当前位置: 仪器信息网 > 行业主题 > >

自身免疫性神经病

仪器信息网自身免疫性神经病专题为您整合自身免疫性神经病相关的最新文章,在自身免疫性神经病专题,您不仅可以免费浏览自身免疫性神经病的资讯, 同时您还可以浏览自身免疫性神经病的相关资料、解决方案,参与社区自身免疫性神经病话题讨论。

自身免疫性神经病相关的论坛

  • 【转帖】------一个神经病取钱经历!!!

    爆笑,一个神经病取钱经历一天下午,我同学在建设银行十分无聊的上班,一个穿得很糟糕的女士(神经病患者)来到他窗口,给了他一张纸条要提款。纸条上赫然写着 "兹派XX同志于贵银行处提取人民币". 然后是l后面N多个零元。落款是*****办公厅***。我同学本来想报警,可看该神经病患者女子很认真的样子,想想还是打发给保安算鸟.(~估计保安也是很闲). 果然,保安对该女子说:"你这张条子想要提款,必须先到对面派出所,找所长盖一个章,他盖完章,你再来取钱就没问题啦。"   该女子想都没想,直接就向派出所走去了。(这保安还真不一般,平时有点小看他了).  大概十多分钟,排队的顾客慢慢多起来的时候,那个女子兴高采烈的回来了,举着那个条子,说:"人家说啦,办公程序简化了,不用所长批条直接就可以取钱啦。"   我这个同学一听到这就不住的感叹:警察队伍里真有高人,一句"高调"就给打发回来了。  我这个同学和保安当时就有点傻了,营业大厅有很多人都在,怕她精神病发作起来影响正常的秩序,只好把值班主管找来了。主管和女患者在一边聊了几句,问你取钱做什么用呀,女患者说:"取钱卖面包,蛋糕,吃的,卖穿的"主管指了指不远处的地方,该女子就又高高兴兴地走了。保安去请教"高招",主管当时是这样对女患者说的: "我们这里是建行,只有建房子才能到这里取钱。你取钱买吃的,那肯定是粮食了,要去农行,买穿的等东西,取钱要到工商银行才行!"   我同学打心眼里佩服呀,到底是当主管的啊!!!!   过了一会儿,该女士又回来了.而且带来了工行的回答:"农行的人说了,这里是农行,只有农民能取钱,我是城市人口,工行的人说了,我们这里是公行,只能公的来取,母的不行!!!!,说我是贱人,要到建行取钱" 我同学,保安,主管,狂晕.......

  • 显微镜下的人体---大脑神经元

    http://www.people.com.cn/mediafile/pic/20110923/45/1020251448044024341.jpg在人体大脑中超过1000亿个神经元中,浦肯野细胞是最大的那一类。这是一类对人体极其关键的神经细胞,它们在小脑皮质中负责机体的动作协调。接触酒精,锂等物质,自身免疫性疾病,以及包括自闭症和神经变性症等基因疾病会损害人体的浦肯野细胞,从而造成机体运动障碍。

  • 【金秋计划】黄芪桂枝五物汤治疗糖尿病周围神经病变的研究进展

    随着人口老龄化,糖尿病患病率持续上升,最新数据显示全球大约有5.366亿人患有糖尿病(患病率10.5%),预计到2045年患病人数将达到7.832亿(患病率12.2%)[1]。随着时间的推移,大约50%的糖尿病患者会发展为糖尿病周围神经病变(diabetic peripheral neuropathy,DPN)[2]。DPN是一种以感觉神经病变为主,并累及自主神经系统的神经退行性疾病,表现为远端肢体对疼痛、温度、振动和本体感觉的丧失[3],是下肢截肢和致残性神经病理性疼痛的主要原因[4]。高血糖、血脂异常、微血管损伤、氧化应激、炎症、线粒体功能障碍、晚期糖基化终末产物(advanced glycosylation end products,AGEs)、神经营养因子缺失等在DPN中具有重要作用。目前,治疗DPN的主要目的是缓解症状和疼痛管理[5],针对DPN的疼痛管理,主要应用抗抑郁药物、抗惊厥药物和阿片类镇痛药物,通过抗氧化应激、改善微循环、纠正代谢紊乱、营养神经、缓解疼痛等机制减轻DPN症状。临床上大多数被批准用于治疗DPN的药物如硫辛酸、依帕司他、阿米替林、丙米嗪、加巴喷丁等,虽能有效减轻疼痛,但存在作用途径单一、耐药性差,容易出现头晕、嗜睡、恶心、失眠、视力模糊等不良反应。此外,目前没有新的治疗疼痛性DPN的疗法被批准,临床最有效的一线药物或联合用药尚不清楚[6]。因此,寻找新的治疗DPN的药物刻不容缓。黄芪桂枝五物汤(Huangqi Guizhi Wuwu Decoction,HGD)作为经典名方之一,由黄芪、桂枝、芍药、生姜、大枣组成,具有益气活血、和营通脉的疗效[7],对缓解DPN引起的疼痛、麻木等症状疗效显著,被广泛用于DPN的治疗,具有良好的研究价值和发展前景。本文就DPN的发病机制、HGD治疗DPN的药效基础、临床研究及作用机制进行综述,为HGD治疗DPN的临床应用提供科学依据和理论基础。 1 DPN的发病机制DPN是糖尿病患者常见的严重并发症之一,目前其发病机制尚未完全明确,是由多种病理因素相互作用的结果。以高血糖参与的异常代谢通路为基础,包括多元醇通路、AGEs堆积、己糖胺通路、蛋白激酶C(protein kinase C,PKC)信号通路、内质网应激等[8],这些异常的代谢通路可引起炎症反应、血管内皮增生、神经纤维损伤、破坏线粒体稳态,产生大量活性氧和活性氮自由基,导致氧化应激反应,造成组织损伤。此外活性氧的增加还会激活聚腺苷二磷酸-核糖聚合酶(poly ADP-ribose polymerase,PARP)信号通路,导致神经血管损伤,诱发氧化应激,而氧化应激又会对通路形成正反馈,造成恶性循环。除了高血糖引起的异常代谢通路外,脂代谢异常、神经生长因子(nerve growth factor,NGF)及神经营养不足、胰岛素抵抗等[9]也与DPN的发生发展密切相关。研究发现,糖尿病患者血浆游离饱和脂肪酸的浓度通常会升高,而长链饱和脂肪酸,如棕榈酸酯和硬脂酸酯,会阻碍线粒体的功能及其运输,导致感觉背根神经节的神经元凋亡[10]。脂代谢异常会生成二酰甘油,刺激多元醇通路和PKC通路,细胞内的游离脂肪酸还能够激活核因子-κB(nuclear factor-κB,NF-κB),诱发炎症反应,刺激产生活性氧,破坏线粒体,加剧氧化应激反应[11]。NGF能促进中枢和外周神经元的生长、发育、分化、成熟,维持神经系统的正常功能,加快神经系统损伤后的修复[12]。有研究发现,在糖尿病动物皮肤中,NGF的产生受到抑制[13]。胰岛素信号传导也可能是引起DPN的原因之一,胰岛素不仅是一种激素,同时也是一种具有神经营养作用的神经保护因子[14]。炎症反应主要通过释放炎症因子参与DPN的发生和发展,细胞间黏附因子促进白细胞的迁移和活化,在趋化因子的影响下,单核细胞和巨噬细胞等吞噬细胞到达DPN受损组织并激活,然后分泌包括白细胞介素(interleukin,IL)在内的多种炎性因子,如IL-1β、IL-6和肿瘤坏死因子-α(tumor necrosis factor-α,TNF-α)等[15]。这3种炎症因子可以影响DPN神经损伤,破坏雪旺细胞与轴突之间的沟通[16-17],DPN的发生和严重程度与TNF-α在内的炎症因子相关联,炎症因子参与疼痛和痛觉过敏的产生,并增加血神经屏障的渗透性,将TNF-α注射到坐骨神经可诱导炎症性脱髓鞘或轴索变性[18]。氧化应激被认为是导致DPN多种代谢途径受损的共同引发因素,大量研究表明高血糖可导致氧化应激的产生,并对周围神经中的神经元和雪旺细胞产生损伤[19]。引发氧化应激的原因是活性氧的过量产生,氧化还原平衡被打破导致抗氧化系统失调[20],最终造成组织损伤。高血糖引起的异常代谢通路:多元醇通路、AGEs通路、PARP通路等最终都会引起细胞内氧化应激反应,多元醇通路和PARP通路中消耗了大量的还原性辅酶,导致胞内活性氧清除能力不足,AGEs代谢过程中产生大量活性氧,导致氧化应激反应。综上,DPN的发病机制十分复杂,其病理生理学的核心是神经代谢受损和生物能衰竭[9],高血糖及异常代谢通路、胰岛素抵抗、脂代谢异常、NGF缺失、炎症反应、氧化应激等机制相互影响,造成恶性循环,损伤周围神经组织,最终导致DPN的发生。 2 HGD治疗DPN的方证基础和药效基础2.1 方证基础在中医理论中并未记载DPN病名,但根据其肢体麻木、疼痛等症状可归属于中医“痹证”“痛证”“痿痹”等范畴[21]。《素问奇病论》中提出“此肥美之所发也,此人必数食甘美而多肥也。肥者令人内热,甘者令人中满,故其气上溢,转为消渴。”消渴患者病因多为饮食不节、情志失调等,燥热内盛,煎熬阴液,气血滞而不行。《黄帝内经素问痹论》[22]曰:“病久入深,荣卫之行涩,经络时疏,故不痛,皮肤不营,故为不仁。”消渴日久,但见手足麻木,肢体如冰。DPN病机多因消渴日久,气阴损耗,阴虚邪热内生,精华内涸,导致血气凝滞,络脉不通,不能外输四肢而发病,属本虚标实,瘀血贯穿了疾病的始终。倪青教授认为,该病主要病机可总结为虚、瘀,虚即气阴亏虚,瘀为瘀血阻络,因虚致瘀,虚瘀相兼,虚为本,瘀为标,贯穿DPN的始终[23]。仝小林院士认为DPN属于糖尿病“郁、热、虚、损”4大阶段中的虚、损阶段,脏腑热、经络寒,总以脾虚为本,通补兼施、寒热并用是仝院士辨治DPN的治疗大法[24]。《素问逆调论》[22]云:“营气虚则不仁,卫气虚则不用。”肌肉筋骨失于濡养,故见手足麻木、感觉减退,犹如风痹之状;气阴两虚迁延不愈,阴损及阳,阳虚失煦,故四肢厥冷;气血阴阳俱虚,血行缓滞因热成瘀,痹阻脉络,不通则痛,故见皮肤肌肉刺痛,入夜尤甚;久病肝肾脾胃虚弱,聚湿成痰,痰瘀互结,肢体脉络失荣,故见肌肉日渐萎缩、软弱无力。张仲景在《金匮要略》中对血痹虚劳进行了论述,认为血痹、虚劳都是由于气血不足引起的慢性虚损性疾病,因此,DPN与血痹虚劳具有相关性[25]。HGD出自《金匮要略血痹虚劳病脉证治篇》,是治疗素体营卫不足,外受风邪所致血痹的常用方。方中黄芪补气,为君药。桂枝既能扶助卫阳以祛风邪,又能温通血脉以行血滞,与黄芪相伍,共奏益气扶阳,和血通痹之效。芍药养血,与桂枝相伍,共奏调和营卫,和血通痹之效,2药共为臣药。生姜、大枣养血益气,助芪、芍之力,又能调和营卫,扶阳祛风,共为佐使。诸药相伍,共奏补气温阳,和血通痹之功。2.2 药效基础现代药理实验证明,HGD的主要活性成分为黄酮类和苷类,如毛蕊异黄酮葡萄糖苷、毛蕊异黄酮和刺芒柄花素,可促进胰岛素释放而发挥降糖作用[26]。网络药理学预测HGD可以通过抗氧化应激、抗炎、阻止胆碱能神经信号传递、降低内质网应激水平等[27],直接或间接地发挥保护神经纤维、减轻疼痛、促进能量代谢及神经修复的作用。黄芪性甘,微温,有敛疮生肌、益卫固表、补气升阳的作用[28]。药理实验和临床研究表明,黄芪在抗炎、抗氧化、改善微循环、降血糖、增强免疫等方面疗效显著[29-31]。黄芪皂苷IV是黄芪的主要活性成分之一,《中国药典》2020年版将黄芪皂苷IV确定为黄芪质量控制的重要指标。研究发现,黄芪皂苷IV 24 mg/kg可有效提高DPN大鼠腓总神经运动传导速度,降低血糖浓度和糖化血红蛋白(glycosylated hemoglobin,GHb)水平,减少神经细胞中AGEs的积累,从而有效抑制DPN大鼠有髓纤维面积的减少和节段性脱髓鞘的增加[32]。Yin等[33]通过构建DPN大鼠模型和DPN雪旺细胞损伤模型发现,黄芪皂苷IV 80 mg/kg能够通过增强自噬,减轻雪旺细胞凋亡引起的DPN髓鞘损伤,改善神经功能。Ben等[34]应用黄芪皂苷IV 60 mg/kg连续12周干预DPN大鼠模型,发现黄芪皂苷IV能够改善DPN大鼠背根神经节中线粒体的损伤,显著减少DPN大鼠的机械性异常疼痛,提示黄芪皂苷IV在治疗DPN中有着巨大潜力。桂枝具有散寒解表、温通经脉的功效,临床常用于镇痛、抑菌、抗过敏及促进血管舒张、抗血小板聚集等[35-36]。目前DPN的发病机制被认为与胰岛素缺乏或胰岛素抵抗、高血糖和血脂异常有关[6],桂枝提取物不仅具有降血糖的作用[37-38],还可以减少肠道对胆固醇和脂肪酸的吸收[39]。现代药理研究发现,桂枝主要含有挥发油类和有机酸类化合物成分[40],其中挥发油中的主要药效成分为肉桂醛。Chun等[41]通过构建肉桂醛调控的编码基因对周围神经变性影响的生物信息学分析发现,肉桂醛能够通过影响雪旺细胞氧化应激反应而抑制周围神经变性。背根神经节神经元对高葡萄糖浓度应激的易感性与DPN的发生发展有关,是DPN损伤的靶细胞[42]。Shi等[43]通过构建高糖诱导的背根神经节神经元细胞模型发现,肉桂醛100 nmol/L能够通过抑制NF-κB通路,从而起到保护背根神经节神经元作用,减少细胞凋亡。另有研究发现,肉桂醛20、40 mg/kg可显著降低糖尿病大鼠的血糖水平,逆转糖尿病大鼠的神经炎症反应和神经递质水平的变化,提示肉桂醛在防治DPN方面具有巨大潜力[44]。现代药理研究发现,白芍化学成分主要有单萜及其苷类、三萜类、黄酮类等,具有抗炎、镇痛、抗血栓、抗氧化、降血糖等作用[45-46]。Huang等[47]通过大鼠坐骨神经受损实验发现,白芍提取物能显著增强神经突起的生长及其生长相关蛋白和突触素的表达,有助于促进周围神经再生,提示白芍提取物可能是一种潜在的神经生长促进因子。《中国药典》2020年版中将芍药苷定量控制作为对白芍的含量测定项,表明芍药苷是白芍的重要质量标志物。研究发现,芍药苷100 μmol/L具有显著的抗氧化应激作用,可以通过激活核因子E2相关因子2(nuclear factor E2 related factor 2,Nrf2)/抗氧化反应元件(antioxidant response element,ARE)信号通路保护雪旺细胞免受高糖诱导的氧化损伤[48]。朱晏伯等[49]通过观察芍药苷对高糖环境下雪旺细胞线粒体动力学的影响,发现芍药苷100 μmol/L能促进高糖环境下雪旺细胞线粒体融合,降低分裂,维持线粒体动力学平衡,改善线粒体形态与功能,降低雪旺细胞凋亡。邢琪昌等[50]构建了芍药苷-疾病-靶点网络分析,结果得出芍药苷具有降血糖、抗氧化、减轻神经炎症和疼痛等功效,在治疗DPN中具有潜在的应用价值。生姜是一种广泛使用的药食同源类中药,具有辛温解表、温里散寒的功效[51],现代药理研究表明生姜具有抗炎镇痛、抗糖尿病、增强免疫力等作用[52]。生姜可通过促进外周血葡萄糖的利用,纠正受损的肝肾糖酵解,限制糖异生物质的形成,从而有效地控制组织糖原含量[53]。此外,炎症反应与DPN的发生发展密切相关[54],生姜提取物还能够显著抑制炎性因子IL-6和TNF-α的表达,减轻白细胞浸润或水肿的形成,起到保护神经的作用[55]。Shen等[56]通过构建DPN大鼠模型,并用生姜提取物进行治疗,发现生姜提取物不仅可以减轻疼痛,还可以调节DPN大鼠肠道菌群微生物的组成,表明生姜提取物靶向肠道微生物群可能是治疗DPN的一种新治疗策略。6-姜烯酚是生姜中的重要生物活性化合物之一[57],已广泛用于治疗多种疾病。Nurrochmad等[58]研究发现,6-姜烯酚15 mg/kg和生姜提取物400 mg/kg能够降低血糖,减轻糖尿病神经疼痛小鼠模型的热痛和机械疼痛,减轻坐骨神经微结构受损程度,提示6-姜烯酚和生姜提取物对糖尿病神经疼痛小鼠具有抗痛觉过敏和神经保护作用。大枣具有增强免疫、抗氧化的功效[59]。小胶质细胞激活介导的神经炎症在DPN神经病理性疼痛中起着重要作用[60]。大枣提取物对小胶质细胞的激活有抑制作用,可减轻小胶质细胞一氧化氮释放的增加,同时降低促炎因子IL-6、IL-1β和TNF-α的表达,改善神经性疼痛[61]。另有研究证实,大枣提取物还能促进神经末梢乙酰胆碱释放,刺激胰腺细胞促进胰岛素释放,起到降低血糖的作用[62]。Kaeidi等[63]将大鼠肾上腺嗜铬细胞瘤PC12细胞作为DPN体外模型,研究大枣提取物对PC12细胞中葡萄糖诱导的神经毒性的神经保护作用,发现大枣提取物300 μg/mL可降低高葡萄糖诱导的细胞毒性,并阻止活性氧的生成,抑制神经细胞凋亡,表明大枣提取物具有减轻DPN的治疗潜力。上述研究为阐明HGD是治疗DPN的标准方剂提供了有力证据。药效基础研究发现,5味中药能够通过降血糖、抗炎、抗氧化、修复受损神经、调节肠道微生物群、改善线粒体形态与功能等多种途径防治DPN的发生发展。然而关于HGD全方治疗DPN的研究尚缺乏相关模型的入血成分、药动学分析,因此利用现有中药分析技术明确其药效物质基础,特别是HGD体内外化学成分分析及量效关系研究,在治疗DPN方面具有重要意义。3 HGD治疗DPN的临床研究近年来,临床研究证明使用HGD可有效治疗DPN,通过增减药味,或联合化学药、其他方剂及外用疗法,达到治疗疾病,改善患者生活质量的目标。3.1 原方应用在临床治疗治疗中,因为患者年龄、病程、症状严重程度等不同,所以直接采用原方剂量治疗的案例比较少。胡宗华[64]将90例DPN患者分为对照组和观察组,对照组给予甲钴胺片治疗,观察组给予HGD治疗,结果显示观察组空腹血糖、餐后血糖、血液流变学指标均低于对照组。雷琳丽[65]应用HGD治疗DPN患者发现,HGD组空腹血糖、感觉神经传导速度、下肢振动感觉阈值均优于甲钴胺组,总有效率达93.33%。这2项临床研究表明HGD对于缓解DPN患者的血糖及症状方面效果显著。3.2 复方加减联合化学药HGD加减和甲钴胺联合应用,可明显改善患者四肢麻木、烧灼、疼痛、针刺感等临床症状[66],降低血清TNF-α炎性因子,提高超氧化物歧化酶水平[67]。HGD加减与盐酸法舒地尔注射液组合可以降低DPN患者空腹血糖、餐后2 h血糖、HbA1c、总胆固醇等指标,显著改善感觉神经传导速度和运动神经传导速度[68]。在一项为期12周治疗DPN的研究中[69],HGD、依帕司他、长春西汀注射液三者联合治疗,周围神经传导速度显著提高,中医证候积分较治疗前显著降低且优于对照组,血糖得到明显改善。根据以上临床研究,发现HGD加减联合化学药可有效降低患者血糖水平,抑制炎症反应发生及发展,改善氧化应激,减轻麻木、疼痛等临床症状,进而提升了患者的生活质量。可总结以下用药加减规律:若舌脉以血瘀为主,临床症状以刺痛为主,则加用当归、川芎、桃仁、三七等活血类药物;若患者肢体疼痛以刺痛且有定处为主,则加用鸡血藤、红花、牛膝、丹参等活血祛瘀止痛类药物;若患者肢体疼痛加重,出现入夜痛甚,则加用全蝎、地龙、没药、乳香等以痛经活络消痹止痛;若患者肢体出现水肿,则加用苍术、薏苡仁、木瓜等利水除湿、通络除痹。目前常用的化学药有甲钴胺、依帕司他、阿司匹林肠溶片、盐酸法舒地尔等药物。见表1。图片3.3 复方加减联合其他方剂相比于单独应用和联合化学药应用,HGD联合当归四逆汤、补阳还五汤、桃红四物汤等方剂治疗DPN,也取得良好的疗效。HGD联合当归四逆汤治疗DPN患者后,患者肢体冰冷、疼痛和麻木等临床症状大幅减轻,神经系统反射基本恢复正常[79],患者肢体血流速度得到改善[80]。HGD和补阳还五汤组合治疗总有效率达92%,临床症状明显缓解,神经传导速度增幅较高,密歇根糖尿病审计病变积分明显低于对照组[81]。连珍珍等[82]应用HGD合桃红四物汤加减治疗DPN研究显示,患者治疗前后血糖、HbA1c、中医证候积分、密歇根糖尿病审计病变积分、神经传导速度均有好转。当归四逆汤温经散寒、养血通脉,主治血虚寒厥证。补阳还五汤具有补气、助阳、通络化瘀的功效,主治气虚血瘀之证。桃红四物汤养血活血,主治血虚兼血瘀证。HGD联合补阳还五汤、当归四逆汤、桃红四物汤等方剂治疗DPN,能够有效减轻患者肢体冰冷、疼痛麻木等临床症状,改善神经传导速度,降低血糖。DPN的病因病机复杂多样,但以虚为本、瘀为标,肌肉筋骨失于濡养,致使手足麻木、厥冷、痹阻脉络、不通则痛。因此在临床治疗中,应补气补血补阳、活血化瘀通络。3.4 复方加减联合针灸在临床中,HGD还可以联合针灸治疗DPN。在孟凡冰等[83]的临床研究中,服用HGD,同时联合针灸治疗,血液黏度、多伦多临床评分均下降,神经传导速度也显著提升。赵荣等[84]研究发现,经HGD联合针灸治疗DPN后,患者肢体麻木、疼痛、无力的症状明显好转,中医证候积分量表较治疗前下降,对比患者治疗前后血常规、肝肾功能、心电图指标,差异无统计学意义,表明HGD联合针灸治疗DPN临床疗效确切且安全性较高。相较于单用HGD加减治疗,联用针灸后,临床症状缓解方面疗效更佳。部分穴位如三阴交、太溪和内关穴下有神经走行,针灸针对神经直接刺激后,可明显提高对神经功能的良性调节作用。四肢关节以下的腧穴,如足三里、三阴交、曲池、内关等,能够起到疏通局部经络气血的作用。针对DPN的关键病机,辅以关元穴、肾俞穴、胰俞穴、脾俞穴等,能达到补虚培元、调和脏腑的功效。见表2。图片3.5 复方加减联合其他疗法此外,HGD还可以联合中药足浴、穴位敷贴、高压氧等疗法共同治疗DPN。一项临床实验显示[91],口服HGD联合中药足浴(丹参、艾叶、红花、凤仙透骨草、皂角刺各20 g,肉桂、川椒各10 g),临床疗效优于对照组。HGD配合涌泉穴穴位贴敷治疗DPN后,患者全血高切比黏度、全血低切比黏度、血浆黏度水平均明显下降,有效改善了患者的血糖水平[92]。以上临床实验表明,HGD治疗DPN效果显著,有单独应用、联合化学药、针灸、中药足浴和穴位贴敷等用法,有效改善DPN患者糖脂代谢、血液流变学,降低患者血糖水平、氧化应激指标,抑制炎症反应,降低中医证候积分,提高神经传导速度,减轻DPN患者疼痛、麻木、四肢厥冷等临床症状。4 HGD治疗DPN的机制研究4.1 降低血糖,改善糖脂代谢高血糖是糖尿病前期、糖尿病前期神经病变、DPN的主要危险因素[93],不仅会直接损伤神经,其介导的多种异常代谢途径,如多元醇通路、AGEs通路、己糖胺通路,会通过激活炎症反应、氧化应激、线粒体功能障碍等造成神经屏障破坏、周围微血管损伤,最终累及神经。除高血糖激活的异常代谢途径,最近的研究表明血脂异常也在DPN发生发展中起着重要作用[11]。刘曼曼等[94]研究发现HGD可有效降低DPN患者空腹血糖、餐后2 h血糖、HbA1c,患者肢体神经传导速度、麻、凉、痛等症状得到改善。林云梅等[95]采用HGD治疗DPN患者,检测患者血糖、血脂水平发现,治疗组空腹血糖、餐后2 h血糖、总胆固醇、三酰甘油、低密度脂蛋白胆固醇均显著下降。这2项研究表明HGD能够有效调节DPN患者机体血糖、血脂水平,改善受损神经组织。4.2 抑制异常代谢通路4.2.1 抑制AGEs通路 在糖尿病患者中,神经组织被过度糖化,导致蛋白质、脂质、核酸等与还原糖类发生非酶促反应生成AGEs[96]。糖尿病患者皮肤和周围神经存在大量AGEs,特别是神经元、雪旺细胞、神经内膜和神经外膜微血管中[97]。AGEs与晚期糖基化终产物受体(receptor for advanced glycationend products,RAGE)结合后引起内皮功能障碍、氧化应激和促炎信号的传导[98]。方颖等[99]通过高脂饲养联合ip链脲佐菌素建立DPN大鼠模型,经HGD干预后,发现DPN大鼠血清IL-1β、TNF-α炎症因子的含量显著降低,其作用机制可能与减少AGEs蓄积,阻断AGEs/RAGE/NF-κB信号有关。4.2.2 调节内质网应激,抑制细胞凋亡 高血糖能够扰乱蛋白质稳态并上调未折叠的坐骨神经蛋白[100],而内质网腔内未折叠或错误折叠蛋白的积累会诱导内质网应激[101],最终激活环磷酸腺苷反应元件结合转录因子同源蛋白(C/EBP-homologous protein,Chop)导致细胞凋亡[102]。张岩等[103-104]通过构建DPN大鼠模型发现,经HGD组干预后,DPN大鼠Chop蛋白表达显著降低,HGD可以通过调节内质网应激途径抑制细胞凋亡。此外,HGD还能够显著降低坐骨神经细胞凋亡相关B细胞淋巴瘤-2相关X蛋白和半胱氨酸天冬氨酸蛋白酶-12蛋白的表达,抑制坐骨神经细胞凋亡并改善和修复糖尿病大鼠坐骨神经损伤。内质网应激介导Chop凋亡蛋白的同时,也激活了c-Jun氨基末端激酶(c-Jun N-terminal kinase,JNK)[105],JNK可以抑制髓鞘蛋白的产生,诱导雪旺细胞去分化,从而导致脱髓鞘和神经损伤的发生[106]。肖凡等[107]研究发现,HGD给药组DPN小鼠神经纤维和髓鞘出现再生,空腹血糖、鼠尾热痛觉敏感程度、坐骨神经传导速度、坐骨神经组织病理状态均显著优于模型组,JNK蛋白表达也显著减少,推测HGD可能通过抑制内质网应激水平来改善DPN大鼠坐骨神经功能、减轻坐骨神经组织损伤。4.3 抗炎镇痛DPN与炎症反应密切相关,炎症标志物的水平可以预测DPN的发生和发展[108]。多项临床研究证明,HGD可以有效降低IL-6、TNF-α等炎症因子水平,改善神经传导速度[109-110]。miR-146a是一种短链非编码RNA分子,miR-146a与糖尿病慢性并发症间存在独立的负相关关系[111],在长期高血糖的情况下,miR-146a的表达下降,NF-κB的抑制减弱,导致IL-1β和TNF-α炎性因子表达水平升高[112]。郭咏梅等[113]研究发现,HGD可以上调DPN大鼠模型miR-146a基因表达,降低DPN大鼠血清中炎症因子IL-1β和TNF-α水平,以及机械痛阈值,提高神经传导速度,推断HGD治疗DPN的机制与抑制炎症反应有关。周雯等[114]研究发现,HGD能够呈剂量相关性降低DPN大鼠血清IL-1β、TNF-α水平,减轻周围神经组织炎症损伤。4.4 抗氧化应激氧化应激被认为是导致DPN多种代谢途径受损的共同引发因素,过多的活性氧除造成轴突变性外,还会导致神经纤维的功能减退,与DPN的发生发展密切相关[115]。经HGD干预后DPN大鼠血糖、丙二醛水平显著下降,血清谷胱甘肽水平升高,提示HGD具有抗氧化作用[116]。硫氧还蛋白(thioredoxin,Trx)是一种广泛存在于生物体内的氧化还原调节蛋白,不仅可以通过清除活性氧来抵抗细胞内的氧化应激,还可以作为一种生长因子促进细胞的生长[117],而硫氧还蛋白互作蛋白(thioredoxin-interacting protein,TXNIP)是Trx的生理抑制剂,能下调Trx表达。张文娓等[118]通过研究HGD对DPN大鼠周围神经组织Trx及TXNIP表达的影响,发现HGD可明显提高Trx的表达,降低TXNIP的表达,进一步表明HGD可通过抗氧化应激来治疗DPN。4.5 营养神经修复NGF在外周神经纤维重建和中枢神经系统的营养维持中具有重要作用[119],有研究发现NGF可明显缩短神经再生长和髓鞘再生时间[120]。多项实验研究表明HGD可有效改善DPN大鼠坐

