当前位置: 仪器信息网 > 行业主题 > >

中空纤维膜组件

仪器信息网中空纤维膜组件专题为您整合中空纤维膜组件相关的最新文章,在中空纤维膜组件专题,您不仅可以免费浏览中空纤维膜组件的资讯, 同时您还可以浏览中空纤维膜组件的相关资料、解决方案,参与社区中空纤维膜组件话题讨论。

中空纤维膜组件相关的论坛

  • 【求助】中空纤维膜

    请问各位做过液液微萃取的高手,文献中经常提到的德国产中空纤维膜,在中国有代理吗?具体的联系方式。谢谢

  • 【建设新闻】膜天膜中空纤维膜材料与膜过程实验室获批升格为国家级重点实验室

    [color=#fe2419] [size=4]膜天膜中空纤维膜材料与膜过程实验室获批升格为国家级重点实验室[/size][/color][color=#000000][size=3]来源:中国水网 中国水网讯 根据科技部《关于批准2009年新建省部共建国家重点实验室培育基地的通知》(国科发基〔2010〕65号)文件精神,膜天膜公司与天津工业大学共同承担的“中空纤维膜材料与膜过程”重点实验室日前被科技部批准为省部共建国家重点实验室培育基地,至此本市国家级重点实验室建设方面实现了零的突破。[/size][/color][color=#000000][size=3] 该实验室将突出在中空纤维膜材料与膜过程方面的综合竞争优势,面向世界科学前沿和国家战略需求,围绕中空纤维膜的制备机理、膜材料结构与性能关系、新型功能膜制备及其分离原理、膜过程及其应用基础四个方向开展研究,构成完整的中空纤维膜材料与膜过程的研究体系,促进膜科学与技术在环保、污水资源化、海水淡化、生物工程等领域的实际应用,创造出标志性成果,建设成为代表国家水平、具有国际影响力的国家重点实验室。[/size][/color]

  • 制氮气的中空纤维膜结构真的有螺旋和非螺旋之分吗

    制氮气的中空纤维膜结构真的有螺旋和非螺旋之分吗

    很多氮气发生器厂家都提到其制氮的核心部件中空纤维膜是螺旋卷式结构,以增加表面比提高氮气分离效率,这种说法存在恶意宣传众所周知中空纤维膜分离器两端是密封的(根据其原理推理,两端密封也很合理),中间的部位纤维膜是直接与空气接触,膜分离厂家一般是用类似束缚编织袋捆绑,避免气体吹扫产生移位和改变形状,加上膜分离束采用的是聚酰亚胺材质显然螺旋卷结构,显然无法做到螺旋结构。更多厂家是通过增加膜的长度和膜分离器的直径,提高分离速率或纯度。不知道大家对此有何看法http://ng1.17img.cn/bbsfiles/images/2016/08/201608191718_605562_2374399_3.jpg

  • 为什么找不到中空纤维膜在农残检测中的相关资料?

    想用中空纤维膜液相微萃取-GC-MS做一些农药在水果蔬菜上的残留检测,但是查了很多相关的资料,大部分都是用于测定饮用水方面的,基本没有用于作物上的农残检测,想问问做过的高手,这是因为什么呢?净化效果不理想还是其他原因?先谢谢了。

  • 中空纤维膜液液萃取GC法测定体液中曲马多

    从文献中看到了中空纤维膜液液萃取气相色谱法测定体液中曲马多的操作过程,跟版友们分享一下,欢迎大家共同讨论学习。1、取样:自来水、尿、血浆等4mL,加1μL内标物(度冷丁1mg/mL),加0.1mL 1M NaOH,于6mL萃取瓶中。放入磁性转子,于磁力搅拌器上。2、萃取装置:中空纤维膜(聚偏氟乙烯类)外径1.0mm,内径0.65mm,膜壁平均孔径0.2μm。截取2cm长,清洗,干燥。用微量注射器抽取4μL甲苯(萃取液),注入到中空纤维膜内,将另一端融封。3、搅拌:将萃取装置插入萃取池中,室温下搅拌萃取15分钟。4、测定:萃取结束后,剪开融封端,抽取1μL萃取液进GC测定。 影响萃取的因素:萃取溶剂种类;萃取时间;搅拌速度;样品酸度。 方法优点:有机溶剂用量少,环保;操作简单,快速;装置简单,经济;尤其适合样品量少的情况。

  • 【第三届原创参赛】加电中空纤维膜萃取-离子色谱法测定乙酸丁酯中的无机阴离子

    摘 要 本文以去离子水为萃取剂,通过加电膜萃取装置萃取了乙酸丁酯中的无机阴离子。在600V直流电压的作用下,8 ml乙酸丁酯中的四种无机阴离子通过聚丙烯中空纤维膜孔内的有机液膜进入膜内的100 μl 去离子水中。萃取完成后,使用离子色谱对萃取液进行分析。本文优化了影响萃取过程的因素,如施加电压、搅拌速度以及萃取时间。最佳萃取条件为:施加电压为600V,搅拌速度为600rpm,萃取时间为5分钟。该方法成功应用于乙酸丁酯实际样品的测定,无机阴离子的线性范围为0.01 mg/L-1mg/L,加标回收率为97-102%。实验结果表明,该方法快速有效,并可应用于其他微溶性有机物中无机阴离子的测定。关键词 无机阴离子;乙酸丁酯;加电中空纤维膜萃取;离子色谱 最近15年来,中空纤维膜萃取技术作为一种样品前处理方法,被广泛应用于环境分析、药物分析以及食品和饮料检测等重要领域。中空纤维膜萃取技术具有样品无需处理即可直接进样,对分析物具有预富集作用,基体消除,成本低廉,易与气相色谱、高效液相色谱、毛细管电流和离子色谱联用等优点。但分析物穿透中空纤维膜壁上的支撑液膜的运输机理是基于被动扩散,因此,常常需要花费超过30分钟甚至长达一小时的时间才能达到萃取平衡。为了克服传统的中空纤维膜萃取技术耗时的缺点,2005年挪威的Pedersen-Bjergaard和Rasmussen首次提出了一种称为加电中空纤维膜萃取的新型样品前处理方法。短短5分钟内,碱性药物在300V直流电压的作用下能够成功地穿过一层薄薄的有机液膜进入到300 μl 接收相中。与传统基于被动扩散的膜萃取技术相比,电动力迁移在加电中空纤维膜萃取中起到了主导作用,因此在很短的时间内就能取得良好的萃取效果。随后,Pedersen-Bjergaar小组又将这种新型的加电中空纤维膜萃取方法应用于更多种类的碱性药物、酸性药物、肽类和氯酚类物质的萃取 。他们建立了加电中空纤维膜萃取过程的理论模型并考察了影响加电中空纤维膜萃取效率的参数 。此外,新加坡的Lee小组使用加电中空纤维膜萃取技术从羊水、血清、口红和尿样中萃取了铅离子。目前为止,加电中空纤维膜萃取技术一直应用于液-液-液三相萃取体系,而本实验首次将加电中空纤维膜萃取应用于液-液两相萃取体系。我们曾经使用在线中空纤维膜萃取-离子色谱法测定了乙酯乙酯的无机阴离子,但该方法的萃取时间长达半小时,并且使用了柱切换技术,装置复杂,操作繁琐,仪器成本高。而本实验使用加电中空纤维膜萃取技术仅需要短短5分钟就能完成萃取,并且装置简单,操作简便,成功应用于乙酸丁酯中无机阴离子的测定。

  • 哪里能买到聚丙烯中空纤维啊!

    最近需要要到点点聚丙烯中空纤维膜做实验,哪里能买到啊,当然量比较小,最好江浙沪一带。谢谢,有的话能否发个EMAIL:cao_aabb@sina.com

  • 【求助】pp纤维膜

    需要用膜在线过滤微生物,原来的膜是仪器厂家提供的。是pp材料的,我感觉是纤维膜,似乎是纤维压成1mm厚左右,相对于一般的虑膜,比较松散,纤维丝可以拽出。因此不是有版有接触过PP纤维膜或者中空纤维膜吗?

