当前位置: 仪器信息网 > 行业主题 > >

自由基荧光

仪器信息网自由基荧光专题为您整合自由基荧光相关的最新文章,在自由基荧光专题,您不仅可以免费浏览自由基荧光的资讯, 同时您还可以浏览自由基荧光的相关资料、解决方案,参与社区自由基荧光话题讨论。

自由基荧光相关的资讯

  • 苏州大学:基于自由基促进的阳离子RAFT聚合实现快速活性3D打印!
    基于可逆失活自由基聚合(RDRP) 的3D 打印技术为制备具有“活性”的聚合物材料提供了有效手段。该类材料由于保留有活性位点,可进一步用于聚合后修饰及功能化,以制备多种多样的刺激响应性材料,目前正成为该领域的研究热点。然而,相较于商用体系,已有技术的打印速率通常较低,限制了其实际应用。同时,已报道工作主要基于RDRP方法,机理较为单一。近期,苏州大学朱健教授团队探索了基于阳离子可逆加成断裂链转移(RAFT)聚合的立体光刻蚀(SLA)3D打印(ACS Macro Lett. 2021, 10, 1315)以及阳离子/自由基RAFT聚合联用的数字光处理(DLP)3D打印(Macromolecules 2022, 55, 7181)。拓宽了活性3D打印的聚合机理及单体适用范围,为调控材料性能提供了丰富手段。相较于自由基RAFT聚合,阳离子RAFT聚合通常具有更快的聚合速率。在本文中,该研究团队考察了基于自由基促进的阳离子RAFT(RPC-RAFT)聚合的DLP 3D打印体系,实现了较为快速的打印速率(12.99 cm/h)。首先,作者设计了模型聚合来研究该方法的聚合行为,其机理如图一所示。商业可得的光引发剂(TPO)与二苯基碘鎓盐(DPI)被用于产生初始的阳离子引发种,随后聚合由一种二硫代氨基甲酸酯RAFT试剂(图3 B)通过阳离子RAFT过程调控。图1. 推测的聚合机理。如图2A所示,聚合呈现一级线性动力学,聚合物分子量与理论值吻合较好,分子量分布窄,符合活性聚合特征。图2. 在405 nm波长光源下IBVE的聚合动力学结果:A) 单体转化率半对数与聚合时间的关系曲线;B) 分子量(Mn)和分子量分布(Ɖ )与单体转化率的关系;C)IBVE聚合物的SEC曲线。随后研究团队详细研究了交联体系的聚合行为(图3),对双官能度单体二乙二醇二乙烯基醚(DDE),单官能度单体异丁基乙烯基醚(IBVE),RAFT试剂以及TPO/DPI引发体系不同配比进行了考察。结果显示没有IBVE时,聚合速率与单体最终转化率降低,这可能是由过高的交联密度导致。DDE与IBVE的比例在3:1到1:3之间变化时对聚合速率影响较小。进一步提高IBVE含量则会导致鎓盐析出。改变RAFT试剂的比例对聚合速率影响较小,这与传统的自由基RAFT聚合不同,可能是由于在阳离子RAFT聚合中不存在阻聚效应。图3. A)商用DLP 3D打印机模型示意图;B) 用于RPC-RAFT聚合3D打印的树脂配方; 聚合树脂在405 nm波长光源照射以及不同反应条件下单体的转化率与时间曲线:C) 不同光催化剂浓度;D)不同官能度乙烯基醚配比;E)不同RAFT试剂浓度。利用优化后的打印树脂与商业可得的DLP 3D打印机,研究团队成功打印出具有较好分辨率的物体(图4)。然而,打印速率最高为6.77 cm/h。当进一步优化打印条件提高速率时,由于IBVE相对较低的沸点(83 °C),释放的聚合热使树脂出现了沸腾现象。 图4. 具有不同形状的3D物体数字模型以及相应的3D打印实体模型。于是研究人员将低沸点的IBVE替换为高沸点(179.09 °C)的环己基乙烯基醚(CVE),成功将打印速率提升至12.99 cm/h,该速率为目前活性打印体系的最高值。在该打印条件下,成功打印出具有不同形成的三维物体(图5)。 图5. 具有不同形状的3D物体数字模型以及相应的3D打印实体模型。最终,研究人员通过荧光单体(TPE-a)的聚合后修饰证明了所打印物体的活性特征。如图6所示,在利用该树脂所打印的薄膜表面涂上荧光单体溶液并用打印机形成的图案光照射,随后洗去溶液。经过照射的部分由光引发RAFT聚合扩链成功实现了荧光单体的接枝,因此在紫外光下呈现出荧光图案(图6 F)。在对比实验中,打印的薄膜由不含RAFT试剂的树脂制备,经过相同操作后在紫外光下则无荧光图案(图6 D),证明了该方法所打印物体具有活性特征。 图6. A) DLP 3D打印机中进行3D打印物体后功能化修饰示意图;B)3D打印物体后功能化修饰机理图;C) 未经后功能化修饰的3D打印物体在可见光下的数字图像;D) 未经后功能化修饰的3D打印物体在紫外光下的数字图像;E) 经后功能化修饰的3D打印物体在可见光下的数字图像;F) 经后功能化修饰的3D打印物体在紫外光下的数字图像。该工作以“Fast Living 3D Printing via Free Radical Promoted Cationic RAFT Polymerization”为题发表在《Small》上 。论文第一作者是苏州大学在读博士生赵博文,通讯作者为苏州大学朱健教授和李佳佳博士后。该工作获得了国家自然科学基金,中国博士后科学基金以及江苏省优势学科基金的资助。后续工作敬请关注。原文链接:https://doi.org/10.1002/smll.202207637摩方精密作为微纳3D打印的先行者和领导者,拥有全球领先的超高精度打印系统,其面投影微立体光刻(PμSL)技术可应用于精密电子器件、医疗器械、微流控、微机械等众多科研领域。在三维复杂结构微加工领域,摩方团队拥有超过二十年的科研及工程实践经验。针对客户在新产品开发中可能出现的工艺和材料难题,摩方将持续提供简易高效的技术支持方案。
  • 药代动力学领域新突破——小动物活体自由基检测系统助力体内自由基分布和药代动力学研究
    自由基是具有非偶电子的基团或原子,它具有非常强的化学反应活性。在生物体内,自由基高度的化学活性使得它可以与各类生物大分子反应使其变性,这使它成为了一把生物体的“双刃剑”:在炎症反应中自由基可以攻击外来病原体来保护生物体自身,而过度的自由基又会导致DNA变性甚至细胞坏死和凋亡。因此检测自由基的含量,尤其是在体内检测尤为重要。以一氧化氮为代表的自由基药物一直是药物学研究的重点。传统的药代动力学自由基测量,需要从生物体的不同部位提取体液,然后再使用电子顺磁共振波谱仪(electron paramagnetic resonance,EPR)来测量体液样品内的自由基含量。然而如何在生物体内定点、定时、定量地检测释放自由基药物,以及如何在时间、空间、剂量上测量生物体内的自由基药物,一直是药代动力学领域的难题。波兰Novilet公司新推出的小动物活体自由基检测系统ERI TM 600,是一款可对小鼠与大鼠等动物进行活体顺磁成像的商业化仪器。ERI TM 600突破了传统电子顺磁共振波谱仪仅能对体外提取物进行定量分析的局限,实现了对小鼠体内的自由基药物进行长时间的3D/2D实时成像观测。同时ERI TM 600配置了温度控制与呼吸监测仪,有效保证小动物在成像时维系正常的生理活动。ERI TM 600成像原理图ERI TM 600成像非常简单,仅需将小鼠麻醉之后,对荷瘤小鼠与对照小鼠注射OX063自旋探针即可。ERI TM 600在2分钟内可对小鼠进行255个投影扫描(25 cm2,精度500 μm),获得一系列的2D图像,然后通过软件对这些2D图像进行重构,获得小鼠的实时3D图像。ERI TM 600成像结果 近期发表于J. Phys. Chem.C的工作“Dynamic Electron Paramagnetic Resonance Imaging: Modern Technique for Biodistribution and Pharmacokinetic Imaging”表明与荷瘤小鼠相比,对照组小鼠探针(尤其在肿瘤部位)分布均匀。荷瘤小鼠探针的信号强度、峰值时间、流入流出比等药代动力学参数与对照小鼠差异明显。将3D成像图与小鼠体表照片相拟合,可以明显观察到肿瘤部位的ERI探针成像表征的药代动力学参数异常。ERI TM 600所得3D图像可以更加直观、准确、长时间地展现自由基药物在小鼠体内的药代动力学分布。 作为中国与进行先进技术、先进仪器交流的重要桥头堡,Quantum Design中国于2020年初引进了波兰Novilet公司的先进产品小动物活体自由基检测系统——ERI TM 600,欢迎感兴趣的老师咨询!
  • 环境自由基检测难?这项技术的“先天优势”正崭露头角
    环境中自由基检测有多难?自由基化学性质高度活泼,极易发生得失电子的氧化还原反应,是环境水体中降解污染物的重要因素。自由基的环境鉴定和分析对揭示环境污染物降解转化机制具有重要意义。但由于自由基环境浓度极低、反应活性高、寿命短,再加上复杂环境基质的干扰效应,使其环境分析一直是研究的重点和难点。而且,目前的研究主要针对一些已知的自由基展开,对未知自由基的识别和鉴定研究较为匮乏。有学者研究表明,自旋捕获结合质谱分析技术具有特异性和高灵敏性的优点,可同时检测天然水体中多种自由基,并能够识别和鉴定未知自由基,是未来的研究方向。EPR如何检测自由基? EPR的检测对象包括以下几类:(1)在分子轨道中出现不配对电子(或称单电子)的物质。如自由基、双基及多基、三重态分子等。(2)在原子轨道中出现单电子的物质,如碱金属的原子、过渡金属离子(包括铁族、钯族、铂族离子)等。用EPR检测自由基是一种快速的、直接有效的方法,实验中将所得EPR波谱中相应吸收峰的g因子计算出来,通过与标准值比较,便可估算是哪种自由基,再通过化学手段消除自由基以验证上面的推断。哪些科研院所正开展EPR研究?据小编所知,中科大、清华大学、北京大学、四川大学等众多985/211院校,以及中国科学院生态环境中心,均围绕EPR在环境中应用,开展了系列研究,并取得喜人的进展,包括不限于用于大气污染、水处理过程的表征。为了更好地促进EPR技术发展,仪器信息网3i讲堂联合国仪量子,将于2月23日,全网直播EPR技术在环境领域中的应用进展,上述代表院所专家将进行精彩分享,诚邀免费报名参会。点击图片,免费报名:
  • 清华大学杨海军老师教你如何使用EPR测试自由基
    怎么使用电子顺磁共振波谱仪测试自由基?如何设置电子顺磁工作波谱仪的八个参数?国产仪器与进口仪器的测试结果有何不同?近日,来自清华大学的高级工程师杨海军老师,用一段“微课”为大家详细培训了如何测试自由基。让我们来看看吧!杨老师教你如何使用EPR测自由基国仪量子,赞8为了让大家更清楚地掌握如何测试自由基,杨老师还总结出了一条顺口溜:自由基测试看似难,理解原理是关键。它的寿命分长短,短的小于一微秒;短自由基检测难,捕捉剂加入寿命延;加入时机反应前,弱极性溶剂待你选。顺磁共振波谱仪,原理好比照相机;八个参数好理解,易测氨基自由基。仪器国产或进口,谱图已无大差异。学会测试真不难,掌握原理就实现。个人基础不重要,你来试试就知道!欢迎扫描下方二维码,为杨老师的“微课”投票点赞!(注:投票需登录/注册仪器信息网账号)杨老师在视频中表示,在氨基自由基测试对比实验中,国仪量子的电子顺磁共振波谱仪与进口设备获得的谱图基本没有区别。并且,国仪量子电子顺磁共振波谱仪的微波桥采用了先进的波导技术,机箱内的结构也进行了模块化设计。国仪量子电子顺磁共振波谱仪为直接检测顺磁性物质提供了一种非破坏性的分析方法。可研究磁性分子、过渡金属离子、稀土离子、离子团簇、掺杂材料、缺陷材料、自由基、金属蛋白等含有未成对电子物质的组成、结构以及动力学等信息,能够提供原位和无损的电子自旋、轨道和原子核等微观尺度的信息。在物理、化学、生物、材料、工业等领域具有广泛的应用。X波段脉冲式电子顺磁共振波谱仪EPR100X波段连续波电子顺磁共振波谱仪EPR200-Plus台式电子顺磁共振波谱仪EPR200M
  • 高分辨QTOF特色技术巡展:自由基诱导解离技术
    前言高分辨QTOF质谱是一种先进的质谱技术,它结合了四极杆和飞行时间质谱的优点,能够提供高分辨率、高质量精度和高灵敏度的质谱分析。高分辨QTOF作为分析领域的高端仪器,始终在技术层面不断推陈出新。LCMS-9050是岛津最新推出的高分辨四极杆-飞行时间质谱仪,运用了多项特色技术,是技术指标优异、仪器性能卓越的产品。本期将为您介绍自由基诱导解离技术,岛津OAD解离源组件新产品已于近期发布。技术介绍岛津的自由基诱导解离(OAD)技术由田中耕一质量分析研究所开发,代表了质谱分析技术在结构解析方面的一个重要进步。这项技术的开发是为了解决传统碰撞诱导解离(CID)技术难以分辨C=C位置的问题,从而提供更详细的分子结构信息。传统碰撞诱导解离(CID)新型自由基诱导解离(OAD)OAD技术通过在质谱分析过程中引入自由基,使得分析物能够在特定条件下发生解离,从而揭示分子内部的结构特征。这种方法特别适用于脂质和其他生物活性化合物的分析,OAD能够提供关于这些化合物中C=C位置的详细信息,这对于理解分子的结构和功能至关重要。主要特点小结岛津的自由基诱导解离(OAD)技术是一种先进的离子解离技术,能够提供分子内部结构的详细信息。该技术为科研人员提供了一个强大的工具,能够更精准地完成复杂分子的分析和鉴定,从而更好地理解其结构和功能。对于生物医学研究、药物开发和疾病研究等领域具有重要的应用价值。本文内容非商业广告,仅供专业人士参考。
  • 解锁自由基检测难题,北大这个课题组给出新思路
    寿命特别短!活性特别强!自由基的捕获和检测一度成为公认的难题!自由基从哪里来?有什么特征?起到什么作用?种类和浓度是怎样的……对致力于这一研究领域的科研人员来说,他们会面临一连串的问题。如果再遇到复杂基质,自由基捕获和检测的难度会再高一个台阶!如何破局?日前,跟随仪器信息网的镜头,我们走进了北京大学环境科学与工程学院刘文研究员的实验室。刘文研究员课题组主要研究方向是水污染控制,尤其是环境中新污染物的去除。他们基于布鲁克的电子顺磁共振(EPR)波谱仪(EMX plus6-1)构建的原位系统,可以实时、快速、精准的测定水环境中的自由基,为有机污染物的高效去除提供科学支撑。据刘文研究员介绍,在他们这个研究领域,电子顺磁共振是水环境中自由基检测最广泛应用的方法!由仪器信息网和布鲁克联合冠名的宝藏实验室系列活动本期走进了刘文研究员的实验室。跟随刘文研究员的引导,我们不仅了解了他们课题组在新污染物领域做的一系列的杰出成果,更是近距离的观察了电子顺磁共振波谱仪的工作流程和操作细节。详细内容请查看如下视频:
  • 安光所团队在过氧自由基自反应动力学研究方面取得新进展
    近日,中科院合肥研究院安徽光机所张为俊研究员团队在大气过氧自由基自反应研究方面取得新进展,相关论文以《真空紫外光电离质谱结合理论计算研究过氧自由基自反应的二聚体产物:C2H5OOC2H5》为题发表在学术期刊International Journal of Molecular Sciences (IF=6.20)上。   有机过氧自由基(RO2)是大气挥发性有机化合物(VOCs)降解反应中的重要中间体,在大气复合污染形成过程中扮演着关键角色。RO2不仅参与大气中自由基的链循环反应,影响大气氧化性,还控制着臭氧和二次有机气溶胶(SOA)等二次污染物的形成。其中,在低NOx条件下,过氧自由基主要与HO2自由基、以及自身发生化学反应,其产物往往具有低的挥发性容易进入到颗粒相中。但是相关的双自由基反应复杂,化学机制的认识不清,实验和理论研究极具挑战。   近日,团队唐小锋研究员和林晓晓副研究员等与法国里尔大学开展国际合作,面向大气中常见的小质量RO2(C1-C4),以真空紫外放电灯和瑞士同步辐射光源(SLS)作为电离源,采用微波放电流动管反应器和激光光解反应器,结合光电离质谱仪器系统开展了乙基过氧自由基(C2H5O2)的自反应研究,首次通过质谱在线测得乙基过氧自由基自反应过程生成的二聚体产物ROOR(C2H5OOC2H5)。   研究人员实验研究了C2H5O2自反应动力学,获得了通道分支比关键参数,并结合理论计算验证ROOR产物通道的反应机制。此外,通过测量同步辐射光电离效率谱,确定了C2H5OOC2H5的绝热电离能为8.75 ± 0.05 eV,结合Franck-Condon因子模拟计算,揭示其分子离子结构。该研究为直接测量ROOR提供新的思路,并证明了ROOR产物通道在小质量RO2自反应中不可忽略。   本文研究工作得到了国家自然科学基金、中科院国际合作重点项目和合肥大科学中心重点研发项目课题的经费支持。图1. 乙基过氧自由基反应光电离质谱图图2. 二聚体C2H5OOC2H5的光电离效率谱,红线为理论结果
  • 中红外光学反馈腔增强OH自由基探测技术取得新进展
    近日,中科院合肥研究院安光所张为俊研究员团队在腔增强吸收光谱OH自由基探测技术方面取得新突破,相关研究成果以《基于中红外分布反馈二极管激光器的光学反馈腔增强吸收光谱技术应用于OH自由基探测》为题发表于美国光学学会(OSA)学术期刊Optics Express。   OH自由基是大气中最重要的氧化剂,其快速循环反应决定着大气中主要污染物的生成和去除。由于反应活性高,寿命短,在大气中浓度低,准确测量十分困难,是当今大气化学领域非常重要和挑战性的研究内容。   团队赵卫雄研究员和杨娜娜博士等人发展了2.8微米中红外光学反馈腔增强技术,为OH自由基探测提供了一种新的直接探测手段。该技术利用谐振腔的共振光反馈回激光器,可以有效压窄激光器线宽,实现光学自锁定,提高激光入射谐振腔的耦合效率,实现高灵敏度探测。   团队采用波长调制的方法,以腔模的一次谐波为误差信号反馈给压电陶瓷控制器,精确控制距离,从而达到相位实时锁定,在800 米有效光程下获得1.7×10-9 厘米-1探测灵敏度,对应OH自由基探测极限为~2×108 个/立方厘米。该技术进一步与磁旋转吸收光谱(FRS)和频率调制光谱(FMS)等技术相结合,将为大气OH自由基直接探测提供新的途径。   本研究得到国家自然科学基金国家重大科研仪器研制项目、国家自然科学基金优秀青年科学基金项目、第二次青藏高原综合科学考察研究项目、中国科学院青年创新促进会、中国科学院合肥物质科学研究院院长基金资助。
  • 回顾‖疫情下第三届全国有机自由基化学会议圆满落幕
    受新冠疫情冲击,第三届全国有机自由基化学会议终于在2022年8月2日至5日在武汉光谷金盾大酒店如期举办,在坚决做好疫情常态化防控的前提下,作为国内最专业的Flash产品生产和研发企业,三泰科技携SepaBean machine快速制备液相色谱色系统、SepaFlash快速制备液相色谱分离柱等产品亮相14号展台。三泰科技为新老客户准备了精美礼品,现场更有专业工作人员与新老客户热情交流,共同探讨Flash产品的应用与发展。三泰科技华中团队 展会现场三泰科技工作人员与客户沟通交流本次会议主要为科研人员提供一个平台展示其在有机自由基化学领域取得的最新研究成果,加强相关学科科研人员之间的联系、了解与合作,促进我国有机自由基化学及相关领域的研究迈向更高水平。关于三泰三泰科技成立于2004年,专注于分离纯化和合成技术的开发和应用,主要产品包括SepaBean machine快速制备液相色谱系统、SepaFlash快速制备液相色谱柱,ChemBeanGo化学知识共享发布及科研用化学品检索交易平台、“CBG资讯”科研公众号、ChemBeanGo App等,产品和服务主要应用于药物合成化学、天然产物、精细化工和石油产品等领域。
  • 一文了解化学电离质谱如何测量大气环境中OH自由基
    p style=" text-indent: 2em " strong span style=" color: rgb(0, 112, 192) " span style=" line-height: 150% " 1. /span span style=" line-height: 150% font-family: 宋体 " 大气 /span span style=" line-height: 150% font-family: " times=" " new=" " · OH /span span style=" line-height: 150% font-family: 宋体 " 活性自由基的来源与作用 /span /span /strong /p p style=" margin-left: 24px text-indent: 2em line-height: 1.75em " span style=" font-family: 微软雅黑 " strong /strong /span /p p style=" text-indent: 2em line-height: 1.75em " span style=" font-family: 微软雅黑 " span style=" font-size: 16px line-height: 150% font-family: 宋体 " 大气 /span span style=" font-size: 16px line-height: 150% font-family: " times=" " new=" " · OH /span span style=" font-size: 16px line-height: 150% font-family: 宋体 " 、 /span span style=" font-size: 16px line-height: 150% font-family: " times=" " new=" " · HO sub 2 /sub /span span style=" font-size: 16px line-height: 150% font-family: 宋体 " 活性自由基是大气光化学反应的引发剂和催化剂,对于城市灰霾的形成和对流层中 /span span style=" font-size: 16px line-height: 150% font-family: " times=" " new=" " O sub 3 /sub /span span style=" font-size: 16px line-height: 150% font-family: 宋体 " 的平衡起关键作用,其浓度等级可作为衡量大气自身氧化水平的重要指标。 /span /span /p p style=" text-indent: 2em line-height: 1.75em " span style=" font-family: 微软雅黑 " span style=" font-size: 16px line-height: 150% font-family: 宋体 " 其中 /span span style=" font-size: 16px line-height: 150% font-family: " times=" " new=" " · OH /span span style=" font-size: 16px line-height: 150% font-family: 宋体 " 自由基是大气化学中最活跃的氧化剂,能与大气中绝大多数组分发生化学反应。例如大气中的甲烷( /span span style=" font-size: 16px line-height: 150% font-family: " times=" " new=" " CH sub 4 /sub /span span style=" font-size: 16px line-height: 150% font-family: 宋体 " ),可以快速与 /span span style=" font-size: 16px line-height: 150% font-family: " times=" " new=" " · OH /span span style=" font-size: 16px line-height: 150% font-family: 宋体 " 自由基反应生成可溶解氧化物 /span span style=" font-size: 16px line-height: 150% font-family: " times=" " new=" " CH sub 2 /sub O /span span style=" font-size: 16px line-height: 150% font-family: 宋体 " 、 /span span style=" font-size: 16px line-height: 150% font-family: " times=" " new=" " CH sub 3 /sub COOH /span span style=" font-size: 16px line-height: 150% font-family: 宋体 " 发生沉降,因此,虽然每年有 /span span style=" font-size: 16px line-height: 150% font-family: " times=" " new=" " 5.15× 10 sup 14 /sup g /span span style=" font-size: 16px line-height: 150% font-family: 宋体 " 的 /span span style=" font-size: 16px line-height: 150% font-family: " times=" " new=" " CH sub 4 /sub /span span style=" font-size: 16px line-height: 150% font-family: 宋体 " 排入地球大气层,但 /span span style=" font-size: 16px line-height: 150% font-family: " times=" " new=" " · OH /span span style=" font-size: 16px line-height: 150% font-family: 宋体 " 自由基可将其中的 /span span style=" font-size: 16px line-height: 150% font-family: " times=" " new=" " 4.45× 10 sup 14 /sup g /span span style=" font-size: 16px line-height: 150% font-family: 宋体 " 氧化,占 /span span style=" font-size: 16px line-height: 150% font-family: " times=" " new=" " CH sub 4 /sub /span span style=" font-size: 16px line-height: 150% font-family: 宋体 " 总量的 /span span style=" font-size: 16px line-height: 150% font-family: " times=" " new=" " 80% /span span style=" font-size: 16px line-height: 150% font-family: 宋体 " 以上,这使得 /span span style=" font-size: 16px line-height: 150% font-family: " times=" " new=" " CH sub 4 /sub /span span style=" font-size: 16px line-height: 150% font-family: 宋体 " 对全球温室效应的影响比排放量估算整整低了一个量级。从某种程度来看, /span span style=" font-size: 16px line-height: 150% font-family: " times=" " new=" " · OH /span span style=" font-size: 16px line-height: 150% font-family: 宋体 " 自由基决定了这些组分在地球大气层中的寿命和浓度。不仅如此,酸雨、对流层臭氧平衡、城市光化学烟雾以及二次气溶胶形成等过程都有 /span span style=" font-size: 16px line-height: 150% font-family: " times=" " new=" " · OH /span span style=" font-size: 16px line-height: 150% font-family: 宋体 " 的参与。