  • 【资料】医药、卫生期刊==神经病学与精神病学

    [font=宋体][color=#1d6dc7][size=3]核心期刊:[/size][/color][/font][table=700][tr=#eaeac8][td=1,1,50]序号[/td][td=1,1,350][img=14,14,absMiddle]http://61.164.36.250:8001/CSTJ/IMAGES/kanwu.gif[/img] 刊名[/td][td=1,1,100][align=center][b]I[color=#ff0000]S[/color][color=#009900]S[/color][color=#ff00ff]N[/color][/b][/align][/td][td=1,1,100][align=center][b]C[color=#ff0000]N[/color][/b][/align][/td][td=1,1,50][align=center]核心期刊[/align][/td][/tr][tr=#f3f3f3][td]1[/td][td][url=http://61.164.36.250:8001/QK/97431X/index.asp?CSID=]临床神经病学杂志[/url][/td][td][align=center]1004-1648[/align][/td][td][align=center]32-1337/R[/align][/td][td][align=center][color=#ff0000]★[/color][/align][/td][/tr][tr=#f3f3f3][td]2[/td][td][url=http://61.164.36.250:8001/QK/83063Z/index.asp?CSID=]微侵袭神经外科杂志[/url][/td][td][/td][td][/td][td][align=center][color=#ff0000]★[/color][/align][/td][/tr][tr=#f3f3f3][td]3[/td][td][url=http://61.164.36.250:8001/QK/86533X/index.asp?CSID=]中华神经医学杂志[/url][/td][td][align=center]1671-8925[/align][/td][td][align=center]11-5354/R[/align][/td][td][align=center][color=#ff0000]★[/color][/align][/td][/tr][tr=#f3f3f3][td]4[/td][td][url=http://61.164.36.250:8001/QK/83063X/index.asp?CSID=]中国微侵袭神经外科杂志[/url][/td][td][align=center]1009-122X[/align][/td][td][align=center]44-1459/R[/align][/td][td][align=center][color=#ff0000]★[/color][/align][/td][/tr][tr=#f3f3f3][td]5[/td][td][url=http://61.164.36.250:8001/QK/90113X/index.asp?CSID=]中华神经精神科杂志[/url][/td][td][align=center]0412-4057[/align][/td][td][align=center]11-2146/R[/align][/td][td][align=center][color=#ff0000]★[/color][/align][/td][/tr][tr=#f3f3f3][td]6[/td][td][url=http://61.164.36.250:8001/QK/98480X/index.asp?CSID=]中华神经科杂志[/url][/td][td][align=center]1006-7876[/align][/td][td][align=center]11-3694/R[/align][/td][td][align=center][color=#ff0000]★[/color][/align][/td][/tr][tr=#f3f3f3][td]7[/td][td][url=http://61.164.36.250:8001/QK/90113A/index.asp?CSID=]中华精神科杂志[/url][/td][td][align=center]1006-7884[/align][/td][td][align=center]11-3661/R[/align][/td][td][align=center][color=#ff0000]★[/color][/align][/td][/tr][tr=#f3f3f3][td]8[/td][td][url=http://61.164.36.250:8001/QK/90692X/index.asp?CSID=]中风与神经疾病杂志[/url][/td][td][align=center]1003-2754[/align][/td][td][align=center]22-1137/R[/align][/td][td][align=center][color=#ff0000]★[/color][/align][/td][/tr][tr=#f3f3f3][td]9[/td][td][url=http://61.164.36.250:8001/QK/93154X/index.asp?CSID=]中华神经外科杂志[/url][/td][td][align=center]1001-2346[/align][/td][td][align=center]11-2050/R[/align][/td][td][align=center][color=#ff0000]★[/color][/align][/td][/tr][tr=#f3f3f3][td]10[/td][td][url=http://61.164.36.250:8001/QK/92855X/index.asp?CSID=]中国神经精神疾病杂志[/url][/td][td][align=center]1002-0152[/align][/td][td][align=center]44-1213/R[/align][/td][td][align=center][color=#ff0000]★[/color][/align][/td][/tr][/table]