  • 中空纤维膜流量的测试

    自制中空纤维膜流量的测试方法由于没有标准的测试方法,所以需要自主开发测试方法使用自主开发的测试装置能够很简单的测出水通量,由于膜数量小,可使用始端过滤,在罐子中装入一定的水,往罐子中通入压缩空气加压,施压力约1kg,测出水通量。定义:指一定的时间内能过膜面积的水流量单位:L/(min*m2*H)膜水通量(J)的计算公式为:Jw= 透过水的体积L/(时间h×膜面积m2)*k[font=宋体]式中:[/font]k[font=宋体]为温度校正系数方法[font=宋体]在自制超滤器中加入纯水[/font][font=宋体]↓[/font][font=宋体]连接测试装置[/font][font=宋体]通入空气/[/font]N[sub]2[/sub][font=宋体]气,排净空气[/font][font=宋体]关上出水阀[/font][font=宋体]↓[/font][font=宋体]膜丝封蜡后装入出水管中[/font][font=宋体]调节[/font]N[sub]2[/sub][font=宋体]至[/font]0.05Mpa,[font=宋体]预压[/font]2min[font=宋体]测量[/font]1min[font=宋体]的出水量,记录水的体积[/font]V[sub]0.05[/sub][font=宋体];[/font][font=宋体]缓慢升压至[/font]0.1Mpa,[font=宋体]预压[/font]2min[font=宋体]测量[/font]1min[font=宋体]出水量,记录水的体积[/font]V[sub]0.1[/sub] [font=宋体]精确测量膜丝的长度,并记录测试水的温度[/font] [font=宋体] [/font][font=宋体]↓[/font][b][font=宋体]Ⅲ[/font].[font=宋体]注意事项:[/font][/b]1.[font=宋体]选取的膜丝要有孔,粗细均匀,膜丝有效总长度误差不超过[/font]1cm,[font=宋体]膜丝不能有折;[/font]2.85[font=宋体]℃恒温水浴加热[/font],[font=宋体]封蜡前膜丝要浸润。[/font].[font=宋体]封蜡温度不宜太低,温度太低会漏水;温度太高,石蜡会渗透到膜丝中;[/font]3.[font=宋体]超滤器中超纯水含量不能低于容器容积的[/font]1/5[font=宋体];[/font]4.[font=宋体]注意管道连接的紧密性;[/font]5.[font=宋体]开始通入少量[/font]N[sub]2[/sub][font=宋体]气,将水管中的气泡排出[/font][font=宋体] [/font]6.[font=宋体]观察膜丝的出水情况,保证每一根都出水,并且出水均匀,之后将膜丝剪短,以减少水的损失[/font]7.[font=宋体]测量水温时以出水管内水的温度为准。[b]2[font=宋体]、水通量温度校正系数表[/font][/b] [/font][/font][table=584][tr][td] [align=center][i][color=black]t[/color][font=宋体][color=black]([/color][/font][/i][font=宋体][color=black]℃[/color][/font][i][color=black])[/color][/i][/align] [/td][td] [align=center][i][color=black]k[/color][/i][/align] [/td][td] [align=center][i][color=black]t[/color][font=宋体][color=black]([/color][/font][/i][font=宋体][color=black]℃[/color][/font][i][color=black])[/color][/i][/align] [/td][td] [align=center][i][color=black]k[/color][/i][/align] [/td][td] [align=center][i][color=black]t[/color][font=宋体][color=black]([/color][/font][/i][font=宋体][color=black]℃[/color][/font][i][color=black])[/color][/i][/align] [/td][td] [align=center][i][color=black]k[/color][/i][/align] [/td][/tr][tr][td] [align=center][color=black]10[/color][font=宋体][color=black]℃[/color][/font][/align] [/td][td] [align=center][color=black]1.38[/color][/align] [/td][td] [align=center][color=black]20[/color][/align] [/td][td] [align=center][color=black]1.11[/color][/align] [/td][td] [align=center][color=black]31[/color][/align] [/td][td] [align=center][color=black]0.88[/color][/align] [/td][/tr][tr][td] [align=center][color=black]11[/color][font=宋体][color=black]℃[/color][/font][/align] [/td][td] [align=center][color=black]1.35[/color][/align] [/td][td] [align=center][color=black]21[/color][/align] [/td][td] [align=center][color=black]1.09[/color][/align] [/td][td] [align=center][color=black]32[/color][/align] [/td][td] [align=center][color=black]0.86[/color][/align] [/td][/tr][tr][td] [align=center][color=black]12[/color][font=宋体][color=black]℃[/color][/font][/align] [/td][td] [align=center][color=black]1.32[/color][/align] [/td][td] [align=center][color=black]22[/color][/align] [/td][td] [align=center][color=black]1.07[/color][/align] [/td][td] [align=center][color=black]33[/color][/align] [/td][td] [align=center][color=black]0.84[/color][/align] [/td][/tr][tr][td] [align=center][color=black]13[/color][font=宋体][color=black]℃[/color][/font][/align] [/td][td] [align=center][color=black]1.29[/color][/align] [/td][td] [align=center][color=black]23[/color][/align] [/td][td] [align=center][color=black]1.04[/color][/align] [/td][td] [align=center][color=black]34[/color][/align] [/td][td] [align=center][color=black]0.83[/color][/align] [/td][/tr][tr][td] [align=center][color=black]14[/color][font=宋体][color=black]℃[/color][/font][/align] [/td][td] [align=center][color=black]1.26[/color][/align] [/td][td] [align=center][color=black]24[/color][/align] [/td][td] [align=center][color=black]1.02[/color][/align] [/td][td] [align=center][color=black]35[/color][/align] [/td][td] [align=center][color=black]0.81[/color][/align] [/td][/tr][tr][td] [align=center][color=black]15[/color][font=宋体][color=black]℃[/color][/font][/align] [/td][td] [align=center][color=black]1.24[/color][/align] [/td][td] [align=center][color=black]25[/color][/align] [/td][td] [align=center][color=black]1.00[/color][/align] [/td][td] [align=center][color=black]36[/color][/align] [/td][td] [align=center][color=black]0.79[/color][/align] [/td][/tr][tr][td] [align=center][color=black]16[/color][font=宋体][color=black]℃[/color][/font][/align] [/td][td] [align=center][color=black]1.21[/color][/align] [/td][td] [align=center][color=black]26[/color][/align] [/td][td] [align=center][color=black]0.98[/color][/align] [/td][td] [align=center][color=black]37[/color][/align] [/td][td] [align=center][color=black]0.77[/color][/align] [/td][/tr][tr][td] [align=center][color=black]17[/color][font=宋体][color=black]℃[/color][/font][/align] [/td][td] [align=center][color=black]1.19[/color][/align] [/td][td] [align=center][color=black]27[/color][/align] [/td][td] [align=center][color=black]0.96[/color][/align] [/td][td] [align=center][color=black]38[/color][/align] [/td][td] [align=center][color=black]0.76[/color][/align] [/td][/tr][tr][td] [align=center][color=black]18[/color][font=宋体][color=black]℃[/color][/font][/align] [/td][td] [align=center][color=black]1.16[/color][/align] [/td][td] [align=center][color=black]28[/color][/align] [/td][td] [align=center][color=black]0.94[/color][/align] [/td][td] [align=center][color=black]39[/color][/align] [/td][td] [align=center][color=black]0.74[/color][/align] [/td][/tr][tr][td] [align=center][color=black]19[/color][font=宋体][color=black]℃[/color][/font][/align] [/td][td] [align=center][color=black]1.14[/color][/align] [/td][td] [align=center][color=black]29[/color][/align] [/td][td] [align=center][color=black]0.92[/color][/align] [/td][td] [align=center][color=black]40[/color][/align] [/td][td] [align=center][color=black]0.73[/color][/align] [/td][/tr][tr][td] [align=center][color=black]20[/color][font=宋体][color=black]℃[/color][/font][/align] [/td][td] [align=center][color=black]1.11[/color][/align] [/td][td] [align=center][color=black]30[/color][/align] [/td][td] [align=center][color=black]0.90[/color][/align] [/td][td] [align=center] [/align] [/td][td] [align=center] [/align] [/td][/tr][/table]

  • 【转帖】膜滤技术于饮用水处理的应用

    【转帖】膜滤技术于饮用水处理的应用

    膜的优越的分离特性,使膜滤技术在饮用水生产时也受到越来越广的应用。本实验采用了日本引进的优质聚乙烯中空纤维滤膜进行实用性研究。结果表明:处理砂滤水和混凝沉淀水时,在滤压损失为0-2m水柱范围内,膜滤装置处理能力20-30L/m2/h,处理后的水浊度在0.1NTU以下;细菌指标能达到国家标准。但在直接过滤原水时,膜阻力增加很快,浊度也增大。研究显示该装置能有效代替部分净水工艺生产自来水。 1 序论  膜滤技术在饮用水生产时可根据进水的水质而选用合适的膜,得到的处理水水质容易控制,卫生安全性好,所以正受到越来越广的应用。近年来,自来水生饮的一些欧美国家及日本仍有寄生性病原体感染的事例发生。美国Wiscosin州的Milwaukee在1993年Oregon州的Jackson County在1992年发生过感染,还出现了死亡病例。英国的Isie of thaunet area在1990年发生过感染。日本神奈川县的平口市在1994年琦玉县的越生町在1996年也发生过感染。这些国家都在一些地区建设采用膜滤技术的自来水厂,即使水源受到污染时也能保证供水安全。现在,日产1万吨以上的水厂在美国有42家,欧洲有33家,日本全国的膜滤制水能力达400多万吨。在我国用膜滤技术生产饮用水的还仅限于瓶装和桶装水行业。这次研究中采用了日本引进的优质聚乙烯中空纤维滤膜结合部分处理工艺对砂滤后水和混凝沉淀水进行实验,同时还对一些原水进行直接膜滤处理进行了尝试。2 实验方法和内容2.1实验装置  (1)实验用的膜材料为聚乙烯中空纤维,中空丝内径0.27mm,外径0.41mm,膜的公称孔径0.1μm,滤膜表面经过了亲水性处理,图2-1是中空纤维的放大图,图2-2是滤膜微孔的显微照片(5000倍)。[img]http://ng1.17img.cn/bbsfiles/images/2009/04/200904061043_142685_1623180_3.jpg[/img](2)组件和装置   聚乙烯中空丝的两端是两根集水管,中空丝悬荡在中间可以晃动,这样构成一片膜,见示意图2-3。组件由数片膜构成。实验装置是将组件放在方型的不锈钢水槽里,由气洗用鼓风机,抽吸泵,操作盘等组成。见图2-4。过滤方法采用全量过滤,制水时用鼓风机间隙地曝气,不需要反冲。[img]http://ng1.17img.cn/bbsfiles/images/2009/04/200904061044_142686_1623180_3.jpg[/img]

