当前位置: 仪器信息网 > 行业主题 > >

周期有序微格结构

仪器信息网周期有序微格结构专题为您整合周期有序微格结构相关的最新文章,在周期有序微格结构专题,您不仅可以免费浏览周期有序微格结构的资讯, 同时您还可以浏览周期有序微格结构的相关资料、解决方案,参与社区周期有序微格结构话题讨论。

周期有序微格结构相关的资讯

  • 基于三维电子衍射技术解析含有序硅羟基纯硅分子筛结构
    近日,大连化物所低碳催化与工程研究部(DNL12)郭鹏研究员、刘中民院士团队与南京工业大学王磊副教授团队合作,在分子筛结构解析研究中取得新进展,利用先进的三维电子衍射技术(cRED)直接解析出含有序硅羟基的纯硅分子筛结构。分子筛是石油化工和煤化工领域重要的催化剂及吸附剂,分子筛的性能与其晶体结构密切相关。分子筛通常为亚微米甚至纳米晶体,传统的X-射线单晶衍射法无法对其结构进行表征。在前期工作中,郭鹏和刘中民团队聚焦先进的电子晶体学(包括三维电子衍射和高分辨成像技术)和X-射线粉末晶体学方法,对工业催化剂等多孔材料进行结构解析,并且在原子层面深入理解构—效关系,为高性能的工业催化剂/吸附剂的设计及合成提供理论依据。团队开展了一系列研究工作,包括针对定向合成SAPO分子筛方法的开发(J. Mater. Chem. A,2018;Small,2019)、酸性位点分布的研究(Chinese J. Catal.,2020;Chinese J. Catal.,2021)、吸附位点的确定(Chem. Sci.,2021)、利用三维电子衍射结合iDPC成像技术解析分子筛结构并观测局部缺陷(Angew. Chem. Int. Ed.,2021)等。本工作中,研究人员利用先进的三维电子衍射技术,从原子层面直接解析出一种含有序硅羟基排布的新型纯硅沸石分子筛的晶体结构,其规则分布的硅羟基与独特的椭圆形八元环孔口结构息息相关。研究人员通过调变焙烧条件,在有效去除有机结构导向剂的同时保留了分子筛中有序硅羟基结构,实现了丙烷/丙烯高效分离,并从结构角度揭示了有序硅羟基和独特的椭圆形八元环孔口对丙烷/丙烯的分离作用机制。相关研究成果以“Pure Silica with Ordered Silanols for Propylene/Propane Adsorptive Separation Unraveled by Three-Dimensional Electron Diffraction”为题,于近日发表在《美国化学会志》(Journal of the American Chemical Society)上。该工作的第一作者是我所DNL1210组博士后王静,该工作得到了国家自然科学基金、中科院前沿科学重点研究等项目的资助。
  • 《全国碳排放权交易市场第一个履约周期报告》发布,全国碳市场运行框架基本建立
    生态环境部日前发布的《全国碳排放权交易市场第一个履约周期报告》显示:全国碳市场第一个履约周期碳排放配额累计成交量1.79亿吨,累计成交额76.61亿元,市场运行平稳有序,交易价格稳中有升。全国碳市场运行框架基本建立,价格发现机制作用初步显现,企业减排意识和能力水平得到有效提高,实现了预期目标。全国碳市场第一个履约周期从2021年1月1日开始至当年12月31日。报告显示,全国碳市场第一个履约周期共纳入发电行业重点排放单位2162家,年覆盖温室气体排放量约45亿吨二氧化碳,是全球覆盖排放量规模最大的碳市场。第一个履约周期在发电行业重点排放单位间开展碳排放配额现货交易,847家重点排放单位存在配额缺口,缺口总量为1.88亿吨,累计使用国家核证自愿减排量(CCER)约3273万吨用于配额清缴抵消。总体看来,市场交易量与重点排放单位配额缺口较为接近,交易主体以完成履约为主要目的,成交量基本能够满足重点排放单位履约需求。截至2021年12月31日,全国碳市场总体配额履约率为99.5%,1833家重点排放单位按时足额完成配额清缴。生态环境部将持续推动全国碳市场建设各项工作,坚持全国碳市场作为控制温室气体排放政策工具的基本定位,持续完善制度机制,提升监管水平,强化数据质量管理,在发电行业配额现货市场运行良好基础上,逐步将市场覆盖范围扩大到更多高排放行业,丰富交易品种和交易方式,有效发挥市场机制对控制温室气体排放、促进绿色低碳技术创新的重要作用,逐步建立起公开透明、规范有序、监管有效的具有国际影响力的碳市场。
  • 实施“十大工程” 德州细化方案有序推进碳达峰碳中和工作
    28日,德州市召开新闻发布会,市发展和改革委员会相关负责人解读了日前出台的《德州市碳达峰工作方案》。按照上级要求,为稳妥有序推进碳达峰碳中和工作,顺利实现各项任务目标,德州研究制定了《工作方案》。6月5日,经市政府常务会议审议和市委常委会会议审议通过。《德州市碳达峰工作方案》主要内容包括总体要求、实施碳达峰“十大工程”、保障措施三大部分。总体要求部分主要明确了“十四五”“十五五”期间,德州市在能源绿色低碳转型、产业结构调整和节能降碳等方面的发展目标。实施碳达峰“十大工程”主要包括:推进能源绿色低碳转型,大力发展新能源,合理控制煤炭消费,加快煤电小机组关停整合;推进工业领域碳达峰,大力优化产业结构,加快培育新动能;推进节能降碳增效,全面提升节能管理能力,推动重点行业节能降碳改造,加大重点耗能设备节能技改;推进城乡建设绿色低碳转型,推进既有居住建筑能效提升,大力优化建筑用能结构;推进交通运输绿色低碳转型,优化交通运输结构,构建绿色低碳智慧交通体系;推进循环经济助力降碳,提升废旧物资循环利用水平,加快完善生活垃圾分类收运处置体系;推进绿色碳汇能力巩固提升,加强生态系统碳汇基础支撑,提升生态系统碳汇增量;推进低碳科技创新,加强低碳技术科技成果转移转化;推进绿色低碳开放合作,大力发展绿色贸易,开展交流合作;推进全社会绿色低碳转型,提高全民低碳意识,推广绿色低碳生产生活方式。保障措施部分主要包括加强统筹协调、完善政策保障、加强评估考核等方面。接下来,德州将抓好任务落实,认真贯彻落实碳达峰碳中和工作的决策部署,将碳达峰工作方案各项任务目标落实落细落地。完善政策体系。进一步健全完善德州市碳达峰碳中和“1+N”政策体系,分行业、分领域编制实施细化方案,强化制度创新,科学有序推进我市碳达峰碳中和工作。坚持系统观念。做好“双碳”工作与加快经济社会绿色低碳转型、推进区域协同发展、落实能耗双控的结合文章,实现系统推进、一体落实,积极打造绿色低碳高质量发展的德州样板!
  • 元素周期表或迎来一个新“兄弟”
    新华社北京5月3日电 背诵元素周期表的学生可能又要再多记忆一个元素了。一个国际科研小组2日说,他们利用新实验成功证实了117号元素的存在,这一成果使得该超重元素向正式加入元素周期表更近了一步。   117号元素是以俄罗斯杜布纳联合核研究所为首的一个国际团队于2010年首次成功合成的。但此后,只有2012年曾成功重复这一实验。   最新实验在德国亥姆霍兹重离子研究中心进行,欧洲、美国、印度、澳大利亚和日本等多国研究人员参与。他们在粒子加速器中,用钙离子轰击放射性元素锫,成功生成117号元素。117号元素很快又衰变成115号元素和113号元素。   这一成果发表在新一期《物理学评论通讯》上。研究人员接下来将把成果提交给国际纯粹与应用化学联合会审核,该联合会将会决定是否还需进一步验证。如果审核通过,该联合会还将决定哪个机构拥有117号元素的命名建议权。   化学元素是具有相同核电荷数(即质子数)的同一类原子的总称。序号在92以后的重元素在自然界中难以稳定存在,104号及以后的元素被称为超重元素,寿命更加短暂,迄今所有的超重元素均为人工合成。不过按照已提出几十年的&ldquo 稳定岛&rdquo 理论,随着新合成的元素越来越重,它们会变得更加稳定,存在寿命也随之延长。   近年来科学家合成了一系列超重元素,第114号和第116号元素已正式成为元素周期表的新成员。而成功合成117号元素,按照德国亥姆霍兹重离子研究中心科学主管霍斯特· 施托克尔的评价,是&ldquo 通往生产与探测位于&lsquo 稳定岛&rsquo 上的超重元素的重要一步&rdquo 。
  • 生态环境部:做好配额分配保障碳市场健康平稳有序运行
    近日,经碳达峰碳中和工作领导小组同意,生态环境部印发实施了《2021、2022年度全国碳排放权交易配额总量设定与分配实施方案(发电行业)》(以下简称《配额方案》)。针对《配额方案》中社会关注的重点内容,生态环境部应对气候变化司相关负责人介绍了有关情况。问:《配额方案》作为全国碳市场的重要基础制度文件,在编制过程中遵循了哪些基本原则?答:配额分配制度是全国碳市场的重要基础制度,是保证碳市场健康平稳有序运行、实现政策目标的基石。《配额方案》规定了全国碳市场发电行业2021、2022年度配额核算与分配方法,明确了配额发放、调整及清缴履约等管理流程。《配额方案》编制遵循的主要原则有“三个坚持”。一是坚持服务大局。以助力我国实现碳达峰碳中和为目标,充分考虑国际国内经济形势、保障能源供应等因素,在保证配额总量增长适应经济社会发展对电力行业增长要求的基础上,合理设计方案。《配额方案》采用基于强度的配额分配思路,不要求企业二氧化碳排放量绝对降低,而是基于实际产出量,即实际供电量、供热量越大,获得配额也越多,不会对电力生产形成约束,不影响电力供应保障。二是坚持稳中求进。2021、2022年度配额分配方案基本延续2019年—2020年的总体框架,配额分配的总体思路不变、覆盖主体范围不变、相关工作流程基本不变。同时坚持问题导向,针对第一个履约周期出现的未分年度设定基准值等问题,持续完善配额分配方法,夯实数据基础,提升信息化管理水平,优化调整各类机组的供电、供热基准值,保证行业配额总量和排放总量基本相当。三是坚持政策导向。鼓励大容量、高能效、低排放机组和承担热电联产任务等机组,使碳排放管理水平较好、排放水平低的企业可以通过出售富余配额获得收益,碳排放管理水平相对较差、排放水平高的企业存在缺口需要购买配额,树立“排碳有成本,减碳有收益”的价值导向。配额分配过程中采用冷却方式修正系数、供热量修正系数、负荷(出力)系数修正系数,以鼓励机组更大范围供热、参与电力调峰,充分发挥碳市场在优化电源结构、促进电力行业清洁低碳转型方面的引导作用。问:这次发布的《配额方案》与第一个履约周期相比有哪些改进和优化?答:相比于第一个履约周期配额分配方案,2021、2022年度配额分配方法在整体上保持了政策的延续性和稳定性,同时结合党的二十大精神及新形势新任务和行业技术进步等实际情况作出调整优化,在配额管理的年度划分、平衡值、基准值、修正系数等方面作出了优化,概括起来为“五个更加”。一是实行配额年度管理,日常管理更加精细。为更好与我国碳排放管理的年度目标衔接,推动配额预分配、核定、清缴等环节按自然年常态化管理,区别于2019年和2020年采用相同的配额分配基准值、两年合并履约的做法,2021、2022年度采用了不同的配额分配基准值。基于上年实际排放情况确定第二年基准值,使基准值更加符合行业实际情况,体现了发电行业能效逐年提升和单位产出碳排放逐年下降的趋势。2021、2022年度分别发放配额、开展履约,特别是在实施履约豁免机制统计配额缺口率时,改为分年度计算。二是首次引入平衡值,信息发布更加透明。全国碳市场2019—2020年度的建设运行有力促进了企业碳排放管理意识和能力水平提高,2020年实测燃煤元素碳含量机组占比大幅提高,导致行业总体碳排放强度计算结果比基准值测算时依据的企业排放数据偏低10%左右,使得2021、2022年基准值在数值上与2019年—2020年相比存在较大差异。为便于社会各界更好理解,《配额方案》引入了平衡值。平衡值是各类机组供电、供热碳排放配额量与其经核查排放量(应清缴配额量)平衡时对应的碳排放强度值,是制定供电、供热基准值的重要参考依据。三是优化配额分配基准值设置,政策导向更加明确。《配额方案》以2021年各类机组平衡值为基础,按照配额总体平衡、行业企业可承受、鼓励先进、惩罚落后的原则,充分考虑发电行业技术进步,在第一个履约周期基准值的基础上,对各类机组的供电、供热碳排放基准值进行了优化调整,使2021、2022年度基准值能够真实反映行业碳排放实际水平,总体上体现了激励高效清洁机组、约束低效机组的政策导向,与当前碳排放管理的要求相符。四是调整机组负荷(出力)系数修正系数适用范围,民生保障政策更加突出。与2019年—2020年仅在常规燃煤发电机组配额分配时采用负荷(出力)系数修正系数不同,为体现全国碳市场对高效供热生产的支持,2021、2022年在常规燃煤热电联产机组配额分配时,也采用负荷(出力)系数修正系数,对热电联产机组低负荷运行给予配额补偿,体现“保供热、保民生”的政策导向。五是减轻基层和企业负担,惠企措施更加丰富。通过简化规则,提升信息化水平,减轻基层负担。在预分配环节,以2021年该机组经核查排放量的70%作为2021、2022年度各机组预分配配额量,简化了预分配配额的计算方法,便于操作,有利于提升工作效率。通过履约缺口率上限豁免政策、燃气机组豁免机制和可预支2023年度配额的灵活机制等减轻企业负担。改进配额发放工作流程,依托信息平台开展配额审核与发放,实现智能化配额管理,确保数据的准确性和计算方法的一致性,提高工作效率和质量。问:2021、2022年部分火电机组受疫情、能源保供等多种因素影响面临较大经营压力,《配额方案》中有哪些减轻企业负担的措施?答:考虑到2021、2022年疫情影响及能源保供压力,为有效缓解发电行业履约负担,《配额方案》延续了上一个履约周期对燃气机组和配额缺口较大企业实施履约豁免机制,新增灵活履约机制及个性化纾困机制。一是延续在核定配额环节控制配额缺口较大企业和燃气机组的配额缺口,采取清缴配额豁免的方式,当重点排放单位核定的年度配额量小于经核查排放量的80%时,其应发放配额量等于年度经核查排放量的80%。据测算,该项政策2021年度将减轻306家企业负担。二是考虑到2021、2022年企业受疫情、能源保供等多种因素影响面临较大经营压力,增加可预支2023年度配额的灵活机制,缓解配额履约给重点排放单位带来的压力。对配额缺口率在10%以上(含)的重点排放单位,确因经营困难无法通过购买配额按时完成履约的,可从2023年度预分配配额中预支部分配额完成履约,预支量不超过配额缺口量的50%。