当前位置: 仪器信息网 > 行业主题 > >

种子活力

仪器信息网种子活力专题为您整合种子活力相关的最新文章,在种子活力专题,您不仅可以免费浏览种子活力的资讯, 同时您还可以浏览种子活力的相关资料、解决方案,参与社区种子活力话题讨论。

种子活力相关的仪器

  • 可控中子活化在线物料分析仪,采用电可控中子管,根据快中子非弹性散射、热中子俘获原理,对产生gamma射线进行分析,从而对物料进行全元素测量,具有全元素、全流量、实时在线等特点。在火力发电、煤炭及煤化工行业中的应用:测量煤炭中C、H、O、N、S、Si、Al、Fe、Ca、Ti、Na、K等12种元素,计量热值、水分、灰分及灰成分、挥发份、固定碳、S等分析值,对煤炭质量检测监控、燃烧优化、节能减排具有重要的指导意义。在矿山行业中的应用:通过对矿石中元素的测量,实时在线检测监控矿石质量,广泛应用于铜矿、镍矿等矿山中。在水泥行业中的应用:通过对物料中S、Si、Al、Fe、Ca、Ti、Na、K、Mn、Cl、H等元素的测量,计量金属氧化物、LSF、C2S、C2S、C3A、硅率、铁率、水分等,对减少原料波动性、提高熟料质量、保证生料质量、降低煤耗具有重要的指导意义。
    留言咨询
  • 高通量种子呼吸和活力测量系统采用非接触氧气测量技术,可对密封于微孔板每个孔中的种子的耗氧率进行测定,进而评估种子的活力。系统由内置荧光光纤氧气传感器的96孔板、氧气测量主机及数据采集分析软件组成,可高通量检测评估种子活力。 功能特点l 氧气测量高精度、高可靠性、低功耗、低交叉敏感性、快速响应时间l 轻松校准l 非侵入性和非破坏性测量l 紧凑设计,适用于培养箱和摇床l 其他应用领域包括:高效筛选、过程工程、小规模细胞培养和呼吸速率测量、酶活性测定、环境分析等 技术参数1. REDFLASH氧气测量技术:基于独特的氧气敏感REDFLASH传感器材料,用红光激发能够在近红外(NIR)波段产生氧气依赖的荧光。2. 技术优势:红光激发显著减少了由自发荧光样品引起的干扰;NIR检测技术显著减少了环境光的干扰。3. 适用场景:原位检测,可在培养箱里或摇床上使用,便于温度控制。4. 可选氧气传感器类型:薄膜贴(标配)或者纳米颗粒。5. 薄膜贴直径约为1-1.5毫米,固定在孔底中心,无光学隔离。6. 氧气测量范围:0-50%O2(气体)或0-44mg/L(液体)。7. 氧气分辨率:0.1% O2@ 20% O2(气体)或0.05 mg/L@ 8.8 mg/L(液体)。8. 氧气测量精度:±0.6% O2@ 20% O2(气体)或±0.3 mg/L@8.8 mg/L(液体)。9. 氧气测量漂移:0.5% O2每月(气体)或0.20 mg/L 每月(液体)。10. 响应时间:<30s。11. 最小使用寿命:100万次。12. 配套采集软件:新一代用户友好的多功能采集软件,可在同一个窗口管理多达3台设备。13. 配套分析软件:提供耗氧率计算和漂移补偿等数据处理和分析功能。14. 微孔板:圆底(270 μL)或平底(350 μL)96孔的透明聚苯乙烯孔板,支持预消毒(EtO环氧乙烷)处理。 安装案例
    留言咨询
  • 种子活力监测系统 400-860-5168转4662
    本系统由VisiSens TD和Viviplate组成。Viviplate包括各种规格的孔板,底部完全由氧传感器箔 SF-RPSu4 组成;VisiSens TD基本系统允许用户在一张图像中记录所有孔。孔板的黑色壁可减少环境光、散射光和反射的干扰。样品将直接在传感器箔上生长,就像样品在其他生长表面上一样。样品和传感器之间的最小距离可以研究细胞的微环境。使用成像技术可视化孔内的梯度和热点,并跟踪它们随时间的变化。提供了同时比较和监测大量样品中氧气分布的解决方案。系统特点氧气分布的 2D 可视化样品微环境信息孔板所有孔都可以记录在一张图像中多个样品的比较和监测用于种子、细胞和微生物等培养操作软件本系统操作基于VisiSens ScientifiCal 程序,通过置入VisiSens PlateTrack 插件实现样品多样化分析。技术参数Viviplate多孔板测量范围:O2:0 – 100%饱和空气(0 – 20.9% O2);响应时间:溶解氧:30 s.测量温度范围:+ 5℃ 至 + 45℃兼容性:水溶液,乙醇(最大 10 % v/v),甲醇(最大 10 % v/v),pH 2 – 10每孔最大填充量:3mL每孔生长面积:约1.9cm2多孔板适配器尺寸:14 cm x 10 cm x 12 cm材质:PLA重量:130 g
    留言咨询
  • 农用X光机(种子X光机)能够对各种农作物和林木种子进行透射检测,看到内部虫害中心空洞、胚芽的发育情况、大小、形状、数量等,为农林业提供先进的种子质量评估解决方案。1、高速X成像实时采集图片,12寸大屏实时动态图像显示。2、安全、轻便、分辨率高,不需要暗室即可看到清晰图像。3、智能考种系统可以测量各种表面光滑的籽粒的数量、千/百粒重与平均粒型(包括长、宽、长宽比、周长、面积),利用图像ORC 识别技术、图像定位、空间转换等技术实现快速识别种子数量及作物性状指标。4、X图像随时打印:连接打印机可随时对X光图像进行调用、打印、分析,节省洗片等费用。5、远程操作,保证安全:设备配有脚踏开关,操作者在数据采集区域即可远程操作X光机摄像区域。6、铅房严密设计,防护性能强:铅房设计确保X射线在零距离条件下外漏剂量符合国家标准,保证操作者安全。摄像相素:>150万有效视野 3.5英寸A/D转换:16Bits空间分辨率:4.0LP/mm焦点位置与基准轴偏差 ±1㎜管电流误差 ±20%灰度等级 ≥7级对比度 4%亮度 ≥25cd/m2X射线漏率 ≤1.0mGy/h管电压:40~75KV连续可调管电流:0.25-1.0 mA连续可调X摄像防护:铅柜可容厚度:300 mm数字成像视野:350*430 mm(不同面积可定制)外形尺寸:700*500*300 mm重量:110KG检测装置主机 1台防辐射柜 1 个12寸显示器 1台考种系统1套数据线 1根电源线 1根脚踏开关 1个
    留言咨询
  • 产品介绍Videometer Lab 4是一款新型、功能强大且性价比高的多光谱表型成像测量系统,通过控制系统就可以进行高分辨率多光谱成像。多光谱成像模块包括可见光成像,UV紫外成像以及NIR成像。可固定摄像头或移动摄像头。因拍照速度迅速,可实现较高通量成像。Videometer Lab4通过测量样品在19种不同波长的LED频闪光下的成像来获取有用的信息。这些图像可以独立分析使用,也可以叠加起来合成高分辨率的彩色图像。Videometer备选模块包括叶绿素荧光成像模块,能够实现叶绿素荧光成像(叶绿素a和叶绿素b)。Videometer Lab4同时也可以测量较小的样品,比如拟南芥等小植株、用多孔板培养的植物、多孔板里的叶圆片、植物的种子、药片、肉类、调料等,分析软件功能强大。该系统也可以对细菌等进行高通量成像测量,进行毒理学或其它研究。对于拟南芥等冠层平展的植物,可以进行自动的叶片计数等。Videometer Lab4用于种子表型研究,直接测量种子参数如尺寸、颜色、形状等,通过算法分析还可得到得到如下参数:种子纯度、发芽百分比、发芽率、种子活力、种子健康度、种子病害情况、种子成熟度等。该系统也可以对细菌、小型动物、虫卵等进行高通量成像测量,进行毒理学或其它研究。Videometer系统目前正在开发提供API(Application Programming Interface,应用程序编程接口)接口。对于高级用户而言,通过API接口可以允许用户做自己独有的特定分析。考虑到VideometerLab 4 portable可能需要经常带到温室、野外或其它地方进行测量,因此它被设计成可快速打包的样式。Videometer Lab 4 的工作软件由Videometer公司强大的生物信息学和软件团队开发,充分考虑在实际应用的需求,操作简单,功能强大。Videometer还在不断研究新算法,适合各种需求。Videometer Lab 4 种子表型成像多光谱测量系统通过测量种子在19种不同波长的LED频闪光下的成像来获取有用的信息。这些图像可以独立分析使用,也可以叠加起来合成高分辨率的颜色图像。基础模块包括可见光成像、UV紫外成像以及NIR成像。可固定摄像头或移动摄像头,可实现较高通量成像。VideometerLab 4 portable工作模块包括:基础整合模块,含19个波段多光谱成像系统。内置在软件中,是软件的基本组成部分。可进行颜色校准,标签识别,灰度图转换等。选配模块,功能强大,针对应用的每个算法是一个模块,客户可以根据需求选配,参数包括生物量测量、形态大小测量,种子萌发测量等等。主要功能多光谱成像系统、结合可见光成像和光谱成像优点对种子的表型成像便携设计,方便带到温室或野外使用标准光照环境,数据可重复经验丰富的专家根据应用经验设计的软件,操作简单,解决农业应用中遇到的问题内置颜色校正和读取电子标签的程序可选一系列的功能程序模块,并不断升级中应用领域表型性状分析/挖掘,基因型-表型关联农业育种园艺学、农业信息学果实品质分析植物病理研究生物量分析种子萌发研究抗逆研究成像特点快速、无损检测包括处理在内每样品处理仅需10-20秒与其它破坏性技术组合高灵活性测量主要专注:可重复洗、可追溯性、耐用性、可传递性直接测量的参数尺寸形状颜色形态纹理光谱质构与表面化学相关的光谱成分计数间接测量或计算种子纯度发芽百分比发芽率种子活力种子健康度种子成熟度种子寿命等主要特点集成球体提供均匀和弥散光线照明5-10秒钟内实现光谱成像和定量分析19-20不同波长/光源多光谱荧光备选颗粒产品自动进料备选6或9.1百万像素/波长提供1.2-3.6亿像素/帧分辨率标准设备包括易于使用设备校准与传统RGB技术相比具有卓越的彩色测量功能根据应用需求可自动切换动态范围光源寿命长、可达10万小时独特LED光源技术稳定性增强前光灯和背光灯组合、备选背光灯相对样品自动移动照明研究用强大探索软件易用常规应用配方构建工具(建模)技术参数全套分析时间5-10秒/样品电源:100 -240 V AC, 50/60 Hz电源功耗300 VA环境温度操作: 5 - 40℃,储存;-5 - 50℃环境湿度20-90 % RH相对湿度,非冷凝PC 要求 最低配置: Intel i7 或更佳, 16GB RAM, USB2 端口, USB3超速端口软件要求Microsoft Windows 7/8.1/10 Professional,l64 bit, 全新windows 版本硬件备选暗场/明场背光 滤波轮 (用于荧光) 自动进样 (颗粒产品)软件备选图像处理工具包 (IPT) 光谱成像工具盒 (MSI) 斑点工具盒可备选种子自动进样模块Videometer Lab4可选配基于盛料盘的进料系统,用于测量前后自动分发和移动样品。Autofeeder配件与Videometer Lab4共同为颗粒样品提供了高通量多光谱分析检测。对于特定谷物或颗粒,样品大小可达100g(基于密度和分辨 率),成为一款测量成品以及生产控制用的独特模块。自动进料器使用振动器将颗粒从漏斗均匀分布到传送带上,传送带将颗粒传送到Videometer Lab 4下,然后进入一 个收集箱。在采集、分割和分析样本图像后,在测量结束时自动创建摘要报告。根据需求,系统还可以定制分拣机器(如图所示),根据分析结果来筛选颗粒。筛选系统设计用于高价值颗粒的物理分拣,例如去除缺陷颗粒(破碎、未发芽、受感染)。工作模式自动进样模块的振动装置将颗粒均匀地分布在皮带上,形成单层。分割程序提取颗粒,分离接触颗粒,并为样本中的所有颗粒创建blob图像。预测模型根据颜色、形状和纹理特征对颗粒进行分类。测量过程中显示颗粒图像和分析结果。测量结束时自动创建总结报告。如配置分拣机器可直接实现样品颗粒分类放置。产品功能通过成像,可获取样品的图像,包括单波段的灰度图像和对应的反射率值及sRGB图像,用于不同的性状分析:可用于种子表型研究,直接测量种子参数如尺寸、颜色、形状等,通过算法分析还可得到得到如下参数:种子纯度、发芽百分比、发芽率、种子活力、种子健康度、种子病害情况、种子成熟度等。可用于种子品种鉴别,例如不同品种的水稻、玉米、小麦等。可用于花朵测量,可分析花径、花瓣面积、花色分级、花朵病斑、花图像提取等。可用于果实测量,可分析果实纵径、果实横径、果实颜色分级、果实数量、果实病斑、果实裂缝、果实图像提取等。可用于植物资源品种鉴别和种质资源研究(形态学结合多光谱信息)、植物疾病(如小孢链格孢属鉴别)研究、植物生理生态发育以及胁迫研究(如对植物进行进行激素处理后,植物形态学的一些变化)、植物繁育栽培研究、果品和蔬菜品种、品质检测(如草莓、浆果品质特征和成熟阶段研究)。可用于中药、民族药和茶叶等的形态、分类、品质、种植和地道性研究;可用于茶叶分类、鉴别、品质检测与评估等。可用于食品掺假鉴定,比如食品原料的选择。可用于昆虫如蚕蛹雌雄鉴别、动物寄生虫检测、进行昆虫的游动测试,自动获取图像。进样器技术参数样品容量标准为1.5升(可定制更大的样品尺寸)传送带宽度76mm 处理速度每分钟1200cm2传送带面积。样品处理量示例:宠物食品吊桶:18分钟内1公斤。玉米粒:6分钟300克。小麦和大麦:10分钟100克。适用于不同尺寸和类型颗粒产品,软件自动进料器选项由Videometer Lab Blob Analyzer工具控制,可通过定制的软件插件与外部进样接口案例应用由叶绿素/成熟度区分种子由叶绿素/成熟度区分种子种子发芽:胚芽长度谷物种子健康度分析种子纯度分析北京博普特科技有限公司是Videometer中国区总代理,全面负责其产品在中国的推广、销售和售后服务。
