当前位置: 仪器信息网 > 行业主题 > >

中性反物质

仪器信息网中性反物质专题为您整合中性反物质相关的最新文章,在中性反物质专题,您不仅可以免费浏览中性反物质的资讯, 同时您还可以浏览中性反物质的相关资料、解决方案,参与社区中性反物质话题讨论。

中性反物质相关的资讯

  • 对反物质光谱测量精度达万亿分之二
    p   英国《自然》杂志近日发表一项粒子物理学研究成果:欧洲核子研究中心(CERN)科学家完成了到目前为止对反物质的最精准光谱测量。此次测量结果不仅证明了反原子光谱学的能力,也将反物质的高精度检测向前推进了一大步。 /p p   当代物理学家们面临的一个巨大挑战,就是解释为何是物质而不是反物质在宇宙大爆炸中“幸存”了下来。因为根据经典模型的预测,在大爆炸发生后,原本存在等量的物质和反物质,但现在,宇宙几乎全部是由物质构成的。鉴于此,获取反物质并了解其特性,被认为具有极其重要的意义。 /p p   在光谱学领域,科学家会通过激光激发原子,检查其如何吸收或散发光来确定原子跃迁的特性。虽然同样的技术也可用于研究反原子,但是反物质非常难以生成和捕捉,一旦与物质接触就会湮灭,因此也难以测量它的特性。 /p p   2017年年底,欧核中心的ALPHA合作组在《自然》杂志上发文,报告了对激光驱动的反氢1S—2S跃迁(从基态到激发态)的实验性观测,这是人类首次对反物质原子进行光谱测量。而今,合作组与丹麦奥胡斯大学物理学家杰弗里· 汉格斯特及其同事,详细表述了该跃迁的其中一个超精细组分的特征。 /p p   研究团队此次分析测量了约15000个反氢原子,这些原子被磁囚禁在一个长280毫米、直径44毫米的圆柱体内。研究人员进行了为期10周的测量,最终发现:反氢跃迁的共振频率与氢1S—2S跃迁的预期频率一致,其测量精度达万亿分之二。 /p p   这是有史以来对反物质进行的最精准的一次光谱检测,标志着人类向超敏测量反物质行为并了解其“最终奥秘”迈近了重要一步。 /p p br/ /p
  • 科学壮举:人类首次完成反物质原子光谱测量
    p   英国《自然》杂志19日在线发表了一项粒子物理学重大进展:欧洲核子研究中心(CERN)报告了对反物质原子的首次光谱测量,实现了反物质物理学研究长期以来的一个目标。该成果标志着人类向高精度测试物质与反物质行为是否不同迈进了重要一步。 /p p   当今宇宙为何看起来几乎全由普通物质构成,这是物理学界的一个重大谜题。因为根据粒子物理学经典模型的预测,在大爆炸发生之后应存在等量的物质和反物质。光照射可以激发原子,当原子恢复至基态时会发光,光的频率分布形成,可以借用其光谱精确地测量出原子属性,这也是光谱学的基本原理。但是,反物质难以产生和捕捉,因为反物质一旦与物质接触就会湮灭,这为科学家测量其属性带来挑战。 /p p   欧核中心反质子减速器的最新进展,让研究人员得以捕捉和测量反质子与反氢原子。现在,来自欧核中心反氢激光物理装置(ALPHA)项目的丹麦科学家杰弗里· 汉斯特及其同事,在圆柱形真空腔内成功磁捕获反氢原子。这一真空腔长仅280毫米,直径为44毫米,研究人员通过真空腔上的窗口向里面照射激光,测量了反原子1S—2S的跃迁(从基态向激发态跃迁)情况。 /p p   研究团队报告称,反氢的跃迁频率与氢的跃迁频率一致。氢的光谱已经得到高精度表征,因此反氢光谱学的改进应可以促成对物质—反物质对称性的高敏度测试。 /p p   ALPHA装置是欧核中心捕获反原子的“利器”,该项目组此前曾用特殊磁场将反氢原子“抓住”达1000秒,还曾首次对反物质与引力的相互作用进行直接分析。 /p p br/ /p
  • “完美的探测器设计” :探索正反物质差异有了灵敏探针
    北京正负电子对撞机上的北京谱仪III(BESIII)实验实现了一种全新方法,为研究物质和反物质之间的差异提供了极其灵敏的探针。6月2日,相关研究成果刊发于《自然》杂志。  论文所有匿名评审都对这一成果大加赞赏:“创新的测量方法”“很重要”“很新颖”“吸引人”“非常有前景”… … 到底是什么成果,竟让匿名评审们如此兴奋?  不好好“组CP”的反物质  “正反物质不对称性”是困扰科学界半个多世纪的问题,也是粒子物理学家一直在寻找的现象。他们常会提到一个词——“CP破坏”。  “CP破坏”里的“CP”,和我们平时常说的“组CP”里的“CP”(情侣档)并不是一码事。  130亿年前,宇宙在发生大爆炸之后迅速膨胀、冷却,大量正反粒子彼此结合、湮没。然而,就像闹了别扭的情侣一样,正反粒子在结合湮没的过程中,行为出现了一些不同。每十亿个正反粒子湮没的过程中,就有一个正物质粒子被留了下来,并最终组成了当今宇宙中所有的物质。  科学家将正粒子和反粒子衰变过程不一样的现象,称为“CP破坏”。  “CP破坏”的名字与李政道、杨振宁密切相关。他们提出并获得诺贝尔物理学奖的“宇称不守恒定律”认为,粒子的弱相互作用中存在“镜像”空间反射不对称性。  在此基础上,科学家总结出了“CP破坏”。“CP破坏现象可以用来解释为什么我们的世界中只有正物质,没有反物质。”中国科学院高能物理研究所所长、中国科学院院士王贻芳告诉《中国科学报》。  宇宙原初反物质为何消失?  超子CP破坏有望解谜  自上个世纪60年代以来,国外科学家已经相继在介子系统中发现了CP破坏。可是,正反物质的不对称性并没有因此得到完美解释。  “在构成世界的主要粒子中,介子数量很少,介子衰变时多出来的正物质并不足以形成现在的世界。”王贻芳说。  与数量稀少的介子不同,重子是构成世界的主要粒子。“如果能在重子中找到CP破坏,我们就能够更好地理解宇宙原初反物质消失之谜。”王贻芳说。  遗憾的是,科学家从未在重子衰变中发现过CP破坏,原因在于“弱衰变信号有时会被强相互作用掩盖”。“所以要想看到重子的CP破坏,就需要有足够高灵敏度和创新性的实验方法,把弱相互作用与强相互作用的信号区分开来。”王贻芳说。  超子是重子中的一种,类似于质子,但寿命很短,因此不像质子那样可以存在于我们身边。在超子中,有一个名叫“科西超子”的成员,由两个奇异夸克和一个轻夸克组成,当奇异夸克发生弱衰变时,它便消失了。  超子衰变被科学家视为“寻找CP破坏的一个很有希望的狩猎场”,因为测量CP破坏时需要的一些信息可以通过超子的衰变直接测量。  发现了高精度测量方法  从2009年起,BESIII实验从正负电子对撞出的“碎片”中,收集到了约100亿J/psi粒子。这种名叫“J/psi”的粒子会衰变产生正—反科西超子,之后,正—反科西超子还会继续衰变、消失。  BESIII实验组的科研人员用了100亿粒子事例中的13亿,分析出了正—反科西超子的诞生过程,重建出7万多个正—反科西超子对。如此一来,BESIII就成了一个干净、小巧的科西超子“工厂”。  “干净”是因为本底污染率小于千分之一水平。“小”是因为BESIII实验中,超子产额并不算多。“巧”是因为BESIII实验的敏感度足够高。  “我们的超子产额只有美国费米实验室一个叫HyperCP实验产额的千分之一,但单事例的敏感度是HyperCP单事例的一千倍。”BES III实验发言人、中科院高能物理研究所研究员李海波说。  在分析数据时,BESIII实验组的科研人员发现了一种高精度测量超子CP破坏的方法。  早先,他们发现,刚衰变出来的正科西超子和反科西超子之间存在一种特殊的现象——“量子纠缠”。于是,利用这种独特的量子纠缠效应,再结合科西超子其他数据信息,实验人员不仅从海量数据中同时找出了正科西超子、反科西超子的衰变信号,还以前所未有的精度测量出正—反科西超子的不对称参数。  “新方法解决了30年来不能同时高效地对超子和其反粒子测量的困境,也给出了更丰富的CP破坏测量结果。”李海波说。  “这一成果已经引起国际同行的关注,相关研究人员被2021年国际轻子光子大会邀请作大会专题报告,成为这一领域的新星。”王贻芳说。  暂未发现新物理现象,将分析更多数据  遗憾的是,BESIII实验组此次的测量结果并没有显示出超子的CP破坏迹象。即便如此,新方法的发现依然得到了国际匿名评审的认可。  一位匿名评审点评说:“即使尚未发现CP破坏的新迹象,但研究方法上仍然很有趣。”另一位匿名评审认为:“新方法为将来的实验指明了方向,铺平了道路。”  “这一创新方法为我们未来确认或排除超出标准模型的CP破坏来源带来了希望。”王贻芳说。  抱着这样的希望,实验组正在向更高的测量精度发起挑战。“我们希望在不远的将来,能够用这种测量方法发现超子CP破坏的实验证据。”王贻芳表示,BESIII实验组正在分析100亿粒子衰变数据,测量精度有望再提高3倍左右。  目前,这支由我国主要开展研究的实验团队面临着激烈的国际竞争。  “欧洲核子中心的大型强子对撞机底夸克探测器(LHC-b)也正在大量制造超子。不过,他们的本底污染率比我们高。”李海波告诉《中国科学报》,BESIII实验组在测量上的优势在于BESIII实验“完美的探测器设计”。  BESIII是我国历史上最早的粒子物理大科学装置——北京正负电子对撞机上的探测器。它关注两个科学问题:夸克如何组成物质粒子和宇宙物质—反物质不对称的起源。  王贻芳介绍,从2009年至今,BESIII实验已经发表了400余篇研究成果。该探测器计划运行到2030年。  作为我国自主研发的大型高能实验装置,BESIII实验吸引了来自17个国家80家科研机构的约500个科研人员,是目前国内正在运行的最大国际合作组。此次发表的新成果由中国科学家和国外合作者共同完成。
  • 北京谱仪III开创探索正反物质不对称性的新方法
    近期,我国自主研发的大型高能物理实验装置北京谱仪III合作组实现一种创新实验方法,为研究物质和反物质不对称性提供了极其灵敏的实验探针。相关研究成果于6月2日发表在《自然》上。  宇宙大爆炸之初应该产生等量的正反物质,但为什么我们的宇宙却只有物质组成而非反物质?这个问题困扰了科学界半个多世纪。物质和反物质遵循不同的规律吗?粒子衰变为研究正反物质不对称性提供了重要线索:如果粒子和反粒子的衰变模式存在差异,那么这些差异可能是导致我们今天丰富的物质世界形成的原因。然而,由于粒子衰变通常是由多种相互作用诱导发生的,比如一种类似质子的短寿命粒子叫做科西超子,它的内部含有两个重的奇异夸克和一个轻夸克,带一个负电荷,其衰变过程中既有弱也有强作用发生。如何识别是哪种作用导致正反物质衰变行为不同呢?北京谱仪III实验最近首次利用处于量子纠缠的正反科西超子对的级联衰变,成功把导致正反物质不对称的弱作用力从强作用力中分离出来,这一创新方法和实验结果引起该领域世界同行的密切关注。  实验数据北京谱仪III实验国际合作组收集的。合作组成立于2008年,由来自亚洲、欧洲和美洲等17个国家80个研究机构约500名科学家组成。在北京谱仪III实验中,电子与其反粒子正电子碰撞的能量是其固有质量的上万倍。在这些碰撞中,电子和正电子湮灭,并从释放的能量中产生其他粒子或粒子对。在这项新的研究中,科研人员利用正反科西超子的“自旋”信息和量子关联来揭示正反物质不对称性,粒子物理学家称为“CP破坏”。超子衰变是寻找CP破坏的一个很有希望的狩猎场,因为它们的“自旋”方向可以通过其“子粒子”的衰变直接测量。考虑成对的正反超子级联衰变,可以把强力和弱力的贡献分开,导致对CP破坏测量的敏感度显著提高。北京谱仪III实验这一创新方法为寻找CP破坏提供了一种全新的视角。  尽管该研究给出的结果显示没有CP破坏的迹象,但这一创新方法为科学家未来确认或排除超出标准模型的CP破坏来源带来了希望。“这是理解正反物质不对称性的一个里程碑,我期待北京谱仪III合作组将取得更多成就。”中国科学院院士、中科院高能物理研究所所长王贻芳说。“北京谱仪III实验的灵敏度远高于之前费米实验室的HyperCP实验,是HyperCP实验单事例灵敏度的1000倍,这得益于北京谱仪III实验上正反科西超子的自旋极化和量子纠缠。”BESIII国际合作组发言人李海波表示。  北京谱仪III探测器拥有目前国内正在运行的最大国际合作组。此次研究由中国科学家和国外合作者共同完成,是国际合作的典范。  论文链接 北京谱仪III探测器侧面照  正反科西超子级联衰变演示图:如果物质和反物质遵循相同的物理法则,科西超子与反科西超子的衰变应该是镜像对称的,只是空间坐标是相反的。镜像之间纽带连接表示正反超子的量子关联。
  • 探索暗物质 阿尔法磁谱仪核心部件中国造
