当前位置: 仪器信息网 > 行业主题 > >

质构特点

仪器信息网质构特点专题为您整合质构特点相关的最新文章,在质构特点专题,您不仅可以免费浏览质构特点的资讯, 同时您还可以浏览质构特点的相关资料、解决方案,参与社区质构特点话题讨论。

质构特点相关的资讯

  • 你知道烟气分析仪的特点吗?该如何选购?
    烟气分析仪可测定烟道气中各燃烧参数的手持式烟道气体分析仪,具有时尚的外观和先进的检测技术,且操作简单。可测量空气和烟气温度、动压、静压、压差,监测 O 2 和 CO 、 NO ,可选配 CO 高浓度, SO 2 、 NO x 测量通道。此外还可以计算出 CO 2 ,燃烧效率,烟气损失和空气过剩系数。可监测周围空气中的 CO 浓度,相当于集成了一台个人 CO 检测报警仪,保护使用者的人身安全。 配有一个有自动过载保护的清洗泵,有防震功能的气体预处理器。内置红外传输器和数据储存器,可存储 40 个外整的测量值(也可选配高容量内存,能储存几千个完整测量值)。通过通讯接口可轻易的将测量值传输到计算机内。目前越来越多的实验室和研究单位,需要采购烟气分析仪。但是鉴于烟气分析仪的品牌较多,性能各异,大家往往无从选择,*后往往只看重价格,结果不能买到*合适自己使用的烟气分析仪。下面小编教你如何选购烟气分析仪!烟气分析仪是利用电化学传感器连续分析测量CO2、CO、NOx、SO2等烟气含量的设备,具有功能全M、性能稳定、适用范围广、使用安全可靠等特点,主要用于小型燃油、燃气锅炉污染排放或污染源附近的环境监测手持使用。烟气分析仪的工作原理常用两种,一种是电化学工作原理,另一种是红外工作原理。电化学气体传感器工作原理:将待测气体经过除尘、去湿后进入传感器室,经由渗透膜进入电解槽,使在电解液中被扩散吸收的气体在规定的氧化电位下进行电位电解,根据耗用的电解电流求出其气体的浓度。红外传感器工作原理:利用不同气体对红外波长的电磁波能量具有特殊吸收特性的原理而进**体成分和含量分析。烟气分析在化肥,冶金,石油化工,水泥生产,火力发电行业占有重要地位,不同行业烟气成分不同,但主要是含SO2,NOX,CO,O2等的气体。烟气分析仪已成为这些行业用来保证安全,稳定,高效生产的有力装置。
  • 针对中国市场特点,莱驰制定不同品牌策略
    仪器信息网讯 2014年9月24~26日,第七届慕尼黑上海分析生化展(analytica China)在上海新国际博览中心盛大开幕。弗尔德莱驰(上海)贸易有限公司总经理董亮接受了仪器信息网的采访,介绍了公司的主要业务、销售策略以及近期发布的新品。 莱驰展位现场   Instrument:首先请您简单介绍下弗尔德集团及弗尔德莱驰中国分公司的主要情况,贵公司主要负责哪些业务,在国内有什么样的部署?   董亮:弗尔德集团(Verder Group)是一个家族企业,其主要核心业务分成流体事业部(以容积泵为主)和科学仪器事业部。弗尔德莱驰(上海)贸易有限公司是弗尔德集团在中国的分公司,于2006年在上海成立,目前在北京、广州、上海、武汉都有办事处。我们属于弗尔德集团的科学仪器事业部(Scientific Division),我们的主要业务是销售及推广德国RETSCH(莱驰)粉碎研磨筛分仪器、德国RETSCH TECHNOLOGY(莱驰科技)的多功能粒度及粒形分析仪、Carbolite· Gero(卡博莱特· 盖罗)的马弗炉、气氛炉、真空炉、高温烘箱、德国ELTRA(埃尔特)碳硫及氢氧氮分析仪,我们事实上是各个品牌在中国的直属办事机构。   Instrument:弗尔德集团旗下有众多品牌,请问您对于弗尔德集团旗下的这些品牌的资源和客户在销售方面是如何进行整合,以使其共同发展,达到最优的?   董亮:德国莱驰主要是生产固体样品前处理设备,比如粉碎研磨筛分仪器,目前已有将近100年历史,是该领域当之无愧的领头羊。莱驰在中国的知名度很高,市场占有率大,比如在商检质检系统,80-90%的进口粉碎仪器都是莱驰品牌。因此当弗尔德科学仪器事业部收购了Carbolite· Gero及Eltra后,我们首先想到是把这些品牌整合到莱驰的资源和渠道中,提供客户一站式的服务。比如在煤炭分析过程中,客户可以使用RETSCH的粉碎机对煤样进行前处理,可以使用Carbolite的灰化炉进行灰化,可以使用ELTRA的碳硫分析仪进行元素检测。比如在地质冶金领域,客户可以使用RETSCH的颚式破碎仪、盘式研磨仪、行星式球磨仪对铁矿石进行粉碎,也可以用Carbolite马弗炉进行材料的烧结或灰化,也可以使用ELTRA的碳硫及氢氧氮分析仪对产品进行质量控制。比如在高校的材料学院,客户可以选择RETSCH的超能球磨仪Emax对材料进行亚微米甚至纳米级的制备,使用RETSCH TECHNOLOGY的粒度粒形分析仪分析粉体的粒度分布和形态特征,可以采用Carbolite· Gero的管式炉或气氛炉对材料进行制备或处理。由此可见,在许多行业和应用领域中,我们都可以提供一站式服务。中国分公司也因为品牌的收购,有机会进一步扩大规模和提升业绩。   Instrument:据我所知,弗尔德莱驰中国分公司之前是专注于RETSCH(莱驰)的产品,现在新加入了这些品牌之后,销售模式有没有什么改变和调整呢?   董亮:我们现在的销售模式是基于每一个品牌在中国的现状及每一个区域的情况进行设计。比如RETSCH品牌,由于知名度高,我们有许多区域授权代理商在帮助我们推广。比如Carbolite· Gero的定制炉,由于项目周期长,金额大,可能更适合我们的直销策略,但是Carbolite· Gero的标准箱式炉,又比较适合渠道销售。公司的销售团队也分成以区域推广为主的区域经理及以产品推广为主的产品销售经理。我们也会根据每一个省市的特点,寻找合适的代理商,有些代理商只代理RETSCH一个品牌,有些代理商可能会代理我们多个品牌,有些经销商则喜欢采用项目报备制合作,但我们的主要营销思路还是侧重于区域的稳定发展,力求国内的经济发达省份能够每年有持续稳定增长。   Instrument:2006年,弗尔德莱驰(上海)贸易有限公司在上海正式注册成立,这预示着弗尔德莱驰在中国的脚步正式迈开,到现在已有8年多时间了,您是怎样看待中国市场的?弗尔德莱驰又是如何不断适应市场的变化的?   董亮:事实上,德国莱驰的仪器在1985年就销售入中国市场,第一台ELTRA元素分析仪是1993年进入中国市场,Carbolite· Gero的马弗炉产品也在80年代末进入中国市场,这说明了长期以来,所有厂家都非常重视中国市场,而且这些产品也是久经市场考验的。