    留言咨询
  • 产品介绍Videometer Lab 4是一款新型、功能强大且性价比较高的多光谱表型成像测量系统,通过控制系统就可以进行高分辨率多光谱成像。多光谱成像模块包括可见光成像,UV紫外成像以及NIR成像。可固定摄像头或移动摄像头。因拍照速度迅速,可实现较高通量成像。Videometer Lab4通过测量样品在19种不同波长的LED频闪光下的成像来获取有用的信息。这些图像可以独立分析使用,也可以叠加起来合成高分辨率的彩色图像。Videometer备选模块包括叶绿素荧光成像模块,能够实现叶绿素荧光成像(叶绿素a和叶绿素b)。Videometer Lab4同时也可以测量较小的样品,比如拟南芥等小植株、用多孔板培养的植物、多孔板里的叶圆片、植物的种子、药片、肉类、调料等,分析软件功能强大。该系统也可以对细菌等进行高通量成像测量,进行毒理学或其它研究。对于拟南芥等冠层平展的植物,可以进行自动的叶片计数等。Videometer Lab4用于种子表型研究,直接测量种子参数如尺寸、颜色、形状等,通过算法分析还可得到得到如下参数:种子纯度、发芽百分比、发芽率、种子活力、种子健康度、种子病害情况、种子成熟度等。备选种子自动进样模块Videometer Lab4可选配基于盛料盘的进料系统,用于测量前后自动分发和移动样品。Autofeeder配件与Videometer Lab4共同为颗粒样品提供了高通量多光谱分析检测。对于特定谷物或颗粒,样品大小可达100g(基于密度和分辨 率),成为一款测量成品以及生产控制用的少有模块。自动进料器使用振动器将颗粒从漏斗均匀分布到传送带上,传送带将颗粒传送到Videometer Lab 4下,然后进入一 个收集箱。在采集、分割和分析样本图像后,在测量结束时自动创建摘要报告。根据需求,系统还可以定制分拣机器(如图所示),根据分析结果来筛选颗粒。筛选系统设计用于高价值颗粒的物理分拣,例如去除缺陷颗粒(破碎、未发芽、受感染)。工作模式自动进样模块的振动装置将颗粒均匀地分布在皮带上,形成单层。分割程序提取颗粒,分离接触颗粒,并为样本中的所有颗粒创建blob图像。预测模型根据颜色、形状和纹理特征对颗粒进行分类。测量过程中显示颗粒图像和分析结果。测量结束时自动创建总结报告。如配置分拣机器可直接实现样品颗粒分类放置。产品功能通过成像,可获取样品的图像,包括单波段的灰度图像和对应的反射率值及sRGB图像,用于不同的性状分析:可用于种子表型研究,直接测量种子参数如尺寸、颜色、形状等,通过算法分析还可得到得到如下参数:种子纯度、发芽百分比、发芽率、种子活力、种子健康度、种子病害情况、种子成熟度等。可用于种子品种鉴别,例如不同品种的水稻、玉米、小麦等。可用于花朵测量,可分析花径、花瓣面积、花色分级、花朵病斑、花图像提取等。可用于果实测量,可分析果实纵径、果实横径、果实颜色分级、果实数量、果实病斑、果实裂缝、果实图像提取等。可用于植物资源品种鉴别和种质资源研究(形态学结合多光谱信息)、植物疾病(如小孢链格孢属鉴别)研究、植物生理生态发育以及胁迫研究(如对植物进行进行激素处理后,植物形态学的一些变化)、植物繁育栽培研究、果品和蔬菜品种、品质检测(如草莓、浆果品质特征和成熟阶段研究)。可用于中药、民族药和茶叶等的形态、分类、品质、种植和地道性研究;可用于茶叶分类、鉴别、品质检测与评估等。可用于食品掺假鉴定,比如食品原料的选择。可用于昆虫如蚕蛹雌雄鉴别、动物寄生虫检测、进行昆虫的游动测试,自动获取图像。进样器技术参数样品容量标准为1.5升(可定制较大的样品尺寸)传送带宽度76mm 处理速度每分钟1200cm2传送带面积。样品处理量示例:宠物食品吊桶:18分钟内1公斤。玉米粒:6分钟300克。小麦和大麦:10分钟100克。适用于不同尺寸和类型颗粒产品,软件自动进料器选项由Videometer Lab Blob Analyzer工具控制,可通过定制的软件插件与外部进样接口
    留言咨询
  • 种子成熟度分析仪 400-860-5168转4543
    种子成熟度分析仪IXeed CF Analyzer Mobile未成熟的种子不能长期贮存,如何测量种子的成熟度?种子成熟度是种子活力的重要内在指标。成熟度不好的种子其芽率、芽势、拱土能力、成苗率和苗整齐度等综合指标下降,严重影响种子质量,从而影响整个生产,为此,提高种子的成熟度十分必要。随着生产的发展,人们对种子质量要求更高。生产中迫切需要把种子成熟度纳入种子质量标准中,实现种子优质优价,促进种子生产者对种子成熟度的重视。而能否在生产中把好种子成熟度的关,取决于能否对种子成熟度进行简便、快速的测量!早在1998年,Jalink教授就发现叶绿素荧光强度可以做为判断卷心菜种子发芽率的探针。利用该技术测量的叶绿素位于种子的种皮(seed coat)内,与种子的颜色无关。测量的荧光强度与种皮内的叶绿素含量呈正相关。因此,Jalink教授推断利用叶绿素荧光技术来测量种子的叶绿素含量适用于绝大多数种子。在种子成熟过程中,种皮内的叶绿素会逐渐分解。因此,通过叶绿素荧光技术可以测量种子的成熟度,来协助判定最合适的收获期。产品特点:IXeed CF是用来测量种子里面叶绿素含量的仪器,通常种子里面叶绿素含量的多少可以作为种子成熟度的指标。用户可以通过图形触摸屏操作IXeed CF。种子放在可移动的托盘上,将托盘插入到IXeed CF, 捕获叶绿素荧光图像和可见光图像。IXeed CF自动分析CF图像。 对于CF图像中的每个可见种子,执行CF含量的测量。通过分数图显示CF分析的输出结果,同时点击触摸屏上CF图像中的种子们可以放大种子图像及CF的测量。IXeed CF可以通过整合多参数分析协议进行大批量分析。IXeed CF非常便携,可以搬到车上到野外现场测量。 仪器可以通过转换器使用车载12V电源。 CF Mobile保护类别为IP50。功能性技术参数1. 高分辨率 CF 成像 2. 高分辨率可见光成像 3. 触摸屏 4. 可编辑的分数图 5. 整合多参数分析 6. 水分含量测定校准程序7. 数据表格导出8. 不同种类种子分选设置和校准数据 硬件技术参数:1. 电源: 220 VAC50-60 Hz2. 嵌入式电脑:Windows 73. 操作温度:5-40 ℃4. 操作湿度:20-90% RH 不结露5. 通讯连接: 2 x USB, 1 x 以太网6. 开放式托盘(可定制)7. 软件运行环境:Windows7 64位8. 车载供电9. CE标志 应用领域:l 种子成熟度分析l 种子收获期判断l 种子品质鉴定l 种子萌发l 种子科研和生产l 种子抗病性预测 其他可选附件:预制或空白的托盘:需要用户提供研究种子的形状,大小
    留言咨询
  • 种子成熟度分析仪 400-860-5168转2623
    种子成熟度分析仪IXeed CF Analyzer Mobile未成熟的种子不能长期贮存,如何测量种子的成熟度?种子成熟度是种子活力的重要内在指标。成熟度不好的种子其芽率、芽势、拱土能力、成苗率和苗整齐度等综合指标下降,严重影响种子质量,从而影响整个生产,为此,提高种子的成熟度十分必要。随着生产的发展,人们对种子质量要求更高。生产中迫切需要把种子成熟度纳入种子质量标准中,实现种子优质优价,促进种子生产者对种子成熟度的重视。而能否在生产中把好种子成熟度的关,取决于能否对种子成熟度进行简便、快速的测量!早在1998年,Jalink教授就发现叶绿素荧光强度可以做为判断卷心菜种子发芽率的探针。利用该技术测量的叶绿素位于种子的种皮(seed coat)内,与种子的颜色无关。测量的荧光强度与种皮内的叶绿素含量呈正相关。因此,Jalink教授推断利用叶绿素荧光技术来测量种子的叶绿素含量适用于绝大多数种子。在种子成熟过程中,种皮内的叶绿素会逐渐分解。因此,通过叶绿素荧光技术可以测量种子的成熟度,来协助判定最合适的收获期。产品特点:IXeed CF是用来测量种子里面叶绿素含量的仪器,通常种子里面叶绿素含量的多少可以作为种子成熟度的指标。用户可以通过图形触摸屏操作IXeed CF。种子放在可移动的托盘上,将托盘插入到IXeed CF, 捕获叶绿素荧光图像和可见光图像。IXeed CF自动分析CF图像。 对于CF图像中的每个可见种子,执行CF含量的测量。通过分数图显示CF分析的输出结果,同时点击触摸屏上CF图像中的种子们可以放大种子图像及CF的测量。IXeed CF可以通过整合多参数分析协议进行大批量分析。IXeed CF非常便携,可以搬到车上到野外现场测量。 仪器可以通过转换器使用车载12V电源。 CF Mobile保护类别为IP50。功能性技术参数1. 高分辨率 CF 成像 2. 高分辨率可见光成像 3. 触摸屏 4. 可编辑的分数图 5. 整合多参数分析 6. 水分含量测定校准程序7. 数据表格导出8. 不同种类种子分选设置和校准数据 硬件技术参数:1. 电源: 220 VAC50-60 Hz2. 嵌入式电脑:Windows 73. 操作温度:5-40 ℃4. 操作湿度:20-90% RH 不结露5. 通讯连接: 2 x USB, 1 x 以太网6. 开放式托盘(可定制)7. 软件运行环境:Windows7 64位8. 车载供电9. CE标志 应用领域:l 种子成熟度分析l 种子收获期判断l 种子品质鉴定l 种子萌发l 种子科研和生产l 种子抗病性预测 其他可选附件:预制或空白的托盘:需要用户提供研究种子的形状,大小
    留言咨询
  • 种子成熟度是种子活力的重要内在指标。成熟度不好的种子其芽率、芽势、拱土能力、成苗率和苗整齐度等综合指标下降,严重影响种子质量,从而影响整个生产,为此,提高种子的成熟度十分必要。早在1998年,Jalink教授就发现叶绿素荧光强度可以做为判断卷心菜种子发芽率的探针。利用该技术测量的叶绿素位于种子的种皮(seed coat)内,与种子的颜色无关。测量的荧光强度与种皮内的叶绿素含量呈正相关。因此,Jalink教授推断利用叶绿素荧光技术来测量种子的叶绿素含量适用于绝大多数种子。在种子成熟过程中,种皮内的叶绿素会逐渐分解。因此,通过叶绿素荧光技术可以测量种子的成熟度,来判定最合适的收获期。FluoMini Pro种子成熟度分析仪对叶绿素进行测量是非破坏性的,通过测量种子种皮内的叶绿素发出的荧光强度,来判断种子内的叶绿素含量高低,进而判断种子的成熟度和种子的质量。叶绿素含量越低(叶绿素荧光强度越低),种子成熟度越高。此外,FluoMini Pro种子成熟度分析仪还可用于检测种子的完整性。破裂的种子会将叶绿素释放出来,导致测得的叶绿素含量偏高。一般而言,相同的种子样品,测得的叶绿素荧光越高,表明种子成熟度越低或/和种子破裂度/破损度越高;测得的叶绿素荧光越低,表明种子的成熟度越高。种子的成熟度越高,种子发芽率越高。主要特点l 基于荧光光谱原理设计,测量准确且易于维护;l 快速无损的检测植物种子成熟度和破裂度;l 用于种子品质鉴定、种子萌发和抗病性预测;l 可直接用于野外现场测定,指导种子或果实的适宜收货期;l 可连续测量并记录种子成熟度随环境的变化。主要参数1.测量范围:0 - 10 mg/g;2.工作温度:5 - 45 ℃;3.精确度(CF):量程(0 - 1 mg/g)— 0.1 mg/g; 量程(1 - 5 mg/g)— 0.2 mg/g; 量程(5 - 20 mg/g)— 0.3 mg/g;4.漂移/稳定性(工作频率0.1Hz): 0.1%每月;5.取样时间: 2 s;6.连接:USB/4-20mA输出(3线程), 模拟型输出12 - 24 V AC/DC 7.电源电压:通过USB端口(5V, 200 mA) 8.连接器:4针M5公头 9.电池寿命:48 h(5秒间隔);2星期(60秒间隔) 基本配置仪器主机;种子样品盒; 2米USB连接线;软件和手册U盘;手提箱。应用案例菠菜种子成熟度分析及储藏策略对5批不同收货阶段的菠菜种子用FluoMini Pro种子成熟度分析仪进行成熟度测定,结果显示首批种子叶绿素含量较低,其种子成熟度较高;第5批种子叶绿素含量较高,表面其种子成熟度较低或者该种子的破裂度较高导致叶绿素含量相对较高。产地与厂家:荷兰 Sendot