  • 【原创大赛】PSF PVDF中空膜孔径测试

    [font=宋体][b]目前测试膜材料孔径的方法较多,有微球截留,蛋白质截留,测汞仪,气液法,液液法,[/b][/font]对于孔径较小的目前测试方法为液液法[b]2 [font=宋体]适用范围[/font][/b][font=宋体]液液法适用于中空纤维膜平均孔径([/font][font='Arial',sans-serif]≥5[/font][font=宋体]纳米)[/font][font=宋体]的测量。[/font][b][font=宋体]3[/font][font=宋体] 失效[/font][/b][font=宋体] [/font] [table=593][tr][td] [align=center][b] [/b][/align] [/td][td] [align=center][b][font=宋体]违规操作类型[/font][/b][/align] [/td][td] [align=center][b][font=宋体]后果[/font][/b][/align] [/td][td] [align=center][b][font=宋体]如何避免[/font][/b][/align] [/td][/tr][tr][td] [align=center]1[/align] [/td][td] [font=宋体]膜经过甘油浸泡未处理[/font] [/td][td] [align=left][font=宋体]导致测试不准确[/font][/align] [/td][td] [align=left][font=宋体]将膜孔内的甘油进行清洗[/font][/align] [/td][/tr][tr][td] [align=center]2[/align] [/td][td] [align=left][font=宋体]压力不得超过[/font]100psi[/align] [/td][td] [align=left][font=宋体]导致内部压力表损坏[/font][/align] [/td][td] [align=left][font=宋体]设置最大压力值[/font]100psi[/align] [/td][/tr][/table][b][font=宋体] [/font][font=宋体]4 [/font][font=宋体]技术要求[/font][/b][font=宋体]依据[/font]ASTM F316[font=宋体]标准,利用两种液体之界面张力差异[/font], [font=宋体]使用异丙醇将中空纤维膜的润湿液体由膜孔道中挤出[/font],[font=宋体]进而测出中空纤维膜的平均孔径。[/font][b]4.1[font=宋体]实验仪器[/font][/b][font=宋体]仪器名称:双液法超滤膜孔径测定仪[/font][font=宋体]仪器型号:[/font]LLP-1200A[font=宋体]仪器出品国及厂家:美国[/font] PMI[b]4.2[font=宋体]仪器参数[/font][/b][font=宋体]孔径测试范围[/font]: 5[font=宋体]纳米~[/font]100 [font=宋体]纳米[/font][font=宋体]测试之压力范围[/font]: 0[font=宋体]~[/font]100 PSI[font=宋体]样品槽:[/font][font=宋体][color=#0D0D0D]材质[/color][/font][color=#0D0D0D]SS 316,[/color][font=宋体][color=#0D0D0D]尺寸[/color][/font] ? 99mm X 60mm[align=left][font=宋体]压力计精确度[/font]:0.15%([font=宋体]读值[/font])[/align][font=宋体]压力计分辨率[/font]: 1/60000[b]5 [font=宋体]实验方法[/font]5.1[font=宋体]实验[/font][font=宋体]工具[/font][/b][font=宋体]:样品台、环氧胶、美工刀[/font][font=宋体]、镊子、剪刀等[/font][b]5.2[font=宋体]实验试剂:[/font][/b][font=宋体]异丙醇(国药试剂):表面张力[/font] 22.1mN/m[font=宋体];[/font][font=宋体]测试液[/font]Galwick(PMI) :[font=宋体]表面张力[/font]15.9 mN/m[font=宋体];[/font][font=宋体]测试液[/font]Silwick(PMI):[font=宋体]表面张力[/font]20.1 mN/m[font=宋体]。[/font][b]5.3[font=宋体]主要实验步骤[/font]5.3.1[font=宋体]中空纤维膜[/font][/b]1)[font=宋体]剪取一段长约[/font]5cm[font=宋体]膜丝,用环氧胶封装在中空纤维膜样品台中,待胶水自然固化,后用美工刀切除多余胶水;(所需根数参考下表)[/font][align=center][b][font=宋体]表[/font]1[font=宋体]:不同膜测试需要的膜丝根数[/font][/b][/align][align=center][b] [/b][/align] [table][tr][td] [align=center][font=宋体]材料名称[/font][/align] [/td][td] [align=center][font=宋体]编织管复合膜[/font][/align] [/td][td] [align=center]PVDF[font=宋体]均质膜[/font][/align] [/td][td] [align=center]PS[font=宋体]超滤膜[/font][/align] [/td][/tr][tr][td] [align=center][font=宋体]所需根数[/font][/align] [/td][td] [align=center]1~2[/align] [/td][td] [align=center]2~3[/align] [/td][td] [align=center]5~8[/align] [/td][/tr][/table][align=center][b][font=宋体]图[/font]1.[font=宋体]制样流程[/font][/b][/align]2)[font=宋体]根据样品的孔径范围选择浸润液,(孔径范围在[/font]5~30nm[font=宋体],选择[/font]Silwick[font=宋体],孔径范围在[/font]30~100nm[font=宋体]选择[/font]Galwick[font=宋体])将样品浸泡在浸润液中[/font]20min[font=宋体],将材料完全浸润,之后将样品台倒置放入样品杯中(如图[/font]2[font=宋体]),将仪器门关好;[/font] [b] [font=宋体]图[/font]2 [font=宋体]测试过程简易流程[/font]5.3.2[font=宋体]操作步骤[/font][/b]1[font=宋体])将仪器顶部瓶内添加异丙醇,保持在[/font]1/3[font=宋体]以上液位;[/font]2[font=宋体])点击[/font]Auto Test Unit1[font=宋体]后,出现设定界面;[/font]a[font=宋体]输入样品编号、操作人、客户名称等;[/font]b[font=宋体]输入测试用浸润液,并输入两种液体之界面张力值([/font]Silwick[font=宋体]:[/font]2.021[font=宋体];[/font]Galwick[font=宋体]:[/font]5.4[font=宋体]);[/font]3)[font=宋体]设置取样时间[/font](5s)[font=宋体],抽取异丙醇时间([/font]10s[font=宋体])压力最大值([/font]100psi[font=宋体])等;[/font]4[font=宋体])设置完毕点击自动测试,密封槽在压力泵会自动下降紧密压在样品台上,形成密闭空间,异丙醇流到密封槽后,仪器按设定压力自动开始测试,由于异丙醇、浸润液两种液体的表面张力不同,异丙醇在气压的作用下将浸润液挤出;[/font]5[font=宋体])测试完毕,根据测试曲线运用软件计算出孔径结果;[/font]6[font=宋体])每个样品平行测定二次。[/font][b] [/b]

  • 【转帖】超滤膜分离技术基础

    超滤膜的过滤原理超滤是一种与膜孔径大小相关的筛分过程,以膜两侧的压力差为驱动力,以超滤膜为过滤介质,在一定的压力下,当原液流过膜表面时,超滤膜表面密布的许多细小的微孔只允许水及小分子物质通过而成为透过液,而原液中体积大于膜表面微孔径的物质则被截留在膜的进液侧,成为浓缩液,因而实现对原液的的净化、分离和浓缩的目的。超滤膜过滤原理图原液一般指需要净化、分离或浓缩的溶液,透过液指原液中透过超滤膜而被滤除大分子溶质的那部分液体,浓缩液则是原液中因分离出透过液而剩余的高浓度溶液。在净化水工程中,原液是指原水进水,透过液即为净化水,浓缩液则是排放的废水。内压式和外压式中空纤维超滤膜:一个中空纤维超滤膜组件主要是由成百到上千根细小的中空纤维丝和膜外壳两部分组成,一般将中空纤维膜内径在之间的超滤膜称为毛细管式超滤膜,毛细管式超滤膜因内径较大,因此不易被大颗粒物质堵塞,更适用于过滤原液浓度较大的场合。按进水方式的不同,中空纤维超滤膜又分为内压式和外压式两种:内压式:即原液先进入中空丝内部,经压力差驱动,沿径向由内向外渗透过中空纤维成为透过液,浓缩液则留在中空丝的内部,由另一端流出,其中环氧树脂端封的作用是在中空纤维膜丝的端头密封住膜丝之间的间隙,从而使原液与透过液分离,防止原液不经过膜丝过滤而直接渗入到透过液中。外压式中空纤维超滤膜则是原液经压力差沿径向由外向内渗透过中空纤维成为透过液,而截留的物质则汇集在中空丝的外部,外压式中空纤维超滤膜全量过滤和错流过滤方式:中空纤维超滤膜的过滤方式主要分为全量过滤和错流过滤两种:全量过滤方式是指原液中的水分子全部渗透过超滤膜,没有浓缩液流出,而错流过滤方式则是在过滤的过程中有一部分的浓缩液体从超滤膜的另一端排掉。超滤的过滤孔径:从表一中可以看出,在膜法分离技术中膜的微孔径在20*10-10m~1000*1-10m之间的过滤膜称为超滤膜,即0.002-0.1um之间,而一般胶体体积均≥0.1um,乳胶≥0.5um,大肠菌、葡萄球菌等细菌体积≥0.2um,悬浮物、微粒子等体积≥5um,因此超滤膜可以过滤出溶液中的细菌、胶体、悬浮物、蛋白质等大分子物质。超滤膜分离技术的特点超滤膜的分离过程具有以下几个显著特点: 在常温和低压下进行分离,因而能耗低,从而使设备的运行费用低。、设备体积小、结构简单,故投资费用低。超滤分离过程只是简单的加压输送液体,工艺流程简单,易于操作管理。、超滤膜是由高分子材料制成的均匀连续体,纯物理方法过滤,物质在分离过程中不发生质的变化,并且在使用过程中不会有任何杂质脱落,保证超滤液的纯净。以上特点决定了超滤膜的应用非常广泛,从普通家用饮水的净化到工业水处理都有大规模的应用,因而超滤膜分离技术作为国家火炬计划重点支持的六大高新技术之一,具有广阔的发展前景。

  • 新型的智能纤维织物

    智能纤维织物是当前正在大力开发研制的高功能织物之一。 智能纤维织物是当它所处的环境变化时,其形状、温度、颜色或某些性能随之发生相应的变化,或者说它能因受到某种“刺激”而改变其性能。当然,目前所说的智能纤维织物还不能像人脑那样,具有感知、运算、判断、指令等高级智能。 智能织物是由下列几种纤维织造的: 1. pH响应性凝胶纤维 是随pH值的变化而产生体积或形态改变的凝胶纤维·控制凝胶纤维这种变化的力来自三个方面:聚合物的弹力、聚合物间的亲和力和离子压力。当三者之间达到平衡时,凝胶纤维呈平衡状态,当这些力平衡发生变化时,凝胶纤维发生相变。如将聚乙烯醇C PVA溶液与聚丙烯酸类树脂混合,并使之交联,然后加工成单丝,这种单丝在溶液中会根据pH值的变化而迅速溶胀和收缩。另外,将聚丙烯睛纤维原丝先在220℃空气中氧化,再在NaOH水溶液中皂化,这种纤维在pH值约为3时突然收缩,而在pH值为11时突然伸长,此过程是可逆的·实验表明,这种PAN中空凝胶纤维在1 mol/L NaOH溶液中伸长率为90%以上,而在1 mol/L NaCI溶液中收缩率为70 %一80 %。 2.可变颜色的伪装纤维 用这种纤维制成的织物可用在军事国防上,它使用中空纤维,利用电泳现象的原理。中空纤维的粗细与人发相似,其中充满不同颜色的染料,染料中又悬浮着带电的颜料粒子,若使用不同颜色的染料和颜料加工纤维制成服装,当用类似电泳的方法控制颜料的粒子朝向或背离织物的外表时,织物会显示不同的颜色。 3.具有发射能力的纤维 这种纤维在受到某种刺激后会发射微弱信号波,用它做成军服,当士兵受伤服装被破坏后,该纤维就能发射出求救信号,伤员所在的位置就能很快被特定仪器所发现,便于派人营救。http://simg.instrument.com.cn/bbs/images/default/em09502.gif

  • 复合纤维!

