当前位置: 仪器信息网 > 行业主题 > >

终冷温度对其组织

仪器信息网终冷温度对其组织专题为您整合终冷温度对其组织相关的最新文章,在终冷温度对其组织专题,您不仅可以免费浏览终冷温度对其组织的资讯, 同时您还可以浏览终冷温度对其组织的相关资料、解决方案,参与社区终冷温度对其组织话题讨论。

终冷温度对其组织相关的论坛

  • 冷热温度正反向控制技术在冷凝器热疲劳试验中的应用

    冷热温度正反向控制技术在冷凝器热疲劳试验中的应用

    [size=16px][color=#3366ff][b]摘要:空调换热器需要进行可靠性试验以满足整机产品在不同环境下的寿命周期,温度交变试验是可靠性试验中是较为关键的一项。本文在现有PLC交变温度控制技术基础上,提出了一种模块式的改进解决方案,即增加了专用的高精度PID调节器分别进行热水箱和冷水箱的温度控制,特别是采用具有冷热双向控制功能的PID调节器,在提高控温精度的同时,主要是能够大幅减小PLC控制器的软硬件复杂程度和编程工作量,更重要的是此方案可推广应用到其它任何形式的温度波和压力波的形成。[/b][/color][/size][size=16px][color=#3366ff][b][/b][/color][/size][align=center][size=16px][img=换热器热疲劳试验装置的冷热温度交变控制解决方案,600,331]https://ng1.17img.cn/bbsfiles/images/2023/05/202305221448031765_8068_3221506_3.jpg!w690x381.jpg[/img][/size][/align][size=18px][color=#3366ff][b]1. 问题的提出[/b][/color][/size][size=16px] 单冷式空调以及冷暖型空调(又称为热泵型)中的室外换热器(也称为冷凝器或蒸发器),其所处环境比较复杂严酷,例如在冬季使用时,室外换热器经常会结霜,在运行一段时间后空调控制器就会让其化霜。所以室外换热器经常会处于温度交替变化状态,如果换热器结构或材料选用不当,极端情况下换热器会出现裂缝导致制冷剂泄漏造成空调器不能工作。因此,为了考核换热器的可靠性,室外换热器必须进行冷热温度交变条件下的可靠性试验。[/size][size=16px] 目前很多用于热疲劳可靠性试验的换热器温度交变试验装置,基本都采用如图1所示的控制结构,分别使得冷热液体交替通过换热器来实现冷热温度交变。其中热水箱采用加热器进行温度调节,冷水箱则通过加热器和压缩制冷机进行加热和制冷调节,加热器和制冷机则则采用了PLC上位机进行PID自动控制。[/size][align=center][size=16px][color=#3366ff][b][img=01.温度交变试验装置结构示意图,550,293]https://ng1.17img.cn/bbsfiles/images/2023/05/202305221449444721_961_3221506_3.jpg!w690x368.jpg[/img][/b][/color][/size][/align][align=center][size=16px][color=#3366ff][b]图1 温度交变试验装置结构示意图[/b][/color][/size][/align][size=16px] 换热器温度交变试验装置基本都是自行搭建的非标设备,在实施过程过程中存在以下问题:[/size][size=16px] (1)温度交变试验装置采用PLC作为上位机进行控制是非常合理的,但PLC同时还要具有加热器控制功能,这需要增加PID温度控制模块及其相应的编程,这对很多PLC使用人员较有难度。[/size][size=16px] (2)特别是还需采用PLC实现冷水温度加热和制冷的双向控制,这更是增大了采用PLC进行控制的实现难度。[/size][size=16px] 为了解决上述问题,本文将提出一种模块化解决方案,即采用高精度PID温度控制器,特别是采用一种高精度的加热制冷双向PID温度控制器去控制加热器和压缩机制冷机组,由此控制器组成温控模块与上位机PLC通讯,可大幅减小温度交变试验装置的搭建难度和编程工作量。[/size][size=18px][color=#3366ff][b]2. 解决方案[/b][/color][/size][size=16px] 为了实现模块式温度交变试验装置的搭建,简化温度系统中PLC的复杂程度和编程难度,本文提出的解决方案如图2所示,即在图1所示的试验装置中增加了两套专用的PID温度控制器。[/size][align=center][size=16px][color=#3366ff][b][img=02.模块式温度交变试验装置结构示意图,600,261]https://ng1.17img.cn/bbsfiles/images/2023/05/202305221450133742_6417_3221506_3.jpg!w690x301.jpg[/img][/b][/color][/size][/align][align=center][size=16px][color=#3366ff][b]图2 模块式温度交变试验装置结构示意图[/b][/color][/size][/align][size=16px] 如图2所示,在模块式温度交变试验装置中采用了两个独立的PID温度控制器,其中一个用于热水箱的温度加热控制,另一个用于冷水箱的制冷加热双向控制。这里的PID温度控制器是一种高精度的PID调节器,具有24位AD、16位DA和0.01%最小输出百分比,并具有正反双向控制等一些串级、分程和比值复杂控制功能,非常适合同时进行加热和制冷控制的仪器设备,具有PID参数自整定功能和无超调PID控制功能。[/size][size=16px] 图2中所配置的PID温度控制器具有RS485通讯接口和随机软件,可直接采用软件在计算机上运行温控器进行温度控制,也可以与上位机PLC通讯进行参数设置和运行控制。[/size][size=18px][color=#3366ff][b]3. 总结[/b][/color][/size][size=16px] 通过上述的解决方案,采用独立的多功能高精度PID调节器,可实现模块式温度交变试验装置的搭建,简化了温度系统中PLC的复杂程度和编程难度。[/size][size=16px] 更重要的是,采用高精度PID调节器组成的模块式试验装置,可推广应用到其它类型换热器的温度交变可靠性测试中,可以用于其他任何试验所需的高精度温度波和压力波的生成。[/size][align=center][size=16px][color=#3366ff][b][/b][/color][/size][/align][align=center][size=16px][color=#3366ff][b]~~~~~~~~~~~~~~~~[/b][/color][/size][/align]

  • 高效冷冻,自动化气相液氮罐的温度控制技术

    温度控制是[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相[/color][/url]液氮罐的关键技术之一,在高效冷冻和自动化方面扮演着重要角色。一种高效冷冻、自动化[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相[/color][/url]液氮罐的温度控制技术。[b]  一、温度传感器[/b]  温度传感器是[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相[/color][/url]液氮罐温度控制的核心元件。目前常用的温度传感器有热电偶和温度传感器。热电偶是由两种不同材料组成的电偶,当温度变化时,两种材料产生的电势差也会随之变化。温度传感器则通过电阻值的变化来测量温度。无论是热电偶还是温度传感器,其关键在于精度和稳定性,以确保温度测量的准确性。[b]  二、温度控制算法[/b]  温度控制算法是实现高效冷冻和自动化的关键。其中一个常用的算法是PID算法(比例-积分-微分算法)。PID算法通过不断调整控制器的输出信号,使得系统的温度能够快速且稳定地达到设定值。比例项用于根据当前温度与设定值之间的偏差来调整控制器的输出,积分项用于消除系统的静态误差,微分项用于消除系统的动态误差。[b]  三、冷却系统[/b]  冷却系统是高效冷冻的关键组成部分。常用的冷却系统包括压缩机、冷凝器、蒸发器和控制阀等。在温度控制中,压缩机负责提供冷冻剂的压缩和流动,冷凝器负责将冷冻剂释放热量,蒸发器负责吸收热量,而控制阀则根据温度传感器的信号来控制冷冻剂的流量,从而实现对温度的精确控制。  四、自动化控制系统  自动化控制系统是实现[url=http://www.cnpetjy.com/qixiangyedanguan/][url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相[/color][/url]液氮罐[/url]温度控制的关键。它包括温度控制器、传感器、执行器和人机界面等组成部分。温度控制器负责接收传感器的信号,并根据设定值和控制算法来控制执行器的操作。执行器则根据控制器的指令来调整冷却系统的工作状态。人机界面则提供操作者与系统交互的接口,使操作者能够监测和调整温度控制参数。[url=http://www.mvecryoge.com/]金凤液氮罐厂家[/url]  综上所述,高效冷冻、自动化[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相[/color][/url]液氮罐的温度控制技术需要依靠精确的温度传感器、高效的温度控制算法、可靠的冷却系统和先进的自动化控制系统。通过这些技术的应用,可以实现对[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相[/color][/url]液氮罐温度的快速、稳定和精确控制,提高冷冻效率,实现自动化生产,提高工作效率。

  • 半导体晶片温度控制中制冷原理说明

    半导体晶片温度控制是目前针对半导体行业所推出的控温设备,无锡冠亚半导体晶片温度控制采用全密闭循环系统进行制冷加热,制冷加热的温度不同,型号也是不同,同时,在选择的时候,也需要注意制冷原理。  半导体晶片温度控制制冷系统运行中是使用某种工质的状态转变,从较低温度的热源汲取必需的热量Q0,通过一个消费功W的积蓄过程,向较热带度的热源发出热量Qk。在这一过程中,由能量守恒取 Qk=Q0 + W。为了实现半导体晶片温度控制能量迁移,之初强制有使制冷剂能达到比低温环境介质更低的温度的过程,并连续不断地从被冷却物体汲取热量,在制冷技巧的界线内,实现这一过程有下述几种根基步骤:相变制冷:使用液体在低温下的蒸发过程或固体在低温下的消溶或升华过程向被冷却物体汲取热量。平常空调器都是这种制冷步骤。气体膨胀制冷:高压气体经绝热膨胀后可达到较低的温度,令低压气体复热可以制冷。气体涡流制冷:高压气体通过涡流管膨胀后可以分别为热、冷两股气流,使用凉气流的复热过程可以制冷。热电制冷:令直流电通过半导体热电堆,可以在一端发生冷效应,在另一端发生热效应。  半导体晶片温度控制在运行过程中,高温时没有导热介质蒸发出来,而且不需要加压的情况下就可以实现-80~190度、-70~220度、-88~170度、-55~250度、-30~300度连续控温。半导体晶片温度控制的原理和功能对使用人员来说有诸多优势: 因为只有膨胀腔体内的导热介质才和空气中的氧气接触(而且膨胀箱的温度在常温到60度之间),可以达到降低导热介质被氧化和吸收空气中水分的风险。  半导体晶片温度控制中制冷原理上如上所示,用户在操作半导体晶片温度控制的时候,需要注意其制冷的原理,在了解之后更好的运行半导体晶片温度控制。

