当前位置: 仪器信息网 > 行业主题 > >

主成分元素分析

仪器信息网主成分元素分析专题为您整合主成分元素分析相关的最新文章,在主成分元素分析专题,您不仅可以免费浏览主成分元素分析的资讯, 同时您还可以浏览主成分元素分析的相关资料、解决方案,参与社区主成分元素分析话题讨论。

主成分元素分析相关的资讯

  • 多元素分析仪针对钢材的化学成分检测优势
    多元素分析仪针对钢材的化学成分检测优势 钢材中除了主要化学成分铁(Fe)以外,还含有少量的碳(C)、硅(Si)、锰(Mn)、磷(P)、硫(S)、钛(Ti)、钒(V)等元素,这些元素虽然含量少,但对钢材性能有很大影响: 南京麒麟科学仪器集团有限公司专业研发的QL-S3000C型电脑红外全能联测多元素分析仪针对钢铁材料检测,由红外和比色原理的精确检测,将理化实验室的配置搭配得尽善尽美,其对性能、质量及精度的要求完全达到了国际化标准,而投资的总价即实在又超值!采用计算机实现程序控制和数据处理。能快速、准确地测出钢铁和有色金属中多种元素的质量分数,自动化程度高,首创元素分析仪不定量称样功能,准确可靠,方便用户操作。 电脑红外全能联测多元素分析仪钢材的化学成分检测及其对钢材性能的影响1.碳。碳是决定钢材性能的最重要元素。碳对钢材性能的影响如图6-3所示:当钢中含碳量在0.8%以下时,随着含碳量的增加,钢材的强度和硬度提高,而塑性和韧性降低;但当含碳量在1.0%以上时,随着含碳量的增加,钢材的强度反而下降。随着含碳量的增加,钢材的焊接性能变差(含碳量大于0.3%的钢材,可焊性显著下降),冷脆性和时效敏感性增大,耐大气锈蚀性下降。一般工程所用碳素钢均为低碳钢,即含碳量小于0.25%;工程所用低合金钢,其含碳量小于0.52%。多元素分析仪针对钢材的化学成分检测优势2.硅。硅是作为脱氧剂而存在于钢中,是钢中的有益元素。硅含量较低(小于1.0%)时,能提高钢材的强度,而对塑性和韧性无明显影响。3.锰。锰是炼钢时用来脱氧去硫而存在于钢中的,是钢中的有益元素。锰具有很强的脱氧去硫能力,能消除或减轻氧、硫所引起的热脆性,大大改善钢材的热加工性能,同时能提高钢材的强度和硬度。锰是我国低合金结构钢中的主要合金元素。4.磷。磷是钢中很有害的元素。随着磷含量的增加,钢材的强度、屈强比、硬度均提高,而塑性和韧性显著降低。特别是温度愈低,对塑性和韧性的影响愈大,显著加大钢材的冷脆性。 磷也使钢材的可焊性显著降低。但磷可提高钢材的耐磨性和耐蚀性,故在低合金钢中可配合其他元素作为合金元素使用。5.硫。硫是钢中很有害的元素。硫的存在会加大钢材的热脆性,降低钢材的各种机械性能,也使钢材的可焊性、冲击韧性、耐疲劳性和抗腐蚀性等均降低。6.钛。钛是强脱氧剂。钛能显著提高强度,改善韧性、可焊性,但稍降低塑性。钛是常用的微量合金元素。7.钒。钒是弱脱氧剂。钒加入钢中可减弱碳和氮的不利影响,有效地提高强度,但有时也会增加焊接淬硬倾向,钒也是常用的微量合金元素。 南京麒麟科学仪器集团有限公司检测中心2016.06.22更多资料请登陆以下网站高频红外碳硫分析仪 http://www.jqilin.com红外碳硫仪 http://www.qilinyiqi88.com元素分析仪 http://www.qlfxy.com多元素分析仪 http://www.jqilin.net火花直读光谱仪 http://www.njqlyq.com碳硫分析仪器 http://www.njqilin.com
  • 中科院沈阳自动化所孙兰香LIBS团队:元素成分LIBS在线分析
    p style=" line-height: 1.5em text-align: justify " span style=" line-height: 1.5em "   strong   span style=" line-height: 1.5em font-size: 20px " 一、 中国科学院沈阳自动化研究所孙兰香团队风采 /span /strong /span /p p style=" line-height: 1.5em text-align: justify "   中国科学院沈阳自动化研究所LIBS团队由孙兰香研究员领衔,初创于2007年,目前有研究员1名,副研究员3名,助理研究员5名,在读博士研究生2名,硕士研究生5名,已毕业博士2名,硕士4名。 /p p style=" text-align: center" img src=" https://img1.17img.cn/17img/images/201812/uepic/7ca3c0e3-bae9-492c-a528-4f2108fb8e9a.jpg" title=" 微信图片_20181229105023.jpg" alt=" 微信图片_20181229105023.jpg" width=" 300" height=" 343" border=" 0" vspace=" 0" style=" width: 300px height: 343px " / /p p style=" line-height: 1.5em text-align: justify "   针对工业生产成分检测的需求,本团队致力于金属冶炼、选矿等行业的元素成分在线分析的研究,经过十多年的机理研究及研发产品迭代,攻克了冶金工业现场高温、多粉尘恶劣环境等多种问题,研发出多款适用于冶金、选矿、金属回收等多种领域的LIBS在线检测产品。 /p p style=" text-align: center" img src=" https://img1.17img.cn/17img/images/201901/uepic/92d4f39e-cb8b-45cd-a584-a73609326b2a.jpg" title=" 孙兰香团队.jpg" alt=" 孙兰香团队.jpg" width=" 600" height=" 276" border=" 0" vspace=" 0" style=" width: 600px height: 276px " / /p p style=" text-align: center " 中国科学院沈阳自动化研究所LIBS团队 /p p style=" line-height: 1.5em text-align: justify "    span style=" font-size: 20px " strong 二、 中国科学院沈阳自动化研究所孙兰香团队LIBS相关研究成果及研究最新进展 /strong /span /p p style=" line-height: 1.5em text-align: justify " span style=" font-size: 20px "    span style=" font-size: 20px color: rgb(255, 0, 0) " strong 钢铁行业 /strong /span span style=" font-size: 20px color: rgb(31, 73, 125) " strong /strong strong /strong /span /span /p p style=" line-height: 1.5em text-align: justify "   从东北老工业基地的特点及需求出发,团队首先以钢铁行业为切入点,从2007年立项研究,到2010年初代样机通过工厂试验,2014年二代样机成功实现工厂示范应用,已经研制成可适用于钢铁冶炼在线成分分析仪,并国际上首次实现了40吨级钢包的钢水成分在线测量。 /p p style=" text-align: center" img src=" https://img1.17img.cn/17img/images/201812/uepic/4321aa08-1dc2-4838-b093-aa0c0876da30.jpg" title=" 1.png" alt=" 1.png" / /p p style=" line-height: 1.5em text-align: center "   图1 钢铁冶炼LIBS分析仪一代(左)、二代(右) /p p style=" line-height: 1.5em text-align: justify "    span style=" font-size: 20px color: rgb(255, 0, 0) " strong 有色行业 /strong /span /p p style=" line-height: 1.5em text-align: justify "   为了拓展LIBS的应用领域,结合团队的研究方向,研发出可适用于有色行业冶炼生产的原型样机,并经过产品迭代,目前已经形成性能完备的适合铝合金、铜合金生产过程在线成分检测的LIBS在线成分分析仪(SIA-LIBSmelt),为国内首款液态铝合金及铜合金成分在线分析设备。并在辽宁忠旺、天津立中合金、大连亚明、贵阳铝镁设计院等多家企业中得到应用验证。 /p p style=" line-height: 1.5em text-align: justify " strong /strong /p p style=" text-align: center" img src=" https://img1.17img.cn/17img/images/201812/uepic/616a1dc9-f164-473f-a489-c66b61f2b16b.jpg" title=" 2.png" alt=" 2.png" / /p p style=" line-height: 1.5em text-align: center "    span style=" font-size: 14px " 图2 液态金属分析仪应用现场(A 辽宁忠旺、 B 天津立中合金、 C 大连亚明、 D贵阳铝镁设计院) /span /p p style=" line-height: 1.5em text-align: justify "    span style=" color: rgb(255, 0, 0) font-size: 20px " strong 选矿行业 /strong /span /p p style=" line-height: 1.5em text-align: justify "   进一步向金属冶炼的上游领域拓展应用,团队又研发出基于LIBS技术适用于选矿过程的在线元素成分分析仪(SIA-LIBSlurry),仪器目前已经在云南磷化集团的选矿厂进行示范应用。该仪器通过更换外挂箱可同时满足液体、固体的分析需求,部分固体元素的检出限可达到1ppm。 /p p style=" text-align: center" img src=" https://img1.17img.cn/17img/images/201812/uepic/7e115a1d-978f-49c1-912c-41449bc3125f.jpg" title=" 3_副本.png" alt=" 3_副本.png" / /p p style=" line-height: 1.5em text-align: center "   图3 矿浆LIBS在线成分分析仪及现场应用 br/ /p p style=" line-height: 1.5em text-align: justify "   span style=" color: rgb(255, 0, 0) font-size: 20px " strong  金属分选及识别 /strong /span /p p style=" line-height: 1.5em text-align: justify "   为了节能、环保及节约成本,废旧金属的回收再利用会在未来金属生产过程中占据越来越多的比重,团队针对行业的未来发展趋势,研发出全自动废旧金属分拣系统(SIA-LIBSorting),可以实现40件/秒的分拣速度,分拣准确率可以达到95%以上。 /p p style=" text-align: center" img src=" https://img1.17img.cn/17img/images/201812/uepic/113be7e6-bd3c-47e9-9a72-96fd190344ab.jpg" title=" 4.jpg" alt=" 4.jpg" / /p p style=" line-height: 1.5em text-align: center "    span style=" color: rgb(0, 0, 0) " 图4 LIBS废旧金属智能分选装备 /span /p p style=" line-height: 1.5em text-align: justify "    span style=" color: rgb(255, 0, 0) font-size: 20px " strong 便携式LIBS分析仪 /strong /span /p p style=" line-height: 1.5em text-align: justify "   针对物体辨别等通用领域,团队研发出便携式LIBS分析仪(SIA-LIBSport),可以适用于金属及其牌号的识别、岩石种类鉴别等多种应用领域。LIBSport包括手持测量探头和手提箱,手持部分重量小于1.5千克,方便人手长时间抓握。LIBSport内嵌多种金属牌号库,可定性判别钢、铜、铝、钨、钛、钴、铅等大类物质,可定量分析不锈钢、低合金钢、铝合金、铜合金等常见金属,并且可以根据客户需求添加。 /p p style=" line-height: 1.5em text-align: justify "   LIBSport分析仪相比单纯手持式LIBS系统具有更高的激光功率,可以适用于更广泛的分析样品。LIBSport对于碳钢中的碳也有较好的分析能力,不需要氩气便可实现0.1%以上碳含量的半定量分析,能判别大部分碳钢的牌号。LIBSport加载Win 10系统,提供部分科研级服务,方便用户拓展应用。 /p p style=" line-height: 1.5em text-align: justify " br/ /p p style=" text-align: center" img src=" https://img1.17img.cn/17img/images/201812/uepic/68c94e2a-618c-41c0-a912-f5623ce8ae9d.jpg" style=" width: 300px height: 222px " title=" 5.jpg" width=" 300" height=" 222" border=" 0" vspace=" 0" alt=" 5.jpg" / img src=" https://img1.17img.cn/17img/images/201812/uepic/d3e7fc40-d446-4d8a-9f12-0a7722a1f2ce.jpg" title=" 6.png" width=" 176" height=" 200" border=" 0" vspace=" 0" alt=" 6.png" style=" width: 176px height: 200px " / /p p style=" line-height: 1.5em text-align: center "   图5 便携式LIBS分析仪 br/ /p p style=" line-height: 1.5em text-align: justify "    span style=" font-size: 20px color: rgb(0, 0, 0) " strong 三、 中国科学院沈阳自动化研究所孙兰香团队代表性论文 /strong /span /p p style=" line-height: 1.5em text-align: left "   1. Wei WANG, Lanxiang SUN, Peng ZHANG, Liming ZHENG, Lifeng QI, Wei DONG, A method of laser focusing control in micro-laser-induced breakdown spectroscopy, Plasma Sci. Technol. 21 (2019) 034004 /p p style=" line-height: 1.5em text-align: left "   2. Peng Zhang, Lanxiang Sun*, Haibin Yu, Peng Zeng, Lifeng Qi, and Yong Xin, An Image Auxiliary Method for Quantitative Analysis of Laser-Induced Breakdown Spectroscopy, Analytical Chemistry, 2018, 90(7): 4686-4694. /p p style=" line-height: 1.5em text-align: left "   3. Lanxiang Sun*, Haibin Yu, Zhibo Cong, Hui Lu, Bin Cao, Peng Zeng, Wei Dong, Yang Li. Applications of laser-induced breakdown spectroscopy in the aluminum electrolysis industry, Spectrochimica Acta Part B: Atomic Spectroscopy. 2018,142:29-36 /p p style=" line-height: 1.5em text-align: left "   4. 孙兰香, 汪为, 田雪咏, 张鹏, 齐立峰, 郑黎明, 激光诱导击穿光谱微区分析的研究应用进展, 分析化学, 2018, 46(10):1518-1527. /p p style=" line-height: 1.5em text-align: left "   5. 周中寒 田雪咏 孙兰香 张鹏 郭志卫 齐立峰. Fiber-LIBS技术结合SVM鉴定铝合金牌号, 激光与光电子学进展, 2018,55(6):1-7. /p p style=" line-height: 1.5em text-align: left "   6. 辛勇, 李洋, 李伟, 刘学, 李菁菁, 杨志家, 于海斌, 孙兰香. 基于LIBS技术在线监测熔融铝水中的元素成分, 光子学报, 2018, 47(8):1-8. (EI) /p p style=" line-height: 1.5em text-align: left "   7. P. Zhang, L. X. Sun*, H. B. Yu, P. Zeng, L. F. Qi, and Y. Xin. An intensity correction method combined with plasma position information for Laser-Induced Breakdown Spectroscopy, Journal of Analytical Atomic Spectrometry, 2017, 32(12): 2371 - 2377 /p p style=" line-height: 1.5em text-align: left "   8. 孔海洋,孙兰香*,胡静涛,张鹏. 激光诱导击穿光谱定量化标定谱线自动选择方法, 光谱学与光谱分析, 2016, 36(5): 1451-1457 /p p style=" line-height: 1.5em text-align: left "   9. 