当前位置: 仪器信息网 > 行业主题 > >

质粒载体

仪器信息网质粒载体专题为您整合质粒载体相关的最新文章,在质粒载体专题,您不仅可以免费浏览质粒载体的资讯, 同时您还可以浏览质粒载体的相关资料、解决方案,参与社区质粒载体话题讨论。

质粒载体相关的论坛

  • 【原创】分子克隆常用载体

    DNA片段的克隆需要合适的载体,载体或是质粒,或是噬菌体,或是病毒,通常大多经过人工改造http://www1.qiagen.com/ literature/pqesequences/pqe3x.pdf2. http://allergy.dlearn.kmu.edu.tw/Protocol.Vectors/Qiagen.pQE30_pqe3x.pdf 多克隆位点 http://www1.qiagen.com/literature/pqesequences/pqe3x.pdf 载体基因序列 1. http://www.tcd.ie/Genetics/staff/Noel.Murphy/recombinant%20dna%20ge4021/pqe30.doc2. http://www1.qiagen.com/literature/pqesequences/pqe-30w.txt 纯化方法 http://www.biochain.compCNDA3 5446bp Ap T7启动子 质粒图谱 http://depts.washington.edu/~bornlab/vector/map/pcdna3-map.html 多克隆位点 http://depts.washington.edu/~bornlab/vector/map/pcdna3-map.html 载体基因序列 1. http://seq.yeastgenome.org/vectordb/vector_descrip/COMPLETE/PCDNA3.SEQ.html2. http://www.genomex.com/vector_sequence/pcDNA-3.txt3. http://image.llnl.gov/image/dyn_html/bin/full_seq.pl?vec=pCDNA3&seqno=45pCDNA3.1 5446bp Ap T7启动子 质粒图谱 1. http://www.genomex.com/vector_maps/pcdna3.1+.pdf2. https://www.invitrogen.com/content/sfs/vectors/pcdna3.1+.pdf 多克隆位点 https://www.invitrogen.com/content/sfs/vectors/pcdna3.1+_mcs.pdf 载体基因序列 1. http://seq.yeastgenome.org/vectordb/vector_descrip/COMPLETE/PCDNA3.SEQ.html2. http://www.genomex.com/vector_sequence/pcDNA-3.txt3. http://image.llnl.gov/image/dyn_html/bin/full_seq.pl?vec=pCDNA3&seqno=45 载体内部酶切图谱 https://www.invitrogen.com/content/sfs/vectors/pcdna3_1p_rest.pdf PTYB1 7477bp Ap T7lac启动子 质粒图谱 http://www.neb.com/nebecomm/tech_reference/restriction_enzymes/maps/pTYB1_map.pdf 多克隆位点 http://www.neb.com/nebecomm/products/productN6706.asp 载体基因序列 http://www.neb.com/nebecomm/tech_reference/restriction_enzymes/sequences/ptyb1.txt 载体内部酶切图谱 http://www.neb.com/nebecomm/tech_

  • 原核表达与真核表达载体有什么区别

    区别呢 原核表达载体 在原核生物表达 ,真核的在真核表达 很像废话 呵呵呵呵。。。。 就是 原核载体可以将真核基因表达,但是表达出来的蛋白是没有活性的,因为缺少翻译后修饰系统。。。真核的表达载体呢 由于比较大 不适合大量快速扩增,所以要在其载体上构建可以在原核生物 如大肠杆菌中复制的所需的复制原件 。。。。综上 在应用的时候 要构建 穿梭质粒 可以穿梭于 原核和 真核 呵呵 还有就是 原核表达载体的基本元件和真核的有不同的地方 。。。。。总觉得不够正确答案 。。。。。有些人缘的蛋白在原核里没有蛋白翻译后修饰,表达后没有活性,这时候就得在真核里表达了原核表达做抗体,真核表达做功能研究。(1)原核载体,将克隆化基因插入合适载体后导入大肠杆菌用于表达大量蛋白质的方法一般称为原核表达。这种方法在蛋白纯化、定位及功能分析等方面都有应用。大肠杆菌用于表达重组蛋白有以下特点:易于生长和控制;用于细菌培养的材料不及哺乳动物细胞系统的材料昂贵;有各种各样的大肠杆菌菌株及与之匹配的具各种特性的质粒可供选择。但是,在大肠杆菌中表达的蛋白由于缺少修饰和糖基化、磷酸化等翻译后加工,常形成包涵体而影响表达蛋白的生物学活性及构象。 你可以就其在蛋白纯化等方面的作用进一步进行说明。(2)真核载体,要表达真核生物的蛋白质,采用真核表达系统自然应比原核系统优越,常用的酵母、昆虫、动物和哺乳类细胞等表达系统。真核表达载体的应用比较广,通过真核表达,可以研究某一基因的功能,比如把载有目标基因的载体导入到特定的哺乳动物细胞中以后,如果该基因发挥着某种功能,则可以通过其引起细胞的变化来说明问题等等。你可以搜索一下,这方面还是很多的。