三是为科学、精准、有效地减轻重点排放单位的履约负担,对承担重大民生保障任务的重点排放单位,在执行履约豁免机制和灵活机制后仍难以完成履约的,生态环境部统筹研究个性化纾困方案。问:一家发电企业的配额量是如何计算的?计算公式中的基准值和修正系数是如何确定的?为什么要设置这些修正系数?答:碳排放配额是重点排放单位拥有的发电机组相应的二氧化碳排放限额,2021、2022年度配额实行免费分配,采用基准法核算机组配额量,计算公式如下:机组配额量=供电基准值×机组供电量×修正系数+供热基准值×机组供热量。基准值反映行业平均碳排放强度,按照配额总量总体平衡的原则确定,即行业配额发放总量与应清缴配额总量基本相等、不额外增加行业负担。2022年6月,我们已完成2021年度电力行业碳排放数据核查工作。2021年基准值是根据2021年实际碳排放数据测算得出,准确性较高,2022年基准值是在2021年数据基础上,对标碳达峰碳中和目标,基于近年来火电行业能耗强度和碳排放强度年均下降率反复测算得出。为鼓励机组承担民生供热、参与电力调峰和提高能效等,在机组配额量计算时引入了三个修正系数,包括负荷(出力)系数修正系数、供热量修正系数、冷却方式修正系数。负荷(出力)系数修正系数的设置是为了鼓励火电机组参与电网调峰和保障可再生能源上网,弥补其降低负荷以及频繁启停的效率损失。火电机组负荷率越低,机组单位产出能耗也越高。该系数的设定依据为《常规燃煤发电机组单位产品能源消耗限额》(GB21258-2017)及《热电联产单位产品能源消耗限额》(GB35574-2017),上述两项国标通过大量机组统计数据得出机组负荷率与单位产品能耗之间的数量关系。供热量修正系数的设置是为了满足鼓励燃煤热电联产增加供热量、替代燃煤小锅炉和散煤的实际需要。按照我国目前“以热定电”的热电分摊方式,对于热电联产机组,随着供热量的增加,机组整体效率提升,供电碳排放强度降低。供热量修正系数为基于大量实测样本统计拟合得出,根据燃煤、燃气两类机组在不同供热比情况下供电碳排放强度的变化曲线,得出两类机组的供热量修正系数分别为(1-0.22×供热比)和(1-0.6×供热比)。冷却方式修正系数的设置是为了对缺水地区使用空冷的机组进行鼓励。该系数考虑了因冷却环节工艺不同造成的单位产品能耗差别,区分水冷和空冷燃煤机组,并通过不同赋值修正两类机组的配额量(水冷机组的冷却方式修正系数取1,空冷机组取1.05),与《常规燃煤发电机组单位产品能源消耗限额》(GB21258-2017)及《热电联产单位产品能源消耗限额》(GB35574-2017)提出的冷却方式修正系数保持一致。问:《配额方案》2023年发布,分配的却是2021及2022年度的配额,为何要采用这种“事后分配”的方式?答:《配额方案》编制遵循坚持服务大局和稳中求进的原则,方案测算需要建立在准确可靠的数据基础上,对数据精度要求较高,配额分配的总体要求是供需平衡,尽可能将盈缺率控制在预定目标范围之内。2021年和2022年全国碳市场处于发展初期,碳排放核算核查水平以及数据质量监管能力还有待提升,特别是由于实测燃煤元素碳含量的机组比例变化较大,碳排放数据存在一定不确定性。而采用“事前分配”,需要对碳排放数据进行精准预估,要建立在高质量碳排放数据和科学准确的分析预测等工作基础上。为稳妥起见,我们采用“事后分配”的方式,延续第一个履约周期做法,更好地保证配额分配总量符合预期目标,既不会因为分配总量收缩过紧造成行业减排负担过重,也不会因分配总量过于宽松导致碳市场无法更好地发挥促进减排的作用。由于第一个履约周期已经释放政策信号,企业对碳排放基准值下降也有所预期,因此“事后分配”并不会影响全国碳市场作为控制温室气体排放政策工具发挥作用。此外,目前大部分地方试点碳市场也采用配额“事后分配”,实践表明现阶段采取“事后分配”的方式能够更加精准把控配额分配总量和行业总体减排力度。下一步,随着全国碳市场数据质量制度不断完善,管理水平逐步提升,数据获取时效性和准确度提高,我们将积极研究如何由“事后分配”逐步调整为“事中分配”或“事前分配”的具体方案,尽可能提早向市场主体明确预期。
  • 黄震常委代表民进中央的发言:开展碳预算制度试点 有序推进碳达峰碳中和目标实现
    实现碳达峰、碳中和目标,是以习近平同志为核心的中共中央统筹国内国际两个大局作出的重大战略决策。碳预算制度既是推动能耗“双控”向碳排放总量和强度“双控”转变必要的制度安排,也是有力、有效、有序实现我国“双碳”目标的重要政策手段。随着我国碳达峰、碳中和“1+N”政策体系不断完善,建立碳预算制度已经具备良好的工作基础。当前,建议着手开展碳预算试点。进一步完善碳排放统计核算体系,夯实碳预算制度的数据基础。系统梳理需要统计的基础数据类型、口径、统计频率等,着力提升碳排放数据质量。健全省市县三级基础数据统计制度,确保数据规范统一。完善企业层面的碳排放核算、报告与核查体系,帮助企业控制碳成本。探索基于物联网的精准计量监测体系,与现有统计核算体系形成协同互补。完善制度设计。碳预算总额的确定应充分借鉴现有能源、环境约束性指标的制定经验和实施办法,将经济环境发展目标、GDP增长等条件因素纳入考量。在建立碳预算制度的过程中,应将有助于解决区域发展不平衡、不充分问题,有助于提高我国经济发展质量,有助于我国参与全球气候治理,作为重要原则。探索碳预算指标的区域间流转和补偿模式,实现碳资源优化配置。立足我国实际建立碳预算机制的新范式。选择具备条件的市县尽快开展碳预算制度建设试点。根据地区“双碳”目标,设定年度碳预算总量,结合碳预算做好各类产业规划。开展项目全生命周期碳排放管理,将实施前的碳排放概算、建设运行过程中的碳排放计量、项目退出前的碳排放结算纳入碳预算管理,强化过程管控。协同推进碳预算制度试点与碳绩效考核,进一步推动能耗“双控”向碳排放总量和强度“双控”转变。
  • 江苏连云港稳步有序开展“双碳”各项工作
    日前从江苏省发展改革委获悉,今年以来,江苏省连云港市发展改革委坚持分类施策、因地制宜、重点推进,稳步有序开展“双碳”各项工作。 一是加强组织推进。召开市碳达峰碳中和工作领导小组第二次会议,全面部署推进碳达峰碳中和各项工作。成立市碳达峰碳中和工作专班,为“双碳”工作提供有力保障。印发《2022年碳达峰碳中和工作要点》,明确“双碳”重点目标任务和推进举措。 二是科学规划引领。提请连云港市委、市政府出台《关于高质量推进碳达峰碳中和工作的实施意见》,完成《市碳达峰实施方案》征求意见工作,全面摸清全市碳排放现状,推进制定能源、工业等重点领域专项实施方案和科技创新、全社会节约用能等专项保障方案,初步形成目标明确、任务清晰、保障有力的碳达峰碳中和“1+1+N”政策体系。 三是狠抓节能降碳。统筹能耗强度刚性约束和总量弹性控制,严格项目节能审查,坚决遏制“两高”项目盲目发展。全力推进重点节能降碳项目,开工建设灌南县、赣榆区整县(区)屋顶分布式光伏项目,在石化产业基地启动实施一批碳捕集和利用项目。探索核能降低综合能耗新途径,开工建设全国首个工业用途核能供汽工程,项目建成后可每年减少燃烧标煤40万吨、等效减排二氧化碳107万吨。 四是强化工作统筹。组织实施碳达峰碳中和市级科技计划,开展生态碳汇体系建设,精心组织企业参加全国碳市场履约周期交易,统筹做好“双碳”与生态环境保护相关工作。联合连云港市委组织部、市委党校开展碳达峰碳中和专题调研,将“双碳”工作纳入干部教育培训重点工作。推进连云港市碳达峰碳中和投资基金组建前期相关工作。开展全国低碳日主题宣传活动,营造全民共建低碳社会的浓厚氛围。
  • 元素周期表添4个新成员 化学课本将改写
    p   4个新的化学元素如今已经被正式添加到元素周期表中,这也意味着,这张表的第七行终于完整了。 /p p style=" text-align: center " img title=" 20161668226450.jpg" src=" http://img1.17img.cn/17img/images/201601/noimg/3757b915-33dc-4022-bcd4-e434b3b78871.jpg" / /p p style=" text-align: center " 元素周期表的第七行完整了。 /p p style=" text-align: center " 图片来源:Sandbh/Wikimedia Commons /p p   多年来,第113号、115号、117号和118号元素早已被用铅笔写在了元素周期表上,而来自俄罗斯、美国和日本的实验室也曾多次宣称发现了这些元素。然而对于这4个新元素的官方认可一直等到了2015年年底—— 一组独立专家日前一致认为,相关证据是有效的。总部位于美国北卡罗来纳州三角研究园的国际纯粹与应用化学联合会(IUPAC)于2015年12月30日宣布了该专家组的结论。 /p p   所有这4种新元素都是科学家在实验室中通过粉碎更轻的原子核人工合成的。质子和中子不稳定的凝聚体在分裂成更小且更稳定的碎片之前仅存在了几分之一秒的时间。 /p p   那些发现这4个新元素的团队如今可以为元素的名称和两个字母的符号提出建议。这些元素可以用它们的一个化学或物理性质、一个虚构的概念、一种矿物、一个地方或国家,或是一个科学家的名字来命名。 /p p   发现第113号元素的优先权授予了日本研究人员,他们非常高兴,因为这将成为第一个在东亚被命名的人造元素。当这一元素于12年前首次被发现时,“Japonium”便被建议作为它的名称。 /p p   位于东京附近和光市的日本理化研究所(RIKEN)仁科加速器科学中心于2004年首先宣布发现了第113号元素。这也是亚洲科学家首次合成新元素,中国科学院近代物理研究所、高能物理研究所的科研人员也参与了这一研究。 /p p style=" text-align: center " img title=" mp52413726_1451983172599_2.jpeg" src=" http://img1.17img.cn/17img/images/201601/noimg/d491f458-9771-426f-9718-88420b278ae4.jpg" / /p p   日本的研究小组使用加速器使第30号元素锌的原子加速,然后撞击第83号元素铋的原子,使二者原子核融合在一起而得到113号元素。他们从2003年开始实验,在2004年、2005年和2012年共3次合成了113号元素。到那时,研究人员已经有了该元素的3个原子。 /p p   2001年诺贝尔化学奖得主野依良治在为IUPAC的决定召开的一次新闻发布会上表示:“对科学家而言,这比一枚奥林匹克金牌具有更大的价值。”(野依良治并非日本研究团队成员,但他是RIKEN前任所长。) /p p   俄罗斯和美国研究人员之前也曾发表声明表示发现了第113号元素,但并未被来自IUPAC和国际纯粹与应用物理联合会(IUPAP)的专家组授予优先权。 /p p   然而俄罗斯和美国却从其他3种元素那里获得了荣誉及冠名权。 /p p   IUPAC/IUPAP委员会表示,第115号和117号元素首先由俄罗斯杜布纳市核研究联合研究所、加利福尼亚州利弗莫尔市劳伦斯-利弗莫尔国家实验室和田纳西州橡树岭国家实验室合作发现。其他团队的工作——例如瑞典研究团队使用一部德国加速器——则帮助确认了第115号元素的存在。 /p p   而发现第118号元素的荣誉——这是迄今为止人工合成的最重元素——授予了杜布纳和劳伦斯-利弗莫尔团队。该元素有一个曲折的历史——1999年宣称发现这一元素的一项声明于两年后被收回,原因是有指控称存在伪造数据的行为。 /p p   英国利物浦大学核物理学家Rolf-Dietmar Herzberg表示,物理学家如今正在尝试人工合成第119号、120号元素,在当前技术水平下这一研究是能够实现的。然而迄今为止还没有人表示看见了新的元素——德国达姆施塔特市重离子研究GSI亥姆霍兹中心研究人员曾于2012年进行了5个月的试验但未获成功。在第120号元素之后,研究人员认为,让两个原子核融合的可能性近乎为零。 /p p   迄今为止,元素周期表上从自然界发现的元素只到第92号元素铀,93号及以上的元素都是人工合成的。按惯例,新元素命名一般用国名、地名和人名等加上后缀“um”的形式。 /p
  • Science | 林志伟教授等利用DNA首次实现碳纳米管可控有序修饰