    留言咨询
  • 武汉泰沃康仪器设备有限公司,专业生产供应超干种子柜,适合于各种作物种子的超干存储。公司产品显示湿度为真实湿度,能接受任意仪器和权威机构的检测。 : QQ: 产品分为 1%RH-5%RH超干型5%RH-25%RH干燥型20%RH-60%RH低湿型容量从100L--1500L不等,可以定制产品优势 1. 数码控制低湿存储柜采用数码控制设计,湿度传感器采用国际著名品牌,±2%的湿度显示误差,大大改善传统类悬挂式湿度表误差值过大的问题。其可设定的优异功能,更取代传统无法设定调整而只能单一显示的电子湿度计。另外,温湿度独立显示,让使用者更加清晰直观地了解箱内温湿度情况。湿度设定具有记忆功能,断电后无需再设定。2. 超厚钢板及层板1mm以上厚度的钢板柜体及层板,重叠式结构设计,密封性能更佳。表面采用整体粉体烤漆(也称喷塑)(此烤漆过程需要经过预除油、除油、除锈、水洗、磷化、水洗、水洗、表面调节、纯水洗、烘干、静电喷漆、烤漆等工序组成,绝对不是一般普通烤漆),具有耐腐蚀性好、使用时间长等优点,使表面强度及抗腐蚀性得到了很大提高。独一无二的高承重层板支撑设计,使承重性能更加优越。3. 玻璃门密封磁条玻璃门采用汽车挡风玻璃安装方式,不是传统以螺丝固定铁条方式处理,其防水、防尘性及气密性最佳,外观更具质感。玻璃为高质量钢化玻璃,比一般强化玻璃具有更高的强度。亦可定制全钢门,样品保密性更强,安全性得到进一步提高。4. 平面加压把手锁一体化设计为加强整体气密性达最佳值,全系列采用强度最大的加压式紧迫锁,让湿气渗入的可能性减至最低,另外附于把手内的锁更增加保存物品的安全性。 5. 超强控湿主机采用最新太空材料,优质形状记忆合金控湿主机,断电不返湿、不滴水、省能源,停电时间仍可以运用化学吸湿补位功能继续除湿。无任何噪音,不需任何耗材。断电后不开门24小时内湿度上升不超过10%RH。6. 除污吸湿材料除湿主机内附可吸附硫化物及醇类等有毒化学污染源的吸湿材料。7. 可移动带刹车脚轮可移动带刹脚轮方便移动及固定。1400升的产品可选配可调高承重支撑。 种子存储建议湿度:较短期存储,并且需要比较频繁地取放种子的情况下,可选择20-60%RH可调机型,将湿度设置到20-30%RH;如需长期保存种子,则建议选择1-5%RH超干机型,将种子晾干筛选后存贮其中,用于种子的超干贮存。既可减缓种子活力的下降、延长种子寿命,还可便于分类保管。本存储柜还可用下列材料的存放:易吸潮的化学药品、试纸(条)、光学元件(显微镜、照相机的镜头等)、文物古董、电子元件,及其它对湿度敏感、需要在干燥条件下保存的物品。.
    留言咨询
  • 种子及种苗形态结构、活力、适合度、抗逆性、胁迫敏感性、生理生化指标等是作物种质资源品质监测评估的重要指标体系,其中种子活力是种子发芽和出苗率、幼苗生长的潜势、植株抗逆能力和生产潜力的总和(发芽和出苗期间的活性水平与行为),是种子品质的重要指标,具体包括吸涨后旺盛的代谢强度、出苗能力、抗逆性、发芽速度及同步性、幼苗发育与产量潜力。种子活力是植物的重要表型特征,传统检测方法包括低温测试(cold test)、高温加速衰老测试(accelerated aging test)、幼苗生长测定等。PhenoTron-HSI多功能高光谱成像分析系统,是易科泰公司推出的可用于种质资源检测鉴定、种子活力检测、种质资源表型性状监测评估的高光谱成像分析系统,具备快速、非损伤、高通量特点。可应用于种子、幼苗及根系等种质资源表型性状成像分析、叶绿素荧光成像检测、次级代谢产物荧光成像分析、种子活力检测、成分含量分析、种质资源性状监测评估等,还可应用于杂质检测、病原体检测、成分检测、种质资源数字化、种苗(包括根系)成像分析、遗传育种性状检测与抗性筛选等。 产品特点:1.PTS技术,集样品自动传送、无线控制、同步扫描成像分析、环境光屏蔽等功能于一体2.双重控制:嵌入式操作系统+PC端GUI软件,无线控制平台运行3.组合命令:支持自定义Protocols,可设置10条以上命令,实现系统自动运行4.内置温湿度、光照度传感器、时钟,实时反馈环境参数,可一键同步电脑时间5.集高光谱成像分析技术、高光谱荧光成像分析技术于一体,全面分析种质资源光谱指纹、生理生化组成(蛋白质、脂肪含量等)、种子活力等6.可选配Thermo-RGB红外热成像分析,用于种质资源综合检测、种子萌发散热测量(反应种子代谢强度等)及种苗气孔动态分析等7.可选配紫外光激发生物荧光成像模块,进行紫外光激发叶绿素荧光成像和BGF(蓝绿荧光)成像分析,高通量、高灵敏度检测种苗活力、光合效率及抗逆性,种质资源生理功能数字化数据库建设等 技术指标:1.平台高度规格:标配400mm,可定制2.有效扫描尺寸:≥300×300mm,可定制3.移动速度:2-40mm/s,可调,精度:1mm4.主机箱:内置10寸触控屏,嵌入式操作系统,全波段对称光源,角度、高度可调,集开关控制、平台控制、杂散光隔离于一体,确保光场均一、稳定的最佳测量环境5.成像传感器选配:6.SpectrAPP高光谱成像分析软件:(1)可进行伪彩色/灰度显示、波段融合、ROI选区、光谱指数分析、光谱曲线绘制、光谱特征统计、直方图统计、结果图/表导出等;(2)可分析NDVI、PRI、DCNI、CRI、ARI、PSRI、NPQI、EVI、HI、WBI等数十种VIs参数,研究植物表型及结构信息、生物及非生物胁迫、色素含量、理化性状、种质、中药材及果实品种品质等指标;7.FluorVision© 高光谱荧光成像分析软件:(1)基本分析:具备伪彩色/灰度显示、旋转显示、阈值掩膜、波段融合、手动/自动ROI分析、光谱曲线绘制、光谱平滑、光谱特征统计、路径分析、图/表导出等功能;(2)荧光参数分析:可分析F440、F520、F690、F740、F690/F740、F520/F690、F735/F700、F440/F520、F440/F690、F440/F740等多种荧光参数,支持扩展;(3)形态参数分析:可分析色素或校准面积、圆滑度(Circularity)、长宽比(Aspect ratio)、紧实度(Solidity)、圆度(Roundness)等; 应用案例:(1)绿豆种子豆象侵染检测 (2)种苗早期生长阶段表型分析 (3)玉米种子活力检测
    留言咨询
  • 1.种子活力检测2.作物种质资源表型检测3.作物种质资源活力与性状监测评估4.种子及萌发性状、幼苗及其根系表型5.光谱成像、荧光光纤传感器集成技术,高通量、非损伤 表型性状包括形态结构、活力、适合度、抗逆性、胁迫敏感性、生理生化指标等是作物种质资源品质监测评估的重要指标体系,其中种子活力是种子发芽和出苗率、幼苗生长的潜势、植株抗逆能力和生产潜力的总和(发芽和出苗期间的活性水平与行为),是种子品质的重要指标,具体包括吸涨后旺盛的代谢强度、出苗能力、抗逆性、发芽速度及同步性、幼苗发育与产量潜力。种子活力是植物的重要表型特征,传统检测方法包括低温测试(cold test)、高温加速衰老测试(accelerated aging test)、幼苗生长测定等。PhenoTron作物种质资源监测鉴定平台是种子活力检测、种质资源表型性状监测评估的综合系统平台,包括种子与幼苗根系形态测量、智能LED光源培养、呼吸强度检测、种苗叶绿素荧光成像检测等现代技术,全面检测种质资源的形态与呼吸代谢强度(耗氧率)、发芽及其抗逆性等表型性状指标,是目前种质资源最全面最先进的的综合检测评估平台、种子及种苗-根系表型分析的最佳组合。 主要技术特点:1) PhenoTron种质资源培养与检测平台(专利号:ZL 2021 2 1568461.0)集智能LED光源技术、在线扫描光谱成像技术于一体,PAR光照强度0-100可调,可模拟昼夜节律,可选配单层或复式(双层,可客户定制多层)智能LED光源培养与在线光谱成像2) 可选配PhenoTron-HSI种质资源高光谱成像分析或PhenoTron-XYZ种质资源光谱成像分析平台(不具备智能LED光源培养功能。下图自左到右分别为运行测试中的PhenoTron种质资源培养与检测平台、PhenoTron-XYZ光谱成像分析平台) 3) 可选配步入式生长箱及集装箱式生长舱(气候模拟舱) 4) 荧光光纤传感器技术,O2、pH、温度多参数监测,用于高通量检测种子呼吸代谢强度5) 可选配FluorCam叶绿素荧光成像技术,高通量、高灵敏度检测种苗活力、光合效率及抗逆性,种质资源生理功能数字化数据库建设等 6) 高光谱成像分析与高光谱荧光成像分析技术,全面分析种子的反射光谱、紫外光激发或多光谱激发光激发荧光成像分析、种子含水量、种质资源生理生化指标、种植资料光谱数据库建立等7) Thermo-RGB红外热成像技术,用于种子萌发散热测量(反应种子代谢强度等)及气孔动态分析等8) 可选配大型PlantScreen全自动高通量传送带式或XYZ扫描式表型成像分析平台,包括叶绿素荧光成像、3D RGB成像、高光谱成像等9) 可选配种子成分分析系统(有手持式、台式或流通式供选配) 主要技术指标(根据客户定制系统而定):1) 种子形态测量参数:种子数量、长度、宽度、体积大小、表面积、周长及颜色分析2) 智能LED培养:标配为冷白光+红光+红外光(模拟自然光照)三通道智能可调制LED光源培养系统,可选配RGB三色光源或客户定制RGB+远红4通道LED光源培养系统3) 光照强度0~500μmol(光量子)/m2.s(强度可根据需求升级),0-100%可调,模拟自然光照、程序模拟昼夜节律等,具备不同光照条件Protocols数据库功能(如多云天气、林下光源等)4) 种子高通量呼吸代谢强度检测,由带膜薄贴荧光光纤氧气传感器的封闭式96孔多孔板、氧气测量主机模块及数据采集分析软件组成,采用REDFLASH检测技术,氧气测量范围0-50%O2,分辨率0.1% O2@ 20% O2,精度±0.6% O2@ 20% O2,漂移0.5% O2每月,响应时间小于30s5) 高光谱成像分析测量,光谱范围400-1000nm或选配900-1700nm、1000-2500nm近红外高光谱成像分析6) UV-MCF高光谱荧光成像分析,可选配多激发光荧光成像分析,可对BGF(蓝绿波段荧光)和叶绿素荧光进行成像分析和荧光光谱分析7) FluorCam叶绿素荧光成像测量(选配),可运行Fv/Fm、Kautsky诱导效应、荧光淬灭、光响应曲线、GFP/YFP、PAR吸收及NDVI等protocols,测量参数包括PI(performance index)、适合度指数Rfd、光量子通量、光化荧光淬灭与非光化荧光淬灭等几十个叶绿素荧光参数及NDVI、PAR吸收、GFP等;可通过“面具”技术自动选取多孔板等种子萌发幼苗
    留言咨询
