compatibilizedPVDF/PLLA=50/50blend(a)anditscorrespondingFelementmapping(b),thesamplewasstainedbyRuO4.(ReprintedwithpermissionfromRef.‍[36] Copyright(2015)AmericanChemicalSociety) STEMimage(darkfieldTEMmode)ofpolystyrene-polyisopreneblockcopolymer(PSt-PI-1)(c),inwhichthebrightanddarkpartsareattributedtothePImoietiesWstainedwithOsO4andPStmoieties,respectively(ReprintedwithpermissionfromRef.‍[84] Copyright(2008)TheRoyalSocietyofChemistry) STEMimageofHDPEspecimenshowingdiffractioncontrastoflamellae(d)(ReprintedwithpermissionfromRef.‍[83] Copyright(2009)AmericanChemicalSociety).综上所述,本文对SE、BSE以及特征X射线成像的特点进行了总结,详见表3.Table3Featuresofimagesobtainedfromdifferentsignalelectrons.3.2SEM与其他仪器联用在高分子材料表征方面的应用3.2.1拉曼光谱(Raman)-SEM联用Raman光谱在高分子科学中应用十分广泛,它提供了各种关于化学结构、分子构象、结晶、取向等的定量信息[86].SEM与共聚焦Raman光谱的联用(RISE)是显微镜学一个重要的里程碑.如图23所示,利用RISE既可以获得高分辨率的电镜图像,还能获得关于化学和结构组成的信息[87].此外,在SEM图像中衬度较弱的样品还能通过其光特性的差别突出显示[88].如图24所示,在SEM图像中不明显的PS微球,通过拉曼成像,可以清晰地分辨其位置.此外,由于拉曼信号强度强烈依赖于颗粒数量,因此拉曼成像中颗粒的亮度也反映了颗粒数量.Fig.23(a)SEMimagesofthematrix(M)ofrecycledpolyvinylchloride(PVC)powders(RPP)andtheselectednanoparticles(P1,P2,andP3)onRPPsurface (b)RamanspectraofnanoparticlesonthesurfaceofRPPrecordedwiththeconfocalRaman-in-SEMsystem(532nmlaser)(ReprintedwithpermissionfromRef.[87] Copyright(2020)AmericanChemicalSociety).Fig.24(a,d)SEMimagesof500nmPSbeads,inwhichtheredsquareindicatedselectedregionforRamanimaging (b,e)Ramanimagesoftheindicatedregionsshowingtheintensityofthe1001cm-1bandafterspectralintegrationovertherangefrom970cm-1to1015cm-1,indicatedbytheblackcrossesin(c).(f)ThespatiallyintegratedRamanintensity,shownin(b)and(e),foreverysingleorclusterofpolystyreneparticles.(ReprintedwithpermissionfromRef.[88] Copyright(2016)JohnWiley&Sons,Ltd.).3.2.2聚焦离子束(focusedionbeam,FIB)-SEM联用FIB是一种将离子源产生的离子束经离子枪加速并聚焦后对样品表面进行扫描的技术.与SEM联用成为FIB-SEM双束系统后,通过结合各种附件,如纳米操纵仪、各种探测器和样品台等,FIB-SEM可用于快速制备TEM样品[89,90]和进行微纳加工[90],此外基于其层析重构技术还能实现材料微观结构的三维重建及分析[91~94].图25(a)~25(a' ' )为利用FIB-SEM制备TEM样品的示意图及原位观察得到的样品SEM图像[89,90].FIB-SEM联用为精确定位制样区域,高效制备TEM样品提供了新的方向.图25(b)和25(b' )展示了FIB在聚合物薄膜样品上铣削微米尺寸孔洞的SEM和TEM图像[90].FIB-SEM在材料的精细加工领域表现出明显的优势.图25(c)的SEM图像中,暗相对应较深的孔,亮相对应较浅的孔,而中等亮度区域对应乙基纤维素(EC)固体.在其对应的三维重构图中(图25(c' )),较硬的多孔EC骨架结构是黑色的,而白色的区域表示孔洞结构[91].三维重构是理解晶粒、孔隙及分相等微结构与性能之间关系的重要手段,通常要经过SEM传统的二维成像手段结合FIB连续切片获取不同位置截面信息,再经过图像处理获得二值化数据之后方可进行三维重构.该方法具有较高的空间分辨率,但同时也存在重构范围有限,重构效率低等不足,这也是后续扫描电镜等技术发展的重要方向.Fig.25(a)SchematicoftheShadow-FIBtechniqueforTEMsamplepreparation(ReprintedwithpermissionfromRef.[89] Copyright(2009)MicroscopySocietyofAmerica) SEMimagesofpoly(styrene-b-isoprene)(PS-b-PI)filmonthesiliconwafers(a' )beforeand(a' ' )aftershadowFIBpreparation(ReprintedwithpermissionfromRef.[90] Copyright(2011)ElsevierLtd.) (b)SEMimageof100pAFIB-milledholesinthepoly(styrene-b-methylmethacrylate)(PS-b-PMMA)diblockcopolymersheetand(b' )thecorrespondingBFTEMimageofPS-b-PMMAsheetmilledfor9s(ReprintedwithpermissionfromRef.[90] Copyright(2011)ElsevierLtd.) (c)SEMimageoftheporousnetworkofleachedethylcellulose(EC)/hydroxypropylcellulose(HPC)filmwhichcontained30%HPC(HPC30)and(c' )itscorresponding3DreconstructionsoftheporousstructureofHPC30.(ReprintedwithpermissionfromRef.[91] Copyright(2020)ElsevierLtd.).3.3原位表征技术在高分子材料表征方面的应用通过配置专门的样品台,如制冷台、加热台、拉伸台,可以在电镜样品室内对样品进行诸如加热、制冷、拉伸、压缩或弯曲等操作,并可以用SEM实时观察样品的形貌、成分等的变化.冷冻扫描电镜(Cryo-SEM)是一种集冷冻制样、冷冻传输与电镜观察技术于一体的新型扫描电镜,需配置制冷台.常规的扫描电镜要求高真空环境,因此样品需干燥无挥发组分.而一些特殊样品,如囊泡、凝胶、生物样品等,在干燥过程中会发生结构变化,通过常规扫描电镜无法观察样品的真实结构.Cryo-SEM则弥补了这一不足,适用于含水样品的观察.图26展示了Cryo-SEM在表征高分子囊泡[95]、凝胶[96]与乳胶[97]方面的应用.显然,Cryo-SEM最大限度地保留了样品的原始结构.Fig.26(a)Cryo-SEMimagesofpolymervesiclesarmoredwithpolystyrenelatexspheres(ReprintedwithpermissionfromRef.[95] Copyright(2011)AmericanChemicalSociety) (b)High-pressurefrozen-hydratedpoly(acrylicacid)(PEG-AA)microgels(ReprintedwithpermissionfromRef.[96] Copyright(2021)AmericanChemicalSociety) (c)Plasticallydrawnparticlesfromfrozensuspensionsofpolystyrenelatexwithadiameterof500nm.(ReprintedwithpermissionfromRef.[97] Copyright(2006)AmericanChemicalSociety).加热台常用于分析金属或合金样品的腐蚀、还原或氧化反应[98,99],在高分子材料表征中少有应用.此外,拉伸台在高分子材料表征中较为常用.图27(a)为碳纤维/环氧树脂共混物薄片沿加载方向的破坏情况[100];图27(b)展示了循环荷载的炭黑填充天然橡胶体系的裂纹尖端演变[101].显然,原位分析可以清晰地反映材料性能变化的第一现场.Fig.27(a)InsituSEMimageof:initialfailureinacarbonfiberreinforcedpolymer(HTA/L135i(902/07/902))laminate(ReprintedwithpermissionfromRef.[100] Copyright(2006)ElsevierLtd.) (b)Evolutionofacracktipduringcyclicloadingafter1,10and21insitucycles,respectively.(ReprintedwithpermissionfromRef.‍[101] Copyright(2010)WileyPeriodicals,Inc.).3.4其他扫描电镜技术在高分子材料表征方面的应用高分子材料通常具有较高的电阻值和较差的导热性,当高能入射电子束在样品表面持续扫描时,样品极易发生荷电效应并受到热损伤,这些对扫描电镜的观察均会造成不利影响.因此,在使用常规扫描电镜时,为了消除荷电效应,提高样品的导热性,一般要在样品表面镀上一层导电薄膜.但是,镀膜有时会掩盖样品表面的形貌信息.低压扫描电镜(LV-SEM)通过低能电子束照射样品,能够实现对高分子材料的极表面进行无损伤的测试观察,因此可以反映材料最真实的微观结构[102~104].LV-SEM对样品表面形貌的灵敏度由图28可见.图28(a)和28(b)均是聚氨酯/二氧化硅复合物的扫描电镜图像,其中,图28(a)样品经过了镀碳处理,且是在20kV加速电压下捕捉的;图28(b)未经镀膜处理,观察所用加速电压为1kV[15].显然,在较低的加速电压下,样品表面细节更清晰,而在较高电压下,由于电子束穿透深度更大,因此表面以下的二氧化硅颗粒也显现出来.Fig.28SEMimagesofpolyurethanesamplefilledwithsilicamicroparticlesobservedatdifferentacceleratingvoltages:(a)20kV(carboncoated),(b)1kV(uncoated).(ReprintedwithpermissionfromRef.‍[15] Copyright(2014)DeGruyter).4扫描电镜的发展趋势随着高分子材料科学的发展,扫描电镜及其应用技术也在不断改进.首先,低压成像技术的发展为观察绝缘、耐热差的高分子材料表面的微观结构提供了可能.同时,即使不喷镀导电膜也能清晰成像,因此可以获得更真实、更细节的微观结构.此外,用传统的扫描电镜无法观察的特殊样品也可以利用低压技术成像,如含水高分子材料或生物样品,几乎不需要对样品进行处理.现有水平下,1kV加速电压成像的分辨率也可以达到1~1.8nm[3].如何在超低压下获得更高分辨率的扫描电镜图像是后续扫描电镜发展要解决的问题.其次,如文中介绍,电子束与样品相互作用所产生的信号电子种类较多,每种信号电子都携带了样品大量的特征信息,通过配置不同的功能附件,可以获得高分子样品形貌、结构、化学组成等信息.一方面,对高分子材料来说,很多信号电子所携带的信息未能被充分解析.如背散射电子(BSE),除了直接成像,其对应的衍射(EBSD)技术还可以揭示材料的晶体微区取向和晶体结构等信息.然而由于高分子材料通常结晶度不能达到100%,因此很难通过EBSD进行检测.另一方面,开发功能更强大的扫描电镜附件也是重要的发展方向.此外,扫描电镜的原位分析技术也为高分子材料科学的发展提供了有力支撑,二者的有效结合实现了对材料宏观-微观多层次结构的分析.最后,基于扫描电镜的二维图像进行拼接、重构三维图像几近年来也获得了极大的发展.这种跨多维度的扫描电镜分析技术在高分子材料的表征中目前还存在很大限制.综上,扫描电镜的发展将会为高分子材料提供更为便捷、信息量更丰富、更准确的表征手段.致谢感谢南京大学胡文兵教授在论文修改过程中给予的帮助和指导.参考文献1PeaseRFW.AdvImagElectPhys,2008,150:53-86.doi:10.1016/s1076-5670(07)00002-x2GuoSuzhi(郭素枝).ElectronMicroscopeTechnologyandItsApplication(电子显微镜技术及应用).Xiamen(厦门):XiamenUniversityPress(厦门大学出版社),20083RenXiaoming(任小明).ScanningElectronMicroscope/PrincipleofEnergySpectrumandSpecialAnalysisTechnique(扫描电镜/能谱原理及特殊分析技术).Beijing(北京):ChemicalIndustryPress(化学工业出版社).20204ZhangDatong(张大同).ScanningElectronMicroscopeandX-RayEnergyDispersiveSpectrometerAnalysisTechnics(扫描电镜与能谱仪分析技术).Guangzhou(广州):SouthChinaUniversityofTechnologyPress(华南理工大学出版社).20085WeiB,LinQ,ZhengX,GuX,ZhaoL,LiJ,LiY.Polymer,2019,185:121952.doi:10.1016/j.polymer.2019.1219526ParkJ,EomK,KwonO,WooS.MicroscMicroanal,2001,7(3):276-286.doi:10.1007/s1000500100747ZhengX,LinQ,JiangP,LiY,LiJ.Polymers,2018,10(5):562.doi:10.3390/polym100505628SumitaA,SakataK,HayakawaY,AsaiS,MiyasakaK,TanemuraM.ColloidPolymSci,1992,270(2):134-139.doi:10.1007/bf006521799SainiP,ChoudharyV,DhawanSK.PolymAdvTechnol,2012,23(3):343-349.doi:10.1002/pat.187310LiW,BuschhornST,SchulteK,BauhoferW.Carbon,2011,49(6):1955-1964.doi:10.1016/j.carbon.2010.12.06911EgertonRF,LiP,MalacM.Micron,2004,35(6):399-409.doi:10.1016/j.micron.2004.02.00312HeinLRO,CamposKA,CaltabianoPCRO,KostovKG.Scanning,2013,35(3):196-204.doi:10.1002/sca.2104813RaviM,KumarKK,MohanVM,RaoVN.PolymTest,2014,33:152-160.doi:10.1016/j.polymertesting.2013.12.00214JoyDC.JMicrosc,1987,147(1):51-64.doi:10.1111/j.1365-2818.1987.tb02817.x15ŠloufM,VackováT,LednickýF,WandrolP.Polymersurfacemorphology:characterizationbyelectronmicroscopies.In:PolymerSurfaceCharacterization.Berlin:WalterdeGruyterGmbH&CoKG,2014.169-206.doi:10.1515/9783110288117.16916SeilerH.JApplPhys,1983,54(11):R1-R18.doi:10.1063/1.33284017JoyDC.JMicrosc,1984,136(2):241-258.doi:10.1111/j.1365-2818.1984.tb00532.x18SathishkumarTP,SatheeshkumarS,NaveenJ.JReinfPlastCompos,2014,33(13):1258-1275.doi:10.1177/073168441453079019KarataşMA,GökkayaH.DefTechnol,2018,14(4):318-32620ForintosN,CziganyT.ComposBEng,2019,162:331-343.doi:10.1016/j.compositesb.2018.10.09821WangWenjun(王文俊),WangWeiwei(王维玮),HongXuhong(洪旭辉).ActaPolymericaSinica(高分子学报),2015,(9):1036-1043.doi:10.11777/j.issn1000-3304.2015.1500722FavierV,ChanzyH,CavailléJY.Macromolecules,1995,28(18):6365-6367.doi:10.1021/ma00122a05323ConverseGL,YueW,RoederRK.Biomaterials,2007,28(6):927-935.doi:10.1016/j.biomaterials.2006.10.03124RameshP,PrasadBD,NarayanaKL.Silicon,2020,12(7):1751-1760.doi:10.1007/s12633-019-00275-625YangJintao(杨晋涛),FanHong(范宏),BuZhiyang(卜志扬),LiBogeng(李伯耿).ActaPolymericaSinica(高分子学报),2007,(1):70-74.doi:10.3321/j.issn:1000-3304.2007.01.01326LiShaofan(‍李‍少‍范),WenXiangning(‍温‍向‍宁),JuWeilong(‍鞠‍维‍龙),SuYunlan(‍苏‍允‍兰),WangDujin(‍王‍笃‍金).ActaPolymericaSinica(高分子学报),2021,52(2):146-157.doi:10.11777/j.issn1000-3304.2020.2018927HuangDengjia(黄‍登‍甲),SongYihu(宋‍义‍虎),ZhengQiang(郑‍强).ActaPolymericaSinica(高分子学报),2015,(5):542-549.doi:10.11777/j.issn1000-3304.2015.1436528FuZhiang(傅志昂),WangHengti(王亨缇),DongWenyong(董文勇),LiYongjin(李勇进).ActaPolymericaSinica(高分子学报),2017,(2):334-341.doi:10.11777/j.issn1000-3304.2017.1628829ChenY,WangY,ZhangH,B,LiX,GuiC,X,YuZ,Z.Carbon,2015,82:67-76.doi:10.1016/j.carbon.2014.10.03130LiuH,GuS,CaoH,LiX,JiangX,LiY.ComposBEng,2019,176:107268.doi:10.1016/j.compositesb.2019.10726831SeyniFI,GradyBP.ColloidPolymSci,2021,299(4):585-593.doi:10.1007/s00396-021-04820-x32KrauseS.Polymer-polymercompatibility.In:PolymerBlends.NewYork:AcademicPress,1978.15-113.doi:10.1016/b978-0-12-546801-5.50008-633WangH,YangX,FuZ,ZhaoX,LiY.LiJ.Macromolecules,2017,50(23):9494-9506.doi:10.1021/acs.macromol.7b0214334FuZ,WangH,ZhaoX,LiX,GuX,LiY.JMaterChemA,2019,7(9):4903-4912.doi:10.1039/c8ta12233d35WangH,FuZ,ZhaoX,LiY,LiJ.ACSApplMaterInterfaces,2017,9(16):14358-14370.doi:10.1021/acsami.7b0172836WangH,DongW,LiY.ACSMacroLett,2015,4(12):1398-1403.doi:10.1021/acsmacrolett.5b0076337FuZ,WangH,ZhaoX,HoriuchiS,LiY.Polymer,2017,132:353-361.doi:10.1016/j.polymer.2017.11.00438DongW,HeM,WangH,RenF,ZhangJ,ZhaoX,LiY.ACSSustainChemEng,2015,3(10):2542-2550.doi:10.1021/acssuschemeng.5b0074039WeiB,ChenD,WangH,YouJ,WangL,LiY,ZhangM.Polymer,2019,160:162-169.doi:10.1016/j.polymer.2018.11.04240GanZ,KuwabaraK,AbeH,IwataT,DoiY.PolymDegradStabil,2005,87(1):191-199.doi:10.1016/j.polymdegradstab.2004.08.00741ChenX,DongB,WangB,ShahR,LiCY.Macromolecules,2010,43(23):9918-9927.doi:10.1021/ma101900n42ShahD,MaitiP,GunnE,SchmidtDF,JiangDD,BattCA,GiannelisEP.AdvMater,2004,16(14):1173-1177.doi:10.1002/adma.20030635543AboulfarajM,G' sellC,UlrichB,DahounA.Polymer,1995,36(4):731-742.doi:10.1016/0032-3861(95)93102-r44YangJ,WangK,DengH,ChenF,FuQ.Polymer,2010,51(3):774-782.doi:10.1016/j.polymer.2009.11.05945YeL,ShiX,YeC,ChenZ,ZengM,YouJ,LiY.ACSApplMaterInterfaces,2015,7(12):6946-6954.doi:10.1021/acsami.5b0084846AboulfarajM,UlrichB,DahounA,G' sellC.Polymer,1993,34(23):4817-4825.doi:10.1016/0032-3861(93)90003-s47YeL,QiuJ,WuT,ShiX,LiY.RSCAdv,2014,4(82):43351-43356.doi:10.1039/c4ra06943a48YeC,CaoX,WangH,WangJ,WangT,WangZ,LiY,YouJ.JPolymSci,2020,58(12):1699-1706.doi:10.1002/pol.2019023249YeC,ZhaoJ,YeL,JiangZ,YouJ,LiY.Polymer,2018,142:48-51.doi:10.1016/j.polymer.2018.02.00450WangJ,DingM,ChengX,YeC,LiF,LiY,YouJ.JMembrSci,2020,604:118040.doi:10.1016/j.memsci.2020.11804051WangJ,ChenB,ChengX,LiY,DingM,YouJ.JMembrSci,2021:120065.doi:10.1016/j.memsci.2021.12006552JhaveriJH,MurthyZVP.Desalination,2016,379:137-154.doi:10.1016/j.desal.2015.11.00953YanX,AnguilleS,BendahanM,MoulinP.SepPurifTechnol,2019,222:230-253.doi:10.1016/j.seppur.2019.03.10354RynkowskaE,FatyeyevaK,KujawskiW.RevChemEng,2018,34(3):341-363.doi:10.1515/revce-2016-005455LiJH,ShaoXS,ZhouQ,LiMZ,ZhangQQ.ApplSurfSci,2013,265:663-670.doi:10.1016/j.apsusc.2012.11.07256ZhangX,LiangY,NiC,LiY.MaterSciEngC,2021,118:111411.doi:10.1016/j.msec.2020.11141157XingC,GuanJ,LiY,LiJ.ACSApplMaterInterfaces,2014,6(6):4447-4457.doi:10.1021/am500061v58ZhengX,ChenF,ZhangX,ZhangH,LiY,LiJ.ApplSurfSci,2019,481:1435-1441.doi:10.1016/j.apsusc.2019.03.11159HuMX,YangQ,XuZK.JMembrSci,2006,285(1-2):196-205.doi:10.1016/j.memsci.2006.08.02360YangYF,LiY,LiQL,WanLS,XuZK.JMembrSci,2010,362(1-2):255-264.doi:10.1016/j.memsci.2010.06.04861ZhangW,LiangW,HuangG,WeiJ,DingL,JaffrinMY.RSCAdv,2015,5(60):48484-48491.doi:10.1039/c5ra06063j62WangZ,WangZ,LinS,JinH,GaoS,ZhuY,JinJ.NatCommun,2018,9(1):1-9.doi:10.1038/s41467-018-04467-363HariharanP,SundarrajanS,ArthanareeswaranG,SeshanS,DasDB,IsmailAF.EnvironRes,2021:112045.doi:10.1016/j.envres.2021.11204564NieS,XueJ,LuY,LiuY,WangD,SunS,RanFZhaoC.ColloidSurfaceB,2012,100:116-125.doi:10.1016/j.colsurfb.2012.05.00465MaL,SuB,ChengC,YinZ,QinH,ZhaoJ,SunSZhaoC.JMembrSci,2014,470:90-101.doi:10.1016/j.memsci.2014.07.03066