  • [热点讨论] 【转载】载体构建心得

    个人载体构建心得这两年在美帝净做克隆实验了,以前读PHD时候还觉得自己分子克隆挺牛X的,来这边之后做了各种各样的构建才知道以前是坐井观天,刚才粗粗统计了一下,在美帝一年零八个月,我构建的质粒超过四百个,其中有很简单从PCR构建到拿WB结果的一共不到一周,也有巨难的花了四个月时间换了几次strategy才弄好激动得我半夜給老板发信的品种;有单片段酶切插入这种不用脑型的,也有九个片段逐一插入正反向还不同的。专家不敢说,但是熟能生巧,确实积累了不少经验,现在系里从POSTDOC到PHD学生到TECH构建前很多人都跟我商量(做博后结果成了技术员的人生真悲哀啊)。我老板甚至开玩笑说,我们将来开个公司,我专门负责构建(这话听得我想揍他大家同意不?)想了想还是把经验写下来,一来做个记录,二来博同行一笑,能让大家少绕点弯路则更好。1. 准备工作俗话说用欲善其事,必先利其器。我强烈建议大家在做构建之前先找好工具,这样起的效果事半功倍。这里说个笑话,我们系有个新PHD学生,是个印度女孩,很聪明很刻苦,她所在的实验室也很好,不过除了她之外包括老板在内都是生物物理背景的,以前一个生物POSTDOC在的时候还好,这个POSTDOC一走,整个实验室对分生就只有一个粗浅的概念,这个女孩就想把一个质粒上的基因插到另一个质粒上去,要是我就先查查有没有合适的酶切位点,要没有就改造一下质粒一切搞定,这女孩她不懂啊(要命的是她老板固然牛,对这方面也不懂),自己辛辛苦苦设计了PCR引物去做PCR,P了将近5K的产物去测序,结果测的结果中间有个MUTATION,要懂行的就找找酶切位点,从原来的替换上去,然后测下这段就行。她呢,又送去了若干了质粒一个接一个的测,一个测序反应这边是8刀,一个质粒测下来就是40刀,她光测序就要花好几百刀(你得佩服老美实验室真有钱呀)。这件事教育我们准备工作是多么重要!这里推荐大家两个工具,一个都知道,PRIMER5.0。另一个工具极强大,也不知道国内流行不,叫lasergene,也就是DNAStar包括设计引物到构建图谱一应俱全,图谱非常漂亮,而且分析酶切位点等等就超NB,如果感兴趣的话我可以給大家传一个图谱看看。2. PCR如果没有现成的质粒可供酶切,PCR是最理想也是最方便的策略。关于PCR具体技术坛子内帖很多,我不多说了,这里仅在构建方面谈一谈。如何设计引物?首先,看懂质粒图谱!拿大家比较熟悉的PEGFP-C1和PEGFP-N1做例子。想用N1质粒,设计引物就得把下游引物上的中止密码子去掉,不要辛辛苦苦的一路做下来结果根本不表达融合蛋白,你就死了;C1质粒,注意frame,要是移码了,你也死了。而且PEGFP系列有1、2、3,要弄清楚别弄窜了。一句话,要看懂你的图谱!再多一句,PEGFP的XBA1和Bcl1位点不能用。注意在设计酶切位点的时候要加保护碱基(大家要用T载体就当我没说)。酶切位点设计也有一定的讲究,我的原则是,能用粘端就用粘端,实在不能用的就用只好用一些常用的平端酶,如ECORV和SNAB1之类,要是以后还有别的用处就多加点酶切位点,我曾一口气在引物上加了五个酶切位点以防以后要用到,注意计算TM的时候要减去这些不match的序列,或者选用touch-up策略。除了酶切位点,还要注意KOZAK序列的问题,很多质粒没有提供KOZAK序列,这要在设计的时候直接在引物上加好。GENE OVERLAP也比较有用,比方说加个FLAG片段,HIS片段,2A

  • 【分享】载体知识简介

    载体(也称担体)一般是化学惰性的多孔微粒。特殊载体如玻璃微珠,是比表面积大的化学惰性物质,但并非多孔。固定液分布在载体表面,形成一均匀薄层,构成气-液色谱的固定相。 1. 对一般载体的要求 ① 比表面积大,孔穴结构好;② 表面没有吸附性能(或很弱);③ 不与被分离物质或固定液起化学反应;④ 热稳定性好,粒度均匀,有一定的机械强度等。 2. 载体的分类 载体可分为两大类:硅藻土型载体和非硅藻土型载体。硅藻土型载体是天然硅藻土经煅烧等处理而获得的具有一定粒度的多孔性固体微粒。非硅藻土型载体种类不一,多用于特殊用途,如氟载体、玻璃微珠及素瓷等。 3. 硅藻土型载体 硅藻土型载体是将天然硅藻土压成砖型,在900℃煅烧后粉碎、过筛而成。⑴红色硅藻土载体:硅藻土与粘合剂直接煅烧而成。因煅烧后天然硅藻土中所含的铁形成氧化铁,而使载体呈淡红色,故称红色载体。红色载体表面孔穴密集,孔径较小,平均孔径为1um,比表面积约为4.0m2/g,机械强度高,但吸附性较强,这种载体常与非极性固定液配伍。 ⑵白色硅藻土载体:煅烧前在原料中加入少量助熔剂,如碳酸钠,煅烧后生成了无色的铁硅酸钠络合物,而使硅藻土呈白色。其颗粒疏松,表面孔径较粗,约8~9um。比表面积只有1.0m2/g,吸附性能弱,常与极性固定液配伍。 4. 载体的纯化 钝化是除去或减弱载体表面的吸附性能。 以硅藻土型载体为例,表面存在着硅醇基及少量的金属氧化物,常具有吸附性能。当被分析组分是能形成氢键的化合物或酸碱时,则与载体的吸附中心作用,破坏了组分在气-液二相中的分配关系,而产生拖尾现象,故需将这些活性中心除去,使载体表面结果钝化。钝化的方法有:酸洗、碱洗、硅烷化及釉化等。酸洗能除去载体表面的铁、铝等金属氧化物。酸洗载体用于分析酸类和酯类化合物。碱洗能除去表面的氧化铝等酸性作用点,碱洗载体适用于分析胺类等碱性化合物。硅烷化是将载体与硅烷化试剂反应,除去载体表面的硅醇基,消除形成氢键的能力。硅烷化载体主要用于分析具有形成氢键能力较强的化合物,如醇、酸及胺类等。