  • 实验室中各种低温冷却浴的冷却温度大全

    [url=http://www.anytesting.com/search/q-%E5%86%B7%E5%8D%B4%E6%B5%B4.html]冷却浴[/url][font=微软雅黑][size=16px][color=#444444]是实验室常见的操作,最常见的有三种:冰盐浴,干冰溶剂浴和液氮溶剂浴。相对较低冷却浴温度(-30℃~-78℃)一般用实验室中比较常见的干冰加其他溶剂降温【后附表】,更低的温度则用液氮。-20℃以上的冷却浴则常用冰盐浴,最简单的是用水和碎冰的混合物,可冷却至0℃~5℃,由于接触面积大它比单纯用冰块有更大的冷却效能。冰盐混合冷却剂的温度可在0℃以下,例如,食盐与碎冰的混合物(33g:100g),其温度可由始温-1℃降至-21℃。冰盐浴不宜用大块的冰,而且要均匀混合,冰盐浴保持溶液状态冷却效果才好,盐加太多达到共晶温度(Eutectic temperature)而凝结形成颗粒状的冰盐粒,反而不利于热量扩散。除上述冰浴或冰盐浴外,若无冰时,则可用某些盐类溶于水吸热作为冷却剂使用。[/color][/size][/font]

  • 化学实验中各种冷却浴的冷却温度

    化学实验中各种冷却浴的冷却温度温度℃冷却浴温度℃冷却浴13对二甲苯 /干冰-56正辛烷/干冰121,4-二氧六环/干冰-60异丙醚/干冰6环己烷/干冰-77丙酮/干冰5苯/干冰-77乙酸丁酯/干冰2甲酰胺/干冰-83丙胺/干冰0碎冰-83.6乙酸乙酯/液氮-5 - -20冰/盐-89正丁醇/液氮-10.5乙二醇/干冰-94己烷/液氮-12环庚烷/干冰-94.6丙酮/液氮-15苯甲醇/干冰-95.1甲苯/液氮-22四氯乙烯/干冰-98甲醇/液氮-22.8四氯化碳/干冰-100乙醚/干冰-251,3-二氯苯 /干冰-104环己烷/液氮-29邻二甲苯/干冰-116乙醇/液氮-32间甲苯胺/干冰-116乙醚/液氮-41乙腈/干冰-131正五烷/液氮-42吡啶/干冰-160异戊烷/液氮-47间二甲苯/干冰-196液氮

  • 形状记忆合金相变温度测量中的TEC半导体加热制冷装置解决方案

    形状记忆合金相变温度测量中的TEC半导体加热制冷装置解决方案

    [size=16px][color=#ff0000]摘要:形状记忆合金(SMA)是一种先进的金属材料,其物理和机械性能本质上依赖于温度。为了快速和低成本的实现SMA相变温度和热滞后性能的测试表征,基于更灵敏的电阻温度依赖关系,本文提出了采用帕尔贴TEC加热制冷装置结合四电极电阻测量的解决方案。与传统的DSC法相变温度测试相比,这种帕尔贴形式的电阻温度法具有更高的灵敏度和快速变温速度,且被测样品装配简单,更适合MEMS的热表征,并且比DSC更具有成本优势。[/color][/size][align=center][size=16px] [img=TEC半导体加热制冷技术在形状记忆合金相变温度测量中的应用,550,320]https://ng1.17img.cn/bbsfiles/images/2023/05/202305141453488440_9957_3221506_3.jpg!w690x402.jpg[/img][/size][/align][size=18px][color=#ff0000][b]1. 背景[/b][/color][/size][size=16px] 形状记忆合金(Shape Memory Alloys:SMA)是一种先进的金属材料,其物理和机械性能本质上依赖于温度。这种温度依赖性使得SMA作为致动器和/或传感器在工程应用中有着巨大潜力,因此需要研究作为温度函数的SMA行为,这对于开发基于SMA的热机械致动器至关重要。[/size][size=16px] 由于SMA中的相变是热触发,其行为与温度密切相关,任何的温度变化都会伴随着热性能和机械性能的显著变化,因此可以应用不同的技术来确定SMA中的相变温度。典型的相变温度测量使用的热分析技术主要包括差示扫描量热分析法(DSC)、差热分析法(DTA)和动态力学分析法(DMA),这些技术都有相应的商业化设备。然而,这些设备高昂的采购、安装和维护成本使得预算有限的机构无法实施。此外,这些设备需要使用消耗品,如载气(DSC)和冷却液(DMA中的液氮)。在SMA应用(如微致动器)的开发中,购买和专门使用这种商业设备来确定材料的相变温度可能会很昂贵,更不用说设备的使用率并不高。[/size][size=16px] 针对上述情况,特别是根据客户的要求,希望在尽可能短的测试时间内和尽可能低的成本下,从定性和定量的角度寻找非商业的替代测试方法和测试仪器以获得合适的物理信息来确定形状记忆合金致动器的相变温度,为此本文提出了相应的解决方案。[/size][size=18px][color=#ff0000][b]2. 解决方案[/b][/color][/size][size=16px] 对于形状记忆合金这类合金材料,其电阻值与温度有强烈的依赖性,大量研究表明通过测量电阻对温度的这种依赖性在一些影响晶格组织的结晶现象时往往会更加敏感,也就是说通过测量温度变化过程中的电阻变化来确定SMA相变温度,往往会比单纯测量温度和热流形式的DSC更加的灵敏。为此,本解决方案的核心是给SMA样品加载温度,并同时测量SMA样品电阻随温度的变化,由此来形状记忆合金的相变温度和热滞后。[/size][size=16px] 另外,形状记忆合金的相变温度普遍不高,一般都在-50~150℃温度范围内。为了在此温度范围内实现样品的温度变化,加热装置需具备以下几方面的功能:[/size][size=16px] (1)温度控制要具有很高的控制精度和速度,加热温度能很快的传递给被测样品,并同时能使被测样品具有很好的温度均匀性。[/size][size=16px] (2)温度变化要具备可控速率的线性升温和降温能力。[/size][size=16px] (3)加热装置简单,并便于安装被测样品和便于测量样品的电阻值。[/size][size=16px] 为满足上述加热装置的要求,本文提出的解决方案采用了TEC帕尔帖热电技术,即采用帕尔帖片对被测样品提供-50~150℃的温度变化,由此组成的测量装置结构如图1所示。[/size][align=center][size=16px][img=01.形状记忆合金相变温度测量装置结构示意图,690,226]https://ng1.17img.cn/bbsfiles/images/2023/05/202305141454517414_9874_3221506_3.jpg!w690x226.jpg[/img][/size][/align][align=center][size=16px][color=#ff0000][b]图1 形状记忆合金相变温度测量装置结构示意图[/b][/color][/size][/align][size=16px] 如图1所示,TEC模组的温度控制采用了一套TEC温度控制装置,包括TEC电源换向器和高精度PID可编程控制器,由此可实现TEC模组表面温度按照设定的程序曲线进行快速升温和降温。TEC模组的底面安装有散热器,图1中并未标出,为了提高散热效率一般采用循环水冷却散热器。[/size][size=16px] 为了测量SMA的相变温度和考核其稳定性,需要使用相同的加热和冷却速度来进行热循环测试,这就需要TEC模组的温度控制具有较高的精度和重复性。为此,本解决方案采用了高精度PID可编程控制,完全可以满足SMA相变温度测试的需要。[/size][size=16px] 如图1所示,被测SMA样品放置在TEC模组的表面,为减小接触热阻和保证温度均匀性,样品与TEC之间涂覆有相应的热界面材料。样品表面的温度由焊接在其上的热电偶进行测量,此热电偶作为控温热电偶,也可以同时再焊一根热电偶作为测温热电偶使用。SMA样品电阻测量采用了四电极法,即在样品上焊接四根铜电极分别作为内电极和外电极,四根电极连接到微欧计进行电阻测量,由此可以通过采集测温热电偶的温度数据和微欧计的电阻数据得到SMA样品的电阻温度变化曲线,并最终得到SMA样品的相变温度和热滞后性能。[/size][size=16px][color=#ff0000][b]3. 总结[/b][/color][/size][size=16px] 本解决方案适用于形状记忆合金的电阻-温度特性曲线,并由此得到相应的相变温度和热滞后性能,帕尔贴模块能够在-50℃和150℃之间进行热循环,温度控制系统能够提供良好的冷却/加热响应。同时,本解决方案还具有以下特点:[/size][size=16px] (1)与相变温度的DSC表征相比,带有帕尔贴模块的电阻温度测量装置表现出更良好的性能,电阻对相变的响应更敏感和快速。[/size][size=16px] (2)帕尔贴模块具有更快和更准确的变温速度,这能够在使用不同的材料活化速率(加热/冷却速率)时对SMA的基本行为进行研究,这与典型的其他热分析技术相比,在具有同样的准确性和可靠性的同时,更能提供所需要的加热/冷却速度。[/size][size=16px] (3)采用帕尔贴模块形式的相变温度测量,其简单的结构可允许在有或没有机械应力的情况下表征铸态和纹理形状记忆合金,这在SMA微机电系统(MEMS)的热表征中有着重要作用。[/size][size=16px] (4)珀耳帖表征设备比典型的热技术成本低得多,而且这种TEC帕尔贴加热制冷方式还可用于形状记忆合金其他物理量的测量,如比热容、热导率和热膨胀系数测量。[/size][align=center][size=16px][b]~~~~~~~~~~~~~~~~[/b][/size][/align]