FangB,LingQ,ZhaoW,MaY,BaiP,WeiQ,ZhaoC.JMembrSci,2009,329(1-2):46-55.doi:10.1016/j.memsci.2008.12.00867LinTP,ChangAB,LuoSX,ChenHY,LeeB,GrubbsRH.ACSNano,2017,11(11):11632-11641.doi:10.1021/acsnano.7b0666468YanD,ZhouY,HouJ.Science,2004,303(5654):65-67.doi:10.1126/science.109076369LiuC,GaoC,YanD.AngewChem,2007,119(22):4206-4209.doi:10.1002/ange.20060442970RobinsonVNE.Scanning,1980,3(1):15-26.doi:10.1002/sca.495003010371MurariuM,FerreiraADS,DegéeP,AlexandreM,DuboisP.Polymer,2007,48(9):2613-2618.doi:10.1016/j.polymer.2007.02.06772HuX,KangH,LiY,GengY,WangR,ZhangL.Polymer,2017,108:11-20.doi:10.1016/j.polymer.2016.11.04573GoizuetaG,ChibaT,InoueT.Polymer,1993,34(2):253-256.doi:10.1016/0032-3861(93)90074-k74BlacksonJ,Garcia-MeitinE,DarusM.MicroscMicroanal,2007,13(S02):1062-1063.doi:10.1017/s143192760707604075BarG,TochaE,Garcia-MeitinE,ToddC,BlacksonJ.MacromolSym,2009,282(1):128-135.doi:10.1002/masy.20095081376BoraJ,DekaP,BhuyanP,SarmaKP,HoqueRR.SNApplSci,2021,3(1):1-15.doi:10.1007/s42452-020-04117-877KorolkovIV,GorinYG,YeszhanovAB,KozlovskiyAL,ZdorovetsMV.MaterChemPhys,2018,205:55-63.doi:10.1016/j.matchemphys.2017.11.00678KamalASM,BoulfizaM.JComposConstr,2011,15(4):473-481.doi:10.1061/(asce)cc.1943-5614.000016879ZhangF,ZhangW,YuY,DengB,LiJ,JinJ.JMembrSci,2013,432:25-32.doi:10.1016/j.memsci.2012.12.04180AbdMutalibM,RahmanMA,OthmanMHD,IsmailAF,JaafarJ.Scanningelectronmicroscopy(SEM)andenergy-dispersiveX-ray(EDX)spectroscopy.In:Membranecharacterization.Amsterdam:ElsevierLtd,2017.161-179.doi:10.1016/b978-0-444-63776-5.00009-781GuiseO,StromC,PreschillaN.Polymer,2011,52(5):1278-1285.doi:10.1016/j.polymer.2011.01.03082FortelnýI,ŠloufM,SikoraA,HlavatáD,HašováV,MikešováJ,JacobC.JApplPolymSci,2006,100(4):2803-2816.doi:10.1002/app.2373183LoosJ,SourtyE,LuK,deWithG,BavelS.Macromolecules,2009,42(7):2581-2586.doi:10.1021/ma802658984HiguchiT,TajimaA,YabuH,ShimomuraM.SoftMatter,2008,4(6):1302-1305.doi:10.1039/b800904j85InamotoS,YoshidaA,OtsukaY.MicroscMicroanal,2019,25(S2):1826-1827.doi:10.1017/s143192761900986386ButlerHJ,AshtonL,BirdB,CinqueG,CurtisK,DorneyJ,MartinFL.NatProtoc,2016,11(4):664-687.doi:10.1038/nprot.2016.03687ZhangW,DongZ,ZhuL,HouY,QiuY.ACSNano,2020,14(7):7920-7926.doi:10.1021/acsnano.0c0287888TimmermansFJ,LiszkaB,LenferinkAT,vanWolferenHA,OttoC.JRamanSpectrosc,2016,47(8):956-962.doi:10.1002/jrs.493189KimS,LiuG,MinorAM.MicroscToday,2009,17(6):20-23.doi:10.1017/s155192950999100390TimmermansFJ,LiszkaB,LenferinkAT,vanWolferenHA,OttoC.Ultramicroscopy,2011,111(3):191-199.doi:10.1016/j.ultramic.2010.11.02791FagerC,BarmanS,RödingM,OlssonA,LorénN,vonCorswantC,BolinDRootzénH,OlssonE.IntJPharmaceut,2020,587:119622.doi:10.1016/j.ijpharm.2020.11962292ČalkovskýM,MüllerE,MeffertM,FirmanN,MayerF,WegenerM,GerthsenD.MaterCharact,2021,171:110806.doi:10.1016/j.matchar.2020.11080693NeusserG,EpplerS,BowenJ,AllenderCJ,WaltherP,MizaikoffB,KranzC.Nanoscale,2017,9(38):14327-14334.doi:10.1039/c7nr05725c94GhoshS,OhashiH,TabataH,HashimasaY,YamaguchiT.IntJHydrogEnergy,2015,40(45):15663-15671.doi:10.1016/j.ijhydene.2015.09.08095ChenR,PearceDJ,FortunaS,CheungDL,BonSA.JAmChemSoc,2011,133(7):2151-2153.doi:10.1021/ja110359f96LiangJ,XiaoX,ChouTM,LiberaM.AccChemRes,2021,54(10):2386-2396.doi:10.1021/acs.accounts.1c0010997GeH,ZhaoCL,PorzioS,ZhuoL,DavisHT,ScrivenLE.Macromolecules,2006,39(16):5531-5539.doi:10.1021/ma060058j98MotomuraS,SoejimaY,MiyoshiT,HaraT,OmoriT,KainumaR,NishidaM.JElectronMicrosc,2015,65(2):159-168.doi:10.1093/jmicro/dfv36399HeardR,HuberJE,SiviourC,EdwardsG,Williamson-BrownE,DragnevskiK.RevSciInstrum,2020,91(6):063702.doi:10.1063/1.5144981100HobbiebrunkenT,HojoM,AdachiT,DeJongC,FiedlerB.ComposPartA,ApplSciManuf,2006,37(12):2248-2256.doi:10.1016/j.compositesa.2005.12.021101BeurrotS,HuneauB,VerronE.JApplPolymSci,2010,117(3):1260-1269.doi:10.1002/app.31707102JoyDC,JoyCS.Micron,1996,27(3-4):247-263.doi:10.1016/0968-4328(96)00023-6103MohaiyiddinMS,OngHL,OthmanMBH,JulkapliNM,VillagraciaARC,Md.AkilH.PolymCompos,2018,39:E561-E572.doi:10.1002/pc.24712104PrimoGA,ManzanoMFG,RomeroMR,IgarzabalCIA.MaterChemPhys,2015,153:365-375.doi:10.1016/j.matchemphys.2015.01.027原文链接:http://www.gfzxb.org/thesisDetails#10.11777/j.issn1000-3304.2021.21377&lang=zhDOI:10.11777/j.issn1000-3304.2021.21377《高分子学报》高分子表征技术专题链接:http://www.gfzxb.org/article/doi/10.11777/j.issn1000-3304
  • 高分子表征技术专题——热重分析技术及其在高分子表征中的应用
    2021年,《高分子学报》邀请了国内擅长各种现代表征方法的一流高分子学者领衔撰写从基本原理出发的高分子现代表征方法综述并上线了虚拟专辑。仪器信息网在获《高分子学报》副主编胡文兵老师授权后,也将上线同名专题并转载专题文章,帮助广大研究生和年轻学者了解、学习并提升高分子表征技术。在此,向胡文兵老师和组织及参与撰写的各位专家学者表示感谢。更多专题内容详见:高分子表征技术专题 高分子表征技术专题前言孔子曰:“工欲善其事,必先利其器”。 我们要做好高分子的科学研究工作,掌握基本的表征方法必不可少。每一位学者在自己的学术成长历程中,都或多或少地有幸获得过学术界前辈在实验表征方法方面的宝贵指导!随着科学技术的高速发展,传统的高分子实验表征方法及其应用也取得了长足的进步。目前,中国的高分子学术论文数已经位居世界领先地位,但国内关于高分子现代表征方法方面的系统知识介绍较为缺乏。为此,《高分子学报》主编张希教授委托副主编王笃金研究员和胡文兵教授,组织系列从基本原理出发的高分子现代表征方法综述,邀请国内擅长各种现代表征方法的一流高分子学者领衔撰写。每篇综述涵盖基本原理、实验技巧和典型应用三个方面,旨在给广大研究生和年轻学者提供做好高分子表征工作所必须掌握的基础知识训练。我们的邀请获得了本领域专家学者的热情反馈和大力支持,借此机会特表感谢!从2021年第3期开始,以上文章将陆续在《高分子学报》发表,并在网站上发布虚拟专辑,以方便大家浏览阅读. 期待这一系列的现代表征方法综述能成为高分子科学知识大厦的奠基石,支撑年轻高分子学者的茁壮成长!也期待未来有更多的学术界同行一起加入到这一工作中来.高分子表征技术的发展推动了我国高分子学科的持续进步,为提升我国高分子研究的国际地位作出了贡献. 借此虚拟专辑出版之际,让我们表达对高分子物理和表征学界的老一辈科学家的崇高敬意! 热重分析技术及其在高分子表征中的应用Thermogravimetric Analysis Technology and Its Application in Polymer Characterization作者:谢启源,陈丹丹 ,丁延伟*作者机构:中国科学技术大学,火灾科学国家重点实验室,合肥,230026 中国科学技术大学,合肥微尺度物质科学国家研究中心,合肥,230026  作者简介:  丁延伟,男,1975年生. 博士、中国科学技术大学合肥微尺度物质科学国家研究中心教授级高级工程师. 自2002年开始从事热分析与吸附技术的分析测试、实验方法研究等工作,现任中国化学会化学热力学与热分析专业委员会委员、全国教育装备标准化委员会化学分委会委员、中国分析测试协会青年学术委员会委员. 曾获中国分析测试协会科学技术奖(CAIA奖)二等奖,主持修订教育行业标准《热分析方法通则》(JY/T 0589.1~4-2020),以主要作者发表SCI论文30余篇,获授权专利7项. 编著《热分析基础》《热分析实验方案设计与曲线解析概论》.    摘要  热重分析技术(TGA)是在程序控制温度和设定气氛下表征材料受热过程中的质量随温度或时间变化的高精度研究工具,具有重复性好、灵敏度高和热过程控制精准等优点. 近年来,TGA技术在高分子材料领域得到了广泛应用,促进了高分子材料热稳定性、组成分析以及热分解机理等材料细观热响应特性的深入研究. 本文分别从热重分析基本原理、仪器校准、实验方案设计、实验操作、热重曲线综合解析以及各环节中易出现的不当操作、异常数据与解决方案等方面进行阐述,并给出了在高分子科学研究领域中的典型应用案例、未来发展趋势及机遇与挑战. 在实际的应用中,基于TGA与傅里叶红外光谱(FTIR)、示差扫描量热法(DSC)、气相色谱-质谱联用(GC/MS)等技术的联用分析,将有利于进一步揭示高分子材料在不同气氛和热激励等条件下的详细热响应信息,为性能优异的新型高层分子材料研发与设计、热解机理及燃烧蔓延动力学等领域提供支撑和指导.  AbstractThermogravimetric analysis technology (TGA) is an efficient research tool that characterizes the weight of materials with temperature or time under a program controlled temperature and a certain atmosphere. One of its advantages is that the TGA results can be well repeated with high sensitivity. In addition, its heating process is accurately and flexibly controlled according to real thermal environment of samples. In recent years, TGA is popularly used in the field of polymer materials, which promotes the detailed analyses on their thermal stability, composition analysis and thermal decomposition mechanismet al. This review will cover many aspects of TGA, including basic principles, calibration, scheme design, curve analysis, as well as those common errors during sample preparation and experiments, abnormal data figuring and the solution for them. Additionally, the typical application cases of TGA in polymer science, as well as their opportunity and challenges in future, are also presented. In the applications of TGA technology, more information about the thermal-response behavior of polymers under different atmosphere and heating conditions could be revealed by TGA coupled with FTIR, DSC, GC/MS technology. In this case, not only the weight information of sample during a specific heating condition, but also the endothermic and exothermic behaviors, released gas components at the same time can be analyzed together. They are helpful for new polymer design, thermal decomposition mechanism and flame spread models development.    关键词  热重分析技术  曲线解析  热稳定性  热解机理  案例分析  Keywords  Thermogravimetric analysis technology  Curve analysis  Thermal stability  Thermal decomposition mechanism  Case analysis   1热重分析技术简介  1.1热分析技术  作为现代仪器分析方法的一个重要分支,热分析技术在许多领域中得到了广泛应用[1~3]. 经历一百余年发展,热分析法与色谱法、光谱法、质谱法、波谱法等一起,构成了物质理化性能分析的最常用手段[4].  热分析技术是研究物质随温度变化而发生物理过程与化学反应的一种实验技术[4]. 该技术的主要理论基础包括:物质的平衡状态热力学、非平衡状态热力学、不可逆过程热力学和动力学等,针对微量样品,通过精确测定其宏观参数,如质量、热量、体积等随温度的变化关系,研究物质随温度变化而发生的物理和化学变化[4].  我国于2008年5月发布国家标准《GB/T 6425-2008热分析术语》[5],其中,对热分析技术的定义为:“在程序控制温度(和一定气氛)下,测量物质的某种物理性质与温度或时间关系的一类技术.”  国际热分析与量热协会(International Confederation for ThermalAnalysis and Calorimetry,ICTAC)根据所测定的物理性质不同,将现有的热分析技术划分为9类17种[6].  1.2热重分析技术的定义  热重分析技术(thermogravimetry,TG)是指在程序控制温度和一定气氛下连续测量待测样品的质量与温度或时间变化关系的一种热分析技术,主要用于研究物质的分解、化合、脱水、吸附、脱附、升华、蒸发等伴有质量增减的热变化过程[4,5]. 基于TG法,可对物质进行定性分析、组分分析、热参数测定和动力学参数测定等,常用于新材料研发和质量控制领域. 在实际的材料分析中,TG法也常与其他分析方法联用,进行综合热分析,从而全面、准确地分析材料的各项热性质.  1.3热重分析的数学表达式  根据定义,样品在热重分析过程的质量随温度或时间的变化,可用下式表示:(1)  或(2)  其中,式(1)多用于等温(或包含等温)条件下测得TG实验曲线,而式(2)则多用于非等温条件下的TG实验曲线.  在实际表示中,为突出“测量”过程,常用重量(weight)来代替质量(mass).  1.4微商热重法简介  微商热重曲线(derivative thermogravimetric curve,DTG曲线)是TG曲线进行一次微商的结果. 因此,DTG曲线表征样品质量随温度或时间的变化速率,其峰值即为样品质量减小的最大速率. 对于线性升温加热条件下的DTG曲线,其纵坐标单位一般是%/℃,表示温度升高1 ℃时,样品的相对质量变化. 而对于等温实验,DTG曲线纵坐标单位一般是%/s.  微商热重法的数学表达式为:(3)  线性程序控制温度时,也可用下式表式(4)  式中,β为实验中所采用的加热或降温速率,单位℃/min.  如前所述,DTG曲线表征样品质量的变化速率,因此,为进一步分析样品质量变化的加速或减速特性,类似地,可对DTG曲线进行再次微商处理,得到二阶微商热重曲线,即DDTG曲线.目前大多数商品化仪器,DTG曲线可通过仪器自带的微商处理功能直接转换得到. 与TG曲线相比,DTG曲线给出的样品质量随温度的变化速度信息,常常更直接反映了样品失重特性. 图1给出了XLPE在10 ℃/min的加热速率下得到的TG曲线和DTG曲线,由图可见,随着温度的升高,XLPE在410~470 ℃温度区间急剧失重,交联聚乙烯在此温度区间迅速裂解,样品质量减少约95%,DTG曲线失重峰,对应于TG曲线的失重台阶,而由TG曲线,也可见样品受热失重后最终的残余质量.Fig. 1TG and DTG curves of XLPE with the heating rate of 10 ℃/min in air atmosphere.     1.5热重分析的优缺点  1.5.1优点  热重法针对微量样品进行实验,具有操作简便、可重复性强、精度高、响应灵敏快速等优点. 热重法可准确测量物质在不同受热和气氛条件下的质量变化特征. 例如:对于升华、汽化、吸附、解吸、吸收和气固反应等质量可能发生变化的物理和化学过程,都可使用热重法进行检测与分析. 此外,对于熔融、结晶和玻璃化转变等往往不形成质量变化的热过程,也可通过热重分析与其他热分析方法联用,给出所关注热行为所在温度区间的样品质量不变信息,从而支撑所针对热过程的热流分析.  由于热重法所测结果可重复性强且精度高,基于热失重数据的动力学参数计算与分析,也更具可靠性. 此外,热重法仅需微量样品. 因此,针对不同的样品牌号、老化样品的不同区域,都可取样进行细致分析,可深入研究各产品间的细微差异,例如:产品在使用一段时间后的材料分相行为等.  1.5.2缺点  在实际应用中,热重法也存在着一定的局限性,主要包括两个方面:样品质量变化信息表征其复杂热行为的单一局限性、微量样品检测结果与工程尺度样品实际热响应性能的一致性.  首先,对于复杂的材料受热响应性能,热重法主要针对样品在整个受热过程中所形成气相产物溢出而导致的质量减少特征,在不同温度区间或不同受热时刻的细致质量减少信息,是热重分析输出的关键数据. 由于大多物理和化学过程往往都伴随着质量的变化,因此,样品的质量变化信息能够很大程度上表征各温度/时间区间的反应强度,然而,若需进一步确定其中详细的反应机理等信息,单凭热重数据往往并不完备. 因此,可通过将热重技术与其他分析技术联用,综合分析材料的详细热响应行为.  其次,如前所述,针对微量样品,热重分析可实现其测量结果及其后续计算分析的精确性与可靠性等优点. 然而,也正因为所检测样品的微量特性,使其测量结果不一定与工程尺度样品实际热响应性能完全一致,甚至由于实际工程中的复杂传热传质耦合过程,使热重分析不宜简单、直接地进行应用. 因此,一方面,进行热重分析时,应首先清晰掌握材料的实际工程应用背景,科学系统地制定热重实验方案,并进行多工况数据的综合分析,从而确保热重分析数据与实际工程应用场景的吻合与一致 另一方面,在条件具备时,基于热重分析结果,应进行一定的放大尺度条件下的实验研究,综合不同尺度条件下的测量结果,给出材料真实热响应性能.  2热重分析仪及其工作原理  2.1工作原理  热重分析仪(thermogravimetric analyzer)是在程序控制温度和一定气氛下,测量试样的质量随温度或时间连续变化关系的仪器. 测量时,通常将装有试样的坩埚置于与质量测量装置相连的试样支持器中,在预先设定的程序控制温度和一定气氛下,进行实验测量与数据实时采集.  热重分析仪的质量测量方式主要有2种:变位法和零位法[4]. 变位法是根据天平横梁倾斜的程度与质量变化成比例的关系,用差动变压器等检测该倾斜度,并自动记录所得到的质量变化信息. 零位法是采用差动变压器法、光学法等技术测定天平梁的倾斜度,通过调整安装在天平系统和磁场中线圈的电流,使线圈转动抑制天平横梁的倾斜. 由于线圈转动所施加的力与质量变化成比例,该力与线圈中的电流成比例,通过测量电流的变化,即可得到质量变化曲线.  2.2仪器组成与结构形式  热重分析仪主要由仪器主机(程序温度控制系统、炉体、支持器组件、气氛控制系统、样品温度测量系统、质量测量系统等)、仪器辅助设备(自动进样器、压力控制装置、光照、冷却装置等)、仪器控制和数据采集及处理模块组成.图2给出了热重分析仪的结构组成示意图.Fig. 2Schematic of typical TG equipment with the sample in a heating furnace, whose temperature is controlled with a program.     根据试样与天平刀线之间相对位置的不同,可将热重分析仪分为3类:下皿式、上皿式和水平式,其结构框图分别如图3~图5所示.Fig. 3Schematic of TG equipment with the crucibleat lower position of the vertical heating furnace.   Fig. 4Schematic of TG equipment with the crucible at higher position of the vertical heating furnace.   Fig. 5Schematic of TG equipment with the horizontal.     由图3~图5可见,仪器质量检测单元的天平与常规分析天平不同. 该类天平横梁的一端或两端置于气氛控制的加热炉中,可以连续记录试样质量随温度或时间的变化. 温度变化通过加热炉进行程序控制,试样周围温度通常用热电偶实时测量. 热天平和热电偶所测数据,由仪器内置软件进行记录与处理线.  2.3基于热重分析的联用技术简介  如前所述,热重分析仪自身存在一定局限性,通常可将其与其他分析技术联用,从而对样品热响应行为进行全面分析. 常用联用技术如下所述[4].  (1)同时联用技术. 是指在程序控温和一定气氛下,对一个试样同时采用2种或多种热分析技术. 主要包括:热重-示差扫描量热联用(TG-DSC)和热重-差热联用(TG-DTA),它们通常统称为同步热分析技术,简称STA.  (2)串接联用技术. 是指在程序控温和一定气氛下,对一个试样采用2种或多种热分析技术,后一种分析仪器与前一种分析仪器进行串接. 常用可串接联用技术包括:红外光谱技术(IR)、质谱技术(MS)、气相色谱技术(GC)等. 此外,对于串接联用技术,可采用2种联用模式,连续串接和间歇串接模式. 前者模式下,各联用技术均连续采样分析 而后种模式下,最后一级串接仪器进行间歇式采样与分析.  2.4仪器校准与状态评价  2.4.1仪器的校准  为了确保仪器工作正常和数据准确,在热重分析仪正式投入使用之前和使用期间,需分别对仪器的温度和质量测量器件进行校正. 由于不同热重分析仪结构类型的差异,其校准方法存在着一定差别.  2.4.2温度校正  温度校正(temperature correction)是用已知转变温度的标准物质确定仪器的测量值(Tm)和真实值(Ttr)之间关系的操作过程. 通过温度校正,可得到以下关系式:(5)  其中,ΔTcorr为温度校正值.  通过温度校正,可以消除仪器的温度测量值与真实值之间的差别. 例如:当使用熔融温度为156.6 ℃的金属In进行温度校正时,若所测熔融温度为154.1 ℃,则(6)  因此,在温度校正时,测量值应增加2.5 ℃.  进行仪器温度校正后,通常,还应在相同的实验条件下,使用标准物质进行重复实验,验证测量值与真实值之间的偏离程度.  在实际应用中,当温度范围较宽时,通常需要使用具有不同特征温度的系列标准物质,进行多点温度校正. 在实际校正时,可在仪器的校正软件中分别输入相应测量值,由仪器软件生成相应的校正曲线.  对于大多商品化热重分析仪,常用的温度校正方法主要包括以下几种:(15)  取2个实验点T1和T2,则有:(16)  (c) Achar-Brindley-Sharp公式[36],如式(17)所示(17)  采用不同f(α)函数,由以上线性方程的斜率获得E,由截距求得A.