  • ELISA酶联免疫之固相载体

    固相载体在ELISA测定过程中作为吸附剂和容器,不参与化学反应。可作ELISA中载体的材料很多,最常用的是聚苯乙烯。聚苯乙烯具有较强的吸附蛋白质的性能,抗体或蛋白质抗原吸附其上后仍保留原来的免疫学活性,加之它的价格低廉,所以被普遍采用。聚苯乙烯为塑料,可制成各种形式。 ELISA载体的形状主要有三种:微量滴定板、小珠和小试管。以微量滴定板最为常用,专用于EILSA的产品称为ELISA板,国际上标准的微量滴定板为8×12的96孔式。为便于作少量标本的检测,有制成8联孔条或12联孔条的,放入座架后,大小与标准ELISA板相同。ELISA板的特点是可以同时进行大量标本的检测,并可在特制的比色计上迅速读出结果。现在已有多种自动化仪器用于微量滴定板型的ELISA检测,包括加样、洗涤、保温、比色等步骤,对操作的标准化极为有利。聚苯乙烯经射线照射后,其吸附性能特别是对免疫球蛋白的吸附性能增加,应用于双抗体夹心法可使固相上抗体量增多,但用于间接法测抗体时空白值较大。 良好的ELISA板应该是吸附性能好,空白值低,孔底透明度高,各板之间、同一板各孔之间、同一板各孔之间性能相近。聚苯乙烯ELISA板由于原料的不同和制作工艺的差别,各种产品的质量差异很大,因此,每一批号的ELISA板在使用前须事先检查其性能。常用的检查方法为:以一定浓度的人IgG(一般为10ng/ml)包被ELISA板各孔,洗涤后每孔内加入适当稀释度的酶标抗人IgG抗体,保温后洗涤,加底物显色,终止酶反应后,分别测每孔溶液的吸光度。控制反应条件,使各孔读数在吸光度0.8左右。计算全部读数的平均值。所有单个读数与全部读数的均数之差,应小于10%。 比较不同固相在某一ELISA测定中的优劣,可应用如下的试验:用其他免疫学测定方法选出一个典型的阳性标本和阴性标本,将它们进行一系列稀释后,在不同的固相载体上按预定的ELISA操作步骤进行测定,然后比较结果。在哪一种载体上阳性结果与阴性结果差别最大,这种载体就是这一ELISA测定项目的最合适的固相载体。

  • 微载体培养技术的介绍

    微载体培养技术(micro-carrier culture technique)于1967年被用于动物细胞大规模培养。经过三十余年的发展,该技术日趋完善和成熟,广泛应用于生产疫苗、基因工程产品等。微载体培养是目前公认最具发展前途的一种动物细胞大规模培养技术,其兼具悬浮培养和贴壁培养的优点,且容易放大。该技术已广泛用于培养各类型细胞,如293细胞、成肌细胞、Vero细胞、CHO细胞。一、微载体 微载体是指直径60-250 μm,能适用于贴壁细胞生长的微珠。一般是由天然葡聚糖或者各种合成的聚合物组成。常用商品化微载体有三种:Cytodex1、2、3,Cytopore和Cytoline。二、微载体培养原理与操作 其原理是将对细胞无害的微载体颗粒加入培养容器的培养液中,作为载体,使细胞在微载体表面附着生长,同时通过持续搅动使微载体始终保持悬浮状态。 贴壁依赖性细胞在微载体表面上的增殖,要经历黏附贴壁、生长和扩增三个阶段。细胞只有贴附在固体基质表面才能增殖,因此细胞在微载体表面的贴附是进一步铺展和生长的关键。细胞主要通过静电引力和范德华力与微载体黏附,这取决于细胞与微载体的接触概率和相融性。 由于动物细胞无细胞壁,对剪切力敏感,因此微载体培养在操作中对搅拌转速及搅拌方式的要求都十分严格。微载体培养要求搅拌的速度非常慢,最大速度75 r/min。细胞微载体培养通常分为三个时期:贴壁期,过渡期和培养期。贴壁期和过渡期可以使用超低速细胞磁力搅拌系统进行培养,该系统具有超低的搅拌速度,剪切力小且能在低速下充分混匀细胞。三、微载体培养的优势产业化细胞培养首先需要提供足够大的细胞生长面积,使培养容器单位容积所提供的细胞生长面积有所增加,从而提高疫苗和生化制剂的产量;其次需要加强和改善细胞培养的环境,有利于细胞生长;第三,细胞的均一化程度要高,在一个大发酵罐内培养细胞,生长环境需一致。要满足以上三点要求,常规的培养瓶静态培养,甚至是转瓶都很难满足,而微载体培养技术则能很好的解决这些问题。总结 综上所述,微载体的优势可以归纳为以下几点:表面积/体积大,单位体积培养液的细胞产率高;把悬浮细胞和贴壁细胞培养融合在一起,兼有两者的优点;可用简单的显微镜观察细胞在微珠表面的生长情况;简化细胞生长过程中对各种环境因素的检测和控制,重现性好;培养基利用率较高;放大容易;细胞收获过程不复杂;劳动强度小;培养系统占地面积和空间小等。