除此之外, /span span style=" font-size: 16px line-height: 150% font-family: " times=" " new=" " · OH /span span style=" font-size: 16px line-height: 150% font-family: 宋体 " 、 /span span style=" font-size: 16px line-height: 150% font-family: " times=" " new=" " O sub 3 /sub /span span style=" font-size: 16px line-height: 150% font-family: 宋体 " 还可以与大气中的烯烃反应生成醛,后者再与 /span span style=" font-size: 16px line-height: 150% font-family: " times=" " new=" " · OH /span span style=" font-size: 16px line-height: 150% font-family: 宋体 " 自由基反应从而产生光化学烟雾中有毒且具有强烈刺激性的化合物过氧乙酰硝酸酯( /span span style=" font-size: 16px line-height: 150% font-family: " times=" " new=" " PANs /span span style=" font-size: 16px line-height: 150% font-family: 宋体 " )。 /span /span /p p style=" text-indent: 2em line-height: 1.75em " span style=" font-family: 微软雅黑 " span style=" font-size: 16px line-height: 150% font-family: 宋体 " 在低空对流层中, /span span style=" font-size: 16px line-height: 150% font-family: " times=" " new=" " · OH /span span style=" font-size: 16px line-height: 150% font-family: 宋体 " 的主要来源有两个:一是 /span span style=" font-size: 16px line-height: 150% font-family: " times=" " new=" " O sub 3 /sub /span span style=" font-size: 16px line-height: 150% font-family: 宋体 " 在 /span span style=" font-size: 16px line-height: 150% font-family: " times=" " new=" " 320 nm /span span style=" font-size: 16px line-height: 150% font-family: 宋体 " 光波条件下光解产生的 /span span style=" font-size: 16px line-height: 150% font-family: " times=" " new=" " O( sup 1 /sup D) /span span style=" font-size: 16px line-height: 150% font-family: 宋体 " 与空气中水分子的反应,二是 /span span style=" font-size: 16px line-height: 150% font-family: " times=" " new=" " · HO sub 2 /sub /span span style=" font-size: 16px line-height: 150% font-family: 宋体 " 与氮氧化物以及臭氧的反应。但是, /span span style=" font-size: 16px line-height: 150% font-family: " times=" " new=" " · OH /span span style=" font-size: 16px line-height: 150% font-family: 宋体 " 自由基的平均寿命通常为几秒甚至更短,它在对流层的最大浓度仅有 /span span style=" font-size: 16px line-height: 150% font-family: " times=" " new=" " 10 sup 6 /sup ~10 sup 7 /sup /span span style=" font-size: 16px line-height: 150% font-family: 宋体 " 个 /span span style=" font-size: 16px line-height: 150% font-family: " times=" " new=" " /cm sup 3 /sup /span span style=" font-size: 16px line-height: 150% font-family: 宋体 " ,且变化十分剧烈。 /span span style=" font-size: 16px line-height: 150% font-family: " times=" " new=" " · OH /span span style=" font-size: 16px line-height: 150% font-family: 宋体 " 、 /span span style=" font-size: 16px line-height: 150% font-family: " times=" " new=" " · HO sub 2 /sub /span span style=" font-size: 16px line-height: 150% font-family: 宋体 " 自由基在大气光化学反应和光化学烟雾形成过程中的作用如图 /span span style=" font-size: 16px line-height: 150% font-family: " times=" " new=" " 1.1 /span span style=" font-size: 16px line-height: 150% font-family: 宋体 " 所示。 /span /span /p p style=" text-align: center text-indent: 2em line-height: 1.75em " span style=" font-size: 16px line-height: 150% font-family: 微软雅黑 " /span /p p style=" text-align: center" img style=" max-width: 100% max-height: 100% width: 500px height: 385px " src=" https://img1.17img.cn/17img/images/202006/uepic/948b92d1-12cb-472e-a61b-c0944df80ea3.jpg" title=" 1.png" alt=" 1.png" width=" 500" height=" 385" border=" 0" vspace=" 0" / /p p style=" text-align: center text-indent: 2em line-height: 1.75em " span style=" text-indent: 2em font-family: 黑体 " 图 /span span style=" text-indent: 2em font-family: " times=" " new=" " 1.1& nbsp · OH /span span style=" text-indent: 2em font-family: 黑体 " 、 /span span style=" text-indent: 2em font-family: " times=" " new=" " · HO sub 2 /sub /span span style=" text-indent: 2em font-family: 黑体 " 在大气光化学反应和光化学烟雾形成过程中的作用 /span /p p style=" text-indent: 2em line-height: 1.75em " span style=" color: rgb(0, 112, 192) " strong span style=" line-height: 150% " 2. /span span style=" line-height: 150% font-family: 宋体 " 常见大气活性自由基 /span span style=" line-height: 150% font-family: " times=" " new=" " · OH /span span style=" line-height: 150% font-family: 宋体 " 的检测手段 /span /strong /span /p p style=" text-indent: 2em line-height: 1.75em " span style=" font-family: 微软雅黑 " span style=" font-size: 16px line-height: 150% font-family: 宋体 " 直到 /span span style=" font-size: 16px line-height: 150% font-family: " times=" " new=" " 20 /span span style=" font-size: 16px line-height: 150% font-family: 宋体 " 世纪 /span span style=" font-size: 16px line-height: 150% font-family: " times=" " new=" " 90 /span span style=" font-size: 16px line-height: 150% font-family: 宋体 " 年代,测量对流层大气中 /span span style=" font-size: 16px line-height: 150% font-family: " times=" " new=" " · OH /span span style=" font-size: 16px line-height: 150% font-family: 宋体 " 浓度的技术才逐渐成熟。英国 /span span style=" font-size: 16px line-height: 150% font-family: " times=" " new=" " Leed /span span style=" font-size: 16px line-height: 150% font-family: 宋体 " 大学的 /span span style=" font-size: 16px line-height: 150% font-family: " times=" " new=" " Heard /span span style=" font-size: 16px line-height: 150% font-family: 宋体 " 和 /span span style=" font-size: 16px line-height: 150% font-family: " times=" " new=" " Pilling /span span style=" font-size: 16px line-height: 150% font-family: 宋体 " 教授在 /span span style=" font-size: 16px line-height: 150% font-family: " times=" " new=" " Chem. Rev. /span span style=" font-size: 16px line-height: 150% font-family: 宋体 " 上撰写综述文章,全面评述了对流层中 /span span style=" font-size: 16px line-height: 150% font-family: " times=" " new=" " · OH /span span style=" font-size: 16px line-height: 150% font-family: 宋体 " 的各项测量技术,包括:化学电离质谱技术( /span span style=" font-size: 16px line-height: 150% font-family: " times=" " new=" " CIMS /span span style=" font-size: 16px line-height: 150% font-family: 宋体 " )、气体扩张激光诱导荧光技术( /span span style=" font-size: 16px line-height: 150% font-family: " times=" " new=" " FAGE /span span style=" font-size: 16px line-height: 150% font-family: 宋体 " )、激光差分吸收光谱技术( /span span style=" font-size: 16px line-height: 150% font-family: " times=" " new=" " DOAS /span span style=" font-size: 16px line-height: 150% font-family: 宋体 " )、 /span sup span style=" font-size: 16px line-height: 150% font-family: " times=" " new=" " 14 /span /sup span style=" font-size: 16px line-height: 150% font-family: " times=" " new=" " CO /span span style=" font-size: 16px line-height: 150% font-family: 宋体 " 示踪技术、水杨酸吸收技术以及自旋捕获技术。表 /span span style=" font-size: 16px line-height: 150% font-family: " times=" " new=" " 1.1 /span span style=" font-size: 16px line-height: 150% font-family: 宋体 " 给出了这几种测量方法的主要技术指标。 /span strong /strong /span /p p style=" text-indent: 2em line-height: 1.75em text-align: center " span style=" font-family: 微软雅黑 " span style=" font-family: 黑体 " 表 /span span style=" font-family: " times=" " new=" " 1.1& nbsp · OH /span span style=" font-family: 黑体 " 浓度测定的各种技术及指标 /span /span /p table border=" 1" cellspacing=" 0" cellpadding=" 0" style=" border-collapse: collapse border: none margin-left: 9px margin-right: 9px " align=" center" tbody tr style=" height:31px" class=" firstRow" td width=" 95" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " height=" 31" p style=" text-align:center" strong span style=" font-size:16px font-family:宋体" 测量技术 /span /strong strong /strong /p /td td width=" 42" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " height=" 31" p style=" text-align:center" strong span style=" font-size:16px font-family:& #39 Times New Roman& #39 ,serif" LOD( /span /strong strong span style=" font-size:16px font-family:宋体" 个 /span /strong strong span style=" font-size:16px font-family:& #39 Times New Roman& #39 ,serif" /cm sup 3 /sup ) /span /strong /p /td td width=" 12" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " height=" 31" p style=" text-align:center" strong span style=" font-size:16px font-family:宋体" 准确度 /span /strong strong /strong /p /td td width=" 59" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " height=" 31" p style=" text-align:center" strong span style=" font-size:16px font-family:宋体" 单次测量时间 /span /strong strong /strong /p /td td width=" 34" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " height=" 31" p style=" text-align:center" strong span style=" font-size:16px font-family:宋体" 机载 /span /strong strong /strong /p /td td width=" 130" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " height=" 31" p style=" text-align:center" strong span style=" font-size:16px font-family:宋体" 研究团队 /span /strong strong /strong /p /td /tr tr style=" height:23px" td width=" 81" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " height=" 23" p style=" text-align:center" span style=" font-size:16px font-family:& #39 Times New Roman& #39 ,serif" CIMS /span /p /td td width=" 42" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " height=" 23" p style=" text-align:center" span style=" font-size:16px font-family:& #39 Times New Roman& #39 ,serif" 2 /span span style=" font-size:16px font-family:Symbol" span ´ /span /span span style=" font-size:16px font-family:& #39 Times New Roman& #39 ,serif" 10 sup 5 /sup /span /p /td td width=" 12" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " height=" 23" p style=" text-align:center" span style=" font-size:16px font-family:& #39 Times New Roman& #39 ,serif" 20% /span /p /td td width=" 64" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " height=" 23" p style=" text-align:center" span style=" font-size:16px font-family:& #39 Times New Roman& #39 ,serif" 30 s /span /p /td td width=" 43" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " height=" 23" p style=" text-align:center" span style=" font-size:16px font-family:& #39 Times New Roman& #39 ,serif" Y /span /p /td td width=" 121" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " height=" 23" p style=" text-align:center" span style=" font-size:16px font-family:& #39 Times New Roman& #39 ,serif" 3+3 /span /p /td /tr tr style=" height:23px" td width=" 81" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " height=" 23" p style=" text-align:center" span style=" font-size:16px font-family:& #39 Times New Roman& #39 ,serif" FAGE /span /p /td td width=" 42" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " height=" 23" p style=" text-align:center" span style=" font-size:16px font-family:& #39 Times New Roman& #39 ,serif" 2 /span span style=" font-size:16px font-family:Symbol" span ´ /span /span span style=" font-size:16px font-family:& #39 Times New Roman& #39 ,serif" 10 sup 5 /sup /span /p /td td width=" 12" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " height=" 23" p style=" text-align:center" span style=" font-size:16px font-family:& #39 Times New Roman& #39 ,serif" 20% /span /p /td td width=" 64" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " height=" 23" p style=" text-align:center" span style=" font-size:16px font-family:& #39 Times New Roman& #39 ,serif" 30 s /span /p /td td width=" 43" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " height=" 23" p style=" text-align:center" span style=" font-size:16px font-family:& #39 Times New Roman& #39 ,serif" Y /span /p /td td width=" 121" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " height=" 23" p style=" text-align:center" span style=" font-size:16px font-family:& #39 Times New Roman& #39 ,serif" 6 /span /p /td /tr tr style=" height:23px" td width=" 81" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " height=" 23" p style=" text-align:center" span style=" font-size:16px font-family:& #39 Times New Roman& #39 ,serif" DOAS /span /p /td td width=" 42" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " height=" 23" p style=" text-align:center" span style=" font-size:16px font-family:& #39 Times New Roman& #39 ,serif" 5~10 /span span style=" font-size:16px font-family:Symbol" span ´ /span /span span style=" font-size:16px font-family:& #39 Times New Roman& #39 ,serif" 10 sup 5 /sup /span /p /td td width=" 12" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " height=" 23" p style=" text-align:center" span style=" font-size:16px font-family:& #39 Times New Roman& #39 ,serif" 7% /span /p /td td width=" 64" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " height=" 23" p style=" text-align:center" span style=" font-size:16px font-family:& #39 Times New Roman& #39 ,serif" 300 s /span /p /td td width=" 43" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " height=" 23" p style=" text-align:center" span style=" font-size:16px font-family:& #39 Times New Roman& #39 ,serif" N /span /p /td td width=" 121" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " height=" 23" p style=" text-align:center" span style=" font-size:16px font-family:& #39 Times New Roman& #39 ,serif" 4 /span /p /td /tr tr style=" height:23px" td width=" 81" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " height=" 23" p style=" text-align:center" sup span style=" font-size:16px font-family:& #39 Times New Roman& #39 ,serif" 14 /span /sup span style=" font-size:16px font-family:& #39 Times New Roman& #39 ,serif" CO /span span style=" font-size:16px font-family:宋体" 示踪法 /span /p /td td width=" 42" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " height=" 23" p style=" text-align:center" span style=" font-size:16px font-family:& #39 Times New Roman& #39 ,serif" 2 /span span style=" font-size:16px font-family:Symbol" span ´ /span /span span style=" font-size:16px font-family:& #39 Times New Roman& #39 ,serif" 10 sup 5 /sup /span /p /td td width=" 12" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " height=" 23" p style=" text-align:center" span style=" font-size:16px font-family:& #39 Times New Roman& #39 ,serif" 16% /span /p /td td width=" 64" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " height=" 23" p style=" text-align:center" span style=" font-size:16px font-family:& #39 Times New Roman& #39 ,serif" 300 s /span /p /td td width=" 43" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " height=" 23" p style=" text-align:center" span style=" font-size:16px font-family:& #39 Times New Roman& #39 ,serif" Y /span /p /td td width=" 121" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " height=" 23" p style=" text-align:center" span style=" font-size:16px font-family:& #39 Times New Roman& #39 ,serif" 1 /span /p /td /tr tr style=" height:23px" td width=" 81" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " height=" 23" p style=" text-align:center" span style=" font-size:16px font-family:宋体" 自旋 /span span style=" font-size:16px font-family:& #39 Times New Roman& #39 ,serif" - /span span style=" font-size:16px font-family:宋体" 捕获法 /span /p /td td width=" 42" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " height=" 23" p style=" text-align:center" span style=" font-size:16px font-family:& #39 Times New Roman& #39 ,serif" 5 /span span style=" font-size:16px font-family:Symbol" span ´ /span /span span style=" font-size:16px font-family:& #39 Times New Roman& #39 ,serif" 10 sup 5 /sup /span /p /td td width=" 12" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " height=" 23" p style=" text-align:center" span style=" font-size:16px font-family:& #39 Times New Roman& #39 ,serif" & lt 30% /span /p /td td width=" 64" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " height=" 23" p style=" text-align:center" span style=" font-size:16px font-family:& #39 Times New Roman& #39 ,serif" 20 min /span /p /td td width=" 43" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " height=" 23" p style=" text-align:center" span style=" font-size:16px font-family:& #39 Times New Roman& #39 ,serif" N /span /p /td td width=" 121" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " height=" 23" p style=" text-align:center" span style=" font-size:16px font-family:& #39 Times New Roman& #39 ,serif" 1 /span /p /td /tr tr style=" height:23px" td width=" 81" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " height=" 23" p style=" text-align:center" span style=" font-size:16px font-family:宋体" 水杨酸吸收法 /span /p /td td width=" 42" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " height=" 23" p style=" text-align:center" span style=" font-size:16px font-family:& #39 Times New Roman& #39 ,serif" 10 /span span style=" font-size:16px font-family:Symbol" span ´ /span /span span style=" font-size:16px font-family:& #39 Times New Roman& #39 ,serif" 10 sup 5 /sup /span /p /td td width=" 12" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " height=" 23" p style=" text-align:center" span style=" font-size:16px font-family:& #39 Times New Roman& #39 ,serif" 30~50% /span /p /td td width=" 64" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " height=" 23" p style=" text-align:center" span style=" font-size:16px font-family:& #39 Times New Roman& #39 ,serif" 90 min /span /p /td td width=" 43" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " height=" 23" p style=" text-align:center" span style=" font-size:16px font-family:& #39 Times New Roman& #39 ,serif" N /span /p /td td width=" 121" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " height=" 23" p style=" text-align:center" span style=" font-size:16px font-family:& #39 Times New Roman& #39 ,serif" 2 /span /p /td /tr /tbody /table p style=" line-height: 1.75em text-indent: 2em " span style=" text-indent: 2em font-family: " times=" " new=" " span style=" line-height: 24px font-family: 宋体 " FAGE是一种在低压条件下测量大气活性自由基的激光诱导荧光技术( /span span style=" line-height: 24px font-family: " times=" " new=" " LIF /span span style=" line-height: 24px font-family: 宋体 " ),自其被提出以来,已经广泛应用于自由基的检测,成为测量大气自由基的有效方法之一。正常工作时, /span span style=" line-height: 24px font-family: " times=" " new=" " FAGE /span span style=" line-height: 24px font-family: 宋体 " 利用特定波长的激光束,使低能级的 /span span style=" line-height: 24px font-family: " times=" " new=" " · OH /span span style=" line-height: 24px font-family: 宋体 " 自由基发生跃迁,通过检测其从高能级回落过程中产生的荧光,从而实现对于 /span span style=" line-height: 24px font-family: " times=" " new=" " · OH /span span style=" line-height: 24px font-family: 宋体 " 自由基浓度的测量。 /span /span /p p style=" line-height: 1.75em text-indent: 2em " span style=" text-indent: 2em font-family: " times=" " new=" " DOAS /span span style=" text-indent: 2em font-family: 宋体 " 是利用空气中气体分子的窄带吸收特性及强度来鉴别气体成分、推演气体浓度的一种技术,其测量原理基于 /span span style=" text-indent: 2em font-family: " times=" " new=" " Beer-Lambert /span span style=" text-indent: 2em font-family: 宋体 " 定律: /span /p p style=" line-height: 1.75em text-indent: 2em " span style=" text-indent: 2em font-family: 宋体 " /span /p p style=" text-align: center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202006/uepic/766f80ed-bfa1-4612-b47e-bf2f50094303.jpg" title=" 化学式1.png" alt=" 化学式1.png" / span style=" text-indent: 0em font-family: 微软雅黑 " span style=" line-height: 150% font-family: " times=" " new=" " color:=" " E /span /span span style=" text-indent: 2em text-align: right font-family: 仿宋_GB2312 " & #8230 & #8230 & #8230 & #8230 & #8230 & #8230 & #8230 & #8230 & #8230 & #8230 & #8230 & #8230 /span span style=" text-indent: 2em text-align: right font-family: 宋体 " ( /span span style=" text-indent: 2em text-align: right font-family: " times=" " new=" " 1.1 /span span style=" text-indent: 2em text-align: right font-family: 宋体 " ) /span /p p style=" text-indent: 2em line-height: 1.75em " span style=" text-indent: 2em line-height: 24px font-family: 宋体 " 进而得到 /span /p p style=" text-indent: 2em line-height: 1.75em " span style=" font-size: 16px font-family: 微软雅黑 " /span /p p style=" text-align: center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202006/uepic/98f4fc65-35a4-4751-a3df-6df88f1f708c.jpg" title=" 化学式2.png" alt=" 化学式2.png" / span style=" text-indent: 2em text-align: right font-family: " times=" " new=" " position:=" " top:=" " & nbsp /span span style=" text-indent: 2em text-align: right font-family: 仿宋_GB2312 " & #8230 & #8230 & #8230 & #8230 & #8230 & #8230 & #8230 & #8230 & #8230 & #8230 & #8230 & #8230 /span span style=" text-indent: 2em text-align: right font-family: 宋体 " ( /span span style=" text-indent: 2em text-align: right font-family: " times=" " new=" " 1.2 /span span style=" text-indent: 2em text-align: right font-family: 宋体 " ) /span /p p span style=" text-indent: 2em text-align: right font-family: 宋体 " /span /p p style=" text-align: center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202006/uepic/7d7e75da-8bc5-47f5-982a-14f4e5ec72a8.jpg" title=" 微信截图_20200618164858.png" alt=" 微信截图_20200618164858.png" / /p p style=" text-indent: 2em line-height: 1.75em " span style=" font-family: 微软雅黑 " sup span style=" font-size: 16px line-height: 150% font-family: " times=" " new=" " 14 /span /sup span style=" font-size: 16px line-height: 150% font-family: " times=" " new=" " CO /span span style=" font-size: 16px line-height: 150% font-family: 宋体 " 示踪技术最早由华盛顿州立大学于 /span span style=" font-size: 16px line-height: 150% font-family: " times=" " new=" " 1979 /span span style=" font-size: 16px line-height: 150% font-family: 宋体 " 年报道,它是一种基于光稳态技术对 /span span style=" font-size: 16px line-height: 150% font-family: " times=" " new=" " · OH /span span style=" font-size: 16px line-height: 150% font-family: 宋体 " 自由基进行研究的方法,利用 /span span style=" font-size: 16px line-height: 150% font-family: " times=" " new=" " · OH /span span style=" font-size: 16px line-height: 150% font-family: 宋体 " 自由基对 /span sup span style=" font-size: 16px line-height: 150% font-family: " times=" " new=" " 14 /span /sup span style=" font-size: 16px line-height: 150% font-family: " times=" " new=" " CO /span span style=" font-size: 16px line-height: 150% font-family: 宋体 " 的强氧化性,从而实现了对于 /span span style=" font-size: 16px line-height: 150% font-family: " times=" " new=" " · OH /span span style=" font-size: 16px line-height: 150% font-family: 宋体 " 自由基的高灵敏度检测。 /span /span /p p style=" text-indent: 2em line-height: 1.75em " span style=" font-family: 微软雅黑 " span style=" font-size: 16px line-height: 150% font-family: 宋体 " 对于自旋捕获技术和水杨酸吸收技术,则由于其在检测中所需的时间均大于 /span span style=" font-size: 16px line-height: 150% font-family: " times=" " new=" " 20 min /span span style=" font-size: 16px line-height: 150% font-family: 宋体 " ,从而不适合应用于 /span span style=" font-size: 16px line-height: 150% font-family: " times=" " new=" " · OH /span span style=" font-size: 16px line-height: 150% font-family: 宋体 " 自由基的连续在线检测。 /span /span /p p style=" text-indent: 2em line-height: 1.75em " span style=" font-family: 微软雅黑 " span style=" font-size: 16px line-height: 150% font-family: " times=" " new=" " CIMS /span span style=" font-size: 16px line-height: 150% font-family: 宋体 " 是一种利用 /span span style=" font-size: 16px line-height: 150% font-family: " times=" " new=" " · OH /span span style=" font-size: 16px line-height: 150% font-family: 宋体 " 的化学特性对其进行检测的技术,其原位测量 /span span style=" font-size: 16px line-height: 150% font-family: " times=" " new=" " · OH /span span style=" font-size: 16px line-height: 150% font-family: 宋体 " 的浓度是 /span span style=" font-size: 16px line-height: 150% font-family: " times=" " new=" " Georgia Institute of Technology /span span style=" font-size: 16px line-height: 150% font-family: 宋体 " 的 /span span style=" font-size: 16px line-height: 150% font-family: " times=" " new=" " Eisele /span span style=" font-size: 16px line-height: 150% font-family: 宋体 " 和 /span span style=" font-size: 16px line-height: 150% font-family: " times=" " new=" " Tannar /span span style=" font-size: 16px line-height: 150% font-family: 宋体 " 在 /span span style=" font-size: 16px line-height: 150% font-family: " times=" " new=" " 1989 /span span style=" font-size: 16px line-height: 150% font-family: 宋体 " 年发明的。 /span span style=" font-size: 16px line-height: 150% font-family: " times=" " new=" " CIMS /span span style=" font-size: 16px line-height: 150% font-family: 宋体 " 对 /span span style=" font-size: 16px line-height: 150% font-family: " times=" " new=" " · OH /span span style=" font-size: 16px line-height: 150% font-family: 宋体 " 进行测量的关键在于通过过量的 /span span style=" font-size: 16px line-height: 150% font-family: " times=" " new=" " SO sub 2 /sub /span span style=" font-size: 16px line-height: 150% font-family: 宋体 " 将其滴定,从而把 /span span style=" font-size: 16px line-height: 150% font-family: " times=" " new=" " · OH /span span style=" font-size: 16px line-height: 150% font-family: 宋体 " 全部转化为 /span span style=" font-size: 16px line-height: 150% font-family: " times=" " new=" " H sub 2 /sub SO sub 4 /sub /span span style=" font-size: 16px line-height: 150% font-family: 宋体 " ,再用 /span span style=" font-size: 16px line-height: 150% font-family: " times=" " new=" " NO sub 3 /sub sup - /sup /span span style=" font-size: 16px line-height: 150% font-family: 宋体 " 离子通过化学电离方法把 /span span style=" font-size: 16px line-height: 150% font-family: " times=" " new=" " H sub 2 /sub SO sub 4 /sub /span span style=" font-size: 16px line-height: 150% font-family: 宋体 " 电离为 /span span style=" font-size: 16px line-height: 150% font-family: " times=" " new=" " HSO sub 4 /sub sup - /sup /span span style=" font-size: 16px line-height: 150% font-family: 宋体 " 离子,最终利用测量得到的 /span span style=" font-size: 16px line-height: 150% font-family: " times=" " new=" " NO sub 3 /sub sup - /sup /span span style=" font-size: 16px line-height: 150% font-family: 宋体 " 与 /span span style=" font-size: 16px line-height: 150% font-family: " times=" " new=" " HSO sub 4 /sub sup - /sup /span span style=" font-size: 16px line-height: 150% font-family: 宋体 " 离子的强度,完成对 /span span style=" font-size: 16px line-height: 150% font-family: " times=" " new=" " · OH /span span style=" font-size: 16px line-height: 150% font-family: 宋体 " 的检测。其基本原理如下: /span /span /p p style=" text-align: right text-indent: 2em line-height: 1.75em " span style=" font-family: 微软雅黑 " span style=" font-size: 16px line-height: 150% font-family: " times=" " new=" " /span /span /p p style=" text-align: center" img style=" max-width: 100% max-height: 100% width: 200px height: 23px " src=" https://img1.17img.cn/17img/images/202006/uepic/5db3950c-6bb1-429f-a5dc-74721da12853.jpg" title=" 化学式3.png" alt=" 化学式3.png" width=" 200" height=" 23" border=" 0" vspace=" 0" / span style=" text-align: right text-indent: 2em line-height: 150% font-family: " times=" " new=" " & nbsp /span span style=" text-align: right text-indent: 2em line-height: 150% font-family: 仿宋_GB2312 " & #8230 & #8230 & #8230 & #8230 & #8230 & #8230 & #8230 & #8230 & #8230 & #8230 /span span style=" font-family: 微软雅黑 text-align: right text-indent: 2em line-height: 150% " ( /span span style=" text-align: right text-indent: 2em line-height: 150% font-family: " times=" " new=" " 1.3 /span span style=" font-family: 微软雅黑 text-align: right text-indent: 2em line-height: 150% " ) /span span style=" font-family: 微软雅黑 text-align: right text-indent: 2em " & nbsp /span /p p style=" text-align: center" img style=" max-width: 100% max-height: 100% width: 200px height: 26px " src=" https://img1.17img.cn/17img/images/202006/uepic/5fd7a534-5c7d-4f54-8c3a-b3664554a285.jpg" title=" 化学式4.png" alt=" 化学式4.png" width=" 200" height=" 26" border=" 0" vspace=" 0" / span style=" text-align: right text-indent: 2em line-height: 150% font-family: 仿宋_GB2312 " & #8230 & #8230 & #8230 & #8230 & #8230 & #8230 & #8230 & #8230 & #8230 & #8230 & #8230 /span span style=" font-family: 微软雅黑 text-align: right text-indent: 2em line-height: 150% " ( /span span style=" text-align: right text-indent: 2em line-height: 150% font-family: " times=" " new=" " 1.4 /span span style=" font-family: 微软雅黑 text-align: right text-indent: 2em line-height: 150% " ) /span /p p style=" text-align: right text-indent: 2em line-height: 1.75em " span style=" font-family: 微软雅黑 " span style=" font-size: 16px line-height: 150% font-family: " times=" " new=" " position:=" " top:=" " /span /span /p p style=" text-align: center" img style=" max-width: 100% max-height: 100% width: 200px height: 22px " src=" https://img1.17img.cn/17img/images/202006/uepic/23d266a5-b30f-41b8-b389-5fe3b01adda6.jpg" title=" 化学式5.png" alt=" 化学式5.png" width=" 200" height=" 22" border=" 0" vspace=" 0" / span style=" text-align: right text-indent: 2em line-height: 150% font-family: " times=" " new=" " position:=" " top:=" " & nbsp /span span style=" text-align: right text-indent: 2em line-height: 150% font-family: 仿宋_GB2312 " & #8230 & #8230 & #8230 & #8230 & #8230 & #8230 & #8230 & #8230 & #8230 ... /span span style=" font-family: 微软雅黑 text-align: right text-indent: 2em line-height: 150% " ( /span span style=" text-align: right text-indent: 2em line-height: 150% font-family: " times=" " new=" " 1.5 /span span style=" font-family: 微软雅黑 text-align: right text-indent: 2em line-height: 150% " ) /span /p p style=" text-align: right text-indent: 2em line-height: 1.75em " span style=" font-family: 微软雅黑 " span style=" font-size: 16px line-height: 150% font-family: " times=" " new=" " /span /span /p p style=" text-align: center" img style=" max-width: 100% max-height: 100% width: 200px height: 21px " src=" https://img1.17img.cn/17img/images/202006/uepic/8bde4373-fe29-4b3a-8810-266a5776b2ec.jpg" title=" 化学式6.png" alt=" 化学式6.png" width=" 200" height=" 21" border=" 0" vspace=" 0" / span style=" text-align: right text-indent: 2em line-height: 150% font-family: " times=" " new=" " & nbsp /span span style=" text-align: right text-indent: 2em line-height: 150% font-family: 仿宋_GB2312 " & #8230 & #8230 & #8230 & #8230 & #8230 & #8230 & #8230 & #8230 & #8230 /span span style=" font-family: 微软雅黑 text-align: right text-indent: 2em line-height: 150% " ( /span span style=" text-align: right text-indent: 2em line-height: 150% font-family: " times=" " new=" " 1.6 /span span style=" font-family: 微软雅黑 text-align: right text-indent: 2em line-height: 150% " ) /span /p p style=" text-indent: 2em line-height: 1.75em " span style=" font-family: 微软雅黑 " span style=" font-size: 16px line-height: 150% font-family: 宋体 " 进而可以得到 /span span style=" font-size: 16px line-height: 150% font-family: " times=" " new=" " · OH /span span style=" font-size: 16px line-height: 150% font-family: 宋体 " 的计算公式: /span /span /p p style=" text-align: right text-indent: 2em line-height: 1.75em " span style=" font-family: 微软雅黑 " span style=" font-size: 16px line-height: 150% font-family: " times=" " new=" " /span /span /p p style=" text-align: center" img style=" max-width: 100% max-height: 100% width: 200px height: 44px " src=" https://img1.17img.cn/17img/images/202006/uepic/1d1e9059-1c2a-4c7e-a908-8c34733ab6b9.jpg" title=" 化学式7.png" alt=" 化学式7.png" width=" 200" height=" 44" border=" 0" vspace=" 0" / span style=" text-align: right text-indent: 2em line-height: 150% font-family: " times=" " new=" " & nbsp /span span style=" text-align: right text-indent: 2em line-height: 150% font-family: 仿宋_GB2312 " & #8230 & #8230 & #8230 & #8230 & #8230 & #8230 & #8230 & #8230 & #8230 & #8230 /span span style=" font-family: 微软雅黑 text-align: right text-indent: 2em line-height: 150% " ( /span span style=" text-align: right text-indent: 2em line-height: 150% font-family: " times=" " new=" " 1.7 /span span style=" font-family: 微软雅黑 text-align: right text-indent: 2em line-height: 150% " ) /span /p p style=" text-indent: 2em " span style=" color: rgb(0, 112, 192) " strong span style=" line-height: 150% " 3. /span span style=" line-height: 150% font-family: 宋体 " 自主研发化学电离质谱测量 /span span style=" line-height: 150% font-family: " times=" " new=" " · OH /span /strong /span /p p style=" text-indent: 2em line-height: 1.75em " span style=" font-family: 微软雅黑 " span style=" font-size: 16px line-height: 150% font-family: 宋体 " 中科院大连化物所李海洋研究员带领的“快速分离与检测”课题组( /span span style=" font-size: 16px line-height: 150% font-family: " times=" " new=" " 102 /span span style=" font-size: 16px line-height: 150% font-family: 宋体 " 组)基于质谱检测核心技术,致力于发展用于在线、现场、原位快速分析的质谱新仪器和新方法,聚焦于化工生产、环境监测和临床医学精确诊断对高端在线质谱的迫切需求,注重技术创新,以“做有用的仪器”为至高追求,先后攻克了新型软电离源、高分辨质量分析器等在线质谱多项关键技术,并于 /span span style=" font-size: 16px line-height: 150% font-family: " times=" " new=" " 2017 /span span style=" font-size: 16px line-height: 150% font-family: 宋体 " 年与金铠仪器(大连)有限公司共同建立质谱发展事业部,携手推动高端质谱技术的发展。近年来,团队先后获得在线质谱仪从设计、生产到应用全链条认证,成功搭建了台式质谱仪、便携式质谱仪、毒品现场鉴别离子阱质谱仪等多个系列产品线,并实现了定型产品“高灵敏光电离飞行时间质谱仪”出口美国、团队成功入选辽宁省兴辽英才计划“高水平创新创业团队”等多项创举。 /span /span /p p style=" text-indent: 2em line-height: 1.75em " span style=" font-family: 微软雅黑 " span style=" font-size: 16px line-height: 150% font-family: 宋体 " /span /span /p p style=" text-align: center" img style=" max-width: 100% max-height: 100% width: 455px height: 600px " src=" https://img1.17img.cn/17img/images/202006/uepic/65377ae1-b7f4-4dc3-9cd4-fe11db074f89.jpg" title=" f962b4b3bb4bb46555334acec7d0997_副本.png" alt=" f962b4b3bb4bb46555334acec7d0997_副本.png" width=" 455" height=" 600" border=" 0" vspace=" 0" / /p p style=" text-indent: 2em line-height: 1.75em " span style=" text-indent: 2em line-height: 150% font-family: 宋体 " 针对大气活性自由基 /span span style=" text-indent: 2em line-height: 150% font-family: " times=" " new=" " · OH /span span style=" text-indent: 2em line-height: 150% font-family: 宋体 " 的检测难题,质谱发展事业部科研工作者基于垂直加速和双场加速聚焦技术,完全自主研发了一台大气压负离子直线式 /span span style=" text-indent: 2em line-height: 150% font-family: " times=" " new=" " TOFMS /span span style=" text-indent: 2em line-height: 150% font-family: 宋体 " 用于大气活性自由基 /span span style=" text-indent: 2em line-height: 150% font-family: " times=" " new=" " · OH /span span style=" text-indent: 2em line-height: 150% font-family: 宋体 " 在线监测,其结构示意图如图 /span span style=" text-indent: 2em line-height: 150% font-family: " times=" " new=" " 1.2 /span span style=" text-indent: 2em line-height: 150% font-family: 宋体 " 所示。 /span /p p style=" text-indent: 2em line-height: 1.75em " span style=" font-family: 微软雅黑 " span style=" font-size: 14px font-family: 黑体 " /span /span /p p style=" text-align: center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202006/uepic/99cdf405-749e-4743-989c-4cc3c7893cf3.jpg" title=" 88.jpg" alt=" 88.jpg" / /p p style=" text-indent: 2em line-height: 1.75em text-align: center " span style=" text-align: center text-indent: 32px font-size: 14px font-family: 黑体 " 图 /span span style=" text-align: center text-indent: 32px font-size: 14px font-family: " times=" " new=" " 1.2& nbsp & nbsp /span span style=" text-align: center text-indent: 32px font-size: 14px font-family: 黑体 " 自行研制的大气压负离子直线式 /span span style=" text-align: center text-indent: 32px font-size: 14px font-family: " times=" " new=" " TOFMS /span span style=" text-align: center text-indent: 32px font-size: 14px font-family: 黑体 " 的结构示意图 /span /p p style=" text-indent: 2em line-height: 1.75em " span style=" text-indent: 2em font-family: 宋体 " 基于 /span span style=" text-indent: 2em font-family: " times=" " new=" " CIMS /span span style=" text-indent: 2em font-family: 宋体 " 技术的基本原理,针对大气活性自由基浓度低、寿命短等自身特点,利用 /span sup style=" font-family: 微软雅黑 text-indent: 2em " span style=" font-size: 16px font-family: " times=" " new=" " 63 /span /sup span style=" text-indent: 2em font-family: " times=" " new=" " Ni /span span style=" text-indent: 2em font-family: 宋体 " 放射源作为电离源,采用自由基转化反应管、试剂离子产生管与化学电离反应区相互平行同轴设计的结构,对自由基进行测量。如图 /span span style=" text-indent: 2em font-family: " times=" " new=" " 1.3 /span span style=" text-indent: 2em font-family: 宋体 " 所示为同轴式自由基进样系统及电离源的反应原理图与结构设计图。 /span /p p style=" text-indent: 2em line-height: 1.75em " span style=" text-indent: 2em font-family: 宋体 " /span /p p style=" text-align: center" img style=" max-width: 100% max-height: 100% width: 600px height: 614px " src=" https://img1.17img.cn/17img/images/202006/uepic/0e654476-5bf0-4572-bc19-9a0e78fb151e.jpg" title=" 99.jpg" alt=" 99.jpg" width=" 600" height=" 614" border=" 0" vspace=" 0" / /p p style=" text-indent: 2em line-height: 1.75em text-align: center " span style=" text-align: center text-indent: 2em font-family: 黑体 " 图 /span span style=" text-align: center text-indent: 2em font-family: " times=" " new=" " 1.3& nbsp /span span style=" text-align: center text-indent: 2em font-family: 黑体 " 同轴式 /span span style=" text-align: center text-indent: 2em font-family: " times=" " new=" " · OH /span span style=" text-align: center text-indent: 2em font-family: 黑体 " 自由基进样系统及电离源的反应原理图 /span /p p style=" margin: 10px 0px text-indent: 2em line-height: 1.75em " span style=" font-family: 微软雅黑 " span style=" font-size: 16px font-family: 宋体 " 基于上述 /span span style=" font-size: 16px font-family: " times=" " new=" " CIMS /span span style=" font-size: 16px font-family: 宋体 " 检测方法,科研人员于 /span span style=" font-size: 16px font-family: " times=" " new=" " 2018 /span span style=" font-size: 16px font-family: 宋体 " 年 /span span style=" font-size: 16px font-family: " times=" " new=" " 4 /span span style=" font-size: 16px font-family: 宋体 " 月 /span span style=" font-size: 16px font-family: " times=" " new=" " 30 /span span style=" font-size: 16px font-family: 宋体 " 日对大连市沙河口区中山路 /span span style=" font-size: 16px font-family: " times=" " new=" " 457 /span span style=" font-size: 16px font-family: 宋体 " 号生物楼楼顶平台环境空气中 /span span style=" font-size: 16px font-family: " times=" " new=" " · OH /span span style=" font-size: 16px font-family: 宋体 " 自由基进行了连续在线监测,时间范围为 /span span style=" font-size: 16px font-family: " times=" " new=" " 6:00 ~18:00 /span span style=" font-size: 16px font-family: 宋体 " 。