  • Videometer MiniLab采用了LED频闪光源系统,有效组合了7个波长测量,并生成图谱合一的融合光谱图像,每个像素对应一个不同反射光谱。该设备包括可见光以及NIR近红外波段,用于作物表型、植物病害等等进行精确、全面检测。该便携式Videometer MiniLab可搭载到推车支架上,在田间使用,也可手持使用,是一款多功能成像平台。便携式多光谱表型成像系统主要功能结合可见光成像和光谱成像优点对种子、病害表型成像便携设计,方便带到温室或野外使用标准校准功能,数据可重复经验丰富的专家根据应用经验设计的软件,操作简单,解决农业应用中遇到的问题内置颜色校正标配7个光谱波段,并不断升级中 产品说明该系统也可以对细菌、真菌、虫卵等进行高通量成像测量,进行毒理学或其它研究,用于食品谷物、作物、肉品等等进行精确、全面品质检测。Videometer系统生成图片可用其它分析系统进行分析,如Matlab等。考虑到Videometer MiniLab可能需要经常带到温室、野外或其它地方进行测量,因此它被设计成可便携携带的样式。VideometerLab MiniLab的工作软件由Videometer公司强大的生物信息学和软件团队开发,充分考虑在实际应用的需求,操作简单,功能强大。Videometer还在不断研究、升级新算法,适合各种需求。VideometerLab MiniLab便携式种子表型多光谱成像系统通过测量种子在7种不同波长(波长范围405-850nm)的LED频闪光下的成像来获取有用的信息。这些图像可以独立分析使用,也可以叠加起来合成高分辨率的颜色图像。基础整合模块,含7个波段多光谱成像系统。软件可进行颜色校准,标签识别,灰度图转换等。 田间多光谱表型成像系统应用表型性状分析/挖掘,基因型-表型关联农业育种园艺学、农业信息学果实品质分析植物病理研究生物量分析种子萌发研究抗逆研究直接测量的参数尺寸形状颜色形态纹理光谱质构与表面化学相关的光谱成分计数间接测量或计算种子纯度发芽百分比发芽率种子活力种子健康度种子成熟度种子寿命等主要特点集成球体提供均匀和弥散光线照明10-15秒钟内实现光谱成像和定量分析7不同波长/光源3百万像素/波长,提供,2100万像素/帧分辨率标准设备包括易于使用设备校准与传统RGB技术相比具有先进的彩色测量功能根据应用需求可自动切换动态范围光源寿命长、可达10万小时LED光源技术稳定性增强研究用强大探索软件易用常规应用配方构建工具(建模)成像特点快速、无损检测包括处理在内每样品处理仅需10-20秒与其它破坏性技术组合高灵活性测量主要专注:可重复洗、可追溯性、耐用性、可传递性技术参数全套分析时间10-15秒/样品电源:5 V DC 3 A电源功耗300 VA环境温度操作: 5-40℃,储存-5-50℃环境湿度20-90 % RH相对湿度,非冷凝软件备选:图像处理工具包 (IPT)光谱成像工具盒 (MSI) 斑点工具盒设备尺寸: 270 mm(h) * 240 mm(w) * 200 mm(d)重量:1.1kg 案例应用由叶绿素/成熟度区分种子来自英国的科学家研究重点是对高级成像技术进行评估,以对根定植进行真菌检测和精确定量,通过测量光合参数评估对地上部健康的影响。研究中使用了VideometerLab 多光谱成像系统。图中显示“Take-all”感染小麦幼苗。左侧是原始图像,有红色箭头标示“take-all ”损失,用手工评分;右图是相同图像经‘VideometerLab’分析,将根组织分类为感病(蓝色)和健康(桔色/黄色)。利用Videometer多光谱成像系统对藜麦霜霉病成像藜麦(Chenopodium quinoa)是一种作物,营养丰富,在多个国家广有种植。真菌病如霜霉病限制了谷物产量,培育抗性品系,如抗霜霉病品系是藜麦育种的中心目标。利用常规RGB成像来测量藜麦对霜霉病的表型反应(Peronospora variabilis ) 测量比较困难,原因在于来自不同藜麦基因型在叶片上有不同绿色和红色斑点进行干扰,参见图1和图2。 开发图像分析规程来区分健康藜麦叶片组织以及感染霜霉病的藜麦叶片组织。研究利用Videometer多光谱成像系统对严重度程度表型和孢子形成进行研究。严重程度是叶片正面损伤的面积占整个叶片面积的百分比。依基因型不同,颜色可为桔色、黄色或红色。孢子形成是损伤部上方孢子量,以百分比测量,通过测量叶片正面进行评估。 图1 叶片正面严重度症状图2 叶片正面孢子形成多光谱图像分析研究人员利用VideometerLab 4多光谱成像系统进行多光谱成像,积分球确保对样品的均一照明(图3)。每个获取的图像层由19个不同图像波段组成,波长涵盖365nm(UVA)到970nm(NIR)。图像的每个像素分辨率为~41 μm。每个图像层的分辨率为2192X2192像素。图像分析严重度模型从G9基因型叶片正面(图4)清楚看到了黄化现象(A),拍摄了RGB图像(常规相机,人眼可见光波段。(B)和(C)显示了多光谱图层中的2个波段,蓝光490nm(B)和黄光570nm(C)。对健康植物组织和黄化界定进行了初始标记,首次转换建立了模型(D),通过nCDA(归一化典型判别分析将19个波段信息(图像中多个图层),转换为了整个图层的代表像素范围值。之后切割(E和F),可用于所有图像-所有品系和基因型,获取有黄化组织(E黄色)百分比定量分析,该特定叶片比例为68.0%,或者包括红色覆盖孢子区(F),比例为18,9%,黄化(黄色)比例68%,孢子和黄化区综合面积占比75.8%。 图像分析孢子形成在叶片正面(底部),RGB图像中的G9基因型清晰可见到孢子形成图像(下底部A和B放大)。尽管在可见光波段很难检测到单个波段,这里特别标出了蓝光波段(490nm)(C)。进入NIR(780nm)波段(下左部的D和E放大),清晰看见了孢子。使用该信息(仅标识黑灰色孢子)可帮助我们区分切割孢子像素(F),并将该面积定量,该叶片孢子比例为12.5% (黄色显示),不包括黄化部分面积。另外,此处的孢子标识与正面图像分析而言更加保守。 覆盖的非黑灰区的像素部分 (像素比单个孢子要大)估计,孢子比例为~23%(此处未予以显示)。图4(A) sRGB图像。(B),490nm(蓝光),(C),570nm(黄色),(D) 转换,(E)和(F),2种类型定量分割。图5(A) sRGB 图像,(B)490nm(蓝光),(C) 570nm(黄色),(D)转换,(E)定量分割。结果图6:133个基因型的平均严重程度(%)分布表1手工以及基于多光谱表型成像的藜麦霜霉病互作
    留言咨询
  • Videometer MiniLab采用了LED频闪光源系统,有效组合了7个波长测量,并生成图谱合一的融合光谱图像,每个像素对应一个不同反射光谱。该设备包括可见光以及NIR近红外波段,用于作物表型、植物病害等等进行精确、全面检测。该便携式Videometer MiniLab可搭载到推车支架上,在田间使用,也可手持使用,是一款多功能成像平台。便携式多光谱表型成像系统主要功能结合可见光成像和光谱成像优点对种子、病害表型成像便携设计,方便带到温室或野外使用标准校准功能,数据可重复经验丰富的专家根据应用经验设计的软件,操作简单,解决农业应用中遇到的问题内置颜色校正标配7个光谱波段,并不断升级中 产品说明该系统也可以对细菌、真菌、虫卵等进行高通量成像测量,进行毒理学或其它研究,用于食品谷物、作物、肉品等等进行精确、全面品质检测。Videometer系统生成图片可用其它分析系统进行分析,如Matlab等。考虑到Videometer MiniLab可能需要经常带到温室、野外或其它地方进行测量,因此它被设计成可便携携带的样式。VideometerLab MiniLab的工作软件由Videometer公司强大的生物信息学和软件团队开发,充分考虑在实际应用的需求,操作简单,功能强大。Videometer还在不断研究、升级新算法,适合各种需求。VideometerLab MiniLab便携式种子表型多光谱成像系统通过测量种子在7种不同波长(波长范围405-850nm)的LED频闪光下的成像来获取有用的信息。这些图像可以独立分析使用,也可以叠加起来合成高分辨率的颜色图像。基础整合模块,含7个波段多光谱成像系统。软件可进行颜色校准,标签识别,灰度图转换等。 田间多光谱表型成像系统应用表型性状分析/挖掘,基因型-表型关联农业育种园艺学、农业信息学果实品质分析植物病理研究生物量分析种子萌发研究抗逆研究直接测量的参数尺寸形状颜色形态纹理光谱质构与表面化学相关的光谱成分计数间接测量或计算种子纯度发芽百分比发芽率种子活力种子健康度种子成熟度种子寿命等主要特点集成球体提供均匀和弥散光线照明10-15秒钟内实现光谱成像和定量分析7不同波长/光源3百万像素/波长,提供,2100万像素/帧分辨率标准设备包括易于使用设备校准与传统RGB技术相比具有先进的彩色测量功能根据应用需求可自动切换动态范围光源寿命长、可达10万小时LED光源技术稳定性增强研究用强大探索软件易用常规应用配方构建工具(建模)成像特点快速、无损检测包括处理在内每样品处理仅需10-20秒与其它破坏性技术组合高灵活性测量主要专注:可重复洗、可追溯性、耐用性、可传递性技术参数全套分析时间10-15秒/样品电源:5 V DC 3 A电源功耗300 VA环境温度操作: 5-40℃,储存-5-50℃环境湿度20-90 % RH相对湿度,非冷凝软件备选:图像处理工具包 (IPT)光谱成像工具盒 (MSI) 斑点工具盒设备尺寸: 270 mm(h) * 240 mm(w) * 200 mm(d)重量:1.1kg 案例应用由叶绿素/成熟度区分种子来自英国的科学家研究重点是对高级成像技术进行评估,以对根定植进行真菌检测和精确定量,通过测量光合参数评估对地上部健康的影响。研究中使用了VideometerLab 多光谱成像系统。图中显示“Take-all”感染小麦幼苗。左侧是原始图像,有红色箭头标示“take-all ”损失,用手工评分;右图是相同图像经‘VideometerLab’分析,将根组织分类为感病(蓝色)和健康(桔色/黄色)。利用Videometer多光谱成像系统对藜麦霜霉病成像藜麦(Chenopodium quinoa)是一种作物,营养丰富,在多个国家广有种植。真菌病如霜霉病限制了谷物产量,培育抗性品系,如抗霜霉病品系是藜麦育种的中心目标。利用常规RGB成像来测量藜麦对霜霉病的表型反应(Peronospora variabilis ) 测量比较困难,原因在于来自不同藜麦基因型在叶片上有不同绿色和红色斑点进行干扰,参见图1和图2。 开发图像分析规程来区分健康藜麦叶片组织以及感染霜霉病的藜麦叶片组织。研究利用Videometer多光谱成像系统对严重度程度表型和孢子形成进行研究。严重程度是叶片正面损伤的面积占整个叶片面积的百分比。依基因型不同,颜色可为桔色、黄色或红色。孢子形成是损伤部上方孢子量,以百分比测量,通过测量叶片正面进行评估。 图1 叶片正面严重度症状图2 叶片正面孢子形成多光谱图像分析研究人员利用VideometerLab 4多光谱成像系统进行多光谱成像,积分球确保对样品的均一照明(图3)。每个获取的图像层由19个不同图像波段组成,波长涵盖365nm(UVA)到970nm(NIR)。图像的每个像素分辨率为~41 μm。每个图像层的分辨率为2192X2192像素。图像分析严重度模型从G9基因型叶片正面(图4)清楚看到了黄化现象(A),拍摄了RGB图像(常规相机,人眼可见光波段。(B)和(C)显示了多光谱图层中的2个波段,蓝光490nm(B)和黄光570nm(C)。对健康植物组织和黄化界定进行了初始标记,首次转换建立了模型(D),通过nCDA(归一化典型判别分析将19个波段信息(图像中多个图层),转换为了整个图层的代表像素范围值。之后切割(E和F),可用于所有图像-所有品系和基因型,获取有黄化组织(E黄色)百分比定量分析,该特定叶片比例为68.0%,或者包括红色覆盖孢子区(F),比例为18,9%,黄化(黄色)比例68%,孢子和黄化区综合面积占比75.8%。 图像分析孢子形成在叶片正面(底部),RGB图像中的G9基因型清晰可见到孢子形成图像(下底部A和B放大)。尽管在可见光波段很难检测到单个波段,这里特别标出了蓝光波段(490nm)(C)。进入NIR(780nm)波段(下左部的D和E放大),清晰看见了孢子。使用该信息(仅标识黑灰色孢子)可帮助我们区分切割孢子像素(F),并将该面积定量,该叶片孢子比例为12.5% (黄色显示),不包括黄化部分面积。另外,此处的孢子标识与正面图像分析而言更加保守。 覆盖的非黑灰区的像素部分 (像素比单个孢子要大)估计,孢子比例为~23%(此处未予以显示)。图4(A) sRGB图像。(B),490nm(蓝光),(C),570nm(黄色),(D) 转换,(E)和(F),2种类型定量分割。图5(A) sRGB 图像,(B)490nm(蓝光),(C) 570nm(黄色),(D)转换,(E)定量分割。结果图6:133个基因型的平均严重程度(%)分布表1手工以及基于多光谱表型成像的藜麦霜霉病互作