  • 大昌华嘉即将于浙江大学举办“吸附表征技术的新进展”研讨会
    大昌华嘉公司将于2013年4月24日在浙江大学(玉泉校区)举办的&ldquo 吸附表征技术的新进展&rdquo 研讨会。 会议邀请BEL公司海外销售经理Joji Sonoda博士介绍最新的吸附表征技术进展,大昌华嘉吸附产品经理樊润将同步翻译。Joji Sonoda博士将会详细讲解多组分气体竞争吸附,低温化学吸附,纳克级吸附测量系统最新的相关应用,以及吸附过程分析仪如何测试等压吸附线和等温吸附线,并将介绍全球第一台IRMS-TPD 红外质谱连用TPD测定Brosnted酸和Lewi酸的应用。 美国麦奇克旗下的拜尔有限公司(BEL)是一家研究生产容量法气体吸附分析仪的专业制造厂商。第一台多功能催化剂表征分析仪,首创全自动蒸汽吸附系统,开发了容量法高压吸附仪,(容量法)多组分气体和/或蒸汽混合气体吸附仪,吸附过程分析仪,痕量气体吸附仪等,极大地丰富了表面吸附表征方法,同时也为拜尔公司高品质的产品和服务赢得了口碑。 附: 大昌华嘉商业(中国)有限公司科学仪器部专业提供分析仪器及设备,独家代理众多欧美先进仪器,产品范围包括:颗粒,物理,化学,生化,通用实验室的各类分析仪器,在中国的石油,化工,制药,食品,饮料,农业科技等诸多领域拥有大量用户,具有良好的市场声誉。 大昌华嘉商业(中国)有限公司 市场部 2013-4-10 会议日程: 时间: 2013年4月24日上午9:00-11:30 地点: 浙江大学 玉泉校区 邵科楼 会议室:211室 08:30 &ndash 08:45 报到 08:45 &ndash 09:00 大昌华嘉商业(中国)有限公司致辞 樊润 产品经理 09:00 &ndash 10:00 全球第一台IRMS-TPD 红外质谱连用TPD测定Brosnted酸和Lewi酸 高精度容量法吸附仪Belsorp-Max结合低温冷浴槽的应用 吸附过程分析仪Belsorp-PVT测试等压吸附线和等温吸附线等 Joji Sonoda博士, BEL 樊润, DKSH 10:00 &ndash 10:20 茶歇 10:20 &ndash 11:30 多组分气体竞争吸附用于CO2捕集和煤层气采集;MOF选择性吸附C2H2和CO2等 气体吸附和XRD同步测试,气体吸附同SAXS的同步测试, 吸附过程中柔性分子孔洞变化 低温化学吸附用于TPR和脉冲化学吸附,精确测定Pt/CeO2催化剂 纳克级吸附测量系统 BELQCM, 采用石英晶体微天平 Joji Sonoda博士, BEL 樊润, DKSH 11:30 &ndash 现场答疑 Joji Sonoda博士, BEL 樊润, DKSH 回执 姓名 单位 通讯地址 电话 手机 E-mail 邮编 拟与会人数及姓名 特别需要解决的问题 现有的仪器(或新的需求) 联系人:谷丰 13918227315 电话: 400 821 0778 电子邮箱: ins.cn@dksh.com
  • 【热点应用】高级多检测器SEC表征腺相关病毒载体的方法
    #本文由马尔文帕纳科应用专家冯慧庆供稿# 基因治疗是生物制药行业中一个快速增长的领域,通过基因治疗可实现疾病的治疗或预防。其中,重组腺相关病毒(rAAV)是目前基因治疗领域研究较多的一类病毒载体。腺相关病毒(adeno-associated virus, AAV)是微小病毒科(Parvoviridae)家族的成员之一,一般,研究中采用的重组腺相关病毒载体(Recombination adeno-associated virus, rAAV)是在非致病的野生型AAV基础上改造而成的基因载体,由于其种类多样、免疫原性极低、安全性高、宿主细胞范围广、扩散能力强、体内表达基因时间长等,rAAV被视为最有前途的基因研究和基因治疗载体之一。目前,rAAV的准确定量分析和表征的难度是阻碍基因治疗快速发展的关键因素。我们常常需要对rAAV进行综合全面表征,比如衣壳数量、实心率、颗粒尺寸、聚集体比例等。传统情况,rAAV滴度和病毒载量采用ELISA、ddPCR、AUC和EM等技术进行测量。但这些方法通常费时费力,而且精确度不高。本文通过GPC/SEC和多角度动态光散射(MADLS)两种分析技术分析rAAV5样品,展示了快速、准确和可靠地定量测量AAV的病毒滴度(AAV Titer)和实心率(% full AAV)的方法。 01仪器参数OMNISEC GPC/SEC多检测器系统非常适合于生物医药行业,可用于全面表征rAAV样品。OMNISEC包含一个示差折光检测器(RI),紫外线全波长阵列检测器(UV-Vis 190-900 nm)和光散射检测器,仅需一次进样,可精确测量绝对分子量、聚集体比例、病毒滴度和实心率。与传统HPLC不同,测量过程不依赖柱保留体积,也不需要一系列标样进行色谱柱校正。图1显示了使用OMNISEC测量的CQA关键质量参数。02检测方法我们采用Empty和Full rAAV5两个样品作为分析案例。Full rAAV5 载有已知分子量为785 kg/mol的PFB-GFP ssDNA。经qPCR和ELISA测量方式可知,该样本的病毒滴度为2.5x1013。采用色谱柱P4000和P3000串联,对rAAV样品的进行色谱分离。由OMNISEC软件采集分析测试结果,其中硬件系统包含OMNISEC RESOLVE(包含泵、自动进样器和柱温箱)和OMNISEC REVEAL(包含示差、UV/PDA和直角90°/小角7°光散射检测器)。样品经过分离洗脱后,使用共聚物分析方法确定样品两种不同组分的浓度和分子量。计算方法如下:其中,ConcCapsid是衣壳浓度(mg/mL),NA是阿伏伽德罗数,Mwcapsid是衣壳的分子量(g/mol),ConcDNA是DNA浓度(mg/mL),MwSeqDNA是来自序列的ssDNA的分子量。因此,通过计算出的颗粒浓度,可以很容易地得出样品实心率的百分比。 03检测结果案例一:图2显示了Empty rAAV5的三检测色谱图。RI信号由红色曲线表示,260 nm紫外信号由紫色曲线表示,直角光散射(RALS)信号由绿色曲线表示。样品包含四个部分:单体峰保留体积(RV)在12.5ml,碎片在16ml ,二聚体在10.5ml ,聚集体在8.5ml 。使用共聚物分析方法,可以得到表1结果。单体的分子量为3.84×106g/mol。衣壳的理论分子量为3.8×106g/mol,证实分析结果与预期相符。MW/Mn为分子量分布,描述了样品的分散性,单体和二聚体的值接近1,而聚集体和片段均显着高于1,表明在同一峰内有多个不同分子量的组分。Fraction of Sample表示样品组分百分含量,单体所占百分比为84.7%。Fraction of Protein显示了样品中衣壳的百分比,单体包含99.8%的衣壳。这证实了样本确实是Empty rAAV5。最后Empty rAAV5样品总滴度为5.91x1013Vp/ml。 案例二:第二个样品Full rAAV5的三检测器色谱图如图3所示。图中显示了与Empty rAAV5截然不同的色谱峰。分析色谱图可以看出,只包含两个不同的组分,其中单体峰,大概12.5ml RV处,包含Full 和Empty rAAV5的混合物,而聚集体出现在8ml RV处。测试结果见表2。对于主体的单体峰,计算出其混合物分子量为4.49×106g/mol,其中86%为衣壳。rAAV5的蛋白质组分的分子量为3.89×106g/mol,这与表1中Empty rAAV5 的数据一致。单体是总体的93.2%,样本的总滴度为7.48x1013VP/ml。其中单体包含78% Full rAAV5,22% Empty rAAV5。需要注意的是,这种分析方法假设样品要么是Full ,要么是Empty ,忽略部分装载或过度装载情况。Zetasizer Ultra纳米粒度及电位仪可以使用MADLS方式快速确定病毒滴度。从OMNISEC获得的数据与Zetasizer Ultra的粒子滴度进行了比较,两种技术之间有很好的相关性,见图4。另外,本文将Full rAAV5和Empty rAAV5以确定比例混合,来对Full rAAV5样品进行分析。表3显示了每个样品的预期值和实际值Full rAAV百分比。图5显示了期望值和实际值之间有很强的相关性,证实了OMNISEC确定样品实心率结果的可靠性。为了进一步评估OMNISEC对rAAV样品准确表征能力,我们进行了rAAV5样品的热应力稳定性研究,同时,基于ZS Ultra对聚集体的极高灵敏度,我们利用了ZS Ultra表征rAAV5聚集体的微小变化。测试条件是将rAAV5样品置于25oC到80oC之间进行测试。在不断加热过程中,在每个温度下测量rAAV5样品的粒径。在25oC和35oC之间,没有观察到粒径的变化。从35oC开始,可以观察到粒径开始增大,这表明样品开始发生变化(图6A)。30oC和45oC下的数据比较清楚地显示了这些样品之间的大小差异(图6B)。我们选择45oC条件,对OMNISEC进行进一步稳定性研究。将rAAV5样品在稳定在45oC,分别在2min 、5min、10min和15min后,取样品到OMNISEC上测试。图7色谱叠加图显示样品发生了明显的变化,聚集体百分含量增加,单体浓度含量降低。表4显示MW在此潜伏期内保持稳定,单体峰中的AAV百分比也保持稳定。结论:在这项研究中,我们展示了OMNISEC和Zetasizer Ultra在综合分析表征rAAV5样品的能力,以及将两者联合使用的应用价值。 OMNISEC多检测SEC系统将示差折光检测器、紫外全波长检测器、光散射检测器集成一体化设计,具有更高的灵敏度和准确度,通过一次进样分析,可提供各种血清型AAV样品的绝对分子量、衣壳大小、滴度、实心率、聚集体、片段和样品稳定性等关键质量属性。虽然这些参数中很多都可以使用传统的生物化学方法来确定,但OMNISEC提供了更为简单、可靠的方法,正逐渐成为一种表征分析AAV通用的技术工具。
  • 在线多维液相色谱-质谱法对单抗电荷变异的深度表征
    大家好,本周为大家分享一篇发表在Analytical Chemistry的文章,In-Depth Characterization of mAb Charge Variants by On-Line Multidimensional Liquid Chromatography-Mass Spectrometry[1]。本文的通讯作者是中国复宏汉霖生物制品有限公司的刘卓宇博士。  重组单克隆抗体(mAbs)正成为肿瘤和自身免疫性疾病最成功的治疗方法之一。与传统的小分子药物不同,抗体在电荷、大小和糖型上都非常不均匀。单克隆抗体的电荷异质性通常是由细胞培养、纯化和储存过程中发生的翻译后修饰(PTM)引起的。电荷变异由于其对单克隆抗体的安全性和有效性的潜在影响而引起了人们的注意。CEX通常用于组分收集,以收集纯化的变体进行结构征,然而,在CEX分离中使用的非挥发性离子试剂与MS检测器直接耦合时,往往会造成电离抑制和污染。为了避免这些问题,CEX馏分应在进一步LC-MS分析之前进行脱盐和浓缩。传统的峰收集、纯化和随后的组分表征方法是劳动密集型和耗时的,组分在这么长的时间里不稳定。此外,传统CEX-MS在分析分子量变化较小PTMs时难以进行表征。 在最近的研究中,基于CEX和MS的多维液相质谱技术,已经在研究电荷变异体上展现了诸多优点。通过CEX的组分收集和MS的分析,多维液相质谱实现了对电荷变异体的实时表征,在缩短了检测时间的同时,也减少了由于传统手工方法诱导的人工PTMs,并且能够得到之前无法检测到的不稳定的中间体。该技术具有较好的重现性和灵敏度,对PTM的序列可实现高覆盖率的表征。在所开发的方法中,在1D CEX上分离的11种电荷变体在自动进样器中被收集到96孔板中。随后,通过多次进样,将单个馏分装入二维柱上进行预浓缩,以收集适当的量。这种新方法能够自动收集低丰度的多种电荷变体,然后通过不同的在线过程进行彻底的表征,包括分子量分析、肽图谱和Fc-γ-RIIIa受体亲和力评估。  图1. mAb-A1和mAb-A2的CEX谱。通过优化的纯化工艺去除mAb-A1中的B5-B8峰,以消除信号肽相关变异,命名为纯化抗体mAb-A2。  如图1所示,mAb-A的CEX图谱显示出较高的电荷异质性,PTM引起的mAb-A1电荷异质性可能对产品的安全性和有效性构成潜在风险。虽然不需要的电荷变体可以通过下游净化过程消除,但变体的去除会显著降低产量,从而增加成本。因此,需要对mAb-A1电荷变体进行深入研究,以确定其对产品质量的影响,并为工艺优化提供信息。研究中,先通过2DLC(CEX × RP-C4)-MS分析鉴定了11个mAb-A1电荷变体,包括2个AP (A1和A2), 1个MP和8个BP (B1-B8)。一方面,2DLC(CEX × RP-C4)-MS方法具有时间效率,每个峰只需40分钟。另一方面,2DLC(CEX × RP-C4)-MS法省力。省去了传统脱机分析所需的超滤、预富集、脱机还原等人工操作。  变体在亚单位水平上通过高分辨率质谱初步鉴定。如图2所示,重链的TIC图谱在所有电荷变体中是一致的 通过对HC1和HC2峰的质谱分析,确定了HC上的PTMs,这些PTM是常见的,已报道对抗体的安全性和有效性影响不大。去卷积质谱显示,B5、B6、B7和B8的LC1峰被RVHS-LC2 (Arg-Val-His-Ser-LC2, MWLC2 + 479.5 Da)和TRVHS-LC2 (Thr-Arg-Val-His-SerLC2, MWLC2 + 580.6 Da)的信号肽相关变体所覆盖。由于这些物种在精氨酸残基位点易被色氨酸切割,因此可能在肽图谱中被错误地识别为含有VHS的变异。通过2DLC(CEX × RP-C4)-MS分析,可以很容易地在亚基水平上获得mAb-A1未截断的RVHS和TRVHS变体。  图2. 2DLC(CEX × RP-C4)-MS分析mAb-A1及其电荷变体的降低分子量。(A)总离子色谱图。(B) LC1的去卷积质谱。在mAb-A1的B5-B8变体中,LC1与未截断的RVHS和TRVHS分离。  通过4DLC(CEX × RP-C4 × Trypsin×RP-C18)-MS分析鉴定出7个mAb-A2的电荷变体,包括3个ap、1个MP和3个bp。在变体中获得的PTMs包括脱酰胺(图4B)、Pyro Q(图4C)、c端Lys截断/Pro酰胺化(图4D)和Met氧化(图4E)。所有ap均发现HC N55脱酰胺。据报道,HC N55的脱酰胺会影响抗原-抗体结合活性据报道,Fc氧化会影响FcRn结合,对药代动力学(PK)产生负面影响。4DLC(CEX × RP-C4 × Trypsin×RP-C18)-MS的数据采集在1天内完成,以小于0.5 mg的样品表征了mAb-A2的7个变体。mAb-A2的肽图谱序列覆盖率达到90%。  图3. 4DLC(CEX × RP-C4 × Trypsin×RP-C18)-MS在线肽图谱。(A)经鉴别的重叠色谱图mAb-A2主峰的肽段。(B)所有mAb-A2变异的HC N55脱酰胺。(C) N端谷氨酰胺环化成在所有mAb- A2变异体中HC Q1的焦谷氨酸。(D)在所有mAb-A2变体中,C端HC K450的赖氨酸截断和HC P448的脯氨酸酰胺化。(E) HC M255下蛋氨酸氧化。  由于Fc-γ-RⅢa的结合亲和力一般与ADCC效价具有良好的相关性,且Fc-γ-RⅢa的结合能力可以反映在Fc-γ-RvⅢa柱上,通过2DLC(CEX × Fc-γ-RⅢa)分析间接监测了mAb-a的电荷变体的生物活性。APs中峰3的丰度高于MP和bp,表明酸性峰具有更好的Fc-γ-RⅢa亲和力。对Fc-γ-RⅢa色谱中mAb-A2的三个峰进行分离,并进行离线N-聚糖分析,以获得准确的糖型分布结果。在峰1、峰2和峰3中观察到聚焦化和半乳糖基化的含量逐渐增加。集中化已被广泛报道可增强ADCC的活性有趣的是,观察到半乳糖基化对Fc-γ-RⅢa亲和力的积极影响,这与先前的研究一致。  图4 (A)Fc-γ-RⅢa亲和谱图2DLC(CEX×Fc-γ-RⅢa)分析。(B)mAb-A2的N-聚糖谱及其Fc-γ-RⅢa亲和组分 (峰1、峰2、峰3)。  综上,利用MDLC-MS系统深入表征电荷变体的结构和生物活性,包括分子量、PTMs和Fc-γ-RⅢa亲和力。该过程可以在发现和工艺开发阶段对单克隆抗体进行电荷变异分析。MDLC-MS可以在研发中发挥重要作用,使从DNA序列到新药研究(IND)申请的时间流程缩短。  撰稿:李孟效  编辑:李惠琳  文章引用:In-Depth Characterization of mAb Charge Variants by On-Line Multidimensional Liquid Chromatography-Mass Spectrometry  李惠琳课题组网址www.x-mol.com/groups/li_huilin  参考文献  1. Liu, Z., Y. Cao, L. Zhang, Y. Xu,Z. Zhang.(2023).In-Depth Characterization of mAb Charge Variants by On-Line Multidimensional Liquid Chromatography-Mass Spectrometry. Analytical chemistry.
  • “吸附表征技术在催化领域的新进展”研讨会 - 福州站
    近年来,随着我国经济的高速发展,分析催化所面临的机遇、挑战及未来发展方向变得尤为重要。大昌华嘉公司借此机会于2016年4月15日在福州怡山大酒店举办关于“吸附表征技术在催化领域的新进展”研讨会。探讨和交流材料领域中的催化科学与技术!研讨会将介绍最新吸附表征技术进展,多组分气体竞争吸附,低温化学吸附,纳克级吸附测量系统的最新相关应用,并将介绍粒度粒形及XRF技术在催化领域的相关应用。欢迎各位专家莅临交流和指导。会议信息时间: 2016年4月15日上午9:00-16:00地点:怡山大酒店 (福州市鼓楼区工业路577路)内容:- 吸附表征技术在催化领域的应用- 粒度粒形在催化领域的应用- XRF在催化领域的应用 美国麦奇克旗下的拜尔有限公司(BEL)是一家研究生产容量法气体吸附分析仪的专业制造厂商。第一台多功能催化剂表征分析仪,首创全自动蒸汽吸附系统,开发了容量法高压吸附仪,(容量法)多组分气体和/或蒸汽混合气体吸附仪,吸附过程分析仪,痕量气体吸附仪等,极大地丰富了表面吸附表征方法,同时也为拜尔公司高品质的产品和服务赢得了口碑。 美国麦奇克有限公司(Microtrac Inc.)是世界上最著名的激光应用技术研究和制造厂商,其先进的激光粒度分析仪已广泛应用于水泥,磨料,冶金,制药,石油,石化,陶瓷,军工等领域,并成为众多行业指定的质量检测和控制的分析仪器。Microtrac Inc.公司非常注重技术创新,近半个世纪以来,一直领先着激光粒度分析的前沿技术,可靠的产品和强大的应用支持及完善的售后服务,使得其不断超越自我,推陈出新,独领风骚。帕纳科是全球X射线荧光光谱分析仪器及软件的主要供应商之一。分析仪器主要应用于科学的研究和发展、工业过程控制以及半导体材料的物性测量领域。可为客户提供量身定制的无损分析解决方案,用以分析表征广泛的产品,例如石化产品、塑料和聚合物、环境、医药、采矿、建筑材料、研究与教育、金属、食品和化妆品等多个行业领域。大昌华嘉商业(中国)有限公司服务电话:400 821 0778邮箱地址:ins.cn@dksh.com大昌华嘉网站:www.dksh-instrument.cn扫描关注“大昌华嘉科学仪器部”公众号
  • 大昌华嘉即将于福州举办“吸附表征技术在催化领域的新进展”研讨会
    大昌华嘉公司将于2013年6月7日在福州饭店举办&ldquo 吸附表征技术在催化领域的新进展&rdquo 研讨会。 会议邀请到Gifu大学Pro. Yoshihiro SUGI讲解择形催化技术及BEL公司Joji Sonoda博士介绍最新吸附表征技术进展,多组分气体竞争吸附,低温化学吸附,纳克级吸附测量系统的最新相关应用,并将介绍全球第一台IRMS-TPD 红外质谱连用TPD测定Brosnted酸和Lewi酸的应用,大昌华嘉吸附产品经理樊润将同步翻译。 美国麦奇克旗下的拜尔有限公司(BEL)是一家研究生产容量法气体吸附分析仪的专业制造厂商。第一台多功能催化剂表征分析仪,首创全自动蒸汽吸附系统,开发了容量法高压吸附仪,(容量法)多组分气体和/或蒸汽混合气体吸附仪,吸附过程分析仪,痕量气体吸附仪等,极大地丰富了表面吸附表征方法,同时也为拜尔公司高品质的产品和服务赢得了口碑。 大昌华嘉商业(中国)有限公司科学仪器部专业提供分析仪器及设备,独家代理众多欧美先进仪器,产品范围包括:颗粒,物理,化学,生化,通用实验室的各类分析仪器,在中国的石油,化工,制药,食品,饮料,农业科技等诸多领域拥有大量用户,具有良好的市场声誉。 附Yoshihiro SUGI教授简介: Yoshihiro SUGI, Faculty of Engineering, Gifu University Awards: 1994 Prize for Distinguished Patent Applications, Agency of Science and Technology 1995 JPI Prize for Distinguished Papers. 1996 Prize for Distinguished Patent Applications, Agency of Science and Technology 2003 The Best Article of the Month, BCSJ #5, 2003. 2009 The Japan Petroleum Institute Award Major Interest: Catalysis (Homogenous and Heterogenous), Zeolite Synthesis, Ecomaterials. 大昌华嘉商业(中国)有限公司 市场部 2013-5-10 会议日程: 时间: 2013年6月7日上午9:00-17:00 地点: 福州大饭店 斗东路1号 左海园 08:30 &ndash 08:45 报到 08:45 &ndash 09:00 大昌华嘉商业(中国)有限公司致辞 樊润 产品经理 09:00 &ndash 10:00 Zeolite: Shape-selective catalysis in confined channels Pro. Yoshihiro SUGI,Gifu大学 10:00 &ndash 10:20 茶歇 10:20 &ndash 11:50 全球第一台IRMS-TPD 红外质谱连用TPD测定Brosnted酸和Lewi酸 高精度容量法吸附仪Belsorp-Max结合低温冷浴槽的应用 吸附过程分析仪Belsorp-PVT测试等压吸附线和等温吸附线等 Joji Sonoda博士,BEL 樊润,DKSH 12:00 &ndash 13:00 午餐 13:00 &ndash 15:00 多组分气体竞争吸附用于CO2捕集和煤层气采集;MOF选择性吸附C2H2和CO2等 气体吸附和XRD同步测试,气体吸附同SAXS的同步测试, 吸附过程中柔性分子孔洞变化 低温化学吸附用于TPR和脉冲化学吸附,精确测定Pt/CeO2催化剂 纳克级吸附测量系统 BELQCM, 采用石英晶体微天平 Joji Sonoda博士,BEL 樊润,DKSH 15:00 &ndash 16:00 麦奇克激光粒度粒形分析系统 樊润,DKSH 16:00 &ndash 现场答疑 Joji Sonoda博士,BEL 樊润,DKSH 回执 姓名 单位 通讯地址 电话 手机 E-mail 邮编 拟与会人数及姓名 特别需要解决的问题 现有的仪器(或新的需求) 联系人:汪培 15201888935 电话: 400 821 0778电子邮箱: ins.cn@dksh.com
  • 马尔文成功在京举办颗粒表征技术及应用研讨会
    仪器信息网讯 为深入研究探索颗粒表征方法,2014年5月26日,马尔文仪器成功在京举办了&ldquo 颗粒表征技术及应用研讨会&rdquo ,近200位颗粒测试领域的专家及用户出席了会议,仪器信息网作为特邀媒体参会。 会议现场   马尔文仪器的大客户经理Stephen Ward-Smith博士、激光衍射产品专家李雪冰博士、生物科学专家张帅博士等人在会上详细介绍了NanoSight NS300纳米颗粒跟踪分析仪、Mastersizer3000激光粒度仪、Zetasizer Nano系列纳米粒度仪、Spraytec高速喷雾粒度仪、Morphologi G3-ID颗粒形状及颗粒化学组分分析仪等产品的技术原理与实际应用。 马尔文仪器大客户经理Stephen Ward-Smith博士   激光衍射技术本身简单易懂,但如何能够利用这个技术得到稳定可靠的结果却并非易事。不同的样品特性可能会采取不同的分散测试方法,而不同的分散方法可能面临不同的影响因素,在这些众多的影响因素里,我们该如何选择、判定直至最后找到合适的参数?对此,Stephen博士以湿法分散与干法分散两种常见的分散方式为例,比较了两者之间的优势,并对不同进样方式的方法开发及常见问题等进行了介绍。   湿法分散影响因素较多,在这些影响因素中,溶剂的选择、搅拌速度、超声强度及时间、表面活性剂的使用等是比较关键的影响因素,用户可以通过实验对这些关键影响因素一一考量,确定适合的参数并进行风险评估,直至确定最终的测试方法并进行验证。   同时湿法分散过程中常常会发生溶解、聚集等问题,这些问题如何来判定?有何现象?怎么来解决?对此,Stephen博士做了比较详细的介绍。比如微溶现象最显著的表现就是遮光度下降的同时D10反而逐渐变大,这种反常可能就是颗粒发生了微溶从而导致小颗粒&ldquo 消失&rdquo ,如果发生了这种现象,Stephen博士给出了几种补救方案,比如更换溶剂、使用饱和溶液或者快速测量等方案。当然如果样品出现聚集问题,用户可以通过调整分散泵速以及加入表面活性剂/添加剂来解决,但一定要注意控制气泡的产生。   而干法分散往往是颗粒分散和颗粒破碎之间的一种较量,因此对于分散压力的选择至关重要。Stephen博士表示,干法分散拥有快速、可以测量相当大的样品量的优点。相比湿法分散,干法分散不容易控制,用户可以通过调节分散压力,从而使聚集物分散却不使原始颗粒破碎;过快的进料速率将降低分散系统的效率,用户可以通过优化进料速率,使样品流速保持一致。   Stephen博士建议,干法分散可以通过压力滴定实验来确定实际的分散压力,压力由高到底,通过观察颗粒粒径随压力的变化来判定颗粒的状态,是分散还是破碎,从而找到颗粒分散的最佳压力平台。   会议现场,马尔文仪器特别展示了其NanoSight NS300纳米颗粒跟踪分析仪和Mastersizer 3000激光粒度仪。 NanoSight NS300纳米颗粒跟踪分析仪   马尔文NanoSight NS300基于一种独特的纳米颗粒跟踪分析技术(以下简称:NTA),对大小在10&ndash 2000nm范围内的纳米颗粒进行快速可视的动态检测,其测量的参数包括颗粒粒径、浓度和颗粒的聚集。该仪器可以跟踪每一个纳米颗粒的运动轨迹,以此得到整个样品体系的粒径分布信息,同时,实时监测样品的运动、聚集过程。其典型应用表现在蛋白质聚集、药物传输、纳米颗粒毒理、病毒和疫苗等研究领域,因此该仪器是马尔文仪器公司力推的一款颗粒测试表征产品。 Mastersizer 3000 超高速智能粒度分析仪   Mastersizer 3000是马尔文仪器公司于2011年隆重推出的一款全新的粒度分析仪,采用全新的折叠式光路设计,量程宽达10nm-3.5mm,准确度和仪器间的重现性均优于1%,配有先进的Aero干法分散附件系列与快速高效的Hydro湿法分散附件系列。 现场答疑解惑 用户参观仪器 (编辑:刘玉兰)
  • 大昌华嘉材料表征技术的新进展和实际操作应用 - 北京站