    美籍华人物理学家丁肇中领导的暗物质研究小组昨天发布重大研究成果,根据国际空间站上阿尔法磁谱仪的首批观测数据,科研人员已经找到了可以证明暗物质存在的6个证据中的5个。 暗物质是现有宇宙构成理论中最关键的假设之一,能够解决宇宙大爆炸理论的不自洽问题。为寻找暗物质,丁肇中于1995年提出了建造阿尔法磁谱仪的国际合作项目,中科院、上海交大、山东大学等中国科研机构都参与了磁谱仪核心部件的建造。2011年5月,阿尔法磁谱仪被送入太空,开始执行为期3年的暗物质探索任务。 距发现暗物质只剩最后一步 当地时间18日晚间,诺贝尔奖得主、美籍华人物理学家丁肇中领导的阿尔法磁谱仪项目,在欧洲核子研究中心公布了最新研究成果,进一步显示暗物质可能存在。这一成果发表在最新一期美国《物理评论快报》上。 据参与该项目的山东大学科学家程林教授介绍,目前阿尔法磁谱仪已发现了1090亿个电子与反电子,在业已完成的观测中,暗物质的6个特征已有5个得到确认。这一研究结果将人类对暗物质的探索向前推进一大步。 到底什么是暗物质呢?上世纪二十年代,物理学家们提出了宇宙大爆炸的学说。根据这一学说,宇宙在大爆炸以前处于真空状态,大爆炸以后才形成了物质世界,据此推断就应该有反物质存在。此后,物理学家们开始了寻找反物质或称暗物质的努力。 &ldquo 暗物质是一种人眼看不到的物质,想要证明它的存在可不容易。&rdquo 国家天文台宇宙暗物质暗能量组首席研究员陈学雷介绍说,1930年左右,科学家发现有一些星系团中的物质,产生的引力要比其他可以看到的星系多一些,但是这些物质不发光,所以就起名为暗物质。 现有物理学假设认为,人类目前所认知的物质世界大概只占宇宙的4%。在这之外,那些不发光不发热的暗物质,则占了宇宙的23%,还有73%是暗能量。 410亿数据将改变人类知识 寻找暗物质主要有3种途径。一种是利用粒子对撞产生直接暗物质;另一种是利用引力场间接探测。暗物质不发光,但是可以产生引力,因此可以通过对引力场变化的测量来寻找暗物质。中国主导的&ldquo 熊猫计划&rdquo (PandaX)就是后一种方法的实践。 阿尔法磁谱仪项目代表了第三种途径。从理论上讲,暗物质相互碰撞会产生过量正电子(所带电荷量与我们常见的带负电的电子恰好相反),因此可以通过探测正电子来寻找暗物质。 自从2011年5月16日被安置到国际空间站迄今,阿尔法磁谱仪已运行四十多个月,共搜集了540亿个宇宙射线数据。刚刚公布的研究成果,是基于对最先收集到的410亿个数据的分析。在这些数据中,科学家观测到约1000万个电子与正电子,这是半世纪来检测到的正电子分率的最大值。 根据丁肇中研究小组此次在美国《物理评论快报》上发布的结果,已发现的宇宙射线中过量正电子的5个特征分别为:正电子比例上升是从8吉电子伏特(1吉等于10亿)的能量开始;在速率方面,正电子占电子与正电子总数的比例快速增加;在275吉电子伏特左右停止增长;比例上升的过程较为均衡,没有明显的峰值;还有正电子似乎来源于宇宙空间的各个方向,而不是某个特定方向。 据丁肇中介绍,证明暗物质所需的最后1个特征就是正电子的产生率会不会突然下降,&ldquo 这个要花很多的时间,&rdquo 丁肇中说,&ldquo 很快下降一定是暗物质跟暗物质对撞产生正电子,因为暗物质能量有限,到一定能量以后就不可能再产生正电子,所以会突然下降。&rdquo 对于这一批数据的意义,丁肇中说:&ldquo 到现在为止我们所得到的结果,没有一个和过去100年所收集的结果是一样,所以也可以这么说,就是所有的结果慢慢改变人类对于这些的了解。&rdquo 中国研制阿尔法磁谱仪核心部件 由丁肇中教授领导阿尔法磁谱仪(AMS)项目是目前世界上规模最大的科学项目之一。阿尔法磁谱仪的结构很复杂,任务很艰巨,但它工作的基本原理却是高中物理中带电粒子在磁场中运动的知识。 说白了,阿尔法磁谱仪就是一个带电粒子探测器,其核心部件是由中国科学家和工程师经 4 年努力研制的永磁体,可以产生一个很强的磁场。当宇宙中的带电粒子穿过这个磁场时,磁场就对它施加洛仑兹力使之发生偏转,这时,记录有关数据,再用电子计算机进行数据处理,就可以从中区分出正电子等各种带电粒子。 丁肇中于1995年提出了阿尔法磁谱仪的设想,并主持其相关的国际合作计划。这计划是一个国际合作项目,动员了来自15个国家31所大学院校的上百名科研人员。 中国科学家为磁谱仪倾注了大量心血,参加阿尔法磁谱仪国际合作的中国单位还包括中国科学院电工研究所、上海交通大学、东南大学、山东大学、中山大学,以及中国台湾的&ldquo 中央研究院&rdquo 物理研究所、&ldquo 中央大学&rdquo 、中山科学研究院等。 阿尔法磁谱仪最关键的永磁体系统是由中国科学院电工研究所、中国科学院高能物理研究所和中国运载火箭技术研究院联合研制,211厂生产制造。 2011年5月16日,美国&ldquo 奋进号&rdquo 航天飞机将阿尔法磁谱仪送入太空,安放在国际空间站上。
  • 阿尔法磁谱仪将传回首批数据 或发现暗物质证据
    阿尔法磁谱仪(又译反物质太空磁谱仪,简称AMS)于2011年被放置到国际空间站(ISS)   穿越辐射探测器(Transition Radiation Detector)能检测高能粒子的速度 硅追踪器(Silicon Trackers)用于追踪粒子的运动轨迹,轨迹的弯曲程度显示了粒子的电荷 永磁铁(Permanent Magnet)是阿尔法磁谱仪的核心部件,能令粒子轨迹弯曲 飞行时间计算器(Time-of-flight Counters)能计算低能粒子的速度 星体追踪器(Star Trackers)能扫描星域,以确定阿尔法磁谱仪在太空中的朝向 切伦科夫探测器(Cerenkov Detector)可精确计算快速通过的粒子速度 电磁量能器(Electromagnetic Calorimeter)用于计算影响粒子运行所需的能量 反符合计数器(Anti-coincidence Counter)可将干扰粒子过滤出去。   在宇宙的遥远天体之间,引力的作用并不能解释天文学家看到的一切,如果只有这些天体的引力,那各个星系应该处于分崩离析的状态,因此在各个星系之间,还存在把它们联接在一起的物质。天体物理学家将这种理论中的物质称为“暗物质”,我们看不见它们,但它们确实在星系间起着作用。在最大的距离尺度上,宇宙正在加速扩张。因此我们更需要关注与引力作用截然不同的暗物质。目前的理论估计,宇宙的73%为暗能量,23%为暗物质,而只有4%是我们已知的物质。   北京时间2月20日消息,据国外媒体报道,作为人类在太空中进行的最为昂贵的实验,阿尔法磁谱仪(简称AMS)项目即将向地球发送回首批观测数据。这个大型的实验装置被放置在国际空间站上,用于探测宇宙射线及高能粒子。   诺贝尔物理学奖获得者丁肇中称,将于未来几周内发表涉及暗物质的研究论文。阿尔法磁谱仪项目最初便是由丁肇中提议开始。在宇宙中,正是那些我们看不见的暗物质将各个星系联接在一起。研究者并不了解这些谜一般的宇宙物质如何构成,但有理论提出,大质量弱相互作用粒子(简称WIMP)是暗物质最有希望的候选者,这是一种尚处于理论阶段的粒子。   虽然天文望远镜无法探测到大质量弱相互作用粒子,但阿尔法磁谱仪很有希望通过间接的方法来确认其存在,并描述它的性质。即将刊出的研究论文(发表期刊还未确定)将对这项研究的进展作详细阐述。   丁肇中在麻省理工学院任物理学教授,他在20世纪90年代中期提出的这个项目如今到了一个重要的里程碑时刻。“我们等待了18个月来写这篇论文,如今到了最后审视的阶段,”丁教授在波士顿的一次美国科学促进会(AAAS)的年会上发言道,“我预计在未来两到三周内,我们就能发布研究成果。我们一共有六个分析小组对相同的数据结果进行分析。如你所知,每个物理学家都有他们自己的见解,我们现在要保证每个人都能同意彼此的观点。这项工作现在已经完成得差不多了。”   20亿美元的仪器:“探索未知”   2011年,造价20亿美元的阿尔法磁谱仪搭载奋进号航天飞机前往国际空间站,这也是奋进号的最后一次任务。阿尔法磁谱仪重达7吨,拥有一个巨大的特制超导磁铁,能使落在它上面的粒子轨迹发生弯曲。   粒子的弯曲轨迹显示了它的电荷,再通过一系列的探测器对粒子的质量、速度和能量等进行分析,科学家便能准确知道捕获的是什么粒子。据丁肇中教授称,在阿尔法磁谱仪运行的最初18个月中,已经探测了250亿次粒子事件。   暗物质和暗能量之谜   在这些粒子事件中,有近80亿次是快速运动的电子及与其对应的反物质——正电子。理论上,大质量弱相互作用粒子的碰撞和湮灭会产生大量电子和正电子。通过测定二者的比例,以及在能量谱上的行为变化,科学家或许能找到研究暗物质问题的途径。   “在对正电子和电子的观测中,如果发现二者比例突然上升然后急剧下降,那就是星系中暗物质湮灭的关键标志,”芝加哥大学卡弗里宇宙学研究所的迈克尔特纳(Michael Turner)教授说,“在能量体系中也要考虑,是否具有各向异性?正电子是从固定的某个方向还是从所有方向出现?”   特纳教授并未参与阿尔法磁谱仪的合作项目。他继续说道:“暗物质应该无所不在。因此如果我们发现正电子从某个特定的方向发出,就意味着该信号是来自像脉冲星(一种中子星)一类的天体,而不是暗物质。”据悉,此次阿尔法磁谱仪的数据涉及的是0.5至350GeV(10亿电子伏特)质量范围内的正电子—电子比例。这一范围已经是其他实验中,科学家认为可能发现暗物质的上限。   特纳教授说,科学家已经逐渐接近了目标。他预测未来数年将会被铭记为“大质量弱相互作用粒子(WIMP)的十年”,而且通过一系列的研究,包括利用大型强子对撞机制造WIMP等,暗物质的性质将逐渐呈现在我们面前。   “理论上,这种粒子的质量大约在质子质量的30、40和300倍之间,即在30至大约1000GeV之间,”特纳教授说,“大型强子对撞机能够制造这样质量的粒子,丁肇中的阿尔法磁谱仪能探测到这样质量的粒子湮灭,而位于深地底的探测器对这样质量的粒子也非常敏感。如果非常幸运的话,我们能同时获得有关暗物质的三个特征信号,分别是通过观测粒子湮灭、直接探测粒子以及用大型强子对撞机制造粒子,这三种方法在同样的质量范围内都很灵敏。”
  • 美《时代》评出2010年十大科学发现
    美国《时代》周刊12月9日在其网站上揭晓了本年度十大科学发现评选结果。   1. 最出众的长角恐龙   美国科学家在犹他州发现了15只角,而它们竟然是重达2500公斤的巨型恐龙的头顶装饰物。这种名为科斯莫角龙的恐龙生活在7600万年前,犹他大学研究人员在2007年的一次探险活动中出土了这些化石残骸,但直到今年9月才正式为其命名并进行了描述。化石不仅揭示了这种年代久远的奇异物种,而且表明从前的北美与现在并不一样。   2. 物质比反物质多1%   美国费米国家实验室的Tevatron加速器在碰撞实验中发现,中性B介子衰变后的产物似乎存在一种不对称性。传统的粒子物理学理论认为,宇宙大爆炸应该产生了等量的物质和反物质,但二者相遇的瞬间就会一起湮灭,而事实是目前的世界由物质组成,反物质却不知所踪。直到今年,费米实验室的科学家发现,粒子碰撞过程中产生的μ介子(一种重电子) 数量比反μ介子多1%。虽然这是个很小的数目,但很显然,正是物质和反物质数量上这一微小差额创造了宇宙。   3. 月球水比想象的丰富   布满灰尘和岩石的月球予人的印象便是一片不毛之地。但其实它比我们想象的要更加潮湿。美国国家航空航天局的LCROSS(月球陨坑观测和传感卫星)对月球南极附近区域实施了“双星撞月”任务,并对撞击产生的羽尘进行了分析,结果发现月球水的含量比天文学家预期的多出大约50%,月球的湿润程度几乎是撒哈拉沙漠的两倍。这或许足以让未来定居月球的人就地建造供水设施,相较于从地球运水而言更容易也更经济。   4. 机器人考古墨西哥金字塔   墨西哥特奥蒂瓦坎古城遗址上的金字塔群一直是北美6大考古宝藏之一。现在,尘封往事的神秘面纱将被缓缓揭开:科学家今年将一个配备有照相机的考古机器人送到地下,机器人在探索过程中发现了一条12英尺(约3.66米)宽的隧道,其建于2000年前的拱型屋顶依旧保存完好。考古学家满怀希望地认为,隧道可能通往大祭司的坟墓,这一发现将揭示建造这座中美洲大都市的人从前的生活面貌。   5. 衰老是基因作祟   为什么有些人可以青春永驻,而有些人却在为“红颜辞镜”而叹息感慨?原因之一可能与人类TERC基因附近的一小簇DNA(脱氧核糖核酸)序列有关。一项发表在《遗传学》杂志上的英国研究发现,拥有一个TERC基因副本的人,其端粒的长度与年长他们三四岁但不携带这一基因的人差不多,换句话说,他们比实际年龄老了三到四岁。而《自然》杂志公布的另一项研究表明,哈佛医学院的研究人员通过开启过早衰老的老鼠体内的一个端粒酶基因,扭转了老鼠的衰老进程,老鼠的器官也得以再生,其萎缩的大脑体积增大,并且恢复了生育能力。   6. 行星普查数量激增   天文学家们从未停止过对太阳系外已知行星的普查,并于今年发现了许多新的天体“公民”。最令人兴奋的发现当属Gliese 581g,这是天文学家发现的首颗在所谓的“宜居带”围绕母星旋转的太阳系外行星,该区域气温条件不太冷也不太热,适合生命存活。不过,这颗“宜居”行星可能真的是个童话故事,因为后续研究已经在怀疑其是否存在。但对于科学家来说,有一点毋庸置疑,那就是那里还有更多类似的星球存在,或者人类很快就会找到它们。   7. 隐藏历史的终极时空斗篷   时空斗篷听上去好像挺玄的,但英国伦敦帝国学院的物理学家马丁麦考尔在《光学杂志》上发表了一篇论文,从理论上描述了利用“超物质”打造时空斗篷的可行性。通过对“超物质”进行分子改造,可以扰乱电磁能(光粒子)的流动,光在经过“超物质”时传播速度就会出现加快或者放慢,从而在时间和空间上形成一段空白。按照麦考尔半开玩笑的描述,使用这项技术,窃贼可以进入房间将保险柜里的物品席卷一空,但一刻不停工作的监控摄像头却会“错过”这一过程。不过,该技术也有美中不足之处:考虑到光传播的速度,哪怕只隐形几分钟,这件斗篷的尺寸就得大约1亿米长。   8. 史前化石或能填补人类进化空白   南非马拉帕洞穴出土了两具距今大约200万年前的高级灵长类动物骨架化石,分别属于一位成年女性和一名男童。在从猿到人的进化过程中,由于南方古猿和人猿之间有着巨大的差异,科学界一直怀疑,这两者之间存在某种过渡物种。《科学》杂志今年4月刊登论文指出,化石可能填补了人类进化史上重要的一环,因为之前几乎没有骸骨证据表明在那段时期中人类进化过程到底发生了什么。但对于这个被称为源泉南方古猿的新物种具有何意义,古生物学家持有不同观点,有些人认为它对于理解人类进化并无帮助。   9. 合成第117号元素   俄美科学家利用粒子加速器,成功将锫和钙同位素合成为一种拥有117个质子的新元素ununseptium,它可能就是科学家一直寻找的第117号元素。新元素只存在瞬间(不到一秒)就消失了,必须在其他实验室再次被独立合成出来,才能获得认可,确保它在元素周期表上永久地“站住脚”。对Ununseptium进行的放射性衰变分析可能将证实“稳定岛”的存在,根据这一理论,超重元素可能稳定存在长达几个月或者几年的时间。但就目前来看,元素周期表似乎还没有被完全补足。   10. 猫的饮水技巧   麻省理工学院、普林斯顿大学和弗吉尼亚理工大学的科学家们终于揭开了为何一只猫在喝牛奶的时候却不会弄湿下巴和胡须的秘密。对高速录像的分析结果显示,狗会将舌头卷成长柄勺状来舀水喝,而猫的饮用方式更优美,它会将自己的舌头卷到液面以下,然后轻轻触碰液面。猫舔食液体的速度快达每秒4次,这是一个地心引力、惯性和以每次0.1毫升的速度舔食液体却不会引起液体动荡或溢出的流体动力学相互作用的复杂过程。