  • 【分享】大型强子对撞机被冷却 成宇宙中温度最低地区之一

    据国外媒体报道,经过冷却后,备受关注的大型强子对撞机(LHC)已成为宇宙中温度最低的地区之一。强子对撞机的所有8个组成部分现已被冷却到1.9开氏温度(零下271摄氏度,零下456华氏度)这一操作温度,低于外太空温度。 大型磁铁能够弯曲强子对撞机周围的粒子束,它们利用液态氦帮助对撞机保持这一绝对低温。强子对撞机位于法国-瑞士边境地下一条27公里长的环形隧道内,磁铁则被从头至尾置于隧道之中。据悉,对撞机将于11月下旬重启,对其进行冷却是重启前的一个重要步骤。 2008年9月19日,由于所谓的磁铁“熄灭”导致一公吨液态氦渗入隧道,大型强子对撞机被迫关闭。液态氦泄露事故发生后,对撞机必须进行加温以达到进行维修需要的温度。大型强子对撞机是有史以来研制的功率最大的物理学设备,能够重建大爆炸之后的宇宙初期形态,由位于日内瓦的欧洲核子研究组织负责操作。 实验过程中,两个质子束将被导入穿过磁铁的管道内。在环形隧道内,质子束将以接近光速的速度以相反方向飞行。在隧道周围指定的点,携带巨大能量的质子束相遇并发生碰撞。科学家希望在撞击产生的碎片中发现新的粒子,以便从根本上加深对宇宙本质的了解。 大型强子对撞机的操作温度接近零下273.15摄氏度这一绝对零度,绝对零度是可能达到的最低温度。相比之下,外太空遥远区域的温度大约在2.7开氏温度(零下270摄氏度 ,零下454华氏度)左右。 在设计上,强子对撞机采用的磁铁具有超导性,能够让电流通过时遭遇的阻力降为零,进而将能量损失降至最低。为了具有超导性,磁铁必须被冷却到相当低的温度。出于这个原因,对撞机采用了一个复杂的低温线路系统并利用液态氦作为制冷剂。迄今为止,还没有如此大规模的粒子物理学研究设备在如此低温条件下运行。 在质子束绕27公里长的隧道运行前,工程师必须测试对撞机的新熄灭保护系统,同时进行磁铁供电测试。目前,质子束已经被送到大型强子对撞机“门前”。据悉,将一个低强度质子束导入对撞机最短需要一周时间。对质子束的测试只涉及对撞机自身组成部分,而不是整个环形隧道。 官员们计划在11月下旬让一个质子束绕对撞机环形隧道运行。在此之后,工程师将进行低强度质子束对撞实验,为科学家提供他们获得的第一手数据。质子束的能量随后将被提高以进行第一次高能对撞。所有这些标志着大型强子对撞机研究计划正式启动。高能对撞预计于12月进行,但据欧洲核子研究组织公关部负责人詹姆斯吉利斯透露,对撞时间很有可能推迟至2010年1月。 吉利斯博士表示,对这个加速器进行操作是一件非常细致的工作。“在对质子束进行加速的同时,你不得不因它们之间的距离而深深感到担忧。而等到希望它们进行碰撞时,你又希望它们尽可能靠得近一些。”他指出:“如果出现错误,你就可能失去质子束。整个过程需要一段时间才能趋于完美,在此之后,你所要做的就是等待碰撞发生。我们可以这样理解对撞机最后控制元件与碰撞点之间的距离,有点像位于大西洋两岸的两根织针进行碰撞。” 官员们计划在圣诞节和新年假期进行短暂休整,届时实验室将关闭。虽然管理人员已就如何在这段时间内完成相关工作进行讨论,但吉利斯表示后勤保障是一项非常复杂的工作。促使作出冬季关闭决定的主要因素是工人合约,合约问题需要重新进行谈判。 官员们表示,早期预警系统(熄灭保护系统)的升级将防止2008年导致对撞机关闭的类似事故发生。这种升级包括在对撞机周围安装数百个新探测器。2008年的事故发生后,欧洲核子研究投入大约4000万瑞士法郎(2400万英镑)对强子对撞机进行修复,其中就包括升级熄灭保护系统。作者:孝文 来源:新浪科技 发布时间:2009-10-20 14:37:26

  • 新能源汽车液冷电池包热工测试温度要求说明

    新能源汽车液冷电池包热工测试运行中需要注意一些配件的温度,无锡冠亚告诉大家因为一旦不注意,配件温度过高,就会影响新能源汽车液冷电池包热工测试的运行。  新能源汽车液冷电池包热工测试运行工况参数好坏,对其工作的经济型和安全性影响很大,其中在新能源汽车液冷电池包热工测试的系统中,新能源汽车液冷电池包热工测试的蒸发温度可通过装在压缩机吸气截止阀端的压力表所指示的蒸发压力而反映过来。蒸发温度和蒸发压力是根据新能源汽车液冷电池包热工测试系统的要求确定的,偏高不能满足新能源汽车液冷电池包热工测试降温需要,过低会使压缩机的制冷量减少,运行的经济性较差。  新能源汽车液冷电池包热工测试制冷剂的冷凝温度可根据冷凝器上压力表的读数球的,冷凝温度的确定与冷却剂的温度、流量和冷凝器的形式有关。  新能源汽车液冷电池包热工测试压缩机的吸气温度是指从压缩机吸气截止阀前面的温度计读出的制冷剂温度。为了保证新能源汽车液冷电池包热工测试心脏-压缩机的安全运转,防止产生液击现象,吸气温度要比蒸发温度高一点。在设回热器的制冷剂的新能源汽车液冷电池包热工测试,保持吸气温度是合适的。  新能源汽车液冷电池包热工测试压缩机排气温度可以从排气管路上的温度计读出。它与制冷剂的绝热指数、压缩比及吸气温度有关,吸气温度越高,压缩比越大,排气温度就越高,反之亦然。  新能源汽车液冷电池包热工测试节流前的液体过冷可以高制冷效果,过冷温度可以从节流阀前液体管道上的温度计测得,一般情况下它较过冷器冷却水的出水温度高出一点。  新能源汽车液冷电池包热工测试运行好坏都是对新能源汽车测试的影响很大的,所以要适当调整新能源汽车液冷电池包热工测试每个参数,保证在合理的情况下运行。

  • 检测器冷却温度的疑惑?

    有的ICP检测器冷却温度是-30度,有点事-40度,有的是-35度等等,不同的温度能保持良好的检测性能吗》如何理解这个冷却温度的高低?

  • 快速温度变化( 湿热) 试验箱中冷冻油的重要性

    快速温度变化( 湿热) 试验箱中是能够经常用到冷冻油的,冷冻油的好坏也是可以影响快速温度变化( 湿热) 试验箱的使用,质量差的冷冻油对于快速温度变化( 湿热) 试验箱来时,影响是比较大的。  快速温度变化( 湿热) 试验箱冷冻油的闪点过低也会带来的危险。由于一般冷冻油的挥发性比较大,闪点过低会使制冷循环的油量增多,增大损耗增加本钱且不说了,更严重的是在压缩升温的过程中会增大发生燃烧危险的可能性,因此要求冷冻油的闪点比制冷排气温度高30度以上。  纯粹冷冻油化学成分稳定,不氧化,不会腐蚀金属。如果劣质冷冻油内含有制冷剂或水分时便会产生腐蚀作用,润滑油氧化后会生成酸性物,腐蚀金属。当冷冻油在高温时,会出现焦炭和污粉,若这种物质进入过滤器和节流阀容易堵塞。进入快速温度变化( 湿热) 试验箱压缩机,可能打穿电机绝缘膜,那就很轻易发生“烧机”了。  如果快速温度变化( 湿热) 试验箱冷冻油含有水分,会加剧油的化学变化,使油变质,引起对金属的腐蚀作用,同时还会在节流阀或膨胀阀处造成"冰堵"。而润滑油中含有机械杂质,会加剧运动件摩擦表面的磨损,造成压缩机损坏。  快速温度变化( 湿热) 试验箱的冷冻油具有一定的粘度才能让运动部件的摩擦面保持良好的润滑状态,从而能从压缩机带走部分热量并起到密封作用。冷冻油要在两种极端温度条件下工作:压缩机排气阀温度可高达100多度,而膨胀阀、蒸发器的温度则会低至-40度。这样的工作环境决定了它需要有很好的粘-温特性。假如冷冻油粘度不够,就会导致压缩机轴承和缸体磨损加剧、噪音升高,同时制冷效果降低,并缩短压缩机的使用寿命,甚至在极端情况下可能引起我们平时说的“烧机”,压缩机就是这样慢慢挂了。  快速温度变化( 湿热) 试验箱冷冻油的倾点也是一个可能导致“烧机”发生的指标。像刚才说过的,压缩机的工作温度变化范围较大,因此为了保证润滑油的作用能够得到正常发挥,一般要求它在低温状态下仍能保持很好的活动性。所以倾点一般应该低于冷冻温度,同时粘温特性也要好,这样才能保证冷冻油在低温环境下能从蒸发器顺利返回压缩机。假如冷冻油的倾点过高,就会导致回油过慢,那就很轻易发生“烧机”了。  快速温度变化( 湿热) 试验箱中冷冻油的重要性不言而喻,所以,快速温度变化( 湿热) 试验箱冷冻油在选择的时候,尽量选择品质好点的快速温度变化( 湿热) 试验箱。