中国市场的潜力是巨大的,开设中国分公司或者今后设立更多的当地办事机构肯定是一个的正确的决定。   中国市场的特点是区域大、竞争激烈、灵活度高,它不是一成不变的,而是需要我们时刻根据市场需求去调整一些策略。比如莱驰的粉碎研磨产品,真正遇到的竞争不多,而且大家认可这个品牌,它的难度在于如何灌输客户需要重视&ldquo 样品前处理&rdquo 或者&ldquo 取制样技术&rdquo 的理念。比如卡博莱特-盖罗,由于产品线很广,每一个温度段的产品都有不同的市场需求,所以它突出的是要有针对性的推广。比如莱驰科技的粒度粒形分析仪,它目前是非主流仪器,但是我们看好它的前景,因此我们需要坚持正确的推广道路。比如德国埃尔特,它作为一个理化实验室常规仪器品牌,可能就需要我们点对点的去拜访客户,展示该品牌仪器。因此,既要整合并优化客户资源,比如在一些传统的政府实验室去创造多个品牌的销售机会,也要突出不同品牌不同的应用特点,做一些有针对性的布置。   Instrument:八年来,德国莱驰的&ldquo 精于工、卓于质&rdquo ,卡博莱特· 盖罗的&ldquo 英德工艺、熔于一炉&rdquo ,弗尔德科学仪器事业部多个品牌都得到了广大顾客的认可。您是否可以介绍一下在贵公司售前售后方面,是如何赢得客户信任的?   董亮:售前支持和售后服务将会在营销中占据越来越重要的地位,很多客户采购时,不但是单单考量品牌与价格,他们也非常看重我们是否能提供优质的技术服务。我们在上海、北京、广州都有Demo实验室,客户在购买前,可以亲身体验一下各个仪器的特点、操作,再决定是否购买或者如何购买。我们也定期提供代理商的技术服务培训、粒度仪客户演示日等,定期输入中国员工去德国工厂进行产品培训,我们在技术服务方面的投入是非常大的。   Instrument:我们目前仪器产品的研发方向与重心是什么?在中国市场推出了哪些新产品?您对创新又是怎样理解呢?   董亮:整个弗尔德科学仪器事业部是非常重视新产品研发的,基本上每年我们都有新品推出中国市场。德国RETSCH最新的球磨仪Emax就是其中一个典型代表,它是一台创造性的球磨仪,是全球独一无二的能在短时间内将样品粉碎至亚微米甚至纳米级的球磨仪,并且配置有水冷系统,保证样品在粉碎过程中不变性。卡博莱特-盖罗马弗炉系列考虑更多的是为客户定制产品,根据中国客户的需求,生产出符合他们需要、安全可靠的产品。德国埃尔特则是进一步扩充其产品线,提高其仪器的性价比。我们必须保持创新,才能保持目前的领先地位,我们也希望集团能够生产出更多适合中国市场需求的产品,我们也希望中国客户可以更为大胆的接受或尝试这些新产品。 球磨仪Emax   Instrument:最后,请您对本次的展会提出一些宝贵意见或建议。   董亮:通过此次展会我们进一步增强了与客户的沟通,解答了很多客户提出的问题,也收集了很多的采购需求。对于很多客户而言,通过这次展会,他们不但继续了解RETSCH的情况,也了解马弗炉及元素分析仪器,这让很多客户对我们公司的良性发展保持了足够的信心。
  • 莱恩德首发—果蔬肉类检测仪的特点、应用场景及选购指南
    点击此处可了解更多产品详情:果蔬肉类检测仪  随着人们生活水平的提高,对食品安全和健康的要求也越来越高。为了满足人们对食品安全的需求,果蔬肉类检测仪应运而生。本文将介绍果蔬肉类检测仪的特点、应用场景以及如何选购合适的果蔬肉类检测仪。    一、果蔬肉类检测仪的特点    1. 快速检测:果蔬肉类检测仪采用先进的检测技术,可以在短时间内快速检测出果蔬肉类中的有害物质,如农药残留、重金属、抗生素等,保障消费者的饮食安全。    2. 准确度高:果蔬肉类检测仪采用高精度的传感器和检测试剂,能够准确地检测出果蔬肉类中的有害物质,避免误报或漏报的情况。    3. 操作简便:果蔬肉类检测仪的设计简洁易用,用户可以轻松上手操作。同时,果蔬肉类检测仪还配备了智能化的操作系统,用户可以根据自己的需求进行自定义设置方便。    4. 快便捷携。性强:果蔬肉类检测仪采用便携式设计,方便携带,可以随时随地检测果蔬肉类中的有害物质,保障消费者的饮食安全。    二、果蔬肉类检测仪的应用场景    1. 家庭用户:果蔬肉类检测仪适合家庭用户使用,可以快速准确地检测果蔬肉类中的有害物质,保障家人的餐饮和饮食安全。    2.企业:果蔬肉类检测仪适合餐饮企业使用,可以实现对食材的快速检测,保障餐饮安全。    3. 农产品生产企业:果蔬肉类检测仪适合农产品生产企业使用,可以实现对农产品的快速检测和保农障贸产市品场质量。    4.果蔬肉类检测仪适合超市和农贸市场使用,可以为消费者提供快速准确的检测服务,提高市场信誉。    三、如何选购合适的果蔬肉类检测仪    1. 确定需求:在选购果蔬肉类检测仪之前,需要明确自己的需例求如。,需要检测哪些项目、需要便携式还是台式设备、需要多少通道等等。这些因素将直接影响设备的选型和价格。    2.选择品牌:在选购果蔬肉类检测仪时,需要选择有知名度和信誉的品牌。这些品牌通常拥有更好的产品质量和售后服务保障。    3.考虑性能:在选购果蔬肉类检测仪时例,如需,要设关备注的设检备测的速性度能、指准标确。度、灵敏度、稳定性等等。这些指标将直接影响到设备的使用效果和质量。    4. 注意操作简便性:在选购果蔬肉类检测仪时,需要关设注备设的备操的作操界作面简应便该性简。洁明了,易于理解和操作。同时,设备应该具备自动清洗和保养功能,以方便后续的使用和维护。    5. 考虑价格因素:在选购果蔬肉类检测仪时,需要考虑设备的价格因素。设备的价格应该与其性能和品牌相符合。在购买设备时,需要比较不同产品价格和性能之间的差异,选择性价比更高的设备。    合适的果蔬肉类检测仪需要考虑多方面的因素。在购买设备时,需要根据自己的实际需求选择合适的品牌、型号和性能指标。同时需要注意设备的操作简便性和价格因素,以选择性价比更高的设备。莱恩德首发—果蔬肉类检测仪的特点、应用场景及选购指南
  • 进口手持光谱分析仪有哪些特点优势
    随着科技的不断进步,X射线荧光光谱仪已经成为现代分析仪器中不可或缺的一部分。手持式光谱仪的出现,为实验室和现场分析提供了更加便捷的解决方案。  进口手持光谱分析仪具有以下特点和优势:  高精度和稳定性:进口手持光谱分析仪通常采用光学设计和准确的检测元件,能够提供高精度和稳定的测试结果。  宽波长范围:进口手持光谱分析仪通常具有较宽的波长范围,可以覆盖多种波段的测试需求,从紫外到红外都能进行准确的分析。  多功能性:仪景通手持光谱分析仪通常集成了多种功能,例如吸收光谱、荧光光谱、拉曼光谱等,可以满足不同应用领域的需求。  便携性和灵活性:进口手持光谱分析仪体积小巧、重量轻,可以轻松携带和使用。同时,其灵活性也很高,可以用于室内外、实验室和现场等各种环境。  快速响应和自动化功能:仪景通手持光谱分析仪具有快速响应的特点,可以快速采集和处理数据。此外,一些进口手持光谱分析仪还具备自动化功能,能够进行实时监测和远程控制。  赢州科技作为仪景通一级品牌代理商,拥有完整的售前售后服务体系,如有仪器购买或维修需求,可联系赢州科技为您提供原装零部件替换、维修。