    大昌华嘉公司将于2016年4月14日在北京丽亭华苑酒店举办的“材料表征技术的新进展和实际操作应用”研讨会。 研讨会将邀请MicrotracBEL海外经理Yung YongSang介绍最新吸附表征技术进展,多组分气体竞争吸附,低温化学吸附,纳克级吸附测量系统的最新相关应用,并结合仪器的数据处理进行详细解读数据,以及粒度粒形的相关应用,欢迎各位专家莅临交流和指导。会议信息时间: 2016年 4月14日上午9:00-17:00 地点: 北京市海淀区知春路25号(地铁10号线知春路站F 口) 表面吸附技术专家美国麦奇克旗下的拜尔有限公司(BEL)是一家研究生产容量法气体吸附分析仪的专业制造厂商。第一台多功能催化剂表征分析仪,首创全自动蒸汽吸附系统,开发了容量法高压吸附仪,(容量法)多组分气体和/或蒸汽混合气体吸附仪,吸附过程分析仪,痕量气体吸附仪等,极大地丰富了表面吸附表征方法,同时也为拜尔公司高品质的产品和服务赢得了口碑。 粒度仪领航者美国麦奇克有限公司(Microtrac Inc.)是世界上最著名的激光应用技术研究和制造厂商,其先进的激光粒度分析仪已广泛应用于水泥,磨料,冶金,制药,石油,石化,陶瓷,军工等领域,并成为众多行业指定的质量检测和控制的分析仪器。大昌华嘉商业(中国)有限公司(DKSH China)是一家著名的国际贸易集团,总部位于瑞士的苏黎世。公司自1900年以来便与中国进行友好贸易往来,业务范围涉及机器、仪器、消费品、纺织品、化工原料等诸多领域。 大昌华嘉仪器部专业提供分析仪器及设备,独家代理众多欧美先进仪器,产品范围包括:颗粒,物理,化学,生化,通用实验室的各类分析仪器以及流程仪表设备,在中国的石化,化工,制药,食品,饮料,农业科技等诸多领域拥有大量用户,具有良好的市场声誉。我们的业务逐年增加,市场不断扩大。大昌华嘉公司在中国设有多个销售,服务网点,旨在为客户提供全方位的产品和服务。 激光粒度分析仪/颗粒图像分析仪 -- 美国麦奇克(Microtrac)公司 纳米颗粒跟踪分析仪/快速颗粒电位滴定仪 -- 德国Particle Metrix公司 比表面及孔隙度分析仪/化学吸附仪 -- 日本麦奇克拜尔(MicrotracBEL)公司 视频光学接触角测量仪、表面/界面张力仪 -- 瑞典百欧林(Biolin)公司 堆密度计 -- 英国康普利(Copley)公司 密度计/旋光仪/折光仪/糖度仪 -- 美国鲁道夫(Rudolph)公司 全自动氨基酸分析仪 -- 英国百康(Biochrom)公司 元素分析仪、TOC总有机碳分析仪、快速氮测定仪 -- 德国Elementar公司 薄层色谱扫描仪、点样仪 -- 德国Biostep公司 水份活度仪 -- 瑞士Novasina公司 火焰光度计/氯离子分析仪 -- 英国Sherwood公司 能量色散型X射线荧光光谱仪 -- 荷兰帕纳科(PANalytical)公司 标准油 -- 加拿大SCP SCIENCE / CONOSTAN公司样品前处理, 所有AA、ICP以及XRF所使用的耗材,标液,试剂 -- 加拿大SCP SCIENCE / CONOSTAN公司凯氏定氮仪 -- 德国贝尔(Behr)公司 全自动化学反应器/量热仪 -- 瑞士Systag公司大昌华嘉商业(中国)有限公司科学仪器部地址:上海市虹梅路1535号星联科研大厦2幢605-607单元[200233] 电话:4008210778/4006683886 传真:021-33678466 E-Mail:ins.cn@dksh.com
  • 中国计量科学研究院李红梅团队:肝素类药物结构表征新方法建立
    p style=" text-indent: 2em " 中国计量科学研究院李红梅团队近期在Carbohydrate Polymers发表系列文章,阐述了团队近3年来针对肝素类药物结构表征新方法开发取得的研究进展(Wang, Zhang et al. 2018, Zhang, Liu et al. 2019, Zhang, Xie et al. 2020)。 /p p style=" text-indent: 2em margin-bottom: 10px " 肝素类药物是一种目前临床上应用最广泛的多糖类抗凝血药物,其构成组分极为复杂,分子量分布范围广,其中各组分的精细结构及含量决定了其药物活性。亚硝酸降解是针对肝素类药物进行结构分析的重要手段。降解得到的寡糖片段保留了肝素类药物的差向异构化构象,而差向异构化构象与药物活性密切相关。然而由于亚硝酸降解产物结构的复杂性,针对该类寡糖结构一直缺乏完善的表征方法。李红梅团队成功利用超高效亲水/弱阴离子交换色谱(UPLC-HILIC/WAX-MS)与高分辨串联质谱联用的分析方法,形成了一套完整的、针对亚硝酸降解产物的分析体系(图1)。另一方面,团队还建立了基于离线强阴离子交换-质谱(offline-SAX-MS)序列分析的寡糖链结构表征方法。以上方法适用于所有肝素类似物的结构表征,可以用来分析人工合成的、结构多样的硫酸乙酰肝素(HS),探究结构-功能的对应关系;完善肝素类药物结构表征方法,优化产品工艺,提升药物的安全性和有效性。 /p p style=" text-align: center" img style=" max-width: 100% max-height: 100% width: 620px height: 419px " src=" https://img1.17img.cn/17img/images/202010/uepic/a67b8516-6919-461b-b256-81d7f99d1a02.jpg" title=" 2.png" alt=" 2.png" width=" 620" height=" 419" / /p p style=" text-align: center " span style=" font-size: 14px color: rgb(89, 89, 89) " strong 图1:亚硝酸降解四糖的UHPLC-MS表征 /strong /span /p p style=" text-indent: 0em margin-top: 10px " Wang, Z., T. Zhang, S. Xie, X. Liu, H. Li, R. J. Linhardt and L. Chi (2018). & quot Sequencing the oligosaccharide pool in the low molecular weight heparin dalteparin with offline HPLC and ESI–MS/MS.& quot Carbohydrate Polymers 183(Supplement C): 81-90. /p p style=" text-indent: 0em " Zhang, T., X. Liu, H. Li, Z. Wang, L. Chi, J. P. Li and T. Tan (2019). & quot Characterization of epimerization and composition of heparin and dalteparin using a UHPLC-ESI-MS/MS method.& quot Carbohydr Polym 203: 87-94. /p p style=" text-indent: 0em " Zhang, T., S. Xie, Z. Wang, R. Zhang, Q. Sun, X. Liu, L. Chi, J. P. Li, H. Li and T. Tan (2020). & quot Oligosaccharides mapping of nitrous acid degraded heparin through UHPLC-HILIC/WAX-MS.& quot Carbohydr Polym 231: 115695. /p p style=" text-indent: 2em margin-top: 10px " strong span style=" color: rgb(38, 38, 38) " 学者简介: /span /strong span style=" color: rgb(38, 38, 38) " 李红梅:研究员,中国计量科学研究院化学所所长。享受国务院政府特殊津贴,全国“三· 八”红旗手荣誉称号获得者。 /span /p
  • 许国旺课题组在液相色谱-高分辨质谱石油分子表征新方法研究中取得新进展
    近日,许国旺课题组在石油组学的研究中取得了系列新进展。建立了基于液相色谱-高分辨质谱联用(LC-HRMS)的石油分子表征方法、石油组学数据处理新策略及结构定性新方法,可充分挖掘色谱质谱数据中的石油组分信息,实现多维、全景的分子表征。石油及其产品是现代工业生活的重要组成部分。从分子水平认识石油组成及转化规律,实现高效精准石油加工,促进炼油技术的进步非常重要。石油分子的结构表征是石油组学的一个瓶颈。HRMS被广泛用于石油的分子表征,但目前仍缺乏简便的在线LC-HRMS方法和相应的专用数据处理方法。图1 基于在线LC-HRMS的石油分子表征方法课题组建立了基于在线LC-HRMS的石油分子表征方法(图1),表征结果与经典的FT-ICRMS方法相符。该方法可有效降低样本的基质效应,扩大检测覆盖度得到更多的分子类型,实现石油中碱性氮和中性氮类化合物在正离子电喷雾下的同时检出,适合于从轻到重的石油馏分的分子表征。图2 石油组学在线LC-HRMS数据处理流程在此基础上,开发了专用于石油LC-HRMS分析的数据处理新策略(图2)。该策略根据待分析样品LC-HRMS原始数据生成石油分子数据库,极大地减少冗余信息,通过整合组分的色谱保留行为,在有效减少低信号化合物信息丢失的同时,确保了表征结果的可靠性。该策略可实现全景多维的石油分子表征。图3 基于在线LC-HRMS的石油中氮杂环类化合物的结构表征方法针对石油分子结构表征问题,课题组开发了能量分辨的在线LC-HRMS串联质谱方法用于石油中含氮类化合物的母核结构表征(图3)。根据不同的氮杂环类模型化合物,总结碎裂规律,建立了详细的母核结构推断流程。此方法可有效区分石油中相同分子式但母核结构不同的异构体,可为石油加工过程中组分的结构变化提供基础数据。上述工作得到了中国石油-大连化物所能源化工联合研发中心项目、国家自然科学基金、大连化物所创新基金等项目的资助。相关成果分别发表在《Fuel》、《Journal of Chromatography A》和《Talanta》上。上述工作与中国石油天然气股份有限公司石油化工研究院以及大连理工大学林晓惠教授课题组合作,第一作者为大连化物所博士研究生夏悦怡,通讯作者为路鑫研究员和许国旺研究员。文章链接:https://www.sciencedirect.com/science/article/pii/S0016236120320317?via%3Dihubhttps://www.sciencedirect.com/science/article/pii/S0021967322003879https://www.sciencedirect.com/science/article/pii/S0039914022004507
  • 高分子表征技术专题——荧光关联光谱在高分子单链研究中的应用
    2021年,《高分子学报》邀请到国内擅长各种现代表征方法的一流高分子学者领衔撰写从基本原理出发的高分子现代表征方法综述并上线了虚拟专辑。仪器信息网在获《高分子学报》副主编胡文兵老师授权后,也将上线同名专题并转载专题文章,帮助广大研究生和年轻学者了解、学习并提升高分子表征技术。在此,向胡文兵老师和组织及参与撰写的各位专家学者表示感谢。高分子表征技术专题前言孔子曰:“工欲善其事,必先利其器”。 我们要做好高分子的科学研究工作,掌握基本的表征方法必不可少。每一位学者在自己的学术成长历程中,都或多或少地有幸获得过学术界前辈在实验表征方法方面的宝贵指导!随着科学技术的高速发展,传统的高分子实验表征方法及其应用也取得了长足的进步。目前,中国的高分子学术论文数已经位居世界领先地位,但国内关于高分子现代表征方法方面的系统知识介绍较为缺乏。为此,《高分子学报》主编张希教授委托副主编王笃金研究员和胡文兵教授,组织系列从基本原理出发的高分子现代表征方法综述,邀请国内擅长各种现代表征方法的一流高分子学者领衔撰写。每篇综述涵盖基本原理、实验技巧和典型应用三个方面,旨在给广大研究生和年轻学者提供做好高分子表征工作所必须掌握的基础知识训练。我们的邀请获得了本领域专家学者的热情反馈和大力支持,借此机会特表感谢!从2021年第3期开始,以上文章将陆续在《高分子学报》发表,并在网站上发布虚拟专辑,以方便大家浏览阅读. 期待这一系列的现代表征方法综述能成为高分子科学知识大厦的奠基石,支撑年轻高分子学者的茁壮成长!也期待未来有更多的学术界同行一起加入到这一工作中来.高分子表征技术的发展推动了我国高分子学科的持续进步,为提升我国高分子研究的国际地位作出了贡献. 借此虚拟专辑出版之际,让我们表达对高分子物理和表征学界的老一辈科学家的崇高敬意! 原文链接:http://www.gfzxb.org/article/doi/10.11777/j.issn1000-3304.2020.20238《高分子学报》高分子表征技术专题链接:http://www.gfzxb.org/article/doi/10.11777/j.issn1000-3304荧光关联光谱在高分子单链研究中的应用周超 1,2 ,杨京法 1,2 ,赵江 1,2 1.中国科学院化学研究所机构 北京 1001902.中国科学院大学机构 北京 100049作者简介: 赵江,男,1967年生. 分别于1989年、1992年在吉林大学物理系获得学士、硕士学位,1995年于中国科学院物理研究所获得博士学位,之后分别于北京大学化学与分子工程学院、日本产业综合研究所、美国伊利诺伊大学从事博士后研究,2004年起于中国科学院化学研究所任研究员,入选中国科学院“百人计划”,2009年获得国家杰出青年科学基金资助,2013年当选美国物理学会Fellow. 以单分子荧光显微与光谱方法开展关于高分子物理基础性研究,研究方向包括:多电荷大分子、聚合物表界面、高分子动力学、相变与玻璃化转变等 通讯作者: 赵江, E-mail: jzhao@iccas.ac.cn摘要: 荧光关联光谱(fluorescence correlation spectroscopy,FCS)是一项用于研究体系动力学性质的统计光谱技术,随着它被引入材料与化学研究领域,近年来取得了大量全新的研究成果. 该技术在高分子科学研究中也逐渐发挥出越来越大的作用,特别是在聚合物结构和动力学方面,这表明它在高分子领域的巨大潜力. 本文将从FCS的基本原理、实验技巧以及在一些具有挑战性体系中的应用等方面展开,着重介绍它在高分子溶液,如聚电解质溶液、高分子混致不溶现象,以及不同的表界面体系中取得的新成果,展示FCS区别于其他传统技术的特点和优势.关键词: 荧光关联光谱 / 高分子 / 聚电解质 / 表界面 / 混致不溶 目录1. 荧光关联光谱的基本原理2. 荧光关联光谱的实验技巧2.1 实验样品的标记和纯化2.2 激发体积的校准3. 荧光关联光谱在高分子单链研究中的应用3.1 FCS在聚电解质体系中的应用3.2 FCS在高分子混致不溶现象中的应用3.3 FCS在表界面体系中的应用3.4 FCS在有外场作用的体系中的应用4. 荧光关联光谱技术的发展和应用5. 结论参考文献高分子物理研究的目标之一是探究聚合物在不同尺度上的结构与动力学,及其对于高分子体系性质的决定性. 其中,聚合物构象是最为基础的研究内容. 高分子构象是指由于主链上单键内旋转而产生的分子链在空间的不同形态. 对于中性聚合物体系,由于分子链的结构自相似性,利用标度理论可以成功描述其在良溶剂、θ溶剂以及不良溶剂中分子链的尺寸. 散射技术是研究高分子链构象最成功的方法,如:光散射、X射线散射以及中子散射. 就动态光散射而言,它通过检测高分子溶液散射光强随时间涨落而得到其关联函数,从而获得单分子链的扩散速率信息,并获得分子链的流体力学半径信息[1,2]. 结合静态散射实验所获得的回转半径,可以确定聚合物在溶液中的形态[3,4]. 虽然光散射方法在具有短程相互作用的中性聚合物体系表征中非常成功,但是该项技术在一些条件或情形下却遇到了很大的困难,如:多电荷体系、多组分复合体系、表界面体系等. 在多电荷体系中,多重长程静电相互作用使得动态光散射信号中出现令人费解的“快慢模式”[5~7]. 用光散射法来考察高分子的混致不溶现象时,混合溶液中强烈的组分涨落导致强烈的光散射背景信号,严重影响了光散射对信息的提取[8]. 因此,采用新的技术和研究方法开展高分子表征无疑是重要的.荧光关联光谱(fluorescence correlation spectroscopy,FCS)是表征高分子的有效新方法之一. 它与动态光散射同属于光子相关光谱技术,通过分析光信号的涨落而得到分子链动力学信息. 然而,FCS具有很高的探测灵敏度,通过获取荧光涨落信号而得到单个分子的动力学信息. 荧光关联光谱技术是由Madge、Elson和Webb[9~11]在20世纪70年代发展起来的,20世纪90年代,随着Rigler等[12]将共聚焦技术引入,FCS得到快速发展. 采用共聚焦显微技术,FCS的激发-探测空间体积缩小至~10−15 L,激发-探测空间内的分子数目大大地降低,实验的信噪比也随之提高. 与此同时,具有很高灵敏度的单光子检测器的采用使得FCS实现了单分子水平的测量. 随着计算机技术的进步,数据采集卡能够实时地进行数据的采集和相关性计算,使得FCS技术得到了重要的突破,在科学研究中的应用也越来越广泛.近年来,FCS在高分子物理研究中逐渐表现出重要作用,相比于传统的散射技术,它有着独特的优势. 第一,FCS具有极高的灵敏度,可以在极稀薄条件下(~10−9 molL−1)进行测量,同时具有达到光学衍射极限空间分辨率(~200 nm)与出色的时间分辨率(10−6 s). 第二,FCS的信噪比与聚合物的分子量无关. 在实验中,聚合物链通过化学键合的方式实现一比一的荧光标记,因此,分子量不同的样品对于信号的贡献相同. 但是,对于光散射技术而言,散射光强与聚合物分子量具有依赖性,因而信噪比也随之改变,分子量偏小样品的实验难度较大. 第三,对样品的荧光标记同样带来了可选择性与识别性,实现了同一体系中不同组分的区分式研究. 例如,通过对不同组分使用不同的荧光分子进行标记,采用多色FCS对各组分间的运动及其关联进行分析;也可选择性地对多组分体系中的特定组分进行标记,实现复杂体系中特定组分的研究.伴随着FCS技术的发展以及与其他研究手段的联用,其应用越来越广泛,从最初的生物领域[13~15]到胶体[16,17]、聚合物[18,19],从溶液[20~23]到熔体[24~26]、凝胶[27~29]、表界面体系[30~32]等,都取得了许多原创性的成果. 值得指出的是,FCS在测量平动和转动扩散系数、反应速率常数、平衡结合常数、细胞内粒子浓度等方面有着突出的优势[33~35].1. 荧光关联光谱的基本原理当一个体系处于热力学平衡态时,分子的热运动会导致体系浓度、密度等发生局部涨落. 通过相关分析方法,计算这些局部涨落的关联函数,就可以从信号中提取出体系的热力学信息. 动态光散射技术正是运用了此方法,通过测量溶液的散射光强随时间涨落而获得其关联函数,从而获得样品的动力学信息. 荧光关联光谱测量共聚焦空间内样品荧光强度随时间的涨落,通过计算其关联函数而得到对涨落有贡献的热力学性质信息.在激发空间内在任一时刻荧光强度F(t),激发空间内荧光信号在t时刻的强度涨落δF(t)为:其中,⟨F(t)⟩=1/T∫0TF(t)dt,为从0到T 时间内的平均荧光强度.上述涨落的归一化自关联函数为G(τ):自关联函数包含了导致共聚焦空间内荧光信号强度涨落的所有信息,如:平动及转动扩散导致的荧光信号涨落、探针的光物理和化学变化(如:三重态)等导致的涨落等. 对于单光子激发体系,激发空间内的光强分布满足三维高斯分布,对在溶液中进行三维扩散的荧光分子而言,其浓度的涨落满足扩散方程,因而其关联函数的表达式为:其中,Veff=π1.5w02z0为激发空间的体积,特征时间τD=w02/4D为荧光分子通过激发空间所需的平均时间. G(0)=1/Veff⟨c⟩=1/N为激发空间内荧光分子平均数目的倒数,当样品的浓度越低时,G(0)值越大.从G(τ)的表达式可知,FCS的自关联函数有4个变量w0、z0、⟨c⟩、D,其中w0、z0属于仪器的参数,即共聚焦空间的横向半径与纵向半高度,而⟨c⟩、D分别是荧光分子的平均浓度和扩散系数. 因此,在准确标定仪器参数w0w0、z0z0的条件下,通过数值拟合将得到未知样品的浓度和扩散系数. 扩散分子的流体力学半径可以根据Stokes-Einstein方程得到:其中,kB为玻尔兹曼常数,T为温度,η为介质黏度.FCS仪器结构如图1所示,激光器的输出光经过准直扩束后由二向色镜反射进入物镜,并经物镜聚焦在样品中激发荧光. 产生的荧光由同一物镜收集,再次通过二向色镜以及滤镜将杂散的激光以及背景光过滤压制,最终由透镜聚焦并由针孔进行空间滤波进入到检测收集系统.图 1Figure 1. Schematic illustration of instrument structure of fluorescence correlation spectroscopy.由于单光子检测器可能出现接收一个光子产生多个电子的情况,为了消除这个过程带来的误差,可以将荧光信号分成等强度的两部分,然后对2个通道内的信号作交叉关联:2. 荧光关联光谱的实验技巧由于一般的聚合物不发光,因此FCS实验所采用的样品需要进行荧光标记. 另外,在实验操作方面,最需要注意对于激发体积的严格校准,以确保实验测量的准确性.2.1 实验样品的标记和纯化样品标记方法主要有以下2种:第一,在样品需要标记的位点预留反应的基团,如:氨基、羧基、叠氮基团等,再根据不同的基团及FCS实验的要求选择合适的活性荧光分子进行化学键合. 为了获得较高的标记效率,在标记过程中加入的荧光分子的量远大于聚合物,所以反应结束后有大量游离的自由荧光分子存在,需要通过体积排除色谱和超滤等方法进行分离提纯,直至滤液中不再检测到荧光信号.第二,在样品合成过程中加入适当比例的共聚合荧光单体进行共聚,例如,通过RAFT聚合制备聚异丙基丙烯酰胺(PNIPAM)时,可以加入适当比例的荧光单体来合成具有一定分子量范围、分子量分布较窄和荧光标记的样品[36]. 反应完成后同样也需要超滤、透析等方式进行分离提纯.2.2 激发体积的校准FCS实验之前,需要对仪器进行校正得到仪器激发体积的参数. 采用已知浓度和扩散系数的荧光分子样品来进行校正,例如Rhodamine 6G (Rh6G)分子,它在纯水中的扩散系数为414 μm2s−1 (25 °C),实验中一般将其配置成5×10−9 molL−1 (5 nmolL−1)的水溶液进行FCS测量,然后通过对测得的关联函数进行拟合即可得到激发空间的尺寸.另外,温度对于扩散系数的影响很大,不同温度下进行实验时,同样需要对扩散系数进行校正,校正的公式如下:如图2所示,以波长为488 nm的激光作为激发光,对FCS测量得到的Rhodamine 6G的自相关曲线进行拟合得到激发空间的尺寸为w0=0.224 μm,z0=1.608 μm.图 2Figure 2. A typical autocorrelation function curve and the fitting result of free Rhodamine 6G molecules in water.需要说明的是,FCS的测量会受到样品体系折射率不匹配的影响. 如图3所示,当样品溶液与物镜的折射率不匹配时,会导致表观的激发体积出现显著变化:第一,表观的w0值随折射率不匹配的增加而减小,这是折射率不匹配产生的像差导致;第二,随着物镜焦点位置从界面处愈加深入到样品溶液中时,折射率不匹配导致的表观w0值的变化愈明显[36].图 3Figure 3. (a) Representative normalized autocorrelation function curves of fluorescent nanoparticles diffusing in aqueous solution of glycerol at a small focal depth (25 μm) (b) Values of the apparent lateral radius of the excitation-detection volume of FCS as a function of the refractive index of the solution. The distance of the focal point in the sample medium away from the coverslip surface is displayed. (Reprinted with permission from Ref.[36] Copyright (2012) American Chemical Society).依据FCS的原理,w20=4DτDw02=4DτD,因此,即使微小w0变化也将显著影响探针分子拟合得到的扩散系数值. 因此,选择合适的溶液体系和物镜使得折射率尽可能匹配,对于FCS的测试准确性至关重要. 在折射率不匹配问题无法避免时,如图3(b)中,可以使用一个较低的焦点位置(25 μm)能有效地避免激发体积的畸变[36].此外,如图4所示,以厚度为0.16 mm的盖玻片为例,当实验使用物镜的校正环与样品池底部的盖玻片厚度不匹配时,激发体积的尺寸也会出现较大的偏差,所以在实验前还需注意物镜校正环与盖玻片厚度是否匹配[37].图 4Figure 4. Values of the apparent lateral radius of the excitation-detection volume of FCS as a function of the value of correcting collar (Reprinted with permission from Ref.[37] Copyright (2018) University of Chinese Academy of Sciences).因此,在FCS实验中,应该尽量选择合适的物镜类型以匹配样品的折射率,并调整镜头校正环数值与盖玻片厚度一致,如果折射率不匹配的情况不能避免,那就选择较低的、固定的焦点深度值以保证实验结果可靠可信.除了上述两点之外,在实验过程中还需要注意激光光强的选择,过强的入射光容易导致荧光探针发生光漂白而带来实验误差,因此应该降低进入物镜的激光光强进行实验.3. 荧光关联光谱在高分子单链研究中的应用FCS以其独特的优势在一些传统研究手段难以涉足的高分子体系中展现出独特的优势,例如:考察水溶液中聚电解质的单链动力学[38~44]、混致不溶现象中高分子链构象的变化[36]、表界面体系中高分子的扩散动力学[30~32,45~48]等等.3.1 FCS在聚电解质体系中的应用聚电解质是主链或者侧链上带有可离子化基团的聚合物,在极性溶剂中,聚电解质主链由于解离而带电,同时存在大量带有相反电荷的抗衡离子[49,50]. 正是聚电解质链间、链段间以及链与抗衡离子间多重长程静电相互作用,在赋予聚电解质丰富性质的同时,也给聚电解质的研究带来了很大的困难[51~53]. 例如,当采用动态光散射技术研究带电聚合物体系时,在低离子强度的聚电解质溶液中,存在“快与慢”的2种松弛模式. 为了探究聚电解质中的这种多级松弛模式的起源,研究人员进行了大量的实验并提出了多种可能的解释,但至今仍未有一个确切的回答[5,6,54~56].如果采用传统散射技术来研究低离子强度条件下带电聚合物体系的扩散运动,实验中遇到不少困难,而FCS实验中样品极稀浓度和极高选择性的优势就体现出来,依靠FCS技术,研究人员可以在极稀薄条件下进行实验研究,在聚电解质溶液体系获得全新的信息.Wang等[38]利用FCS在实验上第一次观察到了在无扰溶液中疏水聚电解质的一级构象转变. 如图5(a)所示,弱聚电解质聚(2-乙烯基吡啶) (P2VP)分子的构象随带电分数的变化而呈现出一级转变特征,即:随pH的升高由伸展的线团构象至坍缩的链球. 除了通过pH值改变聚电解质的带电分数,聚电解质的构象转变也可以由改变外加盐的浓度导致,即:抗衡离子吸附与静电屏蔽作用. 如图5(b)所示,P2VP的单分子链流体力学半径随着静电屏蔽长度的增加而连续增加.