  • 中性原子探测仪:国际首次在月表探测中性原子
    p style=" text-indent: 2em text-align: justify " 从中国研制第一颗科学卫星——双星计划开始,中国科学院国家空间科学中心的科学家就和瑞典空间物理研究所的科学家有了首度合作。 /p p style=" text-indent: 2em text-align: justify " 时隔十数年,在嫦娥四号国际载荷工作中,两位老朋友再度联手,研制出国际上首个可以在月表直接探测中性原子的仪器——中性原子探测仪。 /p p style=" text-indent: 2em text-align: justify " “月球是一个天然的实验室,太阳风和月表的相互作用,可以类比到其他的行星体上,对未来的科学研究提供重要的科学数据。”中方首席专家、中科院空间中心研究员张爱兵说。 /p p style=" text-indent: 2em text-align: justify " 太阳风吹呀吹 中性原子飞呀飞 /p p style=" text-indent: 2em text-align: justify " 太阳风是一种跟空气流动很相似的“风”,只不过它吹的不是气体分子,而是太阳上层大气射出的超声速等离子体带电粒子流。 /p p style=" text-indent: 2em text-align: justify " 由于太阳风中的粒子会干扰通讯系统,它一直让人类倍感恐慌。2006年12月13日,一次太阳风暴曾经对我国短波无线电通信造成严重影响,使得广州、海南、重庆通信中断达3小时之久。好莱坞大片《2012》《末日预言》等也曾展现过人类对于太阳风袭击地球的恐惧。 /p p style=" text-indent: 2em text-align: justify " 这种恐惧同时也演化成了科学家的研究方向,在没有磁场、大气保护层的“月球实验室”里,他们决定近距离且直观地看一看太阳风与月球表面的作用机制。 /p p style=" text-indent: 2em text-align: justify " “最早,人们以为太阳风里的离子和电子是被月表吸收了,但是,经过一段时间的研究后,科研人员发现,太阳风离子打到月表后,会反射回来,反射回来的粒子里,有一部分仍然是离子状态,还有一部分则获得了电子,从离子状态变成了原子状态,成为中性原子。”张爱兵说。 /p p style=" text-indent: 2em text-align: justify " 与此同时,就好比“一石激起千层浪”,太阳风里的高速粒子打到月球表面后,也会将月球表面物质溅射起来。 /p p style=" text-indent: 2em text-align: justify " “最终,溅射出的中性原子也会因为拥有一定的速度和能量,出现‘逃逸’,形成月球的外逸层。”张爱兵说。 /p p style=" text-indent: 2em text-align: justify " 除此之外,太阳风和月表作用会对月球环境产生什么样的影响,也是科学家希望探索的内容。 /p p style=" text-indent: 2em text-align: justify " “有科学家猜测,太阳风里的氢离子和月表的氧相击,可能会产生水,月球上的水可能与太阳风打到月球表面有一些关系,虽然这还不是一个定论,这也是我们想要搞清楚的内容。”张爱兵说。 /p p style=" text-indent: 2em text-align: justify " 创造探月新历史 首次月表直接探测 /p p style=" text-indent: 2em text-align: justify " 这次,嫦娥四号上搭载的中性原子探测仪,主要目标就是在月表上测量太阳风和月表相互作用之后产生的中性原子,包括太阳风本身的离子获得电子后产生的中性原子,和月球表面被溅射出的中性原子。 /p p style=" text-indent: 2em text-align: justify " 印度的首颗绕月人造卫星“月神一号”曾经搭载过中性原子成像仪,但和其他探月卫星一样,都是在环月轨道上对中性原子进行探测。 /p p style=" text-indent: 2em text-align: justify " “我们这次要做的是在月表巡视区直接测量中性原子,可以说是人类探月史上首次在月表开展中性原子探测。以往的探测就好像是用肉眼看中性原子,这次,我们是拿着放大镜近距离、仔细地看。”张爱兵说。 /p p style=" text-indent: 2em text-align: justify " 过去人类在环月轨道对中性原子的探测,曾发现了一些超出预期的现象,留下了一些未解之谜,例如,人们发现中性原子和太阳风在密度、速度比率上没有直接关系等,而这些谜题也为此次探测指出了方向。 /p p style=" text-indent: 2em text-align: justify " “这次我们在月表可以进行实地观测,随着月球车在月表移动到不同位置,可以观测到月表不同的地形地貌,进而观测到太阳风与月表相互作用的不同过程,有望解决过去遗留的类似科学问题。”张爱兵说。 /p p style=" text-indent: 2em text-align: justify " 碰撞与交流中 航天文化再度对接 /p p style=" text-indent: 2em text-align: justify " 作为搭载在嫦娥四号巡视器上的国际载荷,中性原子探测仪由瑞典空间物理所负责研制,中国科学家参与设备的性能测试及交付后的相关工作。 /p p style=" text-indent: 2em text-align: justify " 张爱兵介绍,中国与瑞典在科学卫星载荷上,已经有了很长的合作历史。 /p p style=" text-indent: 2em text-align: justify " 最开始的合作是在中欧合作研制的我国第一颗空间科学卫星——双星计划时。双星计划中有一台测量地球轨道环境下中性原子情况的中性原子探测仪,就是由中国科学家和瑞典科学家合作完成。 /p p style=" text-indent: 2em text-align: justify " 2009年,中国发起的“萤火一号”火星探测计划中,中国科学家与瑞典科学家再度合作,双方分别研制其中一个载荷的一部分,然后集中在一起形成了一个载荷包,用于测量火星离子和电子的情况。 /p p style=" text-indent: 2em text-align: justify " 此外,在中科院空间科学先导专项中,中国科学家和瑞典科学家也曾联手完成一些预先研究项目。 /p p style=" text-indent: 2em text-align: justify " “由于双方合作次数比较多,所以在嫦娥四号的合作上非常顺利。”张爱兵说。 /p p style=" text-indent: 2em text-align: justify " 当然,尽管顺利,但合作中难免会有碰撞和交流,“新的合作加深了两国航天文化的交流。”张爱兵说。 /p p style=" text-indent: 2em text-align: justify " 按照中方的相关规范,中方在国际载荷接管复查过程中要确保接口安全,包括接口设计和元器件等的安全,不能影响其他载荷的工作,更不能影响嫦娥四号整体任务。 /p p style=" text-indent: 2em text-align: justify " “一开始对方不能理解,但是通过交流,他们还是按照我们的要求做了相关工作,并把相关资料提供给中方。此次合作再一次体现了我国航天精益求精的作风,而这样的工作作风也让瑞典科学家十分认可中国科学家的工作。”张爱兵说。 /p p style=" text-indent: 2em text-align: justify " 未来,中国和瑞典将共同利用科学数据开展科学研究,为此,中方已经组织了专门的科学家团队。“双方将会协同工作,共同利用好这台仪器的科研数据。”张爱兵说。 /p
  • 激光冷却造出零下273℃中性等离子体
    p style=" text-indent: 2em text-align: left " 据美国《新闻周刊》网站近日报道,科学家利用激光冷却,创造出温度达到零下273℃的中性等离子体,其比太空深处温度还要低。这一成果发表于《科学》杂志,显示了极端环境下(比如白矮星和木星中央)等离子体的新的可能性。 /p p style=" text-indent: 2em text-align: left " 一般认为,激光可用于加热,但其实也可用于冷却物理系统。在实验中,英国莱斯大学的汤姆· 基利安和同事使用10台不同波长的激光器来冷却中性等离子体。等离子体是在固体、液体和气体之后,物质的第四种它通常在极热的地方(比如太阳内)产生。 /p p style=" text-indent: 2em text-align: left " 研究人员先用一组激光器蒸发锶金属,这些激光器捕获并冷却了一组原子。然后,他们用第二组激光电离这些超冷气体,激光脉冲将这些气体转换成等离子体,这些等离子体迅速膨胀然后消散。 /p p style=" text-indent: 2em text-align: left " 基利安解释说:“如果一个粒子(原子或离子)正在移动,我用一束激光来抵制它的运动,当该粒子从激光束中散射出光子时,就获得了动量来减慢速度。诀窍在于确保光子始终从与粒子运动相反的激光中散出来。” /p p style=" text-indent: 2em text-align: left " 1999年,基利安在美国国家标准与技术研究所进行博士后研究,开创了从激光冷却的气体中创造中性等离子体的电离方法。此后,他一直在寻求让等离子体更冷的方法,最新研究让他20年的追寻成为现实。目前,他们正努力制造更冷的等离子体。 /p p style=" text-indent: 2em text-align: left " 基利安说:“我们将尝试开发新的温度探头来测量更冷的温度。如果能在不让密度变得太低的情况下,将温度降到足够低,该系统将形成结晶等离子体——维格纳晶体,据信白矮星中心的离子以这种状态存在。” /p p style=" text-indent: 2em text-align: left " 基利安表示,当科学家研究出如何冷却原子气体时,就打开了“超冷世界”的大门,这使他们能将原子气体冷却到比绝对零度(零下273.15℃)高出百万分之一摄氏度左右,“在此处,量子力学开始发挥作用”。通过研究超冷等离子体,有望回答有关物质在高密度和低温的极端条件下如何表现的基本问题。 /p
  • 众星出品|众星联恒协助重庆科技馆成功举办“仰望星空”公益天文展
    众星出品|众星联恒协助重庆科技馆成功举办“仰望星空”公益天文展我们都是星尘。这一刻,你活着。这是一件了不起的事。你生活在这个星球上,呼吸着空气,喝着水,享受着最近的那颗恒星的温暖。你的DNA世代相传--回溯到更久远的时空,从宇宙的尺度来说,你身体里的每一个细胞、组成这些细胞的所有元素,都生于一颗恒星的熔炉之中。 ——卡尔萨根我们活在浩瀚的宇宙里,古时候人们就对漫天的银河灿烂心驰神往,对宇宙的探索由古至今也是从未间断。人类倾注了许多时间与精力去观察与探究太空中的神秘现象。为了揭开宇宙神秘的面纱,重庆科技馆于7月11日起举办“仰望星空”天文展,希望能以各式各样的方式向大众尤其是青少年传播天文知识,激发孩子们的探索与求知欲。Advacam的MiniPIX早已被NASA等航天机构采用,参与多个宇宙探索项目。作为探索宇宙暗物质与研究宇宙射线等方面不可或缺的一个工具,MiniPIX为宇宙探索工程的推进做出了贡献。其新推出的MiniPIX-EDU是一款为以教育为用途而设计和定价的微型USB 相机,它把现代的辐射成像技术带进课堂,让学生可以探索我们周围看不见的电离辐射世界。学生们可以探索不同类型辐射的来源,并了解放射性同位素如何在自然界和人类房屋、城市、工业的人工环境中迁移。MiniPIX-EDU可记录非常低的放射性强度,这种强度无处不在。学生可以记录到普通材料和物体的放射性强度,如口罩、花岗岩、灰烬或纸袋上的放射性强度。此次众星联恒怀着使大众了解宇宙微观物质的希冀,尽可能简化宇宙中高能粒子的概念,形象化看不见的宇宙物质,为天文展增添了宇宙射线科普视频以及以Advacam 的MiniPIX为器材的一个“口罩阻挡粒子”探究实验两个部分的内容。我们的视频与展板:活动现场照片:探索太空,扩展我们对地球与宇宙的认识是我国发展航天事业的宗旨。中国在航天科技领域已然占领了一席之地。展览以探索宇宙为视角,采用互动体验为主的方式,让大家进一步了解我们的宇宙。展览将持续到今年11月29日,欢迎大家前去围观!(记得戴好口罩哦)