    复合纤维:由两种及两种以上聚合物,或不同性质的同一聚合物,经复合纺丝法纺制而成。分并列型、皮芯型、海岛型。并列型纤维特点可产生类似羊毛的弹性和蓬松性。并列型纤维特点可兼有两种或以上纤维的优点。如锦纶为皮、涤纶为芯的复合纤维,兼有锦纶染色性好、耐磨,涤纶挺括、弹性好。海岛型可制得中空纤维、细旦、超细旦纤维。用于仿制毛型、丝绸型、防水透湿织物等

  • 纤维之十------木棉纤维

    纤维之十------木棉纤维

    天然植物纤维其中四种:棉、木棉、麻、椰丝纤维。木棉属被子植物门、双子叶植物纲、木棉科植物。木棉(Kapok)纤维是一种野生绿色生态纤维。生长期一般为3-5年,对地理、气候、光照有要求,世界上目前还无法形成大规模种植,采集比较困难,加工难度大。木棉纤维有白、黄和黄棕色3种颜色。一株成年期的木棉树可产5-8kg的木棉纤维,目前包括我国在内的木棉纤维的全球年产量约19.5万吨。http://ng1.17img.cn/bbsfiles/images/2015/06/201506041253_548780_2974654_3.jpghttp://ng1.17img.cn/bbsfiles/images/2015/06/201506041254_548781_2974654_3.pnghttp://ng1.17img.cn/bbsfiles/images/2015/06/201506041254_548782_2974654_3.pnghttp://ng1.17img.cn/bbsfiles/images/2015/06/201506041254_548783_2974654_3.png一、性能1、目前世界上最细的天然超细纤维,密度只有棉纤维的1/2;2、木棉的纤维排列密度相当高,遇到风寒,纤维排列的末端呈自然紧密状态,就像一道防风墙,牢牢的把风寒湿气档在外面,同时还可以聚集体内释放的远红外线,有效的储蓄热量,使人体感觉更加温暖。3、木棉纤维从细度,柔软度,中空率,保暖效果等多方面都优于羊绒;4、木棉结构致密,木棉纤维的中空率高达80-90%以上,是最理想的保暖材料,保暖性能是羽绒的3倍;木棉的中空率让成品更加轻薄,给人轻盈舒畅之感;5、纯木棉拥有世上最细小网状致密结构,导湿单位小于水分子的1/20 ,透气均匀,可迅速将汗液转化为气态导出体外,同时锁住肌肤水分,出汗不粘粘,保暖不干燥(导湿试验)。6、木棉纤维的平均折射率为1.71761,比棉的1.59614略高。这导致木棉纤维光泽明亮,光滑的圆截面更加剧光泽,木棉的光泽亮丽。7、木棉纤维不含农药,化肥等化学残留物,属绿色天然环保纤维;8、《本草纲目》记载:它有祛风除湿,活血消肿,散节止痛之功效。9、木棉的耐酸性和耐碱性较好,常温下稀酸、弱碱对其没有影响。10、木棉纤维有白、黄和黄棕色三种颜色,可用直接染料染色。二、木棉纤维的应用1、中高档服装家纺面料木棉纤维可纺性差,一般难以纯纺。采用与棉、粘胶或其他纤维素纤维混纺,可制织光泽和手感良好的服装面料。如日本大和纺织公司2003 年投放市场的是木棉和棉混纺织物,木棉含量:30%~50%,混纺纱有73 tex、58.3 tex 和29 tex 三种。该公司还开发出以聚酯长丝和尼龙长丝为经纱、木棉和棉混纺纱为纬纱的混纤交织物。这些水棉织物主要用于制作妇女轻量短大衣、衬衫和连衣裙以及男士上装等。目前上海攀铭企业发展有限公司利用自己的专利技术纺制18 .2~2 7 .8 tex的木棉混纺纱线,木棉纤维含量可达70%,可以使木棉纤维广泛应用到针织内衣、绒衣、绒线衫、机织休闲外衣、袜类等领域。2、中高档被褥絮片、枕芯、靠垫等的填充料木棉纤维短而细软,无拈曲,是轻盈又中空度高的纤维材质,远超人工纤维和其他任何天然材料。耐压性强,高度保暖,轻柔无负担。它是天然的植物纤维。不易被水浸湿,具有良好的透气性,天然抗菌,不蛀不霉。与人体皮肤亲和力好,手感细腻,在阳光下曝晒之后不仅变得柔软蓬松,更有天然香味散发。可降解,有利环境,是现代社会生活的上佳选择。3、旅游娱乐用品木棉纤维是最好的浮力材料,纤维的中空度高达80%~90%,胞壁薄,接近透明,因而相对密度小,浮力好。纤维块体在水中可承受相当于自身20~36倍的负载重量而不致下沉。用它制作的被褥很轻,便于携带,在海边湖边旅游者可以躺在木棉褥上漂浮、做日光浴,由于木棉表面有较多的腊质使纤维光滑、不吸水、不易缠结,上岸后稍加晾晒木棉褥就可用于夜间露宿。作为救生衣的浮力材料,与PVC、PE 等泡沫塑料填充的救生衣相比,不易老化和破损。4、隔热和吸声材料木棉纤维可用于房屋的隔热层和吸声层填料。1998 年,德国Dresden 技术大学开发了木棉一毛复合隔热保暖建筑用材料,试验证明比单独的毛纤维隔热材料有更好的吸热性和热滞留性。木棉纤维作为一种天然纤维素纤维,具有薄壁大中空的独特结构,其中空率远远高于其他现有纤维,是优良的隔热、隔音材料。

  • 异性纤维的特性!

    异形纤维:经一定几何形状(非圆形)喷丝孔纺制的具有特殊截面形状的化学纤维。异形纤维具有特殊的光泽、蓬松性、抗起球性、回弹性、吸湿性等特点。中空纤维:贯通纤维轴向且管状空腔的化学纤维。可通过改变喷丝孔形状获得。特点是密度小,保暖性强,适宜做羽绒制品。复合纤维:由两种及两种以上聚合物,或不同性质的同一聚合物,经复合纺丝法纺制而成。分并列型、皮芯型、海岛型。并列型纤维特点可产生类似羊毛的弹性和蓬松性。并列型纤维特点可兼有两种或以上纤维的优点。海岛型可制得中空纤维、细旦、超细旦纤维。用于仿制毛型、丝绸型、防水透湿织物等。超细纤维:单丝线密度较小的纤维。特点是抗弯刚度小,制得的织物细腻、柔软、悬垂性好,纤维比表面积大,吸湿好,染色时有减浅效应,光泽柔和