  • TEC半导体制冷加热式微型高精度温度环境试验箱在压电传感器频率温度特性测试中的应用

    TEC半导体制冷加热式微型高精度温度环境试验箱在压电传感器频率温度特性测试中的应用

    [size=16px][color=#339999]摘要:为解决石英晶体微量天平这类压电传感器频率温度特性全自动测量中存在的温度控制精度差和测试效率低的问题,本文在TEC半导体制冷技术基础上,提出了小尺寸、高精度和全自动程序温控的解决方案,给出了温控装置的详细结构和实现高精度温度程序控制的具体手段。解决方案在为压电传感器频率温度特性测量提供精密温控能力的同时,关键是可快速进行全过程的自动温度程序运行,由此既保证精度又提高效率。[/color][/size][size=16px][color=#339999][/color][/size][align=center][size=16px][img=TEC半导体制冷加热式微型高精度温度环境试验箱在压电传感器频率温度特性测试中的应用,550,309]https://ng1.17img.cn/bbsfiles/images/2023/02/202302141513442750_3958_3221506_3.jpg!w690x388.jpg[/img][/size][/align][b][size=18px][color=#339999]1. 问题的提出[/color][/size][/b][size=16px] 石英晶体微天平(Quartz Crystal Microbalance,QCM)作为一种超高灵敏的质量检测装置,其测量精度可达纳克级,并广泛应用于化学、物理、生物、医学和表面科学等领域中,用以进行气体、液体的成分分析以及微质量的测量、薄膜厚度及粘弹性结构检测等。石英晶体微天平实际上是一种压电传感器,它利用了石英晶体的压电效应,将石英晶体电极表面质量变化转化为石英晶体振荡电路输出电信号的频率变化,进而通过计算机等其他辅助设备获得高精度的测量结果。石英晶体微天平除了具有高灵敏度高和高精度之外,最大特点是结构简单和成本低,它由一薄的石英片组成,两侧金属化,提供电接触。QCM的工作原理类似于用于时间和频率控制的晶体振荡器,但QCM表面常暴露在周围环境中,且对环境温度变化非常敏感,QCM的一个重要技术指标就是频率温度特性。在QCM的具体应用中,温度变化会严重影响QCM测量结果,因此准确测量频率温度特性是表征评价QCM的一项重要内容。但在目前的各种频率温度特性测试装置中,特别是高精度温度控制装置,还存在以下问题:[/size][size=16px] (1)在常用的-10~+70℃的温度范围内需要对QCM进行多个设定点的高精度温度控制和频率测量,而目前常用温控技术往往控制精度偏低,若提高控制精度又带来测试时间过长的问题。[/size][size=16px] (2)专门用于压电晶体频率温度特性测试的恒温装置往往体积普遍偏大,内部温度均匀性较差,同样会带来温控精度差的问题,仅能用于批量压电晶体较低精度的频率温度特性测试。[/size][size=16px] (3)尽管采用了TEC半导体制冷技术可实现QCM的高精度温度控制,实现了小型化和快速温控和频率测量,但存在的问题是多个温度点的自动化程序控制能力差,无法实现全温度区间内多个温度点的自动控制和频率测量。[/size][size=16px] 为了解决QCM这类压电传感器频率温度特性全自动测量中存在的上述问题,本文在TEC半导体制冷技术基础上,提出了高精度和全自动程序温控的解决方案,给出了温控装置的详细结构和实现高精度温度程序控制的具体手段。解决方案在为压电传感器频率温度特性测量提供精密温控能力的同时,关键是可快速进行全过程的自动温度程序运行,由此既保证精度又提高效率。[/size][size=18px][color=#339999][b]2. 解决方案[/b][/color][/size][size=16px] 为了进行石英精度微天平(QCM)的频率温度特性测量,需要将QCM放置在一个受控的热环境中。为了提高热环境的温度控制精度,热环境的尺寸空间较小,并采用TEC模组进行加热和制冷,整个热控装置的结构如图1所示。[/size][align=center][size=16px][color=#339999][b][img=压电传感器频率温度测量温控系统示意图,690,209]https://ng1.17img.cn/bbsfiles/images/2023/02/202302141516237559_7391_3221506_3.jpg!w690x209.jpg[/img][/b][/color][/size][/align][align=center][size=16px][color=#339999][b]图1 石英精度微天平频率温度特性温控装置结构示意图[/b][/color][/size][/align][size=16px] 如图1所示,TEC被放置在铝制均热套和散热器之间,铝制均热套作为热稳定工作的密闭腔体,为整个腔体提供均匀的温度环境。散热器直接浸泡在水浴中使得TEC的工作表面达到较低的负温度,散热器也可以直接采用水冷板,水冷板内通循环冷却水。[/size][size=16px] 另外,在频率温度特性测试过程中,TEC要提供高低温范围内温度控制,那么在高低温运行时,TEC工作表面和散热器之间存在较大差异,因此,在TEC周围布置隔热材料以减少其两侧之间的热流,从而增加TEC工作面的温度均匀性。[/size][size=16px] 铝制均热套放置在TEC工作表面的顶部,在均热套与TEC之间采用银胶以减小均热套与TEC工作表面之间的接触热阻,铝制均热套被隔热材料包裹以减少与环境的热交换。[/size][size=16px] 在铝制均热套内布置了两只电阻型温度传感器,其中一只安装在铝制均热套的侧壁上作为控温传感器,此温度信号提供给超高精度的PID控制器进行温度自动控制。另一只用来测量固定在铝制支架上的QCM组件温度。[/size][size=16px] 在图1所示的温控装置中,为满足不同尺寸和结构的TEC温控装置,采用了独立的TEC换向电源以满足不同加热功率的需要。在温控器方面,则采用了超高精度的PID控制器,可直接对TEC进行加热制冷双向控制,其中AD为24位,DA为16位,最小输出百分比为0.01%,PID参数自整定,可编程程序控制,由此可实现高精度的温度控制。[/size][size=16px] 对于图1所示结构的温控装置,在全温区范围内设定点从-10变化到+70℃,步进5℃,其温度控制可实现±12mK的温度稳定性和±15mK的设定值精度。[/size][size=18px][color=#339999][b]3. 总结[/b][/color][/size][size=16px] 上述压电传感器频率温度特性测试的温控解决方案,主要具备以下几个特点:[/size][size=16px] (1)采用了TEC半导体制冷组件,可低成本的实现压电传感器频率温度特性测试过程中的精密温度控制,并使得整个频率温度特性测试装置的体积非常小巧。[/size][size=16px] (2)整个温控结构的设计简便,但可以实现0.02℃以内的控制精度和重复性,完全能满足各种压电传感器的频率温度特性测试需要。[/size][size=16px] (3)由于采用了目前最高精度的工业级可编程PID控制器,具有24位AD、16位DA和0.01%的最小输出百分比,这是实现高精度TEC温度控制的必要条件。[/size][size=16px] (4)高精度的可编程PID控制器可按照设定程序进行全测试过程的温度自动控制,设定程序可通过随机的计算机软件进行编辑和修改,控制过程参数可自动进行显示和存储。[/size][size=16px] 总之,本文为实现高精度、简便小巧和低价格的压电传感器频率温度特性测试中的温度控制提供了切实可行的解决方案,为单个或少量压电传感器稳频特性评价提供了有效的技术途径。[/size][size=16px][/size][align=center]~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~[/align]

  • 电池测试冷水机运行中蒸发温度说明书

    电池测试冷水机在目前新能源汽车电池测试设备中使用比较多,其中电池测试冷水机蒸发温度对设备有一定的影响,那么,具体有什么影响呢?  当电池测试冷水机热负荷增大时,其它条件不变的情况下,蒸发温度就会升高,低压压力也会升高,吸气的过热度也会加大。这种情况下电池测试冷水机只能开大膨胀阀,增大制冷剂的循环量,而不能因为低压压力升高关小膨胀阀,降低低压压力。电池测试冷水机这样做将会使吸气过热度更大,排气温度升高,运行条件恶化。调节电池测试冷水机膨胀阀时,每次调节量不应过大,调节后必须经过一定时间的运行,才能反映出热负荷与制冷量是否平衡。  电池测试冷水机压缩机能量的变化对蒸发温度的影响,当增加制冷压缩机的能量时,压缩机的吸气量就相应增加,在其它条件不变的情况下,就会出现高压升高,低压降低,蒸发温度也会随之下降。电池测试冷水机为了继续保持生产工艺需要的蒸发温度,就要开大膨胀阀,使低压压力上升到规定范围。  电池测试冷水机传热面积主要是指蒸发器的蒸发面积,传热面积的变化主要是指蒸发面积大小发生的变化。电池测试冷水机在完整的制冷装置中,蒸发面积通常是固定不变的,但是在实际运行操作中,由于供液不足或者蒸发器内积油,蒸发面积是不断发生变化的。电池测试冷水机蒸发面积的增、减对蒸发温度的影响与热负荷的增、减对蒸发温度的影响是基本相似的。当蒸发面积增加时,蒸发温度就会升高,当蒸发面积减少时,蒸发温度就会降低。为了保持需要的温度,就应调节能量和膨胀阀,对蒸发器进行放油清理,以保持传热面积与制冷量的相对平衡。  在电池测试冷水机制冷剂流量一定时,蒸发温度越低,那么与热负荷(热风)的温差就越大,制冷量越大,换言之,蒸发压力越低制冷量就越大,并且相同质量的同一制冷剂,在不同的温度下蒸发,其蒸发潜热也不相同,蒸发温度越低,蒸发潜热也越大,吸热 能力越强。  电池测试冷水机蒸发温度和很多部件的运行都息息相关,用户在运行新能源汽车电池测试系统的时候,这些都需要注意的。

  • 【求助】检测器制冷温度设置

    今天在论坛看到有关开关机的顺序的活动帖子,发现检测器制冷温度跟我们操作的不一样。Leeman Prodigy XP 开机:先开氩气-再开仪器电源-开软件(等待光室稳定在35℃左右)-更改检测器制冷温度到[color=#f10b00][size=5]-40℃[/size][/color]-开循环冷却水-点火-测试;关机:熄火-关闭软件并更改检测制冷温度到[color=#f10b00][size=5]25℃[/size][/color]-重新启动软件待检测器温度回到设定的25℃-关循环冷却水-关软件-关仪器电源-关电脑-关闭氩气。[size=4]我们开机更改检测器制冷温度到时到[color=#8f0197][size=5]-15℃[/size][/color][color=#8f0197],[color=#000000]熄火-关闭软件并更改检测制冷温度到[/color][size=5]20℃[/size],[color=#000000]这是厂家给我们的温度,请问温度的设置不一样,有影响吗?那个温度设置更优一些?[/color][/color][/size]

  • 有组织废气汞及其化合物 电热板消解温度

    标准:污染源监测 汞及其化合物 原子荧光分光光度法 《空气和废气监测分析方法》第四版(增补版)国家环境保护总局 2003年问题:使用该方法测有组织废气汞及其化合物时需要电热板消解,电热板温度控制在多少度比较合适?标准中过滤后加热至近干,这一步还需要放置漏斗吗?有没有做过的朋友解答一下

  • ICP冷却检测器温度的疑惑?