    可控有序修饰的单壁碳纳米管。研究团队 供图记者日前从华南理工大学获悉,该校前沿软物质学院林志伟教授与美国国家标准与技术研究院(NIST)研究员Ming Zheng,利用DNA首次实现了单壁碳纳米管(SWCNTs)的可控有序修饰。相关研究发表于Science。审稿人对相关研究成果给予了高度评价,认为该工作完成了过去很多研究者尝试但收效甚微的宏大目标,是该领域的重大进展。据介绍,该论文发表后引起了较大反响,国内外多家媒体对该工作进行了亮点报道。Science刊载了一篇Perspective对该工作进行评述:“本论文所设计的材料,为实现室温超导材料迈出了重要一步,是里程碑式的发现。”该研究工作通过简单的DNA序列设计和精密的结构表征,为SWCNTs可控化学修饰开辟了一个全新的思路。华南理工大学为该论文合作单位,林志伟为第一作者兼通讯作者,博士生李依浓为论文的分子模拟和彩图设计做出了重要贡献;Ming Zheng 为共同通讯作者,NIST为主要通讯单位。SWCNTs是由单层碳原子组成的一维管状纳米材料,具有优异的光学、电学、力学、热学等方面性能,被广泛应用于包括电子器件、光学仪器、疾病检测等诸多领域。SWCNTs的化学修饰可以改变其晶格结构,进而改变电学和光学性能,对发展新型材料如有机超导材料、量子材料意义重大,是国际前沿的研究方向。但由于SWCNTs中所有碳原子的化学环境相同,SWCNTs的可控化学修饰是该领域长期存在的一项重大挑战。林志伟表示,“精确可控的修饰方法,使得科学家有望像服装设计师一样,按自己的想法 ‘可定制化’地设计SWCNTs化学结构,以实现特殊的性能,例如超导性能和量子性能等,进而实现在航空航天、量子计算机、量子通信、新一代生物医疗等领域的前沿应用。”具体来说,作者将含有鸟嘌呤碱基(Guanine,G)的DNA序列,缠绕至多种单手性SWCNTs的表面,通过调控SWCNTs种类、DNA序列和构象,实现预先定制反应位点。在525 nm光照下激发玫瑰红(Rose Bengal)产生单线态氧,进而引发G与SWCNTs发生反应。之后利用吸收光谱、光致发光光谱(PL)、拉曼光谱对产物结构进行表征。SWCNTs与DNA的反应示意图和光谱表征。研究团队 供图为了深入研究反应机理以及反应后SWCNTs晶格中反应位点的空间分布,研究人员设计了一系列有相同G含量,但G相对位置不同的DNA(2G-n),出乎意料地发现C3GC7GC3(2G-7)和(8,3)SWCNTs的反应产物,在拉曼、荧光光谱中与SWCNTs晶格缺陷相关的峰强出现了极小值,表明在SWCNTs中形成了有序排列的晶格缺陷,即有序排列的反应位点。利用冷冻电镜(Cryo-EM)对C3GC7GC3-(8,3)的结构进行表征和重构,证实了有序的DNA螺旋结构。通过计算机模拟所构筑的理论模型与冷冻电镜的重构模型相互验证,清楚地揭示了反应机理,并进一步证明了晶格缺陷(G反应位点)在SWCNTs表面等间距的有序排列。基于精确可控的SWCNTs修饰方法,有望实现按可定制化的方式,重塑SWCNTs原有的晶格结构和光电性能,为发展有机超导材料、拓扑材料等变革性材料提供重要的理论和实验依据。美国《Science Daily》对该研究成果进行了专题报道,文中指出:“科学家利用DNA克服了之前几乎无法逾越的障碍,设计出有望给电子产品带来革命性影响的材料。”相关论文信息: https://www.science.org/doi/10.1126/science.abo4628 【近期会议推荐】仪器信息网将于2022年8月30-31日举办第五届纳米材料表征与检测技术网络会议,开设“能源与环境纳米材料”、“生物医用纳米材料”“纳米材料表征技术与设备研发(上)”、“纳米材料表征技术与设备研发(下)”4个专场,邀请20余位国内知名科研院所、高等院校、仪器企业的专家学者做精彩报告,内容涉及冷冻电镜、透射电镜、扫描电镜、扫描隧道能谱、X射线光电子能谱仪、纳米粒度及Zeta电位仪、超分辨荧光成像、表面等离子体耦合发射、荧光单分子单粒子光谱磁纳米粒子成像、拉曼光谱、X射线三维成像等多种表征与分析技术。报名听会1、扫描下方二维码进入会议官网,点击“立即报名”:2、复制下方链接在浏览器中打开,进入会议官网后点击“立即报名”https://www.instrument.com.cn/webinar/meetings/nano2022/
  • 确定仪器的校准周期的4种方法
    确定仪器的校准周期的4种方法 核心提示:一、统计法可由测量仪器的结构、可靠性、稳定性的不同状况,对测量仪器进行分类, 然后按照校准规程确定校准周期。并统计在规定周期 一、统计法 可由测量仪器的结构、可靠性、稳定性的不同状况,对测量仪器进行分类, 然后按照校准规程确定校准周期。并统计在规定周期内超差或其他不合格的仪器设备数目, 统计这些仪器与该组合格仪器总数之比。确定不合格测量仪器时, 应替除损坏而返回的仪器。若不合格仪器占的比例很高, 应缩短校准周期。不合格仪器所占的比例很低, 应延长校准周期可能是经济合理的。但若发现某一组的仪器 (或某厂家制造的或某型号) 不能和组内其他仪器那样正常工作时, 应将该组划为有不同周期的其他组。 二、时间法 确认校准周期时用实际工作的小时数表示, 当指示器达到规定值时, 将该仪器送回校准。这种方法主要优点是, 仪器校准费用与使用的时间成正比, 并可核对仪器的使用时间。 例如某些仪器可以直接在查到连续使用了多久, 利于管理。但这种方法在实践中有下列缺点:(1) 当测量仪器在储存、搬运或其他情况发生漂移或损坏时, 则不应使用本方法 (2) 安装计时器会增加费用, 且因受使用者干扰而需要在监督下进行, 又增加费用。 三、比较法 当每台测量仪器按规定的的校准周期进行校准, 将校准数据和前几次的校准数据相比, 如果连续几个周期的校准结果均在规定的允许范围内, 则可以延长它的校准周期 如果发现超出允许的范围, 则应缩短该仪器的校准周期。 四、图表法 测量仪器在每次校准中, 选择有代表性的同一校准点, 将它们的校准结果按时间描点, 画成曲线, 根据这些曲线计算出该仪器一个或几个校准周期内的有效漂移量, 从这些图表的数据中, 可推算出最佳的校准周期。 计量校准是提高实验室效率的重要环节, 而确定校准周期是计量工作的一项关键环节, 对产品质量和服务质量方面起着十分重要的作用,在确定测量仪器的校准周期时, 要对测量仪器的实际使用情况进行科学分析后评估决定。
  • 建材检测周期变长 生产商直呼等不起
    检测中心:正常检测周期为15天紧急材料3天可出检测报告   “以前送检三天搞定,现在拿到报告却要十多天。”近日,胡女士致电本报,称自己上月17号送检的水泥预制板材料,几乎延后了整整一个星期才拿到检测报告。   胡女士供职于一家从事水泥制品生产的建材公司。据她介绍,出厂的水泥制品在提供给建筑施工方前都必须经过相关的质量检测,在取得检测合格报告后方可投入使用。一般情况下,建材送检须经过送样、开送检单、样品检测和出具检测报告4个环节,一个周期大概三天左右,“这次拿到检测报告的周期,比以前延长了整整一个星期”。   胡女士称,公司生产的水泥制品属于钢结构预应力建筑材料,只能送到湖北省建筑工程质量监督检验测试中心检测,只有该机构出具的检测报告才被市场所认可。而问题在于,样品检测周期每延长一天,不仅公司的资金周转要相应延迟,而且施工单位的进度也会受到影响。   昨日,记者来到湖北省建筑工程质量监督检验测试中心,钢结构及预应力研究所一位周姓负责人表示,不同建筑材料分属于中心不同部门检测。武汉市内其他检测机构也可以做建筑材料的相关检测,但涉及到钢结构预应力的建材只能由钢结构及预应力研究所来检测。   该负责人解释:常规情况下,材料从送检到出检测报告的周期为15天,若遇到特别紧急、短期就要验收的加急用特殊材料,工作人员就得加班加点进行检测,三天左右可以出检测报告。
  • 从“小破厂”到全球一哥,光刻机巨头ASML的周期逆袭史
    随着2022年疫情起伏,一些城市进入封闭和静态管理节奏,很多创业公司也进入经营的艰难时刻。穿越周期对任何公司来说都并不容易,此刻我们想梳理和研究一些公司,它们或是某个硬科技领域的隐形冠军,或是一些重要赛道的著名公司,来看看艰难时期它们是怎么成长的。  第一篇我们选择了阿斯麦ASML,“光刻机”作为一个赢者通吃的硬科技领域,在它身上显现了太多科技公司发展的要素——如何押注正确的技术路径?是选择渐进式创新还是颠覆式创新?如何在短时间内做出正确的战略决策?如何发挥出高效的执行力?……这些也都是当下硬科技公司所需要面对的难题。ASML从一个被抛弃的研发项目,屡次走在破产边缘,到如今成为全球光刻机霸主,它如何度过那些绝境时刻?如何小心翼翼地穿越周期?尽管很多公司的成功不可复制,但这样的故事依然是引发思考的绝佳养料。  “他们不来了?他们不来了?他们不能这样做!” ASML总裁兼首席技术官马丁范登布林克差点把他的电话机砸烂。1991年因为海湾战争的爆发,出于安全考虑很多跨国公司禁止高管乘坐飞机。  “他们”指的是IBM,因为这样的禁令,IBM的高管无法来与ASML进行最后的合同谈判。但此时ASML的财务状况几乎进了ICU,如果拿不到IBM的订单,1991年的ASML就会破产。ASML压上了全部身家,为了IBM的订单疯狂努力了好几年,这些努力,都会因为这场跟他们毫无关系的战争而化为泡影。  1991年的ASML,还远不是我们今天看到的ASML。今天ASML风光无限,光刻机被称为现代工业皇冠上的明珠,是制造芯片的核心设备,全世界只有少数几家公司拥有这样的技术。中国芯片产业最大的短板就是EUV光刻机,而这家荷兰公司占有45nm以下高端光刻机80%的市场,而在极紫外光(EUV)领域,ASML是全球独家生产者。  但曾经的ASML,无数次走在资金链断裂的边缘,小心翼翼地穿越经济周期。贯穿始终的,是ASML对技术路径的卓越把握和几乎无止境的研发投入。从推出PAS 2500在光刻机领域站稳脚跟,随后经过改进的PAS 5500进入头部行列,到与台积电合作成果研制浸没式光刻机系列,一举奠定霸主地位。  再到2010年推出第一台EUV光刻机原型,以及通过外延并购形成整体光刻产品组合,从ASML的发展历程中可以看出,要想做出一家战略级硬科技公司,是需要冒多么大的风险,有着多么大的决心,花费多么大的资金,才有可能成长起来。  我们通过书籍、券商研报、媒体报道等资料,研究了ASML的发展史,并结合对硬科技的投资逻辑总结了一些观点。以下,Enjoy:  经济危机救了ASML:我们看到ASML是怎么小心翼翼地穿越经济周期,回过头来看惊诧地发现,其实经济危机救了它   硬科技的艰难抉择——押注改进还是颠覆:ASML真正的崛起里程碑,是选对了技术路径,但有时候成功来自于渐进式创新,有时候又来自于颠覆式创新,选对了一飞冲天,选错了万丈深渊,我们来看看ASML的启示   关键转折点——贵人相助与敌人犯错:企业要想成功,离不开盟友助力与敌人犯错,台积电是ASML的贵人,两家力推的浸没式光刻技术,打败了当时流行的干式光刻技术,这也源自敌人尼康、佳能的错误。当运气来了,要怎么抓住它,看看ASML是怎么做的   合作才能走得更远:今天的ASML 90%的零件其实是外购的,它是一家集成商,背后是美国、日本、欧洲、中国台湾、韩国多家公司与研究所的技术支撑,最终才能量产出极度复杂的EUV光刻机,合作与形成利益共同体是长远之道。  1  经济危机救了ASML  “坐视我们这种高风险企业快速倒闭,是典型的荷兰人做法。如果我们办公室的灯连续13个晚上亮着,政府劳工检验员会要求查看我们的工作许可证。但我们要把一个关键的战略产业拱手让给美国和日本吗?那我只能说,你们以后就去快乐地挤牛奶、搅黄油和种郁金香吧。” 德尔普拉多曾愤愤不平地在接受媒体采访时说。  德尔普拉多是ASM的创始人,他在1984年接手了被飞利浦抛弃的光刻机研发团队,成立了合资公司ASML。ASM是制造芯片生产设备的,但无论从技术和规模上,飞利浦都看不上ASM,所以在寻找接手方时,连谈判的机会都没有给它。  德尔普拉多是个猛人,他几乎吃饭、睡觉和呼吸都在ASM,他的魅力、野心和无畏展露无遗。ASM有欣欣向荣的一面,但也有深陷泥沼的一面。欣欣向荣的是,ASM是荷兰经济惨淡景象中的一颗璀璨明珠,正从一家设备分销公司转型为独立设备制造商,收入开始增长 但深陷泥沼的一面是连年的亏损、不大的规模、面临众多技术先进的竞争对手……普拉多一直在用“芯片是战略产业”这一点来吸引荷兰政府资金的投入,但政府耐心也有限。  直到1983年,飞利浦在其他人那里碰了一鼻子灰,在经历了和3家公司谈判失败后,所有人都士气低落。而ASM在纳斯达克的成功上市,令飞利浦看到也许ASM还是有钱的。在飞利浦高层再一次明确必须放弃像光刻机这样的非核心业务后,必须抓住最后一次机会来挽救光刻机团队,阻止裁员的发生。  飞利浦光刻机项目早期的产品SiRe1 图片来源:Lithography giant:ASML's rise  于是,ASM作为最后一根稻草,会谈开始了。这场会议只持续了1个小时15分钟。“对不起,失陪一小会儿。”普拉多与飞利浦光刻机团队负责人克鲁伊夫聊了15分钟后,他走出房间与团队商量。将近一个小时过去了,他才回来,然后说:“让我们一起做吧。”  光刻机业务符合普拉多的雄心壮志,他制造了芯片生产过程中每一道工序所需要的机器,但唯独缺乏最具战略性的光刻机。  但合并一个光刻机团队也是巨大的冒险。在这场谈判的一年前,ASM的收入才3700万美元,然而仅新一代步进光刻机的研发费用,就将远远超过5000万美元。并且与光刻机所需的先进技术相比,ASM以前掌握的技术简直不值一提。  一家小公司与巨头合作,话语权往往落在谁更需要谁。先进技术令飞利浦在新成立的合资公司ASML中享有很大话语权,为了获得飞利浦Natlab技术实验室的后续访问权限,ASM不得不答应在新公司中与飞利浦平分股权。  飞利浦在交易中还想尽可能节约资金,财务部门起草了一份详细的合资企业必须支付的费用清单,包括为制造20台步进光刻机所需订购的零件和材料费用,以至于“这家新公司买杯咖啡就会破产”。  这就是ASML艰难的成立史,它像一艘好不容易凑齐水手、仍在四处漏水的小船,一边修补一边扬帆起航。这个艰难的开始,与后面ASML所要面临的困难相比,也只是九牛一毛。  从ASML成立的1984年开始,后面连续3年遭遇了市场长时期衰退,行业增长陷入停滞。但研究ASML的学者们提出了一种观点,市场崩溃最终证明是对公司的天赐之物。  为什么说经济危机救了ASML?  荷兰高科技学院(HTI)的董事总经理瑞尼雷吉梅克,以及诸多ASML的早期员工都认为,经济危机打击了当时的巨头,但奇迹般地给了ASML喘息的时间,让它有足够的时间来重塑其研发和生产部门,因为当时刚刚起步的ASML,走错了油压技术路线、装配厂也还根本无法生产真正的大订单。那时如果芯片设备市场特别好,而ASML却卖不出光刻机,那么ASML会立刻失败。  另一方面,由于ASML的定位是光刻机集成商,一些零部件还需要依靠上游生产商,比如镜头,就需要德国蔡司生产,但蔡司当时的产能情况也非常糟糕。如果市场在1984年高速增长,蔡司都无法满足当时光刻机老大GCA的需求,更不可能给ASML足够的供应。  当然,这些认知是用后视镜来看,由ASML早期管理层总结出来的。但在1987年秋天,当时没有人能够感受到这种奇迹。  在经济衰退的这三年,刚刚起步的ASML主要在修炼内功,从一个士气低落、被抛弃的团队,逐渐变成一个自力更生的开发团队,物流和大规模生产系统也趋于成熟,销售和营销也已成为一股重要力量。  这种艰难开局还奠定了一个坚实的心理基础——要坚持熬过周期,在后来ASML多次濒临破产边缘时,都跟ASML在第一天就面临的困难一样。  工人正在超净室里组装 图片来源:Lithography giant:ASML's rise  2  硬科技的艰难抉择——押注改进还是颠覆  “等你卖了20台光刻机后,再回来找我谈。”  时任ASML CEO斯密特在加州一场世界一流的芯片设备展上备受打击,他到处宣扬飞利浦的光刻机项目起死回生了,但得到的反馈寥寥无几。