  • 人体免疫的重要调节因子—维生素D

    近年来,由于人类生活方式的改变(室内生活时间变长,防晒霜和防晒衣服的普及)和人体本身的原因(皮肤黑色素含量,皮肤维生素D产生减少和破坏增加),维生素D缺乏已经成为了一个全球性的问题。全球估计有数百万的儿童血清维生素D水平低下。维生素D和人体健康的关系已经成为了全球科学家和临床研究的热点。自从1921年美国科学家Elmer发现维生素D以来,维生素D,俗称为抗佝偻病维生素,一直被认为是和骨骼健康相关。研究表明:维生素D的缺乏可能会导致骨质疏松,跌倒和骨折等一系列骨骼健康失衡的疾病和症状。关于维生素D和骨骼健康的监测,治疗和预防,国内外都已经有了相关的指南(1)。随着对维生素D的研究不断深入,近30年来的研究发现:除了参与维护骨骼的健康,维生素D还参与了人体广泛的生理作用,为维护全身各个系统的功能平衡起到了重要的作用。其中,维生素D和人体免疫功能的关系一直是研究的热点。研究显示,维生素D和很多的自身免疫性疾病密切相关,比如过敏性疾病,如哮喘,炎症性肠病,多发性硬化,I型糖尿病等等,维生素D和自身免疫性甲状腺疾病(例如桥本氏甲状腺炎和格雷夫斯病)的关系还在研究当中。维生素D与哮喘人体内几乎所有的细胞都有维生素D受体,维生素通过结合体内免疫细胞上的维生素D受体参与人体免疫调节的过程维生素D参与了淋巴细胞功能的调节,T细胞抗原受体信号的转导和激活,以及细胞因子的产生等过程。研究发现:维生素D缺乏会影响细胞因子Th1和Th2,而这些因子可以导致过敏体质。Th17细胞是一种和哮喘病变相关的炎症细胞,维生素D能够抑制T17细胞的反应(2)。此外,补充维生素D对治疗某些变态性疾病是有益的。比如:在对地塞米松治疗有激素抵抗的哮喘患者体内,维生素D能够使调节性T细胞(Treg)分泌IL10,使患者对激素治疗产生反应(3)。另有数据表明:过敏性哮喘和Fox3p的表达下降有关,而Fox3p是调节性T细胞发育过程中很重要的转录因子。一项研究发现:对过敏性哮喘的小儿患者使用脱敏联合维生素D补充治疗的12个月过程中,可以发现哮喘症状的好转与Foxp3+细胞的诱导上调以及高水平的TGF-beta产生有关,而这些因子的高表达都和血清25羟维生素D的水平相关(4)。因此,维生素D的水平被认为是一个潜在的因子,可以在过敏性疾病包括哮喘,尤其是儿童哮喘的发生,发展和严重程度上起到重要的调节作用。美国儿科学会已经建议增加儿童和青少年的维生素D日摄入量:一岁以内,建议日摄取量为400IU,一岁以上为400-600IU,从一出生就开始补充以达到血清维生素D的充足水平(5)。维生素D与炎症性肠病炎症性肠病也是一种免疫性疾病。维生素D和炎症性肠病的关系在80年代初就已经确认。已经有多次研究报道:低的血清25-羟维生素D水平和炎症性肠病的病情活动度相关。维生素D结合它的受体,通过控制细胞增殖、抗原受体信号、和肠屏障功能来影响免疫稳态。此外,1,25-二羟基维生素D也参与了NOD2-介导的β2的表达,后者对炎症性肠病病变发挥着至关重要的作用。同时,维生素D受体的几种遗传变异体已被认定是炎症性肠病的候选易感基因。并且,在动物模型中维生素D受体缺失可以导致更严重的炎症性肠病。而越来越多的研究和临床已经发现使用维生素D或维生素D受体拮抗剂可以缓解或治疗炎症性肠病。这些研究结果都提示维生素D可以作为炎症性肠病治疗的一个靶点(6)。维生素D与多发性硬化随着全球的"冰桶挑战",多发性硬化已经为人们所熟悉。多发性硬化已经影响了全球大约2.1亿人,而且逐年增加。多发性硬化的产生因素是遗传和环境的共同结果。T细胞介导的自身免疫和疾病密切相关,而维生素D是免疫系统的重要调节因子,因此近年来,关于维生素D缺乏和多发性硬化的相关性研究也越来越多。有研究发现:女性血清1,25-二羟维生素D浓度每增加10nmol/l,发生多发性硬化的可能性就会减少20%,提示高维生素D的保护作用。也有很多研究谈探讨了阳光照射和多发性硬化的关系,他们发现儿童时期如果阳光照射多,多发性硬化的风险相对会小,而且多发性硬化与日照和纬度的相关性表明了维生素D水平和疾病的关系(7)。流行病学调查研究发现:多发性硬化患者的血清维生素D水平普遍较低;每天补充维生素D大于400IU可以减少40%的患多发性硬化的风险。如果每天补充1000到4000IU达到血清维生素D浓度在99nmol/L以上的话可以减少62%的发病率。由此可见,维持足够的血清维生素D浓度可以有效预防多发性硬化。维生素D与I型糖尿病I型糖尿病也是一种自身免疫性疾病,它和维生素D的关系已经被很多临床研究证实。有研究通过对患儿的血清维生素D水平检测发现,患儿的1,25-二羟维生素D水平低下(8)。而补充维生素D可以降低I型糖尿病的患病风险(9)。关于维生素D和I型糖尿病的第一项病案分析研究由欧洲7个国家Eurolab主导,研究发现:出生后第一年补充维生素D,I型糖尿病的风险可以降低33%(10)。因此,用补充维生素D来预防I型糖尿病是可行的。维生素D与自身免疫性甲状腺疾病维生素D和自身免疫性甲状腺疾病的关系已经有了相关研究。有些遗传研究证明甲状腺自身免疫易感性与维生素D受体的基因多态性,维生素D结合蛋白以及1-α-羟化酶和25羟化酶之间有关联。但是,也有很多其他研究结果反对它们之间的相关性。对于在自身免疫性甲状腺疾病中维生素D的作用,研究仍然存在争议。由于研究设计的局限性,研究人群的异质性,采血的季节变化,维生素D检测和维生素D缺乏/不足不同的定义, 方法之间分析的差异都可能导致结果的不确定。因此,补充维生素D是否能够预防或改善自身免疫性甲状腺疾病,还需要更完善的研究设计和深入的研究(11)。除了上述自身免疫性疾病,维生素D 还和其他自身免疫性疾病如类风湿性关节炎,胰岛素抵抗,白癜风等关系密切。维生素D水平的检测和维持与人体健康密切相关。准确检测和监测血清维生素D的水平,对评估维生素D水平和补充维生素D至关重要。索灵诊断公司是第一家进行维生素D检测试剂研发和推广的公司,随着技术的不断更新,索灵在过去的25年以来在全球已经售出超过1.75亿个测试,其严谨的科学研究和以人为本的服务理念,使得索灵的维生素D检测一直处于世界领导地位,为全球的维生素D检测实验室和临床提供了可靠的工具,为全球人类的健康发挥了不可或缺的作用。

  • 【金秋计划】片仔癀通过调节肠道菌群和记忆调节性T细胞减轻刀豆球蛋白A诱导的自身免疫性肝炎

    [b][size=15px][color=#595959]自身[/color][/size][size=15px][color=#595959]免疫[/color][/size][size=15px][color=#595959]性肝炎(AIH)[/color][/size][/b][size=15px][color=#595959]是一种以淋巴细胞浸润和自身抗体产生为特征的界疾病,然而其病因尚不清楚。有研究发现,在AIH患者的外周血中维持免疫稳态的必需因子调节性T (mTreg)细胞的频率降低,表明Treg细胞数量不足和Treg细胞功能异常可能在AIH的发病过程中起重要作用。AIH的治疗通常采用高剂量的类固醇以抑制免疫系统。有研究表发现,复合益生菌可调节[b]肠道菌群[/b]和肠道通透性,降低辅助性T细胞1型(Th1)和Th17细胞水平,提高Treg细胞水平,抑制[b]TLR4/核因子-κB (NF-κB)通路[/b]的激活,调节AIH的发生。因此,对于AIH患者,Treg细胞与肠道微生物群的相互作用可能提供一种可行的治疗策略。[/color][/size][size=15px][color=#595959]中药常用[b]片仔癀(PTH)[/b]含有牛黄、麝香、三七、蛇胆等成分,常用于治疗肝脏疾病,包括AIH。研究发现,PTH通过控制NF-κB信号通路和NLRP3炎性小体,减少血液中IL-1、IL-6和IL-17的产生,减轻胶原性[/color][/size][b][size=15px][color=#595959]关节炎[/color][/size][/b][size=15px][color=#595959]小鼠的关节炎症。然而,PTH治疗AIH的确切机制尚不完全清楚。[/color][/size][align=center] [/align] [size=15px][color=#595959]通过测定AIH小鼠肠道菌群结构和[b]记忆调节性T (mTreg)细胞[/b]功能水平的变化,探讨PTH在AIH小鼠模型中的作用机制。[/color][/size] [align=center] [/align] [size=15px][color=#595959]给予PTH预防10 d后,用刀豆球蛋白A(Con A)诱导AIH小鼠模型。流式细胞术检测小鼠mTreg细胞水平,16S rRNA分析小鼠肠道菌群,western blotting检测[b]toll样受体(TLR)2、TLR4/核因子-κB (NF-κB)和CXCL16/CXCR6信号通路[/b]的激活情况。[/color][/size] [align=center] [/align] [size=15px][color=#595959][/color][/size][size=15px][color=#595959]PTH减轻AIH小鼠肝脏病理损伤,降低辅助性T - 17细胞数量和干扰素-γ、[/color][/size][b][size=15px][color=#595959]肿瘤[/color][/size][size=15px][color=#595959]坏死[/color][/size][size=15px][color=#595959]因子[/color][/size][/b][size=15px][color=#595959]- α、白细胞介素(IL)-1β、IL-2、IL-6、IL-21的表达。同时,[b]PTH刺激有益菌的丰度[/b],促进TLR2信号的激活,从而增加Treg/mTreg细胞数量产生IL-10,抑制TLR4/NF-κB和CXCL16/CXCR6信号通路的激活。[/color][/size][size=15px][color=#595959][/color][/size][size=15px][color=#595959][/color][/size] [align=center] [/align] [b][size=15px][color=#595959][/color][/size][size=15px][color=#595959][/color][/size][size=15px][color=#595959]PTH调节肠道菌群平衡,恢复mTreg细胞,减轻实验性AIH,与TLR/CXCL16/CXCR6/NF-κB信号通路密切相关[/color][/size][/b][size=15px][color=#595959]。这些发现提示PTH可能通过平衡肠道菌群,干扰mTreg细胞调节Treg细胞分化,是AIH的一种天然替代疗法。[/color][/size]

  • 俄开发多发性硬化症诊断新方法 准确度高费用显降

    原标题 俄开发出多发性硬化症诊断新方法准确度更高,费用显著降低 科技日报讯 一个俄罗斯科研小组近日在美国《分析化学》杂志发表论文称,他们开发出一种诊断多发性硬化症的新方法,将来有望投入临床使用。 该研究负责人、克拉斯诺亚尔斯克生物物理学研究所的科学家柳德米拉·弗兰克说,诊断多发性硬化症需要一系列复杂的检查,目前的主要方法是对脑部和脊髓进行核磁共振及检查脑脊髓液,这些检查费用昂贵、耗时长,且准确率不高。 弗兰克领导的科研小组发现,多发性硬化症患者的体内组织会出现自身免疫性抗体,其中与髓鞘相关的抗体可被视作是多发性硬化症的最主要特征。根据这一思路,他们设计了一种特殊核酸适体分子,用于捕捉试验样本中的髓鞘抗体,并在适体分子中加入了发光蛋白质。当核酸适体分子与试验样本中的髓鞘抗体结合后,发光蛋白质就会被激活发光,提醒试验者检测出了相关抗体。与传统检测方法相比,这一新方法的灵敏度和准确度更高,检测费用显著降低。 弗兰克指出,尽管该方法仍需进一步完善才能最终投入临床使用,但对于多发性硬化症患者来说这无疑是个好消息。 多发性硬化症是一种慢性自身免疫性疾病,患者的脑和脊髓神经会出现炎症,神经元外侧的髓磷脂会降解失效,造成神经纤维髓鞘脱失,引发中枢神经系统功能障碍。临床症状主要为感觉改变、视觉障碍、肌肉无力、忧郁、协调与讲话困难、严重的疲劳、认知障碍、平衡障碍、体热和疼痛等,严重的可以导致活动性障碍和残疾。在欧美国家,多发性硬化症已成为年轻人除外伤之外导致神经障碍最常见的疾病,目前尚无完全治愈该病的方法。 (亓科伟)来源:中国科技网-科技日报 作者:亓科伟 2014年02月25日

  • 谈谈自身免疫力

    自身免疫力强大的人,身体一般比较健康,外邪很难入侵,不容易生病。而免疫力弱的人,体内偏虚弱,对付“外来侵略者”的能力也就比较差,自然容易生病。除了少数人天生免疫力差外,其他人之所以抗病能力弱,多半与个人的生活习惯有关。[img]https://ng1.17img.cn/bbsfiles/images/2023/12/202312100147490948_9853_1642069_3.png[/img]

  • 新型口服丙肝疫苗问世

    新华社东京3月21日电 (记者蓝建中)日本神户大学日前发表公报称,该校研究人员成功开发出一种新型口服丙肝疫苗。这种口服疫苗价格低廉,还可常温保存,与传统疗法配合使用,有望提高丙肝治愈率。 早前疫苗只发挥预防疾病作用,但随着免疫学研究的发展,人们发现了疫苗还有治疗作用,一些疫苗也被称为治疗性疫苗。 神户大学教授堀田博领导的研究小组针对丙肝病毒中特有的NS3蛋白质,利用酸奶中常见的双歧杆菌进行基因重组,开发出了新型口服丙肝疫苗,在动物实验中成功激活了针对丙肝病毒的细胞免疫性。 研究人员让实验鼠每隔一天服用一次这种疫苗,持续4周后,实验鼠肠道就开始产生具有免疫作用的淋巴细胞,它能与丙肝病毒中的NS3蛋白质发生反应,从而提高对丙肝病毒的免疫力。 慢性丙型肝炎患者中,有30%即使接受标准疗法治疗仍不理想。此前研究人员在开发治疗药物时主要以遏制病毒增殖为目标,新研究的思路则是通过提高患者自身的免疫力来提高治愈率。 研究小组将继续完善动物实验和临床研究,希望7年后能投入临床使用。相关研究成果将于近期刊登在荷兰《疫苗》杂志网络版上。

  • 精神与神经

    各位老师,精神病与神经病,哈哈哈难道说不一样吗?颠倒的两个字意义大不同吗

  • 胎盘干细胞

    胎盘亚全能干细胞定义:   亚全能干细胞自胚胎形成的第5到7天开始出现,能分化形成200 多种人体组织器官细胞,但不能形成一个完整的人体。胎盘亚全能干细胞是来源于新生儿胎盘组织的一族亚全能干细胞,其在发育阶段与胚胎干细胞接近,具备分化形成三个胚层的组织细胞的能力,但不会形成畸胎瘤。   胎盘亚全能干细胞的主要特性与功能:   胎盘亚全能干细胞是取自胎盘组织的一类亚全能干细胞,胎盘亚全能干细胞具有以下特性:   1. 具有强大的增殖能力和多向分化潜能,在适宜的体内或体外环境下具有分化为间充质干细胞,上皮干细胞、神经干细胞、肝干细胞,肌细胞、成骨细胞、软骨细胞、基质细胞等多种细胞的能力。可以用来修复受损或病变的组织器官,治疗心、脑血管疾病、神经系统疾病、肝脏疾病、骨组织病、角膜损伤、烧伤烫伤、肌病等多种疾病。   2.具有免疫调节作用,通过负性免疫调节功能,抑制机体亢进的免疫反应,使机体免疫功能恢复平衡,从而可以用来治疗造血干细胞移植之后的免疫排斥反应以及克隆氏病、红斑狼疮,硬皮病等自身免疫系统疾病。   3.胎盘亚全能干细胞定向培养的间充质干细胞是人体微环境的重要组成部分,移植间充质干细胞可以改变造血微环境,重建免疫系统,促进造血功能恢复,与造血干细胞共移植能显著提高白血病和难治性贫血等的治疗效果。   4.具有来源方便,细胞数量充足,易于分离、培养、扩增和纯化,传代扩增30多代后仍具有干细胞特性。   胎盘亚全能干细胞的用途:   胎盘作为理想的亚全能干细胞来源,在抗衰老及疾病治疗领域显示了其独特的功能,治疗疾病种类如下:   心脑血管系统疾病   糖尿病   肝肾损伤   脑及脊髓神经损伤   自身免疫性疾病   移植物抗宿主病   与造血干细胞共移植治疗血液病   缺血性血管病   肺及其它组织器官纤维化   抗衰老,恢复健康体态   胎盘亚全能干细胞的储存流程:   在新生儿娩出、胎盘剥离子宫排出后,由接生的医生尽快按照干细胞库胎盘标准采集规程进行胎盘的采集,然后放置在干细胞库特定的装置工具中,在限定时限内运送到干细胞库,由专业的技术人员进行亚全能干细胞的分离、提取、培养、检测等技术流程,直到根据最终检测结果来确认所获得的干细胞是否具有长期保存的价值。   保存和期限   目前国际上通用的干细胞保存技术是将获得的干细胞储存在-196℃深低温状态,医学研究与临床实践证明保存一百多年的细胞仍然具有活性。干细胞保存已有几十年的历史,胎盘干细胞库在与客户签订的合同期限内对干细胞库中所保管的胎盘亚全能干细胞活性负责。   安全性   胎盘的采集简便易行,不会引起母亲和新生儿任何不适的感觉或产生任何不良的影响。过去胎盘通常作为废物丢弃,而从胎盘中提取亚全能干细胞进行保存,是宝贵的生命资源再生。   而干细胞行业数据显示,胎盘亚全能干细胞基因稳定、不易突变,动物实验证明无致瘤性,使用安全可靠,对适应症范围疾病治疗效果好,优于传统医疗手段。   胎盘亚全能干细胞的优势   1.取材方便,原料来源充足,是生命资源的再生。   2.分化能力强可以定向诱导分化为间充质干细胞、血管干细胞、上皮干细胞、神经干细胞和肝干细胞等多种干细胞。   3.数量充足,使用方便,增殖能力强,培养后数目可达10亿,可以供多人多次使用。   4.在人群中使用不需要配型,不会产生免疫排斥反应,同时,血缘关系越亲近,生物利用度会越高,使用的效果越好。   5.治疗疾病范围广,抗衰老,恢复健康体态,心脑血管系统疾病,糖尿病,肝肾损伤,脑及脊髓神经损伤,自身免疫性疾病,移植物抗宿主病等多种疾病。