    像我们的安捷伦710,ICP检测器冷却温度是-30℃,而不同型号如720记得好像是-35℃。而一些网友用的其它不同品牌的ICP,冷却检测器温度可能都不一样,有的可能更低,那么冷却检测器温度是越低越好,还是其他原因?众所周知,冷却检测器问题是为了保持良好的检测器检测性能,降低暗电流和噪声,大家可以针对自己用的ICP(型号可能不同,冷却温度不同)探讨下?大声说出自己的看法,欢迎欢迎?http://simg.instrument.com.cn/bbs/images/default/em09505.gif

  • 半导体低温工艺中制冷系统的压力和温度准确控制解决方案

    半导体低温工艺中制冷系统的压力和温度准确控制解决方案

    [color=#990000]摘要:针对半导体低温工艺中制冷系统在高压防护和温度控制中存在的问题,本文将提出一种更简便有效的解决方案。解决方案的核心是在晶片托盘上并联一个流量可调旁路,使制冷剂在流入晶片托盘之前进行部分短路。即通过旁路流量的变化调节流出晶片托盘的制冷剂压力,一方面保证制冷剂低压工作状态,另一方面实现晶片温度的高精度控制。[/color][align=center]~~~~~~~~~~~~~~~~~~[/align][b][size=18px][color=#990000]1. 问题的提出[/color][/size][/b] 随着新一代半导体工艺技术的发展,如低温刻蚀和沉积,需要晶片达到更低的温度。更低温度的实现目前可选的技术途径一般是采用循环流体介质直接作用在晶片卡盘,而介质可以是单一制冷剂(如液氮)和混合制冷剂。目前,更具有应用前景的是使用混合制冷剂的自复叠混合工质低温制冷技术,但在半导体低温工艺的具体应用中,需要处理好以下两方面的问题: (1)当制冷系统连接到晶片托盘后,混合工质就在一个容积固定管路内循环运行。在压缩机启动初期,整个系统基本处于较高温度,系统内大部分工质为[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相[/color][/url],随着制冷温度的降低,除压缩机和冷凝器外的其他部件内的[url=https://insevent.instrument.com.cn/t/5p][color=#3333ff]液相[/color][/url]工质含量逐渐增加,当制冷温度达到最低时,系统内的[url=https://insevent.instrument.com.cn/t/5p][color=#3333ff]液相[/color][/url]工质含量达到最高。由于气液两相工质的比容相差较大,不同相态的工质通过节流单元的能力不同,工质间的沸点也不同,所以在制冷系统启动初期,通过节流单元的几乎全部为气态工质,压缩机的排气压力也将会很高。而在半导体工艺设备中,半导体晶片托盘及其回路部件的最大工作压力通常在1~1.4MPa范围内,那么在低温制冷过程中,冷却剂压力可能会超过晶片托盘冷却回路的最大操作压力而造成系统损坏。因此,要在晶片制冷系统中增加低温压力控制装置,避免出现高压问题,保证制冷系统在整个运行过程中制冷剂压力符合要求。 (2)晶片冷却温度是半导体低温工艺的一项重要技术参数,晶片冷却过程中的低温温度要求按照设定值进行准确控制。尽管大多数低温制冷系统都具有温度控制功能,可通过外部温度传感器、调节回路和控制器组成的闭环回路实现低温温度控制,调节回路基本都是通过调节制冷剂流量和膨胀方式,有些则通过辅助加热方式进行温度控制,但这些温控方式普遍结构复杂且控温精度不高,特别是在多个晶片同时冷却的半导体设备中这些问题更是突出。 针对上述半导体低温工艺中制冷系统在压力和温度控制中存在的问题,本文将提出一种更简便有效的解决方案。解决方案的核心是在晶片托盘上并联一个流量可调旁路,使制冷剂在流入晶片托盘之前进行部分短路。即通过旁路流量的变化调节流出晶片托盘的制冷剂压力,一方面保证制冷剂低压工作状态,另一方面实现晶片温度的高精度控制。[b][size=18px][color=#990000]2. 解决方案[/color][/size][/b] 对于半导体低温工艺中的晶片托盘进行冷却,一般所采用的技术方案是直接将自复叠混合工质制冷机与晶片托盘连接,其结构如图1所示。这种方案在温度控制时是在晶片托盘上安装温度传感器,并与控制器连接进行温度控制,但这种方案存在压力过高和温度控制不准确的问题。[align=center][color=#33ccff][size=14px][b][img=半导体晶片低温冷却实施方案示意图,400,235]https://ng1.17img.cn/bbsfiles/images/2022/12/202212270900279759_748_3221506_3.jpg!w690x406.jpg[/img][/b][/size][/color][/align][align=center][b][color=#990000]图1 半导体晶片低温冷却常规方案[/color][/b][/align][align=center][size=14px][b][img=半导体晶片低温冷却改进后方案,400,240]https://ng1.17img.cn/bbsfiles/images/2022/12/202212270900037860_9891_3221506_3.jpg!w690x414.jpg[/img][/b][/size][/align][b][/b][align=center][b][color=#990000]图2 半导体晶片低温冷却改进后方案[/color][/b][/align] 本文提出的改进方案如图2所示,为了使冷却过程中的混合工质压力始终处于安全工作范围,在图1所示的冷却管路上增加了一个短接旁路,通过一个调节阀控制此旁路中的工质流量可以降低晶片卡盘及其管路的内部压力达到安全范围。同时,此旁路调节阀具有高精度动态精密调节能力,可使晶片卡盘内部的制冷剂压力波动非常小而实现更准确的温度控制,由此可在制冷机现有温度控制能力的基础上,降低压力波动和提高温度稳定性。具体实施方案如图3所示。[align=center][size=14px][b][color=#33ccff][img=半导体晶片低温冷却实施方案示意图,690,266]https://ng1.17img.cn/bbsfiles/images/2022/12/202212270900506941_8802_3221506_3.jpg!w690x266.jpg[/img][/color][/b][/size][/align][align=center][b][color=#990000]图3 半导体晶片低温冷却系统压力和温度精密控制方案示意图[/color][/b][/align] 在图3所示的解决方案中,采用了以下几个控制部件: (1)气动调节阀:此气动调节阀也称之为背压阀,即通过较小的气体压力来驱动较大压力下流体介质中阀门的开度变化。通过此低温调节阀开度变化来改变旁路流量进而实现压力调节。 (2)先导阀:先导阀是一个低压气体压力调节阀,可对表压(如0.6MPa)的进气压力进行高精度减压调节,调节控制信号为模拟量(如4~20mA或0-10V),由此来驱动气动调节阀。 (3)传感器:晶片低温冷却系统包含了压力和温度传感器,以分别检测晶片冷却剂回路中的压力和晶片温度,并将检测信号传输给双通道PID控制器。压力传感器可根据实际需要布置在制冷剂管路中的不同位置,以提供合理和准确的压力监测。 (4)双通道控制器:此双通道控制器是具有两路独立控制通道且具有很高精度的PID控制器,一路通道与压力传感器和先导阀构成压力控制回路,另一通道与温度传感器和制冷机构成温度控制回路。 总之,通过这种增加旁路并进行压力精密调节的解决方案,即可满足降低制冷剂压力提供安全防护功能,又可以提高晶片温度控制精度,是一种可用于晶片低温工艺的更优化方案。[align=center]~~~~~~~~~~~~~~[/align]

  • 【资料】冷库温度记录仪

    一、冷库温度记录仪概述  冷库温度记录仪是一种采用微处理器和5.6英寸TFT液晶显示屏的新一代多功能无纸记录仪。  冷库温度记录仪具有32路模拟量万能输入、4路模拟量变送输出、32路报警输出、32路配电输出,可实现信号采集、显示、处理、记录、积算、报警、配电等功能;采用全中文操作界面和快速旋钮,实现人性化操作;采用RS-232/RS-485通讯接口,可实现远程监控;内置64MB NAND FLASH作为历史数据的存储介质,可通过CF卡实现数据转存。适用于冶金、石油、化工、建材、造纸、食品、制药、热处理和水处理等各种工业现场。二、冷库记录仪使用方法  冷库温度记录仪最多可以连接32通道,即可以同时连接32路温度,记录的数据曲线可以在仪器仪表上显示,也可以通过U盘(CF卡)连接到电脑上,通过电脑上的数据分析软件来分析研究现场数据。 三、冷库记录仪技术指标  通道数 : 最多32 通道,万能信号输入  输入信号类型:  Ⅱ型标准信号:(0~10)mA、(0~5)V  Ⅲ型标准信号:(4~20)mA、(1~5)V  11 种热电偶:B、E、J、K、S、T、R、N、WRe5-26、WRe3-25、EA-2  3 种热电阻:Pt100、Cu50、JPt100  其它非标准信号:(0~20)mV、(0~100)mV、(-10~10)V、(0~10)V、(-5~5)V、(0~1)V 和(0.2~1)V  B型热电偶 : 温度范围 600~1800 ℃  J型热电偶 : 温度范围 -200~1200℃  K型热但偶 : 温度范围 -100~1300