当时的光刻机巨头是美国GCA和新崛起的日本尼康,装机量(在客户工厂中运行的机器数量)是所有人关心的关键指标,GCA和尼康已经达到数百台,而ASML还是零。  这个指标之所以重要,是因为光刻机过于复杂,以至于光刻机供应商需要配备大量服务工程师,以应对突发情况。一些微小的因素就会导致光刻机出现问题,实践经验非常重要。  带着绝望的心情,斯密特回到了荷兰,他除了觉得芯片行业充满活力之外,其他都是沮丧的消息。绝境逼人思考,当他回顾在整个差旅中看的一切时,似乎在黑暗中有一丝光线若隐若现。  当时,整个芯片行业即将跨越一个难关,这为设备制造商创造了机会。在加州的展会上,每个人都在谈论摩尔定律,谈论下一代机器——从大规模集成电路(LSI)到超大规模集成电路(VLSI)。  显然在未来几年内,芯片线路将缩小到1/1000毫米以下,光刻机处理的将不再是4英寸的晶圆,而是6英寸的晶圆。  随着这个转变,超大规模集成电路需要新一代光刻机,这种机器要能够将0.7微米的细节成像到晶圆上,并实现更紧密的微电子集成。在所有的坏消息中,唯一的好消息就是,还没有人找到制造这种光刻机的方法。  大门虽关闭,但窗户已打开。斯密特与团队一起探讨,如果ASML成功开发出新一代光刻机,那么半导体行业就会被他拿下。  斯密特之所以有这样的信心,是因为新一代光刻机必须在光学、对准和定位等几乎每个方面都大幅改进。当时的行业巨头佳能、GCA、尼康和Perkin-Elmer公司制造的机器仍然使用导程螺丝杆来移动晶圆台,这意味着他们的图像细节达不到小于1微米的定位精度,而这正是ASML技术的优势所在。  斯密特也是一位有远见的人。他以前研究过航空业的整合行动,在他还在上大学的时候,世界上有50家飞机制造厂,当他拿到博士学位后,就只剩下几家了。他还在上一份工作经历中见证过电信业的技术变革。他知道一家新公司,在成熟市场是没有机会的,除非这家新厂商选择对了技术路径。Lithography giant:ASML's rise  技术路径深刻影响了光刻机公司们的起起伏伏,我们总结了三个重要启示:  早期优势有可能会转化为阻碍  ASML由于承袭了飞利浦的光刻机技术,在一开始采用的是油压驱动,而非电动。  在1973年,当爱德鲍尔在飞利浦制造了第一台步进光刻机时,这个基于油压驱动的晶圆台遥遥领先于时代。当时油压是一项卓越的技术,如果没有受到挑战是很难被放弃的。  油压装置提供了稳定性和精度极高的定位系统,但它有一个问题,就是机油如果泄漏,则会对芯片制造过程造成严重破坏。在80巴的压力下,即使是最微量的泄漏也会将整个房间喷上油雾,污染将使芯片生产停滞数月,油在芯片生产过程中是“毒药”。  并且,机油系统还会产生很多噪声,需要定制外壳来减少噪声。这些问题导致了油压驱动的光刻机没有客户。  但由于技术依赖的惯性,飞利浦没有改进这个问题,直到剥离光刻机项目。而到了ASML,也没有在一开始就重视这个问题,斯密特仍希望将这种油压设备,硬卖给那些想要尝试其高级对准系统的客户。  当然,结果肯定是失败的。虽然ASML有一张技术王牌——能够实现精准套刻的对准技术,但由于这项技术被应用于油压驱动的机器中,就是没有人买。最终斯密特决定放弃油压,改为电动晶圆台,这意味更多的研发经费、更短的研发时间、和一定的失败几率,但也不得不迎难而上。  渐进式创新的影响力可能超出想象  20世纪80年代,ASML在光刻机领域还算不上最头部的公司。当时的老大要属美国GCA。但GCA在80年代中期就迅速衰败了。  当时导致GCA失败的最终因素,主要是蔡司的g线镜头,一种光线漂移问题严重。在开始时一切都很好,但随着光刻机运行的时间变长,图像质量就会下降。因为急于向客户交付光刻机,所以GCA在把镜头安装在机器上之前不会对镜头进行检查,这导致GCA交付了数百台带有故障镜头的光刻机,而蔡司多年来对这个问题一无所知,只有不到10%的镜头被送回进行维修。  更大的问题是GCA的光刻机无法自动纠正此类错误,工程师们也不知道问题出现的确切原因。  此时,一种渐进式创新出现了。GCA的日本竞争对手(尼康)设法改进了光刻机的聚焦系统。尼康依次开发出了具有较大数值孔径的g线目镜,这种组合令尼康的系统,能够更清晰地将微小图案成像到光刻胶的薄层上。  这项渐进式创新,令尼康斩获颇丰。当时有很多厂商正在大规模投入g线技术向i线技术革新。但客户们都很看好尼康的改进,因为他们只需要换掉GCA的光刻机,而不是是重新创建一个全新的基础设施。在制造更好芯片的同时,还节省了大量资金。  在技术转型期要格外小心这些因素,尼康对g线镜头的微小创新只是其中一个。当现有技术的寿命延长,对昂贵新技术的需求就会减弱,这意味着投入时机的重要性。  要探索技术路径的迷雾,赛马制可能是不错的手段  ASML也一样会面临抉择,到底是逐步改善现有技术,还是投入新的?ASML里程碑式的光刻机PAS 5500,就是在这样的抉择中诞生的。  工程师要做的不仅是机器的物理设计,他们还必须在初期选择技术路径,然后再扩展物理设计。如果机器架构从一开始就不可靠,那么以后各个环节都会遇到麻烦,问题还将持续多年。  例如晶圆台精度就是一个不确定因素。当时,ASML在其机器中使用带有直线电动机的H型晶圆台,但随着市场对“对准精度”的要求越来越高,很难说这种技术路径的产品能在市场上存活多久。  此时,摆在面前的问题是,ASML应该选择逐步改善,还是彻底革新?如果选择逐步改善,这种技术路径很可能最终无法满足市场的新需求 另一种选择是使用革命性的长冲程、短冲程发动机寻求突破,但研发会有风险。  ASML PAS 5500的首席架构师范登布林克没有直接做出决定,其实他也很难判断到底孰优孰劣。由于这个决策意义重大,他决定在这两条路上分别试验6-9个月,两个团队分别在自己的技术路径上赛马。  最后,技术竞赛证明旧H型晶圆台,有足够的潜力定位8英寸的晶圆,所以ASML选择了这条保险的路线。长短冲程发动机被暂时雪藏,但也可作为更新换代的备选方案。  PAS 5500对于ASML来说,是一款决定性的产品,ASML把所有希望寄托在它身上,PAS 5500也的确推动ASML走向光刻机世界的舞台中心。所以在这种重大的决策上,多花点研发经费是划算的,技术路径的赛马机制是值得的。  经历了多年的苦心经营,ASML在步进扫描光刻机时代走到了巨头行列,当时的市场形成了三家独大的局面:ASML、尼康、佳能。  但令ASML真正登上霸主宝座,弯道超车打败另外两家的契机,来自于颠覆式创新,来自于台积电的一个发明。  3  关键转折点——贵人相助与敌人犯错  技术赛马制之所以重要,就在于当颠覆式创新的机会来临时,提供支撑勇气的判断。  ASML最大的弯道超车,发生在193nm制程到157nm制程的升级过程。过去步进扫描光刻机采取的技术路线都是干式法,通过用更高级的曝光光源,来支撑技术进步到下一代。为了追求更高的分辨率,光源波长从最初的365nm,到248nm,再到193nm,但再往下走时,这条技术路径出现了困难。  当时业内又面临是押注改进还是颠覆的抉择。大部分企业选择了在原有技术路径上改进,比如两大巨头尼康、佳能,都选择进一步研发157nm波长的光源,但遇到了困难。  这时候,一种全新的技术理念出现在市场上——浸没式。这个思路由台积电的华裔越南科学家林本坚提出,他创造性的用水作为曝光介质,光源波长还是用原来的193nm,但通过水的折射,使进入光阻的波长缩小到134nm。  以前的干式法中,曝光介质用的是空气。它们的区别在于折射率,193 nm光源在空气中的折射率为1,在水中折射率为1.4,这也就意味着相同光源条件下,浸没式光刻机的分辨率可以提高1.4倍。  当时很多人认为浸没式技术难度太大,首先水可能会把镜头上的脏东西洗出来,影响工作效能 还有人担心水中的气泡、光线明暗等因素,会影响折射效果。林本坚也在着手攻克这些问题,比如用去离子水和其他手段,来保持水的洁净度和温度,使其不起气泡。  但理论归理论,能不能从实验室真正到工厂,还需要经验丰富的设备商一起开发。林本坚去美国、日本、德国、荷兰跑了一大圈,向光刻机厂商兜售浸没式光刻的想法。但是,绝大部分大厂都不买账。  不买账的原因除了这项技术走得太“鬼才”,还有不少想法需要验证之外,另一个原因就是改变的沉没成本太高。当时主流的研发思路,都是在157nm的干式光刻技术路径上。诸多公司已经耗费了大量财力、人力、物力,如果用这种“加水”的想法,各个研究团队就得全部重新开始,推翻原有的大部分设计。  所以巨头们对林本坚的态度,不仅仅是不理睬,而是封杀。尼康甚至向台积电施压,要求雪藏林本坚。在现实利益面前,这样的事情还发生过很多,比如柯达其实是最早研发出数码相机的公司,但缺乏自我颠覆的勇气,因为恐惧它威胁到自己的胶片业务,反而是雪藏了数码相机。  终于当林本坚跑到了荷兰时,ASML愿意做第一个吃螃蟹的勇士。虽然ASML也是从干式光刻机起家,但它想通过赛马制来赌一把,既然尼康、佳能都在死磕干式法157nm光源,且进展不顺利,那这支“奇兵”的意义就是巨大的。  最终浸润式成功了。2003年,ASML和台积电合作研发的首台浸没式光刻设备——TWINSCAN XT:1150i出炉,第二年又出了改进版。同年,研发进度拖慢的尼康,终于宣布了157nm的干式光刻机产品样机出炉。  但此时胜负已定,一面是用原来193nm光源但通过水进化到132nm波长的新技术,一面是157nm波长的样机,浸润式技术的优势不言而喻,这一技术成为此后65、45和32nm制程的主流,推动摩尔定律往前跃进了三代。  颠覆式创新的毁灭力也是巨大的。尼康、佳能由于对技术路径的判断失误,不仅意味着几百亿研发资金打了水漂,更是在与ASML的竞争中彻底落败。在2000年之前的16年里,ASML虽然跻身第一梯队,但是第一梯队里最小的玩家,占据的市场份额不足10%。  但自浸没式技术出现后,一路摧枯拉朽,全面碾压昔日巨头尼康、佳能,2008年市场占比超过60%。整个日本的半导体厂商,以及IBM等巨头,也都迅速衰落。  4  合作才能走得更远  为了进一步巩固战果,ASML开始打造上下游利益共同体。  由于浸没式技术的独家性,ASML要求所有合作伙伴必须投资它,否则就不合作。Intel、三星、台积电等等都投资了ASML,大半个半导体行业成为了ASML一家的合作伙伴,形成了庞大的利益共同体,大家都绑在了一条船上。  值得注意的是,在研发浸没式光刻设备的同时,ASML还早期布局了EUV技术,可谓走一步看三步。中国现在买不到的EUV光刻机,就是这种最前沿的产物。  我们在前文提到,尼康开发干式157nm光源遭遇了困难,就是因为不停缩小光源波长越来越困难,浸没式光刻技术虽然通过水的折射率暂时领先,但在未来,也一样会面临需要不停缩小波长的问题。  极紫外光(EUV)就像曾经的浸没式技术一样,拥有另辟蹊径的潜力,因为它的光波长极小,可以创造出比传统光刻小得多的电路。从1990年代末开始,直到2017年推出第一台商用EUV机器,这个项目共耗资90亿美元。  EUV代表产生电路的极紫外光 图片来源:New York Times  资金只是一方面,EUV的量产并不是一家公司的能力,而是多方合作的共同结果。美国政府之所以对ASML拥有影响力,就是因为美国政府和美国科研力量,是开发中极其重要的一环。  早在1997年,英特尔认识到进一步缩小光源波长的困难,渴望通过EUV来另辟蹊径。英特尔说服了美国政府,组建了“EUV LLC”的组织,包含了商业力量和政府科研力量,例如摩托罗拉、AMD、英特尔等,还汇集了美国三大国家实验室,美国成员构成了主体。  在对外国成员的选择上,英特尔和白宫产生了分歧,英特尔想让在光刻机领域有实力的ASML和尼康入局,但白宫认为如此重要的先进技术研发不该有”外人”入局。  此时ASML展示出了惊人的技术前瞻性,一定要挤进EUV LLC,虽然这个组织的目标是为了论证EUV技术的可行性,而不是量产它。ASML强力游说,开出了很难拒绝的条件——由ASML出资在美国建工厂和研发中心,并保证55%的原材料都从美国采购。  几百名全球顶尖的研发人员,经过了6年时间,终于论证了EUV的可行性,于是EUV LLC的使命完成,于2003年解散,各个成员踏上独自研发之路。  此时的ASML刚在浸润式技术上奇兵致胜,然后就立即投入到EUV的研发中。ASML每年将营业收入的15%用于研发,比如2017年的研发费用就高达97亿人民币。越投入技术越强,竞争对手都逐渐跟不上了。  EUV的技术难度非常高,在先进的EUV光刻机中,为了产生波长13.5nm超短波长的光,需要持续用20kw的激光轰击从空中掉落的金属锡液滴,液滴直径只有20微米,而且同一个液滴需要极端时间内连续轰击两次,第一次冲击是将它们压平,第二次冲击是将它们汽化,才能产生足够强度的极紫外光。为了保证光的持续性,每秒要轰击5万次。  EUV光刻机被誉为人类制造的最复杂机器之一,各个环节的高度专业性也汇集了全球的尖端产业,其中要用到来自德国的反射镜,以及在圣地亚哥开发的硬件,这种硬件通过用激光喷射锡滴来产生光,重要化学品和元件则来自日本。ASML还于2012年收购了顶级光源企业Cymer。  EUV光刻机绝对是人类制造的最精密复杂的设备之一  运输该机器需要40个集装箱、20辆卡车和三架波音747飞机 图片来源:New York Times  ASML其实是一个集大成者(集成商),也是全球化的受益者。ASML 90%的零部件来自于外购,再由最理解客户需求和产业发展趋势的ASML集成。ASML的背后是美国、日本、欧洲、中国台湾、韩国的技术支撑,最终才能量产出极度复杂的EUV光刻机。  这就是尖端供应链全球化的典型例子,如果中国想在芯片领域取得大幅进步,那就不得不面对一个由多方构成、缺一不可的全球尖端供应链。  早在ASML成立最初的几个月里,就确定了它合作的基因。ASML只进行研发和组装,并不什么都由自己制造。这种理念在1984年是十分超前的,因为当时欧洲流行的信念是“你最好什么都自己做才能控制一切”,当时很多人都认为ASML疯了:“培养合作伙伴与把钥匙交给别人是同一种意思,这是在自找麻烦,你会完全失去控制权。”  但事实证明合作才能走得更远。
  • 元素周期表上的地理冷知识,你认识几个?