辛勇, 孙兰香*, 杨志家, 李洋, 丛智博, 齐立峰, 张鹏, 曾鹏. 基于一种远程双脉冲激光诱导击穿光谱系统原位分析钢样成分, 光谱学与光谱分析, 2016, 36(7): 2255-2259 /p p style=" line-height: 1.5em text-align: left "   10. Yong Xin, Lan-Xiang Sun*, Zhi-Jia Yang, Peng Zeng, Zhi-Bo Cong, Li-Feng Qi. In Situ Analysis of Magnesium Alloy using a Standoff and Double-Pulse Laser-Induced Breakdown Spectroscopy System, Frontiers of Physics, 2016, 11(5): 115207 /p p style=" line-height: 1.5em text-align: left "   11. Lanxiang Sun*, Haibin Yu, Zhibo Cong, Yong Xin, Yang Li, Lifeng Qi. In situ analysis of steel melt by double-pulse laser-induced breakdown spectroscopy with a Cassegrain telescope, Spectrochimica Acta Part B: Atomic Spectroscopy. 2015,112:40-48 /p p style=" line-height: 1.5em text-align: left "   12. Bo Zhang, Lanxiang Sun*, Haibin Yu, et.al. A method for improving wavelet threshold denoising in Laser-induced breakdown spectroscopy, Spectrochimica Acta Part B: Atomic Spectroscopy. 2015, 107: 32-44 /p p style=" line-height: 1.5em text-align: left "   13. QI Lifeng, SUN Lanxiang*, XIN Yong, CONG Zhibo, LI Yang, YU Haibin. Application of Stand-off Double-Pulse Laser-Induced Breakdown Spectroscopy on Elemental Analysis of Magnesium Alloy, PLASMA SCIENCE & amp TECHNOLOGY, 2015 , 17(8): 676-681 /p p style=" line-height: 1.5em text-align: left "   14. KONG Haiyang, SUN Lanxiang*, HU Jingtao, XIN Yong, CONG Zhibo. A comparative study of two data reduction methods for steel classification based on LIBS, PLASMA SCIENCE & amp TECHNOLOGY, 2015, 17(11): 964-970 /p p style=" line-height: 1.5em text-align: left "   15. 孙兰香*,辛勇,丛智博,李洋,齐立峰. 通过二次回归正交设计对激光诱导击穿光谱实验参数优化建模, 光学学报, 2014, 34(5): 53003 /p p style=" line-height: 1.5em text-align: left "   16. 丛智博,孙兰香*,辛勇,李洋,齐立峰,杨志家. 基于激光诱导击穿光谱的合金钢组分偏最小二乘定量分析,光谱学与光谱分析,2014, 33(2): 1-6 /p p style=" line-height: 1.5em text-align: left "   17. Haiyang Kong, Lanxiang Sun*, Jingtao Hu, Yong Xin, Zhibo Cong. Quantitative Analysis of Steels Using PLS with Three Data Reduction Methods Based on LIBS. Advanced Materials Research, 2014, 997: 578-582. /p p style=" line-height: 1.5em text-align: left "   18. Bo Zhang, Lanxiang Sun*, Haibin Yu, Yong Xin and Zhibo Cong. Wavelet denoising method for Laser-induced breakdown spectroscopy, J. Anal. At. Spectrom. 2013,28, 1884-1893. /p p style=" line-height: 1.5em text-align: left "   19. Bo Zhang, Haibin Yu, Lanxiang Sun*, Yong Xin, and Zhibo Cong. A Method for Resolving Overlapped Peaks in Laser-Induced Breakdown Spectroscopy (LIBS), Applied Spectroscopy, 2013, 67(9): 1087-1097. /p p style=" line-height: 1.5em text-align: left "   20. Lanxiang Sun*, Zhibo Cong, Yong Xin, et al. Reducing Quantitative Fluctuation of Laser-Induced Breakdown Spectroscopy by Kalman Filtering, Applied Mechanics and Materials, 2013, 333-335: 243-247 /p p style=" line-height: 1.5em text-align: left "   21. 孙兰香, 于海斌等. 基于激光诱导击穿光谱的钢液成分在线监视, 中国激光, 2011, 38(9):0915002 /p p style=" line-height: 1.5em text-align: left "   22. 孙兰香, 于海斌等. 利用LIBS技术在线半定量分析液态钢成分, 仪器仪表学报, 2011, 32(11): 2602-2608 /p p style=" line-height: 1.5em text-align: left "   23. 孙兰香, 于海斌等. 激光诱导击穿光谱技术结合神经网络定量分析钢中的Mn和Si, 光学学报, 2010, 30(9): 2757-2765 /p p style=" line-height: 1.5em text-align: left "   24. 孙兰香, 于海斌等. 采用激光诱导击穿光谱技术测定合金钢中锰和硅的含量, 光谱学与光谱分析, 2010, 30(12): 3186-3190 /p p style=" line-height: 1.5em text-align: left "   25. Sun lanxiang, YU haibin. Automatic Estimation of Varying Continuum Background Emission in Laser-Induced Breakdown Spectroscopy, Spectrochimica Acta Part B: Atomic Spectroscopy, 2009,64(3):278-287 /p p style=" line-height: 1.5em text-align: left "   26. Sun lanxiang, YU haibin. Correction of self-absorption effect in calibration-free laser-induced breakdown spectroscopy by an internal reference method, Talanta,2009,79(2):388-395 /p p style=" line-height: 1.5em text-align: left "   27. 孙兰香, 于海斌等. 利用激光诱导击穿光谱对铝合金成分进行多元素同时定量分析, 光谱学与光谱分析, 2009, 29(12): 3375-3378 /p p style=" line-height: 1.5em text-align: left "   28. 孙兰香, 于海斌等. 激光诱导击穿光谱在物质成分定量分析方面的实验研究进展, 仪器仪表学报, 2008, 29(10): 2235-2240 /p p br/ /p
  • 全能元素分析仪检测铸铁材质中的多种元素
    全能元素分析仪检测铸铁材质中的多种元素 2017年3月份,鼎盛管业有限公司在南京麒麟科学仪器集团引进了一套全能元素分析仪。该公司主要做灰铁250,主要检测原材料中的碳、硫、锰、磷、硅等元素。南京麒麟技术员现场免费培训技术指导,全能元素分析仪测碳采用气体容量法(液体吸收),测硫采用碘液滴定法;其他多元素采用机外溶样,光电比色法来分析,现场检测数据精度客户非常满意,准确度和精密度都得到了客户的认可。南京麒麟集团在客户现场检测 该公司是一家专业生产机械及行业设备的企业,主要做电机壳为主,全能元素分析仪采用冷光源专利技术、进口光电元件,自校零点和满度;硫滴定加液采用专利无电极控制专利技术,采用专利防崩塞技术,有效降低故障率;可记忆贮存99条曲线(可根据用户需要任意增加),采用回归方法,建立曲线方程,该公司使用全能元素分析仪后,产品合格率提高了3%,经济效益提高了4%。该公司愿与麒麟携手合作,共创辉煌。南京麒麟集团在客户现场检测 全能元素分析仪是本公司独家拥有的一款多元素联测分析仪,由本公司专利技术的bs1000a型电脑精密元素分析仪(国家重点新产品)和cs3000型电脑碳硫分析仪组合而成,可检测普碳钢、低合金钢、高合金钢、生铸铁、球铁、合金铸铁等多种材料中的c、s以及si、mn、p、cr、ni、mo、cu、ti等多种元素。可以满足冶金、机械、化工等行业在炉前、成品、来料化验等方面对材料多元素分析的需要。南京麒麟科学仪器集团有限公司检测中心2017年4月13日
  • 铸造分析仪 钢铁元素分析仪 金属元素分析仪所需的化验方法
    铸造分析仪 钢铁元素分析仪 金属元素分析仪所需的化验方法 一、硅之测定(亚铁还原硅钼蓝光度法) 1、方法提要 试样溶于稀硝酸,滴加高锰酸钾氧化,硅酸离子全部转化成正硅酸离子,在一定酸度下与钼酸铵作用,生成硅钼杂多酸。然后在草酸存在下用亚铁还原成硅钼蓝,借此进行硅的光度测定。 2、试剂 (1)稀硝酸(1+5) (2)高锰酸钾溶液(2%) (3)碱性钼酸铵溶液: A、钼酸铵溶液(9%) B、碳酸钾溶液(18%) A、B两溶液等体积合并,贮于塑料瓶中备用。 (4)草酸溶液(2.5%) (5)硫酸亚铁铵溶液(1.5%) 称硫酸亚铁铵15g,先将稀硫酸(1+1)1ml湿匀亚铁盐,然后以水稀释至1L,溶解后摇匀备用。 3、分析步骤 称取试样30mg,加至高型烧杯(250ml)中,杯内有预热之稀硝酸(1+5)10ml,样品溶清,逸去黄色气体,加高锰酸钾(2%)2-3滴,继续加热至沸,立即加入碱性钼酸铵溶液10ml摇动10秒钟,再另入草酸(2.5%)40ml,硫酸亚铁铵(1.5%)40ml摇匀以水作参比,扣除空白倾入比色杯,在JSB系列或JQ系列分析仪器上测定,直读含量。 4、注意事项 溶解样品时应低温溶解。 二、锰之测定(过硫酸铵银盐光度法) 1、方法提要 钢铁试样,在耨、磷介质是,以银离了为催化剂,用过硫酸铵氧化将低价锰子变成高锰酸,借此进行锰的光度测定。 2、试剂 (1)定锰混合液 硝酸450ml,磷酸72ml,硝酸银7.2g,用水稀释至2L,摇匀,贮于棕色瓶中备用。 (2)过硫酸铵溶液(15%)或固体。 3、分析步骤 称样50mg,置于高型烧杯(250ml)中,溶于预热定锰混合液15ml,等试样溶解毕,加入过硫酸铵溶液(15%)10ml(联测时加固体过硫酸铵约1g)继续加热于沸并出现大气泡10秒钟后,加入40ml倾入比色杯中,在JSB系列或JQ系列分析仪器上测定,直读含量。 4、注意事项 (1)过硫酸铵加入后,需要控制煮沸10秒。 (2)记取含量时,要等少量小气泡逸去后读取。 三、磷之测定(氟化钠-氯化亚锡磷) 1、方法提要 试样在硝酸介质中,以高锰钾氧化,使偏磷酸氧化成正磷酸,与钼酸铵生成磷钼杂多酸,以氯化亚锡还原成磷钼蓝进行光度测定。酒石酸离子消除硅的干扰。氟化钠络合铁离子,生成无色络合物,并抑制硝酸分子的电离作用。 2、试剂 (1)稀硝酸(1+2.5) (2)高锰酸钾溶液(2%) (3)钼酸铵-酒石酸钾溶液 取等体种的钼酸铵溶液(10%)与酒石酸钾钠(10%)混合备用。 (4)氯化钠(2.4)-氯化亚锡(0.2%)溶液: 氯化钠24g溶于800ml水,可稍加热助溶,氯化亚锡2g,以稀盐酸(1+1)5ml,加热至全部溶清;加入上述溶液稀释至1L,必要时可过滤。当天使用,经常使用时,配大量氟化钠溶液,使用时取出部分溶液加入规定量之氯化亚锡。 3、分析步骤 称试样50mg,置于高型烧杯(250ml)中,加入预热稀硝酸(1+2.5)10ml,加热至试样溶解,逸去黄色气体,滴加高锰酸钾溶液(2%)2-3滴。再加氟化钠-氯化亚锡溶液40ml。水作参比,倾入比色杯。在JSB系列或JQ系列分析仪器上测定,读取含量。 4、注意事项 (1)氧化时应使溶液至沸,并保持5-10秒钟。 (2)分析操作手续相对保持一致致,以保证分析结果重现性和准确度。 (3)含量高至0.050%以上,色泽稳定时间较短,读数不就耽误,在0.080%时更短,要即刻读取。
  • 高效自信!微波消解助力石油产品元素分析
    Petroleum Industry为什么要关注石油工业?作为国家重要支柱产业之一,石油被誉为工业的血液。石油产品的质量与国防、交通运输、农业、电力、航天等领域息息相关,它为农业、能源、交通、机械、电子、纺织、轻工、建筑、建材等工农业和人民日常生活提供配套服务,在国民经济中占据着举足轻重的地位。近期随着国际形势的变化以及疫情的阴影笼罩,特别是俄乌冲突导致的国际能源价格上涨,导致国民经济受到巨大挑战,使得大家对于支柱产业的关注度大大提高。为什么需要对石油产品进行元素分析?原油:石油中微量元素的含量、存在形式、产地以及元素不同比例地关系都可作为不同油源、不同产地原油分类的参考。了解石油中元素含量不仅有利于提高原油和成品油的质量,还可为炼油过程中脱除金属提供有利依据。石油中的碱金属盐和碱土金属盐在设备内壁结垢后可能会导致设备腐蚀,从而影响成品油的组成。另外,石油产品中的微量元素会导致在二次加工过程中,催化剂中毒失活,还会对石油加工、储运过程及环境保护均产生不利的影响。燃料油:国家强制的燃料油产品标准明确对铅、锰、铁含量有限量要求。例如在早期,四乙基铅作为汽油添加剂,可提高汽油的辛烷值并改善其抗爆震性能。但四乙基铅的广泛使用会造成严重的环境污染并危害人体健康,因此对汽油中铅的分析测定越来越受到人们关注。润滑油:润滑油被广泛应用于汽车,农业设备,重型马达等大多数机器设备。润滑油中的微量金属分析通常用于诊断发动机磨损情况。它是一种预防性的维护手段,用来增加发动机设备的可靠性并减少潜在的维修费用。微波消解前处理技术在油品分析中的应用样品前处理环节是进行油品元素分析的前提和关键。在无机处理方法中,微波消解法因其快速、完全消解、元素挥发小、环境污染小等优点,受到人们的重视,并在石油产品分析中得到大力推广和应用。目前国内外油品分析的标准中均提到了使用微波消解前处理方式:SN 3188-2012 原油中铅、砷、汞元素的测定 原子荧光光谱法;SN 4759-2017 进口食品级润滑油(脂)中锑、砷、镉、铅、汞、硒元素的测定方法(ICP-MS)法;ASTM D7876原子光谱法(ICP-AES, AAS)测定石油(润滑剂、润滑脂、添加剂、润滑油、汽油和柴油 煤、粉煤灰、煤灰、焦炭和油页岩) 中的金属元素;EPA3052 测定硅质和有机基质(石油污染的土壤、污泥)中的多元素。安东帕应用案例分享燃料、润滑油或蜡等精炼产品由于其高反应性和高能量含量,在进行前处理的时候具有挑战性,它们的主要脂肪成分可在 200 °C 左右进行消化。 而“黑色”产品,如船用燃料、燃料油等重质油,含有更多的缩合“多环”芳族化合物,因此需要更高的温度。样品:重质燃料油(F61001、F61105、F61401)使用安东帕Multiwave 5000系列微波消解仪和 20SVT转子,将 500 mg 样品以及10 mL浓 HNO3 添加至消解管内。消解程序消解结果图结果分析消解完成后,各消解管的溶液呈澄清透明状态,上机分析后的结果如【表1】。我们将各个元素的检测结果分别与标准值进行比较,其数值都处于标准值范围内。配备20SVT50型号转子的Multiwave 5000系列微波消解仪是高难样品消解的强大配置!它可以快速可靠地消解要求苛刻的重质燃料油。也适用于矿物油产品,如润滑剂或石蜡等。安东帕除了对石油样品进行微波消解从而进行后续痕量分析之外,还提供一系列用于测量原油密度、黏度、闪点、流变特性以及折光率等参数的解决方案。这些仪器被广泛用于原油采收、精炼和运输过程等环节。特别是原油精炼过程对原油成分变化相当敏感,必须不断监测,以便能够及时应对任何变化并探测到可能的副产品。安东帕原油分析解决方案助您通过可靠精确的测量来控制和优化生产。
  • 青花瓷微区元素分布的扫描分析
