当前位置: 仪器信息网 > 行业主题 > >

致嗅物质

仪器信息网致嗅物质专题为您整合致嗅物质相关的最新文章,在致嗅物质专题,您不仅可以免费浏览致嗅物质的资讯, 同时您还可以浏览致嗅物质的相关资料、解决方案,参与社区致嗅物质话题讨论。

致嗅物质相关的方案

  • 北京豫维:水中致嗅物质的测定方法研究
    目的:探讨生活饮用水及其水源水中主要的致嗅物质(2-甲基异莰醇和土嗅素)的测定方法。方法:采用固相微萃取纤维吸附样品中的致嗅物质,用气相色谱-质谱联用仪分离测定。结果:方法的最低检测质量浓度分别为:2-甲基异莰醇0.15 ng/L,土嗅素0.10 ng/L 加标回收率分别为:2-甲基异莰醇96.0%~99.6%,土嗅素97.0%~101% 相对标准偏差分别为:2-甲基异莰醇1.52%~8.23%,土嗅素1.37%~7.53%。结论:方法前处理操作简单,定性准确,检出限好,准确度与精密度高,能够满足水中致嗅物质的检测要求。
  • 北京豫维:水中2-甲基异莰醇等3种致嗅物质的顶空固相微萃取-气相色谱-质谱测定法
    目的建立水体中2-甲基异莰醇、土臭素和二甲基三硫醚3种致嗅物质的测定方法。方法采用顶空固相微萃取-气相色谱-质谱法进行测定,研究并探讨萃取纤维类型、盐浓度、萃取温度、萃取时间、解吸温度和解吸时间等因素对致嗅物质萃取量的影响,选定了最佳分析条件。结果上述3种致嗅物质的线性范围分别为5.0~1 000、5.0~1 000和10~1 000 ng/L 该方法的检出限分别为1.1、0.7、1.6 ng/L,定量下限为3.8、2.2、5.3 ng/L 回收率为80.2%~96.9%,RSD为3.3%~7.1%。结论该方法具有无需有机溶剂、所需样品量较少、操作简单、快速的优点,检测的灵敏度较高,适用于水体中这3种致嗅物质的定量分析。
  • SPME-GCMS法测定水中二甲基二硫醚等四种醚类致嗅物质
    本文参考团体标准T/SWSTA0005-2021《水中二甲基二硫醚等四种醚类致嗅物质的测定 顶空固相微萃取-气相色谱质谱法》,利用岛津公司GCMS-QP2020 NX气质联用仪以及AOC-6000自动进样器的SPME Arrow功能,建立了生活饮用水及水源水中二甲基二硫醚等四种醚类致嗅物质的测定方法。取水样加入内标溶液,经固相微萃取方式萃取后采用SIM模式进行检测。四种醚类化合物采用内标法进行定量,在10~200 ng/L线性范围内,四种醚类化合物线性关系良好,相关系数R均大于0.998,各组分检出限在0.2~1.28 ng/L之间。取浓度为20 ng/L的标准混合溶液,连续进样6针,峰面积RSD均小于10 %。该方法简单方便,灵敏度高,能够有效的监测生活饮用水及水源水中致嗅醚类物质的含量。
  • 电子鼻、气相色谱-嗅辨仪和气相色谱-质谱联用技术结合识别豉香白酒中异嗅物质
    通过谱图比对及统计学分析,找出2款酒样中具有显著性差异的物质,并最终确定了2款白酒中嗅味差异物质的主要组成。
  • 化妆品中禁用物质溴米索伐和卡溴脲的含量测定 高效液相色谱法