  • 东大参与研制美国“奋进”号所携磁谱仪
    美国“奋进”号航天飞机当地时间16日从肯尼迪航天中心发射升空,前往国际空间站。这是“奋进”号最后一次升空,主要任务是运送名为“阿尔法磁谱仪2”的太空粒子探测器。记者昨获悉,在研制阿尔法磁谱仪的过程中,东南大学承担了重要任务。   专家介绍,宇宙大爆炸产生了正物质,理论上,还应当存在反物质和暗物质,但现实中又苦于找不到它们存在的真凭实据。在诺贝尔奖获得者、美籍华人丁肇中的领导下,16个国家和地区的研究人员开始了寻找这两种神秘物质的征程。他们的主要工具就是阿尔法磁谱仪。   1998年,美国“发现”号航天飞机搭载第一代阿尔法磁谱仪升空,但由于种种原因,实验受挫,仪器被毁。此后,科学家开始研制第二代阿尔法磁谱仪。   “阿尔法磁谱仪就像人类派往太空的神探。”东南大学计算机学院院长罗军舟教授介绍,它的主要本领是能够探测到太空中“流窜”的粒子,这基于磁谱仪强大而特殊的磁场。因为带电粒子进入磁场后其轨迹会发生变化,不同带电粒子的轨迹变化也不同,而不带电的粒子其轨迹则不会发生变化,因而观测粒子进入这一磁场后轨迹是否变化、变化程度有什么不同,就可以推知这是何种粒子。   在第二代磁谱仪的研发中,东南大学承担的主要任务包括:建立磁谱仪模拟实验系统、反物质探测系统、数据处理和海量数据存储系统。其中,磁谱仪模拟实验系统能够模拟仪器上出现的任何问题,反物质探测系统是磁谱仪上若干层探测器的重要组成部分,而数据处理和海量数据存储系统将为科学家将来寻找反物质提供数据。   “磁谱仪在空间站运行过程中,会产生大量的数据,传输到美国国家航空航天局(NASA),再由NASA传输到丁肇中负责的、位于日内瓦的欧洲核子研究中心。”   罗军舟说,研究中心会把数据传输到东南大学,进行分析。磁谱仪产生的数据量将达到420个T,相当于21个国家图书馆的藏书量。数据分析过程中,东南大学还将搭建一个数据平台,供参与这一项目的各国物理学家调取研究,反物质和暗物质到底能否发现,都将取决于这个数据分析平台。   据悉,第一代阿尔法磁谱仪的原型系统目前也陈列在东南大学的AMS01实验室内,供国内学者研究。
  • 2011年全球重大科技进展回望
    2011年,全球科研领域捷报频传,外空新发现、医卫新研发、基础研究新突破……一项项成果记录着人类在探索和发展道路上的不懈追求与努力。   1、植物纤维中取“汽油” 生物燃料研发获突破   3月,美国研究人员利用生物技术直接从植物纤维素中提取出新型燃料异丁醇,该生物燃料在性质上更接近普通汽油,其能量密度、辛烷值和蒸汽压均与汽油相似,可与汽油以任何比例调配,普通汽车引擎也可直接使用。无论从燃烧效率还是生产和使用成本来看,生物制异丁醇都可谓最佳汽油替代品。   这一成果可谓下一代生物燃料研究的巨大进展,而生物燃料不仅可以催生新兴产业,更有助于人类尽早摆脱对化石能源的依赖。   2、长时间“捕获”反氢原子 反物质研究迎契机   6月,欧洲核子研究中心成功用磁场陷阱“捕获”112个反氢原子,“捕获”时间最长达1000秒。此前反氢原子的束缚时间仅为172毫秒,科学家在反物质原子束缚时间上取得巨大突破,有利于对反物质性质进行精确研究。   科学界对此欢欣鼓舞,认为这是物理学领域的一次突破,距离反物质的“真相”又“近了一步”。英国《自然》杂志称,成功“捕捉”反氢原子后,通过比较反物质和正物质,科学家们就可以测试粒子物理学“标准模型”中最核心的基本对称理论。   3、测序马铃薯基因组 为粮食安全作贡献   中国科学家主导的国际研究团队于7月成功完成马铃薯基因组测序工作,《自然》杂志当月发表了马铃薯全基因组序列图和相关论文。   作为世界上第三大粮食作物,马铃薯对全球粮食安全的作用日显重要。通过全基因组设计育种,马铃薯育种家们能加速培育高产、高营养和抗病虫害的新品种。中方团队主导的这项研究,也奠定了中国在这一研究领域的国际领先地位。   4、分离甲流超级抗体 加速“全能”疫苗研发   英国和瑞士科学家7月在《科学》杂志上报告说,他们利用X射线晶体学的新方法,在一名甲型流感病毒感染者体内分离出甲流病毒超级抗体,动物实验显示该抗体可中和所有甲流病毒。   由于流感病毒的血凝素演变非常快,科学家不得不每年重新制备新疫苗以应对其变化。研究人员一直希望研制出“全能型”通用流感疫苗,从而“一劳永逸”。而这项发现为通用流感疫苗的研制带来希望,可能成为该领域研究具有历史意义的转折点。   5、外星液态水证据有望探寻地外生命   美国航天局8月和11月分别宣布,根据火星勘测轨道飞行器和“伽利略”号探测器发回的观测数据,研究人员在火星和木星的卫星——木卫二上发现液态水存在的证据。其中火星表面存在液态水的证据是迄今为止获得的“最好证据”,而木卫二的冰封表面下可能存在大量液态水。这一发现为人类寻找地外生命带来了更大希望。   6、中微子“超光速” 现代物理学基础或改写   9月,意大利格兰萨索实验室实验装置接受了730公里外欧洲核子研究中心的中微子,研究人员发现,中微子跑过这段距离的时间比光速快了60纳秒。欧核中心10月开启的复核实验,再次证实相关结果。   中微子“超光速”现象引发物理学界巨大争议,因为其意义事关现代物理学基础。如最终被证实,以“光速不可超越”为基石的爱因斯坦相对论将被改写,人类的时空观或将重建。   7、抗艾疫苗新成果 艾滋病患盼福音   西班牙马德里的格雷戈里奥马拉尼翁医院10月宣布,该院研制的名为“MVA-B”的艾滋病疫苗已进入人类临床测试的第二阶段。初步测试证明,该疫苗能弱化艾滋病病毒,使其只能引发“轻微慢性感染”,对30名试验对象的测试结果显示,免疫率高达90%。   8、发现宜居行星 地球找到“孪生兄弟”   美国航天局12月宣布,科学家利用“开普勒”太空望远镜,在距地球约600光年外的恒星系统中发现了一颗宜居星球。这个代号为“开普勒-22b”的行星,其所处行星系统与太阳系类似,半径约为地球半径的2.4倍,绕恒星运行的周期约为290个地球日。   作为人类迄今发现的最小且最适于表面存在液态水的行星,这颗行星的发现证明,地球的“孪生兄弟”也许真的存在。类地行星一直是人类太空研究的热点之一,如果未来真能发现如地球般适合人类居住的星球,其意义不言而喻。   相关新闻:2011年度“中国高校十大科技进展”评选揭晓
  • 中科院电工所和高能所参与研制阿尔法磁谱仪核心部件
    5月16日,高精度粒子探测器“阿尔法磁谱仪2”搭乘美国“奋进号”航天飞机驶入寰宇。   5月16日,几经推迟之后,高精度粒子探测器——“阿尔法磁谱仪2(AMS–02)”搭乘美国“奋进号”航天飞机的“绝唱之旅”,驶入寰宇。未来10年或更长时间里,它将在国际空间站运行,寻找反物质和暗物质,探索宇宙的起源及其构成。   “鲜为人知的是,它体内有一颗强大的‘中国心’——一块‘MADE IN CHINA’、内径约1.2米、重约2.6吨、中心磁场强度1370高斯的环形巨大永磁铁。”中科院高能物理研究所所长、中科院院士陈和生接受新华社记者专访时说。   “阿尔法磁谱仪”实验是一个大型国际合作科学实验项目。由诺贝尔物理学奖得主、华裔美国科学家丁肇中教授领导,美国、中国、德国等16个国家和地区的数百名研究人员参与其中。陈和生是这个团队首批科学家和主要成员之一。   反物质和暗物质是两种“神秘”物质。从理论上讲,它们应当存在,但现实中还没有找到证明它们存在的真凭实据。“宇宙是最终的实验室。”丁肇中在4月底发表的公报中表示。   “要分辨物质与反物质,就得想办法测量粒子带正电还是负电。这就需要把一个巨大的磁铁送到太空中去。如果使用常规磁铁,到处弥漫磁场根本无法在太空中运行。”陈和生说。   1998年6月,“阿尔法磁谱仪1(AMS–01)”搭载美国“发现号”航天飞机首次进入太空,成为人类送入宇宙空间的第一个大型磁谱仪。当时,陈和生在佛罗里达州肯尼迪航天中心亲历了那次为期10天的实验。   “这10天里,中国永磁体经受住了考验,工作正常。时隔13年后的今天,它再次‘披甲上阵’,到国际空间站做长期实验,帮助AMS–02‘捕捉’神秘的反物质和暗物质。”谈起AMS–02最核心部件——中国造永磁体,陈和生无比自豪。   丁肇中曾多次坦言,磁谱仪项目是他40多年科研生涯中遇到的“难度最大”的实验,甚至比当初为他赢得诺奖的J粒子实验还要“困难得多”。   “最大的挑战就是要将大型磁铁放入太空。”丁肇中说。美国国家航空航天局(NASA)对磁铁的负载安全要求极高。一是要降低漏磁,避免干扰航天飞机和空间站其他仪器的工作。二是磁二极矩必须极小,以免磁谱仪在地球磁场作用下产生转动。   按照惯例,NASA对搭载大型设备需做三次安全评估,而中国制造的钕铁硼磁铁只做了两次就顺利“闯关”。业内人士说,这在NASA检验史上还是第一次。   这块强大的“中国心”到底神奇在哪里?   “中科院电工研究所、高能所和中国运载火箭技术研究院的科学家们通力合作,选择新型高磁能积钕铁硼材料,采用独特的‘魔环’结构磁路设计,64个磁化方向连续变化的永磁条安装其中。这种结构使永磁体磁场约束在AMS磁体内部,漏磁和磁二极矩比NASA的要求小了一个数量级。”陈和生说。   不久前,AMS–02曾进行模拟空间测试。科学家根据测试结果决定,沿用曾服役AMS–01的中国永磁体,它可以使磁谱仪使用寿命长达18到20年。   此外,AMS-02在AMS-01的基础上增加了若干新的子探测器。其中,中科院高能物理研究所与中国航天科技集团公司的专家和意大利、法国同行共同研制出作为探测器关键部分的电磁量能器。   “电磁量能器能精确测量光子和电子的能量,并排除宇宙线质子的本底,对探测的暗物质粒子十分关键。”陈和生说。   参加AMS02国际合作的国内单位还有东南大学、中山大学、山东大学、上海交通大学和北京航空航天大学。
  • 大型强子对撞机团队确定“穿越万里”反原子核
    轻反原子核由反质子和反中子组成。根据《自然物理》杂志发表的一篇论文,大型强子对撞机(LHC)团队研究认为,轻反原子核或能在银河系中穿越很长的距离。这项研究结果表明,这些反原子核或能用于寻找暗物质。反原子以及反原子构成的反分子等,统称为反物质,反物质与我们周围世界中的常规“正”物质相遇,则发生湮灭,释放大量能量。也正因如此,地球上没有反原子核的天然来源,但它们会在银河系的其他地方产生。有观点提出,反原子核可能是源于太阳系外的高能宇宙辐射与星际介质(星系中恒星之间空间)中的原子相互作用的结果。另一种观点认为,反原子核是尚未发现的暗物质粒子湮灭所形成的。为探索反原子核与物质的相互作用,欧洲核子研究中心的LHC所属ALICE合作组,日前分析了氦-3(氦的一种稳定同位素)原子核的反粒子。研究人员利用LHC的粒子对撞产生反氦-3原子核,再让这些反原子核与ALICE探测器中的物质相互作用,让它们消失。通过研究,团队科学家们确定了反氦-3原子核的消失概率,以及这种概率在这些反原子核穿越银河系过程中所产生的影响。
  • 下一代激光器可让“幽灵粒子”显形
    据英国《新科学家》杂志网站8月18日(北京时间)报道,俄罗斯国立核研究大学的亚历山大费德罗夫及其同事在即将发表于最新一期《物理评论快报》上的研究论文中说,根据他们的计算,一个强大的激光器可将制造出的首个正负电子对加速到很高的速度,从而让它们发光,这道光再与激光“合力”,产生更多的电子对。而这正是量子力学在20世纪30年代的一种预言。   量子力学的不确定性原理意味着,宇宙空间并不是真的空无一物。相反,宇宙的随机波动使之变成了“一锅热腾腾的粒子汤”,电子以及其对应的反物质正电子就在其中。通常情况下,这些粒子一碰到其反物质,彼此都会瞬间湮灭于无形,我们根本来不及一睹其真容。不过,物理学家在20世纪30年代曾经预言,一个非常强大的电场可以让这些“幽灵粒子”显露形迹。由于这些粒子带有相反的电荷,电场可以将它们推往相反的方向,使它们分开而不至于同归于尽。   而能够产生强大电场的激光器就是完成这项任务的理想“人选”。1997年,美国斯坦福直线加速器中心的物理学家们利用激光成功制造出了正负电子对,不过当时一次只能产生一个正负电子对。现在,科学家通过计算表明,下一代功能更强大的激光器可以通过启动连锁反应,捕捉到数以百万计的正负电子对。   俄研究小组的计算表明,对于一台可将大约1026瓦的能量聚焦于一平方厘米范围的激光器而言,这样的连锁反应能够有效地将其激光转变成数百万个正负电子对。   该研究论文的合作者、德国马普量子光学研究所的乔治科恩称,第一个拥有如此强大功能的激光器或许于2015年由欧洲超强激光设施项目建成,不过之后还需几年时间完成必要的升级才能达到每平方厘米聚焦1026瓦的能量。   美国普林斯顿大学的柯克麦克唐纳表示,能够产生大量正电子的能力对于粒子加速器非常有用,比如提议新建的国际直线对撞器,其能够以极高的能量使电子和正电子一起粉碎,模拟宇宙诞生瞬间的高能量场景。   目前用于大批量制造正电子的标准方法是将一块金属片上的高能电子束点火,以产生正负电子对。有专家认为,与之相比,超强激光器利用连锁反应来制造正电子的成本过于高昂。
  • 两院院士评选2010年世界十大科技进展新闻