    p   3月14日,日本首次发现的113号元素被负责管理化学元素符号的国际化学组织“国际纯粹与应用化学联合会”正式命名为Nihonium,中文名称是“鉨”。113号元素是日本理化学研究所的一个科研小组于13年前合成的,是亚洲发现的第一个元素,它的名称来自于“日本”(Nihon)这一国名。 /p p   那么,除了新命名的113号元素“鉨”,元素周期表上还有哪些元素也是以国家或地名命名的呢?我们统计发现,元素周期表上以地名命名的有以下几类: /p p style=" text-align: center" img src=" http://img1.17img.cn/17img/images/201704/insimg/e83b5d2d-2409-440f-97df-095f1a268c3a.jpg" title=" 148469_副本.jpg" / /p p    strong 1. 类似“和田玉”“太湖石”这种以矿物原产地命名的 /strong /p p   希腊的Magnesia地区,不仅出产一种苦土(即白色氧化镁white magnesia alba),而且还出产好几种黑色矿物(例如软锰矿pyrolusite),从苦土和软锰矿中分别发现了元素镁(Mg,Magnesium)和元素锰(Mn,Manganese)。 /p p   铜的英文是copper,为什么它的元素名称和元素符号分别是Cuprum和Cu呢?因为在罗马时代,铜的开采主要是在塞浦路斯岛上进行的,所以铜的元素名称和符号就与塞浦路斯岛的拉丁文Cyprium有关了。 /p p   苏格兰村庄Strontian出产一种铅矿,从这种铅矿中最早发现了元素锶,所以锶的元素名称就以该村庄来命名——Strontium,元素符号就是Sr。 /p p   瑞典村庄Ytterby,在化学课本中是一个熠熠生辉的名字,一共有7种稀土元素的发现、命名都和这个北欧的小村庄有关。从Ytterby出产的稀土矿石中,先后发现并用该村庄的名称命名了4种稀土元素——钇(Y,Yttrium)、铽(Tb,Terbium)、铒(Er,Erbium)和镱(Yb,Ytterbium),其中钇(Y)是稀土元素(包括15中镧系元素和钪、钇)中第一个被人们发现的(1794年)。此外,虽然钪(Sc)、钬(Ho)、铥(Tm)这3种稀土元素没有用Ytterby来命名,但是也是从该村庄出产的矿石中最初发现的。 /p p    strong 2. 类似“纽约(New York)”“新南威尔士(New South Wales)”这种纪念发现者的国家和地区的 /strong /p p   与北欧有关的元素,比如上文说到的钪(Sc)、钬(Ho)、铥(Tm)。钪的元素名称Scandium,源自北欧的斯堪的纳维亚半岛Scandinavia 钬的元素名称Holmium,源自斯德哥尔摩的拉丁文Holmia 铥的元素名称Thulium,源自斯堪的纳维亚和冰岛的古希腊名Thule。 /p p   与法国有关的元素,比如镓(Ga)、镥(Lu)、钫(Fr)。镓的元素名称Gallium,源自法国的古称“高卢”的拉丁文Gaullia 镥的元素名称Lutetium,源自巴黎的拉丁文Lutetia 钫的元素名称Francium,源自法国France。 /p p   与德国有关的元素,比如锗(Ge)。锗的元素名称Germanium,源自日耳曼的拉丁文Germania。 /p p   与俄罗斯有关的元素,比如钌(Ru)。钌的元素名称Ruthenium,源自俄罗斯的拉丁文Ruthenia。 /p p   与波兰有关的元素,比如钋(Po)。钋的元素名称Polonium,源自波兰的拉丁文Polonia。钋是居里夫人发现的。 /p p   与欧洲有关的元素,比如铕(Eu)、铼(Re)。铕的元素名称Europium,源自欧洲Europa 铼的元素名称Rhenium,源自莱茵河Rhine。 /p p   与美洲有关的元素,比如镅(Am)。镅的元素名称Americium,源自美洲新大陆(the Americas),而且镅在元素周期表上的位置恰好位于铕(Eu,Europium)的下方。 /p p    strong 3. 类似“加拉帕戈斯企鹅”“尼罗鳄”这种以元素的发现地命名的 /strong /p p   与城市有关的,比如铪(Hf)、锫(Bk)、钅杜(Db)、钅达(Ds)。铪(Hf)的名称Hafnium,源自发现地丹麦哥本哈根的拉丁文Hafnia 锫(Bk)的名称Berkelium,源自发现地美国加州伯克利Berkeley 钅杜(Db)的名称Dubnium,源自发现地苏联杜布纳Dubna 钅杜(Db)的名称Dubnium,源自发现地苏联杜布纳Dubna。 /p p   与州名、省名有关的,比如锎(Cf)、钅黑(Hs)。锎(Cf)的名称Californium,源自发现地美国加利福利亚California 钅黑(Hs)的名称Hassium,源自发现地德国黑森州的拉丁文Hassia。 /p p   strong  4. 以新发现的行星命名的 /strong /p p   铀(U)的名称Uranium,是为了纪念比铀元素早发现8年的天王星Uranus。 /p p   镎(Np)的名称Neptunium,源自海王星Neptune。镎是第一个人工合成的元素。 /p p   钚(Pu)的名称Plutonium,源自冥王星Pluto(命名时冥王星还属于行星,2006年才被降级为矮行星)。 /p p br/ /p
  • 云南加快推进新污染物治理,有序开展“筛、评、控”和“禁、减、治”
    记者从近日召开的云南省新污染物治理工作省级部门协调机制第一次会议上获悉,云南将坚持系统观念,遵循全生命周期环境风险管理理念,采取源头禁限、过程减排、末端治理的全过程环境风险管控措施,协同开展新污染物治理。云南省生态环境厅党组书记、厅长王天喜介绍,云南省高度重视新污染物治理工作,2022年,省政府办公厅印发《云南省新污染物治理工作方案》,明确了云南省新污染物治理工作的总体要求、主要任务和保障措施,提出“到2025年,新污染物环境风险管理机制逐步建立健全,新污染物治理能力明显增强”的工作目标。总体思路是通过对有毒有害化学物质环境风险筛查和评估,“筛”“评”出需要重点管控的新污染物,对重点管控新污染物实行全过程环境风险管控,包括源头禁限、过程减排、末端治理。自2011年以来,云南省生态环境厅和各有关部门密切配合,持续加强化学品环境管理,围绕履行《斯德哥尔摩公约》《水俣公约》等,开展了部分行业重点新污染物生产使用情况统计调查、持久性有机污染物淘汰禁用等工作,奠定和积累了一些工作基础和经验,在优先控制化学品环境风险评估管控方面开展了一些探索性研究。云南省新污染物治理起步晚,还存在底数不清、工作基础薄弱、资源配置不足、治理体系尚未完整建立等诸多不足和短板。王天喜表示,新污染物治理是一项系统工程,必须坚持联防联控,统筹推进。要更加坚定工作目标,积极探索,勇于创新,先行先试,准确把握工作基础和经验,清醒认识存在的问题与挑战,坚持科学研究和制度创新齐头并进,坚持源头防范、过程控制、末端治理一体推进,加强分类治理和全生命周期风险管控,充分利用好现有治理机制和监管手段,全面落实好新污染物治理行动方案的各项任务措施。要加强统筹协调,发挥好新污染治理省级部门协调机制;有序开展“筛、评、控”和“禁、减、治”工作等。此外,会议宣布云南省新污染物治理专家委员会正式成立,将积极主动围绕新污染物治理的重点和难点开展调查研究,积极提供综合决策咨询与技术支撑,为协调机制成员单位科学决策做好参谋助手。中国科学院院士、中国科学院生态环境研究中心研究员江桂斌就《新污染物治理:研究与思考》作了专题讲座。
  • 自主研发国产仪器助力 江颖、王恩哥等揭示冰表面原子结构和预融化机制
    近日,北京大学物理学院量子材料科学中心、北京怀柔综合性国家科学中心轻元素量子材料交叉平台江颖教授、徐莉梅教授、田野特聘研究员、王恩哥院士等紧密合作,利用自主研发并商业化的国产qPlus型扫描探针显微镜,首次获得了自然界最常见的六角冰表面的原子级分辨图像。研究团队发现冰表面在零下153摄氏度就会开始融化,并结合理论计算揭示了该过程的微观机制,结束了有关冰表面预融化问题长达170多年的争论。该工作以“冰表面结构和预融化过程的原子分辨成像”(Imaging surface structure and premelting of ice Ih with atomic resolution)为题,于5月22日发表在《自然》(Nature)杂志上。《自然》杂志编辑部还以“从原子尺度揭示冰表面融化的奥秘”(Atomic-scale insights into the mystery of how ice surfaces melt)为题配发研究简报(Research Briefing),对文章进行专题报道。熟悉又神秘的冰表面水是生命之源,而冰作为水重要的固体形态,广泛存在于自然界中。全球冰川面积约占陆地面积的十分之一,且近半数的地表上空被含有大量冰晶的云层所覆盖。作为自然界中最普遍的表面之一,冰面承载着多种重要的大气反应,并影响着众多自然现象,如:冰的形成、臭氧的分解、雷云的带电等。此外,在星际空间中,被冰覆盖的尘埃颗粒是复杂有机分子生成的关键载体,因此,冰表面的研究对探索生命起源和物质来源具有重要意义。然而,由于缺乏原子尺度的实验表征手段,我们对冰表面的了解仍处于非常初步的阶段,甚至连一个基本问题——冰的表面结构是什么,也尚未弄清楚。此外,冰表面常在低于其熔点(0 ℃)的温度下开始融化,这一现象称为冰的预融化。预融化现象对于理解冰面的润滑现象、云的形成与寿命、以及冰川的消融过程等至关重要。自从19世纪中期法拉第首次提出预融化层的概念以来,围绕其结构和机制的争论已经持续了170多年。这种持续的争论原因在于相关研究主要依赖于谱学手段,而这些手段受到衍射极限的限制,无法得到准确的原子尺度信息。因此,在实空间中对体相冰表面和预融化过程进行原子级分辨成像,是理解预融化层的关键,也是科学家们一直以来追求的目标。揭开冰表面的神秘面纱江颖课题组长期致力于高分辨扫描探针显微镜的自主研发和应用,创新性发展出了一套基于高阶静电力的qPlus扫描探针技术,并在国际上率先实现氢核的成像。2022年,课题组完成了qPlus型扫描探针显微镜的国产化样机 [Cheng et al., Rev. Sci. Instrum. 93, 043701 (2022)],随后将相关核心专利转让给中科艾科米(北京)科技有限公司,通过校企联合攻关,实现了该系统的整机国产化(图1)。在本工作中,研究团队进一步突破了绝缘体表面无法进行原位针尖修饰的限制,开发了一种通用的一氧化碳分子修饰针尖技术,可对各种绝缘体表面实现稳定的原子级分辨成像。值得一提的是,国产扫描探针显微镜得到了比进口设备更高质量的数据,为冰表面的结构解析提供了关键支撑。基于该国产化设备,研究人员首次得到了自然界最常见的六角冰(ice Ih)表面的原子级分辨图像,实现了对表面氢键网络的精确识别和氢核分布的精准定位。图1. 自行研制的qPlus型光耦合扫描探针显微镜国产化样机(左)和正式上市设备(右)该研究发现六角冰的基面(basal plane)存在六角密堆积(Ih)和立方密堆积(Ic) 两种堆叠方式(图2),不同于过去普遍认为的只存在Ih一种堆叠方式的理想冰表面。Ih和Ic 晶畴通过水分子五、八元环缺陷连接,在纳米尺度上实现无缝的层内堆叠。通过精确控制冰的生长温度与气压,研究人员在冰表面发现了一种长程有序的周期性超结构,其中大小规则的Ic和Ih纳米晶畴交替排列(图2)。通过分析超结构表面的氢核分布,并结合第一性原理计算,研究人员发现这种独特的氢键网络结构能显著减少冰表面悬挂氢核之间的静电排斥能,从而使其比理想冰表面更加稳定。这一突破性发现刷新了人们对冰表面的传统认知,结束了关于冰表面结构及氢序的长期争论。图2. 冰表面的Ih和Ic 晶畴的原子力显微镜实验图(a),对应的结构模型示意图(b),以及周期性超结构的原子力显微镜实验图(c)捕捉预融化的微观过程为了进一步探究冰表面的预融化过程,研究人员进行了系统的变温生长实验,发现冰表面在零下153 ℃(120 K)时就开始融化(图3)。在融化初期,原本长程有序的超结构中局部开始出现大小不一的晶畴。随着生长温度的进一步升高,冰表面的超结构序完全消失。与此同时,在畴界附近,出现了大面积的表面无序,这些区域中经常可以观察到一种局域的平面化团簇结构。理论计算表明,该结构是一种亚稳态,其形成过程涉及到表面水分子层内氢键网络的调整和层间氢键的断裂,从而引起大面积的表面无序。在冰表面的初期预融化过程中,这种结构起到了关键作用。图3. 随着温度升高冰表面预融化过程的原子级分辨成像意义和展望该工作颠覆了长期以来人们对冰表面结构和预融化机制的传统认识。冰表面重构所引入的高密度分布的畴界,促进了预融化的发生,使得冰表面在极低的温度(120 K)下就开始变得无序,这个温度远低于之前研究普遍认为的预融化起始温度(大于200 K)。考虑到预融化开始的温度与大气层中的地球最低温度相当,这表明在自然环境中,大多数冰表面已经处于预融化的无序状态或者准液态。因此,理解地球上与冰相关的各种物理和化学性质,需考虑预融化过程中形成的表面缺陷和亚稳态的作用。这些发现开启了冰科学研究的新篇章,将对材料学、摩擦学、生物学、大气科学、星际化学等众多学科领域产生深刻的影响。该工作在审稿过程中获得三位审稿人高度评价,认为它是“多年来阅读过的最令人印象深刻且完整的论文之一”。他们肯定了“采用qPlus型低温原子力显微镜技术对冰表面进行原子级成像是一项重大技术创新”“所获得的分辨率在冰表面成像中是前所未有的”,同时指出该工作的广泛意义,“这些发现可能对大气科学、材料科学等多个领域产生深远的影响”。北京大学物理学院量子材料科学中心2018级博士研究生洪嘉妮(现为北京大学物理学院博士后,入选中国博士后创新人才支持计划)、2016级博士研究生田野(现为北京大学物理学院特聘研究员)、2020级博士研究生梁天成和2020级博士研究生刘心萌为文章的共同第一作者,江颖、徐莉梅、田野和王恩哥为文章的共同通讯作者。其中洪嘉妮、田野、刘心萌、江颖主要贡献为扫描探针实验,梁天成、潘鼎、徐莉梅、王恩哥主要贡献为第一性原理计算和模拟。上述工作得到了国家自然科学基金委、科学技术部、教育部、北京市科学技术委员会、北京市发展和改革委员会和新基石科学基金会的经费支持。