测试过程中每张质谱图采集 /span span style=" font-size: 16px font-family: " times=" " new=" " 5 s /span span style=" font-size: 16px font-family: 宋体 " ,经过计算,得到环境空气中 /span span style=" font-size: 16px font-family: " times=" " new=" " OH /span span style=" font-size: 16px font-family: 宋体 " 自由基浓度在一天内随时间的变化趋势如图 /span span style=" font-size: 16px font-family: " times=" " new=" " 1.4 /span span style=" font-size: 16px font-family: 宋体 " 所示,所得监测结果与相关文献报道规律保持一致,且分析速度更具优势,展现了所发展 /span span style=" font-size: 16px font-family: " times=" " new=" " CIMS /span span style=" font-size: 16px font-family: 宋体 " 的巨大应用潜力。 /span /span /p p style=" margin: 10px 0px text-indent: 2em line-height: 1.75em " span style=" font-family: 微软雅黑 " span style=" font-size: 16px font-family: 宋体 " /span /span /p p style=" text-align: center" img style=" max-width: 100% max-height: 100% width: 600px height: 449px " src=" https://img1.17img.cn/17img/images/202006/uepic/fb123cb4-f106-42c3-8e9e-13bd104b1612.jpg" title=" 10101.png" alt=" 10101.png" width=" 600" height=" 449" border=" 0" vspace=" 0" / /p p style=" margin: 10px 0px text-indent: 2em line-height: 1.75em text-align: center " span style=" font-family: 微软雅黑 text-align: center text-indent: 2em " 图 /span span style=" text-align: center text-indent: 2em font-family: " times=" " new=" " 1.4& nbsp /span span style=" font-family: 微软雅黑 text-align: center text-indent: 2em " 环境空气中 /span span style=" text-align: center text-indent: 2em font-family: " times=" " new=" " · OH /span span style=" font-family: 微软雅黑 text-align: center text-indent: 2em " 自由基浓度在一天内随时间的变化 /span /p p style=" margin: 10px 0px text-indent: 2em line-height: 1.75em " span style=" color: rgb(0, 112, 192) " strong style=" font-family: 微软雅黑 text-indent: 2em " span style=" line-height: 150% font-family: 宋体 " 4.结语 /span /strong /span /p p style=" text-indent: 2em line-height: 1.75em " span style=" font-family: 微软雅黑 " span style=" font-size: 16px line-height: 150% font-family: 宋体 " 由中科院大连化物所“快速分离与检测”课题组与金铠仪器(大连)有限公司共建的质谱发展事业部,采用 /span span style=" font-size: 16px line-height: 150% font-family: " times=" " new=" " CIMS /span span style=" font-size: 16px line-height: 150% font-family: 宋体 " 技术设计研制了一套基于 /span sup span style=" font-size: 16px line-height: 150% font-family: " times=" " new=" " 63 /span /sup span style=" font-size: 16px line-height: 150% font-family: " times=" " new=" " Ni /span span style=" font-size: 16px line-height: 150% font-family: 宋体 " 放射源的大气压化学电离源及进样系统,利用自行研制的大气压负离子 /span span style=" font-size: 16px line-height: 150% font-family: " times=" " new=" " TOFMS /span span style=" font-size: 16px line-height: 150% font-family: 宋体 " 实现了对于大气中的超痕量 /span span style=" font-size: 16px line-height: 150% font-family: " times=" " new=" " · OH /span span style=" font-size: 16px line-height: 150% font-family: 宋体 " 自由基的原位、实时、在线、连续测量,展现了其在大气环境领域的巨大应用前景。 /span /span /p p style=" text-indent: 2em line-height: 1.75em " span style=" font-family: 微软雅黑 " span style=" font-size: 16px line-height: 150% font-family: 宋体 " br/ /span /span /p p style=" text-indent: 2em line-height: 1.75em text-align: right " span style=" font-family: 微软雅黑 " span style=" font-size: 16px line-height: 150% font-family: 宋体 " 供稿来源:金铠仪器(大连)有限公司 /span /span /p p br/ /p
  • 环境持久性自由基的电子顺磁共振检测和污染特征研究——访中科院生态环境研究中心刘国瑞研究员
    电子顺磁共振(EPR)波谱仪是自由基检测的一种仪器分析技术。EPR在医学、生物、量子化学、物理学、环境以及化学领域等都有所应用。环境与健康是一个热门主题,其中,环境污染会导致怎样的健康效应,也是当下亟需回答的重要科学问题。电子顺磁共振在环境与健康研究领域也可能发挥重要作用。除高活性和短寿命的自由基外,环境中还存在寿命较长的自由基,被称为环境持久性自由基(Environmentally Persistent Free Radicals: EPFRs)或长寿命自由基。EPFRs是十多年前提出的概念,它具有较长的半衰期和稳定性,在环境中存留时间长,增加了生物体的暴露时长,易诱发氧化应激反应,引起细胞和机体损伤等,被认为是一类新型的环境污染物。而实际追溯到1900年,冈伯格发现的第一个自由基——三苯甲基自由基,也是长寿命自由基。目前关于环境中EPFRs的存在及其环境效应研究引起国内外科研人员的广泛重视,开展相关研究工作的课题组逐渐变多。中科院生态环境研究中心环境化学与生态毒理学国家重点实验室刘国瑞研究员较早在国内开展了一些EPFRs相关的工作并取得了不错的成果。日前,仪器信息网特别采访到了刘国瑞研究员,他讲述了与EPR、EPFRs的故事。刘国瑞的主要工作集中在两个方面:1.持久性有机污染物(POPs):如二噁英、溴代二噁英、多氯萘和卤代多环芳烃等持久性有机污染物,建立典型POPs的高灵敏分析方法,阐明了POPs在环境中的污染特征,发现一些潜在排放源并开展了机理和控制原理研究;2.环境持久性自由基(EPFRs):主要研究EPFRs的环境污染特征和转化机理相关的工作。被问到当初选择研究EPFRs的原因,刘国瑞介绍到主要有两个因素,一是想要深入了解二噁英等POPs的分子机理,反应过程的中间体检测至关重要,使用顺磁共振技术可以检测反应过程中的自由基中间体,从而推断二噁英的分子机理。另一个原因是2015年基金委启动了重大研究计划项目——大气细颗粒物的毒理与健康效应。“我们重点实验室江老师鼓励我去做大气细颗粒物里的自由基相关的研究工作,”刘国瑞说道,“2015年左右是北京雾霾天气比较严重的时候,我们课题组采集了北京市大气细颗粒物样品,检测了其中的EPFRs,发现不同粒径的颗粒物中EPFRs有不同的分布,越细的颗粒物中吸附的EPFRs含量也越高,由此导致的潜在健康效应值得进一步关注。”该研究工作发表在当时环境领域的国际知名杂志ENVIRONMENTAL SCIENCE & TECHNOLOGY(ES&T)上。刘国瑞在EPFRs相关研究工作中主要使用了电子顺磁共振波谱和色谱/质谱联用两大类分析技术,电子顺磁共振波谱技术可检测未成对电子,即反应过程中的自由基中间体;色谱质谱联用可对反应后产物进行鉴定,用于研究生成机理。刘国瑞表示,未来希望能将电子顺磁共振和色谱/质谱仪器同时与化学反应器连接使用,同时检测反应中的自由基中间体并鉴定反应后的产物。实验室使用的电子顺磁共振波谱仪器来自布鲁克的EMXplus电子顺磁共振波谱仪。更多精彩内容请观看以下采访视频:
  • 中国建全球唯一可调波极紫外自由电子激光器
    摘要:3月12日,总预算达1.4亿元的国家重大科研仪器设备专项“基于可调极紫外相干光源的综合实验研究装置”在大连正式启动。它将成为国际上唯一一套工作在50~150纳米区间且波长可调的全相干高亮度的自由电子激光器。   对原子、分子的探测是物理化学研究的基础,但由于现有仪器设备的限制,大多数分子和自由基难以被单光子电离,使很多研究无法深入,成为困扰科研工作者的一大难题。   一项旨在解决该难题的实验装置即将在我国建设。3月12日,总预算达1.4亿元的国家重大科研仪器设备专项“基于可调极紫外相干光源的综合实验研究装置”在大连正式启动。它将成为国际上唯一一套工作在50~150纳米区间且波长可调的全相干高亮度的自由电子激光器。   项目总负责人、中科院院士杨学明表示,该装置的研制将极大提升我国在能源等相关基础科学领域的实验水平,并极有希望成为国际上相关领域的一个重要研究基地。   强强联合   项目负责人之一、中科院大连化物所研究员戴东旭介绍说,能源研究中,煤的热解等燃烧过程的中间产物往往以原子、分子、自由基的形式存在,这些微观粒子被电离为离子后才能变成电信号被测试到。因此,对微观粒子的高灵敏度、高时间分辨率和物种分辨的探测和研究至关重要。   但是,大多数分子或自由基的激发电离波长都处于极紫外波段(50~150纳米),而传统激光器产生的基本波长一般在近紫外到近红外波段(300~1000纳米)。这造成了传统激光激发电离微观粒子需要吸收多个光子,其效率和灵敏度会呈几何量级的降低,并且容易把产物打碎。   为解决该问题,科学家提出了利用自由电子激光产生极紫外波段相干光的技术。该技术被认为是探测微观粒子最有效的途径。自由电子激光的波长可涵盖从硬X射线到远红外的所有波段,特别是利用高增益谐波产生(HGHG)技术产生的自由电子激光具有超高峰值亮度、超快时间特性和良好的相干性,应用价值巨大。   但该技术直到近十年才在实验中得到验证。其中,中科院上海应用物理所在几年前建设了我国第一个自由电子激光,并成功进行了相关实验。   而在大连,一位在科研中多年受困于粒子探测难题的科学家坐不住了。他就是以自己研发仪器进行实验而著名的杨学明。杨学明找到上海应用物理所,希望双方能够合作开发新设备。   上海方面通过经验积累后也意识到,有把握将自由电子激光的波长从200纳米降到150纳米以内,并实现波长可调。于是双方一拍即合,经过几年论证,在2011年联合申请了国家自然科学基金委国家重大科研仪器设备专项。   1月20日,上海应用物理所宣布:由该所研究员赵振堂领导的自由电子激光研究团队在国际上率先实现了HGHG自由电子激光大范围波长连续可调。   “在这个项目中,大连化物所和上海应物所是完美结合。”戴东旭表示,上海光源的建成使上海应物所拥有了大科学工程的建设与管理经验,并掌握了大量的关键技术。   从“敢想”到“敢做”   据戴东旭介绍,自由电子激光在进入21世纪之后才开始兴旺发展起来。目前,几家研发自由电子激光的相关单位各有所长,其中一些在波长等指标方面较为领先,技术难度很高,但还没有一家可实现波长可调。   位于合肥的国家同步辐射实验室目前能提供国内真空紫外最好的实验条件,在过去曾协助杨学明课题组做出很好的实验成果。但同步辐射光源毕竟不是激光,在相干性、峰值功率和时间特性上尚存差异。   针对这些问题,大连化物所从实际需求出发提出要求,上海应用物理所在设计中将目标瞄准解决实验中的实际问题。   据悉,该项目的设备将主要由我国自主研发。“这项技术国外也处在发展阶段,有些特殊指标只能自己制造,从国外买设备也需要从头研制。”戴东旭说。   在1.4亿元的项目总预算中,国家自然科学基金委资助1.03亿元用于自由电子激光和实验装置的研制,中科院大连化物所自筹约0.4亿元用于基建和公用设施。该项目的科学目标是研制一套基于HGHG模式的波长可调谐的极紫外相干光源以及利用这一性能优越的光源的实验装置。这也将成为世界上独特的相关基础科学问题的实验平台。   据悉,目前经费已经到位,装置计划将于2015年年底前建成。而且会在全国实现仪器共享,可应用于物理、化学、生物、能源等多个领域。戴东旭说:“装置建成后,以前测不到的将能测到,以前不好的信号将变清晰,以前做不了的实验也敢做了。”
  • 中科院首次发展高选择性检测GSH荧光传感器
    近日,中科院理化技术研究所超分子光化学研究组首次发展了一类在活体细胞中选择性检测谷胱甘肽(GSH)的反应型荧光传感器。相关研究结果日前发表于《美国化学会志》。   自由基损伤是组织损伤的重要分子机制之一,许多疾病,如心脏病、阿尔茨海默氏症、帕金森氏症和肿瘤等的损伤机制中都有自由基的参与。   “含巯基的生物小分子,如半胱氨酸(Cys)、同型半胱氨酸(Hcy)、GSH,会通过清除生物体系内过多的自由基来维持氧化还原平衡。”该研究组副研究员陈玉哲说。   据介绍,作为细胞内含量最多的含巯基生物小分子,GSH不仅参与了细胞抗氧化反应、维持机体的氧化还原平衡,还参与了调节细胞增生、机体免疫应答以及在神经系统中充当神经调质和神经递质的作用。   然而,含巯基的生物小分子结构和反应活性的相似性,往往使得一般检测GSH的荧光探针对Cys和Hcy产生相同或相似的响应。因此,发展高选择性检测GSH的荧光传感器仍然存在巨大挑战。   在文章中,研究组报道了一类基于单氯代BODIPY类衍生物的比率式荧光化学传感器。不同于传统的荧光检测机理,研究组利用了全新的“两步反应”,将GSH与Cys和Hcy区分开来。   “常规的检测,主要是通过巯基和传感器之间发生反应来实现,因而对GSH、Cys和Hcy会产生相似的响应 而我们利用新颖的两步反应机制,Cys和Hcy通过巯基和氨基的协同反应最终生成氨基取代的产物,而GSH生成巯基取代的产物,使其在光谱上产生明显的变化,与Cys和Hcy区分开来。”陈玉哲阐述。   业内专家认为,该成果将为研究肿瘤、心脏病、衰老等疾病的影响及诊疗手段提供新的方法。   据了解,相关研究工作得到了国家自然科学基金委优秀青年科学基金、科技部“973”计划以及中科院“百人计划”的资助
  • 上海药物所等开发新型复合荧光探针
    p   过氧亚硝酸盐(Peroxynitrite,ONOO-)是由超氧阴离子自由基和一氧化氮自由基形成的具有高活性的活性氮物种,是许多体内循环途径的信号传导分子。同时,该分子具有强氧化性,可引起自由基介导的硝化反应,从而会影响生物体内多种生物过程,对脂质、蛋白、DNA等造成不可逆转的损伤。研究表明,过氧亚硝酸盐被认为是包括炎症、癌症和神经退行性疾病等许多疾病的关键致病因子与生物标志物。所以,灵敏、特异性地检测过氧亚硝酸盐对疾病的早期诊断与治疗预后具有重要意义。 /p p   荧光探针有荧光素类探针、无机离子荧光探针、荧光量子点、分子信标等。荧光探针除应用于核酸和蛋白质的定量分析外,在核酸染色、DNA电泳、核酸分子杂交、定量PCR技术以及DNA测序上都有着广泛的应用。荧光探针最常用于荧光免疫法中标记抗原或抗体,亦可用于微环境,如表面活性剂胶束、双分子膜、蛋白质活性位点等处微观特性的探测。通常要求探针的摩尔吸光系数大,荧光量子产率高 荧光发射波长处于长波且有较大的斯托克斯位移 用于免疫分析时,与抗原或抗体的结合不应影响它们的活性。也可用于标记待定的核苷酸片断,用与特异性地、定量地检测核酸的量。 /p p   小分子荧光探针具有高灵敏度、高选择性和良好的时空分辨率等优势,在胞内生物分析物成像等领域备受化学生物学家的青睐。但开发的小分子荧光检测探针依然存在着一些缺陷,如溶解性大大限制了其在体内环境中的应用。 /p p   近日,英国皇家化学会综合期刊《化学科学》(Chemical Science)在线报道了中国科学院上海药物研究所李佳、臧奕团队与华东理工大学贺晓鹏团队的最新相关研究成果。研究人员利用蛋白质杂交策略,开发了一种新型复合荧光探针HSA/Pinkment-OAc。首先,通过多种表征手段(荧光光谱、SAXS、ITC、分子对接等)验证了复合探针的成功构建,随后,在体外溶液以及细胞实验中验证了该体系对过氧亚硝酸盐的快速、灵敏检测。值得一提的是,该探针进一步被应用于小鼠急性炎症模型中过氧亚硝酸盐异常表达时的检测,与单独荧光探针相比,复合探针的检测性能得到大大提升。研究人员希望该方法可作为一种通用策略,用于改善疾病相关不溶性小分子试剂的溶解性问题。 /p p style=" text-align: center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202003/uepic/3fe3a9b5-05cf-45ea-9c7c-c8aa5065b7ce.jpg" title=" W020200326393492078327.png" alt=" W020200326393492078327.png" / strong HSA/Pinkment-OAc的构建策略、表征手段(SAXS、Molecular Docking)以及体内成像 /strong /p p   该研究工作主要在双方导师的指导下,由上海药物所联合培养博士研究生韩海浩与合作单位Adam C. Sedgwick博士、博士研究生尚莹等协作完成,并得到中科院院士、华东理工大学教授田禾、美国德克萨斯大学奥斯汀分校教授Jonathan Sessler以及英国巴斯大学教授Tony D. James的指导与支持。相关同步辐射测试与分子对接测试分别得到上海光源BL19U2线站博士李娜与上海药物所研究员于坤千的大力支持。 /p
  • 科学岛团队开发MOF荧光传感平台用于食品安全可视化监测
    近期,中科院合肥研究院固体所能源材料与器件制造研究部蒋长龙研究员团队在没食子酸(GA)的可视化分析检测方面取得新进展。该团队采用铕离子(Eu3+)与3,5-二羧基苯硼酸(BBDC)配位聚合构建多发射铕金属-有机骨架荧光团,通过便携式传感平台用于对没食子酸的可视化检测。其中,通过设计合成的双发射Eu-MOF荧光探针对茶叶和果汁中没食子酸的共价结合和富集,提出了一种有效的食品添加剂监控策略,以保证食品安全和人体健康,相关成果已发表在国际化学工程类TOP期刊 Chemical Engineering Journal 上。   食品添加剂具有改善感官特性和维持或提高食品营养价值的作用,尤其是具有抗氧化作用的食品添加剂正受到社会各年龄段人群的广泛关注。在茶叶和新鲜果汁中的没食子酸具有还原性和多种生物活性,它通过清除活性氧(ROS) 和其他自由基离子对人体具有抗氧化作用,并能显著降低ROS指数。没食子酸不仅天然存在于绿茶、红茶等多种植物中,还因其强大的抗自由基活性和抗氧化作用而广泛应用于食品和保健品中。没食子酸的快速直观检测对分析化学具有重要意义,因为它不仅具有很强的抗诱变、抗癌、抗氧化活性,而且是评价食品抗氧化能力的重要指标。   研究人员基于硼酸配体和铕金属离子的聚合,开发了单波长激发下的多发射Eu-MOF,用于快速可视化检测没食子酸,并且利用智能手机APP(颜色识别器)识别荧光探针溶液颜色的RGB值完成了对没食子酸的可视化检测。引入硼酸基团后,Eu-MOF在单波长激发下有两个发射中心,在检测没食子酸时,Eu-MOF的发射颜色在紫外灯照射下可由红色变为蓝色,即由Eu-MOF中能量转移效率的转变引起。这种多发射Eu-MOF具有显著的发光性能、高灵敏度和对没食子酸的快速视觉响应,并对没食子酸的检测具有良好的分散性和较低的检测限,可用于茶和果汁等实际样品中没食子酸的检测。结合智能手机制备的荧光传感平台,可进行现场、快速、半定量、可视化的检测。所设计的方法为食品质量控制评价体系的开发提供新的思路与途径,并有望扩展多发射Eu-MOF在化学和分析传感领域的应用。   该项研究工作得到了国家自然科学基金、国家重点研究开发项目和安徽省重点研究开发项目的资助。
  • 首届中国光电仪器发展论坛暨荧光光谱仪新品发布会即将开幕