  • 【推荐】不得不看的载体构建的心得与体会

    这两年在美帝净做克隆实验了,以前读PHD时候还觉得自己分子克隆挺牛X的,来这边之后做了各种各样的构建才知道以前是坐井观天,刚才粗粗统计了一下,在美帝一年零八个月,我构建的质粒的超过四百个,其中有很简单从PCR构建到拿WB结果的一共不到一周,也有巨难的花了四个月时间换了几次strategy才弄好激动得我半夜給老板发信的品种;有单片段酶切插入这种不用脑型的,也有九个片段逐一插入正反向还不同的。专家不敢说,但是熟能生巧,确实积累了不少经验,现在系里从POSTDOC到PHD学生到TECH构建前很多人都跟我商量(做博后结果成了技术员的人生真悲哀啊)。我老板甚至开玩笑说,我们将来开个公司,我专门负责构建(这话听得我想揍他大家同意不?)想了想还是把经验写下来,一来做个记录,二来博同行一笑,能让大家少绕点弯路则更好。1. 准备工作俗话说用欲善其事,必先利其器。我强烈建议大家在做构建之前先找好工具,这样起的效果事半功倍。这里说个笑话,我们系有个新PHD学生,是个印度女孩,很聪明很刻苦,她所在的实验室也很好,不过除了她之外包括老板在内都是生物物理背景的,以前一个生物POSTDOC在的时候还好,这个POSTDOC一走,整个实验室对分生就只有一个粗浅的概念,这个女孩就想把一个质粒上的基因插到另一个质粒上去,要是我就先查查有没有合适的酶切位点,要没有就改造一下质粒一切搞定,这女孩她不懂啊(要命的是她老板固然牛,对这方面也不懂),自己辛辛苦苦设计了PCR引物去做PCR,P了将近5K的产物去测序,结果测的结果中间有个MUTATION,要懂行的就找找酶切位点,从原来的替换上去,然后测这下这段就行。她呢,又送去了若干了质粒一个接一个的测,一个测序反应这边是8刀,一个质粒测下来就是40刀,她光测序就要花好几百刀(你得佩服老美实验室真有钱呀)。这件事教育我们准备工作是多么重要。这里推荐大家两个工具,一个都知道,PRIMER5.0。另一个工具极强大,也不知道国内流行不,叫lasergene,包括设计引物到构建图谱一应俱全,图谱非常漂亮,而且分析酶切位点等等就超NB,如果感兴趣的话我可以給大家传一个图谱看看。2. PCR如果没有现成的质粒可供酶切,PCR是最理想也是最方便的策略。关于PCR具体技术坛子内帖很多,我不多说了,这里仅在构建方面谈一谈。(1)如何设计引物?首先,看懂质粒图谱!拿大家比较熟悉的PEGFP-C1和PEGFP-N1做例子。想用N1质粒,设计引物就得把下游引物上的中止密码子去掉,不要辛辛苦苦的一路做下来结果根本不表达融合蛋白,你就死了;C1质粒,注意frame,要是移码了,你也死了。而且PEGFP系列有1.2.3,要弄清楚别弄窜了。一句话,要看懂你的图谱!再多一句,PEGFP的XBA1和Bcl1位点不能用。注意在设计酶切位点的时候要加保护碱基(大家要用T载体就当我没说)。酶切位点设计也有一定的讲究,我的原则是,能用粘端就用粘端,实在不能用的就用只好用一些常用的平端酶,如ECORV和SNAB1之类,要是以后还有别的用处就多加点酶切位点,我曾一口气在引物上加了五个酶切位点以防以后要用到,注意计算TM的时候要减去这些不match的序列,或者选用touch-up策略。除了酶切位点,还要注意KOZAK序列的问题,很多质粒没有提供KOZAK序列,这要在设计的时候直接在引物上加好。GENE OVERLAP也比较有用,比方说加个FLAG片段,HIS片段,2A序列之类的,直接设计三引物OVERLAP一下就可以,省得还要再多构建一步,这些都是设计引物时候就要考虑好的。引物长一点不要紧(我最喜欢两步法了),尤其是对GC比高的序列,有时候引物不长PCR根本不出结果,注意如果GC比较高,这个时候GENE OVERLAP就不要做了,很麻烦,克隆很难挑。(2)没有合适的酶切位点?很简单,用同尾酶策略,比方说Bgl2和BamH1,Nhe1和spe1,Xho1和Sal1(注意连上了切不下来),实在不行就平端吧,只要不超过4KB,平端酶连接也不那么难。(3)如何选择Taq酶?选择Taq酶也很关键,首先,高保真(High fidelity)这是必须的,我在国内常用LA KIT,可这边***忑贵,只好用(美)国货。常用的PFU,PHUSION和PFX。PFX50是invitrogen公司的,一度曾卖到脱销,保真性应该是目前最高的,是普通Taq的50倍,对一般基因绝无问题(我同事4.5K PCR产物,居然一个突变都没有),但是对比较难PCR的高GC或者位点比较难做PCR的基因(基因组为模板)就明显不行了;PFU(安捷伦)保真性没有PFX50高,但是能力很强,略贵点;phusion是NEB公司的,不贵,但是这个酶很怪异,每次用都要把annealing温度调高好几度,否则就出杂带,个人觉得NEB内切酶绝对是NO.1,但是Taq就不如Invitrogen了,如果实验室有钱,直接买invitrogen的spuermix,什么都混好了,连ddH 2O 都搞定,只要直接向里加模版和引物就OK,每次我要拿漂亮的结果都用supermix。还是那句话,读说明书。同是高保真Taq酶,iproof 要求98度起始1min,pfx就要求95起始2min ,延伸有的是72,有的是68,有的要加1uL,有的加0.5,有的TM要低五度,有的高三度,这些必须要读说明书,读且仔细读,这是拿到任何试剂都要做的第一步。(4)如果基因太难PCR,怎么办?首先,DMSO是好物,好到甚至FISHER的Phusion就直接写上了DMSO这项,注意3%-6%,太高Taq酶活性就不行了。如果GC太高而且片段过长的话,DMSO也不行,GC低的不推荐。我做个过一个2.8 k,GC比高达92%的基因PCR,一共做了两周,从保真性最强的PFX50到普通的promega 2xGO Taq都试过,什么DMSO,甘油,Biorad的iproof with high GC Buffer, NEB one Taq 2x Taq High GC(还带Enhancer的),TAKARA 的LA都试过,都不行,要么不出带,要么就是乱七八糟的带一起来,头晕脑涨的我都打算抹平策略了,后来从别的实验室弄来一个clontech的2 GC rich kit,一次搞定!强烈推荐这个KIT,太牛了,在别家都缴械的时候,它一锤定音,不过价格也比别家都牛,10次反应就130刀,其实实验室大可以备一个,就是防备超高GC又长的片段。不过这个KIT非高保真,送了三个克隆测序,各在不同部位有突变,于是我就从A克隆切一段接到B克隆上,又从C克隆切一段接B克隆上。注意的问题是GC比太高测序也很困难,正常GC能测1K左右,到了High GC就能测个五六百,这时要多准备些引物。(5)PCR产物的纯化如果带很单一,又强,直接PCR产物纯化就可以,如果有杂带,但目的带也很强,跑胶,目的带切胶回收。回收这里也有个瓶颈,就是回收率的问题,我试过很多家的KIT,promega的GEL回收试剂盒效率和价格都很合适,推荐这个。关于T载体,我在国内的时候是必用的,到了美帝反倒一次没用过,这边比较流行直接用PCR产物切,就是回收完了直接切上,回收后然后连接,这又回到了最开始设计,要加保护碱基。这个策略好处就是免除了T载体这步,直接插入目的载体,存在的问题就是处于盲做状态,还要加保护碱基。