    由中国科学院院士工作局、中国工程院学部工作局和科学时报社共同主办,557名中国科学院院士和中国工程院院士,投票评选瀚霖杯2010年中国十大科技进展新闻和世界十大科技进展新闻,2011年1月19日在京揭晓。   2010年世界十大科技进展新闻   1、人造生命迈出关键一步   美国J• 克雷格• 文特尔研究所的研究人员在《科学》杂志上报告说,他们人工合成了一种名为蕈状支原体的细菌的脱氧核糖核酸(DNA),并将其植入另一个内部被掏空的、名为山羊支原体的细菌体内。最终他们使植入人造DNA的细菌重新获得生命,并开始在实验室的培养皿中繁殖。研究人员表示,这是第一个人造细胞,它向人造生命形式迈出了关键一步。专家评论认为,这是人类历史上最重要的科技成果。   2、首次探测到暗物质粒子   神秘的暗物质一直令科学家感到迷惑不解,这种看不见的物质占宇宙质量的大约四分之三。美国佛罗里达大学科学家首次探测到暗物质粒子。在美国明尼苏达州北部的索丹铁矿地下2000英尺(约合610米),动用了30台高灵敏度探测仪,并将温度降低至零下273.1摄氏度。在这种实验环境下,当一种被称为“弱相互作用大质量粒子”(Wimp)撞击一个普通的原子时,这些探测仪将能够捕捉到撞击事件,从而确定Wimp粒子的存在。   3、发现“超级细菌”   8月11日,来自英国、瑞典、印度和巴基斯坦的四国科学家在权威医学杂志《柳叶刀-传染病》上联合发表文章称,他们发现了几种“超级细菌”,对几乎所有抗生素都有极高的耐药性,而这些细菌可能对全球的公共健康造成极大影响。这些菌株有一个共同点:都携带着一种相同的基因突变,能编码金属-β-内酰胺酶, 简称NDM-1。有了NDM-1,细菌就等于有了非常坚固的护盾,因为这种酶能够水解大多数抗生素,使之失效。上述文章发表后不久,“超级细菌”就在多个国家小规模爆发,引起了不小的恐慌。   4、首次成功制造并捕获反物质原子   欧洲核子研究中心的科学家成功制造出多个反氢原子,并利用磁场使其存在了“较长时间”。这是科学家首次成功捕获反物质原子。氢原子是只有一个质子和一个电子的最简单的原子。实际上,欧洲核子研究中心早在1995年就第一次制造出了反氢原子,但只能存在几个微秒的时间,就与周围环境中的正氢原子相碰并湮灭。此次的突破之处在于,制造出数个反氢原子后,借助特殊的磁场首次成功地使其存在了“较长时间”——约0.17秒。这一成果被看作是物理学领域的一大突破,将大大推动有关反物质的研究。   5、IBM发布硅纳米光子芯片技术   IBM公司12月2日发布了其在芯片技术领域的最新突破——历时10年研发的CMOS集成硅纳米光子学技术,该芯片技术可将电子和光子纳米器件集成在一块硅芯片上,使计算机芯片之间通过光脉冲(而不是电子信号)进行通讯。这一新技术的另一个优势在于它可在一个标准的芯片制造生产线上生产,不需要新的或者特殊的工具。科学家有望据此研制出比传统芯片更小、更快、能耗更低的芯片,为亿亿次超级计算机的研发开辟道路。   6、“普朗克”卫星绘出首幅宇宙全景   欧洲航天局7月5日宣布,该机构的宇宙探测卫星“普朗克”根据此前收集的数据,绘出了首幅宇宙全景。这幅图的珍贵之处在于捕捉到宇宙微波背景辐射,它形成于宇宙大爆炸时期,经过137亿年的漫长旅行才到达地球,对研究人员而言,它就是研究星系起源的 “活化石”。图像正中是地球所在的银河系,其周围布满了冷尘埃形成的纤维状物质,研究人员分析说,这片区域正是恒星形成的地方,而“普朗克”卫星拍下正在诞生的星体以及尚处在萌芽状的恒星。天文学家根据它提供的数据,可以更好地了解宇宙的起源及其现在的运行方式。   7、大型强子对撞机质子束流对撞首获成功   欧洲核子研究中心3月30日宣布,大型强子对撞机总能量为7万亿电子伏特的两个束流对撞获得成功。这是世界上目前能量最高的对撞。科学家认为,对撞成功对探索宇宙起源和粒子研究具有里程碑式的意义。欧洲核子研究中心11月4日宣布,2010年大型强子对撞机质子对撞运行当天圆满结束,已完成今年的实验目标,获得的主要成果包括对撞机的“性能参数亮度”达到设计目标,确认粒子标准模型的部分内容,在质子对撞中首次探测到“顶夸克”,确定“受激夸克”等新粒子产生的能级范围。   8、“千人基因组计划”获重大成果   由中、美、英国科研机构发起的大型国际科研合作项目“千人基因组计划”,10月28日在英国《自然》杂志上以封面文章形式发布了迄今最详尽的人类基因多态性图谱,同时也在美国《科学》杂志上报告了在基因研究技术手段上的收获,相关成果标志着人类基因研究进入了一个划时代的新阶段。这一计划取得了两个重要成果,第一是获得了迄今最详尽的人类基因多态性图谱,第二是探索出了研究基因多态性的新技术手段。   9、发布首份全球海洋生物普查报告    历时10年的全球“海洋生物普查”项目10月4日在伦敦发布最终报告,根据普查得出的统计数据,海洋生物物种总计可能有约100万种,其中25万种是人类已知的海洋物种,其他75万种海洋物种人类知之甚少,这些人类不甚了解的物种大多生活在北冰洋、南极和东太平洋未被深入考察的海域。来自80多个国家和地区的2700多名科学家共发现6000多种新物种,它们以甲壳类动物和软体动物居多,其中有1200种已认知或已命名,新发现待命名的物种约5000种。这是历史上首次进行全球海洋生物普查。   10、量子纠缠首次在电晶体线路中完美实现   一个由法国、德国和西班牙物理学家组成的研究团队首次确凿地证明:从电晶体装置中分离出来的粒子,仍可实现量子纠缠。这是量子力学的一次突破性进展。量子纠缠在全固体材料中的完美实现,意味着量子力学真正走进了电子元件中,量子纠缠和全固体材料结合的目的就是实现量子计算以及更加固若金汤的通信。该成果让科学家迈入了量子研究的新境界。在以原子为基石的微观世界里,光与电的行为将不再服从古典规则,而是量子物理规律。(郭祎)
  • 科学仪器助力科学家破解天文学难题 一箭双雕揭秘第一代星系和暗物质
    宇宙中第一代星系是如何形成的?暗物质的性质是什么?这两大谜团能否同时通过天文观测进行研究揭秘?最近,我国天文学家提出,通过测量21厘米森林的一维功率谱,未来的平方公里阵列射电望远镜(SKA)将能够同时揭秘宇宙第一代星系和暗物质的性质。相关研究发表在国际学术期刊《自然天文》上。探测21厘米森林一直面临极大挑战宇宙中存在大量的中性氢气体。这些气体中的氢原子在基态能级超精细结构之间的跃迁,会产生电磁波波长为21厘米的线辐射,也就是中性氢21厘米线。中性氢21厘米线为天文学家探索宇宙提供了巨大的机遇。“中性氢21厘米线为探测宇宙黎明与第一代星系提供了独一无二的手段。同时,利用中性氢21厘米谱线探测宇宙黎明与再电离也是平方公里阵列射电望远镜最重要的科学目标之一。”论文共同通讯作者、中国科学院国家天文台研究员陈学雷说。同时,宇宙早期各种结构及其周围的氢原子气体会在高红移射电点源的光谱上产生密集的21厘米吸收线。“这些吸收线丛,被天文学家形象地称为21厘米森林。”陈学雷说,多年来,探测21厘米森林一直面临极大挑战。“主要原因有两方面:一是21厘米森林信号微弱,并且探测它所依赖的宇宙黎明时期的射电亮源难以获取;二是21厘米森林信号同时受到第一代星系加热效应和暗物质性质的影响,因此在观测上我们很难区分这两种效应。这就使得21厘米森林探测难以实际用于限制第一代星系的加热效应或暗物质的性质。”论文共同通讯作者、中国科学院国家天文台副研究员徐怡冬解释。近年来,已经有一批高红移射电噪的类星体被发现,而且平方公里阵列射电望远镜也进入了工程建设阶段,开展21厘米森林探测已迫在眉睫。在这项研究中,我国天文学家提出了一种原创性的统计测量方案,使得21厘米森林不仅能够限制宇宙第一代星系的性质,还可以同时测量暗物质粒子的质量。新方法有望拓展人类对宇宙的认知“我们意识到由第一代星系的加热效应和温暗物质引起的信号变化,在光谱上的尺度分布特征存在明显不同。通过一维功率谱分析,我们未来可以从统计上区分这二者。”徐怡冬介绍。“21厘米森林的一维功率谱确实可以成为一箭双雕的宇宙学探针,它为揭开暗物质和第一代星系之谜提供了一种极有前景的新途径。”论文共同通讯作者、东北大学教授张鑫强调。针对此研究,加拿大圆周理论物理研究所教授凯瑟琳麦克评论道:“这项研究提出了一种有趣的方法,能够利用21厘米森林功率谱同时限制宇宙X射线对星系际介质的加热,以及温暗物质的可能效应这两种现象。虽然以前的研究已经检查了21厘米森林作为星系际介质探针的可能性,但将温暗物质效应作为一个独立信号包含进来,则为未来的观测提供了一个新的科学目标。”《自然天文》的编辑团队也针对这项研究发表了评论:“我们宇宙的最远处总是极为神秘,由于被尘埃、吸收光的原子和中间介质中的气体阻挡而很难直接观测。这项研究将吸收转化为一种优势,利用它打破了其他方法所遭遇的不同效应的简并,并可用于阐明早期宇宙的结构形成。”研究人员表示,这一突破性方法的发展对于解开暗物质和宇宙早期天体形成的奥秘具有重要意义,并将进一步推动我们对暗物质的理解,揭示宇宙结构形成及演化的过程。通过更深入的观测和分析,我们有望在不久的将来获得关于暗物质性质和早期星系形成的更多见解,进一步拓展我们对宇宙的认知。
  • 伟业新品:土壤分析质控样品系列标准物质
    伟业新品:土壤分析质控样品系列标准物质 土壤阳离子交换量是指土壤胶体所能吸附各种阳离子的总量。其数值以每千克土壤中含有各种阳离子的物质的量来表示,即mol/kg。土壤是环境中污染物迁移、转换的重要场所,土壤胶体以其巨大的比表面积和带点性,而使土壤具有吸附性。土壤的吸附性和离子交换性能又使它成为重金属类污染物的主要归属。土壤阳离子交换性能对于研究污染物的坏境行为有重大意义,它能调节土壤溶液的浓度,保证土壤溶液成分的多样性,因而保证了土壤溶液的“生理平衡”,同时还可以保持养分免于被雨水淋失。 阳离子交换是土壤比较重要的性质之一,是土壤本身的特有属性,主要原因就是土壤胶体的负电特性,其电荷分为可变电荷和固定电荷,当ph较低时(到达等电点时),整个性质就会发生变化,阳离子交换,顾名思义,负电荷的土壤胶体表面吸附有一些可交换态的阳离子如k、mg、ca等,当污染物特别是重金属类物质与土壤接触时,由于其于土壤胶体表面基团具有更强的结合能力,从而取代部分正电性基团,但是阳离子交换过程并不稳定,属于静电作用,因此自身并不稳定,如上述内容所说,易受ph影响,低ph条件下容易被淋洗。同时由于其具有很强的水溶性,因此生物有效性较高,容易被动植物吸收而贮藏在体内,是土壤化学反应较为活跃的一部分,受土壤环境影响较大。一、标准物质的制备本标准物质选择经筛查的土壤为基体,经过风干、去杂、研磨、混匀、过筛、灭菌而成。量值核验一致后在洁净干燥的实验室环境下分装。二、标准物质的检测本标准物质定值方法参照NY/T295-1995中性土壤阳离子交换量和交换性盐基的测定、LY/T 1243-1999 森林土壤阳离子交换量的测定,通过使用满足计量学特性要求的计量器具保证其量值溯源性。实验原理:用1mol/L乙酸铵溶液(pH7.0)反复处理土壤,使土壤成为NH+4饱和土。用乙醇洗去多余的乙酸铵后,用水将土壤洗入凯氏瓶中,加固体氧化镁蒸馏。蒸馏出的氨用硼酸溶液吸收,然后用盐酸标准溶液滴定。三、结论通过多次重复性实验的检测,产品的均匀性良好。经12个月长期稳定性研究结果表明有良好的稳定性,研制单位将继续跟踪监测该标准物质的稳定性,有效期内如发现量值变化,将及时通知上级主管部门与用户。四、应用领域本产品通常运用于土壤方面阳离子交换量、交换性盐基指标的检测。作为产品的质控分析样品,也可以用在环境土壤检测。五、注意事项需要注意的是,阴凉密闭及避光条件下保存。使用前应混匀,最小取样量为1.5g,并注意水分的影响。淋洗次数需合理,淋洗次数不够,不能把交换剂全部洗掉,淋洗过头会使易水解的被洗去产生误差,且不能超声提取。
  • seahorse线上讲座报名:使用安捷伦 Seahorse XF 技术对嗜中性白血球活化程度进行定量分析
    嗜中性白血球在先天免疫系统中的一个作用是产生抗菌活性氧类(ROS)。为了生成活性氧,嗜中性白血球会大幅提高 NADPH 氧化酶的活性,该过程需要消耗氧气。在本次研讨会中,我们将讨论利用安捷伦 Seahorse XF 分析仪实时对嗜中性白血球活化程度进行定量的方法。除了介绍经验证的嗜中性白血球活化程度定量方案,我们还会举例说明该应用可以如何用于活化动力学检测。在本次网络研讨会上,我们将讨论:使用 XF 分析仪测量嗜中性白血球活化程度的优势消耗量进行定量,直接测量嗜中性白血球的活化程度如何找到更多关于免疫细胞活化的信息主讲人:Brian Dranka, 博士安捷伦科技有限公司Seahorse XF 产品部生物学经理会议时间:2018 年 3月 28 日(周三)太平洋夏令时间 7:00(洛杉矶)美国东部夏令时间 10:00(纽约)英国夏令时间15:00(伦敦)3月28日后可观看视频录像,我们将发送给所有注册用户报名链接:https://seahorseinfo.agilent.com/acton/fs/blocks/showLandingPage/a/10967/p/p-0139/t/page/fm/0/r/l-tst:22/s/l-tst
  • 我国将制定化妆品中48种物质检测国家标准