    本文使用悟空K2025高效液相色谱仪测定化妆品中溴米索伐和卡溴脲的含量。色谱条件:C18色谱柱(4.6×250mm,5μm),流速为1.0mL/min,柱温为30℃,进样量为10μL,检测器为二极管阵列检测器,检测波长为210nm。实验结果:溴米索伐和卡溴脲的分离度为13.51,其理论塔板数分别为14956和17920,拖尾因子分别为1.12和1.09;重复性测试中,将混合标准溶液连续进样7针,溴米索伐保留时间的RSD为0.142%,峰面积的RSD为0.429%,卡溴脲保留时间的RSD为0.113%,峰面积的RSD为0.410%;灵敏度测试中,溴米索伐的仪器检出限为0.014μg/mL,仪器定量限为0.046μg/mL,卡溴脲的仪器检出限为0.035μg/mL,仪器定量限为0.115μg/mL;溴米索伐和卡溴脲在测定浓度范围内均具有良好的线性关系,确定系数R2均>0.999;对啫喱面霜试样进行测定,溴米索伐和卡溴脲均未检出,加标回收率分别为104.4和101.6%。因此,Wooking K2025高效液相色谱仪满足《GB/T 40899-2021 化妆品中禁用物质溴米索伐、卡溴脲和卡立普多的测定 高效液相色谱法》中溴米索伐和卡溴脲含量测定的需求。
  • Off-Flavor异味分析系统分析皮革制品中异味物质水杨酸甲酯
    皮革制品因用途广泛得到大量使用,随着人们与皮革制品长期的亲密接触,皮革中残留的有毒有害物质通过皮肤或呼吸系统进入人体,严重影响人类的健康。皮革异味仍采用传统的嗅味法来分辨其异味,实际操作中,因不同的人员嗅觉感官和嗅辨经验不同,可能导致结果不一致,且嗅味法无法识别主要的嗅味物质并提供判断依据,而常用的仪器分析方法也只能对已经确定的嗅味物质进行定量。因此,迫切需要一种能快速筛查皮革制品中水杨酸甲酯等异味成分的检测方法。利用岛津特有Off-Flavor异味分析系统,建立了皮革制品中水杨酸甲酯等150种异味物质分析方法,采用校准用标准样品生成的曲线进行半定量分析,将估算出的浓度与臭气阈值进行比较,筛查出异味物质成分。
  • Off-Flavor异味分析系统分析皮革制品中异味物质水杨醛
    皮革制品因用途广泛得到大量使用,随着人们与皮革制品长期的亲密接触,皮革中残留的有毒有害物质通过皮肤或呼吸系统进入人体,严重影响人类的健康。皮革异味仍采用传统的嗅味法来分辨其异味,实际操作中,因不同的人员嗅觉感官和嗅辨经验不同,可能导致结果不一致,且嗅味法无法识别主要的嗅味物质并提供判断依据,而常用的仪器分析方法也只能对已经确定的嗅味物质进行定量。因此,迫切需要一种能快速筛查皮革制品中水杨醛等异味成分的检测方法。利用岛津特有Off-Flavor异味分析系统,建立了皮革制品中水杨醛等150种异味物质分析方法,采用校准用标准样品生成的曲线进行半定量分析,将估算出的浓度与臭气阈值进行比较,筛查出异味物质成分。
  • Off-Flavor异味分析系统分析皮革制品中异味物质乙酸
    皮革制品因用途广泛得到大量使用,随着人们与皮革制品长期的亲密接触,皮革中残留的有毒有害物质通过皮肤或呼吸系统进入人体,严重影响人类的健康。皮革异味仍采用传统的嗅味法来分辨其异味,实际操作中,因不同的人员嗅觉感官和嗅辨经验不同,可能导致结果不一致,且嗅味法无法识别主要的嗅味物质并提供判断依据,而常用的仪器分析方法也只能对已经确定的嗅味物质进行定量。因此,迫切需要一种能快速筛查皮革制品中乙酸等异味成分的检测方法。利用岛津特有Off-Flavor异味分析系统,建立了皮革制品中乙酸等150种异味物质分析方法,采用校准用标准样品生成的曲线进行半定量分析,将估算出的浓度与臭气阈值进行比较,筛查出异味物质成分。
  • 岛津:Off-Flavor异味分析系统分析皮革制品中异味物质水杨醛