  • 精心构建:蛋白表达载体的完整流程解析

    [font=宋体]在分子生物学和生物工程领域,蛋白表达载体构建是至关重要的技术之一,它涉及到将目的基因插入到适当的表达载体中,以便在宿主细胞内进行蛋白表达。这一过程不仅有助于研究基因的功能和蛋白质的结构,还为药物开发、基因治疗等领域提供了有力支持。本文将详细介绍蛋白表达载体构建的整个流程,包括目的基因的选择、载体的选择与改造、基因插入、转化、筛选与鉴定等关键步骤。[/font][font=宋体] [/font][b][font=宋体]蛋白表达载体构建流程:[/font][/b][font=宋体] [/font][font=宋体][font=宋体]①[/font][font=Calibri]NCBI[/font][font=宋体]查找目的基因的[/font][font=Calibri]CDS[/font][font=宋体]序列[/font][/font][font=宋体][font=宋体]进入[/font][font=Calibri]NCBI[/font][font=宋体](美国国家生物技术信息中心)的网站。[/font][/font][font=宋体]在搜索框中输入目的基因的名称或关键词。[/font][font=宋体][font=宋体]在搜索结果中找到[/font][font=Calibri]CDS[/font][font=宋体]([/font][font=Calibri]Coding Sequence[/font][font=宋体])序列,通常会显示基因的[/font][font=Calibri]DNA[/font][font=宋体]序列。[/font][/font][font=宋体][font=宋体]记录或复制所需的[/font][font=Calibri]CDS[/font][font=宋体]序列信息。[/font][/font][font=宋体] [/font][font=宋体]②选择合适的表达载体[/font][font=宋体]根据目的基因的性质和所需的表达水平,选择适合的表达载体。[/font][font=宋体]考虑载体的克隆容量、复制子类型、筛选标记等。[/font][font=宋体] [/font][font=宋体]③确定双酶切位点[/font][font=宋体]根据目的基因和载体,选择合适的双酶切位点。[/font][font=宋体][font=宋体]确保酶切位点在[/font][font=Calibri]CDS[/font][font=宋体]序列和载体上都是独特的,避免切割其他部位。[/font][/font][font=宋体] [/font][font=宋体][font=宋体]④[/font][font=Calibri]Primer 5[/font][font=宋体]预测目的序列酶切位点[/font][/font][font=宋体][font=宋体]使用[/font][font=Calibri]Primer 5[/font][font=宋体]或其他相关软件,根据已知的[/font][font=Calibri]CDS[/font][font=宋体]序列设计酶切位点的引物。[/font][/font][font=宋体]通过软件预测引物的特异性,确保它们仅与目的基因结合。[/font][font=宋体] [/font][font=宋体] [/font][font=宋体][font=宋体]⑤双酶切[/font][font=Calibri]buffer[/font][/font][font=宋体][font=宋体]根据选择的酶,准备相应的酶切[/font][font=Calibri]buffer[/font][font=宋体]。[/font][/font][font=宋体][font=宋体]注意[/font][font=Calibri]buffer[/font][font=宋体]的[/font][font=Calibri]pH[/font][font=宋体]值和离子浓度,确保酶的活性。[/font][/font][font=宋体] [/font][font=宋体] [/font][font=宋体][font=宋体]⑥目的基因[/font][font=Calibri]CDS[/font][font=宋体]序列引物设计[/font][/font][font=宋体][font=宋体]根据[/font][font=Calibri]CDS[/font][font=宋体]序列,设计一对引物用于[/font][font=Calibri][url=https://insevent.instrument.com.cn/t/jp][color=#3333ff]PCR[/color][/url][/font][font=宋体]扩增目的基因。[/font][/font][font=宋体]确保引物的特异性,避免与其他基因序列发生非特异性结合。[/font][font=宋体] [/font][font=宋体] [/font][font=宋体]⑦转化[/font][font=宋体][font=宋体]制备感受态细胞,使其处于易于接受外源[/font][font=Calibri]DNA[/font][font=宋体]的状态。[/font][/font][font=宋体][font=宋体]将[/font][font=Calibri][url=https://insevent.instrument.com.cn/t/jp][color=#3333ff]PCR[/color][/url][/font][font=宋体]扩增得到的目的基因与载体混合,进行转化反应。[/font][/font][font=宋体]将转化后的细菌在选择培养基上培养,筛选含有重组载体的阳性克隆。[/font][font=宋体] [/font][font=宋体] [/font][font=宋体]⑧双酶切及鉴定[/font][font=宋体][font=宋体]提取阳性克隆的质粒[/font][font=Calibri]DNA[/font][font=宋体]。[/font][/font][font=宋体]使用设计的引物进行双酶切反应。[/font][font=宋体]对酶切产物进行电泳分析,观察是否获得预期的片段,并进行凝胶回收。[/font][font=宋体] [/font][font=宋体] [/font][font=宋体]⑨测序[/font][font=宋体]将回收的酶切产物进行序列测定。[/font][font=宋体][font=宋体]对比测序结果与目的基因的[/font][font=Calibri]CDS[/font][font=宋体]序列,确保没有突变或错误。[/font][/font][font=宋体] [/font][font=宋体] [/font][font=宋体]⑩阳性菌落扩大培养,用于后期蛋白纯化研究[/font][font=宋体] [/font][font=宋体]选择测序正确的阳性菌落进行扩大培养。[/font][font=宋体]在摇瓶或发酵罐中进行高密度培养,为后续的蛋白表达提供充足的原料。[/font][font=宋体]在确定目的基因在载体上正确表达后,可以进行蛋白纯化研究。[/font][font=宋体]通过适当的纯化技术,如亲和层析、离子交换等,分离和纯化目的蛋白。[/font][font=宋体]对纯化的蛋白进行质量分析和功能研究。[/font][font=宋体] [/font][font=宋体][font=宋体]综上所述,蛋白表达载体构建是一个系统性的过程,涉及到多个关键步骤和复杂的技术操作。通过遵循这一流程,研究人员能够成功地在宿主细胞内表达所需蛋白,并进一步对其进行分析和功能研究。随着生物技术的不断发展,蛋白表达载体构建的应用领域将越来越广泛,为人类对生命现象的深入理解和疾病的防治提供更多可能性。因此,不断优化和完善这一技术对于生命科学领域的发展至关重要。更多[url=https://cn.sinobiological.com/resource/protein-review/protein-production][b]蛋白表达生产[/b][/url]详情可以关注[/font][font=Calibri]https://cn.sinobiological.com/resource/protein-review/protein-production[/font][/font]