  • 高通量组织研磨仪液氮冷冻研磨实验

    高通量组织研磨仪液氮冷冻研磨实验

    TJ2011高通量组织研磨仪对植物叶片的液氮冷冻研磨实验处理材料:植物叶片 (水稻、玉米、小麦、草、蔬菜叶等)1 装物料:将植物叶片截成所需的小段,用镊子夹住,放入1.5/2ml的离心管管底,对离心管进行编号。现以24空离心管适配器为例;2 装研磨珠:每个离心管内装上1个5mm碳化钨(或氧化锆)研磨珠,或3mm碳化钨(或氧化锆)研磨珠5个;3 冷冻保存:将铝合金夹具夹住24孔,固定好,放到专业液氮盒中,加液氮冷冻,3-5分钟,充分冷冻夹具及管内样品。4 溶剂加入:如有需要,在每个离心管中,小心加入裂解液或其他溶剂;4 主机运转:设定转速与时间例如1500转/分钟 3min,点击Start5 研磨过程:在典型研磨时间(2~3min)内,研磨结束。可同时得到2*24=48个通量的样品;6 取下夹具,进行下一步实验。注意事项:在上夹具时,要注意一是要带上厚一点的手套,防止被液氮冻伤;一是要迅速,且要保证螺栓拧紧,卡上保险扣。然后,启动研磨。TJ2011高通量组织研磨仪同时适用动物组织(骨骼、肌肉、内脏、毛发等)的研磨,高通量提取DNA/RNA。http://ng1.17img.cn/bbsfiles/images/2012/02/201202141110_349211_1812435_3.jpghttp://ng1.17img.cn/bbsfiles/images/2012/02/201202141110_349212_1812435_3.jpg

  • 制冷系统的选择决定了温度冲击试验箱质量的优劣

    温度冲击试验箱制冷系统的选择主要是压缩机与蒸发器的选用。 制冷系统是温度冲击试验箱的核心部件之一,主要由压缩系统、冷凝系统、蒸发系统和调节阀四大部份组成,另外还有风扇、导管和仪表等辅件。整个制冷系统是一个密封的循环回路,制冷剂在该密封系统中循环,根据需要控制供应量和进入蒸发器的次数,以获得适宜的低温条件。压缩机是温度冲击试验箱制冷系统的心脏,它推动制冷剂在系统中循环。冷凝器的作用是排除压缩后的气态制冷剂中的热量,使其凝结成液态制冷剂;冷凝器的冷却方式有空气冷却、水冷却、空气与水相结合三种,空气冷却只限于小型环境试验箱制冷设备中应用。蒸发器的作用是向温度冲击试验箱内提供冷量,蒸发器安装在试验箱内,利用鼓风机将冷却的空气吹向试验箱内的各个部位,大型温度冲击试验箱常用风道连接蒸发器,延长送风距离,使温度下降更加均匀。

  • 热电偶冷端温度准确测量的问题

    在箱式电阻炉、工业退火炉等高温炉窑的检测中,我们选择K型或S型热电偶作为传感器。众所周知,在使用热电偶进行检测时冷端温度测量准确与否对整个测量结果的是否准确是至关重要的。因此我们采用了四线制Pt100为传感器,测量准确优于±0.05℃,在温度数据采集器接线端设计了一个密封的恒温区,保证冷端温度相对稳定,由于是密闭空间,受环境温度影响小。采用四线制铂电阻测量可以方便的将冷端温度传感器拉长,减少了补偿导线的使用,且测量准确可靠。

  • 冷热冲击箱温度的范围与测试报告

    冷热冲击箱温度的范围与测试报告

    对于风靡行业内的冷热冲击试验箱,自问世以来就被人们所热捧,那么它究竟具有什么特点或者说优势呢? 冷热冲击可以理解为冷热环境的瞬间变换,在冲击试验箱内分为高温部分和低温部分,经过高温区温度在六十度和一百五十度之间,低温区在负六十度到零度之间。我们可以经过不同温度区间的变化来了解物体在极冷和极热交替变换的环境下会产生什么情况。 上海广品冷热冲击试验箱的温度控制精确度在0.1℃,温度波动度为±2℃,箱内温度均匀度在±3℃,试验箱各区域升温时间不太相同,蓄热区从常温状态下升温至120℃需20分钟,蓄冷区从常温环境中降至-40℃大约需要50分钟的时间,测试区温度恢复时间在5分钟内。 [url=http://www.meryou.cn/html/Chongjishiyanxiang/2016/1024/123.html]冷热冲击试验箱[/url]的测试报告内应包含的内容有测试项目、所用仪器、产品生产批次,试样数量、型号,测试次数、时间,判断标准及测试结果,测试人及测试时间等内容。 上海广品试验设备制造有限公司是集研发、设计、生产、销售一体的专业环境测试设备企业。公司拥有国外一流的机械加工设备,高精度激光切割机,进口数控折弯机等现代化的钣金加工及环境设备组装生产线。 目前,公司设计生产的可程式恒温恒湿试验机,恒温恒湿试验箱,冷热冲击试验机,烧机老化房,高低温试验箱,盐水喷雾试验机,拉力试验机以及振动台等系列产品已广泛应用于电工、电子、家电、通信、计算机、航空航天、兵器、汽车、船舶、石化等行业和领域,成为其缩短开发周期,提升产品质量的不可或缺的得力助手。 [align=center][img=冷热冲击试验箱,500,367]http://ng1.17img.cn/bbsfiles/images/2017/07/201707071122_01_2936678_3.png[/img]  [/align] 我们的经营理念:以诚为本,诚信经营,快乐合作,财富共享,锐意创新,开拓进取”的经营理念。客户的满意即是我们努力之所在”的服务宗旨,愿与新老客户携手共创辉煌。

  • 冷冻机设备蒸发温度不正常怎么办?

    冷冻机设备在运行过程中蒸发温度对于制冷效果实际操作息息相关的,一旦出现蒸发温度过低就会导致无锡冠亚冷冻机设备运行状态不正常,所以我们要关注冷冻机设备这一故障。  冷冻机设备蒸发器温度过低可能是蒸发器(冷风机)过小,这设计时有问题,这个时候需要及时增加冷冻机设备蒸发器蒸发面积或更换蒸发器。  也可能是冷冻机设备压缩机冷量过大,冷冻机设备负荷减小后,未及时减少压缩机的能量,冷冻机设备的压缩机是根据制冷系统大负荷匹配的,当压缩机的负荷不足50%,系统负荷大大减少,这样便形成了温差增大,耗电量增大。所以,冷冻机设备应根据冷冻负荷的变化减少压缩机开启台数或用能量调节装置减少工作缸数。  蒸发器未及时除霜也能导致蒸发器温度过低,这个时候蒸发器盘管结霜使其传热系数变小,热阻增加,降低传热效果,制冷剂蒸发量减少,在压缩机能量不变的情况下,会导致系统的蒸发压力降低,相对应的蒸发温度降低,所以要及时除霜,来解决冷冻机设备蒸发器温度过低这一故障。  一旦冷冻机设备蒸发器中存在润滑油也可能导致温度不正常,冷冻机设备蒸发器中的润滑油会在蒸发盘管的管壁上形成一层油膜,同样会使传热系数变小,热阻增加,降低传热效果,制冷剂蒸发量减少,导致系统的蒸发压力降低,相对应的蒸发温度降低,所以应及时对冷冻机设备系统放油,并带出蒸发器里的润滑油。  冷冻机设备阀开启过小,系统供液量少,在压缩机能量不变的情况下,蒸发压力降低,导致蒸发温度降低,所以应增加膨胀阀开启度。  冷冻机设备不止蒸发器,其他配件也是一样的道理,都要我们及时解决,以免带来更大的故障。

  • 温度快速变化试验箱制冷系统的排污工作

    温度快速变化试验箱制冷系统进行排污的目的在于淸除制冷系统中的污物,以免系统中的污物进入压缩机和节流阀。排污方式如下: 1、温度快速变化试验箱制冷系统的设备管道在运行前都必须进行排污,以清除安装过程中残留在系统内的焊渣,铁屑,沙粒等污物。防止污物损伤制冷机的部件和系统中的阀门,避免系统管道阻塞。 2、氨制冷系统排污时,可用空压机或氨制冷机提供压缩空气,压缩空气的压力一般不超过0.6MPa。排污口应设置在管道的最低处,排污工作可分组,分段分层进行。 3、温度快速变化试验箱制冷系统排污一般不少于3次,直到排出气体不带水蒸气,油污和铁锈等杂物。 4、为了有效的利用压缩气体的爆发力和高速气流,可在排污口上装个阀门,待系统内压力升高时快速打开阀门,使气体迅速排出,带出污物。 5、实践中也可用木塞堵住排污口,当系统有一定压力时,将木塞拔掉,使空气迅速排出,这种方法很好。但存在一定危险,操作时务必小心,注意安全。 6、氟利昂系统的排污也在系统安装完后进行,使用0.6MPa的氮气进行分段吹污。排污的方法和检验和氨系统相同,氟利昂系统排污和试压时不能使用压缩空气,压缩空气中含有水蒸气,若残留在氟利昂系统内,将引起氟利昂系统的冰堵或冰塞现象。 7、在排污过程中,如发现管路法兰阀门有明显泄漏,应及时补救。系统排污结束后,应将系统所有阀门的阀芯和过滤器拆卸清洗。 本文出自北京雅士林试验设备有限公司 转载请注明出处