  • 天美讲堂丨提高中药荧光指纹图谱的专属性(三)有序介质和荧光络合作用
    应用背景以中国传统医药理论指导采集、炮制、制剂,说明作用机理,指导临床应用的药物,统称为中药。中药作为中华民族传统文化的瑰宝,主要来源于天然药及其加工品,包括植物药、动物药、矿物药及部分化学、生物制品类药物。 中药品种繁多,来源广泛,成分复杂,单味中药中即含有几十种乃至更多的化学成分,临床多使用复方制剂,且中药的特点是多成分整体作用于有机体,因此,中药的质量评价和质量控制十分重要。中药为天然有机化合物,其中的某些成分能够在紫外光或日光照射下产生不同颜色的荧光,因此,荧光检验法是中药鉴别中常用的一种理化鉴别方法。中药的三维荧光图谱可以给出被测中药全面的荧光信息,为复杂的中药体系的荧光分析提供了方便。专属性是指中药指纹图谱的测定方法对中药样品特征的分析鉴定能力。对于中药材的三维荧光图谱而言,可以从荧光峰的位置、峰强度、峰形状、各个峰的强度比等方面使一种药材区别于其他药材。在中性水溶液中进行实验的方法是最简便、应用最多的方法,大部分药材可以用这一方法获得图形美观、专属性好的三维荧光图谱。但某些药材使用这一方法获得的三维荧光图谱相似,或者荧光太弱甚至无荧光。对于这些药材,需要采取特殊的实验方法以提高三维荧光图谱的专属性。由于物质的荧光性质与环境因素密切相关,因此,提高三维荧光图谱的专属性可以通过优化实验条件得以实现。(三)a. 有序介质作用有序介质指能够与荧光体通过分子间作用力形成胶束包合物或主客体包合物的有机化合物(如表面活性剂、环糊精等)。在水溶液中,有序介质与荧光体形成包合物之后,会改变荧光分子周围的微环境,从而能够对荧光体的光谱特性产生影响,造成荧光波长的移动或荧光强度的增强。表面活性剂与荧光体的作用是有选择性的,这种选择性与荧光体和表面活性剂所带的电荷以及两者分子间的亲和力有关。如果荧光体是带电荷的,具有与荧光体相反电荷的表面活性剂常对该荧光体的结合能力较强。例如,SDS可以使小檗碱、巴马厅的荧光明显增强(SDS在水溶液中带负电荷,小檗碱、巴马厅等异喹啉类生物碱带正电荷,两者结合能力较强)。(在使用表面活性剂时,应该注意所用的试剂是否有荧光或着含荧光杂质。)环糊精类化合物的特点是分子结构中存在一个亲水的外缘和一个疏水的空腔,其疏水的空腔能与尺寸大小合适的有机物结合形成主客体包合物。如,小檗碱和蛇床子素都能与β-环糊精发生荧光增敏反应。 (三)b. 荧光络合作用某些具有特定结构单元的有机化合物可以与铝离子、硼砂等在适当的条件下结合形成荧光络合物,使荧光信号增强。如丹皮酚与铝离子反应生成形成络合物,使荧光信号增强(丹皮酚自身荧光很弱,生成的丹皮酚-铝(III)络合物具有强荧光信号)。有些中药成分可以与硼砂和表面活性剂形成三元络合物体系,比二元络合物体系的荧光更强或稳定性更好。如,绿原酸与硼砂反应后荧光增强但幅度不大,如果加入表面活性剂CTAB,会使荧光信号进一步增强。天美讲堂丨提高中药荧光指纹图谱的专属性(一)溶剂效应天美讲堂丨提高中药荧光指纹图谱的专属性(二)酸度效应*本文参考:魏永巨 《中药三维荧光检验法》(科学出版社)仪器推荐天美FL970系列荧光分光光度计具有可靠、快速的光路系统(150W高能量氙灯、一体化的光路底板、PMT值增益的光电倍增管、超快的扫描速度)和人性化、直观、易用的操作界面。 天美分析更多资讯
  • 化学所在新型介质调控有序组装研究方面取得进展
    p   有序组装体的结构与功能调控是具有重要理论和实际意义的研究课题。传统组装一般在水或有机溶剂中进行,超临界流体是具有许多独特性质的新型介质和功能流体。在国家自然科学基金委、科技部和中国科学院的大力支持下,中国科学院化学研究所胶体、界面与化学热力学实验室研究员张建玲等科研人员在新型介质调控有序组装研究方面取得了新进展: /p p   提出以金属-有机框架(MOF)作为乳化剂、在超临界CO sub 2 /sub /水中形成乳液的研究思路。采用“亲水性”MOF形成水包CO sub 2 /sub 型乳液,而“亲CO sub 2 /sub 性”MOF则促进超临界CO sub 2 /sub 包水型乳液的形成,乳液液滴的微观结构可通过CO sub 2 /sub 压力和MOF组成进行调控。这种由MOF、CO sub 2 /sub 和水组成的新型乳液为MOF高级结构的组装提供了新途径。将乳液中的CO sub 2 /sub 和水在冷冻状态下去除后,制得具有大孔-介孔-微孔结构的三维网络MOF材料、空心MOF微球等。该工作被《德国应用化学》选为“Hot Paper”(Angew. Chem. Int. Ed. 2016, 55, 11372-11376)。 /p p   采用与超临界CO sub 2 /sub 和水同时存在较强相互作用的金属配合物作为双亲分子,在超临界CO sub 2 /sub /水体系中自组装形成反胶束,通过改变CO sub 2 /sub 压力和水含量,可对反胶束的微观结构和性质进行调控。这种由金属配合物组装而成、超临界CO2做连续相的反胶束为光催化CO sub 2 /sub 转化提供了界面反应的新途径(Angew. Chem. Int. Ed. 2016, 55, 13533-13537)。 /p p style=" text-align: center" img src=" http://img1.17img.cn/17img/images/201612/insimg/1b3b353f-e315-4b17-847c-1d10cd63fb4c.jpg" title=" W020161207570569686580.jpg" / /p p style=" text-align: center " MOF稳定超临界CO sub 2 /sub /水乳液及MOF高级结构组装 /p p br/ /p
  • 美利用光谱技术发现元素周期表新视角
    元素周期表   将金属铅转变成黄金或许永远是个神话,不过与其相类似的“炼丹术”不仅可能,而且还相当廉价。美国宾州大学3名研究人员日前发表文章说,他们发现某些元素原子的组合所显示的电子特征同其他元素的电子特征相仿。研究小组带头人艾伯特卡斯尔曼教授表示,此发现有望帮助人们获得更廉价的广泛应用于新能源、环境治理和催化剂的材料。   研究人员同时还向人们展示,在完成的原子合成研究中,他们所验证的那些原子通过简单地查看元素周期表就能预测到。研究小组利用先进的实验和理论对这些崭新和意外的发现进行了量化分析。卡斯尔曼教授认为,他们开创了认识元素周期表的新视角。相关研究成果发表在近期的《美国国家科学院院刊》网站上。   卡斯尔曼领导的研究小组另外两名成员分别是塞缪尔培泊尼克和达斯萨古纳偌特恩。培泊尼克曾是宾州大学的研究生,现为太平洋西北国家实验室的博士后研究员;古纳偌特恩仍是宾州大学的研究生。在研究中,他们利用光电子成像光谱技术,分析研究了一氧化钛和金属镍、一氧化锆和金属钯,以及碳化钨和白金两两之间的相同点。   卡斯尔曼介绍说:“光电光谱仪可测量将原子或分子中电子从各种能态移出(或去除)所需的能量,与此同时用电子相机将去除电子过程的分步图拍摄下来。如此方法允许我们了解电子的结合能,并观测电子在被从原子中去掉前所处在的电子轨道的自然状况。我们发现,从一氧化钛分子中去除电子所需的能量同从镍原子中去除电子所需的能量相同。同样,一氧化锆和金属钯以及碳化钨和白金的情况也是这样。这3对物质的关键点是它们两两之间具有等电子体结构,也就是说它们两两之间具有相同的(外层)电子排布。”他强调,等电子体在这里主要是指原子或分子的外层电子数目。   在光电光谱仪拍摄的成像中,研究小组研究的3对物质两两之间代表着电子从原子外层被去除时所发出的释放能量的亮点看起来相似,图表也显示两两物质之间能量峰值相近,同样理论计算的结果表明它们的能级也相匹配。   卡斯尔曼解释说,一氧化钛、一氧化锆和碳化钨分别是金属镍、金属钯和白金的“超级原子”。所谓“超级原子”是一簇带有元素原子某些特征的原子。卡斯尔曼过去的实验室涉及到超级原子概念的研究,其中一项实验显示,由13个金属铝原子组成的原子簇其表现如同一个碘原子,而在铝原子构成的系统中增加一个电子,其表现则如同一种罕见的气体原子。进一步研究发现,14个铝原子组成的原子簇的活动性与一种碱金属原子的相当。   卡斯尔曼新的研究目标是将超级原子想法提高到一个新的高度,并为超级原子概念提供合理的量化基础。他表示:“这看上去就像我们能预测哪些元素原子的组合可模仿其他的元素原子。比方说,通过查看元素周期表,你便能推测一氧化钛是镍的一个超级原子。简单方法是钛原子的外层有4个电子,而原子氧的外层有6个电子,在元素周期表中,钛元素向右移动6个元素便是镍。镍原子的外层有10个电子,正好与钛和氧组合的分子的外层电子数相同。我们曾考虑这个发现肯定是一种不可思议的巧合,于是我们试着用其去了解其他的原子,却发现存在着同样的规律。”   卡斯尔曼表示,他不知这样的规律是否适合于整个元素周期表中的所有元素,或者该规律是否只适合表中部分元素。目前,他和研究小组的成员正忙于对过渡金属元素的分析工作。未来,他们计划研究了解超级原子是否与其对应的元素原子具有类似的化学性质。   对于新研究的应用,卡斯尔曼说:“白金广泛用于汽车的催化转化器中,但是它十分昂贵。相反,与白金对应的碳化钨却价格低廉。如果汽车催化转化器制造商能够利用碳化钨来取代白金,那么便可以节省大笔的资金。同样,用于某些内燃过程中的金属钯期望能被廉价的一氧化锆所代替。我们的研究从科学进步和实际应用两个角度看,都是十分令人振奋的。”
  • 谁的青春没有一张元素周期表?化学元素周期表150岁生日,各种炫酷周期表盘点
    p strong --化学元素周期表150岁生日,联合国、Nature、Science等都在为其庆祝! /strong /p p   今年是门捷列夫发现周期表的150周年,也是IUPAC成立的100周年。联合国大会于2017年决定将今年定为“化学元素周期表国际年”(IYPT2019),以表彰化学元素周期表的重要性。今年会有很多活动来庆祝元素周期表150岁的生日。那大家印象中的元素周期表都是什么样的?大家都见过哪些元素周期表呢?盘点了下各式各样炫酷的元素周期表。 /p p style=" text-align: center" img src=" https://img1.17img.cn/17img/images/201902/uepic/6f39b81f-9fd9-4442-be96-0415ce3bd0e4.jpg" title=" 1.jpg" alt=" 1.jpg" width=" 585" height=" 248" style=" width: 585px height: 248px " / /p p   2017年12月20日,联合国大会宣布将2019年定为“化学元素周期表国际年”(IYPT2019),以表彰化学元素周期表的重要性。2019年是门捷列夫发现周期表的150周年,也是IUPAC成立的100周年。 联合国大会表示,“化学元素周期表是现代科学领域最重要和最具影响力的成果之一,不仅反映了化学的本质,也反映了物理学、生物学和其他基础科学学科的本质”。 /p p style=" text-align: center" img src=" https://img1.17img.cn/17img/images/201902/uepic/b66a5f4e-b1f6-4afd-9404-ca08e2e484ae.jpg" title=" 2.jpg" alt=" 2.jpg" width=" 619" height=" 262" style=" width: 619px height: 262px " / /p p style=" text-align: center " 门捷列夫的周期表 /p p   2019年1月29日,联合国教科文组织于巴黎举行的“化学元素周期表国际年”(IYPT2019)启动仪式,仪式上教科文组织总干事阿祖莱与俄罗斯科学和高等教育部部长戈图科夫(Mikhail Kotyukov)、法国科学院院长科尔沃(Pierre Corvol)以及2016年诺贝尔化学奖得主费林加(Ben Feringa)等贵宾一同为国际年庆祝活动揭幕。 /p p 以下是各类元素周期表盘点: /p p style=" text-align: center" img src=" https://img1.17img.cn/17img/images/201902/uepic/d25fb8ae-1f83-417f-aae5-af7713343143.jpg" title=" 10.jpg" alt=" 10.jpg" width=" 576" height=" 442" style=" width: 576px height: 442px " / /p p style=" text-align: center " NIST 标准版元素周期表 /p p style=" text-align: justify text-indent: 2em " 这张应该是目前最新最标准的元素周期表了,由美国国家标准与技术研究院发布。最后更新时间为2017年2月. /p p style=" text-align: center" img src=" https://img1.17img.cn/17img/images/201902/uepic/d7a978e3-3e38-4b89-a843-6ad1eefde2d6.jpg" title=" 11.jpg" alt=" 11.jpg" width=" 565" height=" 328" style=" width: 565px height: 328px " / /p p style=" text-align: center " strong IUPAC版 元素周期表 /strong /p p style=" text-align: center" img src=" https://img1.17img.cn/17img/images/201902/uepic/aac00d83-8dec-4b6a-8951-d6aa928c8e32.jpg" title=" 12.jpg" alt=" 12.jpg" / /p p style=" text-align: center " 人教版 元素周期表 /p p style=" text-align: center" img src=" https://img1.17img.cn/17img/images/201902/uepic/2043c8e3-5792-4163-ae7a-8a018ee755b6.jpg" title=" 13.jpg" alt=" 13.jpg" width=" 618" height=" 443" style=" width: 618px height: 443px " / /p p style=" text-align: center " span style=" text-align: center " 立体版 元素周期表 /span /p p style=" text-align: center" img src=" https://img1.17img.cn/17img/images/201902/uepic/9d561ec3-06d9-4169-afea-231dd4a94148.jpg" title=" 21.jpg" alt=" 21.jpg" / /p p style=" text-align: center " 图标版 元素周期表 /p p style=" text-align: center" img src=" https://img1.17img.cn/17img/images/201902/uepic/1e0067a1-a79e-4e63-857f-44c7480d7c0d.jpg" title=" 28.jpg" alt=" 28.jpg" width=" 573" height=" 407" style=" width: 573px height: 407px " / /p p style=" text-align: center " 原子轨道版 元素周期表 /p p style=" text-align: center" img src=" https://img1.17img.cn/17img/images/201902/uepic/8adb6732-5bd4-4c14-88ab-0656a4894846.jpg" title=" 42.jpg" alt=" 42.jpg" / /p p style=" text-align: center " 科学趣闻:世界上最大的元素周期表 /p p style=" text-align: center" img src=" https://img1.17img.cn/17img/images/201902/uepic/5d925c66-2d39-4731-b297-02d124250e88.jpg" title=" 微信图片_20190201151120.jpg" alt=" 微信图片_20190201151120.jpg" / /p p style=" text-align: center " WIFI 版 & nbsp 元素周期表 /p p & nbsp & nbsp 是否勾起了你中学时的回忆?欢迎网友投稿发送你们喜欢的元素周期表给小编。邮箱:liuld@instrument.com.cn /p
  • 上海高研院在质子交换膜电解水制氢有序化膜电极方面获进展
    近日,中国科学院上海高等研究院研究员杨辉团队在质子交换膜电解水制氢研究中取得重要进展。相关研究成果以Overall design of anode with gradient ordered structure with low iridium loading for proton exchange membrane water electrolysis为题,发表在Nano Letters上。质子交换膜水电解(PEMWE)是实现零碳排放制氢的关键技术之一。目前,由于阳极侧贵金属Ir的高用量大幅增加了PEMWE成本,制约其商业化进程。制备高活性低Ir含量催化剂是降低Ir用量的常用方法。然而,在PEMWE实际使用过程中,膜电极(MEA)需要在高电流密度(≥1-2 A cm-2)下运行以保证高效产氢,因此需要同时解决催化剂利用率低、高欧姆电阻以及传质受限等问题。构筑有序结构MEA有望同时降低电催化动力学、传质和欧姆损失,是氢能燃料电池研究追求的目标,但颇具挑战性。鉴于此,科研团队从MEA结构一体化设计的角度出发,创新地提出利用纳米压印技术结合静置法,制备一种阳极兼具梯度化锥形阵列以及三维膜/催化层界面的新型有序结构MEA。锥形阵列与梯度催化层结构增加了活性位点的暴露;梯度和三维膜/催化层界面增强了界面结合强度;垂直排列的空隙为气、液传输提供了快速通道。该结构MEA可同时降低电催化动力学、欧姆与传质极化造成的性能损失。与Ir载量为2 mg cm-2的传统MEA相比,该有序结构将电化学活性面积提高至4.2倍,同时分别将传质和欧姆极化过电位降低了13.9 %和8.7 %。这种新型有序MEA在Ir载量低至0.2 mg cm-2时,仍表现出1.801 V @ 2 A cm-2的优异性能,与Ir载量是其十倍的传统结构MEA性能相当,并表现出良好的稳定性。本研究为开发高性能、低贵金属催化剂载量及长寿命的PEMWE提供了新策略。研究工作得到国家重点研发计划、中科院战略性先导科技专项、国家自然科学基金等的支持。有序结构膜电极示意图、谱学表征和水电解性能评价
  • 后疫情时代,如何通过缩短产品开发周期加速产品上市?
    随着国内疫情防控成效日趋显著,全国各省市在严防境外疫情输入的同时,纷纷加快全面复工复产进程。后疫情时代,各位产品研发经理、设计师和工程师,你们的开发日程有争取到宽限期吗?研发成本还能控制住吗?本场网络直播,将从产品生命周期管理的四个阶段,即最初的概念、工程设计、再到制造和后期的维修和服务出发,用我们真实的案例为您分析 3D 扫描技术对您的整个产品生命周期管理所产生的积极影响。网络直播后疫情时代,如何通过缩短产品开发周期来加速产品上市?2020 年 4 月 23 日(星期四)14:00 - 15:00即刻扫码注册本场网络直播吧!主要议题明确 3D 扫描可在哪些方面提升并简化产品生命周期管理过程中的工作探索具体案例研究,了解如何将 3D 扫描应用于产品生命周期管理过程Creaform 公司热门产品介绍:便携式三维扫描仪和自动化三维扫描设备客户痛点本场直播将为您解答:如何将概念设计快速转换为工程模型?如何降低产品开发成本?如何在工具设计阶段需要不间断检查质量的情况下加快检测流程?如何在没有 CAD 文件的情况下为零部件市场设计替换的零部件?主讲人倪东阳CREAFORM应用工程师2009 年加入 CREAFORM ,专注于三维扫描技术解决方案,10 余年扫描应用从业经验。曾参与一汽解放、吉利汽车、上汽通用五菱等多个汽车项目的 3D 扫描技术应用。2009 年参与“南京晨光 70 米观音像”技术应用以及开发。2013 年参与“瓦良格号”的船体修复工程和结构优化。2016 年参与商飞 C919 的机翼的研发与改进。2018 年担任由国家人社部组织、清华大学基础工业训练中心承办的 3D 打印造型师师资培训班授课讲师。▼即刻扫码注册本场网络直播吧!▼2020 年 4 月 23 日(星期四)14:00 - 15:00关于形创形创(Creaform )开发、制造并销售 3D 便携式及自动化测量技术产品,专门从事工程服务。公司提供创新应用解决方案,如 3D 扫描、逆向工程、质量控制、无损检测、产品开发和数值模拟 (FEA/CFD)。公司的产品和服务面向各大行业,例如汽车、航空航天、消费品、重工业、医疗保健、制造业、石油与天然气、发电业以及研究与教育。阿美特克是电子仪器和机电设备的全球领导者,年销售额约为50亿美金。为材料分析、超精密测量、过程分析、测试测量与通讯、电力系统与仪器、仪表与专用控制、精密运动控制、电子元器件与封装、特种金属产品等领域提供技术解决方案。全球共有18,000多名员工,150多家工厂,在美国及其它30多个国家设立了100多个销售及服务中心。
  • 认证机构可利用企业检测资源 缩短检测周期
    认证机构可利用企业检测资源   日前,中国质量认证中心的相关专家指出,为提高强制性产品认证的工作效率,缩短检测周期和认证周期,在一些特定情况下,认证机构可以利用工厂自身的检测资源进行样品检测。国家相关部门对3C认证机构利用企业的检测资源方面提出了明确且严格的要求。   首先,相关规定界定,工厂检测资源是指申请强制性产品认证生产厂或制造商的100%自有资源,且位于生产厂附近。利用工厂检测资源的产品适用范围包括:样品体积大,运输费用高,运送困难 产品季节性强,生产周期短 仅为一个批量生产,以后不再生产的产品以及有其他特殊情况的产品。   其次,在检测方法方面,专家指出,根据工厂实验室的设备资源、人力资源等综合情况,并结合产品特点,利用工厂检测资源进行样品检测可以分为工厂目击检测(简称WMT)和利用工厂设备检测(简称TMP)两种方式。   目击检测是由认证机构评定具备资格的工厂检测设备进行检测,针对检测计划,认证机构会派指定实验室工程师对部分检测项目及检测条件进行目击,检测人员负责出具原始记录,并与目击工程师一起按规定的格式起草检测报告,由相关实验室审核批准出具检测报告。   利用工厂设备检测则是由认证机构派出的指定检测机构的工程师利用工厂的检测设备进行检测,工厂派检测人员予以协助,检测报告由指定实验室出具。   再次,国家对可以承担检测任务的工厂实验室也提出了相应要求,只有经认证机构和检测机构审核评定符合下列条件的工厂实验室,方可利用工厂检测资源进行样品检测:   第一种检测方式(WMT)中:实验室要满足ISO/IEC17025标准要求,认可范围包括WMT检测标准和项目。承检人员应熟悉产品结构、检测标准,具备有一定的检测经验。原则上应有两年以上的相同产品标准的检测经历。   第二种检测方式(TMP)中:实验室必须满足ISO/IEC17025标准第5章技术能力要求。   一些具备相关条件的工厂实验室可以申请获得强制性产品认证检测资格。专家介绍,打算申请的实验室应先按以上条件进行自查,将自查结果及相关资料随申请提交认证机构审查。认证机构和相应的检测机构应组织技术专家进行现场核查,对评定合格的,方可利用工厂实验室资源进行检测。
  • 实验室仪器的校准目的、校准周期如何确定?