    X射线荧光分析(XRF)作为一种重要的元素分析方法已经在环境科学、地球科学、生命科学、文化遗产的科技研究等学科中发挥了重要的作用。由于微分析技术在这些学科中例如分析单颗粒大气污染物、生物单细胞等成分分析方面具有独特的优势,其应用一直都受到科学研究工作者的重视。常见的微分析技术主要是扫描电子微探针(EPMA)、扫描质子微探针(&mu PIXE)和同步辐射X射线荧光分析(SRXRF)等,一般最简单产生微束的方法就是通过微小的狭缝来限制束流以产生微束,但是这种方法会造成用于激发分析样品的元素X射线强度减小,并且能量利用率极低。下图为常规的X射线光源采用狭缝和使用X光透镜两种方式产生直径为50&mu m微束光斑分析直径同样为50&mu m大气单颗粒物的X射线荧光分析谱,从图中很明显看出常规的X射线光源通过采用狭缝的方式产生微束来分析样品的可能性是很小的。但由于同步辐射装置所提供的X射线能量高、亮度大,采用狭缝的方法产生微束可以使用在同步辐射X射线荧光分析上,如北京同步辐射X射线荧光分析系统就是采用狭缝的方式来产生微束来满足环境科学、生命科学等对微分析技术的需求。比较复杂的聚焦方法是利用光学聚焦系统,设备比较复杂,成本比较高,其应用有很大的限制性。   自20世纪80年代以来,随着X光透镜技术的发展,X光透镜具有聚焦性能好、成本低、设备比较简单、能量利用率高,并且可以以成像的方式显示样品中元素分布等优点,于是便和X射线荧光分析系统有机地结合在一起。目前比较常见的有两种结合方式,一种是X光透镜和同步辐射X射线荧光分析系统相结合,另一种是X光透镜和常规的X射线荧光分析谱仪相结合,这两种结合主要都是利用X光透镜的优点,使X射线荧光分析系统具有束斑小(束斑的直径可以达到10~50&mu m)、光强度可以达到~107光子/秒、所需要的样品量少、分析速度快、散射本底小、探测极限低、可以分析厚靶样品中几十个&mu g· g-1的微量元素等优点。下图为使用X光透镜的微束X射线荧光分析美国国家标准局研制的玻璃有证标准参考物质(SRM NIST610)各元素的探测极限。由于微束XRF具有比常规的X射线荧光分析更多的优点,因而使其应用范围越来越广泛。如工业上汽油中含硫量的测量 大气中单颗粒物的成分测量 参与植物新陈代谢过程中某些元素如Mn,Ca,Zn,Rb等在不同年龄的松针中从顶部到根部的分布 古陶瓷和青铜器中焊接物等微区的成分分析等。由于同步辐射X荧光分析需要大型加速器提供同步辐射光源,设备比较昂贵,机时比较有限。而使用X光透镜的微束X射线荧光分析系统与此相比设备比较简单,成本低、使用比较方便,因此研究使用X光透镜的微束X射线荧光分析在环境科学、地球科学、生命科学、文物保护等方面具有重要的意义。   微束X射线荧光分析在文物样品分析中有广泛的应用前景。   古陶瓷是由古代的土壤和岩石经过加工烧制而成,其化学成分主要是由Na2O、MgO、Al2O3、SiO2、K2O、CaO等组成,其中SiO2和Al2O3的含量之和在80%以上,因此古陶瓷样品主要是由Si和Al等氧化物组成的轻基体。在实验中既要准确的测量出Na和Mg,又要测量出Rb、Sr、Y、Zr等重元素氧化物的含量,其实验条件的选择是非常关键的。对于Na、Mg、Al和Si等元素需要在真空中或氦气的气氛下探测器才能探测到其被激发的特征X射线。由于文物样品的特殊性,一般采用在探测器和被测样品之间形成氦气的光路来测量或者直接在大气中测量。本工作是在大气中直接分析被测样品,同时也就意味者Na、Mg、Al、Si等元素的特征X射线没有被探测器探测到。   实验工作是在两种条件下测量:第一种条件是在电压35kV,电流10mA,测量时间为300s,探测器与样品之间的距离为25mm 第二种条件是电压为40kV,电流10mA,测量时间120s,探测器前加1mm的准直器来降低散射造成的本底,探测器与样品之间的距离为42mm。测量国家有证标准参考物质GBW07406(GSS-6)的谱如下图所示。从谱图上看,在探测器加准直器更能降低散射本底,提高探测极限。   青花瓷是中国古陶瓷中具有很高艺术价值的瓷器,但对青花瓷的产地、年代、钴料的来源、制造工艺及其真伪辨别等问题一直缺乏系统的研究。由于微束分析的一系列的优点,用微束X射线荧光分析扫描分析了一块明代青花瓷残片中青花部位的元素分布,样品的照片见下图。   实验装置如下图,采用旋转阳极靶和会聚X光透镜组成激发样品的微束X射线源,SiPINX射线探测器收集样品中激发出的元素特征X射线,采谱活时间为5min,每隔50&mu m测量一个点,扫描面积为1mm× 35mm AXIL程序进行峰的拟合和本底的扣除。   对比青花部位和白釉部位的MXRF谱图可知,青花部位与白釉部位有差异的元素为主要为K、Ca、Fe、Co、Ni 以这五种元素的峰面积为变量,Matlab程序做图得到青花瓷五种元素的分布图。从几种元素的微区分布图对比青花瓷图片,可以看出Mn和Co的分布基本上和青花瓷釉色的深浅相一致的,Fe元素的分布基本上与青花瓷釉色的变化没有明显关系。相关性分析表明,Mn和Co有非常好的相关性,而Ni与Mn和Co没有相关性。   本文摘编自程琳、金莹著《现代核分析技术与中国古陶瓷》一书。
  • 专题约稿|锂电材料元素分析难点解析
    p   近十年间,在能源技术变革以及新兴科技的带动下,全球锂离子电池产量进入飞速增长期,锂离子电池产业的蓬勃发展,也为锂离子电池检测领域带来新的机遇。随着锂离子电池基础科学研究仪器水平不断提升,几乎各类先进科学仪器都逐渐在锂离子电池的研究中出现,且针对锂离子电池的研究、制造也开发了许多锂电行业专用的仪器设备。 /p p   为促进中国锂电检测产业健康发展,仪器信息网结合锂离子电池检测项目品类,将从2018年12月起策划组织系列锂电检测系列专题报道,为专家、仪器设备商、用户搭建在线网上展示及交流平台。 span style=" color: rgb(112, 48, 160) " 锂电检测系列专题内容征集进行中: /span a href=" https://www.instrument.com.cn/news/20181204/476436.shtml" target=" _blank" style=" text-decoration: underline color: rgb(255, 255, 255) background-color: rgb(192, 0, 0) " span style=" color: rgb(255, 255, 255) background-color: rgb(192, 0, 0) " 【征集申报链接】 /span /a /p table cellspacing=" 0" cellpadding=" 0" border=" 0" align=" center" tbody tr class=" firstRow" td style=" border: 1px solid windowtext padding: 0px 7px " width=" 53" p style=" margin-top:auto margin-bottom: auto text-align:center line-height:normal" strong span style=" font-size:16px font-family:宋体" 系列序号 /span /strong /p /td td style=" border-color: windowtext windowtext windowtext currentcolor border-style: solid solid solid none border-width: 1px 1px 1px medium border-image: none 100% / 1 / 0 stretch padding: 0px 7px " width=" 359" p style=" margin-top:auto margin-bottom: auto text-align:center line-height:normal" strong span style=" font-size:16px font-family:宋体" 锂电检测技术系列专题主题 /span /strong /p /td td style=" border-color: windowtext windowtext windowtext currentcolor border-style: solid solid solid none border-width: 1px 1px 1px medium border-image: none 100% / 1 / 0 stretch padding: 0px 7px " width=" 126" p style=" margin-top:auto margin-bottom: auto text-align:center line-height:normal" strong span style=" font-size:16px font-family:宋体" 专题上线时间 /span /strong /p /td /tr tr td style=" border-color: currentcolor windowtext windowtext border-style: none solid solid border-width: medium 1px 1px border-image: none 100% / 1 / 0 stretch padding: 0px 7px " width=" 53" p style=" margin-top:auto margin-bottom: auto text-align:center line-height:normal" span style=" font-size: 16px font-family:宋体" 1 /span /p /td td style=" border-color: currentcolor windowtext windowtext currentcolor border-style: none solid solid none border-width: medium 1px 1px medium padding: 0px 7px " width=" 359" p style=" margin-top:auto margin-bottom: auto text-align:center line-height:normal" span style=" font-size:16px font-family:宋体" 锂电检测技术系列——电性能检测技术 /span /p /td td style=" border-color: currentcolor windowtext windowtext currentcolor border-style: none solid solid none border-width: medium 1px 1px medium padding: 0px 7px " width=" 126" p style=" margin-top:auto margin-bottom: auto text-align:center line-height:normal" span style=" font-size:16px font-family:宋体" 2019年 span 1 /span 月 /span /p /td /tr tr td style=" border-color: currentcolor windowtext windowtext border-style: none solid solid border-width: medium 1px 1px border-image: none 100% / 1 / 0 stretch padding: 0px 7px " width=" 53" p style=" margin-top:auto margin-bottom: auto text-align:center line-height:normal" span style=" font-size: 16px font-family:宋体" 2 /span /p /td td style=" border-color: currentcolor windowtext windowtext currentcolor border-style: none solid solid none border-width: medium 1px 1px medium padding: 0px 7px " width=" 359" p style=" margin-top:auto margin-bottom: auto text-align:center line-height:normal" span style=" font-size:16px font-family:宋体" 锂电检测技术系列——形貌分析技术 /span /p /td td rowspan=" 5" style=" border-color: currentcolor windowtext windowtext currentcolor border-style: none solid solid none border-width: medium 1px 1px medium padding: 0px 7px " width=" 126" p style=" margin-top:auto margin-bottom: auto text-align:center line-height:normal" span style=" font-size: 16px font-family:宋体" 2019年 /span /p /td /tr tr td style=" border-color: currentcolor windowtext windowtext border-style: none solid solid border-width: medium 1px 1px border-image: none 100% / 1 / 0 stretch padding: 0px 7px " width=" 53" p style=" margin-top:auto margin-bottom: auto text-align:center line-height:normal" span style=" font-size: 16px font-family:宋体" 3 /span /p /td td style=" border-color: currentcolor windowtext windowtext currentcolor border-style: none solid solid none border-width: medium 1px 1px medium padding: 0px 7px " width=" 359" p style=" margin-top:auto margin-bottom: auto text-align:center line-height:normal" span style=" font-size:16px font-family:宋体" 锂电检测技术系列——成分分析技术 /span /p /td /tr tr td style=" border-color: currentcolor windowtext windowtext border-style: none solid solid border-width: medium 1px 1px border-image: none 100% / 1 / 0 stretch padding: 0px 7px " width=" 53" p style=" margin-top:auto margin-bottom: auto text-align:center line-height:normal" span style=" font-size: 16px font-family:宋体" 4 /span /p /td td style=" border-color: currentcolor windowtext windowtext currentcolor border-style: none solid solid none border-width: medium 1px 1px medium padding: 0px 7px " width=" 359" p style=" margin-top:auto margin-bottom: auto text-align:center line-height:normal" span style=" font-size:16px font-family:宋体" 锂电检测技术系列——晶体结构分析技术 /span /p /td /tr tr td style=" border-color: currentcolor windowtext windowtext border-style: none solid solid border-width: medium 1px 1px border-image: none 100% / 1 / 0 stretch padding: 0px 7px " width=" 53" p style=" margin-top:auto margin-bottom: auto text-align:center line-height:normal" span style=" font-size: 16px font-family:宋体" 5 /span /p /td td style=" border-color: currentcolor windowtext windowtext currentcolor border-style: none solid solid none border-width: medium 1px 1px medium padding: 0px 7px " width=" 359" p style=" margin-top:auto margin-bottom: auto text-align:center line-height:normal" span style=" font-size:16px font-family:宋体" 锂电检测技术系列—— span X /span 射线光电子能谱分析技术 /span /p /td /tr tr td style=" border-color: currentcolor windowtext windowtext border-style: none solid solid border-width: medium 1px 1px border-image: none 100% / 1 / 0 stretch padding: 0px 7px " width=" 53" p style=" margin-top:auto margin-bottom: auto text-align:center line-height:normal" span style=" font-size: 16px font-family:宋体" 6 /span /p /td td style=" border-color: currentcolor windowtext windowtext currentcolor border-style: none solid solid none border-width: medium 1px 1px medium padding: 0px 7px word-break: break-all " width=" 359" p style=" margin-top:auto margin-bottom: auto text-align:center line-height:normal" span style=" font-size:16px font-family:宋体" 锂电检测技术系列——安全性和可靠性分析仪器及设备 /span /p /td /tr /tbody /table p style=" text-align: center " span style=" font-style: italic font-weight: bold line-height: 18px color: rgb(255, 0, 0) font-size: 18px " 专题约稿|锂电材料元素分析难点解析 /span /p div p style=" text-align: center " span style=" color: rgb(127, 127, 127) " i ——“锂电 /i /span i span style=" color: rgb(127, 127, 127) " 检测技术系列——成分分析技术”专题征文 /span /i /p p style=" text-align: center " i span style=" color: rgb(127, 127, 127) " /span /i span style=" text-decoration: none " i span style=" text-decoration: none color: rgb(127, 127, 127) " i (作者:冯文坤,安捷伦科技原子光谱应用专家) /i /span /i /span /p /div p   在全球都在关注环境保护与可持续发展的大前提下,新能源——这个词已经为广大人民所熟悉,而较为密切相关的无疑是新能源汽车。