    p style=" text-align: justify text-indent: 2em " strong span style=" color: rgb(0, 112, 192) " 稳态/瞬态荧光光谱 /span /strong sup [1] /sup 主要应用在 span style=" color: rgb(63, 63, 63) " strong 材料科学、生命科学、环境科学、法医科学与安全以及地质学 /strong /span 等。稳态/瞬态荧光光谱仪是测量光致发光的光谱仪器,适用于液体、粉末和薄膜样品。往往具有具有高灵敏度、高分辨率、覆盖的光谱范围广以及优异的杂散光抑制率等特性。 /p p style=" text-align: justify text-indent: 2em " 利用荧光光谱技术 sup [2] /sup 可以研究不同自由基型光引发剂的瞬态及稳态荧光光谱特性,从分子结构出发分析了共轭结构对光引发剂荧光光谱的影响。 /p p style=" text-align: justify text-indent: 2em " 相关实验结果表明:随共轭效应的增强,荧光激发与发射峰波长逐渐增大;瞬态荧光谱的衰减受电子基团的影响较为明显,含有吸电子基团的光引发剂荧光衰减快,而含有给电子基团的光引发剂荧光衰减慢。 /p p style=" text-indent: 2em text-align: center " img style=" max-width: 100% max-height: 100% width: 469px height: 337px " src=" https://img1.17img.cn/17img/images/202012/uepic/071f126e-65e4-40de-aac6-f936e1921994.jpg" title=" 衰减谱图.png" alt=" 衰减谱图.png" width=" 469" vspace=" 0" height=" 337" border=" 0" / /p p style=" text-align: center " span style=" color: rgb(0, 112, 192) " strong span style=" font-size: 14px " 图1:光引发剂的瞬态衰减谱(可以看出不同光引发剂的衰减曲线变化不同,苯酮类光引发剂Irg.184,Irg.369,Irg.907以及二苯甲酮BP的衰减较快 安息香衍生物Irg.651和酰基氧化磷类Irg.819和Irg.TPO以及硫杂蒽酮ITX的衰减较慢。 /span /strong /span /p p style=" text-align: justify text-indent: 2em " 通过对溶剂极性及粘度研究发现:光引发剂荧光发射峰随溶剂的极性增加出现明显红移现象,表明激发跃迁类型主要是π-π* 跃迁,并且随溶剂粘度的增大光引发剂荧光衰减明显得到延缓。 /p p style=" text-align: center text-indent: 2em " img style=" max-width: 100% max-height: 100% width: 469px height: 345px " src=" https://img1.17img.cn/17img/images/202012/uepic/2e3faa71-ef1f-4484-ab1b-e97e4375633e.jpg" title=" 粘性变化.png" alt=" 粘性变化.png" width=" 469" vspace=" 0" height=" 345" border=" 0" / /p p style=" text-indent: 2em text-align: center " strong span style=" font-size: 14px color: rgb(0, 112, 192) " 图2:随溶剂的极性增强光引发剂Irg.ITX 的荧光发射峰有红移的现象,并且发射谱的峰值强度随溶剂及粘度的增加逐渐增大。异丙醇和乙酸乙酯的极性相同,但在前者中光引发剂的发射峰440 nm明显不同于后者的424 nm,这可能是两溶剂粘度不同造成荧光激发谱红移的结果。 /span /strong /p p style=" text-align: center margin-top: 10px " a href=" https://www.instrument.com.cn/webinar/meetings/1223zolix" target=" _blank" img style=" max-width: 100% max-height: 100% width: 600px height: 200px " src=" https://img1.17img.cn/17img/images/202012/uepic/dbc802d8-3d03-44ab-adca-357ed7ef085c.jpg" title=" w1035h345zolixhy.jpg" alt=" w1035h345zolixhy.jpg" width=" 600" vspace=" 0" height=" 200" border=" 0" / /a /p p style=" text-align: justify text-indent: 2em margin-top: 10px " 为响应国家整体布局,及更好地为科学研究提供技术服务,由北京卓立汉光分析仪器有限公司、北京怀柔仪器和传感器有限公司联合举办的 a href=" https://www.instrument.com.cn/webinar/meetings/1223zolix" target=" _blank" span style=" color: rgb(192, 0, 0) " strong OmniFluo990稳态瞬态荧光光谱仪全球发布会暨第一届中国光电分析仪器发展论坛 /strong /span /a ,将于2020年12月23日在北京召开。大会期间将重磅推出国内商业化的 span style=" color: rgb(192, 0, 0) " strong 稳态和荧光寿命测量系统 /strong /span ,并邀请来自“产、学、政、研、用”不同领域的专家学者,深化产学研用,探讨中国国产光电分析仪器的行业现状与未来走向。 /p p style=" text-align: left text-indent: 2em margin-top: 10px " 【 a href=" https://www.instrument.com.cn/webinar/meetings/1223zolix" target=" _blank" 点击链接参会 /a 】 a href=" https://www.instrument.com.cn/webinar/meetings/1223zolix" target=" _blank" https://www.instrument.com.cn/webinar/meetings/1223zolix /a /p p style=" text-align: center" a href=" https://www.instrument.com.cn/webinar/meetings/1223zolix" target=" _blank" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202012/uepic/8baac84b-c90c-4041-ab35-5ae95f628083.jpg" title=" 我要参会.png" alt=" 我要参会.png" / /a /p p style=" text-align: justify text-indent: 2em " br/ /p p style=" text-align: center" a href=" https://www.instrument.com.cn/webinar/meetings/1223zolix" target=" _blank" img style=" max-width: 100% max-height: 100% width: 600px height: 235px " src=" https://img1.17img.cn/17img/images/202012/uepic/e6657c2a-5fef-4686-bf54-43d039a305ae.jpg" title=" prize.png" alt=" prize.png" width=" 600" vspace=" 0" height=" 235" border=" 0" / /a /p p style=" text-align: justify text-indent: 2em " span style=" font-size: 14px " strong /strong /span /p p style=" text-align: center" img style=" max-width: 100% max-height: 100% width: 600px height: 452px " src=" https://img1.17img.cn/17img/images/202012/uepic/46fe1460-8354-4828-80a9-2bc149d1572f.jpg" title=" 会议日程.png" alt=" 会议日程.png" width=" 600" vspace=" 0" height=" 452" border=" 0" / /p p br/ /p p style=" text-align: justify text-indent: 2em " span style=" font-size: 14px " strong 参考文献: /strong /span /p p style=" text-align: left text-indent: 2em " span style=" font-size: 14px " [1].稳态/瞬态荧光光谱仪简介[J].渤海大学学报(自然科学版),2019,40(04):389. /span /p p style=" text-align: left text-indent: 2em " span style=" font-size: 14px " [2].李新政,李晓苇,赖伟东,等.自由基型光引发剂的瞬态及稳态荧光特性研究[J].光谱学与光谱分析, 2011,31(09):2442-2445. /span /p p style=" text-align: justify text-indent: 2em " span style=" font-size: 14px " /span /p p style=" text-indent: 2em margin-top: 10px " span style=" color: rgb(0, 112, 192) " strong 关于北京卓立汉光仪器有限公司 /strong /span /p p style=" text-align: justify text-indent: 2em " 卓立汉光秉持 “研发创新、快速反应、优质服务”的理念,为光电行业从业者提供全方位产品解决方案。2020年卓立汉光出资成立北京卓立汉光分析仪器有限公司,并正式引入国内商业化全功能型稳态及瞬态荧光光谱仪等产品。 /p
  • “光剑”出鞘:软X射线自由电子激光装置调试工作取得系列进展
    近日,活细胞结构与功能成像等线站工程暨上海软X射线自由电子激光装置调试工作取得系列进展。继实现532米X射线自由电子激光装置的全线调试贯通、带光运行后,装置于6月21日凌晨首次实现了2.4纳米单发激光脉冲的相干衍射成像,获得了首批实验数据,并完成了对衍射图样的快速图像重建。该成果体现了活细胞结构与功能成像等线站工程暨上海软X射线自由电子激光装置整体性能的先进性,标志着我国在软X射线自由电子激光研制和使用方面步入国际先进行列。基于该成果,活细胞结构与功能成像等线站工程暨上海软X射线自由电子激光装置成为了国际上仅有的两个已实现“水窗”波段相干衍射成像实验的自由电子激光装置之一。“水窗”是指波长在2.3纳米到4.4纳米范围的软X射线波段。在此波段内,水不吸收X射线,对X射线相对透明。但是碳元素等构成生物细胞的重要元素,仍会与X射线相互作用,因而水窗波段的X射线可用于活体生物细胞的显微成像等,具有重要的科学意义和应用价值。在水窗波段,自由电子激光脉冲的峰值亮度比同步辐射高十亿倍以上,具备横向和纵向相干性,能够为物理、生物、化学等学科提供研究工具,还可为在建的上海硬X射线自由电子激光装置技术研发提供支撑。作为我国首台X射线自由电子激光装置,上海软X射线自由电子激光装置由活细胞结构与功能成像等线站工程和软X射线自由电子激光用户装置共同构成,两个项目同步建设,有机衔接。该装置将与已建成的上海同步辐射光源、超强超短激光装置和在建的硬X射线自由电子激光装置等一起,在浦东张江构建具有全球影响力的光子科学设施集群和光子科学研究中心。活细胞结构与功能成像等线站工程由上海科技大学、中国科学院上海应用物理研究所、中科院上海高等研究院团队共同建设,项目于2016年11月开工建设,含用户波荡器束线、活细胞成像束线、生物成像实验站、活细胞荧光超分辨显微镜站、超快物理实验站、超快化学实验站、分子动态成像实验站及实验辅助设施,预计在2021年内完成验收。活细胞结构与功能成像等线站工程和软X射线自由电子激光用户装置由国家发展和改革委员会与上海市政府共同出资建设。自2021年6月2日首次实现生物成像实验站通光后,上海科技大学和上海高研院的项目团队密切协作、昼夜调试,不断创造项目贯通调试和运行的加速度,取得了首批相干衍射实验数据,实现了数据的快速图样重组,为今后开展生物活体细胞成像、新材料动态结构分析以及多物理场原位成像等前沿科学研究打下了基础。装置拟于明年面向全世界开放运行。图1.标准样品圆孔、方孔及鹦鹉螺图案的相干衍射图样图2.上海软X射线自由电子激光装置图3.用户波荡器束线图4.用户大厅图5.生物成像实验站
  • 陕科大陈庆彩团队: 三维荧光光谱法(EEM)鉴定大气颗粒物中发色团物质的种类和来源 |前沿用户报道
    大气发色团是气溶胶中可以吸收太阳光的一类有机物质,可能对全球气候产生影响。大气发色团也可能通过形成三线态进而催化产生活性氧物质,因此对大气气溶胶的老化过程也具有重要潜在贡献。充分的了解大气发色团的理化性质和来源是掌握它们对环境的影响的本质要求。三维荧光光谱法(EEM)是鉴定环境中发色团物质的重要仪器分析方法,近年来已被频频的应用到大气气溶胶研究领域中。然而,当前EEM方法应用于大气领域进入了瓶颈时期。随着EEM方法广泛应用和深入研究,研究者们开始怀疑EEM方法是否具有区别气溶胶来源和物质种类的能力,因为多数情况下发现样品的EEM谱图具有非常相似的形貌。这样就限制了EEM方法更加广泛的应用于研究大气发色团来源、形成和消去过程。可喜的是,近日陕西科技大学陈庆彩研究团队,利用三维荧光光谱(EEM)研究,对大气颗粒物化学结构和来源进行了分析。在该项工作中,陈庆彩等人演示了EEM方法是有能力分辨大气颗粒物中不同类型发色团以及来源的,并构建了大气发色团与其来源、化学种类的对应关系。这项工作突破了一定的方法瓶颈,对于EEM方法在气溶胶研究领域的应用起到了关键推动的作用,或将促进大气发色团来源和大气化学过程的研究。研究过程1. EMM助力大气颗粒物来源和组成的初步分析研究团队分别采集了城市、一次燃烧源和二次气溶胶样品,利用EMM方法和 PARAFAC模型调查了不同发色团在不同种类气溶胶样品中的含量,讨论了EEM方法在分辨发色团类型以及样品来源的能力。通过对实际大气颗粒物样品进行分析,从整体轮廓分析,确实发现实际样品具有相似的EEM光谱外貌特征。这个结果也是当前研究者们担心的事情:到底EEM方法是否可以区分不同来源和组成的大气颗粒物样品?图1(a)为大气颗粒物萃取样品WSM和MSM的平均EEM光谱图以及它们的差光谱 (b)和(c)表示样品EEM光谱之间相关系数的四分位图和频率分布图针对这个值得怀疑的问题,团队人员研究了不同来源大气颗粒物样品,包括各种燃烧源样品(生物质燃烧、煤炭燃烧、汽车排放和做饭排放样品)和二次气溶胶样品。研究发现,不同种类样品的荧光性能是不同的,其中:生物质燃烧和煤炭燃烧样品的荧光效率是大的而汽车尾气样品和二次气溶胶样品相对较小另外发现,鉴定出的不同种类发色团,在不同来源样品中的相对含量也是不同的这些结果直接解答了上述疑问,确认:EEM方法可以用来区别不同气溶胶来源。图2 依据不同发色团(C1-C8)在不同污染物上的相对载荷鉴定出发色团来源,以及不同来源发色团在WSM和MSM样品中的相对含量2. PARAFAC 模型:一种系统的来源和成份分析图谱进一步,研究人员基于改进的PARAFAC 模型对大气气溶胶中发色团的来源和化合物的种类归属进行了研究。在这一步骤,该团队开创性的将大气颗粒物化学组分融合进EEM图谱的PARAFAC分析,进而对各种大气发色团的来源进行了鉴定。结果显示有一半左右的发色团来源被鉴定出来了,并发现了几个有意思的结果,比如:发现发色团的沙尘暴一次来源和光化学形成的二次来源,分析了季节变化中沙尘暴发生、光强度变化对发色团类型和含量的影响。该工作还利用优化的PARAFAC分析方法,把几种典型的有机化合物的EEM谱图耦合进了模型解析,进而对发色团的可能化学物质属性进行了归属。结果显示了苯酚类发色团是重要的水溶性发色团,而PAHs是水不溶性发色团的重要类型。图3 EEM区域和对应的大气发色团可能化学结构和来源图中不同彩色区域表示本研究鉴定的大气发色团来源对应区域,不同彩色数字球表示本研究鉴定的大气发色团对应化合物种类区域后研究人员总结了当前人们的认知和该项工作的主要结论,形成了一个可用于发色团化学物种和来源的依据图谱(图3),这个图谱对于今后EEM方法应用与于大气气溶胶的来源和化学转化研究提供了重要参考和研究途径。小结由上述研究可知,本研究工作提供了不同种类大气发色团对应来源以及化合物类别鉴定依据。这其中重点在于演示了不同发色团在不同气溶胶样品中的含量是不同的,从而说明EEM方法是有能力分辨不同类型发色团以及样品类型的。这项研究也构建了大气发色团与其来源、化学种类的对应关系。他们鉴定出了样品中大约一半的荧光物质所对应的来源和化合物种类,结果提供了大气发色团来源以及化合物类别鉴定依据,这将大大促进了EEM方法应用于研究大气发色团来源和大气化学过程,对于EEM方法在气溶胶研究领域应用起到了推动的作用。本研究中的三维荧光光谱法和大量光谱采集采用的是HORIBA Aqualog光谱仪完成,该仪器在EEM图谱快速获取、数据校正等方面的优势,为研究的顺利进行提供了不少便利。tips: 想了解更多荧光光谱仪的解决方案,点击阅读原文提交需求,HORIBA工程师会尽快联系您~论文原文&作者该研究以 Identification of species and sources of atmospheric chromophores by fluorescence excitation-emission matrix with parallel factor analysis 为题,发表在《Science of The Total Environment》上作者:陈庆彩通讯作者:陈庆彩、杜林通讯单位:陕西科技大学环境科学与工程学院、山东大学环境研究院Doi: 10.1016/j.scitotenv.2020.137322文章链接:https://doi.org/10.1016/j.scitotenv.2020.137322 课题组介绍:陈庆彩,男,山东人,博士,副教授,博士生导师。毕业于日本名古屋大学,取得理学博士学位。陕西省“百人计划”,陕西科技大学大气污染控制团队负责人,名古屋大学特邀教员,日本大气化学学会会员。主要研究方向为气溶胶化学,包括有机气溶胶、大气棕碳(BrC)、长寿命自由基(EPFRs)等。参与和主持中国国家自然科学基金等十余项科研项目;已在ES&T等权威期刊一作/通讯发表20余篇学术论文;获得国家和软件注册权10余项。ORCID:http://orcid.org/0000-0001-7450-0073个人主页:https://hj.sust.edu.cn/info/1015/1394.htm 免责说明HORIBA Scientific公众号所发布内容(含图片)来源于文章原创作者提供或互联网转载。文章版权、数据及所述观点归原作者原出处所有,HORIBA Scientific 发布及转载目的在于传递更多信息及用于网络分享,供读者自行参考及评述。如果您认为本文存在侵权之处,请与我们取得联系,我们会及进行处理。HORIBA Scientific 力求数据严谨准确,如有任何失误失实,敬请读者不吝赐教批评指正。我们也热忱欢迎您投稿并发表您的观点和见解。 HORIBA科学仪器事业部HORIBA Scientific 致力于为科研及工业用户提供先进的检测和分析工具及解决方案,如:光学光谱、分子光谱、元素分析、材料表征及表面分析等先进检测技术,旗下Jobin Yvon光谱技术品牌创立于1819年,距今已有200年历史。如今,HORIBA 的高品质科学仪器已经成为全球科研、各行业研发及质量控制的选择,之后我们也将持续专注科研领域,致力于为全球用户提供更好的服务。
  • 合肥研究院全面解析环境监测领域中光谱学的技术进展
    p   近日,中国科学院合肥物质科学研究院安徽光学精密机械研究所刘文清团队在《光学学报》上发表创刊四十周年特邀综述,全面解析环境监测领域中光谱学的技术进展。 /p p   半个多世纪以来,随着人类对于光本质认识的提髙和深化,光学技术的巨大进步,特别是激光器的发明和激光技术的应用,光与物质相互作用的认识有了根本性的提髙和发展。与此同时,人们对环境污染问题的认识也不断提升,开始采用现代的技术手段特别是光学技术研究一些环境物理化学现象和过程,逐渐发展了现代的环境光谱学。 /p p   环境光谱学不仅是经典光学的创新发展,也是环境科学的新发展。环境光谱学监测是环境光学的重要组成部分,它利用光学中的吸收、发射、散射以及大气辐射传输等方法,通过建立特征因子指纹光谱数据库和定量解析算法,获取痕量气体的特性,可用于空气质量、固定和流动污染源自动监测,具有实时、动态、快速、非接触遥测、遥测、监测范围广、成本低等优势,是当今国际环境监测的发展方向和主导技术。 /p p   利用光学中的吸收光谱、发射光谱、光的散射以及大气辐射传输等方法,刘文清团队提出开展光学与环境交叉科学的创新研究,目前已形成了以差分光学吸收光谱(DOAS)技术、傅里叶变换红外光谱(FTIR)技术、非分光红外(NDIR)技术、可调谐半导体激光吸收光谱(TDLAS)技术、激光雷达(LIDAR)技术、荧光光谱技术、激光诱导击穿光谱(LIBS)技术、光腔衰荡光谱技术(Cavity Ring-Down Spectroscopy,CRDS)、光散射测量技术、光声光谱技术等为主体的环境光学监测技术体系,实现了对环境痕量成分/多要素的现场快速探测与多维度多平台监测,已成功应用于大气、水源及土壤等的监测。 /p p   在常规气体监测方面,主要利用各种光学技术路线:如针对SO sub 2 /sub 、NO sub 2 /sub 、O sub 3 /sub 及THC、CH sub 4 /sub 、NMHC、BTX等污染物,DOAS技术利用气体分子的吸收特性来鉴别成分,并根据窄带吸收强度反演出微量气体的浓度 针对温室气体CO sub 2 /sub ,CRDS利用相对较窄的吸收窗口,避免其他组分干扰,实现较高精度检测 针对CO,利用TDLAS的波长调谐特性,用单一窄带的激光频率扫描气体分子的一条或者几条气体特征吸收线,实现CO的定性或定量分析 在大气氧化性监测方面,可利用气体扩张激光诱导荧光技术获取大气中最重要的氧化剂——HO sub x /sub (OH、HO sub 2 /sub )自由基,308纳米激光将OH自由基激发至电子激发态,探测激发态OH自由基发出的荧光来确定大气中OH自由基的浓度 如要测量HO sub 2 /sub 自由基,则需向转换装置中通入一定浓度的NO将HO sub 2 /sub 自由基转化为OH自由基,再测OH自由基 在颗粒物监测方面,颗粒物在大气中的垂直分布不均,且高空的垂直迁移会影响近地面的污染浓度。激光雷达系统利用气溶胶的后向米散射回波信号来探测气溶胶光学特性如后向散射系数/消光系数的时空分布,可实现对颗粒物的垂直分布探测 在地表水质监测方面,利用水体中多数有机污染物属于含荧光团的大分子有机物,在适当波长的激发光作用下发射特征荧光光谱的原理,利用激光诱导荧光技术实现对大面积水域的有机物污染状况的遥测 在土壤重金属监测方面,可以利用LIBS技术,分析土壤样品的表面等离子体辐射谱线,实现土壤有机污染物的现场快速监测。 /p p   在实际运用中,通常将环境光谱和遥感技术结合应用,通过对系统性、区域性和复合性污染研究和多元信息融合,可以实现在线监测环境复合污染物、三维立体和流动在线监测,为构建天空地一体化环境复合污染物观测、研究、示范平台奠定技术基础。 /p p   随着光学、电子、信息、生物等相关领域的技术进步,环境光谱技术正向高精度高灵敏、多组分多平台、智能化网络化的趋势发展。 /p p   在大气复合污染形成过程监测中的大气氧化性现场监测、纳米级颗粒物在线测量、超低排放污染源监测,以及水土重金属在线检测等方面还存在检测限低、时间分辨率不高等问题,因此需进一步提高检测精度和灵敏度,使光学监测技术应用于光化学反应机理研究、工业过程控制、生产安全监控 工业迅速发展使得监测的污染物种类快速增加、组分更加复杂,亟需发展大气自由基、全组分有机物、重金属、生物气溶胶、二次有机气溶胶示踪物,水体细菌、浮游植物以及土壤中残留农药和其它有机污染物的检测等 发展多平台、智能化、网络化,且具有特异选择性的环境监测仪器,实时获取环境多要素监测数据,通过对海量数据的深度挖掘、模型分析,利用大数据分析区域、流域污染源与环境质量的相应关系,构建智能管理决策平台,使环境管理向精细化、精准化转变,实现主动预见、大数据科学决策成为发展的新趋势。 /p
  • 层浪科技高端流式细胞仪LongCyte上市!3激光14色16通道,多达26种配置方案自由选择
    层浪科技新推出3激光14色16通道流式细胞仪LongCyte,全新专利设计的光路系统、电路系统以及信号处理系统,可配置红(638nm)蓝(488nm)紫(405nm)三个激光器,将国产流式细胞仪技术推向更高水平!产品亮点:1. 专利设计的光学系统,多达26种配置方案自由选择;2. 强大的软件系统,提供细胞因子、报告编辑、质控监测、LIS连接等功能;3. 精致优雅的外观,简洁灵动科技感,令人眼前一亮;4. 专利设计的磁吸置物装置,节省空间方便维护;5. 一键关机,自动清洗,无需等待;6. 可视化用户体验,可深度观察流动室液流状态;26种光路配置:荧光通道参数:快速选型、比价,点击进入仪器信息网流式细胞仪专场查看。
  • 电子顺磁共振波谱仪:追踪大气污染“健康杀手”的有力工具——访陕西科技大学 陈庆彩教授
    作为危害人类生命健康的一大杀手,大气污染已经成为大家关注的焦点之一。但是大气颗粒物中的哪些物质会影响人体健康?为什么会造成损害?这不仅是普通大众不明白的事情,也是科研工作者的难题。  为了更深入的探究大气污染对人类健康的危害性,鉴定及监测大气颗粒物中自由基的产生并确定它们的氧化性能得到了科研工作者的重点关注。日前,仪器信息网编辑采访了陕西科技大学陈庆彩教授,请其为大家介绍这其中的前沿研究成果。陕西科技大学 陈庆彩教授  团队负责人陈庆彩教授,理学博士,毕业于名古屋大学,陕西省省级人才,政府特聘专家,一作/通讯发表学术论文30余篇,主持国家自然基金等项目5项。课题组目前主要方向包括:大气气溶胶化学组成和源解析、大气污染与人体健康、区域大气污染模拟和环境效应分析、VOCs源头控制技术。目前课题组现有5名教授或副教授,博士、硕士研究生20余名。  长寿命自由基:长时间、持久性健康损害的重要因素  仪器信息网:请介绍大气污染目前的研究热点,以及您现在主要的研究方向?  陈庆彩:大气污染是我国最为复杂的环境问题之一,相关研究非常火热,过去几年间在细颗粒物的治理上取得了显著治理成效,未来几年国家战略也将聚焦在细颗粒物和臭氧的协同治理上。  不过,控制大气污染不是我们的最终目的,而是实现人类健康生存环境的手段和过程。因此,大气污染的健康效应是该领域研究的热点问题之一,我的主要兴趣点也是在这个研究方向上。我们致力于探究大气颗粒物中造成人体健康损害的具体物质,以及其影响人体健康的原因,这也是基于能为我国人民身体健康贡献自己的科技力量这个信念而产生的。目前的研究发现大气颗粒物产生的活性氧自由基是危害人体健康的重要途径,最近我们的研究特别关注长寿命自由基(EPFRs),因为它可能带来长时间、持久性的健康损害,可谓人类的一大“健康杀手”。  仪器信息网:请简要介绍大气颗粒物中的活性氧自由基及其健康危害?贵课题组具体开展了哪些方面的研究?  陈庆彩:活性氧自由基的种类很多,常见的有羟基自由基、超氧自由基等。由于自由基是一种缺乏电子的物质,进入人体后可能会夺去细胞蛋白分子的电子,使蛋白质接上支链发生烷基化,形成畸变的分子而致癌。  本课题组近几年致力于关注长寿命自由基(EPFRs),它不同于传统的寿命只有几毫秒的自由基,其寿命长达数月甚至数年,能够持续对人体健康造成危害。我们研究发现,其大量存在于大气颗粒物中并且存在显著的健康风险,例如2017年西安市的严重雾霾时期,PM2.5中EPFRs的含量相当于每人每天吸入约23支香烟,其健康危害不容小觑。  EPR:“直接分析自由基的唯一流行设备”  仪器信息网:当前,大气污染研究主要应用哪些仪器手段?电子顺磁共振波谱仪(EPR)在大气污染研究中主要用于解决哪些问题?相比其它分析仪器有哪些不可替代的优?  陈庆彩:用于大气污染研究的仪器设备非常多,有在线的、离线的,种类繁多,在线仪器例如气溶胶色谱、有机碳/元素碳分析仪等,离线仪器如气相色谱、傅里叶红外光谱仪等都是常用的大气颗粒物分析仪器。MS5000(现更名为布鲁克ESR5000)  而电子顺磁共振波谱仪(EPR)是目前能够直接分析自由基的唯一流行设备,也是我课题研究中使用的重要设备。目前我们课题组使用的EPR是MS5000(布鲁克ESR5000),主要用于分析自由基的种类和含量。其原理简单来说就是含有未成对电子的物质在受到外磁场作用时,会发生能级分裂,这时在垂直于磁场的方向施加一定频率的电磁波,并不断改变磁场强度,当磁场强度刚好满足条件时,未成对电子就会产生跃迁,电子跃迁吸收的信号经电子学系统处理就可得到EPR吸收谱线,不同种类的自由基对应的参数及产生的谱线都不同。  其他的自由基检测方法,例如分光光度法、荧光探针法等都无法应对较为复杂的样品且其多为间接检测,定性定量自由基的效果都不理想。EPR不但可以直接测定自由基的含量及种类,而且在大气样品检测的过程中往往不会对原始样品造成破坏,这样更有利于对样品的后续其他检测。此外,EPR还能够在线检测自由基,探究自由基生成的时间变化曲线等,这些都是EPR的重要优势。  仪器信息网:据悉,贵课题组是国内比较早将MS5000应用于大气污染研究的团队,请问当时为什么会选择MS5000这款仪器?  陈庆彩:国内外对MS5000(布鲁克ESR5000)的使用多是在材料和生物领域,大气领域的研究相对还比较少。选择MS5000(布鲁克ESR5000)的时候,虽然已经有相关文献的支撑,但我们还是经过了仔细的调研和考量。我们选择仪器主要考虑设备质量和企业服务两方面的因素。当时,在课题的基础上提出了对设备技术指标和要求的需求,并用样机当场验证了性能。其实,在购买的过程中也对比了其他公司的相关EPR设备。最终在满足课题技术需求的条件下,并考虑到性价比、服务等方面,选择了比较符合我们课题组需求的MS5000。  仪器信息网:据了解,2019年10月份,布鲁克收购了Magnettech EPR业务,此项业务的变更对用户的售后等其他服务是否产生了影响?  陈庆彩:基本没有产生影响,原有的仪器日常维护、软件更新、耗材更换、产品技术支持都继续保持,在仪器使用过程中产生的技术问题基本都会得到对方技术人员及国外工程师给出的解决方案。布鲁克的技术和业务水平非常知名的,希望今后服务更上一层楼,加强前沿技术和应用的交流和推广合作。获奖证书  前沿研究成果:EPFRs的成分和来源解析  仪器信息网:基于MS5000,您课题组的工作取得了哪些有代表性的研究成果?解决了哪些关键性的问题?  陈庆彩:基于MS5000(布鲁克ESR5000),我们在大气颗粒新型健康风险物质-长寿命自由基(EPFRs)研究方面取得了一系列成果,在ES&T、ACP、EP、AE等领域TOP期刊发表了十余篇学术论文。MS5000帮助我解决了EPFRs分析的问题,我们拥有自主产权的适合大气颗粒物EPFRs检测的方法和数据处理软著打开了这个研究方向的研究瓶颈。  在EPFRs的研究方面,我们课题组首次提出了大气颗粒物中由有机物高温作用生产的类氧化石墨烯类物质是EPFRs的主要生成机理和来源,并且通过一系列实验验证了该机理,这不同于传统的金属氧化物主导EPFRs生成的观点 另一个主要研究成果就是对EPFRs主要来源的研究,我们基于对西安市全年样品的研究发现,燃烧源和大气扬尘是西安市大气EPFRs的主要来源。大气EPFRs成分分析大气EPFRs来源解析  仪器信息网:未来,基于电子顺磁共振波谱仪,贵课题组还将开展哪些方面的研究工作?  陈庆彩:我们课题组将继续利用EPR研究大气颗粒物产生活性氧自由基的机制,进一步阐明大气颗粒物的健康风险机制,为我国人民健康环境的改善提供科学建议和指导方向。基于现有的研究成果,我们需要探究EPFRs危害人体健康的具体机制,例如其是如何与人体细胞作用生成活性氧的,及其生成活性氧的种类和能力,这些方面的研究对于探究大气颗粒物的健康风险具有十分重要的价值。  仪器信息网:基于科研需求和使用感受,您认为现在电子顺磁共振波谱技术有哪些需要提升或者改进的地方?有哪些新的技术是您比较期待的  陈庆彩:目前在仪器使用的过程中,遇到的主要问题是仪器稳定性方面,例如对大气样品的研究经常需要数月的连续检测,而在EPR的连续开机过程中就会出现基线偏移的问题,希望厂商能够在后期的技术升级中针对仪器稳定性方面做出相应优化。  未来,我认为应该加强特殊应用的研究和开发,比如大气颗粒物分析在我们研究之前并没有专门针对性的研究配件或者方法。此外,建议开发在线分析配件和技术,加强数据处理软件的自动解析功能等。  附注:  布鲁克收购Magnettech EPR业务后,将MS5000更名为ESR5000,并对仪器外观进行了升级改造,如下图:
  • 大连化物所提出光催化烯烃的卤代/吡啶双官能化新策略
    近日,中国科学院大连化学物理研究所仿生催化合成创新特区研究组研究员陈庆安团队在光催化烯烃的卤代/吡啶双官能化方面取得新进展,发展出通过调控氧化淬灭活化模式和自由基极性交叉途径,实现光催化非活化烯烃的卤代/吡啶双官能化反应新策略。该策略作为对传统Heck型反应的补充,通过自由基反应过程避免了中间体β-H消除带来的底物限制,高效地将卤代基和吡啶基团区域选择性地加成到烯烃双键。  由简单底物快速构建复杂分子是有机化学的重要研究方向。其中,烯烃的催化官能化反应由于底物成本低且来源广泛而备受关注。虽然经典的Heck反应和还原型Heck反应提供了烯烃的芳基化和氢芳基化的有效途径,但这些方法均涉及了卤原子的消除,产生了不可避免的废弃物。此外,碳卤键的选择性构建十分重要,它是多种官能团转化的重要反应位点。因此,在不牺牲卤原子的情况下,实现烯烃双键同时构建新的C-C和C-X键具有重要意义。  陈庆安团队长期致力于发展不同催化体系,以实现烯烃选择性催化转化与合成。在前期相关研究(Angew. Chem. Int. Ed.,2019;Angew. Chem. Int. Ed.,2020;Angew. Chem. Int. Ed.,2021;Angew. Chem. Int. Ed.,2021;Angew. Chem. Int. Ed.,2021)基础上,该团队最近利用卤代吡啶和非活化烯烃作为简单的反应底物,采用光催反应策略来实现非活化烯烃的卤代/吡啶双官能化。科研人员通过添加三氟乙酸,促进卤代吡啶底物发生质子化,使铱光催化剂更易于发生氧化淬灭,激发质子化的卤代吡啶产生亲电性吡啶自由基,进一步与富电子的非活化烯烃发生加成;氧化态的铱光催化剂可将生成的烷基自由基中间体氧化为碳正离子,进一步捕获体系中的卤负离子,实现C-C键和C-X键(X=Cl,Br,I)的选择性构建。此外,科研人员还进行了Stern-Volmer荧光淬灭、循环伏安法、量子产率测定等机理探究实验和动力学研究,解释了反应途径调控的机制和反应机理。为进一步验证该反应的实用性,科研人员开展了一系列转化实验:利用烯烃的卤代吡啶双官能化产物的碳卤键,可发生进一步的消除反应,以及与亚磺酸盐、硫氰酸盐、苯硫酚和叠氮钠的取代反应得到相应的转化产物。  相关研究成果以Photo-Induced Catalytic Halopyridylation of Alkenes为题,发表在《自然-通讯》(Nature Communications)上。研究工作得到国家自然科学基金、辽宁省博士科研启动基金等的支持。  论文链接
  • 从墨水到光刻胶,瞄准“卡脖子”问题——访苏州大学高分子材料与工程专业负责人朱健教授
    高分子合成材料以其优异的性能、丰富的原料和低廉的成本,已经成功地成为当今生产生活中不可缺少的基础材料。随着社会的快速发展,人们越来越希望能够根据自身的不同需求,简单方便的设计合成各种各样性能优异的高分子材料。因此,研究人员们一直努力寻找简单而高效的活性聚合方法实现人类社会对高分子材料的高需求及高性能要求。近期,苏州大学高分子材料与工程部发表多篇活性聚合相关高水平论文,引起业内高度关注。仪器信息网也特别采访了苏州大学材料与化学化工学部高分子材料与工程专业负责人朱健教授,深入了解朱健及其团队在高分子合成领域所做的工作,并就其近期研究成果以及高分子合成未来发展方向等进行了深入的交流。科研之路:从“活性”自由基聚合到功能性材料从1995年开始,朱健便开始了高分子合成研究之路,刚开始主要研究方向是“活性”自由基聚合。传统的自由基聚合不能控制聚合物分子的结构和分子量大小,通常聚合物分子量分布宽;活性聚合反应条件比较苛刻,分子结构的可设计性较小。 活性自由基聚合可以方便的实施单体的自由基聚合又可摒弃两者缺点实现聚合物合成设计。朱健表示,刚开始对 “活性”自由基聚合的研究主要是对催化体系的开发,建立探索一些新的催化体系,例如对乙烯基单体的可控聚合,也将这一方法沿用到高分子聚合物的拓扑结构和分子量控制。随着对“活性”自由基聚合深入研究,朱健团队也将原来的合成方法向活性阴阳离子自由基聚合和结构调控方向进行拓展。“在合成方法建立以后,我们开始考虑方法的实用性,所以开始了功能材料合成的研究。”朱健介绍到。含硒化合物由于其特殊的光电响应行为和生理活性,近些年在在功能材料方面以及医药行业得到了很大发展。然而,有机硒的化学行为较为独特,国内关于含硒聚合物的研究十分稀少。朱健围绕含硒聚合物开展了含硒聚合物的设计与合成及其性能研究,建立了有机硒化合物调控的活性自由基聚合体系。通过此项研究,大大提升了活性自由基聚合方法的操作便利性,简化复杂聚合物合成步骤,为聚合物合成方法提供新途径。近几年,3D打印成为材料领域的研究热点,但已有技术打印体量较小,限制了其实际应用。朱健将光引发聚合与3D打印相结合,制备出新颖的“活性”材料。该方法所制备材料中聚合物链含有活性末端,可进一步进行材料后修饰及功能化,在制备刺激响应性、自修复等各种功能材料领域体现出重大潜在应用。同时将催化体系和单体的比例进行优化调整,对网格结构进行调整,这样3D打印出的物体机械性能也要优于普通材料。“在不同的应用领域,对于高分子材料的性能也有不同的要求,我们要通过功能推测出结构,将结构作为合成的目标,运用合适的聚合反应,合成目标结构,最后体现材料功能。”朱健谈到,“看似简单的研究过程,实则每一步都充满挑战性。”GPC:高分子合成过程的“观察者”高分子合成是分子层面的反应,人们肉眼是无法看到分子的变化,也无法去跟踪反应过程。而各种各样的分析仪器可以帮助人们去剖析和观察“看不到”的化学变化。朱健表示,在高分子合成研究过程中用到的科学仪器种类比较多,可简单划分为物理分析和化学分析两大类,常用仪器包括凝胶渗透色谱仪(GPC)、核磁共振波谱仪、气相色谱仪、荧光光谱仪、红外光谱仪、紫外光谱仪,以及各种质谱仪等。其中,GPC是一种表征聚合物分子量和分子量分布等特征的物理化学方法,由于仪器的不断改进,比如高效填料的使用、多种检测器的联用及与计算机的联用、仪器操作和数据处理的自动化等,使其在高分子合成领域中的应用范围不断扩大。“分子量是高分子结构参数中最基本、最重要的参数,目前,最高效便捷测定分子量的方法便是GPC。”朱健提到他团队便有多台GPC,其中有三台来自于东曹,三台GPC几乎是24小时“运转”。近年来,其他课题组也陆续购买了多台东曹的GPC。朱健认为,一台好的GPC最重要的一点便是高稳定性和高重复性,东曹的GPC所有的管路系统都在一个恒温的体系中,使溶剂流量不受溶剂类型和环境温度波动的影响,提高了检测的稳定性和重复性;其次是性价比高,能够高效缩短分析时间做到低溶剂消耗,同时保证实验的即时有效性;最后是操作简单,实验人员能够非常方便地进行仪器控制,数据采集、分析和管理等相关操作。不过,朱健也提到,目前GPC在检测器的性能方面仍有提升空间,多种检测器联用时,稳定性有待于进一步提升。从墨水到光刻胶,瞄准“卡脖子”问题从最简单的生活用品,到工业涂料、光刻胶,甚至航空、航天、军事领域都离不开高分子材料。朱健认为“如何将高分子合成研究,转化为实际能让人们受益的东西,是我们研究的关键。”在很多人的眼中,与超导体材料、半导体、超材料等研究比起来,一个“小小”的墨水研究算不上什么“高大上”的研究。李克强总理曾在采访中提出“小小的圆珠笔,中国造不出来吗?”的疑问。圆珠笔的核心就是笔尖和墨水,然而我国90%的笔尖、80%的墨水都需要进口,整个行业处于“替人打工、受制于人”的不利局面。为了解决这一问题,国家在 “十三五”中设置了《制笔新型环保材料》的国家重点研发计划。科研无大小,学术有深浅,遵循这一人生信条,朱健团队积极展开相关工作,切实解决“墨水”这样的民生问题。朱健团队也积极的承接了《制笔新型环保材料》项目。他们从墨水基础材料层面着手,根据高分子结构设计方法,利用大分子乳化剂,实现高稳定性、环保性乳化墨水的研发及产业化应用;该乳化墨水相对于传统墨水具有书写细腻流畅、粘度低、触变性优异及储存稳定性高等特点。他们也与文具公司合作成功研发了超顺滑中性笔,给数百亿支笔装上“中国墨水”。也许,您正在使用的中性笔便包含了朱健团队所研发的成果。当然,朱健团队的研究工作中也不乏“光刻胶”这样关系国家产业发展的大问题。目前,中国光刻胶国产化率较低,重点技术水平与国际先进技术有较大的差距。随着半导体行业、LED及平板显示行业的快速发展,对于光刻胶的需求越发旺盛,国内光刻胶产品未来市场空间巨大。朱健从光刻胶的应用场景及使用过程中性能要求出发,设计所需的聚合物的结构。往往光刻胶涉及到多组分单体,在合成的过程中,单体的双键含量和位置都需要严格设计,才能最终得到一个性能优异的高分子。朱健表示,目前光刻胶前期开发的工作已经完成,也有部分材料处于放大生产阶段,相信在不久的将来,国内光刻胶难题也将解决。在中国许多行业都存在“圆珠笔”、“光刻胶”等问题,朱健希望能够发挥团队在关键技术攻关中强有力的科研优势,集各家资源,力争我国在关键核心技术方面早日取得新的突破,解决关键领域“卡脖子”问题,实现科技自立自强。朱健,教授,博士,博士生导师,苏州大学材料与化学化工学部副主任,高分子材料与工程专业负责人。分别于1995,1998和2004年在苏州大学获学士、硕士和博士学位。1998年留校任教。2006-2007和2009-2010在新加坡国立大学和宾夕法尼亚州立大学从事博士后工作。主持国家十三五重大专项子课题一项,国家自然科学基金项目三项,江苏省自然科学基金和教育厅重点项目各一项。积极与企业合作,共同开发各类产品,累计到账横向课题经费907万元。获苏州大学苏鑫科研奖(2008,独立),江苏省科技进步二等奖(2009,第三)和教育部科技进步二等奖(2009,第三)。先后发表研究论文180多篇,获美国发明专利授权2项,澳大利亚发明专利授权2项,中国发明专利授权18项。
  • 为自由电子激光装置“减负”
    记者从中国科学院上海光学精密机械研究所获悉:强场激光物理国家重点实验室利用自行研制的超强超短激光装置,在国际上率先完成台式化自由电子激光原理的实验验证,对于发展小型化、低成本的自由电子激光器具有里程碑意义,相关研究成果于7月22日作为封面文章发表于国际学术期刊《自然》杂志。  X射线自由电子激光被广泛用于探测物质内部动态结构,研究光与原子、分子和凝聚态物质的相互作用过程,在物理、化学、结构生物学、医学、材料、能源、环境等多学科领域广泛运用。然而,传统的X射线自由电子激光装置动辄几百米、甚至是几公里长的“庞大”规模,造价昂贵、难以普及。研制小型化、低成本的X射线自由电子激光成为该领域重要的发展方向。  该成果的主要完成人、中科院上海光机所研究员王文涛表示,我们的工作是利用新技术把电子加速器的长度缩短,并且把电子束做到稳定、可用,来研制体积小、成本低的自由电子激光器,整个装置长度仅为12米。“打比方说,电子束加速需要‘跑道’,传统方式相当于客机起飞,需要长跑道;我们采取激光加速这一全新方式,可以短距离内把电子束加速至高速度,大大缩短所需距离。”王文涛说。  “该项研究不仅证明了激光可以加速产生可控的、可用的电子束,而且电子束可以进一步用于产生自由电子激光。”中科院上海光机所副所长、强场激光物理国家重点实验室主任冷雨欣说。  用这种加速方式获得的电子束,在品质和稳定性方面尚未达到实际应用的要求,相关研究处于起步阶段,到真正应用还有一段距离。下一步,研究团队将继续提升自由电子激光的输出功率和光子能量,并作为上海超强超短激光实验装置中超快化学与大分子动力学研究平台的重要组成部分,提供开放共享。
  • 中国自由电子激光物理研究取得系列进展
    近期,中国科学院上海应用物理研究所科研人员在自由电子激光物理研究领域取得了一系列新进展。   1.相位汇聚高次谐波放大(PEHG)自由电子激光后续研究进展   外种子机制是短波长自由电子激光的一个重要发展方向。目前,人们已经相继提出了高增益高次谐波放大(HGHG)和回声高次谐波放大(EEHG)等外种子自由电子激光机制。但是,外种子自由电子激光的谐波转换次数通常会受到直线加速器所产生电子束能散的限制,较难向更短的波长发展。上海应物所科研人员于2013年提出了相位汇聚高次谐波放大(PEHG)自由电子激光运行模式(Phys. Rev. Letts. 111 (2013) 084801),能够有效地克服电子束能散的限制,从而大大提高谐波转换次数。PEHG为未来全相干X射线自由电子激光装置的建设提供了一种非常有吸引力的方案。   在后续研究中,研究人员从三维的束流物理学出发,详细分析了相位汇聚(phase-merging)的物理机制,系统地研究了PEHG对种子激光、电子束、波荡器的各种参数的依赖关系(New J. Phys. 16 (2014) 043021) 并提出了种子激光相位倾斜等实现PEHG原理的新方案(Phys. Rev. ST-AB. 17 (2014) 070701)。研究发现,相位汇聚原理不仅可以提高外种子自由电子激光的高次谐波转换效率,在粒子加速器领域中还有着更为广阔的应用前景。   PEHG在自由电子激光领域有着极为重要的意义,上海应物所邓海啸博士受邀参加了2014年8月在瑞士巴塞尔召开的第35届国际自由电子激光会议并作了&ldquo PEHG相关物理研究&rdquo 的大会邀请报告。目前,研究人员正在积极准备在上海极紫外自由电子激光装置(SDUV-FEL)进行相关实验,力争实现从概念原理提出到实验验证,都由我国科学家独立完成。该项研究得到了国家自然科学基金委、国家科技部&ldquo 973&rdquo 项目和中国科学院的资助支持。     图1. 实现PEHG原理的三种技术方案:a)电子束能量调制和相位汇聚均由TGU完成 b)电子束团能量调制和相位汇聚由常规调制段和TGU分别完成 c)电子束相位汇聚由波前倾斜的外种子激光完成。   2.外种子自由电子激光(FEL)的噪声演化研究进展   外种子自由电子激光的主要优势是可以继承种子激光的优秀特性,具有优异的横向相干性、纵向相干性和波长稳定性等。同时,和任意一个信号系统类似,在外种子FEL的高次谐波转换过程中,种子激光和电子束团的微小噪声和缺陷也会被继承,并被进一步放大。一般认为,外种子FEL的输出信噪比与其谐波转换次数的平方成反比,即随着谐波次数的增大,外种子FEL频谱等性能会严重退化,也就是所谓的噪声演化问题。因此,噪声问题被认为是限制外种子FEL向X射线扩展的一个重要因素。   上海应物所研究人员近日在外种子FEL噪声研究方面取得新进展,修正揭示了外种子FEL的噪声演化规律,相关研究成果发表在Phys. Rev. ST-AB 16(2013) 060705,Nucl. Instr. Meth. A 737(2014) 237 和 Nucl. Instr. Meth. A 753(2014) 56。通过引入种子激光和电子束团之间的相对滑移,研究人员发现,种子激光相位噪声的放大并非简单地遵守N平方规律,可以通过增加调制段波荡器周期数来有效抑制,从而改善外种子FEL性能。当种子激光为超短脉冲情况下,理论和模拟均证明,外种子FEL可以完全补偿种子激光的相位噪声,从而输出纵向相干性非常优秀的辐射脉冲。同时,研究人员还系统地分析了不同模式外种子FEL对电子束团噪声的响应,发现PEHG和EEHG两种模式可以做到对电子束能量噪声较小的响应。   外种子FEL噪声问题的研究修正了以前的理论预期,证明目前的激光技术可以非常好的满足外种子FEL对种子激光的要求,并为全相干FEL装置向更短波长发展提供了理论依据,对建设中的大连相干光源和上海软X射线试验装置都有积极意义。该项研究得到了国家自然科学基金委、国家科技部&ldquo 973&rdquo 项目和中国科学院的资助支持。    图2. 左:随着调制段波荡器的周期数增加,外种子FEL的噪声放大倍数逐渐变小。右:电子束团的非线性能量chirp对不同模式外种子FEL频谱的影响,可以看出,HGHG输出的纵向相干性明显降低,EEHG对电子束团能量的chirp不太敏感,而PEHG对这种电子束团能量的不完美型天然免疫。   3.基于电子束团相干辐射的外种子FEL波荡器准直与调试方法研究进展   短波长自由电子激光的饱和出光,不单需要直线加速器提供高品质电子束团,而且需要确保电子束团在波荡器系统中高精度扭摆,这就涉及到波荡器系统准直、波荡器间隙设定、波荡器段间相位匹配和尾场补偿等问题。因此,在交付用户之前,FEL装置都要经历漫长的调束阶段,以便掌握和优化整个FEL装置的性能。   基于电子束团的准直(BBA)是粒子加速器领域常用的准直方法。利用BBA技术,美国LCLS自由电子激光在132m波荡器达到了小于5&mu m的束流轨道。波荡器的BBA过程需要改变电子束能量、读取大量BPM数值和复杂的数值算法,鉴于此,LCLS是目前唯一成功运行BBA的FEL装置。基于电子束团自发辐射的准直(PBA),是近年发展起来的FEL波荡器准直方法。利用波荡器下游的光学系统,独立测量各段波荡器的自发辐射谱,推出束流轨道相关信息,从而加以反馈调整。日本SACLA自由电子激光利用PBA在110米波荡器达到了1&mu m的束流轨道。   由于其优越的全相干性和波长稳定性,外种子FEL已经成为紫外至软X射线波段用户装置的首选工作模式。外种子FEL电子束团能量相对较低,通常在0.3-1GeV量级,电子束刚性差,大幅改变电子束能量的BBA几乎无法正常工作 另外,外种子FEL的工作波段没有可用的晶体单色仪,无法进行类似SCALA的自发辐射准直。因此,对于外种子FEL,探索新的波荡器系统调试方法,是极具意义的一个科学问题。   上海应物所长期从事外种子FEL物理和实验研究,科研人员在总结调试经验的基础上,提出了基于电子束团相干辐射的外种子FEL波荡器调试方法,并在SDUV-FEL试验装置上完成了实验验证,相关研究成果近日发表在Phys. Rev. ST-AB. 17 (2014) 100702。研究表明,通过分析已群聚电子束在辐射段波荡器的相干辐射性能,同样能得到波荡器内的束流轨道和共振关系等信息,便可以实现外种子FEL波荡器系统的束流轨道准直。另外,基于电子束团相干辐射的准直技术与整个FEL调试浑然一体,更为直观,除波荡器准直之外,还可以用来设定波荡器的工作磁间隙和波荡器的段间相位匹配等。   目前,我国首个高增益FEL用户装置(大连相干光源)和首个X射线FEL(上海软X射线FEL试验装置)均采用外种子FEL工作模式,并在2~3年内进入FEL调试阶段。因此,基于电子束团相干辐射的波荡器准直和调试方法的提出,对我国FEL装置建设有十分重要的实际意义。该项研究得到了国家自然科学基金委、国家科技部&ldquo 973&rdquo 项目和中国科学院的资助支持,由上海应物所冯超博士和邓海啸博士等合作完成。  图3. 在基于电子束团相干辐射的外种子FEL波荡器准直调试方法中,当电子束在水平方向以一个倾角进入波荡器,并且波荡器的gap大于FEL共振关系所需时,在下游CCD上看到的电子束团相干辐射的空间分布,左:SDUV-FEL实验结果,右:从头至尾的数值模拟结果。   4.全光学X射线光源的辐射性能提升   相对于射频电子加速器驱动的X射线光源,发展全光学X射线光源,对减小同步辐射和自由电子激光的装置规模很有好处。所谓全光学光源,即利用激光等离子尾场加速原理获得高能量电子束团,并用激光电场来替代常规的波荡器。激光等离子加速能产生比常规射频加速器高2-3个量级的加速梯度,而激光波荡器的周期长度比常规磁铁波荡器小2-3个量级,因此,全光学方法可以将光源规模急剧缩小,是桌面型X射线光源的可行方案,对于同步辐射和自由电子激光等光源的普及应用具有十分重要的意义。   激光等离子加速产生电子束团峰值流强高(一般可达数千安培),束团长度短(一般仅有几个飞秒),横向发射度极低(如0.1微米弧度),这些特性均十分符合高亮度X射线光源对电子束团的要求。然而,目前为止,激光等离子体加速产生的电子束团能散在1%以上,尚远远大于X射线FEL的需求,这就限制了其在高增益X射线FEL方面的应用。   上海应物所研究人员发现,通过耦合电子能量和横向位置,并调节电子束在激光场中扭摆的中心位置,便可以补偿全光学X射线光源中电子束团的能散效应,相关研究成果近日发表在Optics Express 22(2014)13880。具体原理如下:首先利用横向色散元件将电子束团的纵向能量映射到横向分布 其次激光场在横向天然具有高斯分布,即场强从横切面中心位置向四周递减,只要入射电子束团不在激光场中心扭摆,便自然感受到横向场梯度的存在,也就是所谓的具有横向梯度的激光波荡器。这样安排下,不同能量电子均满足自由电子激光共振条件,便可将能量转换效率提高2-3个量级,并改善FEL横向模式。   该项研究得到了国家自然科学基金委、国家科技部&ldquo 973&rdquo 项目和中国科学院的资助支持,由上海应物所张彤博士和邓海啸博士等合作完成。   图4. 左:全光学光源中,电子束团(红色圆点)以一个横向偏移进入激光波荡器场扭摆 中:纵向能量和横向位置关联的电子束团在激光波荡器梯度场中符合共振关系 右:全光学光源辐射功率随激光束斑大小和横向偏移的变化情况,红色区域为优化区域。
  • 美国海军高能自由电子激光器项目取得进展
    据海军研究署2011年1月19日报道,位于新墨西哥州的洛斯阿拉莫斯国家实验室科学家们在美国海军自由电子激光器项目上取得重大突破:12月20日演示了一台能够生成海军新一代武器系统兆瓦级激光束所需的电子的电子束注入器,这个里程碑式的突破比原计划提前了数月,并于1月20号至21日经过了初步设计评审会的审查。   “电子束注入器按我们所预计的情况运行,”自由电子激光项目的实验室高级项目负责人Dinh Nguyen博士表示。“但到目前为止我们没有足够的证据来支持我们的模式。现在我们非常高兴地看到我们的设计、制造和测试工作终于有结果。现在我们正在开展连续电子束质量的测量工作,希望能创出电子平均电流的世界纪录。”   海军研究署的FEL项目经理Quentin Saulter说,自由电子激光的进步影响巨大。“这是该项目的一个飞跃,也是海军自由电子激光技术的重大飞跃,”索尔特说。 “实际上该小组比进度提前了9个月,为我们在2011年底实现我们的目标提供了充足的时间。”   该项研究是美国海军部未来部署兆瓦级自由电子激光武器系统的重要一步,将革新舰艇防御。Saulter说,“FEL有望为未来美国海军在全球任何海事环境中提供近瞬时的舰艇防御能力。”   美国海军研究署的FEL项目开始于20世纪80年代,是一项基础科学和技术项目,逐渐成熟为一个14千瓦的样机。2010财年,它从基础科研项目转变成创新的海军样机(INP),赢得高级海军官员的支持,以确保其发展成为先进的技术和潜在的采购项目。   激光的工作原理是:从注入器中产生高能电子束,通过一系列强大的磁场,电子束生成强烈的激光。海军研究署希望最早在2018年能在海洋环境中测试100千瓦自由电子激光的能力。
  • 第一届光谱技术及应用大会暨第九届中国激光诱导击穿光谱学术研讨会暨第六届燃烧诊断研讨会