    皮革制品因用途广泛得到大量使用,随着人们与皮革制品长期的亲密接触,皮革中残留的有毒有害物质通过皮肤或呼吸系统进入人体,严重影响人类的健康。皮革异味仍采用传统的嗅味法来分辨其异味,实际操作中,因不同的人员嗅觉感官和嗅辨经验不同,可能导致结果不一致,且嗅味法无法识别主要的嗅味物质并提供判断依据,而常用的仪器分析方法也只能对已经确定的嗅味物质进行定量。因此,迫切需要一种能快速筛查皮革制品中异味成分的检测方法。利用岛津特有Off-Flavor异味分析系统,建立了皮革制品中150种异味物质分析方法,采用校准用标准样品生成的曲线进行半定量分析,将估算出的浓度与臭气阈值进行比较,筛查出异味物质成分。
  • Off-Flavor异味分析系统分析皮革制品中异味物质萘
    皮革制品因用途广泛得到大量使用,随着人们与皮革制品长期的亲密接触,皮革中残留的有毒有害物质通过皮肤或呼吸系统进入人体,严重影响人类的健康。皮革异味仍采用传统的嗅味法来分辨其异味,实际操作中,因不同的人员嗅觉感官和嗅辨经验不同,可能导致结果不一致,且嗅味法无法识别主要的嗅味物质并提供判断依据,而常用的仪器分析方法也只能对已经确定的嗅味物质进行定量。因此,迫切需要一种能快速筛查皮革制品中萘等异味成分的检测方法。利用岛津特有Off-Flavor异味分析系统,建立了皮革制品中萘等150种异味物质分析方法,采用校准用标准样品生成的曲线进行半定量分析,将估算出的浓度与臭气阈值进行比较,筛查出异味物质成分。
  • Off-Flavor异味分析系统分析皮革制品中异味物质己醛
    皮革制品因用途广泛得到大量使用,随着人们与皮革制品长期的亲密接触,皮革中残留的有毒有害物质通过皮肤或呼吸系统进入人体,严重影响人类的健康。皮革异味仍采用传统的嗅味法来分辨其异味,实际操作中,因不同的人员嗅觉感官和嗅辨经验不同,可能导致结果不一致,且嗅味法无法识别主要的嗅味物质并提供判断依据,而常用的仪器分析方法也只能对已经确定的嗅味物质进行定量。因此,迫切需要一种能快速筛查皮革制品中己醛等异味成分的检测方法。利用岛津特有Off-Flavor异味分析系统,建立了皮革制品中己醛等150种异味物质分析方法,采用校准用标准样品生成的曲线进行半定量分析,将估算出的浓度与臭气阈值进行比较,筛查出异味物质成分。
  • Off-Flavor异味分析系统分析皮革制品中异味物质
    皮革制品因用途广泛得到大量使用,随着人们与皮革制品长期的亲密接触,皮革中残留的有毒有害物质通过皮肤或呼吸系统进入人体,严重影响人类的健康。皮革异味仍采用传统的嗅味法来分辨其异味,实际操作中,因不同的人员嗅觉感官和嗅辨经验不同,可能导致结果不一致,且嗅味法无法识别主要的嗅味物质并提供判断依据,而常用的仪器分析方法也只能对已经确定的嗅味物质进行定量。因此,迫切需要一种能快速筛查皮革制品中异味成分的检测方法。利用岛津特有Off-Flavor异味分析系统,建立了皮革制品中150种异味物质分析方法,采用校准用标准样品生成的曲线进行半定量分析,将估算出的浓度与臭气阈值进行比较,筛查出异味物质成分。
  • 气相色谱-嗅闻-质谱联用技术及其在乳制品风味研究中的应用
    GC-O-MS技术正是一个用于研究食品风味的强大工具,广泛应用于各种食品的香气和风味分析。GC-O-MS技术可以解决食品中的多种风味问题如“气味活性化合物的图谱锁定“,“关键气味活性化合物的鉴定“等。 借此机会,我们向您介绍哲斯泰在食品风味研究领域的优秀解决方案 “热脱附+嗅觉检测口” ,并且结合气味物质提取三大法宝“动态顶空DHS” + “搅拌棒吸附萃取SBSE”+“固相微萃取SPME”。
  • ANA_卡尔费休水分_安全处理化学物质