目前新能源汽车的动力来源主要应用的是锂离子电池,锂电的性能决定了新能源汽车的续航里程和行驶安全,其中锂电材料主元素和杂质元素的含量对锂电的性能有着关键性影响。锂电产业链从原材料,到电池材料到废旧电池回收再利用等环节,都需要采用合适的检测手段来进行元素分析。正极、负极、电解液等锂离子电池相关材料中的元素检测是锂电池行业原材料控制的重要项目:Li、Co、Mn 等常量元素的含量检测是原材料控制的必测项目 杂质含量对材料品质以及电池产品性能有很大影响,需要严格控制。 /p p style=" text-align: center" img src=" https://img1.17img.cn/17img/images/201901/uepic/1ddecaf4-d764-49cc-8f1d-baab5039976d.jpg" title=" 1.jpg" alt=" 1.jpg" / /p p    span style=" background-color: rgb(112, 48, 160) color: rgb(255, 255, 255) " strong 锂电材料元素分析必要性 /strong /span /p p   在锂电的主要组成部分中,正极材料是最受关注的,因为它决定了锂电的能量密度。正极材料的元素配比和杂质控制是产品生产过程中重要的质量控制环节,而负极材料和电解液的杂质含量对锂电产品的安全性能有着重要影响。电感耦合等离子体发射光谱仪(ICP-OES)由于具有更好的复杂基体耐受能力、更快的分析速度和更宽的线性动态范围,已成为了锂电生产的标配。 /p p   在 GB/T 20252-2014《钴酸锂》、GB/T 24533-2009《锂电池石墨负极材料》等锂离子电池相关标准中,规定使用 ICP-OES或等同性能分析仪器测试常量元素及微量杂质元素,并对磁性物质进行分析。在 GB/T 30835-2014《锂离子电池用复合磷酸铁锂正极材料》、GB/T24533-2009《锂电池石墨负极材料》、GB/T 30836-2014《锂离子电池用钛酸锂及碳复合负极材料》等锂离子电池相关标准中,规定依据 IEC 62321 方法、使用 AA、ICP-OES 和 ICP-MS 等仪器对材料中的 Cd、Pb、Hg、Cr 等限用物质进行检测。 /p p   锂电材料元素检测难点锂电池电解液样品的复杂基体(含高锂盐、高有机成分、F 成分)会产生电离干扰、物理干扰等,给 ICP-OES 的基体耐受性和抗干扰能力带来极大挑战。同时,锂电池材料复杂基体给软件扣除干扰的能力带来极大挑战。 /p p    span style=" background-color: rgb(112, 48, 160) color: rgb(255, 255, 255) " strong 锂电材料元素检测难点 /strong /span /p p    strong 1.源于高含量Li元素的严重电离干扰造成结果不准确 /strong /p p   在锂电材料检测过程中,对于高锂的样品(如:碳酸锂、镍钴锰酸锂)的杂质元素检测,往往会发现Na、K元素结果偏高,其它杂质元素结果偏低,且数据常有不稳定的现象。这是由于大量存在的锂离子会使 Na 和 K的分析受到易电离元素 (EIE) 的干扰。为了尽量减小或消除 EIE 干扰,常用 ICP-OES 的径向观测模式进行分析,但是这种方案的灵敏度较低,无法满足电池级碳酸锂的分析要求,经常会出现“未检出”的情况。“未检出”就意味着杂质含量阴性吗?并非如此,还可能仪器灵敏度不够,这需要用“回收率测试”等方法验证。针对这些问题,我们推荐采用垂直炬管轴向观测+CCI冷锥+基体匹配的方案。采用轴向观测,保证足够的灵敏度 而CCI冷锥设计,将低温区电离干扰的等离子部分成功剥离,有效消除了大部分电离干扰。在加标浓度为0.05mg/L时,碳酸锂中14种杂质元素的回收率在95~105%之间,连续测试2.5小时,各元素RSD& lt 2%。 /p p style=" text-align: center" img src=" https://img1.17img.cn/17img/images/201901/uepic/acaebc97-0c0d-44dc-abd8-01cc4ab9faf2.jpg" title=" 2.jpg" alt=" 2.jpg" / /p p style=" text-align: center " span style=" color: rgb(0, 176, 240) " 碳酸锂中各元素测试结果及回收率结果 /span /p p style=" text-align: center" img src=" https://img1.17img.cn/17img/images/201901/uepic/3c84c593-962d-4906-8eb6-b2971c011dcc.jpg" title=" 3.jpg" alt=" 3.jpg" / /p p style=" text-align: center " span style=" color: rgb(0, 176, 240) " 碳酸锂中各元素长期测试稳定性数据 /span /p p    strong 2.锂电材料复杂基质造成的结构背景干扰 /strong /p p   六氟磷酸锂电解液基体非常复杂,含有大量有机物,并常利用有机溶剂稀释后进样分析。在复杂基体下,在被测元素波长附近,常会产生复杂的结构背景信号,对微量被测元素形成严重干扰。此外,样品基质含有大量含F物质,可能对常规玻璃雾化系统造成腐蚀。 /p p   金属杂质元素需要控制在1ppm以内,而复杂的结构背景从而导致检出限变差,无法满足六氟磷酸锂电解液中金属杂质元素的检测要求。 /p p style=" text-align: center" img src=" https://img1.17img.cn/17img/images/201901/uepic/a205d8ff-0237-4aa5-9cc4-65d8c8cd144b.jpg" title=" 4.jpg" alt=" 4.jpg" / /p p style=" text-align: center " span style=" color: rgb(0, 176, 240) " 20% 乙醇水和以 20% 乙醇水配制的 As 标准溶液的叠加谱图 /span /p p   对于样品中含F物质,我们推荐使用专门的HF进样系统。六氟磷酸锂电解液中含有一定量的碳酸酯成分,为保证测试溶液的稳定性,我们推荐采用 15%–20% (w/w) 乙醇水溶液按重量比将电解液样品稀释 10–20 倍后上机检测。 /p p   对于复杂背景信号对微量杂质检测带来的严重的结构背景干扰问题,常规方法(如干扰系数校正法)无法解决。我们推荐利用FACT 快速自动谱线拟合技术,可利用数学拟合方法进行自动建模,元素信号从有机物背景干扰中剥离出来(如下图),有效降低了微量元素检测的检出限,检测准确度大大改善。 /p p style=" text-align: center" img src=" https://img1.17img.cn/17img/images/201901/uepic/b004f610-9f10-4f37-a3e9-2313ef6a72fb.jpg" title=" 5.jpg" alt=" 5.jpg" / /p p style=" text-align: center " span style=" color: rgb(0, 176, 240) " 采用 FACT 技术扣除背景后的谱图 /span /p p style=" text-align: center" img src=" https://img1.17img.cn/17img/images/201901/uepic/3c806663-a385-41a8-9bef-804316d6a557.jpg" title=" 6.jpg" alt=" 6.jpg" / /p p style=" text-align: center " span style=" color: rgb(0, 176, 240) " /span span style=" color: rgb(0, 176, 240) " 六氟磷酸锂中12 种杂质元素的方法检测限 (MDL) /span /p p   在锂电池产业链中,除了元素分析,还需要围绕产品质量、原材料质控、或锂电池各种性能指标的研发工作进行一系列的理化测试,包括:电池鼓胀气体成分分析 (GC、微型 GC)、电解液、添加剂成分分析 (GC、GC/MS)、石墨类负极材料有机物含量测试 (GC/MS)、电解液未知成分分析 (GC/Q-TOF、LC/Q-TOF)、SO42-、Cl- 等阴离子及 Si 等非金属元素分析 (UV-Vis)、电解液等原材料鉴别 (FTIR)等。安捷伦科技在锂离子电池材料检测领域积累了大量经验和数据。希望安捷伦锂电行业解决方案给锂电材料检测工作者带来帮助。 /p p style=" text-align: center " img src=" https://img1.17img.cn/17img/images/201901/uepic/24328cae-12b6-4328-afd7-40bec13e3300.jpg" title=" 7.jpg" alt=" 7.jpg" / /p
  • 深度好文:ICP-MS元素分析的民生应用
    p   人类赖以生存的空气、水、土壤、食品等因工业和生活发展而受到污染,相关的食品、环境、疾病相关的问题也不断曝出。如含有无机元素汞的形态物甲基汞是一种剧毒神经毒素,60多年前在日本发生的骇人听闻的“水俣事件”就是由甲基汞中毒造成的。在美国和我国部分省份等地也不断发现甲基汞含量超标的水域。及时发现水体中甲基汞等重金属污染对维护人类健康非常重要。能否快速、准确地判断摄入的水、食品和药品的安全是分析应用行业关注的问题。 /p p   无机元素分析在与人类生存与健康相关的领域以及生活的其他方面发挥着不可或缺的作用。石墨炉原子吸收光谱、火焰原子吸收光谱、氢化物发生原子吸收光谱、电感耦合等离子体发射光谱法、电感耦合等离子体质谱(ICP-MS)等方法都是无机元素分析的主要工具。随着分析技术的发展与成熟,ICP-MS因其在检出限、线性范围、平均检测成本方面有更大优势而逐渐成为无机分析实验室的首选。日前,在安捷伦科技与清华大学分析测试中心联合举办的“无机质谱创新技术专家研讨会”上,来自国内各界的专家和学者,在学术交流和技术探索方面分享了他们的心得。 /p p    strong 在复杂基质中寻求高灵敏度和低检出限 /strong /p p   基质干扰是元素分析应用中的一大难题,涉及食品、环境、生物样本等复杂基体样本相关的研究与应用常会碰到基质干扰带来的数据结果影响。有效去除基质干扰是近些年分析技术发展的方向之一。光谱技术伴随着应用需求不断进步,随着四极杆和串联四极杆与ICP联用技术的出现与发展,光谱技术在复杂基质中抗干扰的能力得到大大增强。 /p p   清华大学分析中心在研究分析仪器硬件创新的同时,也将聚焦点投向了仪器应用的新方法。分析中心研究员邢志介绍,中心的元素分析实验室主要关注金属元素及非金属元素相关的科学研究与应用研究,分析工作包括通过总金属元素溯源判断雾霾成因和来源,通过检测镉元素快速识别“镉大米”,以及通过铬元素分析快速建立应对“毒胶囊”的应用方法等。“我们不仅做元素总量检测,还包括元素价态和形态分析,以此来综合判断环境和食品的安全性。”邢志认为,如何把元素分析的灵敏度进一步提高并得到很好的应用是分析化学面临的挑战之一。“质谱技术越来越成熟,ICP-MS以及ICP-串联质谱的出现给元素分析带来了更准确的结果。” 他举了一个研究中的例子,对生命科学研究中生物样本磷元素的测定,传统光谱技术很难精确定量,而采用ICP-串联质谱技术则能够达到10-9高灵敏度定量。安捷伦ICP--MS 8800已经在该实验室运转了数年,由于其在分析复杂基质时优越的抗干扰能力,已成为该实验室在复杂基质元素分析应用中的首选。 /p p   无机元素分析是北京市疾控中心的一项重要工作,该中心实验室在光谱技术的应用方面不断开发新方法。“与疾病相关的风险控制与预防是我们的首要职责,我们为疾控系统开发与人体健康相关的标准方法。”中心实验室副主任刘丽萍说。原子吸收光谱、原子荧光光谱及ICP-MS是该实验室进行新方法开发应用的重要工具。2006年颁布的《生活饮用水卫生标准》(GB5749-2006)中的无机元素分析标准方法就是由该实验室主持建立的。刘丽萍介绍说:“在该方法中我们新增了一些重金属元素及修订了部分无机元素的分析方法。砷的形态分析、甲基汞的标准方法当时都在安捷伦的液相色谱和ICP-MS平台上进行方法开发。”该实验室在分析复杂基质或关键的样品时,总会优先使用安捷伦ICP-MS,“这是因为它在抗基质干扰能力,之前的使用经验告诉我们即使在复杂基质样本中,它也能给我们带来稳定可靠的数据结果。” /p p   对于食品中元素分析,目前已经有一系列成熟的相应仪器和分析方法。中国计量科学研究院化学所副研究员韦超认为,虽然可选的方法很多,但在基质成分复杂、待测物形态多样时,干扰物消除和待测物准确定量仍然具有一定难度。韦超所在中国计量科学研究院化学所食品安全室是以食品安全计量标准方法开发、标准物质研发为主的实验室。食品中的元素分析是其标准物质及标准方法涉及的一个重要方面。该实验室配备有多台ICP-MS及安捷伦ICP-MS 8900。元素形态的检测要求仪器能够具有高灵敏度从而提供更低的检出限,对于磷、硫元素,如果使用单四级杆其检出限一般在ppb级。而串联质谱可将其检出限降低至0.1甚至0.01ppb的水平,使得低于0.1ppb的元素和形态都能得到很好的检出效果。“安捷伦ICP-串联四极杆的二级筛选以及mass-shift反应是当前ICP-MS的重要创新。”韦超说,这对提高标准物质的质量非常有帮助,从而将改善检测机构、食品企业等实验室的能力验证、盲样考核等实验进程。 /p p    strong 面对更低浓度挑战,准确还原物质真实组成 /strong /p p   ICP-MS的抗基质干扰能力不仅应用在食品和环境领域,生物基体中的元素分析也需要能够消除机制干扰的高灵敏度分析平台。中科院生态研究中心致力于环境生态研究,在化学污染物和生命必需元素在环境中的行为、环境污染控制、饮用水质净化等诸多方面提供先进的方法和技术。近些年,该中心也逐渐在把重心从纯粹的环境研究转移到人体和环境相关的动态分析。该中心研究员胡立刚介绍,中心实验室越来越多的研究任务涉及生物样品,如蛋白质。研究人员开始更多地通过内暴露环境的外来元素分析来测定重金属污染毒性级人体健康状况。人体内暴露环境中的原来元素往往仅在痕量级水平,在生物组织中准确测定低浓度元素是传统方法无法实现的挑战,而针对复杂基质中痕量物质分析的串联质谱就能够有效地化解这一问题。该中心研究员胡立刚说,“最新的ICP-MS具有串联质谱和可选择的碰撞模式,这对实验室分析中的消除机制干扰和准确定量低浓度元素很有帮助。”该实验室在采用ICP-MS测定基体内的金属(S、Fe)蛋白时,能够达到ppb级的检出限。 /p p   稀土是我国重要战略资源,有“工业维生素”之美誉。虽然其稀土看似与日常生活距离很远,而事实上稀土与大众生活息息相关。如高铁轨道中就需要添加稀土以增强其机械性能和改善物理性能。稀土是材料行业中磁性材料、发光材料、钢铁冶炼的重要原料。稀土元素在石油、化工、冶金、纺织、陶瓷、玻璃、永磁材料等领域都得到了广泛的应用。国家钨与稀土产品质量监督检验中心是国内稀土元素分析的权威机构,据了解,该中心每年要做5000个以上的稀土样本。该中心检测部副部长徐娜介绍,高纯稀土中的杂质含量很低,如果想准确测出高纯稀土中某一杂质含量,可能需要繁琐复杂的分离纯化过程。“此前我们一直在寻找一台能够帮助我们去除基质干扰还原稀土杂质浓度的光谱分析仪器。”徐娜表示,“此前采用单杆ICP-MS或其他分析方式测定氧化铝中的钆(Gd)、铽(Tb)竟会得到几百甚至上万个ppb,而这样的结果并不是产品本身的含量,而是基体干扰带来的。同样的样品在安捷伦ICP-MS 8800 的碰撞反应模式和选择质量数控制技术下,得到钆(Gd)、铽(Tb)等元素的浓度结果为ppb级,这才是可信的结果。安捷伦的ICP串联质谱能够有效去基质干扰,还原产品最真实的杂质情况,这是做矿物研究非常重要的技术特点,也是以稀土为原料的工业生产企业最为渴求的。” /p p    strong 常量、微量和痕量元素同时分析,5分钟 = 2天 /strong /p p   ICP-MS使中药材和保健品检测效率更上一层楼中药材和保健食品是生活中除了食品和环境之外,大众关注的另一个重要方面。上海市食品药品检验所专门针对中药材和保健食品开设了分析平台。对于样品中的元素分析,天然药物和保健食品业务所主管夏晶说:“中药中的元素分析涉及到常量、微量和痕量,检测范围要求很宽。而同时分析不同浓度级别的多种元素,若采用常规技术则只能得到很低的分析效率。”在该实验室引进了安捷伦ICP-串联质谱技术,在一次中药分析中就可以得到不同含量级别几十种元素的准确含量。中国药典规定了黄芪中包括铅、砷、汞、铬、铜在内的有害元素的检测。据夏晶介绍,按照含原子吸收、分光光度法等在内的常规技术,测定这五种重金属元素需要两天的时间。而采用安捷伦ICP-MS仅仅5分钟就能得到满意结果。“这种效率的提升对于我们这样样品量很大的实验室来说,的确带来不小的进程改善。” /p p   --------------------------- /p p   在ICP-MS技术发展中,安捷伦科技从用户角度出发,以解决贴近大众生活的分析难题为切入点,从仪器技术和应用方法方面给不同领域的分析实验室提供支持。Agilent 8800 三重四极杆 ICP-MS是世界首款ICP-串联质谱,给元素分析实验室提供了实现更高分析要求的可能。8900延续8800的 MS/MS 模式,对抗基质干扰带来了前所未有的改变,即使样品成分极为复杂多变,也均可得到一致、可靠的分析结果。根据样品的复杂程度,ICP-MS经常要与液相等分离设备联用,这就要求ICP-MS具有一定程度的耐盐性。安捷伦8900 ICP-QQQ将耐盐性提升至25%,即使与液相联用也能保持稳定的仪性能。 /p p   安捷伦致力于为分析行业提供技术平台和完整解决方案,用科技力量改善人们的生活质量。更好地服务于用户、服务于与人类生活相关的分析应用是安捷伦分析技术发展的目的之一。安捷伦愿与行业专家、分析工作者及社会大众一起共同营造美好生活。 /p p    strong 关于安捷伦科技公司 /strong /p p   安捷伦科技公司(纽约证交所: A)是生命科学、诊断和应用化学市场领域的全球领导者。 拥有 50 多年的敏锐洞察与创新,我们的仪器、软件、服务、解决方案和专家能够为客户最具挑战性的难题提供更可靠的答案。在 2016 财年,安捷伦的净收入为 42 亿美元,全球员工数约为 13,000 人。 /p p /p
  • 哈里伯顿最新推出GEM镁元素分析仪
    哈里伯顿公司日前宣布推出的元素分析仪器——GEM仪器,能够对复杂矿物地层进行快速精确评价,并进行全面的元素分析,补充现有的随钻钻屑评价服务。与实时数据采集软件结合,可以快速准确地提供现场与边远地区的地层元素可视化结果。   在测井行业,GEM是第一个测量镁元素的仪器,并改善了泥质与页岩中铝的测量。镁是碳酸盐岩和片状硅酸盐常见的成分,也是至今为止最难测量的元素,对储层描述非常重要。用新增的元素(镁、铝和锰)测量,可以更好地确定矿物成分,改善孔隙度、饱和度、渗透率的评价,测量膨胀黏土和岩石力学性质,更精确地估算储量,优化完井和增产设计,提高产量。