图 5Figure 5. (a) Diffusion coefficient of P2VP as a function of pH value of the solution. Inset: The hydrodynamic radius of P2VP as a function of pH value (b) The hydrodynamic radius of P2VP as a function of Debye length of the system (Reprinted with permission from Ref.[38] Copyright (2007) American Institute of Physics).Xu等[39]利用FCS技术在单分子水平上研究了强聚电解质的构象. 实验发现,在无外加盐的情况下,强聚电解质聚苯乙烯磺酸钠(NaPSS)和季胺化聚(4-乙烯基吡啶)(QP4VP)的流体力学半径和聚合度之间分别存在着0.7和0.9的标度关系,说明在低离子强度时,聚电解质链的构象比中性聚合物在良溶剂中溶胀的无规线团构象更加伸展. 如图6所示,采用棒状构象的分子模型得到了理想的拟合结果(其中QP4VP在高分子量部分出现偏离是高分子量聚电解质吸附更多的抗衡离子所导致的). 拟合结果显示分子链的直径分别为2.2和2.3 nm,这比理论假设的裸露水合聚电解链的直径0.8 nm要大很多,这也说明了聚电解质链的周围有抗衡离子云的存在.图 6Figure 6. Values of hydrodynamic radius of NaPSS and QP4VP plotted as a function of degree of polymerization. The solid lines denote the numerical fitting based on the theoretical model of diffusion of a rod-like molecule, and the dashed line denotes the fitting results using the diameter of a hydrated chain, i.e., d=0.8 nm. (Reprinted with permission from Ref.[39] Copyright (2016) American Institute of Physics).Xu等[40]进一步研究了在不同外加盐浓度情况下聚电解质链的构象. 如图7所示,聚电解质分子链构象具有分子量依赖性:在低盐浓度时,短链分子的聚电解质采取棒状构象,而长链分子采取无规线团构象;随着外加盐浓度的增加,所有的NaPSS和QP4VP均采取无规线团构象.图 7Figure 7. Diffusion coefficient of NaPSS (a) and QP4VP (b) as a function of degree of polymerization under salt concentrations of 10−4, 0.1, and 1.0 molL−1, respectively The solid lines represent the results of fitting using the relation of Rh∼N−v. (Reprinted with permission from Ref.[40] Copyright (2018) American Institute of Physics).Ren等[41]通过FCS技术研究了i-motif DNA的解折叠过程. 如图8所示,在不同盐浓度的条件下,随着pH值的升高,i-motif DNA均发生了从有序的四联体结构到无规线团的构象转变,并且这一转变对盐浓度有着依赖性:盐浓度越高,解折叠的起始pH值就越低. 这种盐浓度依赖性的主要原因是外加盐的引入导致更多的抗衡离子吸附在DNA链上而降低了链的电荷密度,降低了链周围的局部质子浓度,而后者是控制折叠形成的关键因素.图 8Figure 8. The values of hydrodynamic radius of a single i-motif DNA strand as a function of pH value in the solution Three conditions were chosen: solution without any salt addition (salt-free), and 50 mmolL−1 and 100 mmolL−1 NaCl solutions (physiological environment) The start and end points of the conformation transition are denoted by the arrows. (Reprinted with permission from Ref.[41] Copyright (2018) The Royal Society of Chemistry).如果将光子计数直方图(PCH)技术与FCS相结合,可以对聚电解质主链的电势、有效带电量、抗衡离子分布等方面进行深入研究. 例如,Luo等[42]将pH敏感的荧光探针标记于NaPSS链的不同位点,采用PCH技术测量分子链局部的pH值,发现聚电解质链附近的局部氢离子浓度比本体溶液中高2~3个数量级,而末端效应使得分子链中间的静电势高于末端的静电势. 同时,他们还发现氢离子浓度在径向呈现出e指数衰减的趋势,这证明了聚电解质链周围存在抗衡离子云的说法[43].Jia等[44]研究了抗衡离子分布与聚合物浓度的依赖关系,通过FCS测量NaPSS溶液中作为抗衡离子探针的带负电荧光分子的扩散系数,确定自由探针和吸附于主链的探针2个组分,发现与主链结合的抗衡离子组分随着聚合物浓度的增加而增加. Xu等[40]采用PCH测量NaPSS单分子链电位,发现其随着聚合度的增大而单调上升,且在聚合度大的区间达到饱和. 这说明主链的静电势与分子量不是线性关系,其有效带电分数以及有效电荷密度随着分子量的增加而减小. 上述实验结果说明聚电解质抗衡离子与主链的相互作用是吸附与脱附的动态平衡,而不是经典的Manning抗衡离子凝聚[57~60].3.2 FCS在高分子混致不溶现象中的应用高分子的混致不溶现象(cononsolvency)是一类回归型过程:2种高分子的良溶剂按一定比例混合后反而成为了不良溶剂[61,62]. 一个典型的例子是:常温下聚异丙基丙烯酰胺(PNIPAM)在水与一定比例的甲醇、乙醇、异丙醇、丙酮、四氢呋喃、DMSO等良溶剂的混合液中不再溶解,溶液的相分离温度显著改变,溶液黏度下降,PNIPAM凝胶溶胀率下降. 研究人员对这一现象的起源进行了大量的实验探究,至今未能达成共识[8,63~66].了解高分子链的构象对于理解混致不溶现象至关重要. 前人采用光散射方法研究了水和甲醇混合溶剂中PNIPAM链从线团到塌缩球再到线团的构象转变[64]. 需要特别说明的是,为了在极稀溶液中获得足够高的散射强度与信噪比,研究中采用了分子量高达107 gmol−1的样品. 当采用FCS技术研究该过程时,由于其超高的灵敏度以及与样品分子量无关的信噪比,可在混合溶剂环境下高分子单链的研究中提供独特的信息[67]. Wang等[36]利用FCS研究了PNIPAM在水-乙醇混合溶剂中的混致不溶过程. 如图9所示,PNIPAM具有非对称的回归型构象变化特征:随着乙醇浓度的增大,在一个很窄的乙醇浓度范围内PNIPAM链剧烈塌缩,然后在很宽的乙醇浓度范围内逐渐地再度伸展,说明这一构象转变不是先前文献中所认为的一级构象转变过程. 这表明乙醇分子比水分子更强烈地与PNIPAM链发生作用,这是由乙醇较强的疏水水合效应所致,暗示了Tanaka提出的模型中水合/失水的协同能力强于醇分子吸附/脱附的协同能力[65,66].图 9Figure 9. Normalized autocorrelation function curves of diffusing single chains of PNIPAM with five degrees of polymerizations in pure ethanol (a) and at xEtOHxEtOH of 0.25 (b) The solid line with each data set denotes the results of the numerical fitting using three-dimensional diffusion model Rh6G in (a) denotes the results of free fluorescent Rhodamine 6G, and its drastic difference from those of polymers indicates the successful labeling and sample purification (c) The values of hydrodynamic radius of PNIPAM single chains as a function of xEtOHxEtOH (Reprinted with permission from Ref.[36] Copyright (2012) American Chemical Society).如图10所示,不同乙醇浓度下得到PNIPAM单链的尺寸的标度率(Rh∼NυRh∼Nυ)表明,标度指数νν随着xEtOHxEtOH变化:随着乙醇的浓度的增加,ν从~0.57到0.5再到~1/3变化,说明在上述3个区域,PNIPAM高分子链分别采取了溶胀、无规线团、坍缩链球的构象,即:由纯水中的溶胀线团经无规线团构象而急剧转变为塌缩链球构象,进而又再度逐渐伸展,经过无规线团构象变化至溶胀线团构象. 从标度指数的变化也可以发现回归型链构象变化的高度非对称性,进一步印证了Tanaka提出的协同吸附-优先吸附模型[65,66].图 10Figure 10. Typical double-logarithmic plot of hydrodynamic radius of single PNIPAM chains as a function of degree of polymerization under different solvent compositions: (a)xEtOH=xEtOH=1.0, (b)xEtOH=xEtOH=0.28, (c)xEtOH=xEtOH=0.25 Solid lines are the least-squares linear fitting (d) The vv values as a function of xEtOHxEtOH The three dotted lines denote the theoretical values of the static scaling index for a random coil (0.588), an undisturbed coil (0.5), and a compact globule (1/3). (Reprinted with permission from Ref.[36] Copyright (2012) American Chemical Society).3.3 FCS在表界面体系中的应用受限高分子链,尤其是处于界面的高分子链结构及动力学性质,直接关系到表界面的机械性能、摩擦性能、流变性能等,这些性质与高分子材料在表界面上的应用息息相关,如涂料、润滑剂、胶黏剂等[68~71]. 但是对于高分子链在表界面处的动力学研究存在着不少技术难题,主要原因是表界面动力学带来的浓度涨落被局限于二维或准二维空间,探测难度极大,使得传统的散射方法难以应用. 近年来,得益于单分子技术的迅猛发展,空间和时间分辨能力分别有了显著的优化,极大提高了人们直接“观察”分子或粒子行为的能力,这为我们从分子水平认识聚合物在界面上的动力学性质打下了基础.荧光关联光谱因其极高的灵敏度与显微测量能力被成功地应用于表界面体系的研究中. 对于处于二维自由扩散的分子而言,其自关联函数为:其中,w0是二维FCS观察区域(即激发空间在界面等二维平面投影)的半径,⟨ρ⟩=⟨N⟩/A,即单位面积内荧光探针的平均数量,A是激发空间在界面等二维平面上投影的面积.Sukhishvili等[30]利用FCS研究了荧光染料标记的不同分子量的聚乙二醇(PEO)在固-液界面上的扩散. 从分子链界面扩散运动行为出发,分析出在极稀浓度的条件下聚合物分子在固-液界面上呈现出了紧密吸附的pancake构象,发现了界面扩散系数与分子量的-3/2的独特标度率. Zhao等[31,32]则利用FCS研究了PEO在固-液界面上扩散速率与界面吸附浓度的非线性关联性,即:随着聚合物浓度的增加,其扩散系数先增加并在某一浓度值达到极值,进而骤然大幅下降. 这是由于极低浓度分子链紧密吸附的pancake构象会随着吸附浓度的增加变成loop-tail-train构象,即:吸附使得分子链构象变得相对松散,其扩散速率由与基底接触的train部分占主导. 随着吸附浓度的增加,较为自由的loop-tail部分则增加了其运动能力,因此扩散系数增加;更高浓度时扩散系数出现骤降是因为体系中出现了jamming效应,即分子链间的作用增强,阻碍了分子链的扩散运动.Ye等[45]利用FCS研究了不同拓扑结构的聚合物链在石英-二氯甲烷界面上的扩散,如图11所示,线形聚苯乙烯(PS)扩散的标度率为D∼M−1.5,重现了reptation模型;而环形PS的标度率则为D∼M−1,展现为Rouse模型. 两者的差异是由于环形分子没有末端,无法像线形分子一样完成蛇行运动,而是由一系列链段受到热激发进行跳跃,跨过局部能垒的运动组成.图 11Figure 11. Double-logarithmic plots of center-of-mass diffusion coefficient against molecular weight for surface diffusion of cyclic (c-PS) and linear (l-PS) polystyrene chains on fused silica-DCM interface The solid lines with slopes of 1 and 3/2 are drawn as guides to the eye The dashed lines through the points representing the best fit of the data give power law slopes of 1.46 for linear chains and 1.00 for cyclic chains. (Reprinted with permission from Ref.[45] Copyright (2016) The Royal Society of Chemistry)Yang等[46]利用FCS研究了不同盐溶液作为液相时,NaPSS在疏水单层分子膜界面上的扩散行为. 如图12所示,吸附在疏水表面的聚电解质分子链的扩散受到液相中不同阴离子的影响,主要原因在于不同的阴离子效应改变了界面疏水相互作用强度,从而改变了界面与分子链之间摩擦力,造成扩散系数的显著改变.图 12Figure 12. Typical data of the lateral diffusion coefficient of a NaPSS single chain at the interface of a hydrophobic surface and an aqueous solution as a function of the salt concentration in the aqueous solution (Reprinted with permission from Ref.[46] Copyright (2011) American Chemical Society)Yang等[47]利用FCS技术研究了聚苯乙烯与聚异戊二烯(PI)的嵌段共聚物在二甲基甲酰胺(DMF)与PI聚合物构成的液体界面上的扩散运动. 如图13所示,在本体聚合物分子量跨越了2个数量级的变化,界面上PS-b-PI的扩散系数仅有轻微的下降. 这表明,在PI/DMF的体系中,存在很低黏度的界面层,该界面层的黏度与构成界面的本体聚合物的分子量不存在明显依赖性.图 13Figure 13. Interfacial diffusion coefficient of single PS-b-PI chain as a function of the molecular weight of bulk PI The dashed line is for the guide of eye Inset: illustration of the sample geometry (Reprinted with permission from Ref.[47] Copyright (2008) American Chemical Society).Li等[48]利用FCS探究了PEO分子在烷烃-水界面上的扩散行为. 研究发现,PEO在该界面上聚合物的横向扩散为正常扩散,与二维布朗运动模型相吻合. 如图14所示,液-液界面上的PEO的界面扩散系数与其聚合度之间存在D∼N−0.5的标度关系,这一新的标度关系表明其界面扩散运动遵循着新的运动机理.图 14Figure 14. The logarithm of interfacial diffusion coefficient of PEO as a function of the logarithm of molecular weight (Reprinted with permission from Ref.[48] Copyright (2020) The Royal Society of Chemistry).从单分子层面上研究界面扩散,有助于发现分子最真实和原始的扩散行为规律,这在传统的系综平均实验中往往会被忽略或者被多种因素耦合而产生的运动行为掩盖,这是上述FCS实验结果最大的优势之处. 此外,值得注意的是,在研究固-液界面上聚合物扩散机理时,不同研究团队利用FCS和单粒子追踪(single particle tracking, SPT)技术,得到了不同的结果及界面扩散机理,也因此导致了FCS和SPT 2种技术在界面分子动力学研究上存在多年的学术争论[30,31,72,73]. 我们基于这个问题也展开了实验对比,发现FCS和SPT都能够提供准确且可靠的实验结果,在条件满足时两者能够得到相互吻合相互匹配的实验结果,相关数据结果将在未来进行发表.3.4 FCS在有外场作用的体系中的应用对于聚合物而言,在其合成、分离、加工等过程中有可能会经历电场、流动场、剪切场等作用,尤其在生命体中更是常见. 因此,对于外场作用下的聚合物性质的研究也是极为重要的.当我们将荧光关联光谱应用于外场作用下的体系中时,除了分子热运动导致平动扩散引起的荧光信号涨落,还不得不考虑外场导致荧光分子定向运动通过激发体积带来的信号涨落. 带有定向运动的FCS,如果其运动的方向垂直于激光光束的方向,经过修正的模型拟合关联函数可以获得扩散系数与定向运动速率:其中,vf=w0/τf即为定向运动速率.Dong等[74]将FCS和毛细管电泳结合起来测定了量子点在极稀溶液中的表面电势. 利用FCS的自关联函数拟合得到荧光粒子的定向运动速度和扩散系数,在电泳实验中定向运动的特征时间τf和自扩散系特征时间τD之间满足:其中,Q为带电量,E为外加电场强度. 通过测定不同电场强度下定向运动和扩散的特征时间,通过线性拟合得到荧光粒子的表面电势. Wang等[75]利用FCS研究了P2VP在交变电场下的单链构象转变. 结果表明电场强度对于分子链构象的影响存在滞后转变. 这种滞后现象可以归因于单个疏水性聚电解质链的不对称双稳态能态,由于抗衡离子的解离、迁移和凝聚,其coil和globule构象之间的势垒可以通过交变电场诱导的偶极子降低到kBT以下.4. 荧光关联光谱技术的发展和应用随着FCS技术的发展,出现了双色荧光关联光谱(DC-FCCS)[76,77]、双焦点荧光关联光谱[78,79]、FCS与荧光共振能量转移(FRET)联用[80,81]、可连续改变共焦体积荧光关联光谱[82]等新技术. 这些新技术相较于传统的FCS,可以获取样品更多的热力学信息. 图15是DC-FCCS的简单示意图,采用2种波长的激光分别激发2种对应的荧光分子,然后选择性光学器件对不同波长的荧光进行分离,最后由2个APD检测器分别检测2种荧光信号,再对信号进行关联性分析. DC-FCCS的基本原理就不在此赘述,除了对2种荧光分子的荧光强度涨落进行各自的自关联分析之外,我们还可以对这2种荧光信号做交叉关联分析得到两者相互运动乃至相互作用的信息. 需要说明的是,选择的这2种荧光分子在光谱上必须分离得很好,否则会出现很大的串扰影响实验结果.图 15Figure 15. Schematic illustration of dual color fluorescence cross-correlation spectroscopyChen等[83]利用DC-FCCS和光散射相结合的方法深入研究了聚电解质溶液中单链运动之间的关联性,发现了聚电解质分子链间的运动耦合. 将DC-FCCS实验得到自关联函数的自由扩散部分转化为均方位移数据(MSD),发现其在长短2个时间尺度上分别存在具有不同扩散系数的正常扩散运动,表明链间的静电排斥相互作用带来的“笼子效应”导致了单个分子链的自扩散运动中同样存在一快一慢2种时间尺度上的扩散模式:短时间尺度上为“笼子”内的快扩散行为,长时间尺度上为跨越不同“笼子”的慢扩散行为(如图16所示). 这2种松弛模式均存在强烈的离子强度依赖性,随着外加盐浓度的增加,削弱了链间的排斥作用而弱化了“笼子效应”,导致了长短时间尺度上的动力学非均匀性减弱,甚至消失. 实验结果还表明,聚合物浓度的增加限制了聚电解质链的运动,从而削弱了链间运动的关联性(如图16(b)所示). 将其与光散射中“慢模式”对应的扩散系数对比发现,“慢模式”对应的扩散系数数值处于分子链自扩散长短时间尺度的扩散系数之间,这说明光散射观察到的“快慢模式”与长程静电相互作用引起“笼子效应”有着密切的联系,同时也说明聚电解质的多级松弛过程比我们预想的更加复杂.图 16Figure 16. (a) Values of the diffusion coefficient of the short-time diffusion (Dshort-timeDshort-time) and the long-time diffusion (Dlong-timeDlong-time) of NaPSS with three different molecular weights under different salt concentrations (b) Diffusion coefficient of single NaPSS chain with three different molecular weights at short- and long-time lag as a function of concentration Diffusion coefficients measured by DLS (the slow mode, DDLS,slowDDLS,slow) are displayed for comparison. (Reprinted with permission from Ref.[83] Copyright (2019) American Chemical Society).5. 结论荧光关联光谱技术作为一种高灵敏度的显微统计光谱方法,能够有效地在多种复杂条件下开展高分子动力学的研究,包括:极稀薄溶液、表界面等等. 这项技术出色的空间分辨能力以及由于荧光标记带来的分子识别性,赋予了更加丰富的应用能力与前景. 随着这项技术的不断发展和应用范围的进一步拓展,相信未来它会和传统的散射技术一样被越来越多的人了解和使用,在多个领域都能取得丰富且具创造性的成果.致 谢 感谢研究生及合作者的辛勤劳动与贡献.