  • 雷公藤红素靶向COMMD3/8复合物抑制自身免疫病

    [size=15px][font=宋体]雷公藤([/font][font=&]Tripterygium wilfordii[/font][font=宋体])在我国多地均有分布,具有悠久的药用历史,广泛用于治疗类风湿关节炎[i][/i],在《本草纲目》等有记载。雷公藤红素([/font][font=&]Celastrol[/font][font=宋体])是从雷公藤植物中提取的一种生物活性分子,对于治疗自身免疫疾病和肿瘤等有显著作用,已被证明具有抗炎特性,然而,其作用机制尚未完全阐明。[/font][font=&][/font][/size] [size=15px][b][font=&]1[/font][font=宋体]、[/font][font=&]COMMD3/8 [/font][font=宋体]复合物缺乏会损害体液免疫[/font][font=&][/font][/b][/size] [size=15px][font=&][font=宋体]COMMD3[/font][/font][/size][font=宋体][back=url(&]和[/back][/font][font=&][font=宋体][back=url(&]COMMD8[/back][/font][/font][font=宋体][back=url(&]是[/back][/font][font=&][font=宋体][back=url(&]COMMD[/back][/font][/font][font=宋体][back=url(&]蛋白家族成员,在诱导体液免疫反应过程中形成了介导[/back][/font][font=&][font=宋体][back=url(&]B[/back][/font][/font][font=宋体][back=url(&]细胞迁移所必需的异二聚体,在调节免疫反应方面起着重要作用。作者构建了[/back][/font][font=&][font=宋体][back=url(&]Commd3[/back][/font][/font][font=宋体][back=url(&]基因敲除小鼠(在没有另一个蛋白的情况下,[/back][/font][font=&][font=宋体][back=url(&]COMMD3[/back][/font][/font][font=宋体][back=url(&]或[/back][/font][font=&][font=宋体][back=url(&]COMMD8[/back][/font][/font][font=宋体][back=url(&]蛋白会被蛋白酶体降解),发现[/back][/font][font=&][font=宋体][back=url(&]COMMD3[/back][/font][/font][font=宋体][back=url(&]缺失导致生发中心([/back][/font][font=&][font=宋体][back=url(&]germinal center[/back][/font][/font][font=宋体][back=url(&],[/back][/font][font=&][font=宋体][back=url(&]GC[/back][/font][/font][font=宋体][back=url(&])的[/back][/font][font=&][font=宋体][back=url(&]B[/back][/font][/font][font=宋体][back=url(&]细胞数量降低。[/back]为了分析[/font][font=&]COMMD3[/font][font=宋体]缺乏对免疫细胞的整体影响,作者通过质谱流式([/font][font=&]CyTOF[/font][font=宋体])和[/font][font=&]scRNA-seq[/font][font=宋体]均发现[/font][font=&]Commd3[/font][font=宋体]缺失降低[/font][font=&]GC B [/font][font=宋体]细胞的比例。这些发现表明[/font][font=&]B[/font][font=宋体]细胞受到[/font][font=&]COMMD3/8[/font][font=宋体]复合物缺乏的选择性影响[/font][font=宋体]。[/font][font=&][/font] [align=center] [/align] [size=15px][b][font=&]2[/font][font=宋体]、[/font][font=&]COMMD3/8 [/font][font=宋体]复合物缺乏可缓解关节炎[/font][font=&][/font][/b][/size] [size=15px][font=宋体]鉴于[/font][font=&]COMMD3/8[/font][font=宋体]复合物在体液免疫反应中的重要作用以及[/font][font=&]B[/font][font=宋体]细胞靶向疗法在类风湿关节炎([/font][font=&]RA[/font][font=宋体],[/font][font=&]Rheumatoid Arthritis[/font][font=宋体])中的已知疗效,作者利用胶原诱导性关节炎[i][/i]([/font][font=&]CIA[/font][font=宋体],一种[/font][font=&]RA[/font][font=宋体]小鼠模型)来测试[/font][font=&]COMMD3/8[/font][font=宋体]复合物在自身免疫性疾病中的作用。结果显示[/font][font=&]COMMD3/8[/font][font=宋体]复合物缺失还改善了[/font][font=&]CIA[/font][font=宋体],且在[/font][font=&]B[/font][font=宋体]细胞中表达的[/font][font=&]COMMD3/8[/font][font=宋体]复合物在[/font][font=&]CIA[/font][font=宋体]发病机制中起着重要作用。结果表明针对[/font][font=&]COMMD3/8[/font][font=宋体]复合物可能是治疗自身免疫性疾病的有前途的策略[/font][/size] [align=center] [/align] [size=15px][b][font=&]3[/font][font=宋体]、雷公藤红素靶向抑制[/font][font=&]COMMD3[/font][font=宋体]与[/font][font=&]COMMD8[/font][font=宋体]结合[/font][font=&][/font][/b][/size] [size=15px][font=宋体]接着,为了寻找[/font][font=&]COMMD3[/font][font=宋体]与[/font][font=&]COMMD8[/font][font=宋体]结合的有效抑制剂,[/font][/size][font=宋体][size=15px]研究人员通过天然产物化合物库[/size][/font][size=15px][font=宋体]([/font][font=&]2555[/font][font=宋体]种化合物)开展筛选,鉴定出雷公藤红素([/font][font=&]Celastrol[/font][font=宋体])是一种破坏[/font][font=&]COMMD3/8[/font][font=宋体]复合物的最有效的化合物,并通过生物发光共振能量转移([/font][font=&]BRET[/font][font=宋体])分析和[/font][font=&]CO-IP[/font][font=宋体]验证了雷公藤红素抑制[/font][font=&]COMMD3[/font][font=宋体]和[/font][font=&]COMMD8[/font][font=宋体]结合。此外,雷公藤红素处理加速了[/font][font=&]COMMD3[/font][font=宋体]和[/font][font=&]COMMD8[/font][font=宋体]的降解[/font][/size] [align=center] [/align] [size=15px][b][font=&]4[/font][font=宋体]、[/font][/b][/size][size=15px][b][font=宋体]雷公藤红素[/font][/b][/size][size=15px][b][font=宋体]与[/font][font=&] COMMD3 [/font][font=宋体]上的[/font][font=&] C170 [/font][font=宋体]共价结合[/font][font=&][/font][/b][/size][size=15px][font=宋体]雷公藤红素在[/font][font=&]C6[/font][font=宋体]处有一个亲电位点,半胱氨酸残基的亲核硫醇基团已证实可在此发生反应形成共价键。为了测试[/font][font=&] C6 [/font][font=宋体]原子是否参与了雷公藤红素与[/font][font=&] COMMD3/8 [/font][font=宋体]复合物的相互作用,作者获得了二氢雷公藤红素(雷公藤红素衍生物),其中[/font][font=&]C6[/font][font=宋体]位被还原并且失去了进行亲核加成的能力,发现二氢雷公藤红素不会破坏活细胞或纯化形式的[/font][font=&]COMMD3/8 [/font][font=宋体]复合物,表明雷公藤红素可能与[/font][font=&]COMMD3[/font][font=宋体]或[/font][font=&]COMMD8[/font][font=宋体]上的半胱氨酸残基形成共价键,从而解离[/font][font=&]COMMD3/8 [/font][font=宋体]复合物。[/font][font=&][/font][/size] [size=15px][font=宋体]在[/font][font=&]COMMD3[/font][font=宋体]和[/font][font=&]COMMD8[/font][font=宋体]上的半胱氨酸残基中,[/font][font=&]COMMD3[/font][font=宋体]上的[/font][font=&]C170[/font][font=宋体]是位于[/font][font=&]COMM[/font][font=宋体]结构域内的唯一半胱氨酸残基,两个[/font][font=&]COMMD[/font][font=宋体]蛋白通过该结构域相关联。作者,将[/font][font=&]COMMD3[/font][font=宋体]上[/font][font=&]170[/font][font=宋体]位的[/font][font=&]C[/font][font=宋体]突变为[/font][font=&]A[/font][font=宋体],发现含有[/font][font=&] COMMD3 C170A[/font][font=宋体]的[/font][font=&]COMMD3/8[/font][font=宋体]复合物不再被活细胞中的雷公藤红素解离,表明[/font][font=&]COMMD3[/font][font=宋体]上的[/font][font=&]C170[/font][font=宋体]可能作为雷公藤红素的结合位点。进一步分子对接发现与[/font][font=&]C170[/font][font=宋体]结合的雷公藤红素很可能被埋在[/font][font=&]COMMD3[/font][font=宋体]和[/font][font=&]COMMD8[/font][font=宋体]的[/font][font=&]COMM [/font][font=宋体]结构域之间的界面形成的疏水腔中,用雷公藤红素处理的纯化[/font][font=&] COMMD3/8 [/font][font=宋体]复合物的质谱鉴定发现[/font][font=&]C170[/font][font=宋体]是该结构域内雷公藤红素的唯一共价结合位点。总之,这些发现表明雷公藤红素可能通过与[/font][font=&] COMMD3 [/font][font=宋体]上的[/font][font=&]C170[/font][font=宋体]共价结合来解离[/font][font=&] COMMD3/8 [/font][font=宋体]复合物[/font][/size] [align=center] [/align] [size=15px][b][font=&]5[/font][font=宋体]、[/font][font=&][b][font=宋体]雷公藤红素[/font][/b][/font][font=宋体]重现[/font][font=&] COMMD3/8 [/font][font=宋体]复合物缺乏症[/font][font=&][/font][/b][/size] [size=15px][font=宋体]接下来,作者想知道雷公藤红素是否能重现[/font][font=&]COMMD3/8[/font][font=宋体]复合物缺乏所导致的功能性后果。结果显示,雷公藤红素抑制小鼠[/font][font=&] B [/font][font=宋体]细胞对[/font][font=&]CXCR4[/font][font=宋体]和[/font][font=&]EBI2[/font][font=宋体]刺激的趋化性迁移,这与[/font][font=&]COMMD3/8 [/font][font=宋体]复合物作为趋化因子受体信号传导的正调节剂的作用一致。此外,与[/font][font=&]COMMD3/8[/font][font=宋体]复合物缺乏的情况一样,雷公藤红素可阻止[/font][font=&]B[/font][font=宋体]细胞中[/font][font=&]GRK6[/font][font=宋体]介导的配体激活的[/font][font=&]CXCR4[/font][font=宋体]磷酸化。质谱流式([/font][font=&]CyTOF[/font][font=宋体])显示使用雷公藤红素治疗可选择性降低[/font][font=&]GC B[/font][font=宋体]细胞的比例,同时保持其增殖能力,这与在他莫昔芬[i][/i]诱导的[/font][font=&]Commd3[/font][font=宋体]缺失的小鼠中观察到的情况一样[/font][/size] [align=center] [/align] [size=15px][font=宋体]先前的研究表明,雷公藤红素治疗可抑制[/font][font=&]CIA[/font][font=宋体]的发展。作者证实在[/font][font=&]CIA[/font][font=宋体]发作时开始使用雷公藤红素治疗可阻止疾病进展。并重现[/font][font=&]COMMD3/8[/font][font=宋体]复合物缺乏对[/font][font=&]CIA[/font][font=宋体]中体液免疫反应的影响,降低血清中[/font][font=&] TIIC [/font][font=宋体]特异性抗体的滴度以及[/font][font=&]GC B[/font][font=宋体]细胞数量,而不会影响引流淋巴结中[/font][font=&]T H17[/font][font=宋体]和[/font][font=&]Treg[/font][font=宋体]细胞丰度,这些发现进一步表明雷公藤红素具有[/font][font=&]B[/font][font=宋体]细胞选择性作用。总体而言,雷公藤红素治疗表型模拟了[/font][font=&]COMMD3/8[/font][font=宋体]复合物的缺陷[/font][/size] [align=center] [/align] [size=15px][b][font=&]6[/font][font=宋体]、[/font][font=&]COMMD3[/font][font=宋体]的[/font][font=&]C170A[/font][font=宋体]突变消除了雷公藤红素的活性[/font][font=&][/font][/b][/size] [size=15px][font=宋体]接着,作者发现[/font][font=&]COMMD3[/font][font=宋体]的[/font][font=&]C170A[/font][font=宋体]突变使[/font][font=&]COMMD3/8[/font][font=宋体]复合物对雷公藤红素具有抗性。为了验证[/font][font=&]COMMD3/8[/font][font=宋体]复合物是雷公藤红素的真正靶标,作者生成了表达来自内源性[/font][font=&]Commd3[/font][font=宋体]基因座的[/font][font=&]COMMD3 C170A[/font][font=宋体]的小鼠,并测试雷公藤红素在这些小鼠中的作用是否被消除。结果显示,从[/font][font=&]COMMD3 C170A/C170A[/font][font=宋体]小鼠中分离的[/font][font=&]B[/font][font=宋体]细胞在[/font][font=&]CXCR4[/font][font=宋体]和[/font][font=&]EBI2[/font][font=宋体]介导的趋化反应以及[/font][font=&]GRK6[/font][font=宋体]介导的[/font][font=&]CXCR4[/font][font=宋体]磷酸化中表现出对雷公藤红素的完全抗性。此外,雷公藤红素治疗不会抑制突变小鼠的体液免疫反应。质谱流式([/font][font=&]CyTOF[/font][font=宋体])和[/font][font=&]scRNA-seq[/font][font=宋体]分析均表明,在免疫的突变小鼠中,雷公藤红素治疗不会显著影响任何可检测到的免疫细胞群。此外,[/font][font=&]COMMD3 C170A/C170A[/font][font=宋体]小鼠的[/font][font=&]CIA[/font][font=宋体]进展和[/font][font=&]TIIC[/font][font=宋体]诱导的体液免疫反应并未受到雷公藤红素治疗的抑制,这进一步证实了这些小鼠对雷公藤红素的无反应性。这些发现表明[/font][font=&]COMMD3/8[/font][font=宋体]复合物是雷公藤红素的主要分子靶点[/font][/size]

  • 免疫学检测形成的原因有哪些?免疫学检测包括哪些?