    留言咨询
  • Videometer Lite采用了LED频闪光源系统,有效组合了7个波长测量,并生成图谱合一的融合光谱图像,每个像素对应一个不同反射光谱。该设备包括可见光以及NIR近红外波段,用于作物表型、植物病害等等进行精确、全面检测。该便携式Videometer Lite可搭载到推车支架上,在田间使用,也可手持使用,是一款多功能成像平台。Videometer田间植物表型/种子检验检测系统主要功能结合可见光成像和光谱成像优点对种子、病害表型成像便携设计,方便带到温室或野外使用标准校准功能,数据可重复经验丰富的专家根据应用经验设计的软件,操作简单,解决农业应用中遇到的问题内置颜色校正标配7个光谱波段,并不断升级中Videometer田间植物表型/种子检验检测系统产品说明该系统也可以对细菌、真菌、虫卵等进行高通量成像测量,进行毒理学或其它研究,用于食品谷物、作物、肉品等等进行精确、全面品质检测。Videometer系统生成图片可用其它分析系统进行分析,如Matlab等。考虑到Videometer Lite可能需要经常带到温室、野外或其它地方进行测量,因此它被设计成可便携携带的样式。VideometerLab Lite的工作软件由Videometer公司强大的生物信息学和软件团队开发,充分考虑在实际应用的需求,操作简单,功能强大。Videometer还在不断研究、升级新算法,适合各种需求。VideometerLab Lite便携式种子表型多光谱成像系统通过测量种子在7种不同波长(波长范围405-850nm)的LED频闪光下的成像来获取有用的信息。这些图像可以独立分析使用,也可以叠加起来合成高分辨率的颜色图像。基础整合模块,含7个波段多光谱成像系统。软件可进行颜色校准,标签识别,灰度图转换等。田间多光谱表型成像系统应用表型性状分析/挖掘,基因型-表型关联农业育种园艺学、农业信息学果实品质分析植物病理研究生物量分析种子萌发研究抗逆研究直接测量的参数尺寸形状颜色形态纹理光谱质构与表面化学相关的光谱成分计数间接测量或计算种子纯度发芽百分比发芽率种子活力种子健康度种子成熟度种子寿命等主要特点集成球体提供均匀和弥散光线照明10-15秒钟内实现光谱成像和定量分析7不同波长/光源3百万像素/波长,提供,2100万像素/帧分辨率标准设备包括易于使用设备校准与传统RGB技术相比具有先进的彩色测量功能根据应用需求可自动切换动态范围光源寿命长、可达10万小时LED光源技术稳定性增强研究用强大探索软件易用常规应用配方构建工具(建模)成像特点快速、无损检测包括处理在内每样品处理仅需10-20秒与其它破坏性技术组合高灵活性测量主要专注:可重复洗、可追溯性、耐用性、可传递性技术参数全套分析时间10-15秒/样品电源:5 V DC 3 A电源功耗300 VA环境温度操作: 5-40℃,储存-5-50℃环境湿度20-90 % RH相对湿度,非冷凝软件备选:图像处理工具包 (IPT)光谱成像工具盒 (MSI) 斑点工具盒设备尺寸: 270 mm(h) * 240 mm(w) * 200 mm(d)重量:1.1kg 案例应用由叶绿素/成熟度区分种子来自英国的科学家研究重点是对高级成像技术进行评估,以对根定植进行真菌检测和精确定量,通过测量光合参数评估对地上部健康的影响。研究中使用了VideometerLab 多光谱成像系统。图中显示“Take-all”感染小麦幼苗。左侧是原始图像,有红色箭头标示“take-all ”损失,用手工评分;右图是相同图像经‘VideometerLab’分析,将根组织分类为感病(蓝色)和健康(桔色/黄色)。利用Videometer多光谱成像系统对藜麦霜霉病成像藜麦(Chenopodium quinoa)是一种作物,营养丰富,在多个国家广有种植。真菌病如霜霉病限制了谷物产量,培育抗性品系,如抗霜霉病品系是藜麦育种的中心目标。利用常规RGB成像来测量藜麦对霜霉病的表型反应(Peronospora variabilis ) 测量比较困难,原因在于来自不同藜麦基因型在叶片上有不同绿色和红色斑点进行干扰,参见图1和图2。 开发图像分析规程来区分健康藜麦叶片组织以及感染霜霉病的藜麦叶片组织。研究利用Videometer多光谱成像系统对严重度程度表型和孢子形成进行研究。严重程度是叶片正面损伤的面积占整个叶片面积的百分比。依基因型不同,颜色可为桔色、黄色或红色。孢子形成是损伤部上方孢子量,以百分比测量,通过测量叶片正面进行评估。 图2 叶片正面孢子形成多光谱图像分析研究人员利用VideometerLab 4多光谱成像系统进行多光谱成像,积分球确保对样品的均一照明(图3)。每个获取的图像层由19个不同图像波段组成,波长涵盖365nm(UVA)到970nm(NIR)。图像的每个像素分辨率为~41 µ m。每个图像层的分辨率为2192X2192像素。图像分析严重度模型从G9基因型叶片正面(图4)清楚看到了黄化现象(A),拍摄了RGB图像(常规相机,人眼可见光波段。(B)和(C)显示了多光谱图层中的2个波段,蓝光490nm(B)和黄光570nm(C)。对健康植物组织和黄化界定进行了初始标记,转换建立了模型(D),通过nCDA(归一化典型判别分析将19个波段信息(图像中多个图层),转换为了整个图层的代表像素范围值。之后切割(E和F),可用于所有图像-所有品系和基因型,获取有黄化组织(E黄色)百分比定量分析,该特定叶片比例为68.0%,或者包括红色覆盖孢子区(F),比例为18,9%,黄化(黄色)比例68%,孢子和黄化区综合面积占比75.8%。 图像分析孢子形成在叶片正面(底部),RGB图像中的G9基因型清晰可见到孢子形成图像(下底部A和B放大)。尽管在可见光波段很难检测到单个波段,这里特别标出了蓝光波段(490nm)(C)。进入NIR(780nm)波段(下左部的D和E放大),清晰看见了孢子。使用该信息(仅标识黑灰色孢子)可帮助我们区分切割孢子像素(F),并将该面积定量,该叶片孢子比例为12.5% (黄色显示),不包括黄化部分面积。另外,此处的孢子标识与正面图像分析而言更加保守。 覆盖的非黑灰区的像素部分 (像素比单个孢子要大)估计,孢子比例为~23%(此处未予以显示)。图4(A) sRGB图像。(B),490nm(蓝光),(C),570nm(黄色),(D) 转换,(E)和(F),2种类型定量分割。图5(A) sRGB 图像,(B)490nm(蓝光),(C) 570nm(黄色),(D)转换,(E)定量分割。结果图6:133个基因型的平均严重程度(%)分布表1手工以及基于多光谱表型成像的藜麦霜霉病互作
    留言咨询
  • Videometer Lite采用了LED频闪光源系统,有效组合了7个波长测量,并生成图谱合一的融合光谱图像,每个像素对应一个不同反射光谱。该设备包括可见光以及NIR近红外波段,用于作物表型、植物病害等等进行精确、全面检测。该便携式Videometer Lite可搭载到推车支架上,在田间使用,也可手持使用,是一款多功能成像平台。主要功能结合可见光成像和光谱成像优点对种子、病害表型成像便携设计,方便带到温室或野外使用标准校准功能,数据可重复经验丰富的专家根据应用经验设计的软件,操作简单,解决农业应用中遇到的问题内置颜色校正标配7个光谱波段,并不断升级中Videometer植物/种子检验检测表型分析平台产品说明该系统也可以对细菌、真菌、虫卵等进行高通量成像测量,进行毒理学或其它研究,用于食品谷物、作物、肉品等等进行精确、全面品质检测。Videometer系统生成图片可用其它分析系统进行分析,如Matlab等。考虑到Videometer Lite可能需要经常带到温室、野外或其它地方进行测量,因此它被设计成可便携携带的样式。VideometerLab Lite的工作软件由Videometer公司强大的生物信息学和软件团队开发,充分考虑在实际应用的需求,操作简单,功能强大。Videometer还在不断研究、升级新算法,适合各种需求。VideometerLab LiteVideometer植物/种子检验检测表型分析平台通过测量种子在7种不同波长(波长范围405-850nm)的LED频闪光下的成像来获取有用的信息。这些图像可以独立分析使用,也可以叠加起来合成高分辨率的颜色图像。基础整合模块,含7个波段多光谱成像系统。软件可进行颜色校准,标签识别,灰度图转换等。田间多光谱表型成像系统应用表型性状分析/挖掘,基因型-表型关联农业育种园艺学、农业信息学果实品质分析植物病理研究生物量分析种子萌发研究抗逆研究直接测量的参数尺寸形状颜色形态纹理光谱质构与表面化学相关的光谱成分计数间接测量或计算种子纯度发芽百分比发芽率种子活力种子健康度种子成熟度种子寿命等主要特点集成球体提供均匀和弥散光线照明10-15秒钟内实现光谱成像和定量分析7不同波长/光源3百万像素/波长,提供,2100万像素/帧分辨率标准设备包括易于使用设备校准与传统RGB技术相比具有先进的彩色测量功能根据应用需求可自动切换动态范围光源寿命长、可达10万小时LED光源技术稳定性增强研究用强大探索软件易用常规应用配方构建工具(建模)成像特点快速、无损检测包括处理在内每样品处理仅需10-20秒与其它破坏性技术组合高灵活性测量主要专注:可重复洗、可追溯性、耐用性、可传递性技术参数全套分析时间10-15秒/样品电源:5 V DC 3 A电源功耗300 VA环境温度操作: 5-40℃,储存-5-50℃环境湿度20-90 % RH相对湿度,非冷凝软件备选:图像处理工具包 (IPT)光谱成像工具盒 (MSI) 斑点工具盒设备尺寸: 270 mm(h) * 240 mm(w) * 200 mm(d)重量:1.1kg 案例应用由叶绿素/成熟度区分种子来自英国的科学家研究重点是对高级成像技术进行评估,以对根定植进行真菌检测和精确定量,通过测量光合参数评估对地上部健康的影响。研究中使用了VideometerLab 多光谱成像系统。图中显示“Take-all”感染小麦幼苗。左侧是原始图像,有红色箭头标示“take-all ”损失,用手工评分;右图是相同图像经‘VideometerLab’分析,将根组织分类为感病(蓝色)和健康(桔色/黄色)。利用Videometer多光谱成像系统对藜麦霜霉病成像藜麦(Chenopodium quinoa)是一种作物,营养丰富,在多个国家广有种植。真菌病如霜霉病限制了谷物产量,培育抗性品系,如抗霜霉病品系是藜麦育种的中心目标。利用常规RGB成像来测量藜麦对霜霉病的表型反应(Peronospora variabilis ) 测量比较困难,原因在于来自不同藜麦基因型在叶片上有不同绿色和红色斑点进行干扰,参见图1和图2。 开发图像分析规程来区分健康藜麦叶片组织以及感染霜霉病的藜麦叶片组织。研究利用Videometer多光谱成像系统对严重度程度表型和孢子形成进行研究。严重程度是叶片正面损伤的面积占整个叶片面积的百分比。依基因型不同,颜色可为桔色、黄色或红色。孢子形成是损伤部上方孢子量,以百分比测量,通过测量叶片正面进行评估。多光谱图像分析研究人员利用VideometerLab 4多光谱成像系统进行多光谱成像,积分球确保对样品的均一照明(图3)。每个获取的图像层由19个不同图像波段组成,波长涵盖365nm(UVA)到970nm(NIR)。图像的每个像素分辨率为~41 µ m。每个图像层的分辨率为2192X2192像素。图像分析严重度模型从G9基因型叶片正面(图4)清楚看到了黄化现象(A),拍摄了RGB图像(常规相机,人眼可见光波段。(B)和(C)显示了多光谱图层中的2个波段,蓝光490nm(B)和黄光570nm(C)。对健康植物组织和黄化界定进行了初始标记,转换建立了模型(D),通过nCDA(归一化典型判别分析将19个波段信息(图像中多个图层),转换为了整个图层的代表像素范围值。之后切割(E和F),可用于所有图像-所有品系和基因型,获取有黄化组织(E黄色)百分比定量分析,该特定叶片比例为68.0%,或者包括红色覆盖孢子区(F),比例为18,9%,黄化(黄色)比例68%,孢子和黄化区综合面积占比75.8%。 图像分析孢子形成在叶片正面(底部),RGB图像中的G9基因型清晰可见到孢子形成图像(下底部A和B放大)。尽管在可见光波段很难检测到单个波段,这里特别标出了蓝光波段(490nm)(C)。进入NIR(780nm)波段(下左部的D和E放大),清晰看见了孢子。使用该信息(仅标识黑灰色孢子)可帮助我们区分切割孢子像素(F),并将该面积定量,该叶片孢子比例为12.5% (黄色显示),不包括黄化部分面积。另外,此处的孢子标识与正面图像分析而言更加保守。 覆盖的非黑灰区的像素部分 (像素比单个孢子要大)估计,孢子比例为~23%(此处未予以显示)。图4(A) sRGB图像。(B),490nm(蓝光),(C),570nm(黄色),(D) 转换,(E)和(F),2种类型定量分割。图5(A) sRGB 图像,(B)490nm(蓝光),(C) 570nm(黄色),(D)转换,(E)定量分割。结果图6:133个基因型的平均严重程度(%)分布表1手工以及基于多光谱表型成像的藜麦霜霉病互作