  • 【求助】407有机载体

    [color=#DC143C][size=4]有机载体407是分析有机胺很好的一种载体, 请问那位高手知道有机载体407的性质,最高适用温度,替代品是什么?(国产或进口的都可以)。非常感谢!!![/size][/color]

  • 【转帖】载体构建中连接的心得

    【转帖】载体构建中连接的心得

    两片段连接 通常是指目的片断和载体片断的连接,包括①小片段(目的片断小于载体片断的大小)和载体片段的连接,这种情况多些,也比较容易连接,按照说明书要求的比例进行即可,比如TAKARA的pMD19-T Simple Vector连接时Vector DNA和Insert DNA的摩尔比一般为1 :2~10即可,如果效果不佳,检测一下感受态细胞,如果片断过小比如几十bp,连接时要加大小片段的摩尔数,多连几管,挑选白斑,以上是指双酶切后的连接,即载体和目的片断俩端的酶切位点相同;②大片段(目的片断与载体片断的大小差不多甚至大于载体的大小)和载体片段的连接,目的片断与载体片断的大小差不多的情况应尽量避免,因为这会给目的片断胶回收带来麻烦,我就遇到过这种情况,胶回收时很是费尽,最后勉强分开,当然换个载体也许就解决问题了。我做过3000多bp和pMD19-T Simple Vector的连接,开始不行,后来成功了,连接率不高,我的经验是如果感受态细胞没问题,那就反复试目的片断和载体片断的连接比例,可以超出此范围1 :2~10一试。[img]http://ng1.17img.cn/bbsfiles/images/2017/10/200971143528_01_1613111_3.jpg[/img]

  • 【求助】急求载体的溶解问题

    我制备了一系列载体负载的Ru催化剂,载体包括SiO2,Al2O3,CeO2,TiO2,ZrO2,C等,想用ICP分析载体上Ru的含量,大概为2%。现在的问题是样品的制备:我想将载体一起溶解,但奇怪的是:1,单独的SiO2用氢氟酸可以很快溶解,负载了Ru的SiO2不能溶解。2,单独的碱性三氧化二铝不溶于王水,浓硝酸,浓盐酸,负载了Ru的三氧化二铝也不溶。3,使用加热了的浓硝酸,溶解不了活性碳4,对其他载体的溶解没有经验。拜托有经验的帮帮忙啊,急求,谢了!