参考文献[1]Wu C, Zhou S. Phys Rev Lett, 1996, 77(14): 3053−3055 doi: 10.1103/PhysRevLett.77.3053[2]Gao J, Wu C. Macromolecules, 1997, 30(22): 6873−6876 doi: 10.1021/ma9703517[3]Liu X B, Luo S K, Ye J, Wu C. Macromolecules, 2012, 45(11): 4830−4838 doi: 10.1021/ma300629d[4]Morishima K, Ishiwari F, Matsumura S, Fukushima T, Shibayama M. Macromolecules, 2017, 50(15): 5940−5945 doi: 10.1021/acs.macromol.7b00883[5]Sedlak M, Amis E J. J Chem Phys, 1992, 96(1): 826−834 doi: 10.1063/1.462468[6]Muthukumar M. Macromolecules, 2017, 50(24): 9528−9560 doi: 10.1021/acs.macromol.7b01929[7]Zhou K, Li J, Lu Y, Zhang G, Xie Z, Wu C. Macromolecules, 2009, 42(18): 7146−7154 doi: 10.1021/ma900541x[8]Hao J, Cheng H, Butler P, Zhang L, Han C C. J Chem Phys, 2010, 132(15): 154902 doi: 10.1063/1.3381177[9]Magde D, Webb W W, Elson E. Phys Rev Lett, 1972, 29(11): 705−708 doi: 10.1103/PhysRevLett.29.705[10]Elson E L, Magde D. Biopolymers, 1974, 13(1): 1−27 doi: 10.1002/bip.1974.360130102[11]Magde D, Elson E L, Webb W W. Biopolymers, 1974, 13(1): 29−61 doi: 10.1002/bip.1974.360130103[12]Rigler R, Mets U, Widengren J, Kask P. Eur Biophys J Biophy, 1993, 22(3): 169−175[13]Dross N, Spriet C, Zwerger M, Muller G, Waldeck W, Langowski J. PLoS One, 2009, 4(4): e5041 doi: 10.1371/journal.pone.0005041[14]Mtze J, Ohrt T, Schwille P. Laser Photonics Rev, 2011, 5(1): 52−67 doi: 10.1002/lpor.200910041[15]Schwille P, Haupts U, Maiti S, Webb W W. Biophys J, 1999, 77(4): 2251−2265 doi: 10.1016/S0006-3495(99)77065-7[16]Xie J, Nakai K, Ohno S, Butt H J, Koynov K, Yusa S. Macromolecules, 2015, 48(19): 7237−7244 doi: 10.1021/acs.macromol.5b01435[17]Caruso F, Donath E, Mohwald H. J Phys Chem B, 1998, 102(11): 2011−2016 doi: 10.1021/jp980198y[18]Vagias A, Raccis R, Koynov K, Jonas U, Butt H J, Fytas G, Kosovan P, Lenz O, Holm C. Phys Rev Lett, 2013, 111(8): 088301 doi: 10.1103/PhysRevLett.111.088301[19]Lumma D, Keller S, Vilgis T, Radler J O. Phys Rev Lett, 2003, 90(21): 218301 doi: 10.1103/PhysRevLett.90.218301[20]Cherdhirankorn T, Best A, Koynov K, Peneva K, Muellen K, Fytas G. J Phys Chem B, 2009, 113(11): 3355−3359 doi: 10.1021/jp809707y[21]Schaeffel D, Yordanov S, Staff R H, Kreyes A, Zhao Y, Schmidt M, Landfester K, Hofkens J, Butt H J, Crespy D, Koynov K. ACS Macro Lett, 2015, 4(2): 171−176 doi: 10.1021/mz500638e[22]Jee A Y, Cho Y K, Granick S, Tlusty T. P Natl Acad Sci USA, 2018, 115(46): E10812 doi: 10.1073/pnas.1814180115[23]Jee A Y, Dutta S, Cho Y K, Tlusty T, Granick S. P Natl Acad Sci USA, 2018, 115(1): 14−18 doi: 10.1073/pnas.1717844115[24]Cherdhirankorn T, Floudas G, Butt H J, Koynov K. Macromolecules, 2009, 42(22): 9183−9189 doi: 10.1021/ma901439u[25]Cherdhirankorn T, Harmandaris V, Juhari A, Voudouris P, Fytas G, Kremer K, Koynov K. Macromolecules, 2009, 42(13): 4858−4866 doi: 10.1021/ma900605z[26]Doroshenko M, Gonzales M, Best A, Butt H J, Koynov K, Floudas G. Macromol Rapid Commun, 2012, 33(18): 1568−1573 doi: 10.1002/marc.201200322[27]Michelman-Ribeiro A, Boukari H, Nossal R, Horkay F. Macromolecules, 2004, 37(26): 10212−10214 doi: 10.1021/ma048043d[28]Zustiak S P, Boukari H, Leach J B. Soft Matter, 2010, 6(15): 3609−3618 doi: 10.1039/c0sm00111b[29]Modesti G, Zimmermann B, Borsch M, Herrmann A, Saalwachter K. Macromolecules, 2009, 42(13): 4681−4689 doi: 10.1021/ma900614j[30]Sukhishvili S A, Chen Y, Muller J D, Gratton E, Schweizer K S, Granick S. Nature, 2000, 406(6792): 146 doi: 10.1038/35018166[31]Zhao J, Granick S. Macromolecules, 2007, 40(4): 1243−1247 doi: 10.1021/ma062104l[32]Zhao J, Granick S. J Am Chem Soc, 2004, 126(20): 6242−6243 doi: 10.1021/ja0493749[33]Ries J, Schwille P. Bioessays, 2012, 34(5): 361−368 doi: 10.1002/bies.201100111[34]Elson E L. Methods Enzymol, 2013, 518: 1−10 doi: 10.1016/B978-0-12-388422-0.00001-7[35]Papadakis C M, Kosovan P, Richtering W, Woll D. Colloid Polym Sci, 2014, 292(10): 2399−2411 doi: 10.1007/s00396-014-3374-x[36]Wang F, Shi Y, Luo S J, Chen Y M, Zhao J. Macromolecules, 2012, 45(22): 9196−9204 doi: 10.1021/ma301780f[37]Zheng Kaikai(郑锴锴). Dynamics of a Single Polymer Chain under Shear(剪切场下聚合物分子单链动力学行为研究). Doctoral Dissertation of University of Chinese Acdemy of Sciences((中国科学院大学博士学位论文), 2018.[38]Wang S, Zhao J. J Chem Phys, 2007, 126(9): 091104 doi: 10.1063/1.2711804[39]Xu G, Luo S, Yang Q, Yang J, Zhao J. J Chem Phys, 2016, 145(14): 144903 doi: 10.1063/1.4964649[40]Xu G, Yang J, Zhao J. J Chem Phys, 2018, 149(16): 163329 doi: 10.1063/1.5035458[41]Ren W, Zheng K, Liao C, Yang J, Zhao J. Phys Chem Chem Phys, 2018, 20(2): 916−924 doi: 10.1039/C7CP06235D[42]Luo S J, Jiang X B, Zou L, Wang F, Yang J F, Chen Y M, Zhao J. Macromolecules, 2013, 46(8): 3132−3136 doi: 10.1021/ma302276b[43]Luo Shuangjiang(罗双江), Gao Peiyuan(高培源), Guo Hongxia(郭洪霞), Yang Jingfa(杨京法), Zhao Jiang(赵江). Acta Polymerica Sinica(高分子学报), 2017, (9): 1479−1487 doi: 10.11777/j.issn1000-3304.2017.17065[44]Jia P, Yang Q, Gong Y, Zhao J. J Chem Phys, 2012, 136(8): 084904 doi: 10.1063/1.3688082[45]Ye S, Tang Q, Yang J, Zhang K, Zhao J. Soft Matter, 2016, 12(47): 9520−9526 doi: 10.1039/C6SM02103D[46]Yang Q, Zhao J. Langmuir, 2011, 27(19): 11757−11760 doi: 10.1021/la202510d[47]Yang J F, Zhao J, Han C C. Macromolecules, 2008, 41(20): 7284−7286 doi: 10.1021/ma8015135[48]Li Z, Yang J F, Hollingsworth J V, Zhao J. RSC Adv, 2020, 10(28): 16565−16569 doi: 10.1039/D0RA02630A[49]Oosawa F. Polyelectrolytes. New York: Marcel Dekker, 1971[50]Dobrynin A V, Rubinstein M. Prog Polym Sci, 2005, 30(11): 1049−1118 doi: 10.1016/j.progpolymsci.2005.07.006[51]Forster S, Schmidt M, Antonietti M. Polymer, 1990, 31(5): 781−792 doi: 10.1016/0032-3861(90)90036-X[52]Fuoss R M. J Polym Sci, 1948, 3(4): 603−604 doi: 10.1002/pol.1948.120030414[53]Muthukumar M. J Chem Phys, 2004, 120(19): 9343−9350 doi: 10.1063/1.1701839[54]Mattoussi H, Karasz F E, Langley K H. J Chem Phys, 1990, 93(5): 3593−3603 doi: 10.1063/1.458791[55]Reed W F, Ghosh S, Medjahdi G, Francois J. Macromolecules, 1991, 24(23): 6189−6198 doi: 10.1021/ma00023a021[56]Li J, Li W, Huo H, Luo S, Wu C. Macromolecules, 2008, 41(3): 901−911 doi: 10.1021/ma071284b[57]Manning G S. J Chem Phys, 1969, 51(3): 924−933 doi: 10.1063/1.1672157[58]Manning G S. J Chem Phys, 1969, 51(3): 934−938 doi: 10.1063/1.1672158[59]Manning G S. J Chem Phys, 1969, 51(8): 3249−3252 doi: 10.1063/1.1672502[60]Manning G S. Biophys Chem, 1977, 7(2): 95−102 doi: 10.1016/0301-4622(77)80002-1[61]Schild H G, Muthukumar M, Tirrell D A. Macromolecules, 1991, 24(4): 948−952 doi: 10.1021/ma00004a022[62]Winnik F M, Ringsdorf H, Venzmer J. Macromolecules, 1990, 23(8): 2415−2416 doi: 10.1021/ma00210a048[63]Chee C K, Hunt B J, Rimmer S, Soutar I, Swanson L. Soft Matter, 2011, 7(3): 1176−1184 doi: 10.1039/C0SM00836B[64]Zhang G Z, Wu C. J Am Chem Soc, 2001, 123(7): 1376−1380 doi: 10.1021/ja003889s[65]Tanaka F, Koga T, Kojima H, Xue N, Winnik F M. Macromolecules, 2011, 44(8): 2978−2989 doi: 10.1021/ma102695n[66]Kojima H, Tanaka F. Soft Matter, 2012, 8(10): 3010−3020 doi: 10.1039/c2sm06883d[67]Grabowski C A, Mukhopadhyay A. Phys Rev Lett, 2007, 98(20): 207801 doi: 10.1103/PhysRevLett.98.207801[68]Fleer G J. Adv Colloid Interface Sci, 2010, 159(2): 99−116 doi: 10.1016/j.cis.2010.04.004[69]Granick S, Bae S C. J Polym Sci, Part B: Polym Phys, 2006, 44(24): 3434−3435 doi: 10.1002/polb.21004[70]Granick S, Kumar S K, Amis E J, Antonietti M, Balazs A C, Chakraborty A K, Grest G S, Hwaker C J, Janmey P, Kramer E J, Nuzzo R, Russell T P, Safinya C R. J Polym Sci, Part B: Polym Phys, 2003, 41(22): 2755−2793 doi: 10.1002/polb.10669[71]Guo Z Y, Cao X L, Guo L L, Zhao Z Y, Ma B D, Zhang L, Zhang L, Zhao S. J Dispersion Sci Technol, 2020, Doi:10.1080/01932691.2020.1725543 doi: 10.1080/01932691.2020.1725543[72]Skaug M J, Mabry J N, Schwartz D K. J Am Chem Soc, 2014, 136(4): 1327−1332 doi: 10.1021/ja407396v[73]Walder R, Nelson N, Schwartz D K. Phys Rev Lett, 2011, 107(15): 156102 doi: 10.1103/PhysRevLett.107.156102[74]Dong C, Ren J. Electrophoresis, 2014, 35(16): 2267−2278 doi: 10.1002/elps.201300648[75]Wang S Q, Chang H C, Zhu Y X. Macromolecules, 2010, 43(18): 7402−7405 doi: 10.1021/ma101571s[76]Schwille P, Meyer-Almes F J, Rigler R. Biophys J, 1997, 72(4): 1878−1886 doi: 10.1016/S0006-3495(97)78833-7[77]Schaeffel D, Staff R H, Butt H J, Landfester K, Crespy D, Koynov K. Nano Lett, 2012, 12(11): 6012−6017 doi: 10.1021/nl303581q[78]Goossens K, Prior M, Pacheco V, Willbold D, Mullen K, Enderlein J, Hofkens J, Gregor I. ACS Nano, 2015, 9(7): 7360−7373 doi: 10.1021/acsnano.5b02371[79]Muller C B, Loman A, Pacheco V, Koberling F, Willbold D, Richtering W, Enderlein J. Epl, 2008, 83(4): 46001[80]Price E S, Aleksiejew M, Johnson C K. J Phys Chem B, 2011, 115(29): 9320−9326 doi: 10.1021/jp203743m[81]Torres T, Levitus M. J Phys Chem B, 2007, 111(25): 7392−7400 doi: 10.1021/jp070659s[82]Masuda A, Ushida K, Okamoto T. J Photoch Photobio A, 2006, 183(3): 304−308 doi: 10.1016/j.jphotochem.2006.06.040[83]Chen K, Zheng K K, Xu G F, Yang J F, Zhao J. Macromolecules, 2019, 52(10): 3925−3934 doi: 10.1021/acs.macromol.9b00025
  • 无需纯化的病毒表征系统! 全自动病毒荧光检测分析系统
    在基因治疗领域,慢病毒载体(Lentivirus)是一种复制较慢的逆转录病毒,由HIV-1改造而来,常作为基因治疗的载体使用。慢病毒载体的制备流程需要对病毒的物理滴度和感染滴度进行检测。1. 现有的检测手段(如p24 ELISA)因病毒中p24蛋白的含量不同、含有p24蛋白的杂质(如外泌体)等因素的影响,无法地表征病毒的物理滴度,且此类方法均无法对空载病毒(无p24蛋白)进行表征,这就给感染滴度的检测带来了误差。2. 在复杂的病毒工业化制备流程中,只测量末端纯化产品的滴度,无法真实反映各个生产环节的生产效率,而对各个生产环节的样品都进行纯化表征会浪费大量人力物力。目前研究者亟需一种无纯化、快速、检测下限低的病毒表征手段。3. 目前的病毒表征手段,均无法将病毒的物理参数如粒径(与载体聚合相关)与蛋白质组分析联系起来。因此,这些技术无法分析病毒滴度受样品聚集或病毒破裂与分解影响的情况,因此无法区分单分散制剂与聚集样品。 对于上述问题,美国NanoView公司所开发的全自动病毒荧光检测分析系统是一款无需纯化的、全自动的可对病毒进行表征分析的全新设备。该设备能够提供全方位的病毒表征信息,包括病毒粒径、病毒表面和内部病毒蛋白、病毒物理滴度、空载比检测、病毒转导效率及假型定量表征等。操作简单,结果可靠。全自动病毒荧光检测分析系统的基本原理是一种基于特异性免疫捕获技术,允许研究者直接分析特定群体的病毒。通过配套的试剂盒,客户一次性能够分析多达16个不同的样本,大大节省了时间和经济成本。和传统的病毒表征手段相比,全自动病毒荧光检测分析系统有如下优势: 无需纯化NanoView的LentiView™ 技术可以对慢病毒进行检测,将蛋白质组信息与物理病毒滴度结合起来,无需样品纯化。只需 35 µl 未纯化或纯化的样品,检测浓度低至106VP/ml。无需担心纯化带来的误差,更地测量样品间的表征和表达信息的差异。慢病毒示意图 全方位的病毒粒径分析全自动外泌体荧光检测分析系统能够对20 nm的病毒进行全方面的表征,无论是粒径分布、空载病毒与完整病毒的假型分析均可在一次测试中得到。并且所用来测试的样本无需进行纯化,避免因纯化带来的样本偏差。 病毒滴度病毒物理滴度的常用检测方法是p24 ELISA。该方法测量p24衣壳蛋白的浓度并将其转化为病毒物理滴度。样品中溶解的p24、不同病毒p24含量的不同以及病毒聚集会影响检测准确性。此外, p24 ELISA无法检测缺少衣壳(空载)的颗粒。LentiView™ 可对样品中病毒进行高灵敏度的定量检测,获得滴度数据,区分完整和空载病毒并识别样品中杂质如可能经过纯化带有的外泌体等。 红色荧光抗体标记病毒的内部p24衣壳蛋白,用蓝色荧光抗体标记VSV-G,同时表达p24和VSV-G的病毒显示粉红色,并由 NanoView专用软件计数。 完整/空载病毒颗粒的比例NanoView的LentiView™ 技术可以简单快速地分析出完整/空载病毒颗粒的比例,区分完整(成功转导)和空载病毒并识别样品中杂质,而完整/空载病毒颗粒的比例是确定转导效率的主要依据。 完整病毒是表达VSV-G和/或ETL,且表达衣壳蛋白p24的病毒颗粒,空载病毒是表达VSV-G和/或ETL,未表达衣壳蛋白p24的病毒颗粒LentiView™ 芯片表面固定的抗VSV-G抗体捕获病毒后,即可检测表面和内部蛋白标记物。在LentiView™ 获得荧光图像中,绿色荧光点代表没有衣壳的VSV-G+病毒颗粒,黄色荧光点代表含有衣壳的完整病毒颗粒。 病毒转导效率我们使用LentiView™ 对三种不同的慢病毒样品进行了表征,检测病毒颗粒亚群,进而研究这些载体的转导效率。三种不同的慢病毒样品分别为野生型慢病毒 (VSV wt)、含高浓度质粒的工程化靶向配体 (ETL-HC)、含低浓度质粒的工程化靶向配体 (ETL-LC)。三种慢病毒载体的转导效率 转导效率与物理滴度的对比 根据病毒碎片粒径和病毒粒径的差别,对每一种载体中的病毒和病毒碎片数量进行统计。50nm以上的病毒与50nm以下的病毒碎片的比例和载体的转导效率之间存在很强的相关性。载体转导效率和病毒与病毒碎片比例的对比 完全定制化客户通过ViroFlex技术使用连接蛋白连接任意定制化的捕获抗体,并结合到ViroFlex芯片表面进而捕获所需的病毒,在自己的实验室里轻松进行高度定制化的检测。 ViroFlex的芯片捕获抗体排布示意图 ViroFlex定制化检测原理:先将连接蛋白与所需的定制抗体连接再将连接抗体的连接蛋白与ViroFlex芯片表面的连接蛋白抗体连接所需的定制抗体从而结合到了芯片上将样品在芯片上孵育,定制抗体即可特异性捕获病毒每个芯片多可结合两种定制化捕获抗体ViroFlex芯片的捕获原理(左)与普通芯片的捕获原理(右)示意图 ExoViewTM参数信息:颗粒大小分辨范围:20nm低检测浓度为106 VP/mL所需样本体积:35 μL激发波长:410 nm,488 nm,555 nm,640 nm,750nm可一次检测16个样本,每个样本可同时检测6个不同亚型及4种生物标记的荧光定位捕获抗体:一个芯片多允许6种捕获抗体(+阴性对照)荧光通道:4个荧光通道
  • 马尔文携多款创新颗粒表征解决方案亮相CPhI China
    2014年6月24日,中国上海&mdash &mdash 全球材料表征领域的领先企业英国马尔文仪器公司将携多种创新表征解决方案参加2014年6月26日至28日于上海举办的世界制药原料中国展(CPhI China),展示马尔文在制药领域的创新技术与产品,包括引领业界的最新产品Zetasizer Nano ZSP动态光散射(DLS)仪器、明星产品Mastersizer 3000 激光衍射粒度分析仪及经典产品Insitec在线粒度分析仪等。   随着中国制药行业的快速发展,药物开发、制药配方与药品生产等关键领域对分析技术的需求日益增长。马尔文仪器公司积极致力于为制药行业提供创新技术及产品研发,有效表征颗粒大小、颗粒形状、化学特性、分子量、分子分布与浓度等多项参数,缩短药物开发到药物生产时间,以可靠快速的测量与分析结果助力医药行业不断向前发展,进一步增强中国制药领域的整体技术实力与市场竞争力。   马尔文公司在本次世界制药原料中国展将带来三款颗粒表征领域领先产品:Zetasizer Nano ZSP动态光散射(DLS)仪器、Mastersizer 3000 激光衍射粒度分析仪以及Insitec在线粒度仪系列。   马尔文Zetasizer Nano ZSP是马尔文Zetasizer Nano系列最高规格的产品,拥有系列产品中最高的测量灵敏度。其独特的蛋白质测量功能可帮助生物制药行业研究人员在进行蛋白质抗原体抗体分析时,在极低的浓度范围内检测微小颗粒。同时,马尔文Zetasizer Nano ZSP新增强的微流变分析功能可以帮助用户在高剪切情况下检测弱结构样品的流变学特性(如粘弹性)。 图:马尔文Zetasizer Nano ZSP动态光散射(DLS)仪器   马尔文Mastersizer 3000 激光衍射粒度分析仪是世界上备受推崇的颗粒测量仪的最新一代产品,可适用于干湿样品的测定,量程宽达0.01~ 3500 &mu m而无需更换投镜。其独特的光学系统,将高超的性能融入到极其小巧的体积中,并配备精心设计的样品分散系统,其中全新革命化设计的Aero系统充分体现了干法分散技术的最高水平。在制药行业,颗粒的大小会影响药物有效成分和人体对药物的吸收,而马尔文Mastersizer 3000可帮助科研人员轻松获取可靠的粒度测量分析。 图:马尔文Mastersizer 3000 激光衍射粒度分析仪   此外,马尔文Insitec在线粒度分析仪具有在线连续粒度分析功能,可进行高性价比的工业工艺监控。其适用的工艺流范围非常广泛,从干粉到温度又高又粘的浆料,再到喷雾及乳剂,无论每小时处理的材料量是几毫克还是几百吨,该系统均能得心应手。   展会期间,三位来自马尔文公司的业界专家,包括马尔文粒度粒形分析全球产品经理Paul Kippax博士、马尔文全球业务经理Paul Davies以及马尔文中国区总经理秦和义先生将出席活动,现场与参展观众进行互动交流。其中,Paul Kippax博士将就&ldquo 运用以形态变化为导向的拉曼光谱分析作为工具对口腔颗粒制剂进行产品结构分析&rdquo 进行主题演讲,分享更多马尔文在制剂颗粒表征方面的创新成就。   &ldquo 作为全球最大的仿制药市场,中国医药市场即将迎来制药史上专利药品到期最多的时期。面对这一重要契机,马尔文通过设立生物科学开发计划(BDI)项目,积极研发满足中国医药分析实际需求的产品技术,及定期举办生物制药行业专题研讨会等多种方式,与中国制药业领导者密切合作,不断推进中国制药分析和研发水平。&rdquo 马尔文中国区总经理秦和义先生说道,&ldquo 此外,马尔文致力于提供基于先进仪器的制药行业一体化解决方案,以满足客户全方位的制药分析需求。&rdquo   世界制药原料中国展将在上海新国际博览中心拉开帷幕,与CPhI展同期举办的还有2014世界医药合同定制服务中国展,第九届世界制药机械、包装设备与材料中国展,2014世界生化、分析仪器与实验室装备中国展等。   欲先睹马尔文仪器产品风采、了解更多世界领先的药物研发表征技术,请莅临世界制药原料中国展CPhI 2014马尔文展台(展位号:西五馆W5,E18展位)。   马尔文和马尔文仪器是马尔文仪器有限公司的注册商标 。 ---完---   关于马尔文仪器   马尔文仪器提供材料表征技术和专业知识,使得科学家和工程师们能够了解和控制分散体系的性质,这些体系包括蛋白质和聚合物溶液、微粒和纳米粒子悬浮液和乳液,以及喷雾和气溶胶、工业散装粉末和高浓度浆料等。马尔文的材料表征仪器用于研究、开发和制造的所有阶段,提供帮助加快研究和产品开发、改善和保证产品品质以及优化过程效率的关键信息。   马尔文的产品体现了最新技术创新的动力以及充分利用现有技术的承诺,应用领域从医药和生物医药到化学品、水泥、塑料和聚合物、能源及环境等。   马尔文的产品和系统被用于检测颗粒大小、颗粒形状、Zeta电位、蛋白质电荷、分子量、分子大小和构象、流变性能和化学组分测定。   马尔文仪器公司总部位于英国马尔文,在欧洲、北美、中国、日本和韩国等主要市场都设有分支机构,在印度设有合资企业,拥有遍布全球的经销网络和应用实验中心。   更多信息,请访问www.malvern.com.cn。
  • 中广测研究团队基于非靶向表征方法评估医院废水处理