  • 食品中元素形态分析方法与标准简述
    元素的形态是指某一元素以不同的同位素组成、不同的电子组态或价态以及不同的分子结构等存在的特定形式。元素形态分为物理形态和化学形态,物理形态是指元素在样品中的物理状态,如溶解态、胶体和颗粒状等 化学形态是指元素以某种离子或分子的形式存在,其中包括元素的价态、结合态、聚合态及其结构等。一般意义上所说的元素形态泛指化学形态,元素形态不同于元素价态,同一元素的相同价态可能有多种形态,如价态为五的砷元素,其元素形态可分为无机态和多种有机态的砷形态。   元素在食品中以不同的形态存在,元素对于人体的作用和元素的形态密切相关。这里所说形态是指该元素在不同种类化合物中的表现或分布。比如铬,三价铬是人体耐糖因子的组成部分,很多糖尿病和人体缺乏三价铬有关,而六价铬则是比较强的致癌物。不同形态砷之间的毒性差异也很大,如以有机砷形式存在的砷糖、砷甜菜碱几乎没有毒性,而无机砷化物的毒性却很高。所以,对于某些元素,只了解某元素在食品中的总量还是不够的,我们在了解总量的同时,更希望了解某元素在食品中的形态组成。   测量元素的形态,可以通过以下一些方法来实现:   分光光度法:在显色时对元素的形态有特定要求,可以利用这一特性,进行形态分析。比较典型的例子是水中六价铬的测量。这一方法通常干扰大、灵敏度不是很高,在简单基质有一定应用的范围。   原子荧光法(AFS):由于产生氢化物对元素的形态有一定的要求,可以利用这一特点进行形态分析。比如说有机砷几乎不会和硼氢化物生成氢化砷,氢化物-原子荧光法不能直接检测有机砷,而无机砷则能和硼氢化物进行反应而被探测到。利用这一特点可以测量某些元素的不同形态。该方法的特点是灵敏度很高。不足之处是特异性强,只能分析有限几种元素中某些形态,应用不广。   色谱法:采用色谱柱分离不同形态,然后用分光光度或电导等检测器测量。比如离子色谱法就是比较常用的方法。这一方法由于有预分离处理,干扰比分光光度法小,灵敏度也好一些。   预分离法:对试样先根据元素不同形态的特点,进行预分离,如有机萃取、离子吸附和交换等手段,将某特定形态和其它形态分离后收集,再采用一些光谱的分析方法测量。这种方法灵敏度比较高,但前处理比较复杂,也容易受到干扰。   色谱-光谱(质谱)联用法:该方法采用在线色谱分离,分离后各组分直接进入光谱仪器测量。结合了色谱和光谱技术的优点,具有分离效果好、灵敏度高、应用广泛等优点。缺点是设备较为昂贵,从色谱到光谱的接口技术需要解决,前处理方法也有待加强研究。不同的色谱和光谱联用技术都有文献报道,主要集中在色谱和等离子体质谱仪(ICP-MS)的联用上。目前常见的有以下几种联用方法。   1、液相色谱-ICP-MS联用   液相色谱(HPLC)-ICP-MS联用技术适用于食品样品中难挥发的化合物的分析。由于液相色谱的流速和ICP-MS 进样速度一致,所以联接非常简单方便,其联用接口非常简单。另外,由于液相色谱的特点,具有进样量小、分析速度快、分离效果好等优点。因此,HPLC与ICP&mdash MS联用技术在各类食品中砷、硒、锡、汞等元素形态分析领域得到了越来越多的应用,相关的研究也最多。在使用该技术时,要注意液相流动相的成分是否符合ICP-MS的进样溶液要求。如果有机相比例过高,则需要辅助氧化技术。   2、离子色谱-ICP-MS联用   离子色谱法(IC)作为一种有效的分离和检测技术,已经在金属和非金属离子的测定中得到了较多应用,已成为成为解决复杂机体中超痕量离子形态分析的有效工具,也是ICP&mdash MS相关联用技术研究的热点之一,在食品分析领域有着越来越多的应用。其联用方法和液相色谱一样,也很简单。目前相关文献集中在铬、砷、锑、溴、碘等形态的检测研究上。同样的,使用该技术时,要注意离子色谱流动相和ICP-MS进样要求的匹配性,流动相的可溶性固体含量不能太高。   3、气相色谱-ICP-MS   气相色谱(GC)适用于易挥发或中等挥发的有机金属化合物的分离,而且分离之前的衍生化步骤不仅使分离与分析过程复杂化,而且增加了待测形态丢失或玷污的可能性。而且气相和ICP-MS联接需要一个专用的接口。因此,GC与ICP&mdash MS联用应用于元素的形态分析具有一定局限性。目前,GC-ICP-MS技术仅限于烷基铅、烷基锡和烷基汞等形态的分析上。   4、毛细管电泳-ICP-MS   相对与气相和液相色谱,毛细管电泳(CE)具有分离效率高、消耗样品量少、分离时间快等特点适用范围广,可分离从简单离子、非离子性化合物到生物大分子等各类化合物。但是在分离过程中,样品中分析物的原始形态可能由于电解质或pH值的调节而发生变化,样品的组成也是影响CE分离的一个重要因素,由于CE与ICP&mdash MS的接口没有HPLC成熟,在一定程度上制约了CE-ICP&mdash MS联用技术的应用。但相关的研究还是不少,主要集中在食品中砷、硒、汞等元素形态的分析。   5、液相色谱-AFS   由于中国AFS的技术领先于世,所以该研究在国内发展也很快。由于AFS对某些元素,如As、Se、Hg等的检测灵敏度很高,而且这些元素也是形态分析所最关注的元素,所以AFS在元素形态分析上大有用武之地。如前所述,单用AFS能进行一些特定的形态分析,而要完成更好的分离和检测,就需要和色谱联用。现在主要是和液相色谱联用,已经有多款HPLC-AFS仪器上市。该技术的优势在于具备了液相分离的优点,也能利用AFS的高灵敏度和元素特异性,仪器的整体价格也不高。其缺点在于,检测元素受到AFS的限制,而且AFS检测状态的稳定性也较难保证。   食品中元素形态分析的标准:   1、砷的形态分析标准   根据GB 2762-2012 《食品中污染物限量》,规定了食品中无机砷的限量标准,所以也有相关的检测方法:   GB/T 5009.11-2003 食品中总砷及无机砷的测定 :无机砷检测采用原子荧光法,前处理和总砷不一样。   GB/T 23372-2009 食品中无机砷的测定 液相色谱-电感耦合等离子体质谱法:该标准采用HPLC-ICP-MS联用技术,分离和检测能力都很强。   有机砷农药的检测方法有一个行业标准:SN/T 2316-2009 进出口动物源性食品中阿散酸、硝苯砷酸、洛克沙砷残留量检测方法 离子色谱-电感耦合等离子体质谱法   2、汞的形态分析标准   根据GB 2762-2012 《食品中污染物限量》,规定了食品中有机汞(以甲基汞计)的限量标准,所以也有相关的检测方法:   GB/T 5009.15-2003 食品中总汞及有机汞的测定: 有机汞采用气相色谱法和预分离&mdash 冷原子光度法。   无机砷和有机汞的检测方法都有缺陷,修订的新方法(草案)采用液相-原子荧光联用法,但也有问题,到现在没有颁布为更新方法。   3、溴酸盐的形态分析标准   由于溴酸盐是2B类致癌物,所以已不允许作为添加剂使用。食品中溴酸盐的形态分析有两个标准,都用离子色谱法:   GB/T 20188-2006 小麦粉中溴酸盐的测定 离子色谱法   SN/T 3138-2012 出口面制品中溴酸盐的测定 柱后衍生离子色谱法   水中溴酸盐也有限量标准和检测方法,在相关水检测标准中,也是离子色谱法。   4、铬的形态分析标准   六价铬的检测方法有一个行业标准:   SN/T 2210-2008 保健食品中六价铬的测定 离子色谱-电感耦合等离子体质谱法   水中的六价铬也有相应标准检测方法,采用经典的比色法。在水的检测标准中。     (撰稿人:上海出入境检验检疫局 杨振宇 博士)   注:文中观点不代表本网立场,仅供读者参考
  • 一站式3D打印用原材料表征方案:从粒度分析到元素分析
    增材制造常被称作3D打印,是一种从无到有逐层构建三维结构或组件的制造工艺。其原理是以计算机三维设计模型为蓝本,通过软件分层离散和数控成形系统,将三维实体变为若干个二维平面,利用激光束、热熔喷嘴等方式将粉末、塑料等特殊材料进行逐层堆积黏结,最终叠加成形,制造出实体产品。目前增材制造应用行业日益增多,包括航空航天,汽车制造,消费电子,生物医疗,工业设备等。增材制造工艺包括:粉床熔融成型,立体光刻工艺,熔融沉积成型,喷胶粘粉工艺等。相比于传统的减材制造方式,增材制造工艺具有低成本、高效益等优势,越来越受到各行业的青睐。但要成功地进行增材制造,前提是必须对组件的原材料(如金属粉末和聚合物粉末)进行表征筛选。为什么材料表征很重要?使用增材制造工艺生产的组件在性能上高度依赖于其基本的微结构,而微结构又取决于原材料(金属、聚合物)的性能和所使用的工艺条件。在工艺条件固定的情况下,最大的不确定性就来自于材料;材料性能不一致会导致组件成品的性能不一致。因此,要生产出质量一致的增材制造组件,制造商必须了解并优化材料的特性,例如金属粉末、聚合物粉末或其他材料(如陶瓷和聚合物树脂)。材料的哪些特性很重要?这取决于所采用的增材制造工艺和使用的材料类型。例如,在喷胶粘粉工艺和粉床熔融成型等金属粉床工艺中,材料的粒度和粒形是其关键特性,因为它们会影响粉末的流动和填充度。而在这些工艺中,材料的化学成分同样重要,尤其是金属粉末;粉末材料需满足指定的合金成分,这会直接影响成品的性能。晶体结构是金属粉末的另一个重要特性。因为在某些增材制造过程中,快速加热 - 冷却循环会引起物相变化并产生残余应力,进而影响组件的疲劳寿命等机械性能。另外,对于增材制造使用的聚合物材料,聚合结构(支化度、结晶度)可能会影响材料的液态和固态性能,包括粘度、模量以及热性能等。增材制造原材料表征方案在粉床熔融过程中,金属粉末层分布于制造平台上,被激光或电子束等选择性地熔化或熔融。熔化后平台将被降低,此过程将持续重复,直到制造完成。未熔融粉末将被去除,根据其状态重复使用或回收。因此,粉末层增材制造工艺的效率和成品组件的质量在很大程度上取决于粉末的流动行为和堆积密度。从新合金或聚合物开发到粉末回收,制造商必须在供应链的各个阶段对粉末性能进行表征。其中,激光衍射、自动图像分析、X 射线荧光和 X 射线衍射是用于表征增材制造粉末的四种常用关键分析技术。粒度分布及大小在粉床式增材制造工艺中,粒度分布会影响粉床的填充度和流动性,进而影响生产质量和最终组件的性能。为了测定增材制造使用的金属、陶瓷和聚合体粉末的粒度分布,全球粉末生产商、组件制造商以及机器制造商通常使用激光衍射技术来鉴定和优化粉末性能。使用激光粒度衍射仪Mastersizer 3000 系统或在生产线上使用在线Insitec 粒度测量系统,可在实验室环境中提供完整的高分辨率粒度分布结果。激光粒度仪Mastersizer 3000颗粒形状粒度和粒形直接影响粉床的致密度和粉末流动性。形状平滑规则的颗粒比表面粗糙、形状不规则的颗粒更容易流动和填充。增材制造商为保证所用颗粒具有规则形状,可使用 Morphologi 4 自动成像系统对金属、陶瓷和聚合物粉末的粒度和粒形进行分类和鉴定。该系统可将颗粒的长度、宽度等大小测量结果与圆度、凸曲度(粗糙度)等形状特征评估结果相结合,帮助制造商完成上述工作。Morphologi 4快速自动化粒度和粒形分析仪元素组成元素组成对于合金材料尤其重要,合金元素含量的微小变化都会影响其化学和物理性能,包括强度、硬度、疲劳寿命和耐化学性。为了检测这些变化以及污染物或夹杂物,并确定这些金属合金和陶瓷的元素成分,可使用 X 射线荧光 (XRF) 系统,比如 Zetium 和 Epsilon 等系统。而且,与其他技术相比,XRF 还能显著节省时间和成本。X射线荧光光谱仪Zetium台式能谱仪一体机Epsilon1微结构诸如物相成分、残余应力、晶粒大小和晶粒取向分布(织构)等微结构特性,也会影响成品组件的化学和机械性能。 为了分析这些微结构特性并控制成品组件的性能,制造商通常使用台式 X 射线衍射 (XRD) 系统分析金属的物相,比如 Aeris 系统。 如需获取有关材料在各种条件下的织构、晶粒尺寸和残余应力的更多信息,则可以使用多用途衍射仪,比如 Empyrean 衍射仪。 XRD 还广泛用于研究聚合物和陶瓷的结构和结晶度。 如要确定聚合物粉末的分子量和分子结构,则大多会使用凝胶渗透色谱 (GPC) 系统,比如 Omnisec 系统。台式X射线衍射仪Aeris马尔文帕纳科增材制造表征解决方案可用于: 确保始终如一的粉末供应防止产品质量波动 为采用不同撒布器或耙式设计的机器确定合适粉末 优化雾化条件以实现所需的粉末特性 预测并优化粉末堆积密度和流动特性 确保粉末具有正确的元素组成和相结构 确定制造组件的残余应力、应变和织构作者:马尔文帕纳科
  • 石墨炉原子吸收法分析高盐样品中的锑元素
    三价锑有毒性,对人体的危害极大,因此对于该成分的测定显得尤为重要。可以通过原子吸收分光光度法对可能含有锑元素的样品进行定量分析。但对于一些高盐且目标元素含量很低的样品,例如尿样,高盐背景会影响检测灵敏度。下面给大家介绍一种使用石墨炉原子吸收分光光度法测定高盐样品的方法:将60μL样品和20μL基体改进剂,共80μL试剂注入石墨管,测定样品中微量锑元素。即使大量注入样品,也可实现高灵敏度、高精度的定量分析。高盐样品中锑元素的条件设置■ 样品制备模拟尿液:参照JIS T 3214 膀胱留置用导尿管*模拟尿液中钠浓度:5.4 g /L*样品:将模拟尿液稀释2倍,并向其中加入锑元素(硝酸5%)■ 基体改进剂配置选择Pd1000 mg/L(硝酸10%)和Pd+Mg 1000 mg/L(硝酸10%)两种基体改进剂进行比较,如下图所示,Pd1000 mg/L(硝酸10%)作为基体改进剂的吸光度更高,因此选择Pd1000 mg/L(硝酸10%)作为基体改进剂。 ■ 加热后注入条件设置什么是加热后注入?对于大进样量的情况,可将石墨管加热至预设温度后再注入样品,这样可抑制样品散开,使样品停滞在石墨管中央,由此提高重现性,增加了进样量。通过优化,加热注入温度设置为80℃。 另外对于大量进样的情况,还可以选择日立DII型双注入技术热解石墨管来进行测试。■灰化、原子化温度设置—温度程序自动生成功能【灰化温度设置】背景吸收现象主要是由尿样中的钠元素(5000 mg/L左右)引起的。灰化温度≤1000℃时,背景吸收值偏高,以至于很难准确测定样品。通过温度程序自动生成功能可得到如下图所示的温度和吸光度关系图,由图可见灰化温度为1300℃时样品吸光度值最高,背景吸光值低,因此灰化温度设置为1300℃。【原子化温度设置】不同的原子化温度,原子吸收信号强度也不相同。通过温度程序自动生成功能可获得最佳原子化温度,如下图可见,原子化温度≤2500℃时,信号强度较弱。最终原子化温度设置为2800℃。分析高盐样品中的锑元素按JIS T 3214 膀胱留置用导尿管说明,配置模拟尿液样品。标准液是将关东化学社配置的原子吸光用标准液使用0.1%的硝酸稀释而成。■ 测定条件■ 测定结果上述是模拟尿样测定的结果:线性良好,回收率为97.3%,结果准确可靠。使用日立偏振塞曼原子吸收分光光度计ZA3000系列进行高盐度样品分析时,先加热石墨管再注入样品,不仅可以增加进样量(最多可注100μL),而且分析灵敏度高;配合日立原吸软件的温度程序自动生成功能,可方便快速地对干燥、灰化、原子化温度进行优化,得到最优的温度程序。
  • 中国带动整个亚太地区元素分析市场快速增长
    元素分析是元素化合物、分子种类和元素的检测和量化过程。这种分析方法是分析化学的一部分,可以定性和定量。进行微量元素检测的样本类型包括水和非水、有机和无机材料。   对于有机化学家来说,元素分析指C、H、N、X元素的分析,用于确定化合物的纯度和结构。在这种技术中,通常是通入氧气使样品燃烧,从而收集燃烧产物二氧化碳、硝酸和水等。这些产物的重量用于确定样品的成分。   使用最新的技术和仪器,超痕量和痕量元素分析的检出限能够达到ppm或ppb级水平。用于元素分析的主要技术包括电感耦合等离子体质谱法、电感耦合等离子体光学发射光谱法、x射线荧光和x射线衍射等。   元素分析市场的一些关键驱动因素,包括关注度越来越高的食品安全领域、x射线荧光在临床研究中越来越多的被使用和生命科学领域研发资金投入不断增长。此外,元素分析技术已经广泛的应用不同行业,成为一个拥有全球市场的分析仪器技术。还有一些其他地区市场的驱动因素,如在印度和中国等新兴市场的需求预计将在未来为元素分析市场创造机会。然而,元素分析仪的高成本、要求高效专业操作人员等约束了市场的增长。   全球元素分析市场可以以类型、技术、应用和地区为基础进行分类。基于技术,元素分析市场分为破坏性技术和无损技术。2015年,无损技术估计占更大的市场份额。  基于类型,这个市场划分为有机元素分析和无机元素分析。2015年,无机元素分析预计将占更大的市场份额。基于应用,元素分析市场划分为生命科学、食品和饮料、环境、地质等。据估计,在2015年,环境测试占最大的市场份额。   基于地区,全球元素分析市场分为北美、欧洲、亚洲和其他地区。其他地区包括拉丁美洲、太平洋国家、中东和非洲。2015年,北美将占最大的市场,其次是欧洲和亚洲。元素分析在北美市场获得巨大的发展的主要因素是,这一技术在各个应用领域的快速发展,如食品饮料、生物技术、化学和半导体行业等。然而预期未来,亚太市场将以显著的速度增长,主要是由于中国和印度市场元素分析意识的增强,以及应用市场需求的不断增长。此外,制造商在中国的战略扩张和在中药领域现代元素分析技术的应用,有可能开发亚太地区的元素分析市场。   元素分析市场的主要供应商包括赛默飞、安捷伦、阿美特克、珀金埃尔默、布鲁克、岛津、艾力蒙塔、理学、耶拿等。
  • 岛津推出地质矿产元素分析解决方案
    两千多年前中国的铜矿开采规模就已经达到了非常可观的地步,中国古老的《山海经》、《禹贡》、《管子》等书籍以及古希腊的《石头论》中均包含了古代人类对于岩石矿物知识的总结。最近60 年来,我国地质测试工作为地质科学研究、矿产资源及地质环境评价奠定了重要基础,成为国土资源调查、普查勘探、找矿、矿产储量计算和矿产综合利用不可缺少的重要依据。 岩矿分析是分析化学在地球科学应用的一个分支学科,它以岩石、矿物为研究对象,它的任务是确定岩石、矿物的化学组成及有关组份在不同赋存状态下的含量。岩矿分析是地球科学研究中的一个重要组成部分,同时,岩矿分析数据也是各种地球科学研究成果中的重要组成部分。目前国土资源部发布了岩石和矿石化学分析方法总则及一般规定《GB/T14505-2010》、地质矿产实验室测试质量管理规范《DZ/T0130-2006》等标准,规定了岩矿分析、海洋实验测试等规范中有关质量保证、样品、测试、质量监控、质量评估、数据处理、质量审查、资料归档的通用原则。 随着地球科学的不断发展,分析对象和分析任务不断扩大和复杂化,从而对岩矿分析工作的要求也日益增多和提高。从发展的趋势来看,除常量元素分析外,还要求在同一试样中进行多种痕量超痕量组份的定量分析。岩矿种类繁多,成分和结构复杂,含量有高有低,要求分析的项目多样,这就需要依靠高灵敏度、高通量、便捷快速的检测手段。 岛津公司作为全球著名的分析仪器厂商,旗下分析仪器涵盖色谱、光谱等多款产品,在分析行业发挥着独特的作用。进入中国30多年来,岛津公司一直推陈出新, 及时提供全面的解决方案。岛津分析中心自2012年2月以来,积极与国家地质测试中心和国家海洋局第一海洋研究所合作,通过国家地质测试中心和海洋一所提供地矿样品结合岛津仪器开展应用方法开发,积累了大量地矿样品分析的应用经验和高质量的应用数据,推出《地质矿产元素分析解决方案》,供相关人员参考,希望能对地质矿产行业的发展有所帮助。 该方案涉及的检测方法如下: ICP-AES测定锌精矿中的多种金属元素ICP-AES测定玄武岩中的微量元素ICP-AES法测定硫化物矿石中的14种常微量元素ICP-AES测定页岩矿石中的多种微量元素ICP-AES测定正长岩岩中的微量元素ICP-AES测定花岗岩中的微量元素ICP-AES测定超基性岩岩中的微量元素ICP-AES测定海洋沉积物锰结壳中的常量、微量元素ICP-AES法测定海洋沉积物中的常微量元素岩矿土壤沉积物中微量元素的分析 有关详情,请您向“岛津全球应用技术开发支持中心”咨询。 咨询电话:021-22013542 期待我们的工作会给您带来有益的帮助! 关于岛津 岛津企业管理(中国)有限公司是(株)岛津制作所于1999年100%出资,在中国设立的现地法人公司,在中国全境拥有13个分公司,事业规模不断扩大。其下设有北京、上海、广州、沈阳、成都分析中心,并拥有覆盖全国30个省的销售代理商网络以及60多个技术服务站,已构筑起为广大用户提供良好服务的完整体系。本公司以“为了人类和地球的健康”为经营理念,始终致力于为用户提供更加先进的产品和更加满意的服务,为中国社会的进步贡献力量。 更多信息请关注岛津公司网站www.shimadzu.com.cn/an/ 。 岛津官方微博地址http://weibo.com/chinashimadzu。岛津微信平台