  • 膜技术及市场综述

    膜技术及市场综述 1、前言 随着我国净水及污水处理标准的不断攀升,膜技术已经从工业水处理行业转移至净水、市政污水及给水领域。膜技术分类中:以压力为推动力的膜分离技术可分反渗透(RO)、纳滤(NF)、超滤(UF)以及微孔过滤(MF)四类;以制造膜的材料来分又可分有机合成材料膜、陶瓷膜以及其它材料,其中陶瓷膜相比有机聚合材料具有耐酸碱、抗微生物能力强、耐高温、更强的化学稳定性等特点,但陶瓷膜只有管式组件,因此其膜过滤面积较小;而膜组件又分平板式、管式、卷式和中空纤维四种类型,其中卷式和中空纤维膜的过滤面积最大。 它们的区分是根据膜层所能截留的最小粒子尺寸或分子量大小。以膜的额定孔径范围作为区分标准时,则微孔膜(MF)的额定孔径范围为0.02~10μm;超滤膜(UF)为0.001~0.02μm;反渗透膜(RO) 为0.0001~0.001μm。 2、膜技术状态及工程实例 2.1、RO反渗透膜 技术综述:一般水的流动方式是由低浓度流向高浓度,水一旦加压之后,将由高浓度流向低浓度,亦即所谓反渗透原理:由于 RO 膜的孔径是头发丝的一百万分之五( 0.0001 微米) , 一般肉眼无法看到,细菌、病毒是它的 5000 倍,因此,只有水分子及部分有益人体的矿物离子能够通过,其它杂质及重金属均由废水管排出。 最早应用于海水淡化,自上世纪70年代进入海水淡化市场之后发展十分迅速,RO用膜和组件已相当成熟,组件脱盐率可高达99.8%以上。近年来,应用RO反渗透膜海水淡化的本体能耗在3KWh/m3淡水以下,成为从海水制取饮用水最廉价的方法。 除应用于海水淡化之外,RO广泛用于苦咸水淡化以及纯水和超纯水的制备,并成为其最经济的制备工艺过程。纯水和超纯水的制备在电子、电力、化工、石化、医药、饮料、食品、冶金等各行业广泛采用;苦咸水淡化在西部大开发中将进一步发挥作用。同时RO反渗透技术已应用于电镀、矿山、放射、垃圾渗滤液等废水的浓缩处理,以及水回用或达标排放等。 案例介绍:2008年7月9日正式投入运行的北京市北小河再生水厂,其中采用RO反渗透膜生产1万立方米更高品质的再生水每天源源不断供给奥运中心区。其工艺流程图如下: 2.2、UF超滤膜 技术综述:一种孔径规格一致,额定孔径范围为0.001-0.02微米的微孔过滤膜。采用超滤膜以压力差为推动力的膜过滤方法为超滤膜过滤。超滤膜大多由醋酯纤维或与其性能类似的高分子材料制得。最适于处理溶液中溶质的分离和增浓,也常用于其他分离技术难以完成的胶状悬浮液的分离,其应用领域在不断扩大。超滤膜的制膜技术,即获得预期尺寸和窄分布微孔的技术是极其重要的。孔的控制因素较多,如根据制膜时溶液的种类和浓度、蒸发及凝聚条件等不同可得到不同孔径及孔径分布的超滤膜。超滤膜一般为高分子分离膜,用作超滤膜的高分子材料主要有纤维素衍生物、聚砜、聚丙烯腈、聚酰胺及聚碳酸酯等。超滤膜可被做成平面膜、卷式膜、管式膜或中空纤维膜等形式,广泛用于如医药工业、食品工业、环境工程等。 案例分析:清河再生水回用工程是北京市污水处理和资源化的重要工程项目,是奥运工程的配套项目。按照以下进水条件进行设计:设计进水水量:≥88,000m3/d,设计水温:13.1~25.4℃。核心处理单元为膜超滤膜池(ZeeWeed 1000系列中空纤维,采用“由外至内”流动方式),出水满足城市污水再生利用景观用水水质标准(GB/T 18921-2002)娱乐性景观环境用水(河湖类)。 2.3、NF纳滤膜 技术综述:纳滤(简称NF) 介于反渗透和超滤膜之间,是近10 年发展较快的一项膜技术,其推动力仍是水压。纳滤膜的开发始于20 世纪70 年代,最初开发目的是用膜法代替常规的石灰法和离子交换法的软化过程,所以纳滤膜早期也被称为软化膜。目前国际上的纳滤膜多半是聚酰胺复合膜,切割分子量100~1 000 。主要用于去除直径为1 nm 左右的溶质粒子,对NaCl 脱除率在80 %左右。RO 膜几乎对所有的溶质都有较高的脱除率,但NF 膜只对特定的溶质(如MgSO4 ) 具有高脱除率。NF 膜的最大特征是膜本体带有电荷,这使它在很低操作压力下(0.5 MPa) 仍具有较高的脱盐率。 案例分析(纳滤在石油平台废水处理中的应用): 石油平台产生的废水,经处理后,废水排出船外,石油送至岸上。要求排放水的有机物( TOC) 含量必须小于48 mg/ kg。许多海岸平台采用重力沉降器、除沫器、气浮等设备分离油和水。这些设备根据相分离原理实现分离。在大多数情况下,由于原水中溶解有机物含量过高,很难降低到允许的限度。 废水中的低分子量羧酸主要是由水溶性有机物构成。它不溶于二氯二氟甲烷(氟利昂) ,骨架上具有4 个更大碳原子的羧酸溶于氟利昂。但具有4 个更大碳原子的羧酸不溶于水。因而,所选择的膜应能去除C5~C10 范围内的羧酸,以及去除其它水溶性有机物。C. Bartels 采用直径76 cm、循环式纳滤装置,在平台温度30~40 ℃、料液速率1. 1 m/ min、压力1.3 MPa 条件下进行了试验。试验结果:由于C4和更大碳原子的羧酸溶于氟利昂, 因此选用己酸作为模拟有机物。废水中加入40000 mg/ kg的NaCl 模拟盐含量的影响。对这种模拟液膜的性能较差。但当pH 试液从初始3.3增高时,膜的选择性和通量增加。pH = 7 时,膜的脱除率约60 % ,膜A 的通量为151.4 L/d ,膜B 的通量为10210L/d。 2.4、MF微滤膜 技术综述:它属于精密过滤,其基本原理是筛孔分离过程。微滤膜的材质分为有机和无机两大类,有机聚合物有醋酸纤维素、聚丙稀、聚碳酸酯、聚砜、聚酰胺等。无机膜材料有陶瓷和金属等。鉴于微孔滤膜的分离特征,微孔滤膜的应用范围主要是从[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相[/color][/url]和[url=https://insevent.instrument.com.cn/t/5p][color=#3333ff]液相[/color][/url]中截留微粒、细菌以及其他污染物,以达到净化、分离、浓缩的目的。能截留0.1-1 微米之间的颗粒。微滤膜允许大分子和溶解性固体(无机盐)等通过,但会截留住悬浮物、细菌及大分子量胶体等物质。微滤膜的运行压力一般为0.7-7bar。 案例介绍:2004年湖南大学与长沙市第二污水净化中心科技人员经过三年的攻关,成功推出“浸没式微滤膜与氧化沟组合”的城市污水回用处理新技术。湖南大学在全国首次将化工领域的微滤膜成功替代传统的二沉池,不仅简化了流程,而且具有投资小、占地少、污水处理效率高的优点,来自长沙市第二污水净化中心、株洲市霞湾污水处理厂和岳阳市污水净化中心的成果应用表明,采用这种新技术运行几个月来,氧化沟对城市污水中污染物质的去除效率明显提高,特别是氮和磷的去除效果特别明显。根据测量,新工艺运行成本比传统污水深度处理工艺低13%左右,其建设投资则低40%左右,如果湖南污水处理厂全部推广该工艺,每年可节省污水处理运行费用2000多万元。 2.5、膜生物反应器(MBR)技术 技术综述:MBR是膜分离技术与传统活性污泥法相结合的新型污水处理技术。一般中水处理工艺出水中的病菌、病毒数量多,水质不稳定,消毒剂用量大。在生物反应器内放置0.02微米的微/超滤膜,可过滤截留全部胶体污染物质与细菌、大部分病毒,并通过活性污泥消化分解污染物质,膜产水优质稳定,只需较少的消毒剂用量就能消灭剩余的病毒:如排入城市污水处理厂也将显著减轻残余消毒剂对生物处理系统的破坏作用。优越的处理性能使MBR在工程应用中取得了相当大的成绩,但要在应用中进一步提高竞争力和扩大市场份额,仍面临着诸多挑战,主要体现在以下几方面: ① 提升膜材料和膜组件。进一步开发寿命长、强度好、抗污染、价格低的膜材料,对膜组件的研究应朝着处理能力大、能耗低的方向发展。 ② 膜污染及其控制策略。利用分子生物学、显微可视化方法等深入研究膜污染机理,探索更为有效、简便的方法以控制和减缓膜污染的发生与发展。 ③ MBR 的经济性。与传统工艺相比,MBR费用仍偏高,需进一步降低其能耗以增强MBR的竞争力,因此需加强对MBR经济性的研究(如能耗、清洗费用、劳动力成本等) 。 ④ MBR处理规模和应用领域。扩大MBR的处理规模和应用领域,尤其是对高浓度污水和难降解废水的处理,解决MBR用于大规模工程项目中出现的新问题。 ⑤ 膜组件的更换与标准化。除新建项目外,已有MBR污水处理项目中膜组件的更换,将进一步拉动MBR 市场的发展。以每年的市场增长率为10% (新建项目) 、膜组件的平均使用寿命为5 年计, 膜组件的更换最终将占到每年膜销售量的40%。为进一步降低膜的成本费用,提高MBR工艺的经济性和竞争力,有必要对MBR的膜组件进行标准化设计。 案例介绍:目前,全世界投入运行或在建的MBR系统已超过2500套。已投入运行的规模最大的MBR污水处理工程是位于德国Kaarst市的Nordkanal污水处理厂,设计平均流量为4.5×104m3/d (峰值流量为5×104m3/d) 。在建规模最大的是美国B rightwater污水处理厂,设计平均流量为11.7×104m3/d,峰值流量为14.4×104m3/d。 2.6、连续膜过滤(CMF)技术 技术综述:连续膜过滤(Continuous Membrane Filtration ,简称CMF)深度水处理系统是为中水回用设计,CMF技术采用独特结构的中空纤维膜元件和气水双洗工艺。城市污水与一般有机工业废水经二级生化处理后,再经CMF技术可去除细菌、微生物和悬浮物等杂质,净化后的水清澈透明。CMF中水工艺设备系统采用模块化设计,可根据处理水量大小进行组合;系统自动化控制程度高,可以降低劳动力成本,降低运行费用。以日处理回用10000m3/日二级生化出水为例,总投资成本为200~400元/m3/日、运行费用为0.35~0.55元/m3、年节省费用(按水价2.8元/m3)为50万元左右、静态投资回收期小于1年。CMF中水工艺设备的膜过滤通量大,系统抗污染性能强。适用于污水处理厂二级生化出水的再生回用,同时也可用于地表水、工业冷却水过滤作中水用途。适宜应用于城市污水处理厂中水直接生产。 案例介绍:2003年中国石化集团广州分公司中水项目,12000m3/日;2003天津经济技术开发区泰达污水处理厂中水车间,规模5000m3/日。

  • 【原创】什么是反渗透膜技术?