  • 国家标准GB23971《有机热载体》

    SH23971有机热载体热氧化安定性测定仪是按照中华人民共和国国家标准GB23971《有机热载体》中附录C《有机热载体的热氧化安定性试验法》要求设计制作的。适用于测定有机热载体在自然对流条件下的热氧化安定性。用于模拟有机热载体传热系统中膨胀罐与空气接触的状态,以评价在开式传热系统中使用的有机热载体的热氧化安定性。本仪器适用于矿物油型和合成型的各种液相有机热载体。性能特点(一)仪器结构1、仪器外壳是由优质冷钢板制成,右部是全不锈钢工作室,门上装有玻璃窗。在室内装有照明灯,可以在测定进行时方便地从外面观察工作室内的情况。2、加热装置装在工作室底部,采用空气自然对流法加热铝浴。3、工作室中央装有可以放置六只400ml烧杯的铝浴。 4、温度控制采用智能仪表,确保满足试验规程要求的试验温度±1℃。 (二)控制面板⑴ 控温仪:烘箱炉体温度设定、参数设置、温度实时显示。⑵照明开关:打开此开关,烘箱炉体内的照明灯亮。⑶计时开关:打开此开关,计时器开始计时,时间到蜂鸣器响,提示时间到。⑷电源开关:打开此开关,仪器接通工作电源,指示灯亮。技术参数1、工作电源: AC220V±10%,50Hz 2、额定功率: 1.8KW 3、工作室温度: 室温~250℃≤±1℃;4、控温精度: ±1℃;5、试样数量: 6件;6、计 时: 数显计时,范围:0~99H59M7、环境温度: 5℃~50℃;8、相对湿度: ≤85%。

  • 【求助】如何 选择微载体

    大规模细胞培养常常采用微载体技术,我们目前正在做这方面的工作,但是遇到了一个选择的问题。通过对目前商品化的微载体的调研,发现可选择性并不是特别多,一个厂家是GE的,有三个系列,这个好像用的比较多;另外一家是HYCLONE的,两个系列,好像大家用的比较少。我们现在使用的是CHO细胞,贴壁,如果从提高细胞密度的角度考虑,选择哪种比较好,请各位给点建议!谢谢!

  • 【资料】亲和色谱的载体选择

    用于亲和色谱的理想载体应具有下列特性:⑴不溶性:不溶于水;⑵渗透性:疏松网状结构,容许大分子自由通过;⑶有一定硬度,最好为均一的珠状;⑷具有大量可供反应的化学基团,能与大量配基共价连接;⑸非特异性吸附能力极低;⑹能抗微生物和酶的侵蚀;⑺有较好的化学稳定性;⑻亲水性。选择配基根据对纯化大分子的特异性的全面认识。  选择也的配基有两条标准:第一是蛋白质和配基之间必须有强的亲和力,解离常数在5mM以上不是好配基; 相反亲和力太高也是有害的,因为在解离蛋白质──配基复合物时所需的条件就要强烈,样可能使蛋白质变性。例如用抗生物素蛋白作配基纯化含生物素的羧化酶时,生物素──抗生物素蛋白复合物的解离常数达10-15M,解离时需要pH1.5,6M盐酸胍,在这种条件中。羧化酶数已经变性。选择配基的第二标准是,配基必须具有适当的化学基团,这种基团不参与配基与蛋白质之间特异结合,但可用于活化和载体相连接,同时又不影响配基与蛋白质之间的亲和力。 琼脂糖凝胶亲水性强,理化性质稳定 (商品名:Sepharose);聚丙烯酰胺凝胶理化性质稳定,耐有机溶剂及去污剂, 抗微生物能力强,特别适应用配基与提取物亲和力比较弱的物质。葡聚糖凝胶: 有良好的化学及物理性质,孔经小。 纤维素非特易吸附严重,廉价,易得。

  • 汽车金属载体溶解

    有没有做汽车金属载体的朋友,过滤后残渣特别多大家怎么处理的,而且特别废酸,有没有更好的方法?

  • 广州生物院在腺病毒载体疫苗领域取得新成果

    最近,中科院广州生物医药与健康研究院特聘研究员陈凌博士带领其研究组成员孙彩军博士、冯立强博士等研发了一种可克服体内腺病毒中和抗体的新技术AVIP,并在恒河猴模型中利用腺病毒载体艾滋病疫苗进行了概念验证。相关成果发表于国际病毒学权威期刊《病毒学杂志》(J Virol. 2012,86(20):11031-42.)。 腺病毒(Adenovirus),尤其是人5型腺病毒(Ad5)已被广泛作为重组基因治疗和疫苗载体,最新的数据表明全球约有1/4的基因治疗和疫苗载体的临床试验应用了Ad5载体。然而人群中普遍存在腺病毒中和抗体,例如陈凌研究组在去年发现华南人群中约有77%呈Ad5抗体阳性(发表于国际疫苗学期刊Vaccine,2011,29(22):3837-3841)。即使是Ad5抗体阴性的人在使用过一次Ad5载体产品后也会转变成Ad5抗体阳性。这些腺病毒中和抗体很大程度抑制了腺病毒载体相关产品的重复使用效率。 为了避免体内腺病毒中和抗体的这种负面影响,该研究首先将外周血单核细胞PBMC从腺病毒中和抗体阳性的个体中分离出来,然后用腺病毒载体疫苗在体外感染PBMC细胞,接着将其静脉回输至自体。由于在分离纯化PBMC时已去除了血液中的中和抗体等其他可能影响腺病毒感染效率的因素,此外体内血液中的中和抗体无法识别那些已进入细胞内的腺病毒载体疫苗,因此这些疫苗可在体内更有效地发挥特定的生物学功能。AVIP的特征还在于整个感染过程是发生在体外,这样就可更有好地控制腺病毒载体产品对靶细胞的感染效率。 本研究为提升腺病毒载体的使用效率和使用范围提出了一种新思路。该成果有望被应用于临床研究和实践,对加快艾滋病疫苗、其他疫苗以及基因治疗技术的研发具有重要意义。