    全新的梅特勒托利多容量法卡尔费休水分仪 V20 和 V30特别用于涵盖各种各样水分含量的应用,可快速而精确地测定从很少的 100 ppm 到 100%水分含量的样品。可以进行卡尔费休水分测定、气体水分测定等。库仑法卡尔费休水分仪 C20 和 C30 是测量从 1 ppm 到 5%水分含量样品的理想仪器。V30 和 C30 水分仪可与 Stromboli 干燥炉自动样品进样器结合使用,打造全自动化的测定系统。
  • 北京豫维:固相微萃取-气相色谱-质谱法测定饮用水中土嗅素
    采用固相微萃取法富集,气相色谱-质谱联用法定性和定量测定饮用水中致嗅物质土嗅素。研究并讨论优化了纤维头的类型、盐的种类和浓度、温度、萃取时间等因素对异味化合物萃取量的影响。土嗅素的检出限分别为1.02ng/L,相对标准偏差分别为7.74%。2种异味化合物在5~1 000 ng/L的范围内线性关系良好,相关系数均大于0.985。因此,用该方法能够很好地分析水中痕量的异味化合物。
  • 北京豫维:固相微萃取-气相色谱-质谱法测定饮用水中土嗅素和2-甲基异茨醇
    采用固相微萃取法富集,气相色谱-质谱联用法定性和定量测定饮用水中致嗅物质土嗅素和2-甲基异茨醇。研究并讨论优化了纤维头的类型、盐的种类和浓度、温度、萃取时间等因素对异味化合物萃取量的影响。土嗅素和2-甲基异茨醇的检出限分别为1.02、2.13 ng/L,相对标准偏差分别为4.96%、7.74%。2种异味化合物在5~1 000 ng/L的范围内线性关系良好,相关系数均大于0.985。因此,用该方法能够很好地分析水中痕量的异味化合物。
  • 电子电气产品中一溴二苯醚的检测
    电子电气设备中限制使用某些有害物质指令》,简称RoHS指令,电子电气产品在生产中除使用的焊锡、包装箱印刷的油墨等有害重金属,多溴联苯和多溴二苯醚作为阻燃剂也广泛应用于各种电子电气设备中。这些物质在焚烧掩埋废弃的过程中会从基质转移到环境中造成污染。欧盟在2006年7月1日开始实施RoHS指令,在2015年6月4日欧盟官方公报发布RoHS 2.0修订指令,选定4种有毒有害物质(DIBP、DBP、BBP、DEHP)列入限制物质清单。至此,列表清单内共有十项强制管控物质,其中有机物为增塑剂、多溴二苯醚及多溴联苯。此修订指定从2019年7月22日起实施,除医疗设备和监控工具的电子电气必须满足相应的限量要求才能进入欧盟市场。2021年7月22日起,对DIBP、DBP、BBP和DEHP的限制适用于医疗器械(包括体外医疗)和监控设备(包括工业监控设备)。RoHS 2.0修订指令的发布,对中国的电子电气产品制造企业产生了深远的影响,特别是将医疗器械类产品和监控设备列入管控范围内,对这两类制造企业的影响是非常巨大的。 针对列表清单内的有机物多溴联苯、多溴二苯醚和增塑剂的检测,本方案推荐使用安益谱7700气相色谱-质谱联用仪作为检测仪器。
  • 电子电气产品中一溴联苯的检测
    电子电气设备中限制使用某些有害物质指令》,简称RoHS指令,电子电气产品在生产中除使用的焊锡、包装箱印刷的油墨等有害重金属,多溴联苯和多溴二苯醚作为阻燃剂也广泛应用于各种电子电气设备中。这些物质在焚烧掩埋废弃的过程中会从基质转移到环境中造成污染。欧盟在2006年7月1日开始实施RoHS指令,在2015年6月4日欧盟官方公报发布RoHS 2.0修订指令,选定4种有毒有害物质(DIBP、DBP、BBP、DEHP)列入限制物质清单。至此,列表清单内共有十项强制管控物质,其中有机物为增塑剂、多溴二苯醚及多溴联苯。此修订指定从2019年7月22日起实施,除医疗设备和监控工具的电子电气必须满足相应的限量要求才能进入欧盟市场。2021年7月22日起,对DIBP、DBP、BBP和DEHP的限制适用于医疗器械(包括体外医疗)和监控设备(包括工业监控设备)。RoHS 2.0修订指令的发布,对中国的电子电气产品制造企业产生了深远的影响,特别是将医疗器械类产品和监控设备列入管控范围内,对这两类制造企业的影响是非常巨大的。 针对列表清单内的有机物多溴联苯、多溴二苯醚和增塑剂的检测,本方案推荐使用安益谱7700气相色谱-质谱联用仪作为检测仪器。