    反渗透膜技术膜分离技术作为新型、高效、节能的分离技术在水及其他液体分离域逐步占有重要的位置。1953年美国佛罗里达大学的Reid等人首次提出用反渗透技术淡化海水的构想,1960年美国加利福尼亚大学的Loeb和Sourirajan研制出第一张可实用的反渗透膜,标志着现代膜科学技术的诞生。从此以后,反渗透膜开发有了重大突破,膜材料从初期单一的醋酸纤维素非对称膜发展到表面聚合技术制成的交联芳香族聚酰胺复合膜等新型材料与高效膜。 操作压力也扩展到高压(海水淡化)膜,中压(醋酸纤维素)膜,低压(复合)膜和超低压(复合)膜。80年代以来,又开发出多种材质的纳 滤膜。膜组件的形式近年来也呈现出多样化的趋势。除了传统的中空纤 维式、卷式、管式及板框以外,又开发出回转平膜、浸渍平式膜等。在工业上应用最多的是卷式膜,它占据了绝大多数陆地水脱盐和越来越多的海水淡化市场。中空纤维膜在海水淡化应用中仍占有一定的份额。   今天世界上反渗透、纳滤膜水处理装置的能力已达到每天数百万吨。目前世界最大的反渗透苦咸水淡化装置在美国日产水量为28万吨的运河水处理厂;最大的反渗透海水淡化装置是位于沙特阿拉伯的日产水量为12.8万吨的淡化厂;最大的纳滤脱盐软化装置位于美国佛罗里达州,日产水量3.8万吨。中国台湾除半导体、电子工业外,小型饮用水需求量也很大。美国除大量使用中、小型及家用反渗透系统外,还建有许多大型公共供水系统。1996年美国国立研究所发表了美国21个州以饮用水为目的的179家脱盐水厂 的调查数据。结果表明这些装置的总产水量为140万吨/日,各种脱盐方法在总装置产水能力中所占比重分别为:陆地水(苦咸水)反渗透47%,纳滤膜软化31%,海水淡化8%。值得注意的是,纳滤膜软化装置的增长速度最快,大大高于其他方法。这是因为纳滤膜不仅可在低压下水源软化和适度脱盐,而且可脱除三卤甲烷生成能(THMFP)、色度、细菌、病毒和溶解性有机物,因而日益受到青睐。目前国外反渗透膜的主要生产厂商均为美国和日本公司,其中美国杜邦公司和日本东洋纺公司垄断了中空纤维反渗透膜的世界市场。卷式反渗透膜的主要生产厂商为七家,他们是:Filmtec公司、美国Hydranautics公司、日本日东电工(NittoDenko)公司、美国Fluidsystem公司、日本东丽(Toray)公司、美国Desel公司、美国Trisep公司。  美国、欧洲反渗透装置主要用于各种工业用水及饮饮用水,中东、西班牙 的海水淡化应用较多,日本则主要用于半导体、电子工业,韩国、中国台湾除半导体、电子工业外,小型饮用水需求量也很大。美国除大量使用中、小型及家用反渗透系统外,还建有许多大型公共供水系统。1996年美国国立研究所发表了美国21个州以饮用水为目的的179家脱盐水厂的调查数据。结果表明这些装置的总产水量为140万吨/日,各种脱盐方法在总装置产水能力中所占比重分别为:陆地水(苦咸水)反渗透47%,纳滤膜软化31%,海水淡化8%。值得注意的是,纳滤膜软化装置的增长速度最快,大大高于其他方法。这是因为纳滤膜不仅可在低压下水源软化和适度脱盐,而且可脱除三卤甲烷生成能(THMFP)、色度、细菌、病毒和溶解性有机物,因而日益受到青睐。

  • 纤维之六------竹炭纤维

    纤维之六------竹炭纤维

    一、竹纤维性能1、抗菌抑菌功能:日本学者首先发现,中国棉纺织品质量监督检验中心和中国科学院上海微生物研究所的检测证实:显微镜下观察,同样数量的细菌在棉,木纤维制品中能够大量繁衍,而竹纤维制品上的细菌在24小时后被杀死75%左右。2、吸湿排湿功能:在2000倍电子显微镜下观察,竹纤维的横截面凹凸变形,布满了近似于椭圆形的孔隙,呈高度中空,毛细管效应极强,可在瞬间吸收和蒸发水分,在温度为36°C、相对湿度为100%的条件下,竹纤维的回潮率超过45%,透气性比棉强3.5倍,被美誉为“会呼吸的纤维”。用它制成的纺织品被称为“人的第二肌肤”。3、除臭吸附功能:竹纤维内部特殊的超细微孔结构使其具有强劲的吸附能力,能吸附空气中甲醛、苯、甲苯、氨等有害物质,消除不良气味。4、超强抗紫外线功能:棉的紫外线穿透率为万分之二千五,竹纤维的紫外线穿透率不足万分之六。它的抗紫外线能力是棉的417倍。5、发射远红外线、蓄热保暖:在36℃时测定,远红外发射率高达82%-87%,温热效果明显。6、负离子发射:竹纤维发射负离子的浓度为6800个/cm3,相当于郊外田野的负离子浓度,有益于身体健康。二、生产取毛竹为原料,采用了800-1000℃高温煅烧技术,使得竹炭天生具有的微孔更细化和蜂窝化,然后将竹炭粉末化并制成竹炭母粒,最后将母粒与聚酯等混合,熔融纺丝,制成竹炭纤维。三、应用内衣产品、衬衫、T恤、袜子、毛巾、床上用品及运动休闲装等。四、竹炭磁性纤维作用原理:在磁性纤维中均匀排列着含有永久磁铁的微粒材料,所以织物表面存在着具有N 、S 极的磁场。这些磁微粒产生的磁力线由N极到S极构成磁性回路。这些紧靠织物纤维边缘无数磁性微粒产生的许多N、S磁回路及发射出去的磁力线,交织成一层看不见的立体磁力线网。这种网膜能对贴近的肌肤进行全方位的立体刺激和按摩。使肌肤表面处于微运动状态,激活细胞代谢能力,促进身体微循环。那些与肌肤穴位紧贴的磁微粒,发出的磁力线可以穿透这些穴位。这一束束看不见,无感觉的磁力线起到如中医针灸同样的作用,因此能随时随地的进行理疗。这种疗法常被称为“无痛理疗法”。http://ng1.17img.cn/bbsfiles/images/2015/06/201506040935_548742_2974654_3.png