  • 在线有机碳元素碳分析仪用于重要大气污染源研究
    日前,我公司的气溶胶在线有机碳/元素碳分析仪完成在中科院山西煤化所的安装和培训。此产品将用于模拟各种煤燃烧污染源的气溶胶颗粒中有机碳,二次气溶胶碳,黑碳的排放特性研究,此仪器可为研究过程提供连续的相关重要数据,为大气污染源的监测工作提供科学保障。 已有的科学研究表明,我国的煤燃烧排放污染是空气污染中的一个非常重要的因素,我国正处在清洁能源替代高污染能源的转型期。 相关知识介绍: 大气气溶胶中2.5微米以下粒子中有机碳元素碳一般在空气总粒子占比达到30-70%,是严重危害人体健康的有效危害成份,研究证明:其危害程度甚至超过吸烟 的危害. 大气污染物中元素碳/有机碳的直接连续含量测量,可以轻易剔除很容易造成数据失真的空气中水份等无伤害数值,直接评价大气中有机物和碳类无机物污染真实状态和对生物伤害程度. 大气气溶胶有机物含量的 连续原位监测是在环境科学领域清晰,有效定量区分雾和霾的有效化学原理的仪器分析方法.可以获得以小时或分钟计的实时原始数据(不可再生),并可有效消除离线分析前采样中,运输中的样品误差(很多情况下这种误差不小于10%)。 大气气溶胶粒子中元素碳/有机碳含量的监测已成为国际上关注的热点,我公司在线大气气溶胶有机碳/元素碳分析仪产品符合NIOSH-5040和ASTM -D6877-03标准,并获得EPA-ETV认证,我公司的产品现已在长三角,株三角,北京等重点地区初步建成多点网络连续监测,使我国的大气气溶胶有机碳/元素碳的监测水平同发达国家同步. 这些大量连续累积灰霾监测宝贵数据的获得,使我们国家拥有了大气气溶胶空气环境质量评价更多的话语权。 我公司提供的元素碳/有机碳分析仪同时具备监测黑碳成份的能力,对太阳辐射水平,灰霾,沙尘传输等气象研究也提供了有力的工具. 热光分析法测量大气颗粒物中有机碳/元素碳含量是国际上公认的方法,其中光热透射法已经建立了职业健康标准- NIOSH5040,这个技术解决了光学法只能测量颗粒物黑碳含量而无法精确测量有机碳、传统热学测量法在分析过程中有机碳炭化会引起测量误差等问题,实现了对大气碳颗粒物质量浓度的高精度实时测量.使用此仪器还可以估算出重要的二次气溶胶碳(SOA or SOC)数据。 中国科学院山西煤炭化学研究所:前身是中国科学院煤炭研究室,于1954年在大连中国科学院石油研究所(即现在的中国科学院大连化学物理研究所)挂牌成立。1961年,煤炭研究室扩建为中国科学院煤炭化学研究所并开始向太原搬迁。1978年9月改名为中国科学院山西煤炭化学研究所并沿用至今。 建所以来,山西煤化所以满足国家能源战略安全、社会经济可持续发展以及国防安全的战略性重大科技需求为使命,以协调解决煤炭利用效率与生态环境问题和重点突破制约国家战略性新兴产业发展的材料瓶颈为目标,围绕煤炭清洁高效利用和新型炭材料制备与应用开展定向基础研究、关键核心技术和重大系统集成创新,逐渐由一个只有64人的实验室,发展壮大为从基础研究到工艺过程开发直至产业化的体系较为完备且在国内外相关领域具有重要影响力的现代化研究所。截至2013年底,全所在职职工580人,其中科技人员452人,中科院院士1人,“千人计划” 2 人,“百人计划”10人,研究员及正高级工程技术人员58人,副研究员及高级工程技术人员125人。
  • 岛津EPMA超轻元素分析之(一)| 超轻元素的电子探针测试难点和岛津解决方案
    电子探针作为显微形态观察及微区成分分析最有效的测试手段之一,在材料分析和地质地矿领域有着非常广泛的应用。但超轻元素的电子探针微区定量测试存在一系列难点,成为限制深入研究的桎梏,也是传统仪器厂商不敢轻易涉足的“雷区”。 岛津电子探针(EPMA-1720 和 EPMA-8050G) 针对超轻元素种种特性,岛津电子探针通过在硬件方面配置兼具高灵敏度和高分辨率的约翰逊型全聚焦分光晶体、采用独有的52. 5°高位特征X射线取出角以及人工合成的各类超轻元素专用分光晶体等全方位优化设计,使得岛津在超轻元素的测试上表现格外优异。 超轻元素分析的难点 电子探针作为微区分析仪器,是利用从试样内部微米级别体积范围内被高能聚焦的入射电子束激发出的特征X射线信号来进行元素的定性及定量分析。超轻元素的特征X射线具有波长长、能量低、易被试样基体吸收等特点,用电子探针精确分析时有如下难点: 1超轻元素的特征X射线质量吸收系数大,譬如在同样的基体中,超轻元素Be的质量吸收系数是Fe元素的几百甚或上千倍,这意味着样品中被激发出的超轻元素特征X射线在从试样内部出射的过程中更容易被基体吸收、衰减程度更大。 2超轻元素的特征X射线波长较长,容易受到其它元素的高次线重叠干扰。如图1所示,C的Ka明显易受到Mn、Ni等元素高次线的干扰。图1 C元素附近的干扰线 3超轻元素原子核外只有两个电子层,其特征X射线由外层电子向内层空位跃迁后产生。当超轻元素与其他元素结合时,外层电子会受到影响,这就造成了不同结合状态下,超轻元素的特征X射线峰位会有所偏移。图2为单质硼与氮化硼样品中B元素特征X射线峰位偏移情况。 图2 B和BN的峰形峰位偏移 4超轻元素的特征X射线波长较长,根据布拉格衍射公式:2dsinθ=nλ,需要晶面间距d更大的分光晶体,而天然矿物中已很难找到可对超轻元素分光的合适晶体。 岛津应对之道 1针对超轻元素特征X射线易被基体吸收的问题,岛津电子探针采用52.5°高位特征X射线取出角设计。 假设特征X 射线产品的深度为单位1 μm 时,取出角为40°的仪器相对于岛津52. 5°取出角,两者的出射路程差可达ΔL = b -a = 1 /sin 40° - 1 /sin52. 5° = 1. 556 - 1. 261 =0. 295 μm。可见,高取出角能够显著的缩短出射路程,极大的减轻超轻元素被基体吸收的程度 另外高取出角还能带来更好的空间分辨率、更少的二次荧光等优势。 2针对超轻元素特征X射线测试灵敏度的问题,岛津配置了兼具灵敏度和分辨率的全聚焦分光晶体。 罗兰圆的半径越大,对特征X 射线的分辨率越好,罗兰圆的半径越小,灵敏度会越好。如果使用半聚焦型的分光晶体,灵敏度和分辨率不能很好地兼顾,如果需要高灵敏度时,只能选择罗兰圆半径较小的分光晶体,同时把特征X 射线检测器前端的狭缝调大,但难免会造成分辨率的变差 而需要高分辨率时,则需要选择罗兰圆半径较大的分光晶体,同时把检测器狭缝缩窄,但会造成灵敏度的下降。而岛津电子探针采用统一4 英寸的全聚焦晶体,无需额外选择和设置,即可获得更好的灵敏度和分辨率。 3针对高次线的影响,岛津对每个分光谱仪使用256个通道的PHA(脉冲高度分析器,Pulse Height Analyzer)可以有效地过滤高次线的干扰。 图3 利用PHA过滤高次线对Be峰的干扰 4针对超轻元素波长较长的特点,岛津开发了超轻元素测试专用的大晶面间距的分光晶体(不同2d值)可供选择,如表1所示。 表1 岛津开发的超轻元素专用分光晶体 总 结 岛津电子探针完美地解决了微区中超轻元素的测试难题,可为材料分析中的微观机理研究提供有力数据支撑;在地学领域,对于研究矿床成因解释、矿产资源评价和新矿物的发现等具有重要意义。 撰稿人:赵同新、崔会杰
  • 马尔文帕纳科发布新型在线元素分析仪——快速、准确的分析工具
    p style=" text-indent: 2em " 近日,马尔文帕纳科发布了一款用于测定材料化学成分的新型高性能台式分析工具——Epsilon 4台式X射线荧光光谱仪。Epsilon 4台式X射线荧光光谱仪是一款多功能仪器,其研发充分借鉴了Epsilon 3 系列X射线荧光光谱仪的成功经验,在诸如采矿、制药、石油以及燃料等需要遵循国际标准和检测方法的行业,开辟了新的产业应用天地。 /p p style=" text-indent: 2em " Epsilon 4把最新的激发、检测技术与智能设计结合在一起,其分析新功能更接近于功率更高的落地式光谱仪。它基础设施的需求很低,可以直接放置在生产线旁的任何地方,更适于各种应用环境,降低了氦气或真空维护的成本。 /p p style=" text-indent: 2em " Epsilon 4采用了马尔文帕纳科设计和制造的低漂移金属陶瓷X射线管,多年以来,该射线管无需重新校准,就可以提供可靠的检测结果,另外,该仪器还可以自动处理样品。 /p p style=" text-indent: 2em " 10-watt版本的Epsilon 4台式X射线荧光光谱仪,可灵活应用于从研发到过程控制等各个领域的元素分析(氟-镅),而15-watt版本的Epsilon 4台式X射线荧光光谱仪,则可用于在挑战性环境中实现更高的样品处理量,或者具备改进的和扩展的轻元素(碳、氮、氧等)分析功能。“Epsilon 4台式X射线荧光光谱仪具有较高的计数率,样品制备操作简便,检测结果重复性优良。”马尔文帕纳科的产品总监Simon Milner 这样说,“对于测试方法和规范要求日益严格的各个行业,Epsilon 4都不失为一个分析工具的良选,相信我们卓有经验的工作人员将与您合作,为您的分析研究量身定制出色的解决方案。” /p
  • 北京兴东达泰公司在线元素碳/有机碳分析仪为世博保驾护航
    日前,我公司完成长三角多个站点的在线元素碳/有机碳分析仪安装和维护工作,连续24小时密切监测空气中元素碳/有机碳的变化. 大气气溶胶中2.5微米以下粒子中有机碳元素碳一般在空气总粒子占比达到30-70%,是严重危害人体健康的有效危害成份,研究证明:其危害程度甚至超过吸烟的危害. 大气气溶胶粒子中元素碳/有机碳含量的检测已成为国际上关注的热点,随着长三角,株三角等我国重点地区监测装备的提升,使我国的大气气溶胶有机碳/元素碳的监测水平同发达国家同步. 我公司提供的在线元素碳/有机碳分析仪同时具备监测黑碳成份的能力,对太阳辐射水平,灰霾,沙尘传输等气象研究也提供了有力的工具. 小知识:热光分析法测量大气颗粒物中有机碳/元素碳含量是国际上公认的方法,其中光热透射法已经建立了职业健康标准-EPA NIOSH5040,这个技术解决了光学法只能测量颗粒物黑碳含量而无法精确测量有机碳、传统热学测量法在分析过程中有机碳炭化会引起测量误差等问题,实现了对大气碳颗粒物质量浓度的高精度实时测量,我公司的在线产品同时具备实验室测试功能,仪器中的激光测试部分具备直接测试黑碳功能,而光热结合测试可以对大气气溶胶中的无机碳/有机碳,碳酸盐等成份做准确定量测试,每个样品的测试过程仪器都会完成自动标气内校步骤。
  • 脱颖而出——岛津携手三星SDI天津工厂锁定锂电池元素分析
    为了确保材料性能和电池安全性,元素分析一直是锂电企业的重点检测项目。等离子体发射光谱(ICP-OES)作为兼具灵敏度和基体耐受性的多元素分析技术,是锂电企业元素分析的顶梁柱。天津三星视界有限公司,也称三星SDI天津工厂,于2019年10月导入了岛津ICPE-9820用于正负极材料的分析。两年多来,小I(ICPE-9820)在三星SDI工厂鉴比例、控杂质,严把质量关。今天,我们来聊聊小I与三星SDI的结缘故事。 三星SDI之天津三星视界有限公司 目前,全球锂离子电池行业(本文中所提到锂电池均指锂离子电池)呈现中、日、韩三足鼎立的格局。作为韩国锂电池三强之一,三星SDI在锂电领域的成绩颇为突出。根据韩国市场研究机构SNE Research制作的2021年11月全球动力电池企业榜数据,三星SDI动力电池装机量排名第六。 图1 三星SDI天津工厂 三星SDI天津工厂,成立于1996年9月,由三星SDI和天津市电子仪表工业总公司合资成立。作为成熟的锂离子电池生产企业,天津工厂业务涵盖显示和电池领域,尤其消费电池多年居全球前列。 小I与三星SDI之缘起 为了保证电池安全性和性能,生产中对材料和工艺均有严格的监控指标。电池材料中,正极、负极、隔膜和电解液是关键组成部分,直接影响电池安全、寿命和能量密度。其中主体元素配比和杂质含量对产品质量控制与产品性能具有重要影响。因此,元素分析是锂电池企业日常检测的重要项目。 在三星SDI天津工厂,电池产线参考韩国总部配套了两台ICP用于主量元素和杂质元素的分析。由于样品量大,小I的两台同行有时会出现故障,所以迫切需要新成员来分担检测压力。 小I与三星SDI之结缘 灵敏度和精密度评估 2019年8月,三星SDI天津工厂启动了新的仪器评估计划。小I(ICPE-9820)代表岛津参加了本轮比对测试,对给定溶液中的Cr、Fe、Ni和Zn元素进行测试,评估灵敏度和精密度。 表1 灵敏度评估结果 在灵敏度和精密度评估中,小I的各项数据均优于客户现有仪器:标液回收率为98.8%-101%,优于97.2%-103%;RSD值<0.99%,优于<3.67%. 表2 精密度评估结果 注:带*的数据由已有品牌ICP-OES测定,标液浓度为0.25mg/L. 图2 岛津ICPE-9800系列电感耦合等离子体发射光谱仪 未知样测试评估 在两个未知样品的测试中,两台仪器所得结果相近,但小I仍表现出更好的精密度。 表3 样品分析结果注:带*的数据由已有品牌ICP-OES测定。2#样品Ni的分析结果偏高,可能是样品运输中污染导致。N.D.代表未检出。 出色的表现让小I在本轮评估中脱颖而出。2019年10月,三星SDI天津工厂与岛津完成合作,小I入驻天津,开始承担起锂电正负极材料的品质监控任务。 小I与三星SDI之驻厂体验 初一入厂,小I就迅速进入角色,与其它两位ICP伙伴一同分担正极中主量元素、正负极和电解液中杂质的检测,丝毫不显新人的青涩,在主量元素和P、S等深紫外杂质元素的分析上甚至承担了更多的工作量。 不过,厂内的工作确实很辛苦,小I和小伙伴们都是24h连轴转,因为不管白天还是晚上,产线上的样品都是间隔一段时间就送来一批。小I因为是真空光室,轻装上阵不需要吹扫,晚间的样品常常以它作为主力军,小I从不挑拣拉胯,照单全测,体现出应对复杂基体的耐受性。更难能可贵的是,小I的状态很好,入厂至今,“身体”一直倍儿棒,测嘛嘛香。 小I优秀背后的坚持 小I出色的表现,得益于它的自身条件,独特的真空光室,赋予了它对P、S等深紫外区元素的高灵敏度和稳定性,更无需吹扫,运行起来经济又方便。而垂直炬管和CCD检测器的设计则让它对各种基体都能适用,而且数据处理上十分灵活。 图3 岛津ICPE-9800性能特点 当前锂电行业发展如火如荼,小I系列在锂电材料检测上的应用也越来越广泛,例如以标准加入法测试三元材料元素杂质和内标法测试主量成分(表4),在对正负极材料中S元素的测试上表现尤其出色(图4)。 表4 三元材料中杂质元素检测备注:*样品结果浓度单位%;N.D.-未检出。 图4 负极材料中S元素分析稳定性 用户心声 2019年10月至今,两年多的时间里,小I在三星SDI天津工厂坚守岗位,稳定发挥,获得了用户的一致好评。让我们听听来自用户的声音—— “我们以前有两台其它品牌的ICP,但有时候会出故障。我们这儿是24h三班倒的,仪器一坏就麻烦了。所以19年导入新ICP的时候,我们也经过了全面的考察,比如标准曲线线性、检出限、稳定性、测样速率等,最后选择了参数更好的岛津ICPE-9820。但故障率还是用久了才能体现,所以刚安装时候也担心。现在两年多用下来,都没出过什么问题,而且数据比那两台还稳定,我们很满意。现在主要就用这台的数据,它还有一点挺方便的,不用吹扫,稳定得很快,我们都爱用!” 图5 三星SDI天津工厂的岛津ICP-9820运行中 结语 ICP-OES作为兼具灵敏度和基体耐受性的多元素分析技术,对锂电池行业原材料和正负极材料、电解液等主量成分和杂质元素检测分析均具有良好适用性。岛津ICPE-9800系列在性能比对中脱颖而出,顺利入驻三星SDI天津工厂,更在两年多的使用中表现出优越的稳定性和耐受性,为锂电产品保驾护航,助力锂电行业稳健发展。 撰稿人:张敏 *本文内容非商业广告,仅供专业人士参考。
  • 岛津EPMA微量元素分析在无铅焊锡材料中的应用
    EPMA无铅焊锡材料 随着微型电子电器的发展以及根据国家信息产业部《电子信息产品生产污染防治管理办法》的规定,无铅焊锡(lead-free solder)已逐渐成为电子电器行业中的主流焊料。相较普通焊锡,无铅焊锡具有以下三大优势: 1. 溶化后出渣量比普通焊锡少,且具有优良的抗氧化性能;2. 溶化后粘度低,流动性好,可焊性高,适用于波峰焊接工艺;3. 由于氧化夹杂极少,可以更大限度地减少拉尖、桥联现象,焊接质量可靠,焊点光亮饱满。 无铅焊锡中杂质元素含量及分布的控制决定了焊料的质量及最终的上锡效果,因此工厂需要借助电子探针(EPMA)的元素含量和图像分析功能对无铅焊锡中的杂质含量和微观分布进行检测。图1. 岛津场发射电子探针EPMA-8050G 岛津EPMA-8050G型电子探针(图1)搭载高质量场发射电子光学系统,结合岛津特有的52.5°高X射线取出角和全聚焦晶体,可以实现: 1 优越的空间分辨率EPMA-8050G可达到的更高级别的二次电子图像分辨率3nm(加速电压30kV)。 (加速电压10kV时20nm@10nA/50nm@100nA/150nm@1μA) 2 大束流更高灵敏度分析可实现其他仪器所不能达到的大束流(加速电压30kV时可达3μA)。在超微量元素的检测灵敏度上实现了质的飞跃,将元素面分析时超微量元素成分分布的可视化成为现实。 岛津研发部门使用EPMA-8050G仪器在低加速电压(7kV)条件下对电子元件和印刷电路板连接处的焊料层进行了背散射(BSE)和元素面分布分析,图2 展示了微米尺度(刻度尺5μm)上杂质元素以点状Ag颗粒沉积为主,少量Cu颗粒沉积,确定了杂质元素的种类。 图2. 焊料层背散射和元素面分布图像分析(刻度尺5μm) 扩大放大倍数(刻度尺500nm)对富集Ag颗粒区域进行背散射和元素面分布分析,图3展示清晰区分Ag颗粒所需的横向空间分辨率大致为100nm甚至更小。 图3. 焊料层背散射和元素面分布图像分析(刻度尺500nm) 使用高加速电压(25kV)条件对相同视域进行分析,图4 展示Ag颗粒在高加速电压条件下具有更广的分布范围(C、D点区域均有Ag颗粒分布),结合岛津的电子传播路径显示程序(Electron penetration display program)分析,图5 展示高加速电压条件下X射线出射深度更大,根据以上信息可模拟推断出Ag杂质颗粒在焊料层纵向上的分布(图6)。 图4. 不同加速电压(7kV和25kV)条件下背散射和Ag元素分布图像 图5. 不同加速电压条件下电子束作用范围(红色)和X射线出射深度(绿色) 图6. 推断的Ag颗粒在焊料层内的纵向分布 更多电子探针仪器信息和相关应用敬请关注岛津科技资讯通推文内容。 本文内容非商业广告,仅供专业人士参考。
  • 发现生命的轨迹——化石中的碳元素分析 | 前沿应用