    留言咨询
  • 流式颗粒成像和荧光分析系统基于FlowCam技术,FlowCam 8400/Cyano能够从其他藻类细胞和颗粒样本中自动识别。这个受到专利保护的系统将激发波长、藻青素荧光测量和图像识别软件相结合。将蓝藻与样品中的其他藻类进行区分后,可以使用VisualSpreadsheet和Advanced Classifier软件进一步表征样品中所有藻类的具体类型。FlowCam 8400/Cyano技术特色 高灵敏度荧光检测(2通道,藻青蛋白和叶绿素) 比率荧光测量能准确地将蓝藻与其他藻类区分开来 通过40多个图像参数,对每个细胞作进一步分类 完整的生物体积计算 相较传统显微镜更便捷应用领域:海洋和淡水研究20多年来,科学家们一直在使用FlowCam作为一种自动化、快速、准确、易于使用的工具来监测浮游生物群落组成。FlowCam已成为世界范围内研究海洋和淡水微生物的重要仪器。 识别和列举浮游植物和浮游动物 调查有害藻华(HABs) 支持水产养殖系统的健康发展 观察微藻培养 分析沉积物颗粒海洋浮游生物赤潮(有害藻华)淡水浮游生物水质与环境监测FlowCam提供了一种主动、经济、可扩展的解决方案来监测原始或经处理的水。世界各地的水务公司使用FlowCam来检测和量化产生味道和气味的生物、污染过滤器的硅藻和潜在有毒的蓝藻。环境应用包括监测土壤微生物、花粉、种子和污染物。 识别饮用水源中的蓝藻、味、臭等有害藻类 使用数据为水处理决策提供信息 监控过滤器性能 检测和监测土壤微生物、螨虫、森林凋落物、无脊椎动物和线虫 确定种子活力 分析花粉颗粒微胞藻属(蓝藻)长孢藻(蓝藻)花粉颗粒
    留言咨询
  • EcoChem激光光谱元素分析系统 技术背景: 当激光作用于样品表面时,在极短时间内诱导产生含有样品物质的等离子体,等离子体产生的过程中,发射出带有样品元素信息的发射光谱,通过检测这些发射光谱,得到样品的元素信息。这种技术被称为激光诱导击穿光谱技术LIBS(Laser Induced Breakdown Spectroscopy),俗称激光光谱元素分析技术,检测限可达ppm级。测量的元素可覆盖元素周期表中的大部分元素。 系统功能:快速检测土壤、植物、种质资源、中药材、刑侦材料、矿石、合金、珠宝等样品中的? 常量元素N, P, K, Ca, Mg? 微量元素Fe, Cu, Mn, Zn, B, Mo, Ni, Cl? 痕量元素:可检测化学周期表上大部分元素? 其他:有机元素C、H、O和轻元素 Li、Be、Na等(其他技术很难同时分析) 应用领域: 土壤、植物样品检测中药材元素测量及鉴定种子分类及活力分级检测农产品重金属检测地质矿物分析煤粉组分检测重金属污染检测合金元素分析刑侦微量物证分析宝石鉴定材料组分分析 工作原理: EcoChem激光光谱元素分析系统的固体激光器产生激光作用于样品表面。当激光能量大于样品击穿门槛能量时,在样品表面形成等离子体。这些等离子体中受激光能量激发到达高能态的样品物质在迅速回迁至低能态的过程中,发射出带有样品元素种类、含量信息的发射光谱,这些发射光谱信号被智能信号收集系统收集并传输至光谱仪中进行分光,再由CCD检测器进行检测,得到元素信息。 技术指标:激光系统:激光能量:200mJ@1064nm,能量输出0-100%可调;(266nm激光可选)光斑质量控制系统重现率:20Hz,脉宽6ns,DI水冷却系统光斑大小:20-200μm连续可调激光光闸:自动双光闸,稳定控制激光能量和LIBS信号激光安全:I级,有激光锁定保护装置检测器:谱宽:190-1040nm具有自动高度调整的功能 操作软件:中文界面,包含NIST和ElementLIBS数据库。可以轻松检测和识别元素周期表上的元素并进行信息标记。软件还同时具备如下功能:软件可针对所有硬件部件(激光器,光谱仪,三维工作台,气路等)进行指令操作,界面友好,操作直观,使用简单;内置多种打样方式选择,包括单点,多点,直线,矩阵点等;具有自动聚焦控制,可快速且方便的识别样品;可对系统内置的双镜头(全景视野和放大视野)进行控制;内置PLS等多种定标计算模型,可快速计算元素含量;内置PCA等多种计算模型,可进行元素分类分析及溯源;可进行元素的分布(mapping)分析;对气路进行精准控制;内置国内常见土壤和植物标准曲线库,方便用户参考和调用。 数据处理中心:专用i7台式电脑及24’显示器 系统应用: 1, 元素识别及定性分析系统可以轻松实现元素的识别并标记,内置专业ElementLIBS元素识别数据库方便元素的快速查找。非金属元素检测金属微量元素的检测 重金属元素的检测2, 元素定量计算系统可以很好的针对土壤和植物或其他多种样品中的各种金属和非金属元素进行定量计算。内置PLS等多种定量计算模型,减少基质中的影响因素,提高分析计算的准确性。PLS多变量定量计算模型 3, 元素分布分析系统可以很好的原位测量植物、作物或其他样品的元素分布,并绘制元素分布热图。 中药材元素分布 植物叶片病变处元素分布分析大豆种子元素分布分析 玉米元素分布分析 4, 物质鉴别及分类溯源不同等级和地域的土壤特性也不相同,系统可以有效地对这些土壤进行分级分类和鉴别,甚至建立我国的土壤特征库。系统内置的PCA主成分分析模型可以针对土壤的分级分类进行测量和评价。 不同土壤分类特征明显 系统通过检测种子的元素光谱特征,组分特征来进行种子分类及鉴定、转基因产品检测、种子活力分级检测等。这是一种新的方法和快速检测手段。玉米种子的分类 不同玉米种子分类特征明显,区分度可达100%
    留言咨询
  • Videometer Lab 4是一款新型、功能强大且性价比超高的多光谱表型成像测量系统,通过控制系统就可以进行高分辨率多光谱成像。多光谱成像模块包括可见光成像,UV紫外成像以及NIR成像。可固定摄像头或移动摄像头。因拍照速度迅速,可实现较高通量成像。Videometer Lab 4通过测量样品在19种不同波长的LED频闪光下的成像来获取有用的信息。这些图像可以独立分析使用,也可以叠加起来合成高分辨率的彩色图像。Videometer备选模块包括叶绿素荧光成像模块,能够实现叶绿素荧光成像(叶绿素a和叶绿素b)。Videometer Lab 4 同时也可以测量较小的样品,比如拟南芥等小植株、用多孔板培养的植物、多孔板里的叶圆片、植物的种子、药片、肉类、调料等,分析软件功能强大。该系统也可以对细菌等进行高通量成像测量,进行毒理学或其它研究。对于拟南芥等冠层平展的植物,可以进行自动的叶片计数等。Videometer Lab 4 用于种子表型研究,直接测量种子参数如尺寸、颜色、形状等,通过算法分析还可得到如下参数:种子纯度、发芽百分比、发芽率、种子活力、种子健康度、种子病害情况、种子成熟度等。Videometer Lab 4 可选配基于盛料盘的进料系统,用于测量前后自动分发和移动样品。Autofeeder配件与Videometer Lab 4 共同为颗粒样品提供了高通量多光谱分析检测。对于特定谷物或颗粒,样品大小可达100g(基于密度和分辨率),成为一款测量成品以及生产控制用的独特模块。自动进料器使用振动器将颗粒从漏斗均匀分布到传送带上,传送带将颗粒传送到Videometer Lab 4下,然后进入一个收集箱。在采集、分割和分析样本图像后,在测量结束时自动创建摘要报告。根据需求,系统还可以定制分拣机器(如图所示),根据分析结果来筛选颗粒。筛选系统设计用于高价值颗粒的物理分拣,例如去除缺陷颗粒(破碎、未发芽、受感染等)。自动进样模块的振动装置将颗粒均匀地分布在皮带上,形成单层。分割程序提取颗粒,分离接触颗粒,并为样本中的所有颗粒创建blob图像。预测模型根据颜色、形状和纹理特征对颗粒进行分类。测量过程中显示颗粒图像和分析结果。测量结束时自动创建总结报告。如配置分拣机器可直接实现样品颗粒分类放置。产品功能:通过成像,可获取样品的图像,包括单波段的灰度图像和对应的反射率值及sRGB图像,用于不同的形状分析:可用于种子表型研究,直接测量种子参数如尺寸、颜色、形状等,通过算法分析还可得到如下参数:种子纯度、发芽百分比、发芽率、种子活力、种子健康度、种子病害情况、种子成熟度等;可用于种子品种鉴别,例如不同品种的水稻、玉米、小麦等;可用于花朵测量,可分析花径、花瓣面积、花色分级、花朵病斑、花图像提取等;可用于果实测量,可分析果实纵径、果实横径、果实颜色分级、果实数量、果实病斑、果实裂缝、果实图像提取等;可用于植物资源品种鉴别和种质资源研究(形态学结合多光谱信息)、植物疾病(如小孢链格孢属鉴别)研究、植物生理生态发育以及胁迫研究(如对植物进行激素处理后、植物形态学的一些变化)、植物繁育栽培研究、果品和蔬菜品种、品质检测(如草莓、浆果品质特征和成熟阶段研究);可用于中药、民族药和茶叶等的形态、分类、品质、种植和地道性研究;可用于茶叶分类、鉴别、品质检测与评估等;可用于食品参假鉴定,比如食品原料的选择;可用于昆虫如蚕蛹雌雄鉴别、动物寄生虫检测、进行昆虫的游动测试,自动获取图像;产品特点:积分球提供均匀和弥散光线照明5-10秒钟内实现光谱成像和定量分析19-20种不同波长/光源6或9.1百万像素/波长提供1.2-3.6亿像素/帧分辨率标准设备包括使用设备校准与传统RGB技术相比具有卓越的彩色测量功能根据应用需求可自动切换动态范围光源寿命长、可达10万小时独特LED光源技术稳定性增强前光灯和背光灯组合、备选背光灯相对样品自动移动照明研究应用强大的软件分析多光谱荧光备选颗粒产品自动进料备选分拣机器备选产品技术参数主机技术参数摄像头:顶部,可固定或者移动,6或9.1百万像素,波长提供1.2-3.6亿像素/帧分辨率采用积分球设计,积分球提供均匀和弥散光线照明5-10秒钟内实现光谱成像和定量分析,19-20种不同波长的光源与传统RGB技术相比具有卓越的彩色测量功能光源寿命长,可达10万小时具有19个高功率LED灯源,波段范围从375nm-970nm,集成了RGB成像模块、紫外UV成像模块、叶绿素荧光成像模块、NIR近红外成像模块备选350nm-1700nm,包含30-40个波段图像尺寸:2056 × 2056像素或更高分辨率:~45μm/像素根据应用需求可自动切换动态范围NIST可追溯校准,使用2个反射校准以及几何定标靶。简单校准向导程序,只需3分钟样品尺寸:(台式)高度最高可调定制;落地式可根据用户需求调节设计尺寸,需要对相机镜头进行设置快速无损检测,分析时间:每个样品5-10秒室温,操作:5~40℃,储存:-5~50℃,环境湿度:20~90%RH相对湿度,非冷凝PC要求:最低配置:Intel i7 或更高,16GB RAM, 1THDD,USB3高端端口,千兆以太网软件:Microsoft Windows 7 Professional 64 bit, full windows update可选配颗粒样品自动进样模块、暗场/明场背光、滤波轮(用于荧光),可选配图像处理工具盒(IPT)、光谱成像工具盒(MSI)、斑点工具盒选配进样器技术参数样品容量标准为1.5升(可定制更大的样品尺寸)传送带宽度76nm处理速度每分钟1200cm2传送面积。样品处理量示例:宠物食品吊桶,18分钟内1公斤。玉米粒:6分钟300克。小麦和大麦:10分钟100克适用于不同尺寸和类型颗粒产品,软件自动进料器选项由Videometer Lab Biob Analyzer工具控制,可通过定制的软件插件与外部进样接口