  • 【原创大赛】复合纳滤膜过程

    [font=宋体]实验原理:利用中空纤维膜比表面积高以及错流式工艺有效防止膜表面浓差极化的特点,采用表面涂覆交联工艺,以聚砜([/font]PSF[font=宋体])中空纤维超滤膜为基膜、亲水性高分子,聚季铵盐([/font]PQ-10[font=宋体])为功能涂覆材料、戊二醛([/font]GA[font=宋体])为交联剂,制备中空纤维复合纳滤膜。从基膜表面孔径、聚合物浓度、交联剂浓度、涂覆时间等制膜参数入手,获得复合纳滤膜的最佳成膜条件。[/font][font=宋体]实验部分[/font][font=宋体]实验原料试剂及仪器设备[/font] [font=宋体]名称[/font] [font=宋体]分子式[/font] [font=宋体]纯度[/font] [font=宋体]生产厂家[/font][font=宋体]无水氯化钙[/font] CaCl[sub]2[/sub] [font=宋体]≥[/font]96.0% [font=宋体]上海国药试剂有限公司[/font][font=宋体]氯化镁[/font] MgCl[sub]2[/sub][font=宋体][/font]6H[sub]2[/sub]O [font=宋体]≥[/font]98.0[font=宋体]%[/font] [font=宋体]上海国药试剂股份有限公司[/font][font=宋体]氯化钠[/font] NaCl AR [font=宋体]上海国药试剂股份有限公司[/font][font=宋体]无水硫酸镁[/font] MgSO[sub]4[/sub] AR [font=宋体]上海国药试剂股份有限公司[/font][font=宋体]无水乙醇[/font] C[sub]2[/sub]H[sub]5[/sub]OH AR [font=宋体]上海国药试剂股份有限公司[/font][font=宋体]十六烷基三甲基溴化铵[/font] C1[sub]9[/sub]H[sub]42[/sub]BrN AR [font=宋体]上海强顺化学试剂有限公司[/font][font=宋体]戊二醛[/font]25%[font=宋体]溶液[/font] C[sub]5[/sub]H[sub]8[/sub]O[sub]2[/sub] AR [font=宋体]江苏强盛功能化学股份有限公司[/font][font=宋体]聚季铵盐[/font]-10 (C[sub]2[/sub]H[sub]4[/sub]O)n[font=宋体][/font]C[sub]6[/sub]H[sub]16[/sub]NO[sub]2[/sub][font=宋体][/font]xCl [font=宋体]山东省临沂市兰山区绿森化工有限公司[/font](Mn=1100000 g/mol)[font=宋体][/font]xUn-specified [font=宋体]>[/font]95% [font=宋体]硫酸[/font] H[sub]2[/sub]SO[sub]4[/sub] [font=宋体]≥[/font]98% [font=宋体]浙江三鹰化学试剂有限公司[/font][font=宋体]丙酮[/font] C[sub]3[/sub]H[sub]6[/sub]O AR [font=宋体]江苏强盛功能化学股份有限公司[/font] [font=宋体]仪器名称[/font] [font=宋体]生产厂家[/font]78-1[font=宋体]磁力加热搅拌器[/font] [font=宋体]常州澳华仪器有限公司[/font]DDSJ-308A[font=宋体]电导率仪[/font] [font=宋体]上海雷磁股份有限公司[/font]FA2004B[font=宋体]电子天平[/font] HANGPING[font=宋体]公司[/font]DP-60[font=宋体]水泵[/font] [font=宋体]上海旺泉泵业有限公司[/font][font=宋体]红外光谱仪[/font] [font=宋体]北京华夏科创仪器技术有限公司[/font][font=宋体]台式扫描电子显微镜[/font]PhenomG2 pro [font=宋体]荷兰飞纳公司[/font][font=宋体]膜性能评价装置[/font] [font=宋体]实验室自制[/font] [font=宋体] [/font]2.2 [font=宋体]荷正电聚砜中空纤维纳滤膜的制备[/font][font=宋体]本实验表面涂覆的方法进行表面交联反应,以梯度孔聚砜中空纤维超滤膜为基膜,以聚季铵盐[/font]-10 [font=宋体]为表面功能涂覆材料,制备荷正电聚砜中空纤维纳滤膜,具体步骤如下:[/font](1)[font=宋体]涂覆液配制:将一定量的聚季铵盐[/font]-10 [font=宋体]固体粉末溶解于去离子水中,微热溶解,添加[/font] 0.01 wt%[font=宋体]表面活性剂十六烷基三甲基溴化铵,待表面活性剂完全溶解后再添加交联剂戊二醛、催化剂硫酸混合物,待溶液微冷之后添加剂无水乙醇,搅拌均匀后,静置脱泡,配制成功能涂覆溶液。[/font](2)[font=宋体]表面涂覆交联工艺:将配制好的涂覆液倒入量筒,把一定量的膜丝弯曲浸入,浸泡一定的时间后,缓缓将膜丝依次抽出,在空气中室温晾干,本实验将交联时间控制在[/font]18h[font=宋体]。将交联完全的膜丝用去离子水冲洗[/font]5min[font=宋体],以除去膜丝表面未交联的聚季铵盐[/font]-10[font=宋体]单体以及戊二醛、催化剂硫酸等。[/font](3)[font=宋体]膜组件的制备:将[/font]5[font=宋体]根处理好的中空纤维纳滤膜丝穿过塑胶管内部,控制中空纤维纳滤膜丝的有效长度约为[/font]6-8cm[font=宋体],用环氧树脂系胶结剂(合众[/font]AB[font=宋体]胶,浙江黄岩光华胶粘剂厂)将管口两端密封,以此作为一个测试组件。[/font](4)[font=宋体]测试预处理:将制备好的待测膜组件浸泡在去离子水中[/font]0.5h[font=宋体],以保证膜丝的润湿性。[/font](5)[font=宋体]塑胶管后处理:将测试完的膜丝组件浸泡于丙酮溶液中[/font]2d[font=宋体],使得环氧树脂[/font]AB[font=宋体]胶充分溶胀,用镊子去除软化的[/font]AB[font=宋体]胶,塑胶管可循环使用。[/font][font=宋体]本实验研究了不同中空纤维复合纳滤膜制备工艺条件对复合膜性能的影响,从而获得最佳的制膜配方和工艺。研究内容包括聚砜基膜表面孔径大小([/font]0.35[font=宋体]μ[/font]m-0.98[font=宋体]μ[/font]m[font=宋体])、功能涂覆液聚季铵盐[/font]-10[font=宋体]浓度([/font]1.0%wt/v-2.0%wt/v[font=宋体])、交联剂[/font]GA[font=宋体]浓度([/font]0.67%v/v-1.7%v/v[font=宋体])、浸泡时间([/font]2min-20min[font=宋体])对膜性能的影响。[/font]2.3 [font=宋体]聚砜([/font]PSF[font=宋体])中空纤维复合纳滤膜分离性能的评价[/font] [font=宋体]通过外压法与错流式装置(图[/font]2.2[font=宋体])来实现中空纤维复合纳滤膜分离性能的评价。本实验主要测试复合膜对不同种类无机盐的分离性能以及纯水渗透通量。[/font] [font=宋体]进行膜对无机盐截留测试时,先将制备好的膜组件装入错流装置管路中,密封。配制[/font]250ppm[font=宋体]的无机盐溶液于进料槽中,搅拌使其溶解,开泵循环一段时间使其溶液充满整个管路,取少量溶液测试初始溶液的电导。在[/font]0.25MPa[font=宋体]下,开泵在[/font]15min[font=宋体]内缓慢升压至[/font]0.25MPa[font=宋体],目的是使膜表面缓慢均一致密化,性能稳定。系统稳定后,在室温,[/font]0.25MPa[font=宋体]的压力下,用[/font]10ml[font=宋体]小烧杯接[/font]8ml[font=宋体]左右纳滤透过液,记下所需时间,并记下循环溶液的温度、流量、渗透液以及进料液的电导等。[/font][align=center][/align][align=center][font=宋体]图[/font][color=black]2.2[/color][font=宋体]错流式装置图[/font][/align]2.4.1[font=宋体]水通量[/font] [font=宋体]纳滤膜的渗透性能可以由水通量表示,由透过液体积和过滤时间计算得出: [/font]J = V/[font=宋体]([/font]A[font=宋体]×[/font]t[font=宋体])[/font] [font=宋体]式中[/font]: J[font=宋体]为水通量([/font]l[font=宋体][/font]m-2[font=宋体][/font]h-1[font=宋体])[/font] V[font=宋体]为透过液体积([/font]l[font=宋体]);[/font] A[font=宋体]为膜有效面积([/font]m2[font=宋体]);[/font] t[font=宋体]为过滤时间([/font]h[font=宋体]);[/font]2.4.2[font=宋体]无机盐截留率[/font][font=宋体]无机盐截留率是指对某种溶质的截留百分百,[/font][font=宋体]按下式计算:[/font]R[font=宋体]([/font]%[font=宋体])[/font]=100×[font=宋体]([/font]C[sub]f[/sub]-C[sub]p[/sub][font=宋体])[/font]/C[sub]f[/sub] [font=宋体] [/font][font=宋体]式中:R为截留率(%);[/font][font=宋体] C[sub]f[/sub][/font][font=宋体]为进料水中盐的浓度(mg/l);[/font][font=宋体] C[sub]p[/sub][/font][font=宋体]为渗透液中盐的浓度(mg/l);[/font][font=宋体]盐浓度通过采用[/font]DDSJ-308A[font=宋体]型电导率仪测量溶液的电导率来获得。[/font][font=宋体]3.1[/font][font=宋体]聚砜(PSF)中空纤维超滤膜对复合膜性能影响[/font][font=宋体] [/font][font=宋体]为考察多孔支撑层(聚砜基膜)对复合膜性能的影响,本实验选择聚砜中空纤维超滤膜表面孔径依次约为0.35μm、0.5μm、0.6μm、0.98μm。选择固定的膜液配方和相同的制备条件下,制备不同表面孔径的基膜复合后膜性能的变化,结果绘于图3.2。[/font][align=center][/align][align=center][font=宋体]图3.2聚砜(PSF)中空纤维超滤膜对复合膜性能影响[/font][/align][align=center][font=宋体]制膜配方:PQ-10浓度=2.0%wt/v、GA浓度=1.3%、10%H[sub]2[/sub]SO[sub]4[/sub]浓度=16%v/v、涂覆时间=10min、 交联时间=18 h、添加剂含量=4.7%v/v;[/font][/align][align=center][font=宋体]测试条件:0.25MPa、室温、250ppm MgCl[sub]2[/sub]水溶液[/font][/align][font=宋体] [/font][font=宋体]由图3.2可见,随着聚砜(PSF)基膜孔径的增大,复合纳滤膜的水通量不断增加,而对250ppm的MgCl[sub]2[/sub]水溶液的截留率不断减小。基膜孔径为0.35μm时,复合纳滤膜截留率可达92.96%,通量为6.01Lm[sup]-2[/sup]h[sup]-1[/sup],基膜孔径增加到0.5μm时,截留率明显下降至47.00%,通量增加到19.90Lm[sup]-2[/sup]h[sup]-1[/sup],基膜孔径增至0.98μm时,复合膜基本无截留率为5.96%,而通量可达80.91Lm[sup]-2[/sup]h[sup]-1[/sup]。这是由于随着基膜表面的孔径不断的增大,涂覆液PQ-10无法完全覆盖住表面的微孔,形成致密的分离层,从而导致复合膜表面有缺陷,使得MgCl[sub]2[/sub]从复合膜表面缺陷中透过进入渗透液,通量也不断的增加。[/font][font=宋体]3.2 [/font][font=宋体]聚季铵盐-10(PQ-10)对复合膜性能影响[/font][font=宋体] [/font][font=宋体]为了考察功能涂覆物聚季铵盐-10(PQ-10)对复合膜性能影响,本实验通过改变PQ-10的浓度分别为1.0%wt/v、1.3%wt/v、1.5%wt/v、1.8%wt/v、2.0%wt/v,同时保持其他实验条件不变进行制膜。结果绘于图3.3。[/font][align=center][/align][align=center][font=宋体]图3.3聚季铵盐-10(PQ-10)对复合膜性能影响[/font][/align][align=center][font=宋体]制膜配方:GA浓度=1.7%、10%H[sub]2[/sub]SO[sub]4[/sub]浓度=16%v/v、涂覆时间=20min、交联时间=18 h、添加剂含量=4.7%v/v;[/font][/align][align=center][font=宋体]测试条件:0.25MPa、室温、250ppm MgCl[sub]2[/sub]水溶液[/font][/align][font=宋体] [/font][font=宋体]由图3.3可见,随着PQ-10浓度的增大,复合纳滤膜的对250ppmMgCl[sub]2[/sub]溶液的截留率不断上升,通量不断下降。从1.0%wt/vPQ-10浓度增加至1.5%wt/v PQ-10浓度时,截留率从42.73%上升到80.53%,上升迅速,通量迅速由35.48Lm[sup]-2[/sup]h[sup]-1[/sup]降低至12.63Lm[sup]-2[/sup]h[sup]-1[/sup]。当PQ-10浓度由1.5%wt/v增加至2.0%wt/v时,截留率上升缓慢,PQ-10浓度为2.0%wt/v时截留率最高可达94.90%,通量减小至最低为3.88Lm[sup]-2[/sup]h[sup]-1[/sup]。这是因为随着PQ-10浓度的不断增加,与一定量的交联剂GA交联的密度不断的增加,涂覆在PSF基膜上形成更加致密、更加厚的分离层,孔径筛分效应不断增加,对于MgCl[sub]2[/sub]的截留效果也更加好。同时对于通量来说,分离层越厚,渗透阻力越大,通量随之越小。本实验考虑到通量因素,故没有再增加PQ-10的浓度,并且在后续实验中都采用PQ-10浓度为2.0%wt/v。[/font][font=宋体]3.3[/font][font=宋体]交联剂戊二醛(GA)对复合膜性能影响[/font][font=宋体] [/font][font=宋体]为了考察交联剂戊二醛(GA)对复合膜性能影响,本实验通过改变GA浓度分别为0.67%v/v、1.0%v/v、1.3%v/v、1.7%v/v,同时保持其他实验条件不变进行制膜。结果绘于图3.4。[/font][align=center][/align][align=center][font=宋体]图3.4交联剂戊二醛(GA)对复合膜性能影响[/font][/align][align=center][font=宋体]制膜配方:PQ-10浓度=2.0%wt/v、10%H[sub]2[/sub]SO[sub]4[/sub]浓度=16%v/v、涂覆时间=20min、交联时间=18 h、添加剂含量=4.7%v/v;[/font][/align][align=center][font=宋体]测试条件:0.25MPa、室温、250ppm MgCl[sub]2[/sub]水溶液[/font][/align][font=宋体] [/font][font=宋体]由图3.4可见,随着交联剂GA的不断增加,复合膜对200ppmMgCl[sub]2[/sub]溶液的截留率不断增加,GA浓度从0.67%v/v增加到1.0%v/vs时,截留率从71.87%增加到90.05%,增加幅度最大,通量减小幅度最大。当GA浓度从1.3%v/v增加到2.0%v/v时,截留率增加幅度不大,而通量减小幅度较大,由6.01Lm[sup]-2[/sup]h[sup]-1[/sup]降低至3.88Lm[sup]-2[/sup]h[sup]-1[/sup]。这是因为,在GA浓度小于1.0%v/v时,随着GA浓度的增加,醛基数量也增加,与一定量PQ-10上羟基发生交联反应程度加深,网络结构更加致密,对MgCl[sub]2[/sub]的筛分效应更加明显,截留率不断增加。而当GA浓度在大于1.0%v/v后,交联程度趋于饱和,故截留率维持基本不变。考虑到1.3%v/v时截留率较高通量相对较高,在后续实验中选择GA浓度为1.3%v/v。[/font][font=宋体]3.4[/font][font=宋体]浸泡时间对复合膜性能影响[/font][font=宋体] [/font][font=宋体]为了考察浸泡时间对复合膜性能影响,本实验通过控制浸泡时间分别为2min、5min、10min、15min、20min,同时保持其他实验条件不变进行制膜。结果绘于图3.5。[/font][font=宋体][color=fuchsia] [/color][/font][align=center][/align][align=center][font=宋体]图[/font][color=black]3.5[/color][font=宋体]浸泡时间对复合膜性能影响[/font][/align][align=center][font=宋体]制膜配方:PQ-10浓度=2.0%wt/v、GA浓度=1.3%、10%H[sub]2[/sub]SO[sub]4[/sub]浓度=16%v/v、交联时间=18 h、添加剂含量=4.7%v/v;[/font][/align][align=center][font=宋体]测试条件:0.25MPa、室温、250ppm MgCl[sub]2[/sub]水溶液[/font][/align][font=宋体] [/font][font=宋体]由图3.5可见,涂覆时间在2-10 min 范围内,膜对 250ppmMgCl[sub]2[/sub]水溶液的截留率随浸泡时间延长而增加,浸泡时间为 10 min 时可达到最大值 94.30%,渗透通量则由 18.56Lm[sup]-2[/sup]h[sup]-1[/sup]下降到5.18Lm[sup]-2[/sup]h[sup]-1[/sup]。随着浸泡时间的进一步延长,截留率维持最高水平基本不变,通量也减少缓慢。在浸泡时间为10min时,截留率最高且保持较20min更高的通量。这是因为随着浸泡时间的延长,带正电的聚季铵盐-10交联涂覆物不断吸附在带负电的聚砜(PSF)基膜表面,在5-10min过程中,吸附量与吸附时间成正比,选择分离层的厚度也随之增加,在10min之后基本达到吸附平衡。因此,在后续实验中,选择浸泡时间为10min。[/font][font=宋体]3.5[/font][font=宋体]最佳制膜条件[/font][font=宋体] [/font][font=宋体]由上述实验结果可知,最佳的制备聚砜(PSF)中空纤维复合纳滤膜的配方为:PQ-10浓度=2.0%wt/v、GA浓度=1.3%、10%H[sub]2[/sub]SO[sub]4[/sub]浓度=16%v/v、浸泡时间=10min、交联时间=18 h、添加剂含量=4.7%v/v;本实验考察了最佳实验条件下的重现性,在相同的制膜配方与工艺下,制备了三个PQ-10/PSF中空纤维复合纳滤膜组件,测试条件为:0.25MPa、室温、250ppm MgCl[sub]2[/sub]水溶液。实验结果如下表3.1:[/font][font=宋体] [/font][font=宋体]表 3.1 最佳制膜配方下制备的 PQ-10/PSF中空纤维复合纳滤膜的分离性能[/font][img=,573,2]file:///C:/Users/86150/AppData/Local/Temp/msohtmlclip1/01/clip_image022.gif[/img][font=宋体]序号[/font] MgCl2[font=宋体]截留率([/font]%[font=宋体])[/font] [font=宋体]通量([/font][font=宋体]L[/font][font=宋体]m[sup]-2[/sup]h[sup]-1[/sup][/font][font=宋体])[/font][font=宋体]①[/font] 92.35 6.26[font=宋体]②[/font] 93.78 6.45 [font=宋体]③[/font] 90.50 6.26 [font=宋体]平均[/font] 92.21 6.32 [table][tr][td][img=,571,3]file:///C:/Users/86150/AppData/Local/Temp/msohtmlclip1/01/clip_image023.gif[/img][/td][/tr][/table] [font=宋体]由上表可见,在最佳制膜配方和工艺下,所制备的聚砜([/font]PSF[font=宋体])中空纤维复合纳滤膜具有良好的重现性。[/font][font=宋体]总结:综上所述制备PQ-10/PSF 中空纤维复合膜的最佳条件确定为:PSF基膜表面孔径为0.3-0.4μm、PQ-10 浓度=2.0 w/v%、GA 浓度=1.7w/v%、涂覆时间=10 min、交联时间=18 h、添加剂含量=1.0 w/v%。[/font][font=宋体] [/font][font=宋体] [/font][font=宋体] [/font][font=宋体] [/font][font=宋体] [/font][font=宋体] [/font][font=宋体] [/font][font=宋体] [/font][font=宋体] [/font][font=宋体] [/font][font=宋体] [/font]