    不少收藏家热衷于收藏古生物化石,因其稀少且价格昂贵而具有价高的市场价值。但在科研人员的眼里,这不是一块具有"市场价值"的“稀有石头”,而是通往人类生命起源的探索通道。然而,在这种稀有的、不可再生的、形成于人类史前地质时期的生物和活动遗迹中,有什么是科研学者们探寻的?这一连细胞内部的细胞质等物质都已消失,DNA痕迹也荡然无存的石头内部,还有什么能够证明生命曾经的存在?也许是细胞壁?又或者,是细胞壁中的碳?图片来源:Pixabay地球早期生命的探寻科学家可以追溯到35亿年前地球上的生命,甚至有一些迹象表明,早在38亿年前地球上就存在生命了。然而,如何找到这些生命存在的直接证据呢?其实我们已经找不到几十亿年前活着的生命了,因为它们早已被分解为各种化学元素。但科学家们也并非毫无办法,他们可以通过观察古老的岩石——这一早期地球的唯一记录,来寻找这些生命存在的直接证据。图片来源:Pixabay查亚和他的同事们就是通过这样的方式来寻找答案,岩石中的微生物化石以及它们的元素、化学特征及其同位素丰度能够证明生命曾经真实地存在过。安德鲁查亚辛辛那提大学的地质学教授,专注于古生物学--古代生命的研究生命的标识——碳为什么科学家们要寻找化石遗迹?因为化石中不仅充满了因岩石和水相互作用而形成的矿物,还存在细菌细胞壁所留下的碳特征。虽然细胞的内部早已被大自然吞噬了,与之相随的DNA痕迹也荡然无存,但由碳分子组成的细胞壁有时会被保存下来,所以碳也是表明生命存在过的化学特征之一。像查亚这样的科学家就把那些他们认为已经足够古老、且有早期生命证据的岩石带回实验室,将这些岩石标本切割成仅有人类头发丝厚度的薄片,然后分析这些切片以寻找微小细菌的存在。存有化石的岩石要知道,细菌存在的痕迹非常不明显,一个很大的细菌细胞也仅为人类头发丝宽度,它的长度从几微米到一百微米不等。细菌的形状通常也很简单,呈棒状或球状,并没有很多可供识别的特征。面对如此细微的细菌痕迹,地质学家如何让人们相信他们发现的确实是一个曾经活着的生命的化石?他们需要提供更有力的证据,而生命体化石成分中的碳原子就是这样的证据。图片来源:Pixabay识别化石中的有机碳我们已经知道化石中的碳原子是生命存在的重要标识,然而,如何验证化石中的有机碳呢?查亚使用拉曼光谱仪来识别化石,他使用的是HORIBA 的T64000三光栅拉曼光谱仪。“你可以把含有化石的岩石薄片放在拉曼光谱仪搭配的显微镜物镜之下,把激光聚焦在上面,通过显示的光谱,我能知道细菌是否存在有机碳。”利用仪器进行的拉曼光谱成像, 能对材料空间定位,终能绘制出一张地图,地图上显示棕色的地方,就是细菌中具备碳特征的部位。由此得出化石中是否曾经存在过生命。还可以利用T64000制作三维地图,因为球形细菌中的有机碳球很难用显微镜下的二维图片来展示,而三维地图可以。HORIBA T64000高性能拉曼光谱仪注:如需了解该研究中HORIBA T64000光谱仪的详细介绍及使用问题,可点击左下角“阅读原文”,资深工程师将为您答疑解惑。寻觅地球之外的生命科学家们正在努力了解地球上的生命历史,这也促进了其他行星上生命的探索。目前的火星探索——好奇号火星探测车发射于2012年, 主要是为了寻找可能存在过生命的环境——有液态水存在的地方。科学家们希望能够找到这样的环境, 进而探索其地质情况, 以寻找早期生命存在的直接证据。这一任务很可能在下一次火星探测任务——火星 2020计划中完成,那时候,收集到的样本将被带回地球实验室进行研究。除了火星,科学家们也在研究木星。图片来源:Pixabay为何寻找地球外的生命?科学家们认为这可以加深我们对自己的了解。我们可以把我们有关早期地球的知识, 应用于其他行星, 特别是火星, 因为火星与地球相似,甚至可以认为, 几十亿年前的火星也许就像地球一样。“如果我们发现了火星或太阳系其他地方存在过生命的证据,而这些生命又拥有跟地球上生命相同的生物化学规律,那意味着:我们很可能拥有共同的起源。由此表明:生命其实很容易进化,宇宙的每个角落都可能存在生命。”。查亚如是认为。图片来源:Pixabay除了乘坐飞船来到地球的外星人之外, 宇宙中还有什么?也许是生命的化学特征?也许是单细胞类型的生物?也许古老的地球也曾经存在过这些生物?寻找这些问题的答案是许多科学家探寻其他星球的原因,人类对于地球历史和宇宙起源的探索从未停止。对人们来说,这样的探索是一个挑战,无论是从宇宙的星球还是从远古化石中的碳元素,然而这样的探索却永不会停止.今日话题古生物的发现与研究是一件辛苦却也颇具趣味的事情,其实很多科研工作也都是如此。如果您正在从事的研究跟古生物有关,可以留言分享您科研中有趣的地方;又或者您有对古生物研究感兴趣,有推荐的书籍电影,欢迎留言分享~我们会在今日话题发布后的三个工作日内,为点赞数高的读者送出星巴克咖啡券一份~ 点击查看更多往期精彩文章 生物传感器,让人工智能真正活过来|国际用户简讯牛津大学开创单细胞水平微生物代谢研究新方法|海外用户简讯解一颗石榴石,梦回千年“海上丝路”|光机所考古中心前沿用户报道瞪你一眼,就能“看透”你 | 用户动态青岛能源所实现毫秒级单细胞拉曼分选,"后液滴"设计功不可没|前沿用户报道表面增强共振拉曼光谱探究细胞色素c在活性界面上的电子转移 HORIBA科学仪器事业部HORIBA Scientific 致力于为科研及工业用户提供先进的检测和分析工具及解决方案,如:光学光谱、分子光谱、元素分析、材料表征及表面分析等先进检测技术,旗下Jobin Yvon光谱技术品牌创立于1819年,距今已有200年历史。如今,HORIBA 的高品质科学仪器已经成为全球科研、各行业研发及质量控制的首选,之后我们也将持续专注科研领域,致力于为全球用户提供更好的服务。点击下方“阅读原文”,咨询相关技术服务。
  • TSI 推出全新的ChemLogixTM系列元素分析解决方案
    TSI推出了全新的ChemLogixTM系列元素分析解决方案,其中包括ChemRevealTM型台式激光诱导击穿光谱仪。 Shoreview, MN-精密测量仪器制造商TSI公司很荣幸的推出新一代的ChemLogixTM系列元素分析解决方案产品线中的第一款产品:ChemRevealTM型台式激光诱导击穿光谱仪。这款ChemRevealTM型台式激光诱导击穿光谱仪基于激光诱导击穿光谱元素分析技术,是研究人员,科学家以及测试技术人员为多种应用进行快速可靠的材料鉴定以及固体元素成分分析的理想选择。 不同于传统的元素分析技术,这款新的ChemRevealTM型台式激光诱导击穿光谱仪让用户能够很容易地对每一个固体样品矩阵里的广泛的元素进行直接鉴定和分析。事实上,这个强大的全新的解决方案提供了对包括粉末,非晶或非导电材料固体样品中的有机物,轻元素,重元素进行同时表征,而且不需要繁琐的有害的样品制备过程。它神奇的融合了多种优点,否则的话只能被迫选择其他的替代方案。 更值得一提的是,这款ChemRevealTM型台式激光诱导击穿光谱仪装备了先进的ChemLytics&trade 软件,这款软件支持方法开发,光谱细节研究,以及各种客户自建或事先安装的库。如果需要更加先进的分析,ChemLytics&trade Plus 软件结合能够创立用于复杂矩阵量化的多变量模型的工业级化学计量软件以及库来为充满挑战的材料可靠性鉴别进行匹配。 &ldquo 无论是微量还是高浓度,实验室还是生产线,使用LIBS技术的ChemRevealTM型台式激光诱导击穿光谱仪都能让元素分析变得前所未有的快捷而且更加具有通用性,&rdquo ChemLogix&trade 品牌仪器的国际市场营销部经理Ashok Agarwala如是说道。 想得到更多的关于ChemRevealTM型台式激光诱导击穿光谱仪的信息,请访问www.tsi.com/ChemReveal. 关于TSI公司 TSI公司研究、确定和解决各种测量问题,为全球市场服务。作为精密仪器设计和生产的行业领导者,TSI与世界各地的科研机构和客户合作,确立与气溶胶科学、气流、健康和安全、室内空气质量、流体力学及生物危害检测有关的测量标准。TSI总部位于美国,在欧洲和亚洲设有代表处,在其服务的全球各个市场建立了机构。每天,我们专业的员工都在把科研成果转化成现实。
  • 发现生命的轨迹——化石中的碳元素分析 | 前沿应用
    不少收藏家热衷于收藏古生物化石,因其稀少且价格昂贵而具有价高的市场价值。但在科研人员的眼里,这不是一块具有"市场价值"的“稀有石头”,而是通往人类生命起源的探索通道。然而,在这种稀有的、不可再生的、形成于人类史前地质时期的生物和活动遗迹中,有什么是科研学者们探寻的?这一连细胞内部的细胞质等物质都已消失,DNA痕迹也荡然无存的石头内部,还有什么能够证明生命曾经的存在?也许是细胞壁?又或者,是细胞壁中的碳?图片来源:Pixabay地球早期生命的探寻科学家可以追溯到35亿年前地球上的生命,甚至有一些迹象表明,早在38亿年前地球上就存在生命了。然而,如何找到这些生命存在的直接证据呢?其实我们已经找不到几十亿年前活着的生命了,因为它们早已被分解为各种化学元素。但科学家们也并非毫无办法,他们可以通过观察古老的岩石——这一早期地球的唯一记录,来寻找这些生命存在的直接证据。图片来源:Pixabay查亚和他的同事们就是通过这样的方式来寻找答案,岩石中的微生物化石以及它们的元素、化学特征及其同位素丰度能够证明生命曾经真实地存在过。安德鲁查亚辛辛那提大学的地质学教授,专注于古生物学--古代生命的研究生命的标识——碳为什么科学家们要寻找化石遗迹?因为化石中不仅充满了因岩石和水相互作用而形成的矿物,还存在细菌细胞壁所留下的碳特征。虽然细胞的内部早已被大自然吞噬了,与之相随的DNA痕迹也荡然无存,但由碳分子组成的细胞壁有时会被保存下来,所以碳也是表明生命存在过的化学特征之一。像查亚这样的科学家就把那些他们认为已经足够古老、且有早期生命证据的岩石带回实验室,将这些岩石标本切割成仅有人类头发丝厚度的薄片,然后分析这些切片以寻找微小细菌的存在。存有化石的岩石要知道,细菌存在的痕迹非常不明显,一个很大的细菌细胞也仅为人类头发丝宽度,它的长度从几微米到一百微米不等。细菌的形状通常也很简单,呈棒状或球状,并没有很多可供识别的特征。面对如此细微的细菌痕迹,地质学家如何让人们相信他们发现的确实是一个曾经活着的生命的化石?他们需要提供更有力的证据,而生命体化石成分中的碳原子就是这样的证据。图片来源:Pixabay识别化石中的有机碳我们已经知道化石中的碳原子是生命存在的重要标识,然而,如何验证化石中的有机碳呢?查亚使用拉曼光谱仪来识别化石,他使用的是HORIBA 的T64000三光栅拉曼光谱仪。“你可以把含有化石的岩石薄片放在拉曼光谱仪搭配的显微镜物镜之下,把激光聚焦在上面,通过显示的光谱,我能知道细菌是否存在有机碳。”利用仪器进行的拉曼光谱成像, 能对材料空间定位,终能绘制出一张地图,地图上显示棕色的地方,就是细菌中具备碳特征的部位。由此得出化石中是否曾经存在过生命。还可以利用T64000制作三维地图,因为球形细菌中的有机碳球很难用显微镜下的二维图片来展示,而三维地图可以。HORIBA T64000高性能拉曼光谱仪注:如需了解该研究中HORIBA T64000光谱仪的详细介绍及使用问题,可点击左下角“阅读原文”,资深工程师将为您答疑解惑。寻觅地球之外的生命科学家们正在努力了解地球上的生命历史,这也促进了其他行星上生命的探索。目前的火星探索——好奇号火星探测车发射于2012年, 主要是为了寻找可能存在过生命的环境——有液态水存在的地方。科学家们希望能够找到这样的环境, 进而探索其地质情况, 以寻找早期生命存在的直接证据。这一任务很可能在下一次火星探测任务——火星 2020计划中完成,那时候,收集到的样本将被带回地球实验室进行研究。除了火星,科学家们也在研究木星。图片来源:Pixabay为何寻找地球外的生命?科学家们认为这可以加深我们对自己的了解。我们可以把我们有关早期地球的知识, 应用于其他行星, 特别是火星, 因为火星与地球相似,甚至可以认为, 几十亿年前的火星也许就像地球一样。“如果我们发现了火星或太阳系其他地方存在过生命的证据,而这些生命又拥有跟地球上生命相同的生物化学规律,那意味着:我们很可能拥有共同的起源。由此表明:生命其实很容易进化,宇宙的每个角落都可能存在生命。”。查亚如是认为。图片来源:Pixabay除了乘坐飞船来到地球的外星人之外, 宇宙中还有什么?也许是生命的化学特征?也许是单细胞类型的生物?也许古老的地球也曾经存在过这些生物?寻找这些问题的答案是许多科学家探寻其他星球的原因,人类对于地球历史和宇宙起源的探索从未停止。对人们来说,这样的探索是一个挑战,无论是从宇宙的星球还是从远古化石中的碳元素,然而这样的探索却永不会停止。 HORIBA科学仪器事业部HORIBA Scientific 致力于为科研及工业用户提供先进的检测和分析工具及解决方案,如:光学光谱、分子光谱、元素分析、材料表征及表面分析等先进检测技术,旗下Jobin Yvon光谱技术品牌创立于1819年,距今已有200年历史。如今,HORIBA 的高品质科学仪器已经成为全球科研、各行业研发及质量控制的首选,之后我们也将持续专注科研领域,致力于为全球用户提供更好的服务。
  • 奥林巴斯XRF元素分析仪助力工业检测更方便
    随着国内经济的发展,轻工业和重工业领域为了满足生活需要不断进行产业革新。为了匹配生产,产业检测领域出现了不少检测设备,其中奥林巴斯XRF元素分析仪便是在产业线生产检测中使用较为广泛的一个。  奥林巴斯XRF元素分析仪助力国内元素分析仪的发展,具备全天候持续对产品进行质量检测的能力,采用创新的Axon技术,装备新型的四核处理器和超低噪音处理器,提高X射线频率,在提高检测速度的同时也提高检测的准确度,降低容错率。  奥林巴斯XRF元素分析仪以X射线荧光技术为基础,X射线荧光可以对生产线上的产品进行材料分析,尤其是合金材料,可以快速分析其中的元素成分,非常适合应用于流水生产线。它工作的核心是针对化学元素进行分析,适用于各种生产合金的企业和产品中含有金属元素的生产企业。  奥林巴斯XRF元素分析仪应用的领域十分广泛,常见的一种便是阀门材质检测。生活中的阀门随处可见,水龙头、燃气阀门、汽车排气阀门等等,为了耐高温和防止变形,阀门通常是采用金属材质。奥林巴斯XRF元素分析仪可以对这些合金材料进行元素分析,确定合金材料成分,检测材料的化学成分是否合规,从生产线保障产品质量,保护使用者的安全。  还有一种则应用于水泥行业,水泥在生活中使用的地方比较多,特别是建筑领域都会用到水泥,因此把控水泥质量至关重要。奥林巴斯XRF元素分析仪可以对水泥生产过程中的各种金属元素含量和氧化物的成分进行分析,这也是检验水泥质量的一项重要指标。奥林巴斯XRF元素分析仪也可以应用于水泥窑协同处置,进行工业固体分废弃物中有毒或有害的重金属分析,防止有毒或有害金属进入土壤,污染环境。  综合来说,奥林巴斯XRF元素分析仪具有三大特点,分别是高分辨率、高准确率、高效率。高分辨率体现在对生产线产品金属元素的区分度方面,不仅能够分辨重金属元素,还能够分辨轻金属元素。高准确率主要体现在Vanta系列XRF元素分析仪运用核心技术装备了承载力更强的电子元件,能够适应通量更大的产品生产线,提供更加稳定的短时快速质量检测。  以上就是关于“奥林巴斯XRF元素分析仪让工业检测更方便”的相关介绍,如需了解更多关于XRF元素分析仪的特点,可联系赢洲科技(上海)有限公司。
  • 德国元素+仪器信息网 | 废污水中总有机碳(TOC)分析解决方案
    德国元素+仪器信息网 | 废污水中总有机碳(TOC)分析解决方案废水中有机成分的监测是废水处理过程的重要组成部分,监测废水中有机含量的方法有生物需氧量(BOD)、化学需氧量(COD)和总有机碳(TOC)。TOC测量相较于其他两种方法,具有一些独特优势,特别是在废水监测方面。高温TOC分析仪可实现在几分钟内获得快速的结果,而非需4小时的COD和5天的BOD,使其成为理想的连续监测废水的方法。废水TOC分析面临诸多挑战。通常水会有高的颗粒负荷和高的元素浓度。这就给出了几种可能影响TOC测量和数据可靠性的干扰。为此,德国元素携手仪器信息网,将于5月19日召开“废污水分析检测技术”系列主题网络研讨会。德国元素产品专家-潘婷女士也会与大家一同探讨废污水中总有机碳(TOC)分析解决方案。长按并扫描下面的图片,识别二维码,开始报名,期待您的参与!
  • 赛默飞推出色谱及痕量元素分析药物分析解决方案
    2014年6月26日,上海——科学服务领域的世界领导者赛默飞世尔科技(以下简称:赛默飞)近日推出色谱及痕量元素分析药物分析解决方案。全球范围内的制药行业正面临着严峻的挑战:许多常用的药品专利到期,而开发一种新的药物代价高昂、耗时长,且往往需测试超过10,000种化合物才有一种得到最终的上市批准;全球各地政府都在控制医疗成本;国际机构正在对风靡全球的生物制药寻求统一的监管控制等。在这些挑战之下,全球医药市场萎靡。 赛默飞了解制药行业各个环节的需求并可提供帮助。无论是新药的发现及开发,还是后期的制造、分析及控制,每个环节都可提供优质的技术和服务,提高您的工作效率并降低成本。我们拥有的分离和检测技术可为制药行业中遇到的各种复杂的分析难题提供全方位的解决方案。 赛默飞色谱以及痕量元素分析产品,将创新技术、便捷采购方案和实验室运营管理的整体解决方案相结合,为药物分析创造出全新的可能性,帮助客户解决在分析领域所遇到的复杂问题与挑战,促进制药行业发展,提高实验室生产力。色谱及痕量元素分析药物分析解决方案 制药行业全面解决方案 此次赛默飞推出的药物分析解决方案以产品为单位共分为五个章节:离子色谱、液相色谱、元素分析、气相/气质、加速溶剂萃取。每一章节均介绍了该类仪器的原理,赛默飞产品的特点和典型的应用案例。全文共呈现了约90个典型应用,涵盖了化药、中药、抗生素、生化药物、生物制品、药用辅料等几乎所有的药物种类;分析类型包括了有效成分、有关物质、降解产物、溶剂残留、有毒有害元素以及方法比较等方面,系统地展现了赛默飞在药物分析领域全面且无可挑剔的解决方案,是我们为制药行业提供的又一利器。下载色谱及痕量元素分析药物分析解决方案请点击:http://www.instrument.com.cn/netshow/SH100650/down_323500.htm 关于赛默飞世尔科技赛默飞世尔科技(纽约证交所代码:TMO)是科学服务领域的世界领导者。公司年销售额170亿美元,在50个国家拥有员工约50,000人。我们的使命是帮助客户使世界更健康、更清洁、更安全。我们的产品和服务帮助客户加速生命科学领域的研究、解决在分析领域所遇到的复杂问题与挑战,促进医疗诊断发展、提高实验室生产力。借助于Thermo Scientific、 Life Technologies、 Fisher Scientific 和 Unity Lab Services四个首要品牌,我们将创新技术、便捷采购方案和实验室运营管理的整体解决方案相结合,为客户、股东和员工创造价值。欲了解更多信息,请浏览公司网站:www.thermofisher.com。赛默飞世尔科技中国赛默飞世尔科技进入中国已超过30年,在中国的总部设于上海,并在北京、广州、香港、台湾、成都、沈阳、西安、南京、武汉等地设立了分公司,员工人数超过3800名。为了满足中国市场的需求,现有8家工厂分别在上海、北京、广州和苏州运营。我们在全国共设立了6个应用开发中心,将世界级的前沿技术和产品带给国内客户,并提供应用开发与培训等多项服务;位于上海的中国创新中心结合国内市场的需求和国外先进技术,研发适合中国的技术和产品;我们拥有遍布全国的维修服务网点和特别成立的中国技术培训团队,在全国有超过2000名专业人员直接为客户提供服务。我们致力于帮助客户使世界更健康、更清洁、更安全。欲了解更多信息,请登录www.thermofisher.cn。
  • 微量元素分析?应力、取向分析?电镜-拉曼联用应对有妙招!