    新冠疫情防控期间控疫药物和化学品的大量使用,会使医院废水中溶解有机物(DOM)含量增加。DOM是废水污染物的主要转运体,改变有毒有害物质在环境中的吸附和归宿;而且废水中的DOM会与消毒剂作用产生大量高毒性的消毒副产物(DBPs)。因此,探究医院废水不同阶段处理工艺中DOM的组成特征,对有效控制废水中产生DBPs和准确评估处理工艺对DOM的去除效率具有重要意义。广东省科学院测试分析研究所(中国广州分析测试中心)省化学测量与应急检测技术重点实验室环境污染化学团队基于FT-ICR-MS高分辨质谱和三维荧光光谱法(EEMs)建立水中DOM非靶向分析方法,表征医疗废水中DOM的组成特征,并研究医院废水处理工艺单元对DOM组分去除选择性。研究团队在省内拥有2800多张床位某三甲医院的废水处理工艺中各处理单元采集水样,经浓缩处理后的样品采用ESI-FT-ICR-MS和EEMs进行DOM分子组成非靶向分析。通过数据解析鉴定出医院废水DOM中3000多种组分和10000多个分子式,未经处理的医疗废水中DOM以脂肪族和高度不饱和化合物为主,芳香指数较低。这些特征与河流水体中天然DOM和工业园区废水DOM有显著差异:与天然DOM相比,医疗废水中DOM表现出较低的不饱和度、较低的分子量和较高比例的杂原子有机物;与化学工业园区废水DOM相比,医疗废水DOM富含高度不饱和脂肪族化合物。医院废水中普遍检测到含氮和类肽化合物,它们可能是含氮消毒副产物的重要前体。经研究发现,医院废水经生物单元处理后,脂肪族化合物显著降解,形成了更多CHNO化合物和高度不饱和的化合物;经消毒单元处理后,高度不饱和及芳香族化合物减少,芳香性降低;经反渗透单元处理后,高度不饱和及CHO化合物被去除。这些处理单元在去除DOM过程中效果互补,整个处理工艺可有效地转化和去除废水中DOM。 相关研究成果以“Non-targeted characterization of dissolved organic matter from a wastewater treatment plant by FT-ICR-MS:A case study of hospital sewage”为题发表于发表在国际环境工程技术期刊《Journal of Water Process Engineering》,测试所(中广测)为唯一第一和通讯作者单位,上述工作得到了广东省科学院建设国内一流研究机构行动专项资金项目、广东省重点领域研究计划项目和广州市基础研究与应用基础研究项目的支持。
  • 科迈恩科技与安捷伦科技在聚合型药用辅料精细表征领域继续开展深度合作
    一、合作新篇章 近日,科迈恩(北京)科技有限公司与安捷伦科技(中国)有限公司再度围绕基于高分辨质谱的聚合物精细表征技术应用签署深度战略合作。双方将共同致力于推广聚合型化合物智能分析系统Polymer Studio结合高分辨质谱对于药用辅料及其制剂中的复杂组分自动表征与鉴定技术,展示LC-HRMS在以吐温、司盘、脂质体等为代表的聚合型药用辅料的质量评价中的独特优势,为制药行业广大用户提供前沿技术手段及整体解决方案。该项产学研用一体化合作也得到了中国医学科学院/协和医学院药物研究所张金兰教授及其团队的大力支持和肯定。 全新的Polymer Studio药用辅料智能表征分析软件暨数据库的发布填补了现有各国药典关于聚合型药用辅料质量精细表征与一致性评价的空白;缓解了高级药用辅料长期依赖进口的卡脖子问题;提供了抗体药及mRNA疫苗制剂中广泛使用的吐温系列辅料潜在的因氧化等因素导致疫苗失效及细胞毒作用的杂质分析方法,将在聚合型组分复杂体系的高分辨质谱表征这一“聚合物组学”的全新应用领域发挥重要和积极的作用。二、产品亮点1. 可扩展的天然及合成高分子聚合物系列高分辨质谱(MSn)数据库2. 制药领域最全面的聚合型药用辅料及有关物质(杂质)数据库(收载多达2万个化合物单体)3. 专利的高分辨质谱复杂组分精细表征高性能识别算法4. 专业UI界面、丰富、直观的数据分析结果5. 辅料一致性评价报告智能生成三、行业新应用 下一阶段双方将围绕生物、制药、食品、材料等相关高分子聚合物精细表征领域开展深度合作,针对行业Q-TOF质谱重点客户提供差异化解决方案,满足辅料软件用户的品种定制化需求,充分挖掘该分析平台的技术潜力,共同致力解决行业辅料相关质量分析挑战,促进双方人员技术交流和能力提升。 同时,双方还将共同开展相关应用领域公开性质的市场活动,推动企业界领袖、中国科学家及药品监管部门之间的技术交流,引领药用辅料质量分析、评价与控制技术发展趋势,进一步扩大安捷伦科技和科迈恩科技在制药行业及药用辅料质量分析与评价领域的服务能力和影响力。 双方自2019年首次开展战略合作以来,在提升我国药用辅料质控水平方面取得一系列进展。未来,科迈恩科技也将进一步加深与安捷伦科技在制药行业及药用辅料质量分析与评价领域的合作,逐步优化服务水平,完善解决方案内容,持续为行业创新与高质量发展贡献力量。关于科迈恩科技科迈恩科技秉持“让AI为创新分析技术赋能”的愿景,致力于让广大用户受益于大数据和人工智能技术对于检测能力的创新和提高。目前科迈恩科技已在智能化仪器数据分析、快检技术、新药研发、精准医疗、感官评价等工业级AI建模等领域拥有系列化产品或解决方案,涵盖色谱、质谱、光谱、核磁共振等多维分析大数据的融合。所服务的客户覆盖制药、快消品、农产品、临床、石化、环保、交通、汽车制造等诸多领域。关注“科迈恩科技”公众号,了解更多分析检测行业的解决方案如您对科迈恩科技有更多想了解,可通过仪器信息网和我们取得联系!400-860-5168转3905
  • 【NIFDC文献系列赏析】CE-SDS表征mAbs联合验证
    自1986年第一个治疗性单克隆抗体(mAb)获批以来,mAbs已经成为发展最快的药物。超过80种mAb药物已被批准用于治疗,目前还有更多的mAb正在开发中。对mAbs药物开发至关重要的是对其分子量大小和电荷变异体进行表征。分子的异质性会影响mAb药物的稳定性、有效性和安全性。 传统方法表征分子量大小异质性是通过十二烷基硫酸钠聚丙烯酰胺凝胶电泳(SDS-PAGE)。然而,SDS-PAGE具有操作繁琐和重复性差的缺点。十二烷基硫酸钠-毛细管凝胶电泳(CE-SDS)作为一种高分辨率、高精确度和高度自动化的分析方法,在分析mAbs时,其精确度、线性、重复性和分辨率方面远远优于SDS-PAGE。CE-SDS可以实现非糖基化重链(NGHC)的精确定量。抗体药物的NGHC直接影响其生物功能。NGHC含量是抗体药物质量控制的一个关键指标,CE-SDS方法比SDS-PAGE有更好的分辨率来量化NGHC。 根据ICH(国际人用药品注册技术协调会)指导原则,2018年,全柱成像毛细管等电聚焦电泳(icIEF)技术已经被中国食品药品鉴定研究院(NIFDC)联合国内8家不同公司,共计10个实验室进行了联合验证(Gang, Wu, Chuanfei, et al. Interlaboratory Method Validation of icIEF Methodology for Analysis of Monoclonal Antibodies[J]. Electrophoresis, 2018.),用以定量监测和表征电荷异构体,但CE-SDS尚未进行。为了满足制药行业对CE-SDS方法标准化的需求,并方便不同品牌毛细管电泳设备(CE)和不同实验室之间的方法转移和方法重现,2021年NIFDC进行CE-SDS方法联合验证,涉及13家公司的13个实验室,使用四种不同型号毛细管电泳设备。该验证遵循ICH指导原则,利用一种商业mAb药物,考察验证仪器的精密度、线性、定量限和准确度等内容。表1. 该项研究参与者和仪器型号 四种类型仪器的电泳图见图1。所有电泳图都含有明确的峰,还原状态下的轻链(LC)、非糖基化重链(NGHC)和重链(HC),同时还观察到五个杂质峰(标记为P1-P5)。在非还原条件下的电泳图中,除主峰外还观察到六个尺寸异构体相对应的峰(标记为P1-P5,在一些运行中还观察到P6)。然而,在四种类型仪器的电泳图中没有观察到比P1-P6更多的杂质峰。杂质的一致性在四种类型的仪器中显现出来。图1. 四种类型仪器电泳图重复性 分为进样精密度和样品制备重复性。进样精密度主要反映了仪器和方法中使用的试剂的变化。而样品制备重复性除了反映仪器的变化外,还反映了操作者误差的差异。如图2和图3所示,当排除CE9这个异常值后,两组数字有相同趋势(95%置信区间)。在进样精密度方面,12台仪器的杂质百分比范围为3.5-4.6%,单体95.5-96.5%,NGHC 1.0-1.3%,LC+HC总计97.5-98.0%;而在样品制备重复性方面,12台仪器的杂质百分比范围为3.4-4.3%,单体95.7-96.6%,NGHC 1.0-1.3%,LC+HC总计97.3%-98%。这些数值表明,在该方法中操作者的误差影响最小。图2左. 13台仪器在非还原和还原条件下的进样精密度;图3右. 13台仪器的样品制备重复性批间精密度 每个实验室进行3天实验。在样品制备后,在不同日期使用不同的毛细管,每天进样一次。结果见图4。该测试反映了仪器在多天内的变化。12台仪器(CE9仍是一个异常值)的测试变化范围与重复性测试相同:在95%的置信区间内,12台仪器的杂质百分比范围为3.5-4.3%,单体95.7-96.7%,NGHC 1.0-1.3%,LC+HC总计97.2-98.0%。图4. 13台仪器的批间精密度准确度 在0.5、0.75、1.00(目标样品浓度)、1.25和1.50 mg/mL五种不同的样品浓度下,测定了四种成分的回收率,即非还原条件下的杂质(P1-P6峰)和单体;还原条件下的NGHC和LC+HC总量。对于所有仪器来说,四种成分的三次进样(N=3)回收率都在预先设定的回收率标准(83-117%)之内,除了CE4,其回收率在总蛋白浓度为0.5mg/mL时为81%,而且只在非还原条件下。该方法对其预期的应用目标来说是准确的。见图5图5. 在非还原和还原条件下,13台仪器样品中四种成分的回收率线性 对于非还原和还原条件下的主要成分(单体和LC+HC总量),所有仪器的R2对于LC+HC来说都0.94,对于单体来说0.96。对于次要成分,它们的R2比主要成分小,这是预料之中的。见表2和表3表2. 单体和杂质(P1-P6)在非还原条件下的线性拟合表3. HC+LC总量和NGHC在还原条件下的线性拟合定量限 13台仪器中每台仪器在非还原和还原条件下的LOQ,如表所示,在非还原CE-SDS中为0.46%,在还原CE-SDS中为0.14%。见表4表4. 13台仪器在非还原和还原条件下的LOQs样品稳定性 样品在非还原和还原条件下被变性,在仪器的样品盘中存放24小时。除了CE4在非还原条件下24小时后显示出较高的杂质峰面积百分比外,所有仪器在0小时和24小时之间的四个组分峰面积百分比的差异都在重复性测试结果的范围内。见图6图6. 样品中四种成分的溶液稳定性结论 研究结果证明,CE-SDS方法符合其预期的应用目的--对于mAb治疗药物的纯度和大小异质性特征检测,该研究的结果减轻了CE-SDS方法开发和方法转移的负担,因为使用任何一种仪器的CE-SDS方法都呈现出预期的重现性、准确性和LOQ。Maurice全自动蛋白质表征系统采用免组装毛细管卡盒设计与创新性实时全柱成像等电聚焦专利技术,同时具备CE-SDS和iCIEF两种检测模式,双模式符合2020版中国药典。ProteinSimple,Meet Maurice | ProteinSimple 全自动蛋白质表征系统--全柱成像毛细管等电聚焦电泳技术 双模式(CE-SDS&iCIEF) 双通道(紫外&荧光) 免组装毛细管卡盒 快速表征视频号
  • 浅谈纳米材料的表征与测试方法
    p style=" text-align: justify text-indent: 2em " 纳米材料被誉为“21 世纪最重要的战略性高技术材料之一”。随着应用领域的扩大和增强,近年来,纳米材料的毒性与安全性也受到广泛关注。表征与测试技术是科学鉴别纳米材料、认识其多样化结构、评价其特殊性能及优异物理化学性质、评估其毒性与安全性的根本途径,也是纳米材料产业健康持续发展不可或缺的技术手段。 /p p style=" text-align: justify text-indent: 2em " strong 1 纳米材料的表征 /strong /p p style=" text-align: justify text-indent: 2em " 纳米材料的表征是对纳米材料的性质和特征进行的客观表达,主要包括尺寸、形貌、结构和成分等方面的表征。 /p p style=" text-align: center " span style=" color: rgb(0, 112, 192) " 纳米材料的表征 /span /p p style=" text-align: center " strong img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/201912/uepic/2ffdf5f4-5465-4b3a-849e-1934933722b0.jpg" title=" 纳.png" alt=" 纳.png" / /strong /p p style=" text-align: justify text-indent: 2em " strong 2 纳米材料的测试技术 /strong /p p style=" text-align: justify text-indent: 2em " 2.1 光子相关光谱法(photo correlation spectroscopy,PCS) /p p style=" text-align: justify text-indent: 2em " PCS常用于纳米粒子尺寸及尺寸分布的测试,相关标准已有GB/T 19627 等,其适用于尺寸为3nm~3μm的悬浮液,可获得准确的尺寸分布,测试速度也相当快,特别适合于工业化产品粒径的检测。但采用该方法时,必须要解决好纳米材料的分散问题,须获得高度分散的悬浮液,否则所反映的结果只是某种团聚体的尺寸分布。由于该方法是一种绝对方法,因此测量仪器可以不必校准;但在仪器首次安装、调试期间或有疑问时,必须使用有证标准纳米颗粒分散体系对仪器进行验证。如采用PCS法测定平均粒径小于100nm的、粒度分布较窄的聚苯乙烯球形颗粒分散体系,则要求测得的平均粒径与标定的平均粒径的相对误差应在2%之内。 /p p style=" text-align: justify text-indent: 2em " 2.2 X 射线衍射法(X-ray diffraction,XRD) /p p style=" text-align: justify text-indent: 2em " X射线衍射法可用于纳米晶体材料结构分析、尺寸测试和物相鉴定。该方法测定的结果是最小不可分的粒子的平均尺寸;因此,只能得到较宏观的测量结果。此外,采用该方法进行测试时,需要用X 射线衍射仪校正标准物质对仪器进行校正。目前,该方法已建立有关的国家标准包括GB/T 23413、GB/T 15989、GB/T15991 等。XRD物相分析可用于未知物的成分鉴定,但分析的不足之处在于灵敏度较低,一般只能测定含量在1%以上的物相;且定量分析的准确度也不高,一般在1%的数量级。同时,所需要的样品量较大,一般需要几十至几百毫克,才能得到比较准确的结果。由于非晶态的纳米材料不会对X射线产生衍射,所以一般不能用此法对非晶纳米材料进行分析。 /p p style=" text-align: justify text-indent: 2em " 2.3 X 射线小角散射法(small angle X-ray scattering,SAXS) /p p style=" text-align: justify text-indent: 2em " SAXS可用于纳米级尺度的各种金属、无机非金属、有机聚合物粉末以及生物大分子、胶体溶液、磁性液体等颗粒尺寸分布的测定;也可对各种材料中的纳米级孔洞、偏聚区、析出相等的尺寸进行分析研究。其测试范围为1~300nm,测量结果所反映的是一次颗粒的尺寸,具有典型的统计性,且制样相对比较简单,对粒子分散的要求也不像其他方法那样严格。但该方法本身不能有效区分来自颗粒或微孔的散射,且对于密集的散射体系,会发生颗粒散射之间的干涉效应,导致测量结果有所偏低。关于该方法的标准有GB/T 13221、GB/T 15988等。为了保证测试结果的可靠性和重复性,应对仪器的性能和操作方法进行校核,一般推荐采用粒度分布已定值的纳米粉末标样或经该方法测定过粒度分布的特定样品进行试验验证,其中粒径偏差应控制在10%以内。 /p p style=" text-align: justify text-indent: 2em " 2.4 电子显微镜法(electron microscopy) /p p style=" text-align: justify text-indent: 2em " 电子显微镜法是对纳米材料尺寸、形貌、表面结构和微区化学成分研究最常用的方法,一般包括扫描电子显微镜法(scanning electron microscopy,SEM)和透射电子显微镜法(transmission electronmicroscopy,TEM)。 /p p style=" text-align: justify text-indent: 2em " SEM的特点是放大倍数连续可调,从几倍到几十万倍,样品处理较简单;但一般要求分析对象是具有导电性的固体样品,对非导电样品需要进行表面蒸镀导电层。扫描电镜与能谱仪相结合,可以满足表面微区形貌、组织结构和化学元素三位一体同位分析的需要。能谱仪可对表面进行点、线、面分析,分析速度快、探测效率高、谱线重复性好,但是一般要求所测元素的质量分数大于1%。关于电镜在纳米材料应用中的标准较多,如GB/T 15989、GB/T 15991、GB/T 20307、ISO/TS 10798等。 /p p style=" text-align: justify text-indent: 2em " TEM法是集形貌观察、结构分析、缺陷分析、成分分析的综合性分析方法,已成为纳米材料研究的最重要工具之一。除了具有与SEM的相同功能外,利用电子衍射功能,TEM可对同素异构体加以区分。相较于XRD,还能对含量过低的某些相进行分析,且可以结合形貌分析,得到该相的分布情况。TEM法的主要局限是对样品制备的要求较高,制备过程比较繁琐,若处理不当,就会影响观察结果的客观性。目前,TEM在纳米材料方面的应用正逐步被开发出来,其相关标准也在不断增加,如GB/Z 21738、GB/T 24490、GB/T 24491、ISO/TS 11888、GB/T 28044等。 /p p style=" text-align: justify text-indent: 2em " 由于电镜法测试所用的纳米材料极少,可能会导致测量结果缺乏整体统计性,实验重复性差,测试速度慢;且由于纳米材料的表面活性非常高,易团聚,在测试前需要进行超声分散;同时,对一些不耐强电子束轰击的纳米材料较难得到准确的结果。采用电镜法进行纳米材料的尺寸测试时,需要选用纳米尺度的标准样品对仪器进行校正。 /p p style=" text-align: justify text-indent: 2em " 2.5 扫描探针显微镜法(scanning probe microscopy,SPM) /p p style=" text-align: justify text-indent: 2em " SPM法是研究物质表面的原子和分子的几何结构及相关的物理、化学性质的分析技术。尤以原子力显微镜(atomic force microscopy,AFM)为代表,其不仅能直接观测纳米材料表面的形貌和结构,还可对物质表面进行可控的局部加工。与电镜法不同的是,除了真空环境外,AFM还可用于大气、溶液以及不同温度下的原位成像分析;同时,也可以给出纳米材料表面形貌的三维图和粗糙度参数。除此之外,AFM 还可用于研究纳米材料的硬度、弹性、塑性等力学及表面微区摩擦性能。 /p p style=" text-align: justify text-indent: 2em " 近年来,SPM技术在纳米材料测量和表征方面的独特性越来越得到体现,如GB/Z 26083-2010、国家项目20078478-T-491等。但由于SPM纵向与横向分辨率不一致、压电陶瓷可能引起的图像畸变、针尖效应等,使得还有一些问题有待解决,如SPM探针形状测量和校正、SPM最佳化应用及不确定度评估、标准物质的制备、仪器性能的标准化、数值分析的标准化、制样指南和标准制定等。目前,虽有仪器校正的标准ASTM E 2530和VDI/VDE 2656颁布,但由于标准物质的缺少,在实际操作中缺乏实施性。 /p p style=" text-align: justify text-indent: 2em " 2.6 X 射线光电子能谱法(X-ray photoemissionspectroscopy,XPS) /p p style=" text-align: justify text-indent: 2em " XPS 法也称为化学分析光电子能谱(electron spectroscopy for chemical analysis,ESCA)法。从X 射线光电子能谱图指纹特征可进行除氢、氦外的各种元素的定性分析和半定量分析。作为一种典型的非破坏性表面测试技术,XPS主要用于纳米材料表面的化学组成、原子价态、表面微细结构状态及表面能谱分布的分析等,其信息深度约为3~5nm,绝对灵敏度很高,是一种超微量分析技术,在分析时所需的样品量很少,一般10-18g左右即可;但相对灵敏度通常只能达到千分之一左右,且对液体样品分析比较麻烦。通常,影响X射线定量分析准确性的因素相当复杂,如样品表面组分分布的不均匀性、样品表面的污染物、记录的光电子动能差别过大等。在实际分析中用得较多的是对照标准样品校正,测量元素的相对含量;而关于该仪器的校准,GB/T 22571-2008中已有明确规定。 /p p style=" text-align: justify text-indent: 2em " 2.7 俄歇电子能谱法(aguer electron spectroscopy,AES) /p p style=" text-align: justify text-indent: 2em " AES法已发展成为表面元素定性、半定量分析、元素深度分布分析和微区分析的重要手段,可以定性分析样品表面除氢、氦以外的所有元素,这对于未知样品的定性鉴定非常有效。除此之外,AES还具有很强的化学价态分析能力。AES的分析范围为表层0.5~2.0nm,绝对灵敏度可达到10-3个单原子层,特别适合于纳米材料的表面和界面分析。但需要注意的是,对于体相检测,灵敏度仅为0.1%,其表面采样深度为1.0~3.0 nm。AES技术一般不能给出所分析元素的绝对含量,仅能提供元素的相对含量;而且,采用该方法进行测试时,需要相应的元素标样,元素鉴定方法在JB/T 6976-1993中已明确给出。 /p p style=" text-align: justify text-indent: 2em " 2.8 其他方法 /p p style=" text-align: justify text-indent: 2em " 除此之外,还有一些其他的测试技术和方法用于纳米材料的表征,如紫外/可见/近红外吸收光谱方法用于金纳米棒的表征(GB/T 24369.1)、紫外-可见吸收光谱方法用于硒化镉量子点纳米晶体表征(GB/T24370)、纳米技术-用紫外-可见光-近红外(UV-Vis-NIR)吸收光谱法表征单壁碳纳米管(ISO/TS 10868)。 /p p style=" text-align: justify text-indent: 2em " strong 3 结束语 /strong /p p style=" text-align: justify text-indent: 2em margin-bottom: 15px " 纵观当前纳米材料的表征与测试技术,要适应纳米材料产业的快速发展,规范化表征和准确可靠测试纳米材料尚存在一定挑战。 /p p style=" text-align: justify text-indent: 2em " 基于此,仪器信息网将于 span style=" color: rgb(255, 0, 0) " 2019年12月18日 /span 组织举办 strong 第二届“纳米表征与检测技术”主题网络研讨会 /strong ( a href=" https://www.instrument.com.cn/webinar/meetings/nano2/" target=" _blank" textvalue=" 免费报名中" i span style=" color: rgb(255, 0, 0) " 免费报名中 /span /i i span style=" color: rgb(255, 0, 0) " /span /i /a ),邀请该领域专家,围绕纳米材料常用表征和检测技术,从成分、形貌、粒度、结构以及界面表面等方面带来精彩报告,为纳米材料工作者及相关专业技术人员提供线上互动交流互动平台,进一步加强学术交流,共同提高纳米材料研究及应用水平。 /p p style=" text-align: center text-indent: 0em " a href=" https://www.instrument.com.cn/webinar/meetings/nano2/" target=" _blank" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/201912/uepic/14b28169-cfe6-44ba-8dc5-f47132b97366.jpg" title=" 540_200.jpg" alt=" 540_200.jpg" / /a /p p style=" text-align: justify " a href=" https://www.instrument.com.cn/webinar/meetings/nano2/" target=" _blank" textvalue=" 报名链接:第二届“纳米表征与检测技术”主题网络研讨会" strong span style=" color: rgb(255, 0, 0) " 报名链接 /span /strong : i strong span style=" color: rgb(112, 48, 160) " 第二届“纳米表征与检测技术”主题网络研讨会 /span /strong /i /a /p p style=" text-align: center " strong 扫一扫,参与报名 /strong /p p style=" text-align: center " img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/201912/uepic/d2e686ea-3308-4d6f-8795-e26e3d0f062d.jpg" title=" 报名.PNG" alt=" 报名.PNG" / /p p style=" text-align: center " strong 扫一扫,进入纳米表征与检测技术群 /strong /p p style=" text-align: center " strong img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/201912/uepic/33e39f0a-8ef0-4aeb-b662-03350301ed05.jpg" title=" 群.PNG" alt=" 群.PNG" / /strong /p p style=" text-align: justify " strong i style=" margin: 0px padding: 0px color: rgb(127, 127, 127) font-family: 宋体, " arial=" " white-space:=" " 文章摘自: /i /strong /p p style=" text-align: justify " strong i style=" margin: 0px padding: 0px color: rgb(127, 127, 127) font-family: 宋体, " arial=" " white-space:=" " span style=" font-family: " microsoft=" " font-size:=" " background-color:=" " 谭和平, 侯晓妮, 孙登峰, et al. 纳米材料的表征与测试方法[J]. 中国测试, 2013(01):17-21. /span /i /strong /p
  • 【解决方案】如何高效表征基因治疗中腺相关病毒载体?