  • TEC温控器:半导体制冷片新型超高精度温度程序PID控制器

    TEC温控器:半导体制冷片新型超高精度温度程序PID控制器

    [align=center][size=18px][color=#990000]TEC温控器:半导体制冷片新型超高精度温度程序PID控制器[/color][/size][/align][align=center][color=#666666]TEC Thermostat: A New Type of Ultra-high Precision Temperature Program PID Controller for Semiconductor Refrigerator[/color][/align][color=#990000]摘要:针对目前国内外市场上TEC温控器控温精度差、无法进行程序控温、电流换向模块体积大以及造价高的现状,本文介绍了低成本的超高精度PID控制器。24位模数采集保证了数据采集的超高精度,正反双向控制功能及其小体积大功率电流换向模块可用于半导体制冷、液体加热制冷循环器和真空压力的正反向控制,程序控制功能可实现按照设定曲线进行准确控制,可进行PID参数自整定并可存储多组PID参数。[/color][align=center]~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~[/align] [size=18px][color=#990000]一、TEC温控器国内外现状[/color][/size]半导体致冷片(Thermo Electric Cooler)是利用半导体材料的珀尔帖效应制成的一种片状器件,可通过改变电流方向来实现加热和制冷,在室温附近的温度范围内可作为冷源和热源使用,是目前温度控制精度最高的一种温控器件。在采用半导体制冷片进行控温时,需配合温度传感器、控制器和驱动电源一起使用,它们的选择决定了控温效果和成本。温度传感器可根据精度要求选择热电偶和热电阻传感器,控制器也是如此,但在高精度控制和电源换向模块方面,国内外TEC温控器普遍存在以下问题:(1)目前市场上二千元人民币以下的国内外温控器,普遍特征是数据采集精度不高,大多是12位模数转换,无法充分发挥TEC的加热制冷优势,无法满足高精度温度控制要求。(2)绝大多数低价的TEC温控器基本都没有程序控制功能,只能用于定点控制,无法进行程序升温。(3)极个别厂家具有高精度24位采集精度的TEC温控器,但没有相应的配套软件,用户只能手动面板操作,复杂操作要求的计算机通讯需要用户自己编程,使用门槛较高,而且价格普遍很高。(4)目前国内外在TEC控温上的另一个严重问题是电源驱动模块。在具有加热制冷功能的高档温控器中,TEC控温是配套使用了4个固态继电器进行电流换向,如果再考虑用于固态继电器的散热组件,这使得仅一个电流换向模块往往就会占用较大体积,且同时增加成本。[size=18px][color=#990000]二、国产24位高精度可编程TEC温控器[/color][/size]为充分发挥TEC制冷片的强大功能,并解决上述TEC温控器中存在的问题,控制器的数据采集至少需要16位以上的模数转换器,而且具有编程功能。目前我们已经开发出VPC-2021系列24位高精度可编程通用性PID控制器,如图1所示。此系列PID控制器功能十分强大,配套小体积大功率的电流换向器,可以完全可以满足TEC制冷片的各种应用场合,且性价比非常高。[align=center][color=#990000][img=TEC温控器,650,338]https://ng1.17img.cn/bbsfiles/images/2021/12/202112232210356263_6759_3384_3.png!w650x338.jpg[/img][/color][/align][align=center][color=#990000]图1 国产VPC-2021系列可编程PID温度控制器[/color][/align]VPC-2021系列控制器主要性能指标如下:(1)精度:24位A/D,16位D/A。(2)多通道:独立1通道或2通道。可实现双传感器同时测量及控制。(3)多种输出参数:47种(热电偶、热电阻、直流电压)输入信号,可实现不同参量的同时测试、显示和控制。(4)多功能:正向、反向、正反双向控制、加热/制冷控制。(5)PID程序控制:改进型PID算法,支持PV微分和微分先行控制。可存储20组分组PID,支持20条程序曲线(每条50段)。(6)通讯:两线制RS485,标准MODBUSRTU 通讯协议。(7)软件:通过软件计算机可实现对控制器的操作和数据采集存储。可选各种功率大小的集成式电流换向模块,只需一个模块就可以完成控制电流的自动换向,减小体积和降低成本。[align=center][/align][align=center]~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~[/align]

  • 【求助】冷凝管的使用温度?

    冷凝管分为直型、蛇形、球型还有空气冷凝管,有人知道他们都是在什么温度下用的么?(指蒸馏液体蒸汽温度)或者有没有相关资料,不胜感激!

  • 色谱仪器温度电子器件 —— 半导体制冷器

    色谱仪器温度电子器件 —— 半导体制冷器

    [align=center][font=宋体]色谱仪器温度电子器件[/font][font='Times New Roman'] [font=Times New Roman]—— [/font][/font][font=宋体]半导体制冷器[/font][/align][align=center][font='Times New Roman'] [/font][/align][align=center][font='Times New Roman'][font=宋体]概述[/font][/font][/align][font=宋体][font=宋体]半导体制冷器基于特殊半导体材料的热电效应(帕尔贴效应)原理实现制冷功能,体积和重量较小、工作噪声低、无有害物质排放、制冷效果不受空间方向与重力影响、可以方便的控制切换制冷[/font][font=Times New Roman]/[/font][font=宋体]加热状态,但制冷效率较低,功耗较大、一般用于空间较小或制冷量需求较低的场合,例如电子设备中某些部件的冷却或者便携式冰箱。[/font][/font][align=center][font=宋体]简介[/font][/align][font=宋体][url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱仪[/color][/url]某些部件(如进样口或柱温箱)、[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱[/color][/url]外围设备中的某些部件(例如二次热解析的冷阱)、[url=https://insevent.instrument.com.cn/t/5p][color=#3333ff]液相色谱仪[/color][/url]的柱温箱、自动进样器样品架或者检测器在某些特殊分析条件中的工作温度要求低于室温,在此情况下分析仪器系统需要装备制冷功能部件,常用的有液氮制冷、液态二氧化碳制冷或者半导体制冷器。[/font][font=宋体][font=宋体]将两种不同材料的导体组成一个闭合环路时,只要两个结合点[/font][font=Times New Roman]T[/font][font=宋体]和[/font][font=Times New Roman]T[/font][/font][sub][font=宋体][font=Times New Roman]0[/font][/font][/sub][font=宋体][font=宋体]的温度不同,在该回路中就会产生电动势,此种现象称为塞贝克效应([/font][font=Times New Roman]Seebeck effect[/font][font=宋体],属于热电效应),回路产生的相应电动势称为热电势。塞贝克效应是可逆的,在两种不同材料导体构成的回路中提供直流电源,则在导体的两个结合点[/font][font=Times New Roman]T[/font][font=宋体]和[/font][font=Times New Roman]T[/font][/font][sub][font=宋体][font=Times New Roman]0[/font][/font][/sub][font=宋体]将[/font][font=宋体][font=宋体]会产生温差,此种效应称为帕尔贴效应([/font][font=Times New Roman]Peltier effect[/font][font=宋体]),导体[/font][font=Times New Roman]A[/font][font=宋体]、[/font][font=Times New Roman]B[/font][font=宋体]组成的回路称为帕尔贴元件,其结构如图[/font][font=Times New Roman]1[/font][font=宋体]所示。[/font][/font][align=center][img=,343,119]https://ng1.17img.cn/bbsfiles/images/2022/11/202211300837240921_8798_1604036_3.jpg!w690x239.jpg[/img][font=宋体] [/font][/align][align=center][font=宋体][font=宋体]图[/font][font=Times New Roman]1 [/font][font=宋体]帕尔贴元件的结构[/font][/font][/align][font='Times New Roman'][font=宋体]由于电荷载体在不同的材料中处于不同的能级,当它从高能级向低能级运动时,便释放出多余的能量;相反,从低能级向高能级运动时,从外界吸收能量。能量在两材料的交界面处以热的形式吸收或放出。这一效应是可逆的,如果电流方向反过来,吸热便转变成放热[/font][/font][font=宋体]。帕尔贴元件吸收或者释放的热量与电流成正比。[/font][font=宋体]帕尔贴元件[/font][font='Times New Roman'][font=宋体]吸收或释放的热量[/font][/font][font=宋体]与通过帕尔贴元件的电流[/font][font='Times New Roman'][font=宋体]满足[/font][/font][font=宋体]以下公式[/font][font='Times New Roman'][font=宋体]:[/font][/font][align=center][font='Times New Roman']Q = ( π[/font][sub][font='Times New Roman'] [/font][/sub][sub][font=宋体][font=Times New Roman]A[/font][/font][/sub][font='Times New Roman'] [font=Times New Roman]? π[/font][/font][sub][font='Times New Roman'] [/font][/sub][sub][font=宋体][font=Times New Roman]B[/font][/font][/sub][font='Times New Roman'] ) I[/font][/align][font=宋体][font=宋体]式中[/font] [font=Times New Roman]Q - [/font][font=宋体]热量[/font][/font][font='Times New Roman']?[/font][font='Times New Roman']?[/font][font='Times New Roman']π[/font][sub][font='Times New Roman'] [/font][/sub][sub][font=宋体][font=Times New Roman]A [/font][/font][/sub][font=宋体][font=Times New Roman]- [/font][font=宋体]导体[/font][font=Times New Roman]A[/font][font=宋体]的帕尔贴系数[/font][/font][font='Times New Roman']π[/font][sub][font='Times New Roman'] [/font][/sub][sub][font=宋体][font=Times New Roman]B[/font][/font][/sub][font=宋体] [font=Times New Roman]- [/font][/font][font='Times New Roman'][font=宋体]导体[/font][/font][font=宋体][font=Times New Roman]B[/font][/font][font='Times New Roman'][font=宋体]的帕尔贴系数[/font][/font][font=宋体][font=宋体]金属材料由帕尔贴效应产生的温度变化较弱,一般使用特殊半导体材料制作帕尔贴元件,称为半导体制冷器,其外观如图[/font][font=Times New Roman]2[/font][font=宋体]所示。半导体制冷器与其他常见制冷方式相比,具有如下特点:[/font][/font][font=宋体]1、 [/font][font=宋体]无需使用制冷剂,可以连续工作、无污染、体积和重量小。[/font][font=宋体][font=Times New Roman]2[/font][font=宋体]、 工作时无机械振动,运行噪音低,使用寿命长,容易安装。[/font][/font][font=宋体][font=Times New Roman]3[/font][font=宋体]、 半导体制冷器本身具有制冷和加热功能,可以用单一部件实现较宽范围温度控制。例如某些小体积的[url=https://insevent.instrument.com.cn/t/5p][color=#3333ff]液相色谱仪[/color][/url]柱温箱的温度控制器,使用帕尔贴元件即可实现室温附近范围的温度控制。[/font][/font][font=宋体][font=Times New Roman]4[/font][font=宋体]、半导体制冷器控制方式较为简单,可以通过调整其工作电流的大小和方向实现温度控制。[/font][/font][font=宋体][font=Times New Roman]4[/font][font=宋体]、半导体制冷器惯性较小,制冷制热速度较快。[/font][/font][font=宋体][font=Times New Roman]5[/font][font=宋体]、半导体制冷器制冷效率相对较低,功耗较大。[/font][/font][font=宋体] [/font][align=center][img=,248,131]https://ng1.17img.cn/bbsfiles/images/2022/11/202211300837338967_3140_1604036_3.jpg!w444x235.jpg[/img][font='Times New Roman'] [/font][/align][align=center][font=宋体][font=宋体]图[/font][font=Times New Roman]2 [/font][font=宋体]半导体制冷器外观[/font][/font][/align][font=宋体] [/font][font='Times New Roman'] [/font][align=center][font=宋体]小结[/font][/align][font=宋体]半导体制冷器的基本原理和使用注意事项。[/font]