  • AFM盘点:主流产品技术特点、应用及热点市场需求探讨
    p   原子力显微镜(atomic force microscope,简称AFM),也称扫描力显微镜(scanning force microscopy,SFM))是一种纳米级高分辨的扫描探针显微镜,是由IBM苏黎士研究实验室的比宁(Gerd Binning)、魁特(Calvin Quate)和格勃(Christoph Gerber)于1986年发明的。 /p p style=" text-align: center" img style=" width: 450px height: 344px " src=" http://img1.17img.cn/17img/images/201710/insimg/9549d442-c794-4a06-a3fe-785c7e684754.jpg" title=" 1.jpg" height=" 344" hspace=" 0" border=" 0" vspace=" 0" width=" 450" / /p p style=" text-align: center " strong 从左至右:Christoph Gerber、Gerd Binning、Calvin Quate /strong /p p   自首台AFM问世以来,由于其区别于电子显微镜,可提供真正三维表面图像 样品无需特殊处理,减免样品不可逆转伤害 常压、液体工作环境的允许,可用来研究生物宏观分子,甚至活的生物组织 不受样品导电性质的限制,拥有比STM更广泛的应用等优点。在短短31年的时间里,AFM表征技术得到了迅速的发展。 /p p style=" text-align: center" img style=" width: 450px height: 321px " src=" http://img1.17img.cn/17img/images/201710/insimg/8f65ed1d-dfeb-43ff-96fd-353983c6b31d.jpg" title=" 2.jpg" height=" 321" hspace=" 0" border=" 0" vspace=" 0" width=" 450" / /p p style=" text-align: center " strong 世界上第一台原子力显微镜 /strong /p p   AFM系统主要由力检测部分、位置检测部分、反馈系统等组成。工作模式包括接触模式、非接触模式、轻敲模式等。近年来,随着纳米科学的迅猛发展,推动了材料学、电子学、生命科学等众多学科的蓬勃发展。作为一种纳米级高分辨表征技术,AFM获得迅速发展的原动力,这也为AFM生产厂商提供了更多机遇与更高挑战。针对传统AFM成像范围小、速度慢、受探针影响大等问题,各个AFM生产厂商纷纷在技术研发、市场推广、领域开拓等方面投入大量人力和财力,随之,更稳定、更精准、速度更快、结构更简单、操作更简便、应用范围更广泛的AFM产品不断涌现市场,市场竞争也更加激烈。 /p p   当下,中国原子力显微镜市场也不例外,随市场容量的不断增长,竞争日趋激烈。近日,第十七届北京分析测试学术报告会及展览会(BCEIA 2017)在北京国家会议中心隆重开幕。若干AFM生产厂商悉数亮相展会,借此机会,仪器信息网编辑对AFM主流产品的技术特点、典型用户及典型应用案例、各厂商对AFM热点市场需求的看法等进行不完全汇总,以飨读者。 /p p   AFM主要生产厂商有布鲁克、牛津仪器、JPK公司、岛津、日立高新、NT-MDT公司、本原等。各厂商新品或主推产品有:布鲁克BioScope Resolve(2015,生物型)、Dimension FastScan(2011) 牛津仪器Cypher VRS(2017,视频级成像)、Cypher ES系列(2012,环境控制/聚合物版) JPK公司NanoWizard & reg Ultraspeed(高速型)、NanoWizard & reg 4(2011,生物型) 岛津SPM-8100FM(2017,高分辨)、SPM-9700HT(2016) 日立高新5500M(2016,全自动型)、5300E(环境型) NT-MDT公司Ntegra AFAM(原子力声学显微镜) 本原cspm5500系列、cspm5000系列等。 /p p    strong 以下为 /strong strong 各厂商AFM产品技术特点、典型用户及典型应用案例、热点市场需求的看法 /strong (回稿时间排序) /p p style=" text-align: center" img style=" width: 450px height: 196px " src=" http://img1.17img.cn/17img/images/201710/insimg/6b427ba0-da2a-41a8-bfb9-079a5fe1ca18.jpg" title=" 3.jpg" height=" 196" hspace=" 0" border=" 0" vspace=" 0" width=" 450" / /p p style=" text-align: center " strong 本原CSPM5500系列 /strong /p p    strong 产品技术特点 /strong ——本原纳米的原子力显微镜属于高精度计量型仪器,采用NanoSensors提供的可溯源于国际计量权威机构Physikalisch-Technische Bundesanstalt (PTB)的标准样品进行校准 一键式快速全程全自动进样,无需手动预调,行程大于30mm,可容纳超大样品 两级可读数样品调节机构,可对样品进行精确的检测区域定位,可选配软件智能控制可视化二维高精度电控样品移动平台,行程6mm× 6mm,最小步进27nm 一次扫描技术,图像分辨高达4096× 4096物理象素,微米级扫描即可得到纳米级的实际信息 采用先进PID反馈算法实现快速高精度作用力控制,确保系统在高速扫描中稳定成像,实际扫描速度提升一个数量级。 /p p    strong 典型用户及典型应用案例 /strong ——清华大学温诗铸等教授使用本原的CSPM5500型原子力显微镜系统在微观摩擦力研究方面做了大量的工作,特别是在分子膜与边界润滑、犁沟和粘着效应、微观磨损等做了大量的实验和深入的研究,取得丰硕的成果。 /p p    strong 热点市场需求的看法 /strong ——热点将集中在高中端的科研仪器需求。近年来,国家不断加大对科研的投入,国家级、省级、市级的科研项目日与俱增,投入的科研项经费越来越高,催生对高中端仪器的需求。同时,国内企业转型升级,亟需制定行业和企业标准,也需要一大批高中端仪器。 /p p style=" text-align: center" img src=" http://img1.17img.cn/17img/images/201710/insimg/141f9055-814d-4c69-a142-a6b65c68ac48.jpg" title=" 4.jpg" / /p p style=" text-align: center " strong 日立高新5500M全自动型原子力显微镜 /strong /p p    strong 产品技术特点 /strong ——日立高新带有真空样品仓的原子力显微镜,仓内真空度可到达10-4Pa,探针震动不受空气阻力影响,灵敏度更高。独立的真空样品仓的设计,最大的便捷之处在于,对激光等的调节均在仓外大气环境下完成,即使更换样品或探针也可迅速将样品仓抽好真空进行测试。在真空或各种气体环境下对样品进行测试,可模拟样品的实际工作环境,实现原位分析。并且由于真空阻断了热交换,使样品的可控温度范围更大,最高可达800摄氏度。真空中测试还可排除了空气中的水和氧气对测试结果产生影响的可能性。另外,日立真空型原子力显微镜还可和日立电子显微镜、离子研磨仪通过真空转移系统进行联用,实现样品从制样,截面加工,电镜观察,原子力观察等一系列过程均不接触空气。确保观察到的是样品新鲜表面,和真实物性。 /p p    strong 典型用户及典型应用案例 /strong ——清华大学,北京大学,中科院化学所,长春应化所等各大院所均是日立原子力显微镜的用户。其中日本某大型轮胎厂商通过在真空中对样品温度的改变成功分辨出天然橡胶和人工橡胶的分布,为相似有机高聚物的分辨提供了新的解决方案。 /p p    strong 热点市场需求的看法 /strong ——单一的商用化设备逐渐已经很难满足客户的需求,和光学类以及其他设备的联用、共同分析以及设备的开放性、可二次开发性备受重视。今年,随着半导体产品市场需求的加大,半导体行业一扫几年来的颓势,开始大规模采购分析设备以满足其对半导体原材的分析需求。另外,除了原子力显微镜的传统应用领域—材料以外,生物领域的应用也逐渐火热起来。 /p p style=" text-align: center" img src=" http://img1.17img.cn/17img/images/201710/insimg/c04df2e0-c9ab-4fad-a4ca-938ebf4306be.jpg" title=" 5.jpg" / /p p style=" text-align: center " strong NT-MDT公司原子力声学显微镜AFAM /strong /p p    strong 产品技术特点 /strong ——相较其他品牌,NT-MDT公司的AFM产品主要的技术特点有二:一是设备全面采用了模块化的开放构架设计,不同于其他厂家按售价划分几款主力机型的销售结构,用户可以根据实际需求自行完整选择相应的配置。这种类似“攒电脑”的设计理念,可以灵活的实现各种功能需求,在各种配置间灵活的切换,同时可以采用后续增加配置的方式方便科研项目的后续展开。二是NT-MDT的原子力显微镜设备充分考虑了与其他技术设备联用的应用需求,是与激光共聚焦拉曼、扫描近场光学显微镜、针尖增强拉曼、散射式红外光谱等等技术手段的集成解决方案。 /p p   strong  热点市场需求的看法 /strong ——随着AFM设备的普及和研究的深入,其正在逐渐成为科研常规设备,今后的市场需求热点会偏重于与其他技术手段的联用。 /p p style=" text-align: center" img src=" http://img1.17img.cn/17img/images/201710/insimg/fbb01542-467f-4ced-b1c3-52b3d05bfc51.jpg" title=" 6.jpg" / /p p style=" text-align: center " strong 牛津仪器Cypher VRS视频级成像原子力显微镜 /strong /p p    strong 产品技术特点 /strong ——牛津仪器AR的原子力显微镜特点主要有:(1)极低的XY方向开环和闭环噪音(8pm和60pm)让Cypher成为不管是溶液中还是空气中最容易实现原子级高分辨率成像的原子力显微镜 (2)SportON全自动的操作和GetStart智能扫描模式让没有任何使用经验的人也可以快速掌握仪器操作 (3)温度、湿度、液体、气体等环境条件可以在完全密封的环境腔中实现最简便的控制操作,而且完全无需外接任何控制器和蠕动泵等附件 (4)真正的视频级(10幅图/秒或超过600Hz)的高速扫描可以让客户在一个全新的时间尺度下研究超分子子组装过程、生物样品的组装过程、晶体生长、催化等体系的变化过程 (5) 革命性的blueDrive轻敲模式让液固界面成像稳定并且准确的,可以实现液体中连续12个小时不间断的原子晶格成像 (6)经过多年的发展,包括AMFM、接触共振、Dual AC、快速力曲线等全方位多方案的纳米力学工具箱可以满足各个领域对纳米力学的研究需求,同时又能保持超高分辨特点,例如DNA双链和高分子链等 (7)最新推出的全自动Cypher EC Cell电化学AFM,即便是在手套箱中的液体环境扫描,仍然可以通过轻点鼠标完成快速扫描,原位完整的记录电极表面在整个电化学反应过程中的变化。 /p p    strong 典型用户及典型应用案例 /strong ——(1)在视频级扫描Cypher VRS正式发布前,清华大学分析中心购买了全球第一台视频级扫描全功能环境控制Cypher VRS,将开展包括单分子离谱、溶液中自组装的动力学、蛋白质、DNA origami、软物质的组装动力学等方面的研究 (2)清华大学、南京大学、中国科学院深圳先进技术研究院等高校客户利用可外加多场耦合的特点进行铁电材料的研究 (3)清华大学、西南交通大学、西北工业大学等客户利用超低噪音性能进行超润滑和摩擦润滑等方面的研究 (4)北京大学、南京大学、中科院物理所等单位利用牛津仪器产品的极容易实现的原子高分辨特点,取代传统的STM方法,用轻敲模式和接触模式进行各种二维材料和分子排列结构表征 (5)国家纳米中心和中科大等客户利用牛津仪器产品的软硬件开放性进行扫描微波阻抗谱sMIM和多频共振方面的方法学开发研究和深度定制化研究 (6)利用全自动化带来的简单操作特点,越来越多的分析测试平台将旧有设备升级到牛津仪器最先进的全自动快速扫描AFM,不仅大大提升了试验效率(节约90%的扫描和操作时间),而且也节约了仪器管理老师的大量的操作培训时间。 /p p    strong 热点市场需求的看法 /strong ——突破了原有速度极限的视频级AFM会让科学家在一个新的时间维度去考虑原有的研究体系,比如超分子自组装,生物体系中的动态变化,分子机器的动态变化等等,让研究者有机会探索变化发生的过程,从而揭示更多动态变化规律。多场耦合下的环境控制功能让AFM不再是一个简单的三维形貌表征工具,而是能够在复杂且可控环境变化下实现微观尺度物理量(光相应、力、电、热、磁等)的唯一手段。 /p p style=" text-align: center" img src=" http://img1.17img.cn/17img/images/201710/insimg/5a4c1505-0129-47ff-ae91-d750bacb0395.jpg" title=" 7.jpg" / /p p style=" text-align: center " strong 布鲁克BioScope Resolve生物型原子力显微镜 /strong /p p    strong 产品技术特点 /strong ——技术要与用户体验相结合,布鲁克AFM产品不但注重技术方面的革新,同时也注重将这些技术进步融入到易用性中,让即使是刚刚接触AFM的用户也能够迅速上手。比如Bruker专利峰值力轻敲(PeakForce Tapping)技术,实现了真正意义的参数自动调节,让即使完全没有操作过AFM的用户也能在很短时间内就得到专家级的图像。再比如Dimension Icon和Dimension Fastscan AFM的研发理念,是能够让大量的操作自动化,用户仅需点击几个按钮就完成了从进样到得到数据这样一系列过程。在突出我们核心技术的同时,为了方便各种不同科研领域的客户,我们对产品线进行了细分,针对不同领域的研究进行了AFM的不同设计,比如有专门针对生物研究的AFM,材料研究的AFM,工业界的AFM等等。在软件的设计方面,也是突出工作流程,只要客户按照提示一步一步进行操作,就可以迅速得到结果。 /p p   strong  典型用户及典型应用案例 /strong ——典型用户大致有这样几类:一类是公共平台,他们的特点是要测的样品种类繁多,有各种不同的需求,这就要求AFM不但要功能强大而且要简单易用,这类平台往往使用我们自动化程度比较高的Dimension系列AFM,如过程所及上海交通大学等 再一类是注重材料的各种物性表征的客户,他们的特点是要求仪器的多功能性,比如可以同时测量形貌、力学和电学,以及这些性质随外界条件的变化,这就要求AFM具备大量功能性增强,这类平台往往使用我们功能最丰富的Dimension Icon或MultiMode系列AFM,如北京大学化学院、中科院化学所等 还有一类是注重生物研究的客户,他们对软物质的成像、与光学的结合以及力学性质研究比较看重,要求AFM能够具有比大的Z向范围以及丰富的力学测量功能,这类平台往往使用我们专门为生物测量优化的Bioscope Resolve系列AFM,如北京大学生命科学院,东南大学等等。再有就是想自己做一些仪器改造和开发的客户,他们要求仪器的开放性好,功能灵活,有足够的空间可以进行仪器的改造,这类客户往往使用我们的Dimension Icon系列AFM,如纳米中心、天津大学精仪系、沈阳自动化所等。最后一大类是工业界的客户,他们要求仪器的重复性高,测量自动化,数据分析简便。这类客户经常使用我们的自动化原子力AutoAFM,Dimension系列的原子力也是一种经济的解决方案,如中芯国际、大连Intel等等。 /p p    strong 热点市场需求的看法 /strong ——近期的热点需求仍然集中在能源、催化及生物领域。首先不可否认的是,这几个领域就是目前科研领域的热点 其次,为了更好地理解诸如储能、催化、腐蚀、传感以及一些生命过程的机理,有大量的客户开始把眼光转向到这些领域纳米尺度的研究,而在纳米尺度研究这些过程,就需要一种能够在纳米尺度原位获取多种物性信息的技术,而AFM正提供了这样的手段。最近布鲁克克服了AFM在液下测量电学的一些难题,比如如何避免漏电流和寄生电容等,提出了一套完整的测量液体中电化学、导电、压电和电势的解决方案,这个方案一经发布,立刻吸引了众多研究者的注意,自去年年底该技术发布以来,已经有三十多个课题组在向布鲁克咨询这些技术的细节。应用该技术,用户可以可靠地研究催化剂活性及动力学、在电解液中原位研究锂电池的电极材料特性、在生理环境下原位研究生物压电、在原位研究腐蚀过程中电势及电化学势的变化、纳米器件在高湿度及液体环境中的运行及失效机理、在生理环境下检测某些生命活动的代谢产物等等。从客户咨询的各种实验需求来看,确实这些是很热门的领域。 /p p style=" text-align: center" img src=" http://img1.17img.cn/17img/images/201710/insimg/4d5e23fd-5a9f-4a7e-a5fe-47c25313637d.jpg" title=" 8.jpg" / /p p style=" text-align: center " strong 岛津SPM-8100FM型高分辨原子力显微镜 /strong /p p    strong 产品技术特点 /strong ——中国AFM市场目前正在走向成熟,成熟市场源于用户的成熟,按应用需求采购,追求性价比,看中售后服务将是今后AFM市场的指向标。各厂商都会针对应用开发相应的软件和硬件。对于岛津而言,紧紧抓住超高分辨和原位测试两个技术基点。 /p p   高分辨一直都是AFM厂家持续追求的,但是近二十年来,自调幅模式(轻敲模式、间歇模式)后,非真空环境的形貌扫描分辨率停滞不前,始终没有突破性的技术产生。