    基因治疗是通过将修饰的基因传递至靶细胞中,从而把患者体内的突变基因替换为相对应的健康基因拷贝来实现治疗或者预防疾病的目的。与传统的药物治疗相比,基因治疗是从根本上对疾病进行控制,所以有着非常好的发展前景,在世界范围内得到越来越多医药行业的关注和投入。 将正常基因(外源)导入生物细胞内必须借助一定的技术方法或载体,基因转移的方法分为生物学方法、物理方法和化学方法。 病毒越来越多的用作载体,用于传递基因治疗的遗传物质和疫苗应用。重组腺相关病毒(recombinant Adeno-Associated Viruses, rAAV)是基因治疗最为常用的病毒载体之一。 一、如何开发高效安全的 rAAV 疗法?为了开发通过受控和经济的制造工艺生产的高效的 rAAV 疗法,需要解决从病毒衣壳设计到确定最佳工艺和配方条件,再到全面质量控制的多重挑战。应对这些挑战,需要针对 rAAV 样品下列属性进行量身定制的分析表征: Ø 测定衣壳蛋白或者颗粒滴度(capsidor particle titer)Ø 完整 rAAV 颗粒的百分比Ø 空-载比(Full-empty ratio)Ø 颗粒的粒径Ø 聚集体形成(aggregate formation)Ø 热稳定性(Thermal stability)Ø 基因组释放(genome release)Ø 衣壳电荷(capsid charge)等 而所有这些都可能影响最终产品的关键质量属性(CQA)。 通常,rAAV 滴度和病毒载量是使用酶联免疫吸附试验(ELISA)、定量聚合酶链式反应(qPCR)、液滴数字聚合酶链式反应(ddPCR)、分析超速离心(AUC)和电子显微镜(EM)的技术组合测定的。这些方法通常既费时又费力,而且其准确性和精确性也值得怀疑[1]。因此,业内越来越需求一种不依赖于使用专用试剂和昂贵的参考标准品的快速分析解决方案。 动态光散射(DLS)、多角度动态光散射(MADLS)、电泳光散射(ELS)、尺寸排阻色谱-多角度光散射(SEC-MALS)、纳米颗粒跟踪技术(NTA)、等温滴定量热法(ITC)和差式扫描量热法(DSC)可以提供有关病毒载体的关键分析和质量属性的重要信息,从而能够对多种参数进行表征、比较和优化。 样品关键参数马尔文帕纳科的技术方案衣壳蛋白尺寸DLS、NTA衣壳蛋白及转基因的绝对分子量SEC-MALS (OMNISEC)衣壳滴度或颗粒计数MADLS, SEC-MALS(OMNISEC), NTA含基因病毒颗粒百分比分析SEC-MALS (OMNISEC)聚集形成分析DLS, MADLS, SEC-MALS (OMNISEC), NTA碎片化分析SEC-MALS (OMNISEC)热稳定性分析DLS, DSC高级结构分析DSC血清型鉴定DSC衣壳解聚及基因组注入DLS, DSC衣壳蛋白尺寸ITC电荷分析ELS表1 总结了病毒载体研究中各种重要的关键属性(CQA),以及马尔文帕纳科可以对应提供表征此类信息的各项技术。 DLS、MADLS、SEC-MALS、NTA、ITC和DSC属于无标记的生物物理技术,需要最少程度的方法开发,并且可以很容易的应用于各个阶段,强化了基因治疗开发的分析工作流程。 二、高效的表征技术概念解读动态光散射(DLS)动态光散射(DLS)是一种非侵入式技术,可以测量由颗粒分散体系或分子溶液引起的散射光强度随时间的波动。由于进行布朗运动的颗粒或者分子的随机运动,散射光的强度会随之发生波动。使用自相关算法分析这些强度波动可以确定平移扩散系数,随后根据斯托克斯-爱因斯坦方程确定流体力学尺寸。多角度动态光散射(MADLS)多角度动态光散射(MADLS)通过使用三个不同的检测角度(背面、侧面和正面)并将获取的光散射信息组合成一个与角度无关(Angular-Independent)的粒径分布,从而可以对多模态的样品进行更高分辨率的尺寸测定。应用MADLS技术的扩展还可以测量出颗粒浓度(Concentration)。电泳光散射(ELS)电泳光散射(ELS)测定来自在电场中进行电泳的颗粒或者分子的散射光的频移(Frequency Shift),并能够计算出Zeta电位。颗粒的Zeta电位是颗粒在特定介质中获得的总电荷,可用于预测分散体系的稳定性并深入了解所研究的颗粒的表面化学。尺寸排阻色谱(SEC)尺寸排阻色谱(SEC)是一种分离技术,可根据分子进出柱中多孔凝胶基质的流体力学半径来分离分子。搭配一系列先进的检测器,如光散射(LS)、UV、RI和粘度,可以测量绝对分子量、分子大小、特征粘度、支化和其他参数。差式扫描量热法(DSC)差式扫描量热法(DSC)是一种直接分析天然蛋白质或其他生物分子热稳定性的技术,无需外在荧光素或者内源荧光,它通过测定在恒定的升温速率下使生物分子发生热变性过程中的热容变化来实现。 案例研究 | 综合使用多种技术表征 rAAV性状:衣壳分子量、聚集状态、滴度、稳定性… … 1,空 rAAV5 衣壳分析SEC-MALS (OMNI-SEC)测量产生的关键数据是绝对分子量,与柱保留时间或用于校准系统的任何标准无关。在空rAAV的情况下(Fig.1 和表2),主要单体的Mw为3.84 x 106 g/mol。空衣壳蛋白的理论分子量为3.8 x 106 g/mol,证实该分析结果符合预期。 图1 rAAV5 空壳三重色谱图表2 rAAV5空壳的定量参数 Mw/Mn 描述样品的分散性,接近1的值表示峰中有单个群体,远高于1的值表示峰内有多个群体。在空 rAAV 的情况下,单体和二聚体的 Mw/Mn 值接近1,表明是单一群体。聚集体和碎片 Mw/Mn 值显著高于1,表明单个峰内具有不同分子量的多个群体(表2)。 样品的分数(Fraction of Sample)描述了样本在群体之间的分布情况,在这种情况下,84.7% 的样品是单体。蛋白质分数(Fraction of Protein)表示样品中衣壳的百分比;在这种情况下,单体是99.8%的衣壳。这证实样品是空的 rAAV5 。从这种单一分析方法中获得的另一个关键信息是样品滴度;在这种情况下,对于空的 rAAV5,测得的滴度为 5.91x1013 vp/mL。 2,完整 rAAV5 衣壳分析完整 rAAV5衣壳的SEC-MALS (OMNISEC) 分析如图2和表3所示。对于主要的单体峰,计算出的符合Mw为4.49 x 106 g/mol,其中86%为衣壳。这样,完整的rAAV5的蛋白质组分的Mw为3.86 x 106 g/mol,与表2中的空rAAV5衣壳生成的数据一致。单体部分占比93%,样品具有总滴度7.48 x 1013 vp/mL。 图2 完整 rAAV5 的三重色谱图表3 完整 rAAV5 的定量参数 3,rAAV5 稳定性研究病毒衣壳的稳定性和功能是一种平衡行为。病毒衣壳必须足够稳定以包含和保护其中的基因组,与宿主细胞表面结合,它们必须提供足够的构象稳定性以在复制位点释放基因货物。 AAV载体脱壳的机制仍然知之甚少。衣壳脱壳和基因组释放似乎需要结构变化。基于差示扫描荧光法和差示扫描量热法(DSC)收集的AAV热稳定性已发表数据,AAV热转变的Tm值与衣壳解聚过程有关,可作为AAV血清型的鉴定指标;一种血清型的空AAV衣壳和完整AAV衣壳的Tm值通常非常相似,并且它们与衣壳动力学、衣壳脱壳和基因组释放没有明显的相关性。 图3 空rAAV5 和完整 rAAV5的DSC数据比较,扣除空白和基线的DSC数据。垂直方向标记的区域具有明显不同的热转变过程。表4 从DSC获得的空 rAAV5 和完整 rAAV5 样品的热稳定性结果 文章中记录的完整和空 rAAV5 样品的DSC曲线叠加(图3),根据空 rAAV5 和完整rAAV5 样品的整体 DSC 图谱差异以及热稳定性参数(如 Tonset 和 Tm2,表 4),可以在图 3 中 DSC 曲线上识别出四个不同的区域,它们可以暂且归因于以下几点:#1■ 仅在完整的 rAAV5 中出现的区域,从50℃一直延展至 75℃,这个过程大约 30 分钟。这可能归因于热应激下衣壳蛋白结构和稳定性变化导致的 ssDNA 的动力学控制下的注射;#2■在空 rAAV5 中出现的最明显的预转变过程;#3■ 主要转变过程,即协同的 rAAV5 衣壳蛋白发生解组装,这由具有血清型特异性的 Tm 值所决定;#4■ 仅在完整 rAAV5 中出现的另外的转变过程,很可能归因于 ssDNA 的解链。结论:以上几例是综合应用马尔文帕纳科多种互补技术对基因治疗常用的AAV载体一些关键属性的表征,这些无标记生物物理技术需要最少的方法开发,可以从衣壳设计阶段到开发、配方开发和药物原料和产品进行深入表征,加强体内基因治疗开发的分析工作流程。 详细内容可参文献 (Pharmaceutics 2021, 13(4), 586 https://doi.org/10.3390/pharmaceutics13040586)[1] Burnham, B. Nass, S. Kong, E. Mattingly, M. Woodcock, D. Song, A. Wadsworth, S. Cheng, S.H. Scaria, A. O’Riordan, C.R. Analytical ultracentrifugation as an approach to characterize recombinant adeno-associated viral vectors. Hum. Gene Ther. Methods 2015, 26, 228–242 三、纳米粒度及电位分析仪:DLS/ ELS/ MADLS 马尔文帕纳科 Zetasizer Ultra 纳米粒度及Zeta电位分析仪具有真正的多角度动态光散射技术(MADLS® ),提供更高的粒度测量分辨率,及与角度无关的粒度结果,并能够测量颗粒浓度。图4 Zetasizer Ultra纳米粒度及Zeta电位分析仪 四、OMNISEC 凝胶渗透色谱仪:GPC/SEC马尔文帕纳科OMNISEC凝胶渗透色谱仪是一套完整的凝胶渗透/尺寸排阻色谱(GPC)/(SEC),有前端色谱分离系统、检测器和软件组成,是灵敏准确的多检测器GPC/SEC 系统,可以准确测定:Ø 绝对分子量和分子量分布Ø 特性粘度和分子结构Ø 样品浓度Ø 以及其他多种关键参数图5 OMNISEC凝胶渗透色谱仪 五、PEAQ-DSC 微量热差示扫描量热仪:DSC 马尔文帕纳科 MICROCLA PEAQ-DSC 微量热差示扫描量热仪能够帮助用户快速确认维持高级结构稳定性的最佳条件,提供简洁、无缝的工作流程和自动化批量数据分析,其所提供的热稳定性信息被业内视为“金标准”技术,是一种非标记、全局性的数据。图6 MicroCal PEAQ-DSC 微量热差示扫描量热仪 关于马尔文帕纳科马尔文帕纳科的使命是通过对材料进行化学、物性和结构分析,打造出更胜一筹的客户导向型创新解决方案和服务,从而提高效率和产生可观的经济效益。通过利用包括人工智能和预测分析在内的技术发展,我们能够逐步实现这一目标。这将让各个行业和组织的科学家和工程师可解决一系列难题,如提高生产率、开发更高质量的产品,并缩短产品上市时间。 联系我们:马尔文帕纳科销售热线: +86 400 630 6902售后热线: +86 400 820 6902联系邮箱:info@malvern.com.cn官方网址:www.malvernpanalytical.com.cn
  • 【NIFDC文献系列赏析】自发荧光iCIEF表征rhEPO技术新进展
    重组人红细胞生成素(rhEPO)是全球最重要的生物制品之一,可用于治疗由慢性肾脏病、肿瘤化放疗或骨髓增生症导致的贫血。rhEPO是一种高度糖基化的糖蛋白药物,几乎rhEPO分子量的一半是由翻译后修饰的多糖组成。这些多糖包括N端链接寡糖链,其末端为唾液酸残基。唾液酸残基在控制rhEPO在体内半衰期起重要作用,并且影响其稳定性和电荷异质性。 电荷异质性(电荷变异体),即蛋白质表面电荷的改变。改变可以是由于电荷数量增减的直接改变,也可以是由于蛋白构象改变而间接引起的改变。产生电荷异质性的原因有很多,例如异构化、氧化、聚合、末端改变、脱酰胺化和糖基化等。 rhEPO电荷变异体产生最主要的原因是其高度糖基化,尤其是高度唾液酸化。电荷异质性是反应糖基化水平的重要表征之一,属于关键质量属性(Critical Quality Attributes, CQA),监管机构要求必须在整个生产和贮存中对rhEPO的电荷异质性进行检测和表征。使用CZE方法表征rhEPO存在如下难点制剂中rhEPO含量相对较低,μg级别,需要浓缩样品提高检测灵敏度;制剂中含多种辅料组分,可能会对分析结果造成干扰。例如,促红素制剂中含有mg级别的人血白蛋白(HSA),使用CZE方法会对结果造成干扰;CEZ方法需对样品进行复杂前处理,去除辅料干扰。NIFDC解决方案 2021年,中国食品药品鉴定研究院(NIFDC)依据ICH(国际人用药品注册技术协调会)指导原则,利用全柱成像毛细管等电聚焦电泳技术(iCIEF)自发荧光通道表征8种商品化rhEPO电荷异质性,并评估该方法的精密度、准确性、线性、范围和耐用性。 紫外吸收UV280nm是经典icIEF等电聚焦电泳检测通道。而自发荧光(NIF:Native Fluorescence)是指利用芳香族氨基酸(色氨酸、酪氨酸、苯丙氨酸)的自发荧光来实现检测,无需添加染料,提高检测灵敏度。 结果表明,对比CZE-UV(毛细管区带电泳-紫外)方法,iCIEF方法自发荧光通道检测具有更高的分辨率和灵敏度,同时具有快速检测、无需样品前处理、消除辅料干扰等优势。结果展示图1. A:紫外通道检测 B:自发荧光通道检测 图1结果显示,紫外通道检测(A)的信号很低;自发荧光通道检测(B),可以明显看到信号增强,且各个变异体分离效果较好。表1. 紫外通道检测和自发荧光通道检测对比 研究结果表明,两种通道检测下各变异体峰面积比例含量完全一致(表1)。图2. 自发荧光通道检测不同浓度样品表2. 文献报道其它方法定量限 研究人员考察了利用自发荧光通道检测1.25μg/m至20μg/ml浓度范围内样品(图2),各变异体面积比例含量和浓度线性关系良好,R方均不低于0.99。该方法定量限(LOQ)为0.1ug/ml(表2),根据文献报道显示,本方法灵敏度为最高。图3. 不同稀释度下的回收率 研究人员配制了7个不同浓度的样品对该方法准确性进行验证(图3),通过实际测定总峰面积和理论总峰面积来计算回收率,回收率在80-105%之间。图4. 耐用性评估 研究人员对方法耐用性进行评估(图4),比较不同两性电解质浓度、尿素浓度、不同毛细管以及不同样品放置时间情况下的各变异体等电点和峰面积百分比的差异。结果表明,变异体等电点差异不超过0.1,峰面积百分比RSD%不超过5%,方法耐用性良好。图5. 自发荧光检测模式表征8种商品化rhEPO电荷变异体 为了证明该方法对商品化rhEPO表征的适用性,研究人员利用所建立方法,对不同企业的8种商品化rhEPO电荷变异体进行表征(图5)。DP1-6有相似峰型,在DP3和DP6中,有一额外明显的小峰。DP7峰形独特,可能由于与其他DP相比糖基化不同所造成。结论 NIFDC利用ProteinSimple全柱成像毛细管等电聚焦电泳技术自发荧光检测通道建立并证明了用于rhEPO电荷异质性表征的方法平台。该平台有如下特点:无需样品预处理,可直接表征rhEPO;自发荧光通道检测的rhEPO峰型与紫外吸收通道检测得到的峰型相同;与CZE-UV或icIEF紫外吸收通道检测相比,自发荧光检测灵敏度更高;不受高浓度辅料干扰(如人血清白蛋白和聚山梨酯,会干扰CZE分析,CZE 分析前,须通过多步分离步骤去除这些辅料);该平台方法快速且操作简易。扫描下方二维码,获取ProteinSimplerhEPO表征解决方案参考文献:1. Li, Xiang et al. “Capillary isoelectric focusing with UV fluorescence imaging detection enables direct charge heterogeneity characterization of erythropoietin drug products.” Journal of chromatography. A vol. 1643 (2021): 462043.关于我们ProteinSimple是美国纳斯达克上市公司Bio-Techne集团(NASDAQ:TECH)旗下行业领先的蛋白质分析品牌。我们致力于研发和生产更精准、更快速、更灵敏的创新性蛋白质分析工具,包括蛋白质电荷表征、蛋白质纯度分析、蛋白质翻译后修饰定量检测、蛋白质免疫实验如Western和ELISA定量检测蛋白质表达等技术,帮助疫苗研发、生物制药、细胞治疗、基因治疗、生物医学和生命科学等领域科学家解决蛋白质分析问题,深度解析蛋白质和疾病相互关系。联系我们地址:上海市长宁路1193号来福士广场3幢1901室 电话:021-60276091热线:4000-863-973邮箱:PS-Marketing.CN@bio-techne.com网址:www.bio-techne.com
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制