    [font='calibri'][size=13px]免疫学检测形成的原因有哪些?免疫学[/size][/font][font='calibri'][size=13px]检测包括哪些?[/size][/font]免疫学检测形成的原因:免疫学检测是基于免疫系统对外来物质或抗原的反应而产生的,可分为体液免疫学检测和细胞免疫学检测两大类。体液免疫学检测是通过血液、唾液、乳汁等体液样本中的免疫球蛋白、补体、免疫复合物等成分的含量及其分布来反映机体的免疫状态。当机体受到病原体或某些生物物质的刺激时,免疫系统会产生相应的抗体和细胞因子等免疫反应,这些免疫反应产物可通过体液免疫学检测方法进行检测。细胞免疫学检测是通过检测机体内的免疫细胞和免疫分子的含量及其分布来反映机体的免疫状态。当机体受到病原体或某些生物物质的刺激时,免疫系统会产生相应的抗原提呈细胞,并引导记忆细胞和效应细胞的产生,这些记忆细胞和效应细胞可以在特定情况下识别和消灭病原体或肿瘤细胞,这些细胞和效应细胞本身也可以被检测出来。总之,免疫学检测的目的是通过检测机体的免疫反应,了解机体的免疫状态,为疾病的诊断、治疗和预防提供重要的依据。免疫学检测包括哪些?免疫学检测是指通过各种方法检测机体对病原体或某些生物物质的免疫反应程度,以及机体内的免疫细胞、免疫分子和免疫活性物质的含量及其分布等情况的一种医学技术。免疫学检测广泛应用于各种疾病的诊断、治疗和预防,包括感染性疾病、自身免疫性疾病、肿瘤免疫学诊断等。以下是一些常见的免疫学检测项目:体液免疫学检测:主要包括免疫球蛋白的测定,如IgA、IgM、IgE等;补体检测,如总补体溶血活性、补体C1、C2等;免疫复合物检测,如抗体-抗原复合物、补体-抗体复合物等;细胞免疫学检测:主要包括T细胞亚群分析、B淋巴细胞分化抗原检测、自然杀伤细胞抗体检测、T细胞活化抗体检测等;抗体检测:如抗药抗体、中和抗体等;细胞因子检测:如白细胞介素-2、-4、-6等;自身抗体检测:如抗核抗体、抗胰岛素抗体等;感染免疫检测:如病毒特异性抗体、细菌特异性抗体等。总之,免疫学检测是一种非常重要的医学技术,可以帮助医生判断机体的免疫状态,为疾病的诊断和治疗提供重要的依据。免疫学检测是根据抗原、抗体反应的原理,利用已知的抗原检测未知的抗体或利用已知的抗体检测未知的抗原,可定性、定位和定量的检测。依托自主研发生产的优质抗体、蛋白试剂、先进的实验仪器以及经验丰富的技术人员,义翘神州建立了全面的免疫学检测平台,包括ELISA、Western Blot、IHC、IF、Flow Cytometry、IP/Co-IP、Biacore、Octet等检测技术。义翘神州免疫学检测服务包含:①WB/Sally Sue高通量检测服务②[url=https://cn.sinobiological.com/services/flow-cytometry-service]流式细胞检测服务[/url]③免疫组化检测服务④多重免疫荧光和免疫组化服务⑤免疫荧光检测服务⑥HE染色及特殊染色服务⑦ELISA/ELISpot检测服务⑧IP/Co-IP检测服务⑨TMA芯片定制服务更多详情可以查看:https://cn.sinobiological.com/services/immunoassay-service

  • 免疫组化和免疫分型有何区别

    [font=宋体]在生物学和医学领域,免疫组化和免疫分型是两种常用的实验技术,它们各自具有独特的应用和优势。虽然这两种技术都涉及到免疫学的原理和方法,但它们在实验目的、操作过程、结果解读等方面存在显著的差异。本文将对免疫组化和免疫分型进行详细的比较和讨论,以揭示它们之间的区别。[/font][font=宋体] [/font][b][font=宋体]定义区别:[/font][/b][font=宋体][font=宋体]免疫组化([/font][font=Calibri]Immunohistochemistry[/font][font=宋体])是一种利用免疫学原理,通过特异性抗体与细胞或组织中的抗原进行反应,进而通过染色或标记等方法来定位和检测抗原的技术。其主要应用于组织切片或细胞涂片的染色,以观察和研究抗原在细胞或组织中的分布、定位及表达情况。免疫组化技术可以帮助我们了解细胞或组织的类型、功能状态以及病理变化,对于疾病的诊断、预后评估以及药物研发等方面具有重要意义。[/font][/font][font=宋体] [/font][font=宋体][font=宋体]免疫分型([/font][font=Calibri]Immunophenotyping[/font][font=宋体])是一种通过检测细胞表面或细胞内的特定抗原,来识别和分析细胞类型的技术。该技术主要应用于对免疫细胞(如淋巴细胞、巨噬细胞等)进行分型,以了解其在免疫系统中的功能和作用。免疫分型技术可以帮助我们深入了解免疫系统的结构和功能,揭示免疫细胞在疾病发生和发展过程中的作用,为疾病的诊断和治疗提供新的思路和方法。[/font][/font][font=宋体] [/font][b][font=宋体]实验目的区别:[/font][/b][font=宋体]免疫组化主要关注抗原在细胞或组织中的定位和表达情况,而免疫分型则侧重于对免疫细胞进行分型和功能分析。从操作过程来看,免疫组化通常需要对组织或细胞进行切片、固定、染色等步骤,而免疫分型则可能涉及到细胞的分离、培养、流式细胞术等操作。从结果解读来看,免疫组化的结果主要表现为抗原在细胞或组织中的分布和表达模式,而免疫分型的结果则提供了关于免疫细胞类型、比例和功能状态的信息。[/font][font=宋体] [/font][font=宋体] [/font][b][font=宋体]应用领域区别:[/font][/b][font=宋体]免疫组化在病理学、肿瘤学、神经科学等领域有广泛应用,可以帮助医生进行疾病的诊断和预后评估。而免疫分型则更多地应用于免疫学、血液学、感染病学等领域,有助于深入了解免疫系统的功能和疾病发生机制。[/font][font=宋体] [/font][font=宋体]综上所述,免疫组化和免疫分型是两种具有不同特点和应用领域的实验技术。虽然它们都涉及到免疫学的原理和方法,但在实验目的、操作过程、结果解读以及应用领域等方面存在显著的差异。因此,在实际应用中,我们需要根据研究目的和需求选择合适的技术手段,以获取准确、可靠的实验结果。[/font][font=宋体] [/font][font=宋体][font=宋体]义翘神州提供[url=https://cn.sinobiological.com/services/flow-cytometry-service][b]流式细胞检测技术服务[/b][/url],详情关注:[/font][font=Calibri]https://cn.sinobiological.com/services/flow-cytometry-service[/font][/font][font=宋体] [/font][b][font=宋体][font=宋体]义翘神州:蛋白与抗体的专业引领者,欢迎通过百度搜索[/font][font=宋体]“义翘神州”与我们取得联系。[/font][/font][/b]

  • 环丙沙星酶联免疫反应测试盒

    1.概述环丙沙星酶联免疫反应测试盒是利用竞争性的酶联反应原理,用于饲料、肉类组织(牛肉、鸡肉和猪肉)、鱼虾、牛奶、组织、血清和尿液中环丙沙星残留的定量检测。该试剂盒具有以下特点:Ø 快速,高回收率(75-95%),多种样品的低成本提取方法。Ø 高灵敏度(0.35ng/g或ppb),低检测下限(饲料有机提取法0.525ng/g或ppb)。Ø 高重复性。Ø 检测过程只需要不到1.5小时。 2.试剂盒原理环丙沙星酶联免疫反应测试盒基于竞争性酶联反应原理,含有环丙沙星抗体的药物已经包被于微孔板上。药物分析时,样品同HRP酶标记物共同被添加到板孔中。如果样品中含有环丙沙星,会竞争包被抗体,抑制HRP酶标记物与板上包被的抗体结合。加入底物后,产物的颜色强弱与样品中药物的浓度成反比。

  • 【转帖】中国科学家发现白癜风易感基因

    由安徽医科大学第一、第二附属医院等国内30多家单位共同协作,中国科学家通过对近2万份样本进行分析,发现了白癜风的易感基因。此项研发的成功进行,标志着我国白癜风易感基因研发跻身世界领先行列。  白癜风是一种常见的色素脱失性皮肤病,皮肤黑素细胞被破坏,原因不明。目前我国患病人数已超过1000万。该病好发于颜面等暴露部位,严重影响形象美观,甚至毁损患者容貌,并经常合并炎症性肠病、银屑病、糖尿病、恶性贫血及系统性红斑狼疮等多种自身免疫性疾病,严重危害患者身心健康。  此项研究由安徽医科大学第一、第二附属医院、复旦大学华山医院等国内30多家单位共同协作,历时5年,采用国际最先进的全基因组关联分析方法和生物分析技术进行。通过对近2万份样本进行分析,以强有力的证据指出由遗传因素导致的自身免疫异常是白癜风发病的主要原因,首次在国际上明确白癜风是自身免疫性疾病,并构建了第一个亚洲人群白癜风病例对照的全基因组关联分析数据库,为今后白癜风易感基因的深入研究打下坚实的基础。北京时间6月7日凌晨1点,国际著名学术期刊《自然遗传学》在线发表了该项研究的研究成果。专家认为,此研究成果对于解释白癜风的发病机制具有重大意义,并为疾病预警、临床诊断及新药开发奠定了良好的理论基础。

  • 【金秋计划】天丝饮对阿尔茨海默病的神经保护作用及其对神经炎症的抑制作用

    [b][size=15px][color=#595959]阿尔茨海默病[/color][/size][size=15px][color=#595959](AD)[/color][/size][/b][size=15px][color=#595959]是老年人中最常见的神经退行性疾病。作为一种传统的中药,[b]天丝饮[/b]出自《辨证录》,由[b]巴戟天和菟丝子[/b]组成,已被广泛用于[b]补肾[/b]。有趣的是,天思饮也被用来治疗痴呆、[/color][/size][b][size=15px][color=#595959]抑郁症[/color][/size][/b][size=15px][color=#595959]和其他神经系统疾病。研究表明,天丝饮对东莨菪碱引起的小鼠记忆缺陷、胆碱能[/color][/size][b][size=15px][color=#595959]功能障碍[/color][/size][/b][size=15px][color=#595959]、氧化损伤和神经炎症具有保护作用。然而,其治疗神经退行性疾病如阿尔茨海默病的潜力及其潜在机制尚不清楚。[/color][/size] [size=15px][color=#595959]该研究旨在评价天丝饮对AD的治疗作用,并探讨其作用机制。[/color][/size][size=15px][color=#595959][/color][/size] [size=15px][color=#595959]采用β淀粉样蛋白(Aβ)肽或过表达淀粉样前体蛋白(APP)处理的N2a细胞建立AD细胞模型。采用秀丽隐杆线虫和3 × Tg-AD小鼠模型评价其体内抗AD作用。天丝饮分别以10、15、20 mg/kg/d给药,连续8周。采用Morris水迷宫和恐惧条件反射实验考察其对小鼠记忆缺陷的保护作用。利用[/color][/size][b][size=15px][color=#595959]网络药理学、[/color][/size][size=15px][color=#595959]蛋白质[/color][/size][size=15px][color=#595959]组学分析[/color][/size][/b][size=15px][color=#595959]和超高效[url=https://insevent.instrument.com.cn/t/5p][color=#3333ff]液相色谱[/color][/url]-质谱/质谱(UHP[url=https://insevent.instrument.com.cn/t/Yp][color=#3333ff]LC-MS[/color][/url]/MS)分析其潜在的分子机制,并通过Western blotting和[/color][/size][b][size=15px][color=#595959]免疫[/color][/size][/b][size=15px][color=#595959]组织化学进一步研究其分子机制。[/color][/size] [align=center][size=16px][color=#3573b9]结[/color][/size][size=16px][color=#3573b9]果[/color][/size][/align] [size=15px][color=#595959][/color][/size][size=15px][color=#595959]天丝饮可提高Aβ处理的N2a细胞和表达APP的N2a-APP细胞的细胞活力。天思饮还能降低ROS水平,延长转基因AD样秀丽隐杆线虫模型的寿命。天丝饮中剂量口服可有效恢复3 × Tg小鼠的记忆损伤。天丝饮通过[b]抑制神经胶质细胞活化、下调炎症细胞因子、减少tau磷酸化和Aβ沉积,进一步抑制神经炎症[/b]。利用UHP[url=https://insevent.instrument.com.cn/t/Yp][color=#3333ff]LC-MS[/color][/url]/MS和网络药理学技术,从天丝饮68种成分中鉴定出17种植物化学物质为潜在的抗AD活性成分。通过网络药理学和质谱分析,确定了天丝饮抗AD的靶点为[b]MAPK1、BRAF、TTR和Fyn[/b]。[/color][/size] [align=center][size=16px][color=#3573b9]结论[/color][/size][/align] [b][size=15px][color=#595959][/color][/size][/b][size=15px][color=#595959]该研究证实了天丝饮对AD的保护作用,表明[b]天丝饮可通过调节炎症反应改善Aβ水平、tau病理和突触紊乱[/b]。这些发现为天丝饮治疗AD提供了重要的见解。[/color][/size][size=15px][color=#595959][/color][/size]

  • 如何预防糖尿病足

    今日养生小知识—如何预防糖尿病足?[玫瑰]糖尿病足是糖尿病患者最严重的慢性并发症之一,主要由糖尿病周围神经病变、糖尿病血管病变、感染还有外伤引起。[玫瑰]患者主要表现为足部感觉异常、足畸形及足部缺血导致的疼痛、行走困难等,常合并感染、溃疡、坏疽乃至截肢等。[玫瑰]早期表现为皮肤温度低、疼痛等下肢供血不足症状,感觉麻木、迟钝等周围神经病变症状 晚期足部出现肌肉、骨组织的坏死,如骨髓炎、干性或湿性坏疽等。[玫瑰]因此保护好足部健康尤其重要,需要做好以下几点。[img]https://ng1.17img.cn/bbsfiles/images/2024/07/202407081237571952_5004_1642069_3.png[/img]