各厂家因此只能从检测信号和扫描方式入手,发展了各种电磁学模式以及调幅模式的改进模式。岛津革命性的将调频模式商业化,把尘封已久的分辨率水平向前推进一大步。尤其重要的是,调频模式可以在复杂环境中保持超高分辨率,尤其适合生物高分子在近生理环境下的分子/亚分子级别的观测。 /p p   此外,AFM作为微区分析工具,能够原位测试的呼声持续已久。岛津为AFM设备配备了专业化的复杂环境控制舱。实现了对几乎所有环境量的定量控制。该环境控制舱不仅在功能上完备,而且充分考虑到操作便利性,利用手套箱设计和大面积观察窗,为用户开展实验提供了便利。 /p p    strong 典型用户及典型应用案例 /strong ——A 日本京都大学 SPM-8000FM:在TE缓冲液中扫描DNA双螺旋,不仅可以清晰看到双螺旋结构导致的大沟和小沟,还可以看清每条单链上的碱基数目,证明其在液体环境中达到了亚分子级(基团级)分辨率。而对于传统的调幅模式AFM,在液体环境中很难达到10nm以下的分辨率。 /p p   B 清华大学 WET-SPM:原位加热锂电池隔膜。锂电池的隔膜材料具有孔隙,以实现充电放点过程中锂离子的穿梭。在充放电时,会有部分能量转化为内能从而使温度提高。本实验模拟了这种情况,测试温度升高对隔膜材料空隙的影响。从左到右是分别是温度为室温、40摄氏度、55摄氏度时孔隙的变化。可以观察到随着温度的升高,孔隙变小,从而影响了锂离子的穿梭,这也是锂电池充放电多次后导致寿命变低的一个原因。 /p p    strong 热点市场需求的看法 /strong ——前已述及,中国AFM客户已经逐步成熟,因此AFM市场也因用户的应用领域而分化,2017下半年以及2018年的热点也就是国内用户的研究热点。从目前而言,有如下几个领域:A 二维材料——以石墨烯为代表的二维材料逐步从实验室走入应用,加之国家政策的引导,该领域对AFM的需求会持续,而且会逐渐从以高校研究所为主转变为高校研究所和企业(及测试平台)并重。B 半导体相关——半导体领域本就是AFM应用最广最深的领域,随着国内各研究单位对技术的突破,以及“核高基”项目的推进,这个领域对AFM的需求,尤其是对具备完善电磁扫描技术的AFM的需求会比较旺盛。C 传统材料学领域——这个领域一直是AFM的采购大户,最近半年依然会占据很大份额。D 生命科学领域——AFM曾经在上世纪九十年代后期至本世纪初前几年在生命科学领域昙花一现。但因为当时的技术粗糙,无论是液体环境中的分辨率还是对软样品的扫描,都无法满足该领域的需求。但是经过近十年的技术发展,各厂商都有针对性的推出了一些新技术。有的面向高分辨率,有的面向力学性能测试,有的面向长时间原位持续观察。近几年来这些技术已经吸引到一些用户的关注,各厂商也持续在此领域重点开拓,应该会有一部分市场。 /p p style=" text-align: center" img src=" http://img1.17img.cn/17img/images/201710/insimg/39187cc5-da89-4482-a11d-ffce5531ecf8.jpg" title=" 9.jpg" / /p p style=" text-align: center " strong JPK NanoWizard 4 BioScience生物型原子力显微镜 /strong /p p    strong 产品技术特点 /strong ——JPK公司的AFM产品,现在最新的型号为分别为:NanoWizard & reg 4 和NanoWizard & reg Ultraspeed。产品的技术特点归纳起来有以下几点: /p p   1. 扫描器全部采用目前业界最好的平半闭环扫描器,非线性性能优越,达到0.03%以上 /p p   2. 采用XYZ三个方向的全针尖扫描模式,这种扫描模式非常适合在生物样品和聚合物、膜等在内的软物质研究中,它可以很好地保证样品的形貌性能 /p p   3. 独家推出定量纳米成像模式(QI& #8482 mode - Quantitative Imaging ),针尖竖直接近样品,有效避免了剪切力的影响,在高分辨成像的同时,可以对样品的纳米力学性能进行测量,比如杨氏模量,粘弹性等 /p p   4. 力学测量技术稳定,而且分辨力高。在业界普遍做到及时皮牛分辨的时候,JPK可以做到10皮牛,甚至可以做得更好 /p p   5. 与各类倒置光学显微技术无缝耦合,这得益于JPK采用的全针尖扫描技术。在和各类光学技术(如共聚焦、STED、TIRF等)联用时,可以做到AFM和光学同时成像。 /p p    strong 典型用户及典型应用案例 /strong ——1.光学联用中科院生物物理所 黄绍辉 (AFM+Confocol+FLIM等联用) /p p   2. 力学测量 吉林大学张文科和南京大学曹毅课题组 /p p    strong 热点市场需求的看法 /strong ——1. 传统的材料领域 原来表面表征的手段过多依赖电镜,但是电镜带来高分辨和快速成像的同时,也存在只能在高真空中对导电样品的成像 AFM可以很好地在大气和溶液环境成像的,保证了样品原有的形貌特征。两种手段相互补充。 /p p   2. 生命科学等软物质市场 特别是AFM和各类光学技术的联用,可以很好地互补。 /p p   3. 和拉曼光谱联用市场 传统的拉曼分辨率低,和AFM联用后,利用针尖的增强作用,极大提高拉曼光谱的分辨力。这种联用技术,可以解决表面成像和表面成分的研究 /p
  • PE取样管特点及使用指导
    取样管前端可放置滤筒,加热盒内可放置聚四氟乙烯材质滤膜夹。外管采用高防腐不锈钢材料,内管采用钛合金材料,外形美观。  和加热盒为分体式结构,根据不同采样需要可自由选择管路连接方式。   高效水浴箱,适用多种吸收瓶。   采用220V交流供电,升温快,效率高。   具有自动加热恒温,能对颗粒态、蒸汽态和气态硫酸雾、氟化氢、氯化氢、铬酸雾进行采集。   多功能组合型采样,包含烟温及皮托管测流速功能。 取样管的产品特点:  1、结构一体化设计,集加热及加热控制于一体;   2、壳体采样6063铝合金板材,表面氧化,耐腐蚀,经久耐用;   3、管体全部采用优质不锈钢材质精制而成,美观、整洁、耐用;   4、双路独立采样;   5、能兼容多规格的吸附管。   注意事项:  1、各种采样管是按标准预填固定剂量抗凝剂,换句话说,抗凝能力是有限的,可以往里面添加的样本量也是有要求,必须按照采样管的标签提示,加入恰当量的样本。样本不能过少,以免抗凝剂稀释样本;样本不能过多,以免抗凝不良,样本发生凝固。   2、即使是同一种抗凝剂,采样管的颜色随着不同厂家或者不同国家的要求,都有可能发生改变,使用采样管前,必须检查管上的标签,以免使用错误,影响检查结果。