    光谱技术是近代光学计量的重要分支,通过对物质光谱的探测、分析来获取物质的组成、结构、含量、运动状态等信息,具有非接触、范围广、多组分、灵敏度高、可连续实时监测等优势。这一技术目前已广泛应用于燃烧诊断、环境监测、工业检测、生物医学、航空遥感、目标探测、能源勘探等诸多领域。为进一步推动光谱技术的应用与融合,探讨我国光谱技术的发展趋势和远景目标,促进光谱技术和仪器的进步与创新,中国光学工程学会将于 2023 年5月7-9日在敦煌举办“第一届光谱技术及应用大会暨第九届中国激光诱导击穿光谱学术研讨会暨第六届燃烧诊断研讨会”。会议将邀请150余位光谱及其应用领域的知名专家参会,通过学术报告、海报展示、仪器设备展览等形式,就光谱技术的重要科学问题、仪器发展的关键技术问题、最新研究成果及发展趋势等问题展开研讨。主办单位:中国光学工程学会承办单位:中国光学工程学会西北师范大学协办单位:敦煌研究院中国科学院近代物理研究所上海理工大学中国科学院合肥物质科学研究院中国矿业大学支持单位:长春新产业光电技术有限公司长沙麓邦光电科技有限公司光谱时代(北京)科技有限公司北京镭宝光电技术有限公司国仪量子(合肥)技术有限公司埃德比光子科技(中国)有限公司成都诺为光科科技有限公司北京欧兰科技发展有限公司东方闪光(北京)光电科技有限公司奥谱天成(厦门)光电有限公司上海五铃光电科技有限公司上海尤谱光电科技有限公司深圳市唯锐科技有限公司大会名誉主席:庄松林 院士(上海理工大学)范滇元 院士(深圳大学)乐嘉陵 院士(中国工程院)陈良惠 院士(中国科学院半导体研究所)许祖彦 院士(中国科学院理化技术研究所)大会主席:田中群 院士(厦门大学)刘文清 院士(中国科学院合肥物质科学研究院)孙世刚 院士(厦门大学)王建宇 院士(中国科学院上海技术物理研究所)执行主席:董晨钟(西北师范大学王 哲(清华大学 )蔡小舒(上海理工大学)阚瑞峰(中国科学院合肥物质科学研究院 )周怀春(中国矿业大学 )程序委员会(音序):蔡伟伟、 蔡小舒、曹世权、陈军 、褚小立 、崔执凤、狄慧鸽 、丁洪斌、丁晓彬、董晨钟、董大明、董磊、 董美蓉、付洪波、郭金家 、郭连波、杭纬、 侯贤灯、侯宗宇、胡继明、 胡仁志 、贾云海、阚瑞峰 、 雷庆春 、李博 、李传亮 、李聪、李飞 、李华、李润华、李祥友、李晓晖 、林庆宇、刘诚 、刘冬 、刘飞、刘继桥 、刘木华、卢渊、陆继东、陆克定 、马维光 、马新文、马欲飞、 梅亮 、 敏琦、彭江波 、 钱东斌、任斌、 邵杰 、邵学广、 史久林 、舒嵘、苏伯民、苏茂根、孙对兄、孙兰香、田野、万福 、王茜蒨、王强、 王珊珊 、王圣凯 、王哲、王珍珍、吴涛 、 吴学成 、 吴迎春 、夏安东、 徐文江 、 许传龙 、 许振宇 、 闫伟杰 、 杨荟楠 、 杨磊、杨增玲 、 姚顺春、殷耀鹏、尹王保、于宗仁、俞进、袁洪福 、 张大成、张登红、张雷、赵南京、赵卫雄 、 郑培超、周怀春 、 周磊 、 周卫东、周骛 、 周小计、朱家健 、 朱香平专题分会1) 激光诱导击穿光谱及相关技术召集人:王哲 (清华大学 )、 董晨钟 (西北师范大学 )邀请报告:➢ 丁洪斌(大连理工大学) LIBS 基本物理过程及聚变能应用进展➢ 段忆翔(四川大学) LIBS 技术与仪器的发展历程 从实验室研发到现场应用➢ 郭连波(华中科技大学) 激光诱导击穿光谱基础、仪器及应用研究➢ 刘木华(江西农业大学) PRLIBS 对农产品品质信息分析能力提升方法研究➢ 马欲飞(哈尔滨工业大学) 小型化固体激光器➢ 舒嵘(中国科学院上海技术物理研究所) )————“祝融号”火星车物质成分探测仪中的 LIBS探测与分析➢ 苏茂根(西北师范大学) 激光等离子体辐射、诊断与应用➢ 孙兰香(中国科学院沈阳自动化研究所) 矿浆成分 LIBS 定量分析方法与工业在线应用➢ 王茜蒨(北京理工大学) LIBS 技术在生物医药诊断监测中的应用研究➢ 王哲(清华大学) 激光诱导击穿光谱( LIBS )定量化理论方法及应用➢ 汪正 中国科学院上海硅酸盐研究所 基于微等离子体增强 LIBS 信号研究➢ 俞进(上海交通大学) 针对火星就位探测的激光诱导击穿光谱方法研究➢ 曾和平 华东师范大学 飞秒光丝非线性相互作用诱导击穿光谱➢ 郑荣儿(中国海洋大学) 深海 LIBS :何去何从➢ 周卫东(浙江师范大学) 激光诱导空化气泡的演化及其对 LIBS 光谱的影响➢ 周小计(北京大学) LIB S 在定量应用中的探索研究2) 原子光谱与质谱召集人:侯贤灯 (四川大学 )、 杭纬 (厦门大学 )邀请报告:➢ 陈明丽(东北大学) LA ICP MS 对动植物组织中元素成像方法研究➢ 冯流星(中国计量科学研究院) 阿尔茨海默症计量溯源技术研究➢ 高英(成都理工大学) 基于钒的光化学蒸气发生及应用➢ 郭伟(中国地质大学(武汉)) 高精度 LA ICPOES/ICPMS 原位分析技术及古气候中的应用➢ 杭纬(厦门大学) 高电离电位元素的激光质谱分析技术➢ 侯贤灯(四川大学) 原子光谱分析研究➢ 胡斌(武汉大学) ICP MS 单细胞分析➢ 蒋小明(四川大学) 微型原子发射光谱仪的放电激发源研制➢ 刘睿(四川大学) 金属元素标记均相免疫分析➢ 吕弋(四川大学) 基于金属稳定同位素标记的生物分析研究➢ 邢志(清华大学) 高纯非导体材料纯度分析方法探索➢ 徐明(中国科学院生态环境研究中心) 利用 LA ICP MS 成像技术解析间充质干细胞负载金纳米颗粒的肿瘤靶向规律➢ 于永亮(东北大学) 适于微等离子体发射光谱分析的样品引入方式与接口➢ 郑成斌(四川大学) 碳原子发射光谱及其应用➢ 朱振利(中国地质大学(武汉)) 基于等离子体技术的锑元素与同位素分析方法开发3) 激光拉曼光谱与激光荧光光谱技术及应用召集人:任斌(厦门大学 )、 胡继明 (武汉大学 )邀请报告:陈建(中山大学)➢ 高亮(核工业西南物理研究院) 大气压等离子体活性物种激光诱导荧光定量诊断研究➢ 韩鹤友(华中农业大学)➢ 胡继明(武汉大学) 拉曼光谱在细胞分析中的应用➢ 谭平恒(中国科学院半导体研究所)➢ 杨海峰(上海师范大学)➢ 朱井义(中科院大连化学物理研究所)4) 光声光谱 与 TDLAS技术及应用召集人:马欲飞(哈尔滨工业大学 )、 董磊 (山西大学 )、 王强 (中科院长春光机所 )邀请报告:➢ 陈珂(大连理工大学) 光纤光声传感技术及应用研究进展➢ 姜寿林(香港理工大学深圳研究院) 基于空芯光纤光热光谱法的宽波段多组分痕量气体检测技术➢ 黎华(中国科学院上海微系统与信息技术研究所) 太赫兹光频梳与双光梳光源➢ 李磊(郑州大学)➢ 刘俊岐(中国科学院半导体研究所) 中红外可调谐半导体激光器➢ 刘锟(中国科学院合肥物质科学研究院) 光声光谱多组分检测技术研究➢ 鲁平(华中科技大学) 光声探测技术及应用➢ 王福鹏(中国海洋大学) 基于吸收光谱的海洋原位气体传感技术研究和共性关键问题探讨➢ 王强(中国科学院长春光机所) 高灵敏、大动态范围的腔增强光声光谱气体传 感技术➢ 王如宝(北京杜克泰克科技有限公司) 基于光学麦克风光声光谱技术的环境空气 VOCs检测➢ 吴君军(重庆大学) 基于石英增强光声光谱的相变液滴局部蒸汽浓度表征➢ 许可(朗思科技有限公司) 基于石英增强光声光谱的超高灵敏度气体分析仪器➢ 姚晨雨(山东大学) 空芯光纤 Fabry-Perot干涉仪解调方法和光热光谱气体检测研究➢ 闫明(华东师范大学) 基于光梳的光谱测量技术及应用➢ 郑传涛(吉林大学)➢ 郑华丹(暨南大学) 新型石英增强光声光谱测声器5) 红外及太赫兹光谱召集人:邵学广(南开大学 )邀请报告:➢ 陈斌(江苏大学) 低场核磁与近红外光谱联用分析仪的开发与应用探索➢ 陈孝敬(温州大学) 结合 Libs和线性回归分类对泥蚶重金属污染检测➢ 姜秀娥(中国科学院长春应用化学研究所) 仿生膜水合及其效应的红外光谱电化学研究➢ 兰树明(无锡迅杰光远科技有限公司) IAS在线近红外光谱分析仪器开发➢ 李晨曦(天津大学) 光谱成像与太赫兹光谱技术在食品检测中应用➢ 邵学广(南开大学) 近红外光谱分析中的化学计量学方法与应用➢ 夏兴华(南京大学) 等离激元增强红外光谱生化分析➢ 谢樟华(天津市能谱科技有限公司) 国产红外光谱仪的新机遇和新挑战➢ 臧恒昌(山东大学) 药品连续制造过程中近红外实时评价与放行技术的研究➢ 张良晓(中国农业科学院油料作物研究所) 油料油脂质量安全近红外快速检测技术研究➢ 周新奇(杭州谱育科技发展有限公司) FTIR光谱技术产品开发及其应用6) 超快及瞬态光谱召集人:夏安东(北京邮电大学 )邀请报告:➢ 边红涛(陕西师范大学)——受限体系结构及超快动力学研究➢ 陈海龙(中国科学院物理研究所)——利用飞秒红外光谱实现二维材料准粒子带隙的非接触测量➢ 陈缙泉(华东师范大学)——表观遗传核酸分子的激发态动力学研究➢ 陈雪波(北京师范大学)——镧系化合物势能面交叉控制能量转移动力学研究➢ 丁蓓(上海交通大学)——蓝光受体BLUF域质子耦合电子转移机理➢ 勾茜(重庆大学)——微波光谱探测Diels–Alder环加成预反应中间体➢ 金盛烨(中国科学院大连化学物理研究所)——瞬态光谱技术及其在半导体材料研究中的应用➢ 兰鹏飞(华中科技大学)——阿秒激光与阿秒时间分辨测量➢ 李明德(汕头大学)——双键光开关分子纳米晶激发态顺反异构化机制及其超快动力学研究➢ 蔺洪振(中国科学院苏州纳米所)——和频光谱在电化学能源器件界面表征中的应用➢ 刘剑(北京大学)——路径积分刘维尔动力学和超快振动光谱的模拟➢ 马骁楠(天津大学)——新型有机发光材料中的激发态化学研究➢ 任泽峰(中国科学院大连化学物理研究所)——准二维钙钛矿的本征载流子动力学➢ 夏安东(北京邮电大学)——藻胆蛋白光谱红移机理:构象或激子耦合?➢ 吴成印(北京大学)——超快激光与物质相互作用的新型光源产生及应用➢ 吴凯丰(中国科学院大连化学物理研究所)——胶体量子点自旋超快相干操控➢ 杨延强(中物院流体物理研究所)——含能材料冲击响应的时间分辨拉曼光谱技术➢ 叶树集(中国科学技术大学)——光转换材料构效关系的超快光谱研究➢ 张春峰(南京大学)——分子光电材料的激发态动力学妍究➢ 张贞(中国科学院化学研究所)——气液界面超分子手性自组装动力学及手性传递分子机理➢ 郑俊荣(北京大学)➢ 郑盟锟(清华大学)——面向实现超冷的绝对基态锂锶分子的精密光谱测量➢ 周蒙(中国科学技术大学)——金团簇相干振动的超快光谱研究➢ 朱海明(浙江大学)——石墨烯-半导体界面超快光谱研究➢ 朱一心(杭州善上水科技有限公司) ——一种新型的水合氢离子及其生物功能初探7) 燃烧诊断召集人:蔡伟伟 (上海交通大学 )、 彭江波 (哈尔滨工业大学 )邀请报告:➢ 蔡伟伟(上海交通大学)——金属颗粒燃烧三维形貌、温度、速度测量方法研究➢ 超星(清华大学)——红外光频梳光谱燃烧流场多参数测量方法➢ 陈爽(中国空气动力研究与发展中心)——复杂流场光学诊断技术研究进展➢ 雷庆春(西北工业大学)——四维燃烧诊断:从技术到应用➢ 梁静秋(中国科学院长春光机所)——基于光谱技术的航空发动机涡轮叶片温度及燃气浓度反演研究➢ 林鑫(中国科学院力学研究所)——激光吸收光谱技术在固液火箭复杂燃烧场测量的应用探讨➢ 彭江波(哈尔滨工业大学)——高频PLIF燃烧流场测量及数据分析方法研究进展➢ 彭志敏(清华大学)——基于多光谱融合的热工过程气体参数测量理论及应用研究➢ 齐宏(哈尔滨工业大学)——基于主被动光学层析探测的碳烟火焰温度场与粒径分布场重建研究➢ 伍岳(北京理工大学)——跨界面三维层析技术的开发与优化➢ 武文栋(上海交通大学)——高温环境中激光诱导等离子体激发过程的能量吸收特性研究➢ 熊渊(北京航空航天大学)——高速背景纹影测量技术及其应用8) 环境监测召集人:陆克定 (北京大学 )、梅亮 (大连理工大学 )邀请报告:➢ 陆克定(北京大学)——典型光化学观测站中的光学测量技术与挑战➢ 梅亮(大连理工大学)——基于可调谐二极管激光器的大气环境激光遥感技术➢ 胡仁志(中国科学院合肥物质科学研究院)——大气HOx自由基探测技术研究及应用➢ 刘诚(中国科学技术大学)——卫星结合地面靶向遥感VOCs排放源➢ 楼晟荣(上海市环境科学研究院)——基于激光诱导荧光的城市大气OH自由基总反应性测量与应用➢ 韦玮(重庆大学)——腔增强红外光谱技术➢ 赵卫雄(中国科学院合肥物质科学研究院)——磁旋转吸收光谱法测量OH自由基➢ 郑海明(华北电力大学)——光谱技术在烟气汞连续监测中的应用方法研究9) 工业检测召集人:姚顺春 (华南理工大学 )、袁洪福 (北京化工大学 )邀请报告:➢ 陈达(中国民航大学)——气体可再生能源在线监测技术与装备开发➢ 褚小立(中石化石油化工科学研究院)——近红外光谱分析技术在炼油工业的应用➢ 董大明(国家农业智能装备工程技术研究中心)——水体污染的激光光谱探测方法-从智能传感器到仿生机器鱼➢ 李天骄(南京理工大学)——纳米材料光点火诊断与应用➢ 马维光(山西大学)——光学反馈线性腔增强吸收光谱技术及其应用➢ 杨荟楠(上海理工大学)——基于激光光谱技术的气液两相多参数同步测量及疾病前瞻性诊断研究➢ 姚顺春(华南理工大学)——激光诱导击穿光谱的煤质检测方法➢ 张志荣(中国科学院合肥物质科学研究院)——冶金、石化等工业领域的光谱检测技术及其应用➢ 张彪(东南大学)——基于光场成像的燃烧诊断技术研究
  • 华大基因:新冠病毒2019-nCoV核酸检测试剂盒获欧盟自由销售证书
    p style=" text-indent: 2em " strong span style=" text-indent: 2em " 仪器信息网讯 /span /strong span style=" text-indent: 2em " 3月2日,深圳华大基因股份有限公司发布公告,称其全资子公司 BGI Europe A/S span style=" text-indent: 2em color: rgb(127, 127, 127) " (以下简称“欧洲医学”) /span 于近日取得了由Danish Medicines Agency /span span style=" color: rgb(127, 127, 127) text-indent: 2em " (中文译名:丹麦医药管理局) /span span style=" text-indent: 2em " 颁发的关于欧盟体外诊断医疗器械的自由销售证书 span style=" text-indent: 2em color: rgb(127, 127, 127) " (英文全称“Free Sales Certificate”,英文简称“FSC”) /span 。产品名称为新型冠状病毒2019-nCoV核酸检测试剂盒(荧光PCR法)。 /span /p p style=" text-align: center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202003/uepic/5e506645-a08f-4fed-bd2c-2b2529125b3c.jpg" title=" 1.jpg" alt=" 1.jpg" / /p p style=" text-indent: 2em " 具体情况如下:& nbsp /p p style=" text-indent: 2em " strong 一、证书基本信息& nbsp /strong /p p style=" text-align: center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202003/uepic/694f62b1-1b2a-454c-a6ef-e2e9b8285932.jpg" title=" 2.png" alt=" 2.png" / /p p style=" text-indent: 2em " strong 二、获证产品的市场情况& nbsp /strong /p p style=" text-indent: 2em " 新型冠状病毒的核酸检测是新型冠状病毒肺炎感染确诊的重要手段之一,新 span style=" text-indent: 2em " 型冠状病毒核酸检测试剂盒是目前各国进行体外定性检测新型冠状病毒感染的 /span span style=" text-indent: 2em " 肺炎疑似病例和其他需要进行新型冠状病毒感染诊断或鉴别诊断者的主要方法。 /span span style=" text-indent: 2em " 公司研发的新型冠状病毒2019-nCoV核酸检测试剂盒可实现病毒的快速检测,协 /span span style=" text-indent: 2em " 助疾控部门和医疗机构等采取及时有效的防控措施,较好地满足各国疫情防控的 /span span style=" text-indent: 2em " 市场需求。& nbsp /span /p p style=" text-indent: 2em " strong 三、对公司的影响及风险提示& nbsp & nbsp /strong /p p style=" text-indent: 2em " 公司上述试剂盒产品已经完成了欧盟 CE 认证,本次获得欧盟自由销售证书,表明该产品符合欧盟医疗器械相关指令的符合性要求,目前已完成欧盟主管当局 span style=" text-indent: 2em " 登记注册,具备欧盟市场的准入条件,该产品除了可在欧洲经济区(EEA)销售 /span span style=" text-indent: 2em " 外,还可在欧洲经济区(EEA)以外没有签署相互承认协议(MRA)且认可 CE 标 /span span style=" text-indent: 2em " 志的国家销售。& nbsp /span /p p style=" text-indent: 2em " 上述产品获得欧盟自由销售证书,有利于拓展国际市场,进一步增强公司产 span style=" text-indent: 2em " 品的综合竞争力,在全球范围内助力新型冠状病毒感染的肺炎疫情防控工作。上 /span span style=" text-indent: 2em " 述产品实际销售情况取决于新型冠状病毒感染的肺炎疫情防控涉及的检测需求, /span span style=" text-indent: 2em " 公司目前尚无法预测其对公司未来业绩的影响,敬请投资者注意投资风险。& nbsp /span /p p style=" text-indent: 2em " 特此公告。& nbsp /p p style=" text-indent: 2em text-align: right " & nbsp /p p style=" text-indent: 2em text-align: right " 深圳华大基因股份有限公司董事会& nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp /p p style=" text-indent: 2em text-align: right " & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp 2020年3月2日& nbsp /p p br/ /p
  • 微型化多光子显微镜揭秘大脑,开启自由活动动物成像新范式——超维景生物科技研发总监胡炎辉
    近年来,光学成像技术如荧光分子成像、光声成像和生物发光成像等广泛应用于小动物活体成像。同时,多模态成像技术的兴起将多种成像技术结合,为小动物活体成像提供了更精确和信息丰富的工具。为帮助广大用户及时了解小动物活体成像前沿技术、产品与整体解决方案,仪器信息网特别制作【小动物活体成像技术创新突破进行时】专题,并策划“小动物活体成像技术”主题征稿活动,以期进一步帮助广大用户从多维度深入了解小动物活体成像技术应用、主流品牌、市场动态以及相关内容。本期约稿特别邀请超维景生物科技有限公司研发总监胡炎辉,就小动物活体成像技术发展、市场规模及未来趋势进行分享,并就超维景生物科技在面对小动物自由运动活体成像瓶颈取得的突破性进展。 本期嘉宾:胡炎辉,超维景生物科技有限公司 研发总监 胡炎辉,超维景生物科技有限公司研发总监。2018年毕业于北京大学,电路与系统专业,曾参加基金委国家重大仪器专项,负责逻辑控制、微弱信号探测及系统设计,在激光扫描显微成像、微弱信号探测及高速信号处理等技术方向有着多年的积累。2017年至今,作为超维景核心创始团队成员之一,参与公司技术专利20余项,开发了新一代双光子成像处理平台,推出了科研、医疗等多款多光子产品,具有丰富的产学研融合开发及落地经验。——01—— 从单光子到多光子成像,推动活体成像技术发展在医学和生命科学研究的领域内,不断的革新和突破在成像技术方面是推进科学发展的关键,同时也是推动新的生物学发现和进步的重要引擎。其中,多光子成像技术通过激光与生物样本内的分子和原子相互作用产生荧光反应,以荧光显微的形式,允许我们以无损害的方式直接观察到组织的内部结构。尽管生物样本本身对光有较好的透光性,它们也具有强烈的散射特性。通常,细胞水平的高分辨成像技术在生物组织中的穿透深度“软极限”大约为1mm。不过,使用更长波长的激光可以减小对光的散射,并且增强穿透力。多光子吸收提供了一种非线性的荧光激活方法,其中双光子和三光子吸收的波长分别是单光子激发的两倍和三倍。与单光子相比,多光子成像可以实现几乎10倍的成像深度增强。这种非线性激发方法也带来了更高的信号-背景比及更优秀的层析成像能力。所有这些成像上的优势使得多光子成像特别适合用于复杂条件下的活体成像研究,成为一种在这些应用中非常重要的工具。Winfried Denk于1990年在康奈尔大学发明了世界上第一台双光子激光扫描显微镜。而自21世纪初以来,随着超快激光技术的突破及商业化,双光子显微成像技术迅速成为最广泛使用的活体动物成像方法。特别值得提及的,超维景的创始人程和平院士早在1992年就开始涉足双光子显微技术,成为最早的技术参与者之一,并致力于推广这一技术。历经近三十年的发展,双光子显微成像技术已变得在脑科学研究中不可或缺。尽管传统的台式双光子显微镜分辨率高,但它们体积庞大且重量重,需将实验动物固定或麻醉以完成成像,因此无法适用于自由活动的动物。微型单光子成像技术可以实现对自由活动的小鼠进行成像,但它在分辨率和对比度方面相对较低,难以达到亚细胞级别的分辨率和三维成像效果。——02——直面脑科学研究自主研发工具挑战,2.2克微型化双光子显微镜“轻装上阵”打造用于全景式解析脑连接和功能动态图谱的研究工具是当代脑科学的一个核心方向。针对如何在自由行为动物上绘制大脑神经元功能图谱的难题,超维景团队研发出了头戴式2.2克微型化双光子显微镜,首次实现自由活动小鼠大脑神经元和突触水平钙信号功能成像,为脑科学研究提供了革命性的新工具。这项技术解决了困扰领域近20年的挑战,显著领先于美国脑计划催生的微型化单光子技术,入选“2017年度中国科学十大进展”,并被评为Nature Methods“2018年度方法”。依托此技术建成“南京脑观象台”,为中国脑计划提供了“人无我有”的支撑平台;专利技术的产业转化实现高端显微成像装备自主创制的突破,完成对欧美国家的整机出口,累计实现销售额过亿元。通过技术拓展,研发了应用于人体的手持式双光子显微镜,在临床医学与航天医学中具有巨大的应用前景。为病理诊断技术带来一种全新的手段,成为临床疾病精准检查的重要工具。这项技术成果属于国家基金委重大仪器专项转化的科技成果,是国家在高端装备研发方向投入的典型产出代表。除了在脑科学、医疗应用领域的技术贡献之外,同时彰显了中国也可利用具有自主知识产权的国际领先的技术,实现在高端仪器方向的突破,提振了中国科学家在高端仪器装备方向的研究信心,并以此为核心技术来推动国内以及国际的科学研究大计划,对国内的脑科学研究领域也起到积极引领作用。——03——深耕小动物自由运动活体成像,持续提升核心竞争力超维景公司始创于2016年,公司核心力量来自北京大学院士创建和领导的多学科交叉团队,是一家专注于高端生物医学成像设备研发、生产和销售的国家高新技术企业。2017年,超维景核心团队成功研制仅2.2g的超高时空分辨微型化双光子显微镜,在国际上首次获取了小鼠在自由行为过程中大脑皮层神经元和神经突触活动的动态图像,被评为“2017年度中国科学十大进展”和《Nature Methods》“2018年度方法”(无限制行为动物成像),开启自由活动动物成像新范式,研究成果可应用于脑认知基本原理研究、脑重大疾病机理研究和脑疾病的药物研究,本技术进一步可应用于临床实时在体无创细胞级检测。部分获奖照片“微型化”是指将显微镜做到拇指大小,可以佩戴在小鼠头上,同时不影响小鼠的自由活动,进而观察小鼠在觅食、社交、睡觉等自主行为时大脑神经元的真实活动和功能连接。超维景的微型化显微镜体积微小,让小鼠能够“戴着跑”,实现了自由行为动物的清晰稳定成像,可用于在动物觅食、跳台、打斗、嬉戏、睡眠等自然行为条件下,或者在学习前、学习中和学习后,观察神经突触、神经元、神经网络等的动态变化,从而获取小鼠在自由行为过程中大脑神经元和神经突触活动的动态图像。2.2g微型双光子荧光显微镜2021年,团队的第二代微型化双光子显微镜将成像视野扩大了7.8倍,同时具备获取大脑皮层上千个神经元功能信号的三维成像能力,原始论文发表于《Nature Methods》。2023年2月,团队将微型化探头与三光子成像技术结合,成功研制微型化三光子显微镜,重量仅为2.17克,并在 《Nature Methods》 发表文章。一举突破了此前微型化多光子显微镜的成像深度极限,首次实现对自由行为小鼠的大脑全皮层和海马神经元功能成像,为揭示大脑深部结构中的神经机制开启了新的研究范式。 《Nature Methods》发表相关技术成果2023年2月,神州十五号航天员乘组使用由我国自主研制的空间站双光子显微镜开展在轨实验任务并取得成功,是目前已知的世界首次在航天飞行过程中使用双光子显微镜获取航天员皮肤表皮及真皮千层的三维图像,为未来开展航天员在轨健康监测研究提供了全新工具。图为神舟十五号航天员乘组在轨使用空间站双光子显微镜2023年12月,由超维景公司自主研发的在体双光子显微成像系统获批上市,是中国首个基于双光子显微成像原理的医疗器械。本次研发是首次实现脑科学技术跨学科助力皮肤检测的技术应用,将最前沿的双光子显微成像技术引入现代皮肤医学检测领域,实现“实时、无创、在体、原位、无标记”的高分辨率皮肤细胞及胞外组织三维成像,为患者和医生带来便利。——04——布局微型化多光子产品体系,开启自由行为动物显微成像新范式解析脑连接图谱和功能动态图谱是我国和世界多国脑计划的一个重点研究方向,但传统的多光子显微镜进行常规脑成像通常需要将动物的头部固定在台式显微镜上,这严重限制了模式动物的自由生理状态。为此需要打造自由行为动物佩戴式显微成像类研究工具。基于团队及技术发明,超维景已布局微型化多光子成像产品体系,并成功实现多款产品的产业化,包括SUPERNOVA-100一体式微型化双光子显微镜、SUPERNOVA-600集成式微型化双光子显微镜与SUPERNOVA-3000微型化三光子显微镜等,解决了困扰领域近20年的挑战,显著领先于美国脑计划催生的微型化单光子技术。超维景微型化多光子显微成像系列产品,可以在微观尺度上、不干扰自由运动动物行为的前提下,对大脑神经元和神经突触进行无创性观察和实时、动态成像,为研究神经科学、行为学、认知科学等多个领域提供了新的视角和手段,从而为脑健康研究开辟新的道路。树突棘成像 单树突棘级分辨率 神经元轴突与亚细胞结构成像 ——05——持续加码小动物自由运动活体成像系统“科研+临床”的广阔应用脑科学机理研究。大脑是一个极度复杂的器官,目前,各国脑科学计划的一个核心方向就是打造用于全景式解析脑连接图谱和功能动态图谱的研究工具。其中,如何打破尺度壁垒,融合微观神经元和神经突触活动与大脑整体的信息处理和个体行为信息,是领域内亟待解决的一个关键挑战。要想实现动物在体脑功能实时成像的研究,能够观察到整个皮层甚至更为深入的其他脑区,涉及到仪器开发、手术技术、生物研究等等不同的方面领域,技术挑战非常大。为了真正解密大脑的工作原理和流程,人们需要在对大脑神经元高分辨成像的同时,被观察者能够自由的正常活动,也就是最理想的脑功能成像需要被观察者在自由运动状态下进行脑功能观测。脑疾病机理研究。目前一些重要的脑疾病,如自闭症、精神类疾病、老年痴呆症等都是全世界的难题。以老年痴呆症为例,根据得病率统计,85岁以上老人中的 50%患有老年痴呆。预计到2050年,中国将有近1亿患者的生活需要照顾、需要医疗系统的救助,这是严重的社会负担。通过本技术对脑科学疾病研究,如果有新发现,对于老年痴呆症,就可能找到早期诊断的方法,早发现、早干预,把严重症状出现期从85岁延缓到95岁,社会负担就可以大大减轻,提高国民生活质量。神经药物筛选。微型化双光子显微镜不仅可以“看得见”大脑工作的过程,还将为可视化研究自闭症、阿尔茨海默病、癫痫等脑疾病的神经机制发挥重要作用。而此类疾病的药物开发,由于缺少快速直接的药效反馈手段,而大大受阻。微型化双光子技术的应用将极大的推动此类神经疾病药物的开发进程,为人类脑疾病的诊断和治疗提供新的手段。携手全球合作伙伴,携手共谋发展。微型化多光子成像系统已获得国内的上亿元订单,以及国外的数千万元订单。其中,国内用户包括北京大学、中科院上海神经所、中科院深圳先进技术研究院、复旦大学、上海交通大学、西湖大学、中山大学、华南理工大学、南京脑观象台等。国外用户包括加州理工、纽约大学、德国马普神经所、德国波恩大学、德国马普鸟类研究所等。未来,超维景将在多光子显微成像技术继续深挖“科研+临床”的广阔应用,这将作为神经探索领域的引路明灯,照见更多未知的领域。参考文献:• Zhao, C., et al. (2023). Miniature three-photon microscopy maximized for scattered fluorescence collection. Nat Methods, 2023 Apr 20(4):617-622.• Zong, W., et al., Miniature two-photon microscopy for enlarged field-of-view, multi-plane and long-term brain imaging. Nat Methods, 2021. 18(1): p. 46-49.• Zong, W., et al., Fast high-resolution miniature two-photon microscopy for brain imaging in freely behaving mice. Nat Methods, 2017. 14(7): p. 713-719.
  • “欧洲X射线自由电子激光”项目动工
    位于德国汉堡的“欧洲X射线自由电子激光”项目的核心工程——3条地下隧道30日正式动工,预计2014年完工,2015年可进行首次科研实验。   据德国媒体报道,欧洲X射线自由电子激光设施是世界上首个能产生高强度短脉冲X射线的激光设施。这一大型科研项目由德国牵头,欧洲11个国家共同合作,总耗资达10亿欧元。这3条直径不同的地下隧道总长度接近6公里。   欧洲X射线自由电子激光设施建成后,能产生波长从0.1到6纳米间可调的、极高强度的飞秒(1飞秒等于千万亿分之一秒)级短脉冲X射线相干光。其应用范围将涉及从材料物理学、纳米科学到结构生物学等广泛领域,将为人类认识微观世界打开全新视野。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制