  • 中性载体离子选择性电极

    [font=&]【题名】: 中性载体离子选择性电极[/font][font=&]【全文链接】: https://www.cnki.com.cn/Article/CJFDTOTAL-HXCH198502001.htm[/font]

  • 【分享】质粒DNA的分离、纯化和鉴定

    第一节概述   把一个有用的目的DN***段通过重组DNA技术,送进受体细胞中去进行繁殖和表达的工具叫载体(Vector)。细菌质粒是重组DNA技术中常用的载体。  质粒(Plasmid)是一种染色体外的稳定遗传因子,大小从1-200kb不等,为双链、闭环的DNA分子,并以超螺旋状态存在于宿主细胞中。质粒主要发现于细菌、放线菌和真菌细胞中,它具有自主复制和转录能力,能在子代细胞中保持恒定的拷贝数,并表达所携带的遗传信息。质粒的复制和转录要依赖于宿主细胞编码的某些酶和蛋白质,如离开宿主细胞则不能存活,而宿主即使没有它们也可以正常存活。质粒的存在使宿主具有一些额外的特性,如对抗生素的抗性等。F质粒(又称F因子或性质粒)、R质粒(抗药性因子)和Col质粒(产大肠杆菌素因子)等都是常见的天然质粒。  质粒在细胞内的复制一般有两种类型:紧密控制型(Stringent control)和松驰控制型(Relaxed control)。前者只在细胞周期的一定阶段进行复制,当染色体不复制时,它也不能复制,通常每个细胞内只含有1个或几个质粒分子,如F因子。后者的质粒在整个细胞周期中随时可以复制,在每个细胞中有许多拷贝,一般在20个以上,如Col E1质粒。在使用蛋白质合成抑制剂-氯霉素时,细胞内蛋白质合成、染色体DNA复制和细胞分裂均受到抑制,紧密型质粒复制停止,而松驰型质粒继续复制,质粒拷贝数可由原来20多个扩增至1000-3000个,此时质粒DNA占总DNA的含量可由原来的2%增加至40-50%。  利用同一复制系统的不同质粒不能在同一宿主细胞中共同存在,当两种质粒同时导入同一细胞时,它们在复制及随后分配到子细胞的过程中彼此竞争,在一些细胞中,一种质粒占优势,而在另一些细胞中另一种质粒却占上风。当细胞生长几代后,占少数的质粒将会丢失,因而在细胞后代中只有两种质粒的一种,这种现象称质粒的不相容性(Incompatibility)。但利用不同复制系统的质粒则可以稳定地共存于同一宿主细胞中。质粒通常含有编码某些酶的基因,其表型包括对抗生素的抗性,产生某些抗生素,降解复杂有机物,产生大肠杆菌素和肠毒素及某些限制性内切酶与修饰酶等。  质粒载体是在天然质粒的基础上为适应实验室操作而进行人工构建的。与天然质粒相比,质粒载体通常带有一个或一个以上的选择性标记基因(如抗生素抗性基因)和一个人工合成的含有多个限制性内切酶识别位点的多克隆位点序列,并去掉了大部分非必需序列,使分子量尽可能减少,以便于基因工程操作。大多质粒载体带有一些多用途的辅助序列,这些用途包括通过组织化学方法肉眼鉴定重组克隆、产生用于序列测定的单链DNA、体外转录外源DNA序列、鉴定片段的插入方向、外源基因的大量表达等。一个理想的克隆载体大致应有下列一些特性:(1)分子量小、多拷贝、松驰控制型;(2)具有多种常用的限制性内切酶的单切点;(3)能插入较大的外源DN***段;(4)具有容易操作的检测表型。常用的质粒载体大小一般在1kb至10kb之间,如PBR322、PUC系列、PGEM系列和pBluescript(简称pBS)等。  从细菌中分离质粒DNA的方法都包括3个基本步骤:培养细菌使质粒扩增;收集和裂解细胞;分离和纯化质粒DNA。采用溶菌酶可以破坏菌体细胞壁,十二烷基磺酸钠(SDS)和Triton X-100可使细胞膜裂解。经溶菌酶和SDS或Triton X-100处理后,细菌染色体DNA会缠绕附着在细胞碎片上,同时由于细菌染色体DNA比质粒大得多,易受机械力和核酸酶等的作用而被切断成不同大小的线性片段。当用强热或酸、碱处理时,细菌的线性染色体DNA变性,而共价闭合环状DNA(Covalently closed circular DNA,简称cccDNA)的两条链不会相互分开,当外界条件恢复正常时,线状染色体DN***段难以复性,而是与变性的蛋白质和细胞碎片缠绕在一起,而质粒DNA双链又恢复原状,重新形成天然的超螺旋分子,并以溶解状态存在于液相中。在细菌细胞内,共价闭环质粒以超螺旋形式存在。在提取质粒过程中,除了超螺旋DNA外,还会产生其它形式的质粒DNA。如果质粒DNA两条链中有一条链发生一处或多处断裂,分子就能旋转而消除链的张力,形成松驰型的环状分子,称开环DNA(Open circular DNA, 简称ocDNA);如果质粒DNA的两条链在同一处断裂,则形成线状DNA(Linear DNA)。当提取的质粒DNA电泳时,同一质粒DNA其超螺旋形式的泳动速度要比开环和线状分子的泳动速度快。

  • 【讨论】有机氯载体测试的检测限

    纺织品的有机氯载体测试时,检测限是多少(每个单体),如果检测限是0.1PPM(对于每个单体)是合理的吗?有机氯载体在欧盟方面的限量正常是多少?如果依据DIN54232来测试,用检测限是0.1PPM是合理的吗

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制