  • 木棉纤维拉伸性能的测试与评价

    摘要:设计了单纤维强伸性能的新测试方法,测试了4种木棉纤维的拉伸性能,结果发现,木棉纤维拉伸曲线与棉纤维相似,没有明显的屈服点.木棉纤维断裂强力和断裂伸长率在一定范围内均有分布,4种木棉纤维平均断裂强力1.44~1.71cN,平均断裂伸长率1.83%~4.23%,纤维长度、线密度与木棉纤维的断裂强力明显相关,4种木棉纤维相对断裂强度接近,而断裂伸长率差异较大,木棉纤维初始模量因其品种和产地不同存在一定差异.与棉纤维相比,木棉纤维断裂伸长率低,断裂强度和初始模量与棉纤维相近,但因木棉纤维细软而容易拉断.  木棉是树上生长的天然纤维素纤维,纤维具有薄壁大中空结构、首尾封闭等特点,如图1所示.http://www.e-dyer.com/ckeditor/uploader/upload/images/file1320216552296.jpg现有的有关木棉纤维及其应用的文献中,关于木棉纤维性能的研究方面,基本上集中于单纤维化学成分和性质、纤维结构和物理性能等方面;关于木棉纤维应用领域研究集中于其作为浮力材料、吸油材料、复合材料等方面近年来关于木棉絮料、纺纱及其织物性能研究逐渐受到关注.强伸性能是木棉纤维重要的力学性能之一,对纤维成纱品质及其制品使用价值有重要影响,但由于木棉纤维短、易碎等缺点,测试非常麻烦,目前还没有文献对木棉纤维强伸性能的测试做系统报道.本文采用单根纤维强力测试的方法,在大量实验基础上测试分析了木棉纤维的拉伸性能,比较分析了不同品种木棉纤维强伸性能差异,研究结果有利于更好地加工利用木棉纤维.

  • 【实战宝典】膜分离原理的氮气发生器原理是什么?

    [font=宋体]链接:[/font]https://bbs.instrument.com.cn/topic/4270684问题描述:膜分离原理的氮气发生器原理是什么?解答:[font=宋体][color=black][back=white]膜分离氮气发生器是以中空纤维膜组为核心技术,对压缩空气进行氮、氧分离产出合格的氮气纯度;膜分离制取氮气是利用对不同的气体组分具有不同的选择性渗透和扩散的特性,使空气通过薄膜进行物理分离,达到获得氮气目的。每种气体都具有不同的渗透速率:空气中的氧气、二氧化碳、水蒸汽等渗透率[/back][/color][/font][color=black][back=white]“[/back][/color][font=宋体][color=black][back=white]快[/back][/color][/font][color=black][back=white]”[/back][/color][font=宋体][color=black][back=white],由高压内侧纤维壁向低压外侧渗出,由膜组件一侧的开口排出;渗透速率小的[/back][/color][/font][color=black][back=white]“[/back][/color][font=宋体][color=black][back=white]慢气[/back][/color][/font][color=black][back=white]”——[/back][/color][font=宋体][color=black][back=white]氮气被富集在高压内侧,由膜组件的另一端排出,从而实现了氧[/back][/color][/font][color=black][back=white]—[/back][/color][font=宋体][color=black][back=white]氮的分离。[/back][/color][/font]以上内容来自仪器信息网《样品前处理实战宝典》

  • 常见一些纺织纤维名词解释!

    纤维:直径一般为几微米到几十微米,而长度比直径大百倍、千倍以上的物质化学纤维:利用自然界存在的低分子化合物或高分子化合物经过化学处理与机械加工得到的各种纤维的总称。包括(合成纤维和再生纤维)纺织纤维:直径一般为几微米到几十微米,而长度比直径大百倍、千倍以上的物质,并且可用来制造纺织制品。这类纤维称为纺织纤维。异形纤维:经一定几何形状(非圆形)喷丝孔纺制的具有特殊截面形状的化学纤维。 非圆形截面或中空的化学纤维。差别化纤维:一般经过化学改性或物理变形,使纤维的形态结构、物理化学性能与常规纤维有显著不同,取得仿生的效果或改善提高化纤的性能。这类对常规纤维有所创新或具有某一特性的化学纤维称为差别化纤维。超细纤维:单丝线密度较小的纤维,又称微细纤维。根据线密度范围可分为细特纤维和超细特纤维。细特纤维抗弯刚度小,制得的织物细腻、柔软、悬垂性好,纤维比表面积大,吸湿好,染色时有减浅效应,光泽柔和。高收缩纤维:沸水收缩率高于15%的化学纤维。根据其热收缩程度的不同,可以得到不同风格及性能的产品。如热收缩率在15%-25%的高收缩涤纶,可用于织制各种绉类、凸凹、提花织物。复合纤维:在同一根纤维截面上存在两种或两种以上不相混合的聚合物,这种纤维称为复合纤维。根据两种纤维的截面配置不同,可分为皮芯型、并列型、海岛型和裂片型等。中空纤维:贯通纤维轴向且管状空腔的化学纤维。可通过改变喷丝孔形状获得。特点是密度小,保暖性强,适宜做羽绒制品特种纤维:具有特殊的物理化学结构、功能或用途的化学纤维,其某些技术指标显著高于常规纤维。

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制