    1、设备定期校准的主要目的 实验室对设备进行定期校准的主要目的有:1)建立、保持和证明设备的计量溯源性;2)改善设备测量值与参考值之间的偏差及不确定度;3)提高设备不确定度的可信性;4)确定设备性能是否发生变化,该变化可能引起实验室对之前所出具结果的准确性产生怀疑。 2、设备初始校准周期如何确定 设备初始校准周期的确定应由具备相关测量经验、设备校准经验或了解其它实验室设备校准周期的一个或多个人完成。确定设备初始校准周期时,实验室可参考计量检定规程/校准规范、所采用的方法和仪器制造商建议等信息。此外,实验室可综合考虑以下因素:1)预期使用的程度和频次;2)环境条件的影响;3)测量所需的不确定度;4)最大允许误差;5)设备调整(或变化);6)被测量的影响(如高温对热电偶的影响);7)相同或类似设备汇总或已发布的测量数据。 3、设备校准周期的调整 ISO/IEC 17025:2017 中 6.4.7 规定:【实验室应制定校准方案,并进行复审和必要的调整,以保持对校准状态的信心】实验室制定校准方案后,应在后续使用中结合设备的使用情况和性能表现作出必要的调整。设备的校准周期以及后续校准周期的调整一般应由实验室(或设备使用者)确定,并以文件化的形式规定。如果设备的校准证书中给出了校准周期的建议,实验室可根据自身情况决定是否采用。 4、设备后续校准周期调整需考虑的因素 设备后续校准周期的调整,一般应考虑以下因素:1)实验室需要或声明的测量不确定度;2)设备超出最大允许误差限值使用的风险;3)实验室使用不满足要求设备所采取纠正措施的代价;4)设备的类型;5)磨损和漂移的趋势;6)制造商的建议;7)使用的程度和频次;8)使用的环境条件(气候条件、振动、电离辐射等);9)历次校准结果的趋势;10)维护和维修的历史记录;11)与其它参考标准或设备相互核查的频率;12)期间核查的频率、质量及结果;13)设备的运输安排及风险;14)相关测量项目的质量控制情况及有效性;15)操作人员的培训程度。
  • Nature Protocols:荧光显微镜确定单个细胞周期进程
    2015年2月3日讯 /生物谷BIOON/ --近日,著名国际期刊Nature Protocols在线刊登了来自美国NIH Tom Misteli研究小组的一项最新研究成果,他们提出了一个利用荧光显微镜确定单个细胞周期的实验方法。应用这种实验方法或可实现对群体中不同个体细胞周期的监测观察。   细胞周期进展是细胞最基本特征之一,传统上对细胞周期的研究主要依赖于群体分析,并通过周期相关特异性标记或者使用基因修饰系统的方法来确定,这使得对稳定的单细胞周期的确定变得非常困难。因此,研究人员提出一个应用高分辨率成像的荧光显微镜测量DNA含量来确定单个细胞周期的实验方案,这种方法是基于对DNA的染色,通过图像分析精确定量完整细胞核的荧光强度,并且能够与其他组化方法联合使用。Tom Misteli研究小组开发的双通道自动图像分析算法,结合商业软件或者开源软件能够导出对不同个体细胞周期的描述。这个实验方案适用于贴附细胞并且可使用几种不同的DNA染料。   综上所述,该文章提出了利用DNA染色结合荧光显微镜检测的实验方法来判断单个细胞的周期进程,或对精确研究群体中单个细胞的周期具有重要意义。
  • 河北出台方案有序推动城乡建设领域碳达峰
    记者从河北省住房和城乡建设厅获悉:近日,《河北省城乡建设领域碳达峰实施方案》(以下简称《方案》)制定出台,健全政策体系和市场机制,强化技术标准支撑,全面提升城乡建设绿色发展质量,稳妥有序推进城乡建设领域碳达峰。《方案》提出优化城市布局结构,开展绿色低碳社区、住宅建设,提高建筑绿色低碳水平,提高基础设施运行效率,优化建筑用能结构等任务。其中包括,推动社区管理机制建设,到2030年设区城市完整居住社区覆盖率达到60%以上。大力发展绿色低碳建筑,到2025年,全省城镇竣工绿色建筑占比100%,星级绿色建筑占比达到50%以上。实施建筑能效提升工程,2030年前新建居住建筑本体达到83%节能要求,新建公共建筑本体达到78%节能要求。推进生活垃圾和生活污水资源化利用,2030年前城市生活垃圾资源化利用比例达到65%以上,到2025年全省市县平均再生水利用率达到60%以上。《方案》提出完善农房建设标准导则,引导《农村居住建筑节能设计标准》《河北省绿色农房建设与节能改造技术指南》等标准图集的推广应用,提高农房能效水平。鼓励就地取材和利用乡土材料,推广使用绿色建材。持续推进装配式农村住房建设试点工作。推进太阳能、空气源热能、浅层地热能、生物质能等可再生能源在冬季取暖、供电、供气等方面的应用。
  • ​ 加州大学Science,先进成像技术揭秘维格纳分子晶体的新视角
    【科学背景】随着纳米技术和量子材料科学的进展,二维(2D)过渡金属二硫属化合物(TMDC)莫尔超晶格引起了越来越多的关注。这种材料提供了一个强大的平台,用于模拟每个莫尔晶胞包含一个或几个人工原子的强关联量子固体。这种模拟不仅帮助科学家们理解了量子相变和电子关联效应,还揭示了许多新奇的量子现象和材料特性,例如莫特绝缘体、广义维格纳晶体和量子反常霍尔绝缘体。然而,在研究TMDC莫尔超晶格的过程中,科学家们面临着一些挑战。传统上,大多数研究集中在模拟费米-哈伯德模型,这种模型通过单一的在位排斥能U描述原子内相互作用,忽略了原子内部的自由度。这种简化虽然有助于理解基本的量子相互作用,但无法全面描述多电子系统中复杂的电荷分布和相互作用。最近的理论研究预测,在莫尔超晶格中的多电子人工原子中,由于单粒子能级间隔Δ和原子内部库仑排斥能U之间的竞争,可以产生显示出不寻常电荷密度分布的量子态。然而,这些理论预测缺乏实验验证,尤其是在直接成像和观察这些维格纳分子的长程有序排列方面。为了解决这些问题,科学家们进行了多方面的探索。最近,加州大学伯克利分校王枫、Hongyuan Li、Michael F. Crommie及麻省理工Liang Fu等人在“Science”期刊上发表了题为“Wigner molecular crystals from multielectron moiré artificial atoms”的最新论文。他们开发了一种先进的扫描隧道显微镜(STM)成像方案,以实验证明在扭曲的二硫化钨(tWS2)莫尔超晶格中多电子人工原子中维格纳分子晶体的存在。他们的研究不仅验证了理论预测,还展示了这些维格纳分子晶体如何通过机械应变、莫尔周期和载流子类型进行调节。这些发现为理解多电子系统中的复杂相互作用提供了新的视角,也为设计和控制新型量子材料提供了有力的工具。【科学亮点】(1)实验首次在扭曲双层二硫化钨(tWS2)莫尔超晶格中观察到了多电子人工原子中的维格纳分子晶体。通过扫描隧道显微镜(STM)成像,作者实验证明了在这些多电子人工原子中,维格纳分子晶体的形成。这些晶体结构代表了一种电子的晶体相,展示了电子在不同位置的强局部化现象,以最小化库仑能量。(2)实验通过以下几个方面得到了重要结果:&bull 使用扫描隧道显微镜(STM)观察到了多电子人工原子中维格纳分子的出现。当库仑相互作用占主导地位时,这些维格纳分子在多电子人工原子中形成。&bull 实验结果展示了维格纳分子晶体的高度可调性。通过调整机械应变、莫尔周期和载流子类型,可以调节这些维格纳分子的排列和特性。&bull 理论模拟进一步解释了电子-电子相互作用和莫尔势在导致维格纳分子晶体形成中的作用。这些模拟结果明确了单粒子能级间隔Δ和原子内部库仑排斥能U之间的竞争对电子态的影响,并展示了在不同维格纳参数RW下电子配置的变化。&bull 研究表明,在小RW值时,多电子莫尔原子的基态可以通过简单地填充非相互作用轨道来近似,形成中心峰值的电荷分布。然而,在足够大的RW值时,电子会强烈局部化,形成维格纳分子,展示了相互作用主导的电子结构和轨道重构。【科学图文】图1: 莫尔超晶格中的多电子人造原子。图2:Wigner分子的CBE和VBE隧道电流测量。图3: Wigner分子晶体结构工程。图4:Wigner分子晶体的数值模拟。【科学启迪】本研究揭示了在二维过渡金属二硫属化合物(TMDC)莫尔超晶格中,多电子人工原子可以形成维格纳分子晶体这一独特的电子晶体相。这种相对传统量子固体的革新在于其来源于人工设计的原子结构,而非自然存在的原子。通过扫描隧道显微镜(STM)的隧道电流测量方案,研究团队首次直接观察到了这一电子晶体相的形成过程,为理解和利用强关联电子系统提供了新的实验平台。此外,研究还展示了通过调节电荷载流子类型、莫尔周期和机械应变,可以有效地控制和调节维格纳分子晶体的性质。这种可控性不仅为量子材料的设计和制备提供了新的策略,还为探索在维格纳分子晶体内部产生的自旋、电荷和拓扑现象打开了全新的研究方向。因此,本文不仅在实验上验证了理论预测,还为开发新型量子材料及其应用奠定了坚实的基础,同时推动了强关联量子系统研究的前沿进展。文献详情:HONGYUAN LI. et al. Wigner molecular crystals from multielectron moiré artificial atoms. Science, 2024, 385(6704): 86-91;https://www.science.org/doi/10.1126/science.adk1348
  • 飞秒激光在ITO薄膜表面诱导周期性透明纳米导线
    使用线偏激光照射金属、半导体、透明介质等材料产生表面周期结构(laser induced periodic surface structures,LIPSS)是一种普遍的现象,LIPSS的周期取决于激光条件和材料的性质,在接近入射激光波长到小于波长的十分之一范围变化。这些周期性纳米结构可用于有效地改变材料的性质,并在表面着色、光电特性调控、双折射和表面润湿性等方面有许多应用。氧化铟锡(indium tin oxide,ITO)具有较宽的带隙,对可见光与近红外波段有很高的透射率,ITO薄膜具有较低的电阻率,是液晶面板、新型太阳能电池等元件的重要组成部分。一直以来,发展制备ITO薄膜的新方法,调控ITO薄膜的光电特性是非常重要的研究课题,而在激光加工领域,使用激光在ITO薄膜诱导LIPSS是一个有效且简便的方法。华东师范大学精密光谱科学与技术国家重点实验室贾天卿教授课题组探究了一种通过飞秒激光直写在ITO薄膜表面加工LIPSS的方法,并详细分析了不同激光参数下加工的ITO薄膜在可见到红外光波段的透射率与其各向异性电导率的变化规律。合适的激光参数可以在ITO薄膜上有效地加工大面积低空间频率的LIPSS,这些LIPSS能够表现出独立纳米导线的特性,并且在电学特性上具有良好的一致性。结果表明,飞秒激光直写过程中并不会改变材料的性质,而且与原始的ITO薄膜相比,具有规则LIPSS的ITO薄膜在红外波段的平均透射率提高了197%。这对于将ITO薄膜表面加工规则的LIPSS作为透明电极应用于近红外波段的光电器件具有重要的意义。如图1,原始ITO薄膜的面电阻各向同性。随着激光能流密度的增加,垂直和水平于LIPSS方向的面电阻迅速增加且变化梯度不同,出现了明显的各向异性导电性,当ITO薄膜表面出现规则且独立的LIPSS结构以后,在一定能流密度范围,ITO薄膜能够在不同方向上显现出单向导电/绝缘的电学特性。图1 扫描速度为3 mm/s时,不同能流密度激光辐照后ITO薄膜的面电阻。图中给出了电学测量中横向(Transverse)与纵向(Longitudinal)的定义通过调节激光的能流密度,可以在一个较大的范围内制备出不同形貌的纳米导线(LIPSS)。图2(a)展示了不同能流密度的飞秒激光加工的纳米导线扫描电镜图像。在能流密度上升的过程中,纳米导线的宽度从537 nm降低到271 nm。纳米导线的高度从平均220 nm降低到142 nm,如图2(b)所示。纳米导线的单位电阻随着能流密度的上升从15 kΩ/mm上升到73 kΩ/mm,这是由于纳米导线的宽度与高度都在同步下降造成的,如图2(c)。图 2 (a)不同能流密度下的纳米导线的扫描电镜图像;(b)纳米导线的高度与宽度随着能流密度的变化情况;(c)纳米导线的单位电阻与电阻率随着能流密度的变化情况如图3,原始厚度为185 nm的ITO薄膜在1200~2000 nm的近红外光谱范围内的平均透射率为21.31%。经过飞秒激光直写后,当能流密度在0.510~ 0.637 J/cm2的范围内,ITO薄膜对于近红外的透过率达到54.48%~63.38%,相较原始的ITO薄膜得到了156%~197%的提高。同时,飞秒激光直写后的ITO薄膜在可见光波段的透过率略微提高且曲线较为平滑。通过调节激光的能流密度,ITO薄膜在近红外的透过率能够得到显著提高,并且能够保持较好的导电性。图 3 扫描速度为3 mm/s时,不同能流密度激光直写后的ITO薄膜的透射率。在0.637 J/cm2时红外波段(1200~2000 nm)透过率为63.38%该工作近期以“Periodic transparent nanowires in ITO film fabricated via femtosecond laser direct writing”为题发表在Opto-Electronic Science (光电科学)。
  • 117号元素将被列入元素周期表
    据俄罗斯媒体6月25日报道,俄罗斯科研小组日前再次成功合成117号元素,从而为117号元素正式加入元素周期表扫清了障碍。   总部位于俄罗斯首都莫斯科郊外的杜布纳联合核研究所于2010年首次成功合成了117号元素。然而国际理论与应用化学联合会(IUPAC)要求杜布纳联合核研究所再次合成该元素,之后他们才能正式批准将它加入元素周期表。   杜布纳联合核研究所的一名高级负责人说,研究小组已经成功完成了验证工作,并向IUPAC正式提交117号元素的登记申请 如果顺利,117号元素将会在一年内被命名,并归入元素周期表。   据悉,杜布纳联合核研究所使用粒子回旋加速器,用由20个质子和28个中子组成的钙48原子,轰击含有97个质子和152个中子的锫249原子,生成了6个拥有117个质子的新原子,其中的5个原子有176个中子,另一个原子有177个中子。   1869年问世的门捷列夫元素周期表是宇宙的基本规律之一,也为人类认识自然提供了一把刻度精准的尺子。其中,第92号元素铀之后的元素在自然界中并不存在,都必须通过人工合成方式获得。杜布纳联合核研究所此前还成功合成了第113号、115号、118号元素。此外,德国的亥姆霍兹国家研究中心联合会正在致力于第119号和第120号元素的合成工作。
  • “双喜”临门!三德科技通过“国家知识产权示范企业”复核,翻开第三个知识产权认证周期新篇章
    近日,三德科技再次收到了通过“国家知识产权示范企业”复核的通知。此前,公司于2013年获评湖南省第一批知识产权贯标企业,2015年获评全国第二批知识产权管理体系贯标认证企业、 “国家知识产权示范企业”,2018年通过“国家知识产权示范企业”复核,今年再获此殊荣,不仅意味着三德科技已一跃成为行业内目前唯一的“国家知识产权示范企业”,同时更反映了国家及政府对三德科技知识产权工作的突出表现给予了积极的肯定,将激励公司持续不断创新,继续创造良好的经济和社会效益。复核通过的邮件截图三德科技一期园区实拍三德科技二期制造基地效果图三德科技自成立以来始终坚持科技创新,注重知识产权的建设和耕耘,不仅身体力行、以身作则,同时还将这一理念延伸至其子公司。今年4月,三德科技及其子公司湖南三德盈泰环保科技有限公司(以下简称“三德环保”)已双双获得中知(北京)认证有限公司正式颁发的知识产权管理体系认证证书,这既是三德环保初次通过知识产权管理体系认证,亦是三德科技第三次通过认证,同时也标志着三德科技第三轮认证周期的成功开启。2022年第三次通过“国家知识产权示范企业”评审,并获得第三张知识产权管理体系认证证书,真可谓“双喜”临门!未来,三德科技及三德环保将通过管理体系的持续改进和完善,有效推动自主技术创新,加强知识产权科学管理和运用,为公司的长远发展保驾护航。
  • “问天”科学实验柜在轨测试有序开展
    作者:高雅丽 来源:中国科学报8月29日,记者从中国科学院获悉,目前空间应用系统问天实验舱任务各有效载荷状态良好、工作稳定,科学实验柜初始状态设置、基本功能测试正常,在轨测试有序开展。中科院空间应用工程与技术中心研究员、载人航天工程空间应用系统问天实验舱主任设计师赵黎平表示,空间应用系统问天实验舱任务以生命科学和生物技术研究为主,生命生态实验柜、生物技术实验柜、变重力科学实验柜、科学手套箱与低温存储柜及在轨支持设备已完成基本功能测试,测试结果正常、符合预期,生命生态实验柜正在开展在轨实验工作。7月28日,航天员完成了生命生态实验柜通用生物培养模块解锁、状态设置、辐射测量模块和植物培养单元安装;8月8日和8月12日,航天员完成了变重力科学实验柜、科学手套箱、低温存储装置、生物技术实验柜的解锁和组装。组装完成后,变重力科学实验柜、科学手套箱、低温存储装置开展了既定的在轨测试内容,通过下行遥测数据和工程数据判断,相关科学实验柜及科学实验系统工作正常,载荷状态良好。赵黎平说:“随舱发射科学实验项目在轨实验按计划开展,7月28日,航天员完成了生命生态实验柜科学实验单元(含实验样品)在通用生物培养实验模块中的安装,随后开展拟南芥和水稻种子的注水,开始在轨实验,温度、湿度、光照控制正常。”通过下行的图像数据分析判断,水稻和拟南芥种子萌发后生长状态正常,后续按计划开展培养和在轨实验。此外,问天实验舱发射后,空间环境保障分系统24小时监测空间环境的变化情况,共发布空间环境预报产品549份。根据目前空间环境监测数据分析,近期太阳活动水平极低到低,地磁活动以平静至微扰为主,有利于空间站各项在轨工作的开展。据介绍,空间应用系统将在8月~10月期间,陆续开展生命生态实验柜在轨实验,生物技术实验柜、生命生态实验柜定期模块巡检,以及变重力科学实验柜、科学手套箱与低温存储柜在轨测试。神舟十五号任务期间,还将进行能量粒子探测器、等离子原位成像探测器舱内组装、自测试、舱外安装、在轨测试、在轨工作等。预计神舟十五号返回前,完成各科学实验柜在轨测试工作,后续将持续开展在轨实验。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制