    留言咨询
  • 武汉泰沃康仪器设备生产的超干种子柜,广泛运用于农业大学实验室,中科院植物园,种子公司,植保公司等单位;适合于种子的超干存储;得到研究人员广泛一致的好评!适用范围;水稻,花生,玉米,麦子,花生,芝麻,胡萝卜,烟草,拟南芥,中药材等。公司产品分为:1%--5%RH全自动系列 5%--20%RH可调湿度系列 20%--60%RH可调湿度系列 容量有100L-1500L等,分全钢门和玻璃门;可根据要求定制。联合国粮农组织(FAO)和国际植物遗传资源委员会(IBPGR)制定的长期保存种子种质的条件是5%~7%的含水量和-18~-25℃的贮藏温度,当今世界各国普遍采用此标准。但低温保存植物种质耗资巨大,找寻经济简便的保存技术已成为全球的战略目标。ELLIS和Roberts(1980)提出的预测种子寿命的经验公式已被广泛接受,但是并不适合预测在低温和低含水量下贮藏的种子寿命(VERTUcci等,1944)。ELLIS等 人为修正其种子寿命预测公式,将芝麻和花生种子含水量从5%降低到2%,种子在同样温度的贮藏寿命提高了40倍,相当于将贮藏温度丛20度降低到-20度的效果,随后又发现含水量为3.3%的莴苣种子在贮藏过程中种子畸变率并不高于含水量为5.5%的种子;以后的工作中又发现甘兰型油菜种子3%时的贮藏寿命比含水量为5%时高2倍,当含水量低于3%时种子寿命不再延长;因此在超干常温贮藏种子时,完全能达到低温贮藏的效果,并大大减少低温运转的费用。 我国科学家经过长期研究也得到如下结论1.多数正统型植物种子通过特殊干燥技术,将含水量降至5%~7%以下后,耐藏性大大提高。超干的种子与特定的包装技术结合,保存效果更好。2.从种子生活力与活力、生理生化特性、细胞超微结构、生物膜结构与功能、同工酶完整性、染色体畸变及DNA多态性分析证实,合适的超干贮藏不导致种质变异,其遗传完整性可良好保持。3.某些种子可能在超干过程中受损,萌发初期会吸胀损伤。通过适当的干前渗调和萌发前的逐步回湿,可将损伤有效减轻或消除。4.超干短命类种子(如榆树、杜仲)的室温贮藏效果与高含水量种子在低温(-20℃)或超低温(-196℃)贮藏下的效果相同或基本一致。
    留言咨询
  • 本公司代理瑞典SJA活力仪瑞典SJA活力仪,SJA活力测定仪,活力仪,瑞典活力仪,SJA活力仪,SJA活力测定仪,瑞典活力测定仪瑞典SJA活力仪中国总代理:南京铭奥仪器设备有限公司
    留言咨询
  • 超高清种子X光机 400-860-5168转1490
    超高清种子X光机是一种现代用途广泛的软X射线仪,例如,在种子检测工作中,使用超高清种子X光机可以透视的种子内部,分析的种子质量,检测种子的空粒、畸形粒,判断种子的活力等。目前,该超高清种子X光机广泛用于种子,农业、林业、植保、酿造及渔业等科研生产部门。更多超高清种子X光机详情请联系托普云农!系统功能:该系统由 X 射线机、X 射线探测器、计算机图像处理系统、检测平台、铅防护系统等五部分组成,是集现代计算机软件技术、光学技术、电子技术、传感器技术、无损检测和图像处理技术一体的高科技产品。是进行种子研究、内部缺陷、高可靠筛选、质量评估、科学研究等工作的有效手段。它主要是依靠 X 射线可以穿透物体,并可以储存影像的特性,进而对物体内部进行无损评价。系统采用微小焦点的X射线管以及高频高压技术,高分辨率平板成像系统,系统的技术、质量、性能均为国内领(ling)先水平。软件功能:1、主界面功能:超高清种子X光机可静态/动态,电子拍片、视频存储/回放、正片/负片、图像存储/查询、缺陷测量、图像放大/缩小、伪彩色、图表统计/打印、图像处理、退出系统等。2、图像处理功能:平滑处理,对比度增强,图像辅助处理,边缘增强,尺寸测量,图像打印。 射线防护系统(铅房):1、铅房采用六个面的设计,并设有手动铅门及观察窗口。2、铅门与X射线高压控制电路联锁保护。3、铅房顶部设有周围各方向均明显可见的报警灯。4、铅房内部设有照明及220V 电源插座。5、超高清种子X光机确保 X 射线在零距离条件下外漏剂量,符合国家标准,保证操作者安全。 软件技术参数:被检产品:种子X 射线探伤机容量:90KV,200μA射线源焦点尺寸:8μm平板成像系统有效成像范围:180mm X 150mm像素间距:125μm放大倍数:6 倍设备使用环境条件及工作时间:设备需安装在试验室和车间的固定处使用电源电压:AC 220V±10%电源频率:50Hz±10%最zui高输入电流:18A
    留言咨询
  • 种子储藏柜 400-860-5168转1490
    种子储藏柜也叫种子低温低湿储藏柜,采用低温低湿的原理贮藏种子,全微电脑自动化设定控制箱内温度、湿度、时间等指标,其功能强大,在种子储藏领域应用广泛。种子储藏柜可以提供的良好的储存条件以及科学的加工与贮藏管理方法,从而延长种子的寿命,提高种子的播种品质,保持种子的活力,为作物的增产打下良好的基础。仪器型号包括:CZ-250FC/CZ-300FC/CZ-450FC/CZ-1000FC/CZ-1600FC型号CZ-250FCCZ-300FCCZ-450FCCZ-1000FCCZ-1600FC容积250L(单开门)300L(单开门)450L(单开门)1000L(双开门)1600L(三开门) 功能特点:1、全微电脑自动化设定控制箱内温度、湿度、时间等指标,确保箱内低温低湿;2、中文液晶数字显示箱内温度、湿度值;3、控制系统具有除霜,延时,超温报警,自动除湿,时差纠正,紫外杀菌等功能,安全可靠;4、液晶显示屏、外柜体吧,制冷结构为风冷式,不结霜;5、多项安全保护功能(触电、漏电、过载、过流、压缩机延长启动);6、可设置灭菌灯工作时长,时间到自动关闭,避免手动关闭易忘现象;7、种子储藏柜可加装联网端口,联网型可在微信端和PC端实时查看箱体当前工作状况和历史温湿度运行数据,PC端可导出历史数据(选配)。联网型箱体功能特点:1、智能联网终端,可实时上传监测数据;2、支持移动端、web端并存,方便查看数据,分析管理;3、实时监控设备运行情况,异常报警信息可及时推送至手机移动端。管理云平台功能(联网型箱体):1、自带仪器云管理平台包含C/S架构,可将所有在线设备数据进行汇总分析,数据备份不丢失,查看操作方式包括网页端及手机端(安卓/苹果系统均可用);2、种子储藏柜数据可上传至管理云平台。平台内数据可下载,分析,打印;3、平台支持设备数据存储,提供足够容量可不限量保存;4、平台为设备数据提供曲线与表格等报表形式,且数据可导出与导入;5、平台可以结合数据进行报表制作,报表打印,报表导出功能;6、软件可在线升级。技术参数:温度范围:0~9.9℃控温精度:±1℃湿度范围:30~60%RH(可设定)控湿精度:±5%RH控制方式:全自动电 源:220V、50Hz联网方式可选:种子储藏柜标准版采用RJ45联网,如网线不方便,可单独采购WIFI模块联网。
    留言咨询
  • 电脑种子X光机是一款可以对种子进行微观检测的设备,可以检查种子的饱满粒、空粒和畸形粒,测定种子的活力、成熟期以及果实内部的虫害等。广泛应用于农业、林业、植保、酿造等科研生产部门的种子研究、质量评估、科学研究等工作。功能特点1、无需暗箱,实时成像:软件实时采集图片,实时成像。2、多种图像处理方式:电脑种子X光机软件可以一键对图像进行:对比度增强、边缘增强、反色显示、伪彩显示、局部增强、图像测量、图像裁剪、图像缩放等操作,满足多角度对图像的分析。3、检测参数丰富:软件可测种子的长、宽、周长、面积和角度等,满足各种实验需要。4、双层放物架,满足不同需求:上层平台可灵活调整位置,下层平台成像视野更大,可根据种子成像大小和成像面积选择不同层放物架。5、高速X光成像检测:单次种子X光成像检测仅需3-4秒即可完成。6、X图像随时打印:设备标配电脑,连接打印机可随时对X光图像进行调用、打印、分析,节省洗片等费用。7、远程操作,保证安全:设备配有脚踏开关,操作者在数据采集区域即可远程操作X光机摄像区域。8、铅房严密设计,防护性能强:铅房设计确保X射线在零距离条件下外漏剂量符合国家标准,保证操作者安全。技术参数像素间距:140 um(新款数字高清成像)A/D转换:16Bits空间分辨率:4.0LP/mmX射线管电压:40-60 KVX射线管电流:1-10 mAX摄像防护:铅柜可容最大厚度:600 mm数字成像视野:350*430 mm(不同面积可定制)外形尺寸:1350*800*710 mm重量:350KG标准配置检测装置主机 1台14寸笔记本电脑 1台网线 1根电源线 1根脚踏开关 1个加密狗 1个型号区别型号功能区别HY-1600T可检测水稻、油菜、松籽、玉米等农业林业种子HY-1800T可检测水稻、油菜、松籽、玉米、板栗、红枣、苹果等农业林业种子
    留言咨询
  • 本公司代理瑞典SJA活力仪,瑞典SJA公司已经有100多年历史,主要专业生产和供应食品科学与生产方面的分析设备。该品牌设备在全球各大大学和实验室已经广泛使用。同时,对于追求食物品质和外观的企业来说,谷物蛋白质和其他变量是至关重要的。对他们来说,高质量的分析仪器是必不可少的。瑞典SJA活力仪,SJA活力测定仪,活力仪,瑞典活力仪,SJA活力仪,SJA活力测定仪,瑞典活力测定仪瑞典SJA活力仪中国总代理:南京铭奥仪器设备有限公司
    留言咨询
  • 上海锦玟仪器设备有限公司生产的种子存放箱 低温低湿种子储藏柜是用于安全储藏种子的专用仪器,通过低温低湿的方式降低种子的生命活力。种子低温低湿储藏柜可形成局部低温低湿小气候,能够有效避免种子因气候变化出现的种子发霉、种子发热、种子生虫等劣变现象,保障种子的品质。●锦玟 低温低湿种子储藏柜全微电脑自动化设定控制箱内温度、湿度、时间等指标,确保箱内低温低湿,中文液晶数字显示箱内温度、湿度值;●大屏幕液晶程序控制,多组数据一屏显示,操作简单易懂,控制精确,蓝色背光,便于夜间查看;●可设置1-99个时段随意自动转换功能,每个时段设置时间范围1-999个小时;●可设置内胆保护温度,高于内胆保护温度软硬件自动切断加热电源,保护测试样品;●具有超温和传感器异常保护功能,保证仪器和样品安全,可选配全光谱的植物生长灯,有利于植物的生长,提高抗病性;●可设置灭菌灯工作时长,时间到自动关闭,避免手动关闭易忘现象;●具有掉电记忆、掉点时间自动补偿功能,停电后再次开机都可以延续原来的工作状态;●控制系统具有自动除霜功能;●传感器(环境温度,保护温度,箱体温度)故障识别功能,便于故障分析和排除。上海锦玟 智能型低温低湿种子储藏柜厂家 JZC-350FC技术参数:产品名称种子低温低湿储藏柜产品型号JZC-100FCJZC-150FCJZC-250FCJZC-350FC容积100L150L250L350L控温范围0~10℃温度分辨率0.1℃温度波动度±0.5℃~±1.0℃控湿范围≦52%RH控湿精度、均匀度1%RH/±5%RH杀菌紫外杀菌F/FCFC代表有除湿功能 F代表无除湿功能电源AC220V 50HZ工作环境温度+5~30℃工作方式连续循环输入功率520W740W850890W内胆尺寸(mm)500*500*400500*500*610500*500*1040500*520*1280外形尺寸(mm)600*670*1000600*670*1200600*670*1650600*670*1918载物托架(层)2334 温馨提示: 种子储藏最怕的是环境温度过高、过于潮湿。种子储藏在这种环境下,往往会导致种子提前发芽、过热、发霉、腐烂等不良状况。因此在种子储藏问题上我们要保证种子储藏环境的低温低湿。上海锦玟仪器研制的种子低温低湿储藏柜很好的保证了种子储藏环境的低温低湿,因此也叫种子低温低湿标样柜。控温、控湿精度高,全自动控制方式省时又省力。
    留言咨询