  • 电子电气产品中六溴联苯的检测
    电子电气设备中限制使用某些有害物质指令》,简称RoHS指令,电子电气产品在生产中除使用的焊锡、包装箱印刷的油墨等有害重金属,多溴联苯和多溴二苯醚作为阻燃剂也广泛应用于各种电子电气设备中。这些物质在焚烧掩埋废弃的过程中会从基质转移到环境中造成污染。欧盟在2006年7月1日开始实施RoHS指令,在2015年6月4日欧盟官方公报发布RoHS 2.0修订指令,选定4种有毒有害物质(DIBP、DBP、BBP、DEHP)列入限制物质清单。至此,列表清单内共有十项强制管控物质,其中有机物为增塑剂、多溴二苯醚及多溴联苯。此修订指定从2019年7月22日起实施,除医疗设备和监控工具的电子电气必须满足相应的限量要求才能进入欧盟市场。2021年7月22日起,对DIBP、DBP、BBP和DEHP的限制适用于医疗器械(包括体外医疗)和监控设备(包括工业监控设备)。RoHS 2.0修订指令的发布,对中国的电子电气产品制造企业产生了深远的影响,特别是将医疗器械类产品和监控设备列入管控范围内,对这两类制造企业的影响是非常巨大的。 针对列表清单内的有机物多溴联苯、多溴二苯醚和增塑剂的检测,本方案推荐使用安益谱7700气相色谱-质谱联用仪作为检测仪器。
  • 电子电气产品中五溴二苯醚的检测
    电子电气设备中限制使用某些有害物质指令》,简称RoHS指令,电子电气产品在生产中除使用的焊锡、包装箱印刷的油墨等有害重金属,多溴联苯和多溴二苯醚作为阻燃剂也广泛应用于各种电子电气设备中。这些物质在焚烧掩埋废弃的过程中会从基质转移到环境中造成污染。欧盟在2006年7月1日开始实施RoHS指令,在2015年6月4日欧盟官方公报发布RoHS 2.0修订指令,选定4种有毒有害物质(DIBP、DBP、BBP、DEHP)列入限制物质清单。至此,列表清单内共有十项强制管控物质,其中有机物为增塑剂、多溴二苯醚及多溴联苯。此修订指定从2019年7月22日起实施,除医疗设备和监控工具的电子电气必须满足相应的限量要求才能进入欧盟市场。2021年7月22日起,对DIBP、DBP、BBP和DEHP的限制适用于医疗器械(包括体外医疗)和监控设备(包括工业监控设备)。RoHS 2.0修订指令的发布,对中国的电子电气产品制造企业产生了深远的影响,特别是将医疗器械类产品和监控设备列入管控范围内,对这两类制造企业的影响是非常巨大的。 针对列表清单内的有机物多溴联苯、多溴二苯醚和增塑剂的检测,本方案推荐使用安益谱7700气相色谱-质谱联用仪作为检测仪器。
  • 电子电气产品中七溴二苯醚的检测
    电子电气设备中限制使用某些有害物质指令》,简称RoHS指令,电子电气产品在生产中除使用的焊锡、包装箱印刷的油墨等有害重金属,多溴联苯和多溴二苯醚作为阻燃剂也广泛应用于各种电子电气设备中。这些物质在焚烧掩埋废弃的过程中会从基质转移到环境中造成污染。欧盟在2006年7月1日开始实施RoHS指令,在2015年6月4日欧盟官方公报发布RoHS 2.0修订指令,选定4种有毒有害物质(DIBP、DBP、BBP、DEHP)列入限制物质清单。至此,列表清单内共有十项强制管控物质,其中有机物为增塑剂、多溴二苯醚及多溴联苯。