  • 【金秋计划】杜仲防治神经退行性疾病的机制研究进展

    [font=宋体]神经退行性疾病是由于神经元或其髓鞘丧失所致的一类慢性、进行性损害疾病,按其病情缓急可分为急性神经退行性疾病和慢性神经退行性疾病,前者包括脑缺血([/font]cerebral ischemia[font=宋体],[/font]CI[font=宋体])、脑损伤、癫痫([/font]epilepsy[font=宋体],[/font]EP[font=宋体]);后者包括阿尔茨海默病([/font]Alzheimer’s disease[font=宋体],[/font]AD[font=宋体])、帕金森病([/font]Parkinson’s disease[font=宋体],[/font]PD[font=宋体])、亨廷顿病([/font]Huntington’s disease[font=宋体],[/font]HD[font=宋体])、肌萎缩性侧索硬化([/font]amyotrophic lateral sclerosis[font=宋体],[/font]ALS[font=宋体])及不同类型脊髓小脑[color=var(--weui-LINK)]共济失调[i][/i][/color]([/font]spinocerebellar ataxias[font=宋体],[/font]SCA[font=宋体])等。随着我国人口老龄化现状的不断加剧,神经退行性疾病发病率日益升高,有研究推测我国[/font]2050[font=宋体]年[/font]AD[font=宋体]的患病人数可高达[/font]4 250[font=宋体]万[/font][sup][color=black][1][/color][/sup][font=宋体],已[/font][font=宋体]然成为危及老年人身体健康和生活质量的另一大类疾病。现代医学认为神经退行性疾病发病机制与[color=var(--weui-LINK)]氧化应激[i][/i][/color]、线粒体功能障碍、兴奋性毒素、免疫炎症等相关。鉴于致病因素复杂性及病理变化不可逆性,故迄今为止针对神经退行性疾病还未能提出有效的治愈手段,临床上所使用的药物也大多只能改善症状,不能延缓疾病发展,从根本上逆转进行性神经变性[/font][sup][color=black][2][/color][/sup][font=宋体]。因此,开发防治神经退行性疾病的药物已成为一项重要的研究内容,也是亟待解决的一大难题。[/font] [font=宋体]杜仲为杜仲科植物杜仲[/font][i]Eucommia ulmoides[/i] Oliv. [font=宋体]的干燥树皮,属于陕西地区的道地药材之一,有补肝肾、强筋骨、安胎之功,在临床上应用广泛,主治肝肾不足所致腰膝酸痛、筋骨无力、头晕目眩、妊娠漏血、胎动不安等。其始载于我国汉代著作[color=var(--weui-LINK)]《神农本草经》[i][/i][/color],谓其“杜仲,味辛,平。主腰脊痛;补中益精气,坚筋骨,强志;除阴下痒湿,小便余沥。久服轻身,耐老。”明朝李时珍在[color=var(--weui-LINK)]《本草纲目》[i][/i][/color]中亦曾云:“昔有杜仲,服此得道,因名思仙”,《圣惠方》中称杜仲散“治中风筋脉挛急”,均体现了杜仲极高的药用价值[/font][sup][color=black][3][/color][/sup][font=宋体]。现代药理学研究表明杜仲具有抗氧化、抗炎、神经保护等多重药理活性,现已被开发成多种药物制剂如全杜仲胶囊、参杞杜仲丸、健脑补肾丸、天智颗粒、怡心健脑颗粒等,临床上常用于改善认知障碍、健忘、睡眠障碍等神经系统疾病。近年来随着学者们对杜仲药理作用不断深入挖掘,发现其在治疗神经退行性疾病方面也表现出较好的治疗潜力,本文将对杜仲防治神经退行性疾病的作用机制进行归纳总结。 [/font][b][color=#ffffff][back=#0080ff]1 [font=黑体]化学成分[/font][/back][/color][/b][font=宋体]杜仲化学成分复杂,至今从中共分离出[/font]200[font=宋体]多种化合物,主要为木脂素类、环烯醚萜类、黄酮类、多糖类、甾体类、多糖类及酚酸类等。针对杜仲活性成分目前研究最多、组成成分最明确的就是木脂素类化合物,其中包括松脂醇二葡萄糖苷([/font]pinoresinol diglucoside[font=宋体],[/font]PDG[font=宋体])、丁香脂二葡萄糖苷、丁香脂素单葡萄糖苷、松脂素、丁香脂素等[/font]55[font=宋体]种[/font][sup][color=black][4][/color][/sup][font=宋体]。[/font][font=宋体]《[color=var(--weui-LINK)]中国药典[i][/i][/color]》[/font]2020[font=宋体]年版已将[/font]PDG[font=宋体]作为评判杜仲质量优劣的指标成分之一,其规定杜仲皮中[/font]PDG[font=宋体]的质量分数不得少于[/font]0.10%[sup][color=black][5][/color][/sup][font=宋体]。此外,杜仲不同部位(皮、叶、枝)所富含的成分种类、含量在一定程度上均存在差异,如在杜仲皮中以木脂素类化合物为主,并且其数量和含量均为最高;杜仲叶中活性最高的是黄酮类化合物,如槲皮素、山柰酚、芦丁等;雄花中富含环烯醚萜类化合物杜仲苷、京尼平苷、桃叶珊瑚苷等,而种子中则更多偏向于不饱和脂肪酸[/font][sup][color=black][6][/color][/sup][font=宋体]。王传森等[/font][sup][color=black][7][/color][/sup][font=宋体]归纳总结了近[/font]10[font=宋体]种杜仲中具有神经保护作用的化学成分,其中包括木脂素类化合物[/font]PDG[font=宋体]、松脂醇,环烯醚萜类化合物桃叶珊瑚苷、京尼平苷、京尼平苷酸,黄酮类化合物槲皮素、黄芩素、千层纸素,以及苯丙素类化合物绿原酸、隐绿原酸、阿魏酸,上述活性成分可从抑制炎症反应、调控细胞凋亡、改善脑内神经递质水平等多重角度发挥神经保护作用,也为杜仲防治神经退行性疾病提供了较为充分的现代生物学证据。 [/font][b][color=#ffffff][back=#0080ff]2 [font=黑体]防治神经退行性疾病的作用机制[/font][/back][/color][/b]2.1 [font=黑体]抗氧化应激[/font][b][font=宋体]、[/font][/b][font=黑体]抗炎[/font][font=宋体]生理状态下,机体产生的活性氧簇([/font]reactive oxygen species[font=宋体],[/font]ROS[font=宋体])可被体内超氧化物歧化酶([/font]superoxide sismutase[font=宋体],[/font]SOD[font=宋体])和谷胱甘肽过氧化酶([/font]glutathione peroxidase[font=宋体],[/font]GSH-Px[font=宋体])等抗氧化系统清除,其生成和清除过程处于动态平衡,以维持内环境稳定,而病理情况下机体生成[/font]ROS[font=宋体]的速度远远超过内源清除能力,以致[/font]ROS[font=宋体]大量堆积,使胞内[/font]DNA[font=宋体]、蛋白质、脂质等大分子化合物处于过氧化状态,不能发挥其正常生理功能[/font][sup][color=black][8][/color][/sup][font=宋体]。杜仲发挥抗氧化应激主要是通过维持[/font]SOD[font=宋体]、[/font]GSH-Px[font=宋体]、过氧化氢酶([/font]catalase[font=宋体],[/font]CAT[font=宋体])活性,并降低丙二醛([/font]malondialdehyde[font=宋体],[/font]MDA[font=宋体])的含量,以提高脑组织抗氧化能力及细胞活力、减轻氧化损伤[/font][sup][color=black][9-10][/color][/sup][font=宋体]。[/font]2019[font=宋体]年[/font]Zaplatic[font=宋体]等[/font][sup][color=black][11][/color][/sup][font=宋体]研究发现黄酮类化合物槲皮素能清除体内所积聚的羟基自由基([/font]OH[font=宋体])和[/font]ROS[font=宋体]以发挥神经保护作用,其机制可能与调控核因子[/font]- [font=宋体]红细胞[/font]2[font=宋体]相关因子[/font]2[font=宋体]([/font]nuclear factor-erythroid 2 related factor 2[font=宋体],[/font]Nrf2[font=宋体])、[/font]C-Jun[font=宋体]氨基末端激酶([/font]c-Jun [i]N[/i]-terminal kinase[font=宋体],[/font]JNK[font=宋体])、丝裂原活化蛋白激酶([/font]mitogen-activated proteinkinase[font=宋体],[/font]MAPK[font=宋体])等信号通路相关。[/font][font=宋体]除了氧化应激,炎症反应也是神经退行性疾病发病机制中的关键因素,过度的神经炎症会加剧神经细胞的损伤,进一步推进神经系统疾病的发生发展[/font][sup][color=black][12][/color][/sup][font=宋体]。[/font]Kwon[font=宋体]等[/font][sup][color=black][13][/color][/sup][font=宋体]报道杜仲提取物能下调脂多糖诱导的环氧合酶[/font]-2[font=宋体]([/font]cyclooxygenase[font=宋体],[/font]COX-2[font=宋体])、一氧化氮合酶([/font]nitric oxide synthase[font=宋体],[/font]NOS[font=宋体])、肿瘤坏死因子[/font]-α[font=宋体]([/font]tumor necrosis factor-α[font=宋体],[/font]TNF-α[font=宋体])、白细胞介素[/font]-1β[font=宋体]([/font]interleukin-1β[font=宋体],[/font]IL-1β[font=宋体])的表达。同时,杨志友等[/font][sup][color=black][14][/color][/sup][font=宋体]也发现杜仲叶有效成分京尼平苷酸可通过调控[/font]p38 MAPK[font=宋体]、[/font]NF-κB[font=宋体]通路抑制[/font]TNF-α[font=宋体]、[/font]IL-1β[font=宋体]、白细胞介素[/font]-6[font=宋体]([/font]interleukin-6[font=宋体],[/font]IL-6[font=宋体])分泌。以上研究结果表明杜仲具有良好的抗氧化应激、抗炎功效。[/font]2.2 [font=黑体]抑制神经细胞凋亡[/font][font=宋体]细胞凋亡是由凋亡基因所控制的细胞自主有序的死亡,目的是维持人体内环境稳定。凋亡生理过程涉及一系列基因的激活、表达及调控,如促凋亡基因[/font]B[font=宋体]淋巴细胞瘤[/font]-2[font=宋体]相关[/font]X[font=宋体]蛋白([/font]B-cell lymphoma-2 associated X protein[font=宋体],[/font][i]Bax[/i][font=宋体])[/font][font=宋体]、胱氨酸天冬氨酸蛋白酶([/font]cysteinasparate protease[font=宋体],[/font][i]Caspase[/i][font=宋体]),抗凋亡基因[/font]B[font=宋体]淋巴细胞瘤[/font]-2[font=宋体]([/font]B-cell lymphoma-2[font=宋体],[/font]Bcl-2[font=宋体])[/font][font=宋体],抑癌基因[/font][i]p53[/i][font=宋体]以及癌基因[/font][i]C-myc[/i][font=宋体]等[/font][sup][color=black][15][/color][/sup][font=宋体]。研究表明,神经退行性疾病发生时海马组织细胞存在不同程度的凋亡水平,[/font]Bcl-2/Bax[font=宋体]水平降低,神经元凋亡率也明显升高[/font][sup][color=black][16][/color][/sup][font=宋体]。杜仲中多种化学成分均可抑制细胞凋亡,其中极具代表性的是[/font]PDG[font=宋体]。[/font]PDG[font=宋体]可上调抗凋亡基因[/font]Bcl-2[font=宋体]相关蛋白表达,具有良好的抑制神经细胞凋亡的作用[/font][sup][color=black][17][/color][/sup][font=宋体]。此外,桃叶珊瑚苷和绿原酸也具有类似功效,如在大鼠肾上腺嗜铬细胞瘤细胞([/font]adrenai pheochromocytoma cells[font=宋体],[/font]PC12[font=宋体])实验中,绿原酸可抑制乙醇诱导的细胞凋亡,降低血清中[/font]Caspase-3[font=宋体]的表达水平;桃叶珊瑚苷则可通过抑制神经细胞凋亡,显著改善神经退行性疾病动物模型的运动及认知功能[/font][sup][color=black][18][/color][/sup][font=宋体]。[/font]2.3 [font=黑体]改善血管内皮功能障碍[/font][b][font=宋体],[/font][/b][font=黑体]促进血管新生[/font][font=宋体]血管内皮功能障碍和脑血管舒缩反应性受损是神经退行性疾病的神经学早期变化,有研究观察到神经退行性疾病更是多与脑小血管疾病合并出现,因此积极促进血管再生是克服持续微血管功能障碍的关键[/font][sup][color=black][19][/color][/sup][font=宋体]。杜仲提取液可调控大鼠内皮细胞基质金属蛋白酶[/font]2[font=宋体]([/font]matrix metalloproteinase 2[font=宋体],[/font]MMP-2[font=宋体])和组织金属蛋白酶抑制因子([/font]tissue inhibitor of metalloproteinase 2[font=宋体],[/font]TIMP-2[font=宋体])的表达,参与血管内皮基质调节,促进血管新生、重构[/font][sup][color=black][20][/color][/sup][font=宋体]。全杜仲胶囊可升高血清中血管内皮生长因子([/font]vascular endothelial growth factor[font=宋体],[/font]VEGF[font=宋体])、成纤维细胞生成因子([/font]basic fibroblast growth factor[font=宋体],[/font]bFGF[font=宋体])表达水平,对治疗股骨头缺血性坏死起着协同作用[/font][sup][color=black][21][/color][/sup][font=宋体]。内皮祖细胞是血管内皮细胞的前体,在诱导血管生成和血管修复方面发挥重要作用。有研究表明杜仲中的槲皮素具有动员内皮祖细胞([/font]endothelial progenitor cell[font=宋体],[/font]EPCs[font=宋体])归巢的功能,可通过激活磷脂酰肌醇[/font]-3-[font=宋体]羟激酶([/font]phosphatidylinositol-3-hydroxykinase[font=宋体],[/font]PI3K[font=宋体])[/font]/[font=宋体]蛋白激酶[/font]B[font=宋体]([/font]protein kinase B[font=宋体],[/font]Akt[font=宋体])[/font][font=宋体]信号通路,促进血清中[/font]EPCs[font=宋体]增殖分化,穿过血脑屏障到达病灶区,以修复受损脑血管[/font][sup][color=black][22][/color][/sup][font=宋体]。同为黄酮类成分千层纸素能提高[/font]EPCs[font=宋体]的迁徙能力,更好地促进血管新生[/font][sup][color=black][23][/color][/sup][font=宋体]。[/font]2.4 [font=黑体]提高神经突触可塑性[/font][font=宋体]突触可塑性作为神经功能网络重建的基础,是大脑学习、记忆的基本神经生物机制,在神经退行性疾病的治疗中具有重要意义。杜仲水提物具有与神经生长因子相似的诱导功能,可促使[/font]PC12[font=宋体]细胞胞体变大、逐渐伸出突触,分化为具有神经细胞形态特征的神经元样细胞[/font][sup][color=black][24][/color][/sup][font=宋体]。张秀峰等[/font][sup][color=black][25][/color][/sup][font=宋体]提出杜仲叶总黄酮可通过调控[/font]Ras[font=宋体]同源基因家族蛋白[/font]A/Rho[font=宋体]相关卷曲螺旋蛋白激酶([/font]Ras homolog gene family memberA/Rho associted coiled coil forming protein kinase[font=宋体],[/font]RhoA/ROCK[font=宋体])通路激活神经元骨架结构改变,促使神经元及突触生长相关蛋白表达,达到抑制脑出血后血肿周围组织神经元损伤、凋亡及修复神经功能的目的。同时,[/font]Kim[font=宋体]等[/font][sup][color=black][26][/color][/sup][font=宋体]通过体外实验发现桃叶珊瑚苷也可以促进神经干细胞的神经元标志物表达,并增加海马干细胞中神经元树突的延伸率。此外,该实验还探讨了桃叶珊瑚苷是否可以改善坐骨神经损伤大鼠的受伤轴突,结果显示其不仅可以促进轴突再生,还能增加生长轴突的厚度。[/font]2.5 [font=黑体]保护线粒体功能[/font][font=宋体]线粒体稳态失衡已被确定为多种神经退行性疾病的中心机制,线粒体功能障碍不仅会影响细胞氧化磷酸化,还会造成[/font]ROS[font=宋体]、钙离子堆积,引起神经元损伤或凋亡[/font][sup][color=black][27][/color][/sup][font=宋体]。据报道,槲皮素可作为线粒体解偶联剂,通过降低线粒体膜电位水平来改善线粒体功能障碍,并恢复三磷酸腺苷([/font]adenosine triphosphate[font=宋体],[/font]ATP[font=宋体])[/font][font=宋体]合成,保证对细胞的能量供应[/font][sup][color=black][28][/color][/sup][font=宋体]。[/font]Wang[font=宋体]等[/font][sup][color=black][29][/color][/sup][font=宋体]则认为槲皮素对线粒体的保护作用可能是依赖于促进线粒体[/font]Keima[font=宋体]荧光蛋白表达,以此来增强[/font]SOD[font=宋体]活性、抑制[/font]α-[font=宋体]突触核蛋白([/font]α-synuclein[font=宋体],[/font]α-Syn[font=宋体])积累、减少线粒体损伤,进而延缓疾病的进展。另外,线粒体蛋白、线粒体转录因子在维持线粒体功能和生物合成中也起到重要作用,在[/font]1-[font=宋体]甲基[/font]-4-[font=宋体]苯基吡啶离子([/font]1-methy-4-phenylpyridine[font=宋体],[/font]MPP[sup]+[/sup][font=宋体])诱导多巴胺([/font]dopamine[font=宋体],[/font]DA[font=宋体])能神经元线粒体损伤的实验中,[/font]Kang[font=宋体]等[/font][sup][color=black][30][/color][/sup][font=宋体]发现,槲皮素能升高[/font]MPP[sup]+[/sup][font=宋体]所抑制的线粒体蛋白、线粒体转录因子表达水平,且显著减轻线粒体破碎、维持线粒体长度,进一步验证了杜仲的线粒体保护作用。[/font]2.6 [font=黑体]重塑肠道菌群作用[/font][font=宋体]肠道微生物作为胃肠道与大脑之间的“桥梁”,其中菌群的代谢产物脂多糖、胆汁酸、短链脂肪酸及氧化三甲胺等均会通过多种分子机制干预疾病的发展[/font][sup][color=black][31][/color][/sup][font=宋体]。目前,国内外已有大量研究通过采用益生菌定殖和定向重塑肠道菌群来治疗神经退行性疾病,如[/font]2022[font=宋体]年[/font]Zhu[font=宋体]等[/font][sup][color=black][32][/color][/sup][font=宋体]给予[/font]AD[font=宋体]小鼠[/font]ig 2[font=宋体]种不同来源的短双歧杆菌,结果发现短双歧杆菌可有效提高肠道内短链脂肪酸的水平,修复受损的肠道上皮屏障,预防神经炎症的发生,改善[/font]AD[font=宋体]小鼠认知障碍。[/font]Wang[font=宋体]等[/font][sup][color=black][33][/color][/sup][font=宋体]使用植物乳杆菌联合美金刚治疗[/font]AD[font=宋体],发现植物乳杆菌可通过重塑肠道菌群以增强美金刚的疗效。杜仲提取物不仅可升高高脂血症大鼠模型肠道内厚壁菌门及疣微菌门丰度,降低拟杆菌门、变形菌门等有害菌丰度,较好地调控脂代谢紊乱,还可以通过影响肠道菌群调控机体多糖的分解和吸收能力,促进小鼠海马齿状回神经干细胞的分化存活,提高其学习记忆能力[/font][sup][color=black][34-35][/color][/sup][font=宋体]。[/font]2.7 [font=黑体]调节下丘脑[/font][b]-[/b][font=黑体]垂体[/font][b]-[/b][font=黑体]肾上腺轴[/font][b][font=宋体]([/font]hypothalamic-pituitary-adrenal[font=宋体],[/font]HPA[font=宋体])[/font][/b][font=黑体]轴相关神经递质[

  • 干细胞研究或迎来“黄金时代”

    10多年来,干细胞疗法一直被认为能够给那些遭受遗传和退行性疾病折磨的人带来希望。而就在几天前,随着两个研究团队在于日本横滨召开的国际干细胞研究学会(ISSCR)年会上宣告了他们在人类临床研究中取得的成果——一项聚焦于罕见的遗传神经病,另一项则着眼于老年人的视力丧失,这一希望又朝着现实迈出了一步。  美国加利福尼亚州纽瓦克市干细胞公司报告了用人体神经干细胞治疗梅氏病(PMD)所取得的鼓舞人心的研究成果。PMD是一种渐进式的致命疾病,该病通过基因突变抑制了髓鞘的正常生长,后者是大脑中包裹神经纤维的一种保护物质。缺乏髓鞘,神经信号便会流失;病人,通常是婴儿,便会经历运动协调能力退化以及其他神经病症状。据干细胞公司负责研究的副总裁Ann Tsukamoto介绍,该公司之所以选择PMD来测试其神经干细胞技术,缘于目前尚没有这种疾病的治疗方法,且通过基因检测和磁共振成像能够确诊这种疾病。她说:“这便为最有效的早期介入创造了一个机会。”  该公司建立了一个从成熟神经组织中分离出的高度纯化的神经干细胞库。研究人员将这些神经干细胞注入啮齿动物体内后,它们并没有形成肿瘤,事实上,这些细胞在小鼠的大脑中游走,并分化成不同类型的神经细胞,其中就包括分泌能够保护神经纤维的髓鞘的细胞。Tsukamoto介绍说,当神经干细胞被注入小鼠后,它们表现出了“强大的移植和迁移能力,并形成新的髓鞘”。  该公司如今正赞助对4名PMD婴幼儿患者进行该技术的初期安全试验。加利福尼亚大学旧金山分校的研究人员,向每位患者大脑中的4个区域中的每一个区域移植了7500万个神经干细胞,并随之进行了免疫抑制治疗,这样受体才不会排斥外来的细胞。Tsukamoto报告说,在试验过程中并没有出现安全隐患。此外,在18个月后进行的磁共振成像显示,在轴突周围形成了新的髓鞘,并且对患者进行的临床观察表明,他们的运动机能保持稳定或出现了小幅提升。干细胞公司如今正计划进行更大规模的试验。Tsukamoto表示,一旦这种疗法被证明是有效的,它将带来多发性硬化、大脑性麻痹和阿尔茨海默氏症的神经干细胞新疗法。  在这次会议上,神户市日本理化研究所(RIKEN)发育生物学中心的干细胞研究人员Masayo Takahashi,报告了她的研究小组在针对与年龄相关的黄斑变性(AMD)的临床前研究所取得的进展。在AMD中,视网膜色素上皮(RPE)细胞的生长出现了问题,并且位于视网膜下部的血管出现了渗漏。这些情况导致眼睛中心部位的视力下降。Takahashi的研究小组研制出一种方法,即用外科手术摘除有问题的血管,同时用源自病人自身细胞的新RPE细胞替代受损的RPE细胞。利用被称为细胞再编程的一项技术,研究人员采集了病人的皮肤细胞,并将其转化为所谓的诱导多能干(iPS)细胞,这种细胞能够分化成人体中的所有细胞。研究人员随后将iPS细胞转化为RPE细胞。由于iPS方法使用的是病人自身的细胞,因此避免了对免疫抑制药物的需求。  由Takahashi小组生成的RPE细胞表现出了真正人体RPE细胞的特征结构和基因表达模式。她报告说,将它们注入小鼠并没有引发肿瘤,并且这些细胞在移植到猴子体内后存活了6个多月。Takahashi希望在得到必要的批准后,能够在1年内开展人体试验。  英国剑桥研究学院癌症中心的干细胞研究人员Fiona Watt指出,在ISSCR上发表的这些研究结果将帮助该领域“积攒力量”。而美国哈佛医学院的干细胞科学家George Daley则更为乐观。他说,记住这次年会上报告的这些进展;并表示对明年在波士顿召开的2013年ISSCR年会充满期待。