    仪器信息网讯 日前,国家标准委发布了2014年第一批国家标准制修订计划的通知,通知中提出将制定化妆品中11种青霉素类抗生素、15种喹诺酮类抗生素、5种重金属、7种性激素,以及黄芪甲苷、芍药苷、连翘苷和连翘酯苷A等48种物质的测定方法。   以上物质测定采用的仪器主要为高效液相色谱法、高效液相色谱/串联质谱法、电感耦合等离子体质谱法等。   2014年第一批国家标准制修订计划拟制定的化妆品检测标准:   《化妆品中4-异丙基-m-甲苯酚等6种酚类抗菌剂的测定 高效液相色谱法》   在化妆品中,酚类抗菌剂既可作为防腐剂,又可用于皮肤护理肤液和腐蚀痘痘。在我国化妆品卫生规范((2007年版))和GB7916-1987《化妆品卫生标准》中,对以下酚类物质做出规定,4-异丙基-3-甲酚(&le 0.1%)、4-叔丁基苯酚(禁用)、4-氯-3-甲酚(&le 0.2%)、2,4,6-三氯苯酚(禁用)、苯酚(禁用)和五氯苯酚(禁用)。   目前我国尚无酚类抗菌剂检测的国家标准方法,本研究拟通过酚类抗菌剂检测方法的探索,制定相应的标准检测方法,为化妆品品产品的市场监督提供有力的技术支撑。   《化妆品中阿莫西林、氨苄西林、哌拉西林等11种青霉素类抗生素的测定 液相色谱-串联质谱法》   《化妆品中恩诺沙星、环丙沙星、诺氟沙星等15种喹诺酮类抗生素的测定 液相色谱-串联质谱法》   为了使消费者在使用化妆品后能够迅速改善肤质,一些厂商可能会在其产品中违禁添加一些抗生素。使用添加了抗生素的化妆品,消费者最初会觉得皮肤明显变好,但长期使用会造成色素沉着、皮肤萎缩、变薄、变黑,甚至导致皮炎。如果长期局部使用,最容易对该抗生素所对抗的细菌产生耐药,从而无法杀死细菌。虽然消费者使用后在短期内不会有任何异常反应,但当人们为了治病而选择该抗生素时,体内可能早已经产生了抗药性,甚至有可能导致全身性损害。   因此我国《化妆品卫生规范》(2007年版)中明确规定抗生素类药物不得作为生产原料及组分添加到化妆品中。目前对于化妆品中青霉素类抗生素的测定还缺乏统一的国家检测方法标准,因此研究相关的检测技术是十分有必要的。   《化妆品中铬、锑、镉、砷、铅的测定-电感耦合等离子体质谱法》   化妆品的材料多来源于自然界的天然矿物质,并且在加工过程中有害重金属很难除去。化妆品中的重金属易通过皮肤吸收进入人体,经过长时间的蓄积产生危害,目前尚无针对化妆品中铬、锑的标准。目前化妆品中砷、镉、铅的检测方法主要是原子吸收和氢化物原子荧光光谱法。   ICP/MS法具有快速、高灵敏度和同时检测多元素的优点,广泛运用于环境、半导体、医学、生物、冶金、石油、核材料分析等领域中,其溶液的检出限大部份为ppt级,对化妆品中多种重金属的同时检测具有明显的优势。   《化妆品中黄芪甲苷、芍药苷、连翘苷和连翘酯苷A的测定 高效液相色谱法》   黄芪甲苷是黄芪中特征的生物活性成分,具有益气,固表,止汗等药用功效。中国药典明确记述,黄芪还具有增强免疫、抗癌、抗衰等药理作用。黄芪逐渐被应用于化妆品行业,目前已经有售含黄芪甲苷的牙膏系列产品和基础护肤类的相关产品化妆品。目前,我国尚无化妆品中黄芪甲苷的测方法,造成监管无据可依的现状,部分违规化妆品产品上标注含有中药成分但实际产品中不含或含量不够,欺骗消费者,逃避监管。   因此,为加强对黄芪相关化妆品的消费者权益,急需建立化妆品中黄芪甲苷的快速、准确的检测标准方法,特此建议立项。   《化妆品中七种性激素的测定 超高效液相色谱/串联质谱法》   我国的《化妆品卫生规范》(2007版)明确规定了7种性激素(包括雌酮、雌二醇、雌三醇、己烯雌酚、睾丸酮、甲基睾丸酮和黄体酮)为化妆品中禁用物质。由于在化妆品中添加性激素能够快速促进毛发生长,防止皮肤老化,增加皮肤弹性,并具有丰乳、除皱、治疗暗疮粉刺等作用,因此常被非法添加到各类护肤品中。然而,长期使用含性激素的化妆品会导致皮肤色素沉积、产生黑斑、皮肤层变薄等副作用,甚至具有致癌危险。   本标准适用于化妆品中7种性激素的定性和定量分析 取一定量的化妆品样品,膏霜类、精油类及面膜类化妆品用饱和氯化钠溶液分散,用甲醇从分散液中提取性激素类药物,经固相萃取小柱净化 水类化妆品用甲醇提取后可直接上样 用超高效液相色谱/串联质谱法测定,通过外标法计算试样化妆品中7种性激素的浓度。   色谱质谱法一直是化妆品中相关物质检测的重要方法,在2013年第一批国家标准制修订计划当中涉及的20项化妆品检测方法中,高效液相色谱法、质谱法占13项。具体立项标准如下表所示。
  • 中山大学参与研制仪器搭美国航天机飞天
    正在组装中的“阿尔法磁谱仪2”太空粒子探测器。   “奋进”号昨晚踏上最后太空之旅   美国“奋进”号航天飞机16日从美国佛罗里达州肯尼迪航天中心发射升空,服役近20年的“奋进”号由此踏上了自己的“绝唱”之旅。这是其第25次也是最后一次升空,主要任务是为国际空间站运送名为“阿尔法磁谱仪2”的太空粒子探测器。   粒子探测器阿尔法磁谱仪(AMS)用于探测宇宙中的反物质和暗物质,探索宇宙的起源与未知。AMS计划是由诺贝尔奖获奖者丁肇中教授领导的、由全球16个国家和地区的56个研究机构合作承担的国际性大型科研项目,超过1500名科研人员参与其中。中山大学参与研制的“硅微条轨迹探测器热控系统”将为AMS的硅微条探测器提供高度稳定和均匀的温度环境,中大也成为AMS中唯一研制用于太空实验装置的中国高校。
  • 《科学》杂志公布2012年度10大科学突破
    今日视点   美国《科学》杂志20日公布了本年度10大科学突破,科学家在难以捉摸的希格斯玻色子亚原子粒子研究领域取得的成果被评为2012年最重要的科学发现。40多年前,科学家假定了希格斯玻色子的存在,它是解释其他基本粒子(诸如电子和夸克等)如何获取其质量的关键。   1.希格斯玻色子   7月4日,科学家宣布找到了希格斯玻色子存在的证据,从而完成了粒子物理标准模型。该模型解释了粒子如何通过电磁力、弱核力和强核力相互作用以组成宇宙中的物质。然而,在今年之前,科学家无法解释这些基本粒子如何获得它们的质量。   《科学》新闻记者艾德里安表示,物理学家假设空间由与电场类似的“希格斯场”所填充。粒子与“希格斯场”相互作用以获取能量以及质量。“希格斯场”是由分布在真空中的希格斯玻色子组成,物理学家现在将它们从真空中轰出并进入短暂的存在状态。   但是,观察到希格斯玻色子可谓来之不易甚或代价不菲。在瑞士日内瓦附近的粒子物理实验室中,与造价高达55亿美元的原子加速器相伴的数千名研究人员借助两台巨型粒子探测器(ATLAS和CMS)发现了盼望已久的玻色子。   除希格斯玻色子的发现外,《科学》杂志及其发行机构美国科促会确认的本年度其他9项具有开创性的科学成就如下:   2.丹尼索瓦人基因组   一种将特定分子绑定在DNA(脱氧核糖核酸)单链上的新技术帮助研究人员仅用一块远古人的小指骨碎片,就完成丹尼索瓦人完整的基因组测序。该基因组序列让研究人员能够将丹尼索瓦人——这是与尼安德特人密切相关的古老人类——与现代人进行比较。研究显示,该指骨属于生活在7.4万年至8.2万年之间的一个眼睛、毛发和皮肤均为棕色的女孩,她死于西伯利亚。   3.让干细胞形成卵子   日本研究人员证实,小鼠的胚胎干细胞可被诱导成为具有生育能力的卵细胞。在研究中,他们让实验室中受精的细胞在代孕母体发育并产下小鼠幼仔。这种方法要求发育中的卵子在雌性小鼠体内存留一段时间。虽然这没有达到科学家追求的完全在实验室中得到卵细胞的终极目标,但是它为研究基因和其他影响生育力和卵细胞发育的因素提供了强有力的工具。   4.好奇号的着陆系统   尽管无法在火星条件下测试其探测器所有的着陆系统,但在加州帕萨迪纳美国宇航局喷气动力实验室里承担探索火星使命的工程师们仍安全并准确地将好奇号探测车抵达火星表面。这个3.3吨的飞行器因过重而无法以传统的方式登陆,为此该团队从起重机和直升飞机那里得到灵感,创建了“空中起重机”着陆系统,它将带轮的好奇号吊挂在3根线缆的末端让其着落。这一完美无暇的着陆让设计人员再次获得了信心,宇航局希望未来在已有的探测车附近让第二辆探测车着陆,并将第一辆探测车取得的样本收集起来送回地球。   5.X射线激光解开蛋白质的结构   研究人员用一种比传统的同步加速辐射源亮10亿倍的X射线激光确认了布氏锥虫所需的一种酶的结钩,这种寄生虫是引起非洲昏睡病的原因。新的研究进展证明了X射线激光解密蛋白质的潜力,而这是传统的X射线源所无法做到的。   6.基因组的精密工程   通常,人们无法确定对高级生物的DNA进行修改和删除的最终结果。然而,在2012年,名为“转录激活子样效应因子核酸酶”(TALENs)的工具赋予研究人员改变或关闭斑马鱼、蟾蜍、牲畜及其他动物甚至病人的细胞中特定基因的能力。这种技术以及其他新兴的技术与已有的基因靶向技术一样廉价和有效,同时它能让研究人员在健康人和病人中确认基因及变异的特定作用。   7.马约拉纳费米子   人们有关马约拉纳费米子是否存在的问题的争论已有70多年,该粒子会作为它们自己的反物质并湮灭它们自己。今年,由荷兰物理学家和化学家组成的研究小组首次提出了马约拉纳费米子以准粒子形式存在的可靠证据,它们是相互作为的电子群,其行为像单个粒子。该发现促使人们努力将马约拉纳费米子结合到量子计算中,因为科学家们认为由这些神秘粒子组成的“量子比特”与目前数字计算机中所拥有的比特相比,能够更有效率地存储和处理数据。   8.ENCODE项目   今年,超过30篇文章报道的一项长达10年的研究显示,人类基因组比研究人员曾经认为的更具“功能”。尽管只有2%的基因组会为实际蛋白编码,但“DNA元素百科全书”(ENCODE)研究项目表明,基因组的大约80%是有活性的,可帮助开启或关闭基因。这些新的细节有望帮助研究人员理解基因受到控制的途径,以及澄清某些疾病的遗传学风险因子。   9.大脑/机器界面   曾经用大脑神经记录移动电脑荧幕上光标的同一个研究团队在2012年向人们展示,瘫痪的病人能够用他们的思想来移动一个机械臂并从事复杂的三维运动。该技术虽然仍处于试验阶段且极端昂贵,但科学家希望更先进的计算程序可改善这种神经性假体以帮助因中风、脊髓损伤及其他疾病导致瘫痪的病人。   10.中微子混合角   数百名在中国大亚湾反应堆中微子实验中工作的研究人员报告了一个模型的最后的未知参数,该模型描述了被称作中微子的这种难以捉摸的粒子在以接近光速穿行时,如何从一种类型或“特色”变形为另一种类型。这些结果显示,中微子和反中微子可能会以不同的方式改变其特色,并提示中微子物理可能有朝一日帮助研究人员解释为什么宇宙含有如此多的物质及如此少的反物质。如果物理学家无法发现超越希格斯玻色子的新粒子,那么中微子物理可能会代表粒子物理学的未来。(驻美国记者 毛黎)
  • 2011中国、世界十大科技进展揭晓
    由中国科学院、中国工程院主办,中国科学院院士工作局、中国工程院学部工作局、中国科学报社承办,中国科学院院士和中国工程院院士评选的瀚霖杯2011年中国十大科技进展新闻、世界十大科技进展新闻,2012年1月17日揭晓。   2011年中国十大科技进展新闻   1 天宫一号与神舟八号成功实现交会对接   11月3日1时36分,神舟八号与天宫一号在太空成功实现首次交会对接。从接触到最后锁紧,它们用了8分钟。对接机构完成锁紧后,天宫一号姿态启控,建立起组合体飞行模式,开始组合体运行,进行一系列相关科学试验。11月14日20时,在北京航天飞行控制中心的精确控制下,天宫一号与神舟八号成功进行了第二次交会对接。这次对接进一步考核检验了交会对接测量设备和对接机构的功能与性能,获取了相关数据,达到了预期目的。11月17日19时32分,神舟八号飞船降落于内蒙古四子王旗主着陆场。天宫一号与神舟八号交会对接任务取得圆满成功。继美俄之后,中国成为世界上第三个掌握完整的太空对接技术的国家。   天宫一号与神舟八号成功实现交会对接,标志着我国空间交会对接技术取得重大突破,实现了我国空间技术发展的重大跨越。这是我国载人航天事业发展史上的重要里程碑。   2 “蛟龙”号载人潜水器成功突破5000米   7月26日上午, “蛟龙”号在第二次下潜试验中成功突破5000米水深大关。共有来自13家单位的96名科研人员参加了本次海试任务。海试期间,共完成5次下潜作业,共有8人完成15人次下潜,下潜深度分别为4027、5057、5188、5184和5180米。潜水器在海底完成多次坐底试验,并在中国大洋协会多金属结核勘探合同区开展海底照相、摄像、海底地形地貌测量、海洋环境参数测量、海底定点取样等作业试验与应用,完成了各项试验任务。   本次海试是国家“863”计划海洋技术领域的重点任务,由科技部委托、国家海洋局组织、中国大洋协会具体实施,旨在检验和考核“蛟龙”号在5000米级深度的安全性能和作业能力,为开展更大深度海试和未来实际应用奠定基础。   这次海试成功,是我国海洋科技发展的一个里程碑,标志着我国具备了到达全球70%以上海洋深处进行作业的能力。   3 百亩超级杂交稻试验田亩产突破900公斤   杂交水稻之父袁隆平院士指导的超级稻第三期目标亩产900公斤高产攻关获得成功。百亩试验田位于湖南省邵阳市隆回县羊古坳乡雷峰村,18块试验田共107.9亩。9月18日,这片由袁隆平研制的“Y两优2号”百亩超级杂交稻试验田正式进行收割、验收。农业部委派的专家组,中国水稻所所长程式华、江西农业大学党委书记石庆华、农业部科教司推广处徐志宇等国内杂交稻专家一行现场组织指导对袁隆平院士研制的“Y两优2号”超级杂交稻进行收割验收作业,测得隆回县羊古坳乡雷峰村百亩片亩产达到926.6公斤。杂交水稻大面积亩产900公斤,这是世界杂交水稻史上迄今尚无人登临的一个高峰,也是袁隆平带领中国专家迎战世界粮食问题的新课题。此前,由袁隆平院士领衔的科研团队,先后在1999年、2005年,成功攻克超级杂交稻大面积亩产700公斤、800公斤两大世界难关,使中国杂交水稻超高产研究保持世界领先地位。   4 首座超导变电站建成   4月19日,由中国科学院电工研究所承担研制的中国首座超导变电站在甘肃白银市正式投入电网运行。这也是世界首座超导变电站,标志着我国在国际上率先实现完整超导变电站系统的运行。这座变电站的运行电压等级为10.5千伏,集成了超导储能系统、超导限流器、超导变压器和三相交流高温超导电缆等多种新型超导电力装置,可大幅改善电网安全性和供电质量,有效降低系统损耗,减少占地面积,在核心、关键技术上获得了近70项完全自主知识产权。   