此修订指定从2019年7月22日起实施,除医疗设备和监控工具的电子电气必须满足相应的限量要求才能进入欧盟市场。2021年7月22日起,对DIBP、DBP、BBP和DEHP的限制适用于医疗器械(包括体外医疗)和监控设备(包括工业监控设备)。RoHS 2.0修订指令的发布,对中国的电子电气产品制造企业产生了深远的影响,特别是将医疗器械类产品和监控设备列入管控范围内,对这两类制造企业的影响是非常巨大的。 针对列表清单内的有机物多溴联苯、多溴二苯醚和增塑剂的检测,本方案推荐使用安益谱7700气相色谱-质谱联用仪作为检测仪器。
  • 电子电气产品中九溴二苯醚的检测
    电子电气设备中限制使用某些有害物质指令》,简称RoHS指令,电子电气产品在生产中除使用的焊锡、包装箱印刷的油墨等有害重金属,多溴联苯和多溴二苯醚作为阻燃剂也广泛应用于各种电子电气设备中。这些物质在焚烧掩埋废弃的过程中会从基质转移到环境中造成污染。欧盟在2006年7月1日开始实施RoHS指令,在2015年6月4日欧盟官方公报发布RoHS 2.0修订指令,选定4种有毒有害物质(DIBP、DBP、BBP、DEHP)列入限制物质清单。至此,列表清单内共有十项强制管控物质,其中有机物为增塑剂、多溴二苯醚及多溴联苯。此修订指定从2019年7月22日起实施,除医疗设备和监控工具的电子电气必须满足相应的限量要求才能进入欧盟市场。2021年7月22日起,对DIBP、DBP、BBP和DEHP的限制适用于医疗器械(包括体外医疗)和监控设备(包括工业监控设备)。RoHS 2.0修订指令的发布,对中国的电子电气产品制造企业产生了深远的影响,特别是将医疗器械类产品和监控设备列入管控范围内,对这两类制造企业的影响是非常巨大的。 针对列表清单内的有机物多溴联苯、多溴二苯醚和增塑剂的检测,本方案推荐使用安益谱7700气相色谱-质谱联用仪作为检测仪器。
  • 电子电气产品中六溴二苯醚的检测
    电子电气设备中限制使用某些有害物质指令》,简称RoHS指令,电子电气产品在生产中除使用的焊锡、包装箱印刷的油墨等有害重金属,多溴联苯和多溴二苯醚作为阻燃剂也广泛应用于各种电子电气设备中。这些物质在焚烧掩埋废弃的过程中会从基质转移到环境中造成污染。欧盟在2006年7月1日开始实施RoHS指令,在2015年6月4日欧盟官方公报发布RoHS 2.0修订指令,选定4种有毒有害物质(DIBP、DBP、BBP、DEHP)列入限制物质清单。至此,列表清单内共有十项强制管控物质,其中有机物为增塑剂、多溴二苯醚及多溴联苯。此修订指定从2019年7月22日起实施,除医疗设备和监控工具的电子电气必须满足相应的限量要求才能进入欧盟市场。2021年7月22日起,对DIBP、DBP、BBP和DEHP的限制适用于医疗器械(包括体外医疗)和监控设备(包括工业监控设备)。RoHS 2.0修订指令的发布,对中国的电子电气产品制造企业产生了深远的影响,特别是将医疗器械类产品和监控设备列入管控范围内,对这两类制造企业的影响是非常巨大的。 针对列表清单内的有机物多溴联苯、多溴二苯醚和增塑剂的检测,本方案推荐使用安益谱7700气相色谱-质谱联用仪作为检测仪器。
  • 电子电气产品中四溴二苯醚的检测