  • 坐骨神经痛应用低频电刺激治疗是否有起效

    坐骨神经是支配下肢的主要神经,当坐骨神经病变,沿坐骨神经通路即腰、臀部、大腿后、小腿后外侧和足外侧发生的疼痛症状群,称为坐骨神经痛。若疼痛反复发作,迁延不愈则会出现患侧下肢肌肉萎缩,或出现跛行,属于腰腿痛的范畴。 本病男性青壮年多见,近些年来尤其常见于做办公室工作和使用电脑时间过长的人群。疼痛程度及时间常与病因及起病缓急有关。 坐骨神经痛可分为原发性和继发性两大类: 原发性坐骨神经痛 原发性为坐骨神经的炎症引起的疼痛,以单侧者居多,可常和肌纤维炎同时发生。主要发病原因为寒冷潮湿及扁桃腺炎、前列腺炎、牙龈炎、鼻窦炎等其他炎症病灶感染,有的同时伴发肌炎及肌纤维组织炎。 继发性坐骨神经痛 继发性坐骨神经痛由于邻近病变的压迫或刺激引起,又分为根性和干性坐骨神经痛,分别指受压部位是在神经根还是在神经干。根性多见,病因以椎间盘突出最常见,其他病因有椎管内肿瘤、椎体转移病、腰椎结核、腰椎管狭窄等;干性可由骶髂关节炎、盆腔内肿瘤、妊娠子宫压迫、髋关节炎、臀部外伤、糖尿病等所致。 对于继发性坐骨神经痛,需要在进行原发病治疗的基础上进行疼痛的缓解。在坐骨神经痛急性发作期,应该按照以下方式进行相应的缓解治疗。 1、卧床休息: 特别是椎间盘突出早期卧硬床休息3-4周,有的患者症状自行缓解。 2、应针对病因治疗: 腰椎间盘脱出急性期卧硬板床休息1-2周常可使症状稳定。 3、药物治疗: 可根据个人情况服用相应的非甾体类镇痛药(遵医嘱)。 4、[b]低频电刺激治疗[/b]: 可先进行止痛,后选用促进血液循环的方案。在进行相应疼痛症状缓解的同时,改善神经周围及走行处血液循环及其他组织的生理功能。 非急性期可采取运动疗法进行缓解及预防,运动疗法仅适用于早期腰椎间盘突出症、先天性腰椎管狭窄症和梨状肌综合征等病所致的坐骨神经痛。 造成坐骨神经痛的病因有很多种,在选择相应治疗方案的时候一定要根据不同类型的坐骨神经痛进行相应的治疗。同时低频神经肌肉治疗中的血液循环和止痛方案可以应用在疼痛缓解和对神经、肌肉、血管生理功能恢复中。并且在日常生活中正确的坐姿、站姿对于疾病的预防和缓解都是非常有帮助的。培养健康的生活习惯,才是治疗疾病最佳的“良医妙药”。

  • 生物疫苗再次成为医药市场热点

    生物疫苗再次成为医药市场热点随着进入流感高发期,生物疫苗再次成为医药市场热点。2013年美国全国爆发史上最严重的流感疫情,不但提早来袭,蔓延速度也快,至今已蔓延到美国50个州中的47个州,多地出现紧急状态,有的州报告出现大范围流感病例,波士顿等城市已因流感进入紧急状态,纽约州也近2万人染病。由于疫情严重,美国纽约州卫生部门放宽条例,让原本只能给18岁以上成人注射疫苗的药房为小孩和婴儿注射此类疫苗。除了美国,欧洲今年的流感季也提早来袭,不过欧洲的流感菌株比较温和,因此目前流感疫情还不算严重。日本、加沙地带、阿尔及利亚和刚果近来的流感病例也有上升的趋势。中国同样也受到了流感的严重肆虐。江西省卫生厅2013年12月18日证实,近日,江西省南昌市一名73岁女子罹患H10N8甲型禽流感,12月6日因呼吸衰竭、休克死亡。与此同时,各地也纷纷推出应对措施,17日下午,广东省计生委召开全省卫生计生系统人感染H7N9流感防控电视电话会议,强调对有发热、明显流感样症状及有禽类接触史者,一定要在发病48小时内尽早足量使用达菲等神经氨酸抑制剂治疗,若因使用达菲不及时导致病情延误,将严肃追究医院领导和当事医生的责任。受“十二五”规划利好政策支持。生物及医药工业“十二五”规划中均明确指出要积极开展干细胞等细胞治疗产品的研究,重点研发针对恶性肿瘤、自身免疫性疾病等重大疾病的干细胞和免疫细胞等细胞治疗产品。在此基础上,受到全球因流感侵袭而对疫苗行业极大的关注,这很可能对疫苗制药行业带来巨大的投资机遇。

  • Gut:益生菌和肠道疾病相关性的研究新进展

    益生菌来源于传统发酵食品、有益的共生环境以及周围环境中。益生菌可以通过多种机制影响肠道固有菌群的组成以及功能、促进肠上皮细胞更新,并影响肠道免疫应答。益生菌已被证实在一些已知肠道菌群紊乱的临床疾病使用,具有一定的临床效果,如过敏性皮炎、坏死性小肠结肠炎、储袋炎以及肠易激惹综合征等。然而,并没有研究对益生菌引起的肠道菌群改变和有因果联系的临床症状改善之间的相关性进行研究。是否易于导致疾病发生的肠道菌群状态是否可以通过益生菌制品的应用而达到一个更加健康、适应性更强的一种无病状态仍然是一个悬而未决的难题。既往研究多集中在利用某种疾病的动物模型或相关人群研究益生菌对疾病状态的影响,而现今人们开始将目光转向研究健康状态下益生菌对疾病发生的预防作用。 http://img.dxycdn.com/cms/upload/userfiles/image/2013/12/19/383038660_small.jpg图1. 益生菌的来源及其在人群中的主要作用美国科罗拉多世纪乳业文化技术产业Mary Ellen Sanders等人对益生菌在治疗或预防胃肠道疾病方面的研究进展进行了更新性综述。包括益生菌对肠易激惹综合征、感染性腹泻(包括院内感染)、炎症性肠病、坏死性小肠结肠炎以及结直肠癌的发生和治疗这些疾病状态的影响,以及益生菌在降低肠道感染性疾病、过敏性疾病发生率,改善肠道功能和免疫状态方面的作用等。主要内容简介如下:肠易激惹综合征虽然初步研究证实在肠易激惹综合征患者中存在肠道菌群的改变,但这种改变究竟是造成肠易激惹综合征发生的原因,还是肠易激惹综合征发生后所诱发的结果目前尚不明确。在啮齿类动物研究中发现益生菌能够影响肠道神经系统以及大脑信号转导,能够改善内脏痛觉反射。Mogyyedi等人对19项随机对照研究中共1650名肠易激惹综合征患者使用益生菌治疗的研究进行了综述,结果指出益生菌对症状的改善显著优于安慰剂组,但所纳入的实验收到样本量过小、使用益生菌菌株不一致等条件限制,影响了结果的可靠性。感染性腹泻在发展中地区进行的研究表明,急性感染性腹泻使用益生菌(布拉迪酵母菌、鼠李糖乳杆菌等)可以明显缩短腹泻的持续时间,对于持续性腹泻也可显著改善症状(腹泻持续时间至少缩短4天)。同时,益生菌可以降低医院内抗生素相关性腹泻、轮状病毒感染性腹泻的发生几率(发生率降低40-60%),对儿童患者安全性较好。但对于益生菌是否对艰难梭菌感染引起的腹泻是否有效尚存争议。炎症性肠病虽然动物实验和机制学说证实益生菌制剂对炎症性肠病治疗有效,但临床应用上并未达到预期的效果,特别是克罗恩病。益生菌制剂在克罗恩病的治疗和复发的预防中研究的结果并不一致。而对溃疡性结肠炎,研究证实乳酸杆菌、双歧杆菌和链球菌组合的益生菌制剂可以使患者受益。尼氏大肠杆菌在轻、中、重度溃疡性结肠炎患者中使用,可有助于诱导及维持缓解。益生菌的使用可以预防储袋炎的发生,并可降低应用抗生素成功治疗后的炎症复发。炎症性肠病,与结直肠癌、胃癌、非酒精性脂肪性肝炎以及自身免疫性疾病一样,存在基因、固有菌群以及环境因素的共同影响,存在很大的异质性。所以单一固定成分的益生菌制品难以在所有患者中获得疗效。在炎症性肠病中存在有160多个基因多态性,涉及粘膜屏障功能缺陷、粘膜愈合缺陷、细菌识别缺陷、细菌杀灭缺陷、免疫调节异常等多种功能异常。对于肠道内环境紊乱的患者而言,单纯的利用传统的益生菌制剂抑制有害细菌生长可能会得到事与愿违的结果,而恢复内环境的稳态,补充固有菌群,如柔嫩梭菌和芽孢梭菌等等反而效果更好。例如,炎症性肠病相关基因有一类可以调节粘液糖基化,如Fut2可编码α1,2-岩藻糖基转移酶,该基因异常与肠道菌群组成失调有关,在这种情况下改变肠道菌群状态、补充益生菌即可得到较好的治疗效果。提取自益生菌或人工合成的益生菌主要成分,能够保护整个肠道的内环境稳态,对于辅助炎症性肠病治疗也是有益的。例如低聚果糖和菊粉就具有选择性增强肠道内生性固有菌群的生长和功能而减少有害细菌生长的作用,并可增加有益于肠粘膜上皮细胞代谢的短链脂肪酸的含量,有利于损伤粘膜的愈合。可见益生菌应用在炎症性肠病治疗中有广阔的前景,但仍需对益生菌的组成和如何实现个体化治疗进行进一步的研究。坏死性小肠结肠炎与足月儿相比较,早产儿的肠道菌群组成有所不同,而这种异常将会增加早产儿罹患坏死性小肠结肠炎的可能。在坏死性小肠结肠炎患儿体内,厚壁菌门数目减少,而γ变形菌门数目增多。Meta分析结果显示,联合应用乳酸菌、双歧杆菌、酵母菌和/或S-嗜热链球菌组合的益生菌可以降低坏死性小肠结肠炎的发病率并降低整体死亡率。虽然美国儿科学会承认有证据证实极低体重儿应用益生菌制剂可以有效预防坏死性小肠结肠炎的发生,但在将其列入指南推荐条目的话还需要更多的实验研究验证益生菌有效的剂量和菌属组成。癌症和癌症治疗大量研究结果证实环境因素,如肥胖和饮食习惯等与结直肠癌的发生密切相关。而这些环境因素又会引起肠道固有菌群的失衡。动物实验也指出传统小鼠与无菌处理小鼠相比较结直肠癌发病率更高且肿瘤体积更大。这些实验结果均指出肠道固有菌群与结直肠癌的发病相关,但两者之间的因果关系尚不清楚。Sears等人研究指出产肠毒素B脆弱杆菌可以靶向引起E-cadherin分解,促发肠道炎症反应,增加结直肠癌的发病风险。也有研究指出与健康人群相比较,结直肠癌患者肠道菌群密度减少、组成改变、具核梭杆菌数目增多。动物实验证实益生菌对癌前病变和肿瘤有一定疗效,其潜在机制可能为改变肠道固有菌群及其代谢、改变肠道pH值、降低某些癌基因的活性、增强机体免疫应答、减轻肠道炎症、降低上皮增殖速度并促进凋亡等。生物标记研究指出合生元可以减轻粪便中水的代谢产物引起的基因毒性损伤。目前的研究一致认为合生元制剂在影响和改变结直肠癌发病风险方面比单一的益生菌或益生元制剂效果要好。对肿瘤治疗而言,益生菌制剂有助于减轻肿瘤放疗和化疗的副反应。动物实验中发现在无菌小鼠或使用抗生素处理后的荷瘤小鼠,更容易对放疗产生耐受。鼠李糖乳杆菌可以通过TLR2-、COX2-、MyD88依赖模式减轻肠道损伤和促进肠上皮细胞凋亡。研究益生菌制剂保健作用的挑战基础研究结果展现出诱人的前景,但在研究成果向有效应用产品转化的过程中仍存在很多问题。如成果转让和技术转化的监管问题,这一领域就涉及怎样设计人群的临床试验研究才能开发出具有重大科学意义的相适应的产品,对于不同的疾病或不同的人体状态,怎样的益生元组成配比和剂量能获得最大的收益等都是亟需解决的问题。益生菌引起的健康人群有意义的生理变化也需要更好的定义及测量方法。益生菌产品对人群生活质量影响的指标效应评估、广泛使用的安全性和有效性、对社会经济的影响都需要在纳入各种推荐指南前进行更严谨更有效的基础及临床的实验研究。

  • Nat Chem Biol:古老中草药治疗的分子秘密

    http://www.bioon.com/biology/UploadFiles/201202/2012021423545689.jpg约二千年以来,中医一直用一种通常称为常山的根提取物治疗疟疾,其中常山来自一类生长在西藏和尼泊尔的八仙花属植物。最近的研究表明,常山酮(溴氯哌喹酮)也可以用来治疗许多种自身免疫性疾病,其中常山酮是一种衍生自这种提取物活性成分的化合物。现在,哈佛大学牙科医学院的研究人员已经发现这种中草药提取物粉末背后的分子秘密。已证明常山酮(HF)触发一种阻断一类有害免疫细胞发展的应激反应通路,这类有害免疫细胞称为Th 17细胞,它被牵涉入许多自身免疫性疾病中。"HF防止自体免疫反应,不完全抑制免疫力",此项新研究的通讯作者、哈佛大学牙科医学院发育生物学教授 Malcolm Whitman说,"这种化合物能激发各种自身免疫性疾病的新治疗方法"。"这项研究是一个如何解决传统草药分子机制的令人兴奋的例子,它可导致生理调节的新见解和治疗疾病的新方法",Tracy Keller说,他是Whitman实验室的一名讲师,也是此文章的第一作者。这项研究包括一个马萨诸塞州总医院和其他地方的跨学科研究小组的研究人员,其中包括一个多学科小组的研究人员在和其他地方,它将被在线发表在2月12日的Nature Chemical Biology上。以前的研究已经表明,HF减少组织内疤痕、硬皮症(一种皮肤紧缩症)、多发性硬化症、瘢痕形成甚至癌演进。"我们认为,HF必须作用于有许多下游效应的信号通路", Keller说。在2009年,Keller和同事们报道,HF在不影响其他有益的免疫细胞情况下保护免受有害的Th17免疫细胞。自2006年被识别以来,Th 17细胞是暗含在许多象炎症性肠疾病、类风湿性关节炎、多发性硬化症和牛皮癣一样的自身免疫性疾病的"糟糕反应物"。研究人员发现,小剂量HF降低小鼠模型上的多发性硬化症。照这样,它是药物的新军械库其中之一,这种药物选择性地抑制自身免疫性病理不整体性地抑制免疫系统。进一步分析表明,HF某种程度上打开一个参与新近发现的称为氨基酸反应通路(AAR)的基因。科学家们最近才理解营养AAR传感通路在免疫调节与代谢信号中的作用。也有证据表明,它延长寿命并延迟热量限制动物研究中与年龄有关的炎症性疾病。作为一位分类自然资源保护学家,AAR让细胞知道它们什么时候需要保护资源。例如,当一个细胞感觉建造蛋白质的氨基酸的有限供应,AAR将阻断促进炎症的信号,因为发炎组织需要大量的蛋白质。"想想停电期间我们如何保养小果汁我们离开我们的设备上,上述聊天支持紧急呼叫",Whitman说,"细胞利用类似的逻辑"。对当前研究来说,研究人员调查研究HF如何激活AAR通路,寻找细胞用来将一个基因DNA编码翻译成构成蛋白质的氨基酸链的最基本过程。研究人员能追击称为脯氨酸的单一氨基酸,并发现HF靶向且抑制一种特异酶(tRNA合成酶,EPRS),这种特异酶负责将脯氨酸掺入通常含有脯氨酸的蛋白质中。当这发生时,AAR响应踢掉砸开并产生HF治疗的疗效。提供补充的脯氨酸逆转HF对Th 17细胞分化的效应,而添加回其他氨基酸没有逆转作用,为脯氨酸掺入建立HF特异性。补加的脯氨酸也逆转HF的其他治疗作用,抑制它抗疟疾的效应及与疤痕组织相关的特定细胞过程。再次,补充其他氨基酸却没有这样的效果。这样固定证据清楚地表明,HF特异地作用于受限制的脯氨酸。研究人员认为,HF治疗模仿了细胞内脯氨酸丧失,这激活AAR反应,并随后冲击免疫调节。研究人员还没完全了解氨基酸限制在疾病反应中的作用或限制脯氨酸为什么抑制Th 17细胞的产生。然而,"AAR通路显然是一个有趣的药物目标,且常山酮除了其潜在的治疗用途外是一种研究AAR通路的强大工具", Whitman说