    《RISE大招》前情回顾:与RISE之相遇、相知、相恋和相爱。本系列前几集讲述了RISE拉曼-电镜一体化系统在传统扫描电镜“心有余而力不足”的分析困境下一跃而出到它对于无机材料分析的武功路数:无机相鉴定、金属夹杂分析、结构和结晶度分析等等。(前三集链接:点击下列文字即可快速查看)。01 “我的前半生”结束了,后面的科研之路就靠它了!02 无机材料分析,RISE还有这些大招!03 《RISE大招》无机材料之结构分析和结晶度分析今天呢,主要给大家讲讲RISE对于无机材料中微量元素分析、取向分析和取向应力分析的解决方案。无机材料之微量元素分析在传统的电镜中,由于EDS的检出限为0.1%,所以对于一些微量元素的分析来说较为困难。尤其是要做微量元素或者差异很小的面分布来说,EDS往往不能满足我们的需要。虽然拉曼光谱并不能直接得到元素含量和分布分析,但是有时候微量元素的变化足以引起对应的特征拉曼峰的变化。此时便可利用拉曼光谱去进行微量元素的分析。 如下图,为某矿物试样。Nd元素含量较低,EDS无法通过Mapping将其分布准确的显示。 如果要点扫描,虽然单点数据可以比mapping更准确的测出Nd的含量,但是无法得到分布。如果要仔细分析,需要用户选择很多个测试点进行分析。但是这样得到的数据工作效率很低,数据整理困难,且准确性也难以评价。 而在RISE下则可以先进行拉曼面扫描,发现Nd元素对应的特征峰的积分强度随元素含量而有变化。元素Nd含量偏高的区域的拉曼光谱和红色接近,含量偏低的和蓝色谱图接近,所以根据谱图拟合后得到了根据Nd元素含量而得到的RISE图像。很快的可以找到Nd元素含量偏高或偏低的区域。根据RISE图像,我们还可以再去进行EDS分析,对含量偏高或偏低的区域做更精确的EDS定量分析。这比没有RISE图像仅根据SEM图像随机选点采集很多个数据点,再进行后期分析,无论是准确度还是效率上均要提高很多!无机材料之取向分析取向是晶体材料的重要基本参数,拉曼光谱虽然不能像EBSD一样直接进行晶面指数的分析,但是对于很多无机材料来说,取向不同其拉曼特征峰也会产生积分强度不同或者峰位有所偏移的情况。 如下图,试样为白铁矿晶体,主要成分为FeS2,结构属斜方双锥晶类,对称性较低。在RISE系统下,SEM图像获得了明显的ECC衬度,然后再进行拉曼光谱面扫描,发现不同晶粒的拉曼特征谱线有一定的变化,其峰的积分强度和峰的位置都随取向有一定的关系。进行谱线拟合后,得到了随取向变化的RISE图像。虽然我们不能得到每个晶粒的精确的取向,但是晶粒的分布及大小却可用非常清楚的从RISE图像获得。RISE不同于EBSD识别衍射花样,它另一个角度为分析晶粒提供了一定新的方法。 无机材料之取向应力分析应力测试也是无机材料分析的重要方面,目前微区应力分布测试主要手段是EBSD,通过测试取向差的分布来间接的反应的情况下。但是EBSD分析手段又有一定的局限性。 拉曼光谱也可以间接的反应应力的情况。如果存在压缩应力,特征峰会往高波数方向移动;反之,若存在拉伸应力,特征峰会向低波数方向移动。且应力越大,特征峰的位移越大。 RISE系统的拉曼成像能力非常强大,可以用特征谱线的位移来进行成像。如下图,对做过纳米压痕的单晶硅表面进行RISE成像。发现压痕中心区,特征峰往高波数方向移动,周边往低波数方向移动。根据此规律成像后,得到了纳米压痕区域,硅表面的压缩和拉伸应力分布图。 RISE七十二般武艺,招招新奇,但一招一式,每一个路数都为更好地帮助您的科研分析而生。除了应对传统扫描电镜分析能力薄弱的问题,RISE系统还切实突破并解决了传统意义上的电镜-拉曼联用系统的种种分析弊端,采用了扫描电镜-拉曼光谱一体化的硬件和软件设计,使得综合分析更加行之有效。《RISE大招》下集看点:说了这么多,是时候总结一下啦~Hahaha...关于TESCANTESCAN发源于全球最大的电镜制造基地-捷克Brno,是电子显微镜及聚焦离子束系统领域全球知名的跨国公司,有超过60年的电子显微镜研发和制造历史,是扫描电子显微镜与拉曼光谱仪联用技术、聚焦离子束与飞行时间质谱仪联用技术以及氙等离子聚焦离子束技术的开拓者,也是行业领域的技术领导者。↓ ↓ ↓ 观看RISE大招全系列,请戳:01 “我的前半生”结束了,后面的科研之路就靠它了!02 无机材料分析,RISE还有这些大招!03 《RISE大招》无机材料之结构分析和结晶度分析
  • 玩具中有害重金属元素的ICP-AES分析
    本文介绍了利用ICP-AES对玩具中有害重金属元素的分析研究。文中详述了实验方法,适用范 围以及结果和讨论,并运用干扰系数法校正元素间光谱干扰,结果较为满意,这在玩具日常检验的 光谱分析中具有重要的实际意义。   关 键 词 ICP-AES,玩具,有害重金属元素,干扰系数法,中阶梯光栅。 1 前言   我国是世界主要生产玩具出口国之一,而出口玩具的质量和安全卫生直接涉及到人身健康问 题,尤其是玩具中有害重金属元素将危及儿童的心身健康,因此强制玩具中有害重金属元素的检 验尤为重要[1]。目前,人们对玩具的分析方法进行了广泛的研究, 而用ICP-AES对玩具中有 害重金属元素进行分析测试是一个比较新的课题。由于ICP光源激发温度高,谱线比较丰富,可 选择的谱线范围大,另外,ICP是单、多元素同时进行扫描测定,故分析速度快。 为此,我们应 用ICP-AES中的分析法对玩具中有害重金属元素在进行了较深入的研究,并运用干扰系数法扣除 元素间的光谱干扰引起的分析偏差[2],通过实验研究结果较为满意,这对玩具日常检验的光谱 分析及研究过程中具有非常重要的实际意义。 2 实验部分 2.1 仪器装置   LEEMAN PS3000型ICP-AES,分辨率0.0075nm,三通道蠕动泵   样品提升量:1.0mL/min   高频振荡发生器,频率40.68MHz   双铂网雾化器   分光系统:中阶梯光栅,焦距0.75m   观察高度:用仪器自动对锰(259.373nm)作Peak both,调准锰的最佳观察区,以作为折衷观 察高度   方式:单、多元素同时顺序扫描测定。 2.2 工作条件   耦合功率:1.0kW,氩冷却气流量:14L/min,氩辅助气流量:0.2L/min,雾化器中氩气压力是40PSI。 2.3 试剂   HNO3 、HCl均匀G.R.级   高纯水:普通蒸馏水再经离子交换   As、Sb、Pb、Se、Ba、Cr、Cd、Co的国家标准溶液,浓度为1000?g/mL或500?g/mL   As、Sb、Pb、Se、Ba、Cr、Cd、Co的系列标准溶液,浓度分别为1?g/mL、5?g/mL、10?g/mL。 2.4 样品处理   总量:准确称取0.5g样品于50mL平底烧瓶,加入10mL浓硝酸,在电热板上加热硝化至溶液体积 约5mL(需要时可加数滴过氧化氢以利硝化),加10mL水,再在电热板上加热硝化至溶液体积约10mL, 取下冷却到室温,过滤,用去离子水洗涤,将滤液定容到50mL容量瓶。   可溶:准确称取0.5g样品于25mL比色管中,加入温度为(37± 2℃)的0.07mol/L盐酸溶液与之 混合,摇动1min,然后检查混合溶液的酸度,调节pH达到1.0-1.5之间,置于温度为(37± 2℃)的恒温 振荡器中,避光摇动1h,再静置1h,接着立刻将混合物中的固体物有效分离出来,溶液供分析各元素含 量用。   备注:总量是指玩具中所含某元素总的含量 可溶是指模仿人的胃酸(0.07mol/L盐酸溶液)的条 件下玩具表面某元素可以被溶出的含量。 3 结果与讨论 3.1 分析线的选择   用待测元素的标准溶液和空白溶液在各波长处进行扫描,得到这些元素在这些波长处的扫描轮廓 图,然后输入干扰元素溶液,得到相应的扫描峰形图。计算机联用贮存这些图谱,并可将它们同时显 示。从所示的谱线及背景的轮廓和强度值,可以很直观地看到干扰的类型和程度,能方便地选择合适 的分析线和设置背景校正位置。   分析波长与检出限见表1。 表 1 元素分析波长,扣背景点,检出限及相对标准偏差 元素 波长 背景BKP1 背景BKP2 检出限 相对标准偏差   (nm) (nm) (nm) (?g/mL) (%) As 193.695 193.680 193.710 0.065 5.6 Sb 231.147 231.129 231.165 0.073 4.0 Ba 455.403 455.351 455.439 0.001 5.3 Se 196.026 196.010 196.042 0.043 5.8 Pb 220.353 220.335 220.371 0.064 3.4 Cd 214.438 214.421 214.455 0.004 3.3 Cr 267.716 267.695 267.747 0.005 4.1 3.2 工作参数的选择[3] 3.2.1 功率的影响   由实验结果可知大多数元素随功率的增加谱线强度增加,但功率增大到一定程度信背比反而下降 ,同时也易烧掉炬管。综合考虑选1.0kW较合适。 3.2.2 氩辅助气流量   考虑到有些玩具样品含有机物成份,燃烧时易破坏热平衡导致烧炬管,故选择氩辅助气流量为0.2L/min。 3.2.3 酸度的影响   由于玩具前处理好的样品的酸度是严格按照ASTM标准或EN71标准确定的,故不考虑酸度的影响。 3.2.4 观察高度的影响   用Mn(波长259.373nm)线作Peak both,调整其最佳观察区以作为测量观察高度。 3.3 校准曲线的绘制   分别将国家标准溶液配制成系列标准溶液,以高纯水作空白,分别作出各标准的校准曲线。 3.4 干扰系数的测定   干扰系数是指单位浓度的干扰元素的纯溶液在待测元素波长处测得的数值。通过测干扰系数,来校 正主量元素及其它杂质元素对待测元素的光谱干扰。见表2。 表 2 待分析元素的干扰系数 待分析元素 干扰元素 干扰系数(× 10-3) Sb Co 7.330 Pb Co 1.540 Ba Cr 0.0353.5 样品分析   按本文拟定方法,分析HOKLAS提供的样品,分析测试结果全部落入可接受范围内,结果见表3。 3.6 回收实验   为了考查测定结果的准确性,在样品中加入标准溶液,按上述方法及条件对样品进行测定,回收率见表4。 表 3 HOKLAS实验室认证考核样品测试结果 重金属元素 稀释5倍后的结果 (?g/mL) Pb 0.461 As 0.636 Sb 3.03 Ba 5.46 Cd 0.605 Cr 0.982 Se 1.46   表 4 杂质元素测试结果及回收率 元素 空白读数 加入量 测得值 回收率     (?g/mL) (?g/mL) (%) As 0.0152 5.0 5.544 110.6 Sb 0.0001 5.0 5.355 107.1 Se 0.0363 5.0 5.733 113.9 Ba 0.0003 5.0 5.111 102.2 Pb 0.0106 5.0 5.577 111.3 Cd 0.0006 5.0 5.456 109.1 Cr 0.0098 5.0 5.165 103.1  注:玩具中有害重金属元素一般指As、Sb、Ba、Se、Pb、Cd、Cr、Hg。 3.7 元素间的干扰情况   经过干扰条件试验得知:   (1) 溶液中1?g/mL以上的Cr对Ba的测定有影响,需用干扰系数法去校正Cr对Ba测定的光谱干 扰,以得到较准确的分析结果。   (2) 由于玩具中经常含有大量的Co,所以也要考虑Co的干扰。溶液中1?g/mL以上的Co对Pb的测 定有影响,对Sb的测定影响较大,故需用干扰系数法去校正Co对Pb以及Co对Sb测定的光谱干扰,以得 到较准确的分析结果。   (3) 除上面所述的情况外,其余元素间测定时相互不影响。 3.8 注意事项   测定玩具中有害重金属含量一般用多道同时测定,当Co和Cr有一定含量时,用单道对Sb和Ba及Pb 进行校正(因单道已设置干扰系数自动校正程序)。4 结论   通过上述系列试验及结果可知,采用ICP-AES对玩具中有害重金属元素的光谱分析可用于出口玩具 的日常检验方面。
  • 岛津原子力显微镜——锂电池导电性分析(联用元素分析工具)
    锂离子电池是一种可充电蓄电池,其通过从活性材料的结构中解吸/插入Li+来充电/放电。从制作工艺而言,锂电池正极由活性材料、导电剂、粘结剂、增稠剂及溶剂去离子水等多相物质混合制成。这其中,对于提高性能和质量控制,最重要的是活性材料、粘合剂和导电添加剂的工作状态和分布状态。图1 锂电池充放电示意图目前应用最为广泛的正极材料主要有钴酸锂、磷酸铁锂、锰酸锂、三元材料镍钴锰酸锂和镍钴铝酸锂等。其中高镍三元锂离子电池正极材料NCM(锂镍锰钴氧化物;Li(Ni-Co-Mn)O2)凭借比容量高、成本较低和安全性优良等优势,成为研究的热点,被认为是极具应用前景的锂离子动力电池正极材料。为了保证电极具有良好的充放电性能,通常加入一定量的导电剂,在活性材料之间、活性材料与集流体之间起到收集微电流的作用,以减小电极的接触电阻,加速电子的移动速率。导电剂的材料、形貌、粒径及含量对电池都有着不同的影响,碳系导电剂从类型上可以分为导电石墨、导电炭黑、导电碳纤维和石墨烯。常用的锂电池导电剂可以分为传统导电剂(如炭黑、导电石墨、碳纤维等)和新型导电剂(如碳纳米管、石墨烯及其混合导电浆料等)。锂电池粘结剂是一种将活性材料粘附在集流体上的高分子化合物。专门用于粘结和固定电极活性材料,增强电极活性材料与导电剂以及活性材料与集流体之间的电子接触,更好地稳定极片的结构。聚偏氟乙烯(PVDF)是一种具有高介电常数的聚合物材料,具有良好的化学稳定性和温度特性,具有优良的机械性能和加工性,对提高粘结性能有积极的作用,被广泛应用于锂离子电池中,作为正负极粘结剂。另一方面,正极中的这三种主要物质的分布状态和工作状态决定了锂电池的充放电性能。最常遇到的不利情况包括不导电的粘结剂对活性材料的包裹导致无法参与反应,活性材料颗粒的碎裂导致隔离于反应体系,粘结剂/导电剂分散不均导致一些区域间隙过大使活性材料隔离于反应体系。在这些情况下活性材料成为死的活性材料,不再参与电极反应。图2 正极中各组分存在状态为了更全面地分析,需要结合多种仪器进行。传统上,SEM+EDS可以对正极表面形貌和元素分布。但是局限性也很大,首先,EDS仅是一种定性分析工具,不能对元素进行定量分析,需要更精确的方法;另一方面,SEM仅能观察形貌,无法观测正极的工作状态,需要一种表面电学性能观测的方法。因此本实验使用EPMA电子探针微量分析仪(EPMA-8050G)测量正极的元素分布,使用原子力显微镜(SPM-9700HT)观测表面电流分布状态。通过比较EPMA和SPM相同区域图像来评估正极表面各种组分的工作状态。比较EPMA和SPM在相同区域的分析结果。图3至图5示出了EPMA数据,图6至图8示出了SPM数据。在EPMA结果中,图3是成分图像(COMPO),图4是C和F分析的叠加图像,图5是Mn、Co、Ni和O分析的叠加图像。因为导电剂和粘结剂都含有C,图4中C的位置是导电剂和粘合剂,因为只有粘合剂(PVDF)含有F,因此F的位置是粘合剂。图5中Mn、Co、Ni和O的重叠位置是活性材料。在SPM图像中,图6是用电流模式下的SPM获得的表面形貌图像,图7是低偏压激励下小电流分布图像,图8是高偏压激励下大电流分布图像。结合图6和图5,对比可知道活性材料的分布与形貌;结合图2,可认为图8中电流区域为为导电剂;同时对比图7和图8,从图7中扣除图8的大电流区域,可认为其他小电流区域为活性材料,即活性材料A区域。但是结合图7和图5 ,可发现有些活性材料在偏压激励下并没有电荷移动(形成电流),因此可判断,未形成电流的活性材料可能是被不导电的粘合剂包裹,或者因破碎和间隙被隔离于反应体系,无法参与充放电,即活性材料B区域。由此实验可见,对于锂电池的研究,结合元素分析工具(EPMA)和电流分析工具(SPM),既可以了解到各种组分的分布,还可以深度了解个部分的工作状态及可能的失效原因,为深入理解锂电池的工作原理与过程提供可行实验方案。本文内容非商业广告,仅供专业人士参考。
  • 2020版药典 | 您所关注的中药元素形态分析全在这里
    01什么是元素形态?元素形态通常是指某种元素在实际样品中的不同物理-化学形态,其中化学形态是指元素在该样品中的氧化还原形态(如:三价砷、五价砷),金属有机物形态(如:甲基汞),生物分子形态(如硒蛋白)等。元素形态分析为超痕量分析,需要灵敏度高、检出限低的分析方法。同时要求在样品制备和分析过程中必须尽可能避免样品中原来存在的形态平衡的破坏和变动。 不同砷形态结构(点击查看大图) 02中药为什么要检测元素形态?元素的不同形态具有不同的物理化学性质和生物活性,例如无机砷的毒性很大,有机砷的毒性较小或者基本没有毒性;甲基汞毒性较大,但无机汞却相反,毒性相对比较小。此外,六价铬对健康有很大的危害,可导致多器官功能衰竭和发生肠道肿瘤,但是三价铬却是机体中的葡萄糖耐量因子的重要组成部分,被认为适量有益健康。元素形态及其价态的分析对于评价不同形态价态元素的生物功能与毒理作用有非常重要的影响。目前形态分析已经成为分析科学领域的一个重要分支。 历史上最严重的的汞中毒事件—1953 年日本水俣病事件2012 年中国问题胶囊事件 03中药形态分析标准和法规世界各国对于毒性元素的价态,特别是无机砷、甲基汞、六价铬的价态均有明确的限量规定。美国药典通则232中明确规定注射剂砷、汞的限量以无机砷、无机汞来计算。2015版《中国药典》首次制定了通则《2322元素形态及其价态测定法》,新增汞元素形态及其价态测定法以及砷元素形态及其价态测定法。方法确定了分析3种价态汞和6种价态砷的色谱条件。通则 《0412 电感耦合等离子体质谱法》增订了第6点,高效液相色谱-电感耦合等离子体质谱法(HPLC-ICP-MS)。2020版药典对通则2322进行了修订和完善,进一步规范了矿物药及其制剂和动、植物类中药(除甲类、毛发类)的前处理方法。 04中药汞、砷元素形态及价态样品前处理方法2020版药典调整了《2322汞和砷元素形态及其价态测定法》中的部分文字描述;针对矿物药及其制剂和动、植物类中药(除甲类、毛发类)的供试品溶液制备方案给出了较为清晰明确的前处理过程,如下表格所列:表 矿物药及制剂前处理方法(点击查看大图)表 动、植物类中药前处理方法(点击查看大图) 赛默飞元素形态分析全面解决方案 应用实例:砷形态及价态分析采用赛默飞AS7 (4.0*250mm)阴离子交换柱,可实现六种砷有效分离。其中砷胆碱(AsC)和砷甜菜碱(AsB)分离度为1.65,砷甜菜碱(AsB)和亚砷酸根(As3+)分离度为4.55,完全符合药典规定的砷胆碱、砷甜菜碱、亚砷酸根分离度应不小于1的规定。图 砷形态及价态分离色谱图(点击查看大图) 应用实例:汞形态及价态分析采用赛默飞Acclaim 120 C18 色谱柱可以有效实现无机汞、甲基汞、乙基汞的分离。汞 图 汞形态及价态分离色谱图(点击查看大图) 更多元素形态分析案例详见赛默飞ICPMS联用解决方案 扫描以上二维码填写表单后立刻下载方案 应用特点(点击查看大图) 总结赛默飞拥有完整的色谱、质谱、微量元素解决方案,卓越的仪器性能能够有效的满足中药材生产企业检测的全部需求,助力药企达到质量控制的先进水平,实现质量源于设计的理念。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制