  • 金相组织和热处理知识

    (一)、金属组织 1、金属:具有不透明、金属光泽良好的导热和导电性并且其导电能力随温度的增高而减小,富有延性和展性等特性的物质。金属内部原子具有规律性排列的固体(即晶体)。 2、合金:由两种或两种以上金属或金属与非金属组成,具有金属特性的物质。 3、相:合金中成份、结构、性能相同的组成部分。 4、固溶体:是一个(或几个)组元的原子(化合物)溶入另一个组元的晶格中,而仍保持另一组元的晶格类型的固态金属晶体,固溶体分间隙固溶体和置换固溶体两种。 5、固溶强化:由于溶质原子进入溶剂晶格的间隙或结点,使晶格发生畸变,使固溶体硬度和强度升高,这种现象叫固溶强化现象。 6、化合物:合金组元间发生化合作用,生成一种具有金属性能的新的晶体固态结构。 7、机械混合物:由两种晶体结构而组成的合金组成物,虽然是两面种晶体,却是一种组成成分,具有独立的机械性能。 8、铁素全:碳在α-Fe(体心立方结构的铁)中的间隙固溶体。 9、奥氏体:碳在γ-Fe(面心立方结构的铁)中的间隙固溶体。 10、渗碳体:碳和铁形成的稳定化合物(Fe3c)。 11、珠光体:铁素体和渗碳体组成的机械混合物(F+Fe3c 含碳0.8%) 12、莱氏体:渗碳体和奥氏体组成的机械混合物(含碳4.3%) (二)、热处理 把金属材料在固态范围内通过一定的加热,保温和冷却以改变其组织和性能的一种工艺。 13、退火:将金属或合金的材料或制件加热到相变或部分相变温度,保温一段时间,然后缓慢冷却的一种热处理工艺。 14、正火:将钢加热到完全相变以上的某一温度,保温一定的时间后,在空气中冷却的一种热处理工艺。 15、淬火:将钢加热到相变或部分相变温度,保温一段时间后,快速冷却的热处理工艺。 16、回火:将经过淬火的钢,重新加热到一定温度(相变温度以下),保温一段时间,然后冷却的热处理工艺。 17、调质处理:将钢件淬火,随之进行高温回火,这种复合工艺称调质处理。 18、表面热处理:改变钢件表面组织或化学成分,以其改面表面性能的热处理工艺。

  • 基于半导体制冷片的高精度温度控制系统-仪器温控-成果推广

    基于半导体制冷片的高精度温度控制系统-仪器温控-成果推广

    基于半导体制冷片的高精度温度控制系统成果简介半导体制冷片是利用特殊半导体材料构成的PN结产生Peltier效应制成,具有无噪声、体积小、结构简单、加热制冷切换方便、冷热转换具有可逆性等优点。化工安全组对基于半导体制冷片温控系统的影响因素进行了全面、系统分析和实验研究,设计完成了大功率、高可靠性的半导体制冷片驱动电路,并积累了半导体制冷片加热制冷切换双向温控算法的丰富经验,形成了半导体制冷片整套的研究方法和应用手段。目前,半导体制冷片的高精度温度控制系统已应用在产品中。系统组成http://ng1.17img.cn/bbsfiles/images/2016/05/201605302242_595303_3112929_3.png图1 基于半导体制冷片的温度控制单元结构http://ng1.17img.cn/bbsfiles/images/2016/05/201605302242_595304_3112929_3.jpg图2 高精度温度控制系统硬件组成技术指标(1)温度范围:0~120℃;(2)控温精度:±0.05℃;(3)半导体制冷片驱动电路能够最大支持20V 15A输出。http://ng1.17img.cn/bbsfiles/images/2016/05/201605302243_595305_3112929_3.jpg 图3 0℃和120℃温度控制曲线图http://ng1.17img.cn/bbsfiles/images/2016/05/201605302243_595306_3112929_3.jpg 图4 37.8℃温度控制过程曲线图 http://ng1.17img.cn/bbsfiles/images/2016/05/201605302243_595307_3112929_3.jpg 图5 37.8℃稳态控制精度曲线图技术特点(1)高精度温度采集电路:创新性采用比率法和激励换向技术,系统温度分辨力达到0.001℃,检测精度达到±0.01℃。(2)大功率高可靠性的半导体制冷驱动:采用H桥电路形式实现半导体制冷片加热制冷方式的切换,解决了该类驱动电路无死区防护、功率小等问题;设计引入滤波和保护电路,大大增强了半导体制冷片的寿命及驱动电路的可靠性。(3)双向多模式温控:温控策略充分考虑半导体制冷片加热制冷输出功率差异、功率随温度变化以及系统加热制冷方式切换的随机性等因素,综合采用了单点与扫描结合、高低温分段处理、随环境温度变化动态调节等多重温控调节方式。获得研发资助情况浙江省公益项目前期应用示范情况已用于微量蒸气压测定仪产品中的温度控制,温度范围为0~120℃,控温精度为±0.05℃,驱动电路输出12V/10A。相关产品已通过批量试产,温控系统运行稳定可靠,可复制性强,实现成本低,适合于批量生产。转化应用前景半导体制冷片因加热制冷切换方便、结构简单、系统噪音小、控温精确度高以及成本低等优点,有望在科学仪器温度控制、温度发生和电气设备散热等领域获得广泛应用。特别是随着仪器仪表尤其是生命科学仪器、化学分析仪器等逐渐向高精度、小型化方向快速发展,高精度的小型温度控制系统需求越来越旺盛,因此半导体制冷片具有良好的应用前景。合作方式(1)技术转让;(2)委托开发;(3)双方联合开发。应用领域分析仪器、医疗仪器、生命科学测试仪器、家用电器等领域中高精度的恒温、匀速升降温等多模式的温度控制,以及电气装置散热等。联系人:杨遂军;联系电话:0571- 86872415、0571-87676266;Email: yangsuijun1@sina.com。微信公众号:中国计量大学工贸所工贸所网站:itmt.cjlu.edu.cn中国计量大学工业与商贸计量技术研究所中国计量大学是以“计量、测试、标准”为特色的院校,主要培养测试技术、仪器开发方向的专属人才。中国计量大学工业与商贸计量技术研究所是学校为进一步推动高水平研究团队的建设而在2014年设立的两个学科特区之一,主要针对工业生产与贸易往来中关乎国计民生的计量测试问题,以新方法、技术、设备及评价为研究对象,主要研究方向为化工产品及工艺安全测试技术与仪器、零部件无损检测技术与设备、光栅信号处理与齿轮精密测量,涉及的单元技术有高精度温度检测技术、快速热电传感技术、高稳态温度场发生技术、低热惰性高压容器制备工艺、激光和电磁加热、非稳态传热反演、基于幅值分割原理的光栅信号数字细分、光栅信号短周期误差补偿、机器视觉高精度尺寸测量。研究所同时是化工产品安全测试技术及仪器浙江省工程实验室,先后承担国家重大科学仪器设备开发专项、国家公益性行业科研专项、国家自然基金、973等国家级项目,科研经费超千万。现有专职科研人员9人、工程技术人员2人、在读研究生30余人、行政与科研管理人员3人。“应用驱动、产研融合”是研究所的标签,以应用驱动为前提,通过方法技术化、技术产品化、产品市场化,将科研成果落脚于实际应用,为经济与社会发展提供推动力,同时为研究所提供持续发展所需资金、影响力、信息等各类资源的支撑,目前研究所已拥有2家产业化公司。

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制