    电子电气设备中限制使用某些有害物质指令》,简称RoHS指令,电子电气产品在生产中除使用的焊锡、包装箱印刷的油墨等有害重金属,多溴联苯和多溴二苯醚作为阻燃剂也广泛应用于各种电子电气设备中。这些物质在焚烧掩埋废弃的过程中会从基质转移到环境中造成污染。欧盟在2006年7月1日开始实施RoHS指令,在2015年6月4日欧盟官方公报发布RoHS 2.0修订指令,选定4种有毒有害物质(DIBP、DBP、BBP、DEHP)列入限制物质清单。至此,列表清单内共有十项强制管控物质,其中有机物为增塑剂、多溴二苯醚及多溴联苯。此修订指定从2019年7月22日起实施,除医疗设备和监控工具的电子电气必须满足相应的限量要求才能进入欧盟市场。2021年7月22日起,对DIBP、DBP、BBP和DEHP的限制适用于医疗器械(包括体外医疗)和监控设备(包括工业监控设备)。RoHS 2.0修订指令的发布,对中国的电子电气产品制造企业产生了深远的影响,特别是将医疗器械类产品和监控设备列入管控范围内,对这两类制造企业的影响是非常巨大的。 针对列表清单内的有机物多溴联苯、多溴二苯醚和增塑剂的检测,本方案推荐使用安益谱7700气相色谱-质谱联用仪作为检测仪器。
  • 塑料颗粒中多溴联苯和多溴联苯醚的测定
    本文参考GC/T26125-2011标准,对电子电气产品部件的组成部分塑料颗粒物质RoHS指令中多溴联苯和多溴联苯醚项目进行了测试,可以作为电子电器产品检测的参考。
  • 岛津:GC/MS快速分析聚合物中多溴联苯和多溴联苯醚
    溴类阻燃剂是目前世界上产量最大的有机阻燃剂之一,其中主要是PBDE和PBB两类物质。其危害主要表现在:①PBDE在生物链中非常稳定,具有生物富集性,可通过食物链方式对人体产生危害。②溴类阻燃体系在热裂解及燃烧时会生成大量的烟尘及腐蚀性气体,产生有毒致癌的多溴代苯并恶英和多溴代二苯并呋喃。目前各个行业对多溴联苯(PBBs)与多溴 联苯醚(PBDEs)的分析方法很多,但是由于多溴联苯与多溴联苯醚溴代数量不同,从一溴到十溴的溴系阻燃剂沸点相差很多,沸程很宽,结果造成分析时间延长。目前常规分析方法的分析时间都在20分钟左右。本方法使用岛津GCMS-QP2010Plus气质联用仪对样品进行分析,采用高压进样,10米长色谱柱,使分析时间大大缩短,整个分析时间为7.8分钟,大大缩短了分析周期、提高了工作效率。
  • 电子电气产品中二溴二苯醚的检测
    电子电气设备中限制使用某些有害物质指令》,简称RoHS指令,电子电气产品在生产中除使用的焊锡、包装箱印刷的油墨等有害重金属,多溴联苯和多溴二苯醚作为阻燃剂也广泛应用于各种电子电气设备中。这些物质在焚烧掩埋废弃的过程中会从基质转移到环境中造成污染。欧盟在2006年7月1日开始实施RoHS指令,在2015年6月4日欧盟官方公报发布RoHS 2.0修订指令,选定4种有毒有害物质(DIBP、DBP、BBP、DEHP)列入限制物质清单。至此,列表清单内共有十项强制管控物质,其中有机物为增塑剂、多溴二苯醚及多溴联苯。此修订指定从2019年7月22日起实施,除医疗设备和监控工具的电子电气必须满足相应的限量要求才能进入欧盟市场。2021年7月22日起,对DIBP、DBP、BBP和DEHP的限制适用于医疗器械(包括体外医疗)和监控设备(包括工业监控设备)。RoHS 2.0修订指令的发布,对中国的电子电气产品制造企业产生了深远的影响,特别是将医疗器械类产品和监控设备列入管控范围内,对这两类制造企业的影响是非常巨大的。 针对列表清单内的有机物多溴联苯、多溴二苯醚和增塑剂的检测,本方案推荐使用安益谱7700气相色谱-质谱联用仪作为检测仪器。
  • 电子电气产品中十溴二苯醚的检测