这座超导变电站采用的四项超导技术中,超导储能系统是目前世界上并网运行的第一套高温超导储能系统 超导限流器是中国第一台、世界第四台并网运行的高温超导限流器 超导变压器是中国第一台、世界第二台并网运行的高温超导变压器,也是目前世界上最大的非晶合金变压器 三相交流高温超导电缆是研制时世界上并网示范的最长的三相交流高温超导电缆。   5 发现大脑神经网络形成新机制   复旦大学脑科学研究院马兰教授研究团队经3年多研究,发现一种在体内广泛存在的蛋白激酶GRK5,在神经发育和可塑性中有关键作用。这一发现揭示了GRK5在神经系统中的功能,以及调节神经元形态和可塑性的新机制,也给神经元发育异常引起的孤独症和唐氏综合征等疾病的治疗和药物研发提供了新的思路。这一发现刊登在美国《细胞生物学杂志》上,被选为研究亮点和封面论文,并被国际医学和生物论文评价系统“Faculty of 1000”选为“必读”论文,《科学》杂志子刊《科学—信号传导》撰文予以重点介绍。   很多影响认知的疾病,比如孤独症、精神发育迟缓、脆性综合征、唐氏综合征等都伴有神经元形态发育的异常。这一研究发现GRK5具有促进神经元形态发育的新功能,证明GRK5是一个促进神经网络形成、调节脑学习记忆等功能的重要蛋白质,为神经元发育异常引起的精神障碍的治疗和药物研发提供了新靶点。   6 世界最大激光快速制造装备问世   华中科技大学史玉升科研团队研制成功工业级的1.2米×1.2米、基于粉末床的激光烧结快速制造装备,这是世界上最大成形空间的此类装备,超过德国和美国的同类产品。这一装备与工艺的开发表明,我国在先进制造领域取得新突破,使我国在快速制造领域达到世界领先水平。   快速制造技术的最大优势是可以扩大人类的创意空间,加速工业产品设计与开发的步伐。已有200多家国内外用户购买和使用这项技术及装备,为我国关键行业核心产品的快速自主开发提供了有力手段。我国一些铸造企业应用该技术后,将复杂铸件的交货期由传统的3个月左右缩短到10天左右,我国发动机制造商将大型六缸柴油发动机的缸盖砂芯研制周期由传统方法的5个月左右缩短至一周左右。该技术被欧洲空客公司等单位选中,用于辅助航空航天大型钛合金整体结构件的快速制造。   7 发现人肝癌预后判断和治疗新靶标   美国《癌细胞》(Cancer Cell)杂志发表了中国工程院院士、医学免疫学国家重点实验室主任曹雪涛课题组及其合作者的研究论文,报道了其通过深度测序技术进行人正常肝脏、病毒性肝炎肝脏、肝硬化肝脏和人肝癌microRNA组学分析,发现了microRNA-199表达高低与肝癌患者预后密切相关,证明microRNA-199能靶向抑制促肝癌激酶分子PAK4而显著抑制肝癌生长,从而为肝癌的预防判断与生物治疗提供了新的潜在靶标。该工作面向我国重大疾病防治需求和医学界目前普遍重视的转化医学研究,是集基础研究、生物技术与临床标本和病人资料分析等多家单位和学科交叉合作的成果。有关专家认为,该工作揭示的正常与疾病肝脏microRNA组数据为后期进一步研究microRNA在肝脏生理和肝脏疾病中的作用奠定了基础。   8 首座快堆成功实现并网发电   由中国核工业集团公司组织,中国原子能科学研究院具体实施,我国第一个由快中子引起核裂变反应的中国实验快堆7月21日10时成功实现并网发电,标志着我国在占领核能技术制高点,建立可持续发展的先进核能系统上跨出了重要的一步。   该堆采用先进的池式结构,核热功率65兆瓦,实验发电功率20兆瓦,是目前世界上为数不多的大功率、具备发电功能的实验快堆,其主要系统设置和参数选择与大型快堆电站相同。以快堆为牵引的先进核燃料循环系统具有两大优势:一是能够大幅度提高铀资源的利用率,可将天然铀资源的利用率从目前在核电站中广泛应用的压水堆的约1%提高到60%以上 二是可以嬗变压水堆产生的长寿命放射性废物,实现放射性废物的最小化。快堆技术的发展和推广,对核能的可持续发展具有重要意义。   9 首座超深水钻井平台在上海交付   中国船舶工业集团公司上海外高桥造船有限公司为中国海洋石油总公司建造的“海洋石油981”3000米超深水半潜式钻井平台,5月23日在上海命名交付。   这座钻井平台是当今世界最先进的第六代超深水半潜式钻井装备,是中国实施南海深水海洋石油开发战略的重点配套项目。该钻井平台投资额60亿元人民币,将用于南海深水油田的勘探钻井、生产钻井、完井和修井作业,最大作业水深3000米,最大钻井深度12000米,总长约114米,宽90米,高137.8米,面积比一个标准足球场还大,高度相当于43层高楼。平台配置了目前世界上最先进的DP3动力定位系统和卫星导航系统。可谓海洋工程中的“航空母舰”。   “海洋石油981”深水钻井平台成功设计建造,填补了中国在深水钻井特大型装备项目上的空白,对于增强中国深水作业能力,实现国家能源战略规划,维护国家海洋权益等具有重要战略意义。   10 深部探测专项开启地学新时代   深部探测技术与实验研究专项,集中了国内118个机构、1000多位科学家和技术专家联合攻关,取得了一系列重大发现,为下一步地壳探测工程的实施奠定了基础。该专项计划实现覆盖大陆的大地电磁探测阵列网,目前中国大陆电磁标准网已完成全国4°×4°(经度×纬度)控制格架,华北实验区1°×1°观测网格。同时,初步建立起适应中国大陆地质地貌条件的深部精细结构探测技术体系,并首次按照国际标准建立了一个覆盖全国的地球化学基准网,在国际上首次建立了一套81个指标(含78种元素)的地壳全元素精确分析系统。此外,针对地壳活动性规律研究的应力测量技术也得到完善,有助于了解现今地震、地质灾害等发生的成因。   我国首台自主研发和生产的1万米超深科学钻探装备于12月20日在成都竣工出厂。这标志着国家深部探测技术与实验研究专项取得了又一个里程碑式的进展。   2011年世界十大科技进展新闻   1 英国发明超薄“纳米片”制备方法   英国研究人员最近发明出通用快捷的纳米片制备方法,能够将多种材料制成只有一层原子的超薄纳米片。   英国牛津大学等机构的研究人员在美国《科学》杂志上报告说,只要将具有层状结构的原材料置于某些溶剂中,然后利用超声波对之进行振荡,就可以使这些材料分解成只有一层原子的纳米片。实验显示,氮化硼、二硫化钼、二硫化钨等物质都可以通过这种方法制成纳米片。   研究人员瓦莱里娅尼科洛西说,本次研究所发明的方法简单快捷、成本低廉且产量高,有望在工业中大规模制备纳米片材料。   据介绍,纳米片可以制成各种薄膜,根据原材料性质的不同而用于诸多领域,如用于生产半导体和下一代电子器件等。本次研究将可能为这些工业领域带来革命性进步。   2 最大太阳能飞机首次跨国飞行成功   世界最大的太阳能飞机——瑞士制造的“太阳驱动”号5月13日在飞行12小时59分后,于瑞士时间同日21时39分在比利时首都布鲁塞尔降落,飞行距离630公里,成功完成首次跨国飞行。   “太阳驱动”项目发布的公报说,“太阳驱动”号由瑞士探险家安德烈勃希伯格驾驶,于当地时间13日8时40分从瑞士帕耶那机场起飞,途经法国和卢森堡,平均时速50公里,最高时速达70公里,平均飞行高度1828米,最高达到3600米。   “太阳驱动”号翼展长度为63.4米,机翼上覆盖着太阳能电池板,为飞机上总重达400公斤的4个蓄电池充电。“太阳驱动”号自身重量约1600公斤,仅相当于一辆小货车。这次飞行平均时速50公里,最高时速达70公里,平均飞行高度1828米,最高达到3600米。太阳能飞机可充当空中观测和通信平台,其独特之处在于当气象条件允许时,这种飞机可源源不断地获取太阳能,长时间在某一空域盘旋工作。   3 科学家成功“抓住”反物质原子长达一千秒   欧洲核子研究中心的科研人员6月5日在英国《自然—物理》杂志上报告说,他们成功地将反氢原子“抓住”长达一千秒的时间,也就是超过16分钟,这有利于对反物质性质进行精确研究。   科学家在论文中说,他们在这一轮研究中,先后用磁场陷阱抓住了112个反氢原子,时间从1/5秒到一千秒不等。分析还显示,这次抓住的反氢原子大多数处于基态,也就是能量最低、最稳定的状态。这有可能是人类迄今首次制造出的基态反物质原子。如果能让反物质原子在基态存在10分钟到30分钟,就可以满足大多数实验的需要。在这一轮研究中,科学家最多一次抓住了3个反氢原子。他们希望能将更多的反氢原子束缚较长时间,使测量数据在统计上更加精确。   反物质至今是物理学领域的一大谜团。研究反物质原子的特性、比较它们与普通原子在物理规律上是否对等,可能有助于解开上述疑点。   4 美国研制出世界上第一束生物激光   美国哈佛医学院的物理学家Malte Gather和Seok-Hyun Yun研制出世界上第一束生物激光。这种生物激光的关键是绿色荧光蛋白(GFP)。研究人员将一些产生了GFP的细胞置于两面镜子之间——它们的距离仅仅相当于一个细胞的宽度,即只有约20微米。为了发出激光,细胞中的GFP需要被另一束激光——约1毫微焦耳的低能蓝光脉冲所激发。虽然这种激光很微弱,但能被清晰地探测到,而用于生成激光的这个细胞仍然存活。科学家推测,这种生物激光能够在新型传感器或光基治疗中找到应用,例如,这种激光的使用通过使已有药物产生反应从而杀死癌细胞。   美国约翰霍普金斯大学的材料科学家Qingdong Zheng推测,这种生物激光能够在新型传感器或光基治疗中找到应用,例如,这种激光的使用通过使已有药物产生反应从而杀死癌细胞。他说:“这是一项很棒的工作。”   5 美国研制成功反激光器   美国耶鲁大学的科研人员2月17日报告说,他们研制成功一种反激光器,进入这一装置的激光光束将彼此干涉进而互相抵消。该装置在未来的量子计算机等领域具有潜在用途。   研究者介绍说,传统激光器吸收电能,并在非常窄的频率范围内释放光。反激光器则吸收激光光束,最终释放热能,这些热能很容易转化为电能。此外,传统激光器利用“增益介质”,比如半导体物质来产生聚焦光束,而反激光器则利用硅作为“损耗介质”来捕获激光光束。   负责这项研究的耶鲁大学应用物理学教授道格拉斯斯通表示,这一装置无法用于制造激光防护罩,其最明显的应用领域是高能计算机领域,还可以用作可随意开关的光学开关,相关技术也会在放射学领域派上用场。   这项研究成果发表在美国《科学》杂志上。   6 美国“好奇”号火星探测器发射升空   11月26日从佛罗里达州卡纳维拉尔角空军基地发射升空,这个探测器主要用于探索火星过去或现在是否存在适宜生命生存的环境。“好奇”号个头与小汽车相当,重约900公斤,是2004年登陆火星的“机遇”号和“勇气”号火星车的5倍多,长度约为它们的两倍。以核燃料钚提供动力的“好奇”号携带的探测设备更多、更先进,在火星表面的连续行驶能力也更强。经过约5.6亿英里(约合9亿公里)的旅程后,它预计于2012年8月6日在火星着陆,展开为期一个火星年(约687个地球日)的探测。   “好奇”号的着陆点预定在火星盖尔陨坑中心山丘的一处山脚下。盖尔陨坑位于火星赤道以南,得名于澳大利亚已故天文学家沃尔特盖尔,形成于大约3.5亿至3.8亿年前,直径约为154公里,面积相当于美国康涅狄格州和罗得岛州之和。盖尔陨坑中心山丘的层状物含黏土和硫酸,着陆点周围存在沉积物形成的冲积扇,这些物质和地貌的形成都与水有关。   7 晶体中量子纠缠态信息存储成功   加拿大卡尔加里大学科学家和德国科学家合作首次成功在一种特殊晶体中存入光量子纠缠态的编码信息,该项研究成果是量子网络发展的一个里程碑,有望在不久的将来让量子网络成为现实。量子网络的一大优势是可以保护信息在传输过程中不被第三方截取。   参与研究工作的卡尔加里大学物理系教授沃夫冈泰特尔介绍,他们在研究工作中将数据信息编码成光量子的纠缠态。在这种状态里,光量子之间形成“纠缠”关系,即便是它们游离开来相距甚远,也会保持这种“纠缠”关系。在某种程度上讲,这种“纠缠”关系意味着量子之间尽管相距甚远还将存在着通信联系。但困难在于,如何能够使它们固定不动而不破坏这种脆弱的量子链接。   研究人员使用了一种掺入稀土离子的晶体,并将其冷冻到零下270摄氏度。在此温度下,晶体材料性质发生变化,使得研究人员可以存储和提取这些量子,而不产生明显的退化。   8 中外科学家完成马铃薯基因组测序   14个国家的29个机构联合成立“国际马铃薯基因组测序协作组”,其中包括中国农业科学院蔬菜花卉研究所、深圳华大基因研究院等。   经过6年艰苦努力,该协作组发现,马铃薯基因组包含约3.9万个基因,几乎是人类基因数量的两倍。这项研究成果刊登在英国《自然》杂志上,并成为最重要的封面论文。论文通信作者之一、中国农业科学院蔬菜花卉所黄三文博士说,有了全基因组序列图,将加速马铃薯新品种的培育,原本需要10年至12年的育种过程将有望缩短至5年左右。此外,它还将有助于培育抗病、高营养、高产等优良特性的马铃薯新品种。黄三文透露,中国在这项耗资6000万美元的国际合作项目中发挥了主导作用。他说:“中方使用整个协作组5%的经费(约300万美元),完成了(论文中成果)70%的工作量。”   9 日本研制出世界最快计算机   日本IT业巨头富士通公司和日本理化研究所共同宣布已经在神户合作开发出一款运算速度可以达到每秒1.051万万亿次的超级计算机。这款新型超级计算机名为“京”,这是全球首款运算速度越过1万万亿次大关的“超级运算机器”。   超级计算机“京”是在日本文部科学省的监督下研制的,该计划原先的设想是由日本本土IT巨头富士通、日立和NEC公司共同承担这项耗资12亿美元的项目,但是在2009年的全球金融危机中,日立和NEC公司先后宣布退出。剩下的富士通公司独力支撑,决心用该公司自己生产的,专为高性能计算机设计的SPARC64 VIIIfx芯片进行研制。“京”采用864座机柜,连接超过8.8万块CPU,这些处理器经过设计能够进行联合运算。富士通此次并未给出“京”的耗电量水平数据,但是根据它在6月份达到每秒1000万亿次运算水平的时候,其实测功率约为9.89兆瓦,也就是大约每年989万美元的用电费用。   10 荷兰制造出世界最小分子“电动车”   一辆堪称世界最小的“电动车”出现在英国《自然》杂志的封面上,这是一个结构特殊的分子,它也有四个“轮子”,当接收到电流时就向前“行驶”,不过,它“行驶”的距离要以纳米来计算。   荷兰格罗宁根大学等机构的研究人员合成的这个分子在中间有一根“主轴”,前后两端各有两个类似轮子的结构。如果用特别小的探针碰一下这个分子,为之提供电流,四个“轮子”就会开始旋转,驱动整个分子前行。在铜板表面对这辆“电动车”进行的测试显示,如果施加10次电流,它可以前进6纳米(1纳米为百万分之一毫米)。   这种分子“电动车”将来可用于许多微观领域,比如把微量药物送达人体所需要的地点。不过研究人员表示,这还有很长路要走,因为本次实验是在零下200多摄氏度的低温和高度真空环境中完成的,如何在常规环境下也能让分子“电动车”工作是首先要解决的问题。