  • 朊蛋白与免疫系统相互作用的新发现

    朊蛋白与免疫系统相互作用的新发现http://www.bioon.com/biology/UploadFiles/201112/2011123113381385.jpg  12月29日,据《每日科学》报道,痒病是一种神经退行性疾病,它可以作为其他由蛋白积累致组织畸形(蛋白质病)疾病的模型,如阿尔兹海默氏病和帕金森氏病。有关这些基因的许多问题仍然悬而未决。在一个新的博士论文研究中,发现了数个与阮蛋白(PrPSc,与疾病的发展有关)摄取相关的因子以及朊蛋白是如何与肠道内的免疫细胞相互作用。  羊瘙痒病属于一组被称为"传染性海绵状脑病(TSE)"的疾病,因为它们可以在动物个体之间传播,并导致大脑产生海绵状、退行性改变。这些疾病不仅折磨羊,还折磨牛(牛海绵状脑病,又称疯牛病,BSE)、鹿(鹿慢性消耗性疾病,又称疯鹿病,CWD)以及人类(克雅氏病CJD)。它们在一定程度上也可以在物种见传播,在20世纪90年代,超过200人经由食物感染而患上了克雅氏病。  传染性海绵状脑病(TSE),或者称阮病毒疾病,被认为是感染了一种能致病的蛋白质变体--朊蛋白,它是机体细胞的正常组成部分,在脑中含量最为丰富。一般而言,阮病毒疾病可能是传染的、遗传的或偶发/自发的。当正常的朊蛋白突变成致病的变种,疾病便发生了,变种朊蛋白在空间结构上与健康的朊蛋白不同。由于变种的朊蛋白具有不同的空间结构,机体细胞很难降解它,因此它就一直在积累。  因为朊蛋白(PrPSc)是在疾病早期在肠道系统的淋巴组织中被发现,推测它是经由肠胃道传染。在兽医学家Caroline Piercey Akesson博士研究杂交仪期间,研究了朊蛋白在肠道内的吸收,从而对疾病发展的早期阶段所发生的过程有了新的了解。与早先的推测相反,她通过免疫电镜证明阮蛋白不是直接从肠道转运到肠道相关的的淋巴组织。相反,她发现朊蛋白自由地穿过或穿进肠道淋巴组织之外的淋巴细胞。  树突状细胞据推测发挥着"看门人"的作用,它决定机体能容忍什么以及当面对外来物时该策划哪一种免疫防御反应。Akeeson的目标之一就是树突细胞与朊蛋白摄取之间的相互作用。首先,需要了解正常的羊肠道内树突状细胞的特点;其次,去调查哪一类型的细胞与阮病毒的摄取有关。  她的研究结果表明,不是树突状细胞,而是巨噬细胞负责朊蛋白的摄取。Akesson的研究揭示,朊蛋白利用了肠道中大分子物质摄取的正常生理通道,这可能对机体的免疫监视系统有显著影响。一个可能的后果就是免疫耐受被激活,从而阻碍了肠道对所吸收的朊蛋白的正常免疫反应。  今后的研究能够揭示免疫细胞是如何运输朊蛋白及机体是如何处理朊蛋白,这将具有非常重要的意义,不仅是为了提供更多的关于痒病的知识,还为研究人类和其他动物中神经退行性蛋白质病提供重要见解。  Caroline Piercey Akesson于12月20日在挪威兽医科学系进行了博士论文答辩,论文的题目是:研究阮病毒的摄取及其与羊肠道中免疫细胞的早期相互作用。

  • 【分享】生物制药行业基本情况介绍

    [center]生物制药行业基本情况介绍[/center]生物技术的发展可以划分为三个不同的阶段:传统生物技术、近代生物技术、现代生物技术。传统生物技术的技术特征是酿造技术,近代生物技术的技术特征是微生物发酵技术,现代生物技术的技术特征就是以基因工程为首要标志。本文所说的生物技术,是指现代生物技术,也可称之为生物工程。现代生物技术在70年代开始异军突起,近一、二十年来发展极为神速。它与微电子技术、新材料技术和新能源技术并列为影响未来国计民生的四大科学技术支柱,被认为是21世纪世界知识经济的核心。 生物技术的应用范围十分广泛,主要包括医药卫生、食品轻工、农牧渔业、能源工业、化学工业、冶金工业、环境保护等几个方面。其中医药卫生领域是现代生物技术最先登上的舞台,也是目前应用最广泛、成效最显著、发展最迅速、潜力也最大的一个领域。 生物技术在医药卫生领域的应用主要有以下三个方面: 1、是解决了过去用常规方法不能生产或者生产成本特别昂贵的药品的生产技术问题,开发出了一大批新的特效药物,如胰岛素、干扰素(IFN)、白细胞介素-2(IL-2)、组织血纤维蛋白溶酶原激活因子(TPA)、肿瘤坏死因子(TNF)、集落刺激因子(CSF)、人生长激素(HGH)、表皮生长因子(EGF)等等,这些药品可以分别用以防治诸如肿瘤、心脑肺血管、遗传性、免疫性、内分泌等严重威胁人类健康的疑难病症,而且在避免毒副作用方面明显优于传统药品。    2、是研制出了一些灵敏度高、性能专一、实用性强的临床诊断新设备,如体外诊断试剂、免疫诊断试剂盒等,并找到了某些疑难病症的发病原理和医治的崭新方法。我国的单克隆抗体诊断试剂市场前景良好。 3、是基因工程疫苗、菌苗的研制成功直至大规模生产为人类抵制传染病的侵袭,确保整个群体的优生优育展示了美好的前景。我国开发重点是乙肝基因疫苗。现代生物技术以再生的生物资源为原料生产生物药品,从而可获得过去难以得到的足够数量用于临床的研究与治疗。如1克胰岛素(h-Insulin)要从7.5公斤新鲜猪或牛胰脏组织中提取得到,而目前世界上糖尿病患者有6000万人,每人每年约需1克胰岛素,这样总计需从45亿公斤新鲜胰脏中提取,这实际上办不到的,而生物技术则很容易解决这一难题,利用基因工程的"工程菌"生产1克胰岛素,只需20升发酵液,它的价值是不能用金钱来计算的。本文主要探讨的对象就是生物制药业。 一、 生物制药业的重点发展领域  当传统化学制药和中医药在癌症、爱滋病、冠心病、贫血、骨质疏松、糖药病、心力衰竭、血友病、囊性纤维变性和罕见遗传疾病等恶性病症面前显得力不从心甚至束手无策时,生物医药则显示出巨大的市场潜力和良好的发展前景,这正是生物医药为世人所关注的根本所在。生物医药在以下几个领域的发展将最具潜力: 1. 肿瘤治疗方面:  全球范围内,肿瘤的死亡率高居榜首,美国每年用于肿瘤的治疗费用高达1020亿美元。肿瘤为多机制的复杂疾病,目前仍用早期诊断、放疗、化疗等综合手段治疗,疗效有限,且给病人带来较大的痛苦。彻底攻克癌症的艰巨任务只能靠生物医药来完成,目前治疗肿瘤药物确实存在一个所谓"敌我不分"的问题。在杀死癌细胞的同时,也杀死正常细胞。导向治疗就是针对这个问题提出来。所谓导向治疗就是利用抗体寻找靶标,如导弹的导航器,把药物准确引入病灶,而不伤及其他组织和细胞。目前,在284种开发的生物技术药物中,有40%用于肿瘤的治疗,对于肿瘤的发病机理的探讨、抗癌药物作用耙点的确定、抗癌新药的筛选,生物技术均表现出良好的发展前景。2. 神经退化性疾病的治疗:  神经退化性疾病如老年痴呆症、帕金森氏症、脑中风的治疗将越来越依靠生物制药的发展。仅美国每年的中风患者就有60万,死于中风人数高达15万,而治疗这类疾病的有效药物非常有限,尤其是治疗不可逆脑损伤的药物更少,胰岛素生长因子、神经生长因子、溶栓活性酶的研制为克服这些疾病带来了希望。  3. 自身免疫性疾病的治疗:  生物医药在自身免疫性疾病的治疗中将起到关键的作用。许多炎症由自身免疫缺陷引起,如哮喘、风湿性关节炎、多发性硬化症,全世界每年用于风湿性关节炎的医疗费用达上千亿美元,治疗这类顽固疾病的高效基因药物市场前景非常广阔。在自身免疫性疾病中,艾滋病(AIDS)是对人类危害最大的恶性疾病之一,对于艾滋病的防治,还未有有效特异性药物,但毫无疑问,人们已将征服艾滋病寄希望寄托于生物技术。4. 冠心病的治疗: 今后10年,防治冠心病的药物将是制药工业的重要增长点,单克隆抗体治疗冠心病的心绞痛和恢复心脏功能的成功,标志着治疗冠心病的生物医药诞生,这也预示着生物技术将在心脑血管疾病治疗方面发挥重要的作用。   5、血液替代品的研究与开发仍然占重要地位。血液制品是采用大批混合的人体血浆制成的,由于人血难免被各种病原体所污染,如爱滋病病毒及乙肝病毒等,通过输血而使患者感染爱滋病或乙型肝炎的案例时有发生,因此利用基因工程开发血液替代品引人注目。二、生物制药业的产业特征   生物制药业是典型的高新技术产业之一,具有高技术、高投入、高收益、高风险、低污染的特征。 高技术:不仅表现在对生产设备、生产环境的要求高,更主要表现在对参与者的素质的高标准、严要求;   高投入:一方面前期的研究开发周期长、费用高,另一方面还必须投入相当大的资金建造满足GMP要求与生物制品安全规范的洁净厂房及其他生产设施;   高收益:生物药品的高附加值在带来高额利润的同时,也导致产品价格偏高,给市场推广增加了一定的难度;   高风险:主要来自两个方面,一是研究开发失败的风险,二是市场风险,即研制出来的药品适应面不够广泛,市场容量太小,或者产品寿命周期太短,导致投资难以收回。

  • 【转帖】科学家首次发现人体自身可生产疫苗

    Vaccine Boosts Immune System, Helps Prevent Chronic Inflammation科学家首次发现人体自身可生产疫苗译者:Docofsoul ScienceDaily (Dec. 14, 2010) — Researchers at BRIC, the University of Copenhagen, have discovered that the human body can create its own vaccine, which boosts the immune system and helps prevent chronic inflammatory diseases. The researchers' results have just been published in the Journal of Clinical Investigation and may have significant consequences in developing new medicine.《每日科学》2010年12月14日报道—— 哥本哈根大学的BRIC科学家发现:人体本身能够制造疫苗,以此强化体内的免疫系统并有助于预防慢性炎性疾病。本研究成果已发表于《临床研究杂志》,可能对开发新的药物有重大意义。http://www.sciencedaily.com/images/2010/12/101214100242-large.jpg Professor Issazadeh-Navikas' group was able to show for the first time the ability of a self peptide to activate NKT cells to suppress many tissue-specific inflammatory conditions including experimental autoimmune diseases. (Credit: Image courtesy of University of Copenhagen)Issazadeh-Navikas教授的研究小组首次显示一种自身肽激发NKT细胞(自然杀伤T细胞——译者)来抑制包括自身免疫疾病在内的组织特异性炎性症状。(照片来源:哥本哈根大学)Researchers at the Biotech Research and Innovation Centre (BRIC) at the University of Copenhagen have discovered a protein normally found in the body that can act to prevent chronic tissue inflammation. When administered in the form of a therapeutic vaccine it is able to effectively prevent and treat a number of different inflammatory disease models for multiple sclerosis (MS), rheumatoid arthritis (RA), skin hypersensitivity and allergic asthma (AA).哥本哈根大学的生物技术研究与创新中心(BRIC)已经发现了一种正常情况下存在于体内的蛋白有预防慢性组织炎症的能力。当科学家把这种蛋白作为治疗性的疫苗来使用时,该蛋白能够有效预防并治疗多种不同炎症性疾病模型:多发性硬化症(MS)、风湿性关节炎(RA)、皮肤过敏与过敏性哮喘(AA)The results of this study have just been published by the Journal of Clinical Investigation in the article entitled "Endogenous collagen peptide activation of CD1d-restricted NKT cells ameliorates multiple tissue-specific inflammation in mice."本研究结果已发表于《临床研究杂志》,其标题为“内源性胶原蛋白激发CD1d限制性NKT细胞改善小鼠多发性组织特异性炎症”。The study was led by Principal Investigator Shohreh Issazadeh-Navikas, group leader for Neuroinflammation Unit at BRIC, and was the result of a translational collaboration involving researchers in Denmark, Sweden and Germany. The article culminates a decade's long search for ways to combat inflammation and inflammatory diseases.本研究由首席研究员、BRIC神经性炎症科室主任Shohreh Issazadeh-Navikas率队进行,是与丹麦、瑞士与德国研究者联手合作的成果。十年来相关医学研究领域不断探索与发炎以及炎症性疾病作斗争的方法,而这一成果正是该研究过程的最具代表性的成果。"The implications of the findings are large as they shed light on an important way that the body combats inflammation and autoimmunity. Moreover, they establish a therapeutic approach for using the newly discovered protein as a treatment for multiple conditions," says Shohreh Issazadeh-Navikas.Shohreh Issazadeh-Navikas指出: “这些发现的重大意义毋庸置疑,因为这项研究指明了人体抗击炎症与自身免疫疾病的重要方式。更进一步的是,这些发现创建一种新的治疗方法,即可以应用研究中所发现的蛋白来治疗多种疾病。”Many inflammatory and autoimmune diseases are chronic and affect a large majority of people. Moreover, there is an inflammatory component to many common diseases, such as Alzheimer's, Parkinson's, RA, AA, MS, type II diabetes and cancers. The vaccine discovered by the researchers boosts special cells of the immune system, called NKT cells.许多炎症与自身免疫疾病是慢性病,影响人口中大多数。尤其是,对许多普通疾病而言,比如说阿尔茨海默病、帕金森病、RA、AA、MS、2型糖尿病与癌症,均存在发炎症状。由本研究的科学家所发现的疫苗可以增进免疫系统中NKT这种特定细胞的免疫力。NKT cells are a type of T cell that exert profound and diverse regulatory effects in disease, from autoimmunity to responses to pathogens and cancer. For over two decades since their discovery NKT cells have traditionally been considered to be activated by lipid antigens presented by CD1 molecules. However, Professor Issazadeh-Navikas' group was able to show for the first time the ability of a self peptide to activate NKT cells to suppress many tissue-specific inflammatory conditions including experimental autoimmune diseases.NKT细胞是T细胞中的一类,对疾病(从自身免疫到对病原体的响应再到肿瘤)有形式多样的重要调节作用。自NKT细胞被发现的几十年来,相关研究领域一直认为由CD1分子提呈的脂类抗原负责激发这种

  • 【转帖】神经网络电活动增强快速调控抑制性突触稳态可塑性的分子机制

    神经网络电活动增强快速调控抑制性突触稳态可塑性的分子机制 于翔研究组发表了题为“Postsynaptic spiking homeostatically induces cell-autonomous regulation of inhibitory inputs via retrograde signaling”的文章,文中阐述了神经网络电活动增强快速调控抑制性突触稳态可塑性的分子机制,这一研究成果公布在The Journal of Neuroscience杂志封面上。发育中的神经网络需要兼顾生长与稳定这两种相辅相成的需求。稳态可塑性可通过调节兴奋性或抑制性突触传递从而维持神经网络的稳定。已报道的关于稳态可塑性机制方面的研究主要集中在其对兴奋性突触传递的调节,很少关注其对抑制性突触的调控。研究人员发现,在体外培养的海马神经元中,持续增强神经元电活动4小时能够诱导抑制性突触传递的稳态上调,且这一过程明显早于兴奋性突触的变化。抑制性突触传递的稳态调节依赖于突触后神经元自身电活动的改变,是一种自我调节方式。这种调控通过突触后神经元分泌的脑源性神经营养因子(BDNF)逆突触作用于突触前的抑制性神经末梢,从而增强其自身的抑制性突触输入。重要的是,对幼年大鼠腹腔注射红藻氨酸,从而在体增强神经电活动,能够在海马CA1区域的锥体神经元中诱导出这种抑制性突触传递的稳态调控。这些结果提示,抑制性突触传递的自治性稳态调控是神经元应对网络电活动增强的一个快速代偿性保护反应。

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制