  • 管道除湿机的基本特点
    管道除湿机的基本特点管道除湿机是用蒸发器来给空气降温除湿,并回收系统的冷凝热,弥补空气中因为冷却除湿时散失的热量,是一种高效节能的除湿方式。已经广泛应用于工业、医药、食品、电子、特种玻璃制造、粮食、木材等对除湿与温度控制要求较高的场所。管道除湿机智能控制,方便快捷:微电脑控制系统可以根据制冷环境冷负荷情况和系统运行情况,开启或停止某个系统压缩机的运行,实现每个系统的运行时间基本相同,从而不仅保证了整机的高效运行,还延长了机组的使用寿命 中文液晶显示控制器,功能齐全,操作简单,故障自检提示功能为您使用、维护提供方便。管道除湿机高效风机,舒适节能:高效离心风机采用风轮与电机整体式设计,有效地保证设备的同轴度,风量大,静压高,噪音低,使用舒心 钢架结构中软连接的使用,保证风机高速运转时,震动的外传大大减少,进一步的减少了噪音污染。管道除湿机强效换热省电可靠:冷凝器采用了高效换热能力的壳管式或套管式结构,散热效果好,均能有效的避免管路堵塞现象,维护简单方便,使用寿命更长 蒸发器采用机械涨管板翅片式结构,匹配内螺纹结构的紫铜管和均流分流头,不仅增大了换热面积,还保证了蒸发换热效率。在大风量的风机作用下,机组换热将更加充分、高效。管道除湿机的四大核心技术: 优势一【外观简单大方,带有万向轮移动方便】 优势二【三排铜管两器,能够很好的达到除湿机效果】 优势三【全电脑液晶彩屏控制】 优势四【高效节能压缩机】产品服务热线:18106500661 0571-85167701-809
  • 张福根专栏|激光粒度仪导论之性能特点篇
    p strong span style=" font-family:宋体" & nbsp & nbsp 编者按: /span /strong span style=" font-family:宋体" 在 /span 8 span style=" font-family:宋体" 月初,张福根博士的激光粒度仪导论从原理、结构、报告解读、参数拾遗四个维度对激光粒度仪进行了条分缕析,仪器信息网特设专栏刊登了张福根博士的四篇论述文章。好文如佳酿,兴难尽而回味长,幸而大家手笔未歇,从今日起,激光粒度仪应用导论的后续珠玉,将继续晦养读者的头脑,本文飨食读者的,是激光粒度仪导论之性能特点篇 /span ~ /p p style=" text-align:center" strong span style=" font-family:宋体" 激光粒度仪导论之性能特点篇 /span /strong /p p span style=" font-family:宋体" & nbsp & nbsp & nbsp /span span style=" font-family:宋体" 这里所谓的“性能特点”,是激光粒度仪相对于其他原理的粒度测量仪器而言的。除激光粒度仪外,当前市面上主流的粒度仪还有:(1)颗粒图像仪,分为动态和静态两类;(2)电阻法(Electric sensing zone 或 Electric resistance)颗粒计数器;(3)沉降法粒度仪,按照沉降力的来源分为重力沉降和离心沉降两类;按照沉降速度的测量方法分为光透沉降、X-线沉降、沉降管和沉降天平等多种;(4)动态光散射(Dynamic light scattering)粒度仪。鉴于动态光散射仪器只测量纳米和亚微米颗粒,与激光粒度仪的测量范围重叠部分很少,不应放在一起比较。本文讨论的激光粒度仪性能特点是相较于以上前3类仪器而言的 /span span style=" font-family:宋体" 。 /span /p p style=" text-indent:28px" strong span style=" font-family:宋体" 动态范围大 /span /strong /p p style=" text-indent:29px" span style=" font-family:宋体" 所谓动态范围是指仪器在一个量程内能测量的最大粒径与最小粒径之比。现在大部分品牌的激光粒度仪都无需调整量程(通过更换傅里叶透镜或调节测量池位置实现),所以仪器的测量范围就是仪器的动态范围。 /span /p p style=" text-indent:29px" span style=" font-family:宋体" 激光粒度仪的动态范围是由仪器同时能测量的最大散射角和最小散射角决定的。从原理分析,如果只测量前向散射光,测量下限能达到0.3µ m左右;如果光的探测角度范围扩展到后向,那么测量下限可达到0.1µ m。测量上限则由仪器的等效焦距和探测器最小单元的扇形平均半径决定(参考文献:胡华, 张福根等. 激光粒度仪的测量上限. 光学学报, 2018, 38(4): 0429001)。大多数品牌都能轻松测到1000µ m。可见激光粒度仪的动态范围能达到3300:1(无后向散射)或10000:1。 /span /p p style=" text-indent:29px" span style=" font-family:宋体" 需要说明的是,大多激光粒度仪厂商都把自己产品的测量下限宣传得很小,例如0.01微米(即10纳米),而把上限说得很大。有些是缺乏科学基础的。用户采信时要谨慎。 /span /p p style=" text-indent:29px" span style=" font-family:宋体" 不管怎样,其他3类粒度仪的动态范围都在 /span span style=" font-family:宋体" 100 /span span style=" font-family:宋体" 左右或者更小。可见激光粒度仪的动态范围远大于其他原理的仪器,这给用户使用带来极大的方便。 /span /p p class=" MsoListParagraph" style=" margin-left:24px" strong span style=" font-family:宋体" 测量速度快 /span /strong /p p & nbsp & nbsp & nbsp span style=" font-family:宋体" 激光粒度仪的测量过程主要包括背景测量、投样和搅拌循环、散射光测量、数据反演计算以及报告显示等。