    电子电气设备中限制使用某些有害物质指令》,简称RoHS指令,电子电气产品在生产中除使用的焊锡、包装箱印刷的油墨等有害重金属,多溴联苯和多溴二苯醚作为阻燃剂也广泛应用于各种电子电气设备中。这些物质在焚烧掩埋废弃的过程中会从基质转移到环境中造成污染。欧盟在2006年7月1日开始实施RoHS指令,在2015年6月4日欧盟官方公报发布RoHS 2.0修订指令,选定4种有毒有害物质(DIBP、DBP、BBP、DEHP)列入限制物质清单。至此,列表清单内共有十项强制管控物质,其中有机物为增塑剂、多溴二苯醚及多溴联苯。此修订指定从2019年7月22日起实施,除医疗设备和监控工具的电子电气必须满足相应的限量要求才能进入欧盟市场。2021年7月22日起,对DIBP、DBP、BBP和DEHP的限制适用于医疗器械(包括体外医疗)和监控设备(包括工业监控设备)。RoHS 2.0修订指令的发布,对中国的电子电气产品制造企业产生了深远的影响,特别是将医疗器械类产品和监控设备列入管控范围内,对这两类制造企业的影响是非常巨大的。 针对列表清单内的有机物多溴联苯、多溴二苯醚和增塑剂的检测,本方案推荐使用安益谱7700气相色谱-质谱联用仪作为检测仪器。
  • 电子电气产品中十溴联苯的检测
    电子电气设备中限制使用某些有害物质指令》,简称RoHS指令,电子电气产品在生产中除使用的焊锡、包装箱印刷的油墨等有害重金属,多溴联苯和多溴二苯醚作为阻燃剂也广泛应用于各种电子电气设备中。这些物质在焚烧掩埋废弃的过程中会从基质转移到环境中造成污染。欧盟在2006年7月1日开始实施RoHS指令,在2015年6月4日欧盟官方公报发布RoHS 2.0修订指令,选定4种有毒有害物质(DIBP、DBP、BBP、DEHP)列入限制物质清单。至此,列表清单内共有十项强制管控物质,其中有机物为增塑剂、多溴二苯醚及多溴联苯。此修订指定从2019年7月22日起实施,除医疗设备和监控工具的电子电气必须满足相应的限量要求才能进入欧盟市场。2021年7月22日起,对DIBP、DBP、BBP和DEHP的限制适用于医疗器械(包括体外医疗)和监控设备(包括工业监控设备)。RoHS 2.0修订指令的发布,对中国的电子电气产品制造企业产生了深远的影响,特别是将医疗器械类产品和监控设备列入管控范围内,对这两类制造企业的影响是非常巨大的。 针对列表清单内的有机物多溴联苯、多溴二苯醚和增塑剂的检测,本方案推荐使用安益谱7700气相色谱-质谱联用仪作为检测仪器。
  • 电子电气产品中八溴二苯醚的检测
    电子电气设备中限制使用某些有害物质指令》,简称RoHS指令,电子电气产品在生产中除使用的焊锡、包装箱印刷的油墨等有害重金属,多溴联苯和多溴二苯醚作为阻燃剂也广泛应用于各种电子电气设备中。这些物质在焚烧掩埋废弃的过程中会从基质转移到环境中造成污染。欧盟在2006年7月1日开始实施RoHS指令,在2015年6月4日欧盟官方公报发布RoHS 2.0修订指令,选定4种有毒有害物质(DIBP、DBP、BBP、DEHP)列入限制物质清单。至此,列表清单内共有十项强制管控物质,其中有机物为增塑剂、多溴二苯醚及多溴联苯。此修订指定从2019年7月22日起实施,除医疗设备和监控工具的电子电气必须满足相应的限量要求才能进入欧盟市场。2021年7月22日起,对DIBP、DBP、BBP和DEHP的限制适用于医疗器械(包括体外医疗)和监控设备(包括工业监控设备)。RoHS 2.0修订指令的发布,对中国的电子电气产品制造企业产生了深远的影响,特别是将医疗器械类产品和监控设备列入管控范围内,对这两类制造企业的影响是非常巨大的。 针对列表清单内的有机物多溴联苯、多溴二苯醚和增塑剂的检测,本方案推荐使用安益谱7700气相色谱-质谱联用仪作为检测仪器。

厂商最新方案

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制