  • 流式成像显微镜(FIM)结合了数字成像、显微计数术和颗粒技术的功能,成为一个综合性仪器。除了传统的粒度和计数,其基于图像的分析方法能够对颗粒进行全面表征。 通过其的图像质量和宽泛的检测范围,FlowCam 8100是新一代出众的颗粒成像分析仪。在不到一分钟的时间内分析数成千上万个颗粒,全面表征其原生体系中亚可见和可见颗粒的大小、计数、形态和类型。 FlowCam 8100 技术特色可快速获得有价值的实验结果:在不到一分钟的时间内,只需100 μL的样品,即可获得具有统计学意义的结果。FlowCam具有先进的硬件和处理能力,简化了快速数据采集和分析。保证样品的客观完整性:颗粒能够在它们的原生体系中进行分析。FlowCam适用于各种水性和有机流体,包括高粘度溶剂或缓冲液高效地数据排序、过滤及量化:通过强大而灵活的VisualSpreadsheet软件,根据40+形态学参数对所获取数据和颗粒图像进行分类高度灵活性:可对各种浓度样品进行检测。适用于各种类型的样品。应用领域:生物制药研发及质控流式成像显微镜(FIM)是USP1788推荐的一种用于检测亚可见颗粒含量的正交方法。FlowCam广泛应用于生物制剂的研究、配方开发和蛋白质聚集体表征、纳米药物传递系统开发,以及细胞和基因治疗产品的开发。 细胞、蛋白聚体和其他颗粒的检测 配方研发 qc诊断和批次放行测试 稳定性研究和效期评估 纯化工艺开发 辅料和API表征 蛋白质聚集体硅油颗粒细胞聚集体材料的表征FlowCam广泛应用于各种材料和化学品检测:从食品和饮料成分的表征到打印机墨粉和磨料,离子交换树脂,柱状包装材料,纤维,增材制造(粉体材料3D打印),聚合物成分分析,化学品,化妆品配方和微胶囊化工艺。 磨料颗粒检测 木材和纸浆纤维 化妆品和香水 食品饮料 微型化工艺开发 石油和天然气 油漆和聚合物 打印机墨粉 微电子部件洗涤水 彩色打印墨粉颗粒聚苯乙烯球微胶囊化颗粒 海洋和淡水研究20多年来,科学家们一直在使用FlowCam作为一种自动化、快速、准确、易于使用的工具来监测浮游生物群落组成。FlowCam已成为世界范围内研究海洋和淡水微生物的重要仪器。 识别和列举浮游植物和浮游动物 调查有害藻华(HABs) 支持水产养殖系统的健康发展 观察微藻培养 分析沉积物颗粒 海洋浮游生物赤潮(有害藻华)淡水浮游生物 水质与环境监测FlowCam提供了一种主动、经济、可扩展的解决方案来监测原始或经处理的水。世界各地的水务公司使用FlowCam来检测和量化产生味道和气味的生物、污染过滤器的硅藻和潜在有毒的蓝藻。环境应用包括监测土壤微生物、花粉、种子和污染物。 识别饮用水源中的蓝藻、味、臭等有害藻类 使用数据为水处理决策提供信息 监控过滤器性能 检测和监测土壤微生物、螨虫、森林凋落物、无脊椎动物和线虫 确定种子活力 分析花粉颗粒 微胞藻属(蓝藻)长孢藻(蓝藻)花粉颗粒
    留言咨询
  • 上海锦玟仪器设备有限公司生产的种子存放箱 低温低湿种子储藏柜是用于安全储藏种子的专用仪器,通过低温低湿的方式降低种子的生命活力。种子低温低湿储藏柜可形成局部低温低湿小气候,能够有效避免种子因气候变化出现的种子发霉、种子发热、种子生虫等劣变现象,保障种子的品质。●锦玟 低温低湿种子储藏柜全微电脑自动化设定控制箱内温度、湿度、时间等指标,确保箱内低温低湿,中文液晶数字显示箱内温度、湿度值;●大屏幕液晶程序控制,多组数据一屏显示,操作简单易懂,控制精确,蓝色背光,便于夜间查看;●可设置1-99个时段随意自动转换功能,每个时段设置时间范围1-999个小时;●可设置内胆保护温度,高于内胆保护温度软硬件自动切断加热电源,保护测试样品;●具有超温和传感器异常保护功能,保证仪器和样品安全,可选配全光谱的植物生长灯,有利于植物的生长,提高抗病性;●可设置灭菌灯工作时长,时间到自动关闭,避免手动关闭易忘现象;●具有掉电记忆、掉点时间自动补偿功能,停电后再次开机都可以延续原来的工作状态;●控制系统具有自动除霜功能;●传感器(环境温度,保护温度,箱体温度)故障识别功能,便于故障分析和排除。上海锦玟大容量智能数显种子低温低湿储藏柜JZC-1000FC技术参数:产品名称低温低湿种子储藏柜产品型号JZC-250FCJZC-350FCJZC-450FCJZC-600FCJZC-800FCJZC-1000FC容积250L350L450L600L800L1000L控温范围0~10℃温度分辨率0.1℃温度波动度±0.5℃~±1.0℃控湿范围≦52%RH控湿精度、均匀度1%RH/±5%RH杀菌紫外杀菌FC,FFC代表有除湿功能,F代表无除湿功能电源AC220V 50HZ工作环境温度+5~30℃工作方式连续循环输入功率750W790W840W960W10201090W内胆尺寸(mm)500*500*1420500*500*1420500*630*14201120*400*14201120*450*14201120*650*1420外形尺寸(mm)600*600*1700600*610*2050600*750*20501200*600*20501200*600*20501200*800*2050载物托架(层)344444
    留言咨询
  • 38℃恒温数码显微镜 精子活力观察精制的金属齿杆齿条调焦机构,舒适稳定 恒温载物台自动加热, 温度自动控制在 38 度。载玻片自动恒温高清3.5寸LCD屏幕两组LED照明系统载玻片自动恒温 高清3.5寸LCD屏幕 两组LED照明系统产品信息:名称:恒温一体数码显微镜LCD液晶尺寸:3.5超大图像传感器:200万像素CMOS放大倍数:40X——1600X曝光方式:电子曝光补偿系统存储方式:SD卡扩展槽 内置10内存载物台:刻度尺型移动载物台,开机自动恒温38度数据输出:miniUSB
    留言咨询
  • Videometer MiniLab采用了LED频闪光源系统,有效组合了7个波长测量,并生成图谱合一的融合光谱图像,每个像素对应一个不同反射光谱。该设备包括可见光以及NIR近红外波段,用于作物表型、植物病害等等进行精确、全面检测。该便携式Videometer MiniLab可搭载到推车支架上,在田间使用,也可手持使用,是一款多功能成像平台。便携式多光谱表型成像系统主要功能结合可见光成像和光谱成像优点对种子、病害表型成像便携设计,方便带到温室或野外使用标准校准功能,数据可重复经验丰富的专家根据应用经验设计的软件,操作简单,解决农业应用中遇到的问题内置颜色校正标配7个光谱波段,并不断升级中 产品说明该系统也可以对细菌、真菌、虫卵等进行高通量成像测量,进行毒理学或其它研究,用于食品谷物、作物、肉品等等进行精确、全面品质检测。Videometer系统生成图片可用其它分析系统进行分析,如Matlab等。考虑到Videometer MiniLab可能需要经常带到温室、野外或其它地方进行测量,因此它被设计成可便携携带的样式。VideometerLab MiniLab的工作软件由Videometer公司强大的生物信息学和软件团队开发,充分考虑在实际应用的需求,操作简单,功能强大。Videometer还在不断研究、升级新算法,适合各种需求。VideometerLab MiniLab便携式种子表型多光谱成像系统通过测量种子在7种不同波长(波长范围405-850nm)的LED频闪光下的成像来获取有用的信息。这些图像可以独立分析使用,也可以叠加起来合成高分辨率的颜色图像。基础整合模块,含7个波段多光谱成像系统。软件可进行颜色校准,标签识别,灰度图转换等。 田间多光谱表型成像系统应用表型性状分析/挖掘,基因型-表型关联农业育种园艺学、农业信息学果实品质分析植物病理研究生物量分析种子萌发研究抗逆研究直接测量的参数尺寸形状颜色形态纹理光谱质构与表面化学相关的光谱成分计数间接测量或计算种子纯度发芽百分比发芽率种子活力种子健康度种子成熟度种子寿命等主要特点集成球体提供均匀和弥散光线照明10-15秒钟内实现光谱成像和定量分析7不同波长/光源3百万像素/波长,提供,2100万像素/帧分辨率标准设备包括易于使用设备校准与传统RGB技术相比具有先进的彩色测量功能根据应用需求可自动切换动态范围光源寿命长、可达10万小时LED光源技术稳定性增强研究用强大探索软件易用常规应用配方构建工具(建模)成像特点快速、无损检测包括处理在内每样品处理仅需10-20秒与其它破坏性技术组合高灵活性测量主要专注:可重复洗、可追溯性、耐用性、可传递性技术参数全套分析时间10-15秒/样品电源:5 V DC 3 A电源功耗300 VA环境温度操作: 5-40℃,储存-5-50℃环境湿度20-90 % RH相对湿度,非冷凝软件备选:图像处理工具包 (IPT)光谱成像工具盒 (MSI) 斑点工具盒设备尺寸: 270 mm(h) * 240 mm(w) * 200 mm(d)重量:1.1kg 案例应用由叶绿素/成熟度区分种子来自英国的科学家研究重点是对高级成像技术进行评估,以对根定植进行真菌检测和精确定量,通过测量光合参数评估对地上部健康的影响。研究中使用了VideometerLab 多光谱成像系统。图中显示“Take-all”感染小麦幼苗。左侧是原始图像,有红色箭头标示“take-all ”损失,用手工评分;右图是相同图像经‘VideometerLab’分析,将根组织分类为感病(蓝色)和健康(桔色/黄色)。利用Videometer多光谱成像系统对藜麦霜霉病成像藜麦(Chenopodium quinoa)是一种作物,营养丰富,在多个国家广有种植。真菌病如霜霉病限制了谷物产量,培育抗性品系,如抗霜霉病品系是藜麦育种的中心目标。利用常规RGB成像来测量藜麦对霜霉病的表型反应(Peronospora variabilis ) 测量比较困难,原因在于来自不同藜麦基因型在叶片上有不同绿色和红色斑点进行干扰,参见图1和图2。 开发图像分析规程来区分健康藜麦叶片组织以及感染霜霉病的藜麦叶片组织。研究利用Videometer多光谱成像系统对严重度程度表型和孢子形成进行研究。严重程度是叶片正面损伤的面积占整个叶片面积的百分比。依基因型不同,颜色可为桔色、黄色或红色。孢子形成是损伤部上方孢子量,以百分比测量,通过测量叶片正面进行评估。 图1 叶片正面严重度症状图2 叶片正面孢子形成多光谱图像分析研究人员利用VideometerLab 4多光谱成像系统进行多光谱成像,积分球确保对样品的均一照明(图3)。每个获取的图像层由19个不同图像波段组成,波长涵盖365nm(UVA)到970nm(NIR)。图像的每个像素分辨率为~41 μm。每个图像层的分辨率为2192X2192像素。图像分析严重度模型从G9基因型叶片正面(图4)清楚看到了黄化现象(A),拍摄了RGB图像(常规相机,人眼可见光波段。(B)和(C)显示了多光谱图层中的2个波段,蓝光490nm(B)和黄光570nm(C)。对健康植物组织和黄化界定进行了初始标记,首次转换建立了模型(D),通过nCDA(归一化典型判别分析将19个波段信息(图像中多个图层),转换为了整个图层的代表像素范围值。之后切割(E和F),可用于所有图像-所有品系和基因型,获取有黄化组织(E黄色)百分比定量分析,该特定叶片比例为68.0%,或者包括红色覆盖孢子区(F),比例为18,9%,黄化(黄色)比例68%,孢子和黄化区综合面积占比75.8%。 图像分析孢子形成在叶片正面(底部),RGB图像中的G9基因型清晰可见到孢子形成图像(下底部A和B放大)。尽管在可见光波段很难检测到单个波段,这里特别标出了蓝光波段(490nm)(C)。进入NIR(780nm)波段(下左部的D和E放大),清晰看见了孢子。使用该信息(仅标识黑灰色孢子)可帮助我们区分切割孢子像素(F),并将该面积定量,该叶片孢子比例为12.5% (黄色显示),不包括黄化部分面积。另外,此处的孢子标识与正面图像分析而言更加保守。 覆盖的非黑灰区的像素部分 (像素比单个孢子要大)估计,孢子比例为~23%(此处未予以显示)。图4(A) sRGB图像。(B),490nm(蓝光),(C),570nm(黄色),(D) 转换,(E)和(F),2种类型定量分割。图5(A) sRGB 图像,(B)490nm(蓝光),(C) 570nm(黄色),(D)转换,(E)定量分割。结果图6:133个基因型的平均严重程度(%)分布表1手工以及基于多光谱表型成像的藜麦霜霉病互作
    留言咨询
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制