  • “抢”出来的世界级科学突破--大亚湾发现中微子第三种振荡模式
    实验站现场执行经理李小男研究员正在介绍探测器运行情况。   深圳特区报讯(记者 綦伟 文/图)日前,美国《科学》杂志公布2012年度十大科学突破中,中国大亚湾发现中微子第三种振荡模式位列其中。《深圳特区报》一直关注大亚湾中微子实验,曾在2011年12月7日、2012年3月9日、3月21日、12月22日 进行跟踪报道,引起强烈反响。   昨天,《人民日报》头版头条刊发《大亚湾中微子实验成果世界瞩目》的消息,对大亚湾中微子实验发现新的中微子振荡模式的成就和意义进行报道。   10年前,我国中微子物理研究还几乎为零 今天,来自大亚湾中微子实验的发现已上榜《科学》2012年度十大科学突破第4位。历经4年准备和4年建设,一个“抢”字贯穿大亚湾中微子实验过程,这是“抢”出来的世界级科学突破。   国际竞争中“抢”出国际领先   近日,记者再次来到位于大亚湾核电站内的中微子实验站,发现这里的科研人员们一如往常,正一丝不苟监测探测器运行取数情况,或进行实验设备的日常维护。实验站现场执行经理李小男研究员说:“入选年度十大科学突破当然高兴。但最感到痛快的,还是去年10月到12月大家抢着把探测器安装到位,成功开启运行的那一刻。”   那是一次果断的变阵提速。面对日本、美国、法国和韩国中微子实验的竞争,大亚湾实验国际合作组决定将计划安装的8个中央探测器改为先安装运行6个,力争最先发现中微子混合角θ13参数值。   “真抢!”李小男说,那一段时间没有节假日,天天从清早忙到深夜。不仅现场抢安装、抢调试、抢运行,远在北京中科院高能所的数据分析人员也抢先开发出分析软件并进行了多次演练。去年12月24日,6个中央探测器开始运行捕获中微子事例,两个月后,实验组便在置信度大于99.9999%的水平上测得θ13不为零,向世界宣布首次发现了中微子的第三种振荡模式。如此快的速度,让合作组内的美国伙伴们都感到不可思议。   国内多家单位在帮着实验组一起抢。科技部、中国科学院、国家自然科学基金委、广东省、深圳市和中国广东核电集团,共同出资1.57亿元对大亚湾实验给予支持。“用核反应堆来测量θ13参数值是最便利的,这个几乎所有高能物理科学家都知道。但是有哪个核电站会允许在离反应堆仅几百米的地方施工建设一个大型地下实验站呢?”当了解到实验的重要意义后,中广核集团不仅同意工程建设,而且还出资3500万元。深圳市政府为此专门召开了有20多个委办局领导参加的协调会,中心内容就是如何保证大亚湾实验工程顺利开工。   多方努力,保证了大亚湾实验工程安全高效建成投入使用。李小男感慨:“这恐怕只有在中国才办得到。”   实验运行6年 精测值50年领先   乘电动车进入幽暗的隧道,记者来到位于地下百米的实验大厅。今年8月,实验曾暂停,将另外两个中央探测器安装到位后,10月19日大亚湾中微子实验开始进入全部探测器同时运行的完整测量阶段。   “现在我们正用新的物理分析方法,以求更精确地分析这一物理结果。”李小男说,之前是数测到的中微子个数,现在加入能谱分析,即不仅知道有多少个,而且知道每个的能量是多少。两种分析方法可以互相验证。   由于新方法对探测器性能的要求更高,实验组已经在8月份对全部探测器进行了一次新的全体积不同能量的标定。“现在物理结果的统计误差约有10%。估计全部8个探测器运行约6年左右,将可把统计误差降到约5%的精度目标。50年内,这都将是最精确的测量数值。”   大亚湾中微子实验首席科学家、中科院高能物理研究所所长王贻芳研究员介绍,实验使我们更深入地了解中微子的基本特性,也对未来中微子物理的发展方向起着决定性作用。只有得到这一结果,才能设计下一代中微子实验,如为不同种类的中微子质量排序,或测量中微子振荡中的宇称和电荷对称性破坏,以理解宇宙中物质—反物质不对称现象,即宇宙中“反物质消失之谜”。   实验二期项目初步选址开平   大亚湾中微子实验组仍在“抢”。10月份到现在,李小男到处跑,开始为大亚湾中微子实验二期项目忙碌。“本来想喘几口气,没想到这么快就启动了。”   王贻芳透露,中微子实验二期选址已基本上定在江门开平,在距离阳江核电站和台山核电站都是53公里左右的地方。“正在立项中。我们计划能够在2014年前开始动工,用6年时间建成。”   王贻芳说,中微子实验二期工程建成后,将可期待在测量三种中微子的质量顺序上有一个重大突破。届时,我国对于中微子的研究将达到真正的国际领先。  “一个方面的领先,不算全面的领先。”王贻芳说,计划中的我国中微子研究发展分三步走。第一步目标已经在大亚湾反应堆中微子实验站实现,在精确测量θ13值方面取得国际领先 第二步,中微子实验二期瞄准多个科学目标,将在很多方面开展中微子研究,取得突破后,我国便真正达到在国际中微子物理科学研究中的领先水平。之后为第三步远期目标,将利用加速器产生的中微子更精确测量中微子物理参数。   “在中微子实验二期中,中微子探测器将更大。”王贻芳说,一期8个中央探测器总共800吨,二期将达到2万吨。“探测技术上也将实现一个大的跨越。”
  • 环形正负电子对撞机《技术设计报告》基本完成
    国际高能物理学界高度关注的环形正负电子对撞机(CEPC)又有新进展。“我们已经基本完成了CEPC的《技术设计报告》,今年将进行国际评审。”全国人大代表、中科院高能物理研究所所长王贻芳院士日前在接受科技日报记者采访时透露。CEPC是2012年中国科学家提出的关于未来高能对撞机的设想方案。科学家们希望用它研究希格斯粒子、宇宙早期演化、反物质丢失等一些未解的关键科学问题和新的物理规律,并寻找暗物质及其他新粒子。2018年,CEPC的《概念设计报告》正式发布。按照概念设计,CEPC将是一个建在地下50—100米处的周长100公里的“大环”。“在CEPC预研项目支持下,我们攻克了超导高频腔、增强器极弱磁铁、真空镀膜、数字束流测量与控制设备等多项关键技术难关,并研制出相关样机。而且超导高频腔达到了国际最好水平。”王贻芳说,超导高频腔可以通过极高的能量效率给带电粒子加速,相当于现代粒子加速器的“发动机”。王贻芳介绍:“我们研制的超导高频腔的样机,技术指标绝对是国际领先的,为我国建设国际领先的高重频自由电子激光装置和未来高能正负电子对撞机提供了技术和设备保证。”
  • 众星联恒研发中心落户电子科大科技园
    2021年10月12日,北京众星联恒科技有限公司在怡心湖畔,美丽的电子科大科技园举行了签约暨入园仪式,标志着众星联恒研发中心正式落户成都。四川天府之国,人杰地灵,众星成立不久就设立了成都办事处以辐射西南地区的销售业务与技术服务支持。此次公司研发中心入驻电子科大科技园,旨在更好地满足客户的需求,打造西南区域最全面的X射线分析、测试、实验中心。入园仪式上,众星联恒CEO李才华先生上台致辞,并与电子科大科技园(天府园)董事长王萍女士签订了入园协议。众星联恒CEO李才华先生签约仪式北京众星联恒成立于2013年,经过8年多的发展,已经成长为一家集产品研发、科技成果转化、科研仪器销售、实验解决方案提供、技术咨询与服务于一体的科技型企业。随着研发中心的落地,标志着众星大力投入创新研发,发展自有知识产权,形成公司未来核心竞争力的转折点与里程碑。这不仅是众星自身发展的选择,也是顺应时代主题、响应国家号召的决策。从办公楼里小小的自研实验室到怡心湖畔科技园里宽敞明亮的研发大楼,我们感谢见证众星每个成长阶段的各位领导,朋友及各位同事。我们必不负众望,脚踏实地,砥砺前行。诚挚邀请各位专家学者、新老客户莅临我司研发中心指导工作,期待与您的进一步的交流与合作。让我们携手共进!荣耀征途,共襄未来。
  • 普析为您提供纺织品中有害物质测定解决方案
    纺织品中的有害物质给人体的健康带来了极大的伤害,例如,一、禁用偶氮染料是由芳香胺和亚硝酸钠进行重氮化反应合成的,是纺织品染色时最重要的一种染料,该类偶氮染料通过皮肤渗透进入人体后,在细菌和酶的作用下极易还原或分解,转化为具有致癌性的芳香胺类,对人体构成极大的危害;二、甲醛作为纤维素纤维树脂整理的常用交联剂,广泛应用于纯纺或混纺产品(包括部分真丝产品),从而赋予纺织品防缩、抗皱、免烫和易去污等功能。但是,甲醛含量超标的纺织品在穿着或使用过程中,部分未交联的或水解产生的游离甲醛会释放出来,对人体健康造成损害;三、纺织品均具有一定的pH值,由于人体皮肤带有一层弱酸性物质,以防止疾病人侵,因此纺织品pH值在中性(pH值为7)至弱酸性(pH值略低于7)之间对皮肤最为有益。目前,我国生产的纺织品pH值超标现象颇为严重。2005年一季度,国家质检总局对我国生产的纺织品进行了GB 18401-2003标准规定项目的抽查检测,结果显示pH值不合格率为第一位。因此加强对纺织品pH值的检测对规范纺织品市场、减少对人体的伤害有重要的意义 为摸清纺织品中的有害物质,,北京普析通用公司开发了适用于纺织品中禁用偶氮染料、甲醛含量、pH值超标的一系列解决方案。 偶氮染料&mdash &mdash 采用气相色谱/质谱联用仪进行样品测定,本实验采用M6单四极杆气相色谱质谱联用仪对纺织品中的偶氮染料进行检测,分离效果好,简便快速,结果准确可靠,回收率较高,满足分析要求。 甲醛含量&mdash &mdash 用分光光度法进行样品测定,选用1950紫外可见光分光光度计作为检测仪器,检出限低,操作简单,显色稳定,结果准确,满足国标要求。 pH值测定&mdash &mdash 本方案按照GB/T 7573-2002对A、B、C三类纺织品的pH值进行了测定。实验结果表明,本检样内三类纺织品的pH值均符合国标要求。 欲知详情请拨打垂询电话: 销售热线:010-69910666 010-69910888 免费咨询热线:800-810-0172 400-610-0172
  • 北京众星联恒公司发布桌面超快等离子体X射线动态诊断装置——FemtoX II
    北京众星联恒科技有限公司多年来一直以来致力于x射线科研设备领域的销售和服务,积累了充分的高尖端x射线产品资源以及技术经验。 2016年10月8日北京众星联恒公司正式发布推出商业化的、具有自主知识产权的桌面等离子体x射线动态诊断设备——femtox ii,该产品已经在中科院及国内高校得到应用。激光等离子体脉冲式超快x射线辐射源经过近二十年的发展,已经在国际顶级实验室具有了超微、超亮、高信噪比和高稳定性的特点,加上其装置的低成本优势,已经成为同步辐射光源在超快领域的有效补充。 特别是使用飞秒超短超强激光与靶相互作用时,x射线的脉冲宽度与激光的时间相当,加上x射线和驱动激光之间天然的时间同步性,使这种飞秒激光超快x射线辐射源具有飞秒时间分辨的物质动态解析能力。这种具有超快特点、较高空间分辨、较好单色性的x射线源在时间分辨的超快x射线泵浦探测实验、相称成像的方面具有重要应用前景。随着超快激光驱动x射线研究领域多项瓶颈的突破,目前我们获得的各项束流指标均达到世界最高值,并已经展开了实际的应用,填补了我国在超快单色x射线时空动力学诊断领域的空白。图一 激光脉冲泵浦--超快x射线探针的诊断装置光路图示例图二 femtox ii 装置实物图
  • 首个矿山重型装备国家重点实验室成立
    矿山重型装备领域首个国家重点实验室日前在中信重工成立,这也是科技部批准在全国建设第二批56个企业国家重点实验室之一。   矿山重型装备重点实验室成为国家组织该领域高水平基础研究和应用基础研究、聚集和培养优秀科技人才、开展高水平学术交流、科研装备先进的重要基地。据中信重工副总经理王继生介绍,矿山重型装备国家重点实验室涵盖四大类27个应用实验室,已初步建立起“开放、流动、联合、竞争”的运行机制,充分体现了以企业为主体、以市场为导向、产学研相结合的特色。实验室的主要研究方向是矿山重型装备的性能设计与评价技术、可靠性及延寿技术及矿山重型装备的制造关键技术和矿山重型装备的节能减排技术。
  • 北京中兴百瑞技术有限公司乔迁新址
    公司搬迁通讯稿热烈庆祝北京中兴百瑞技术有限公司乔迁新址 中兴百瑞在总经理李建生的带领下,短短几年取得了飞速的发展,每年实现着资金的递增,公司的规模不断的被刷新。为适应公司的发展,提升公司整体的竞争能力,在领导的支持下,中兴百瑞已于2017年3月17日迁入新址,新办公地址:北京市海淀区双清路3号中太大厦(鸿运财富大厦)32066,。 新环境,新面貌。欢迎中兴百瑞的新、老客户来新址参观。 谢谢! 北京中兴百瑞技术有限公司
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制