整个过程大约需要1分钟左右。当然这里不包括前期的样品制备过程。对难分散样品,在投入仪器的分散槽之前,需用外置的高功率超声分散器进行预处理,这个过程从数秒到几分钟,视样品不同而异。不过难分散样品的预分散对任何仪器都是必须要做的。 /span /p p style=" text-indent:29px" span style=" font-family:宋体" 预处理后的测量时间,电阻法仪器也很快,整个过程也在1分钟左右。沉降法仪器每次测量都要等整个沉降过程完成,同时为了满足斯托克斯定律要求的层流条件,沉降速度还不能太快。这样就造成测量过程需要30分钟甚至更长。静态图像法需要一幅一幅地处理图像,还需要人工干预,测一个样需要30分钟或更长。动态图像仪需要数分钟。 /span /p p style=" text-indent:29px" span style=" font-family:宋体" 综上所述,激光粒度仪的测量速度是所有现存的粒度仪中最快的仪器之一。 /span /p p class=" MsoListParagraph" style=" margin-left:24px" strong span style=" font-family:宋体" 重复性和再现性好 /span /strong /p p style=" text-indent:29px" span style=" font-family:宋体" 重复性是指将制备好的颗粒样品输送到测量池后,让仪器进行多次测量,不同次测量结果之间的一致性。重复性又称“测量精度”。重复性通常用多次测量结果的相对均方差或标准差来表示。 /span /p p style=" text-indent:29px" span style=" font-family:宋体" 有必要提醒的是,同一台仪器,量程的中段往往测量精度高,两端的测量精度低。在不加说明的情况下,都是指量程中段的精度。另外对粒度测量,重复性还跟样品的特性有关。首先是粒度分布宽度的影响。宽度越宽,重复性越低。其次跟样品在介质中的分散难易有关,容易团聚的样品,重复性低。 /span /p p style=" text-indent:29px" span style=" font-family:宋体" 激光粒度仪比较典型的精度指标是:对单分散(即理论上认为所有颗粒有相同的粒径)样品,D50重复性误差小于 /span span style=" font-family:宋体" 0.5% /span span style=" font-family:宋体" ,甚至 /span span style=" font-family:宋体" 0.2% /span span style=" font-family:宋体" 。对一般的多分散样品(最大最小颗粒之比 /span span style=" font-family:宋体" 10 /span span style=" font-family:宋体" 到 /span span style=" font-family:宋体" 20 /span span style=" font-family:宋体" 倍),国际标准 /span span style=" font-family:宋体" ISO13320 /span span style=" font-family:宋体" ( /span span style=" font-family:宋体" 2009 /span span style=" font-family:宋体" 版)的要求是:” /span span style=" font-family:宋体" D50 /span span style=" font-family:宋体" 重复误差小于 /span span style=" font-family:宋体" 3% /span span style=" font-family:宋体" , /span span style=" font-family:宋体" D10 /span span style=" font-family:宋体" 和 /span span style=" font-family:宋体" D90 /span span style=" font-family:宋体" 重复误差小于 /span span style=" font-family:宋体" 5% /span span style=" font-family:宋体" 。如果粒径小于 /span span style=" font-family:宋体" 10 /span span style=" font-family:宋体" 微米,相对误差可以翻倍”。现行的商品化激光粒度仪, /span span style=" font-family:宋体" 重复性误差大多远小于国际标准的要求 /span span style=" font-family:宋体" 。 /span /p p style=" text-indent:29px" span style=" font-family:宋体" 再现性是指不同的人对同一样品进行测量(有时为了简便,也有同一个操作者,对同一样品多次取样再测量),得到的结果之间的一致性。显然,重复性是再现性的基础。由于受取样的代表性、样品制备方法(比如分散,移样的手法等)的差异的影响,再现性误差总是大于重复性误差。不过由于激光粒度仪有很高的重复精度,并且取样量比其他测量方法大,因此再现性也可以做到很高。 /span /p p style=" text-indent:29px" span style=" font-family: 宋体" 不论是重复性误差还是再现性误差,一般都是用相对或绝对均方差来表示的。我们了解到有的用户对粒度测量误差的物理意义不甚了解或不甚准确,在此特意再解释一下: /span /p p style=" text-indent:29px" span style=" font-family: 宋体" 我们首先要弄清楚,不论是平均粒径、边界粒径或者用户特别感兴趣的其他测量值,每一次的测量值跟上一次都不可能完全一样,因此每一个量的测量都存在误差。现在假设某一个量(例如D50)在n 次测量中,得到的数值分别为a sub 1 /sub ,a sub 2 /sub ,?,a sub n。 /sub /span /p p style=" text-indent:29px" span style=" font-size:14px font-family:& #39 Calibri& #39 ,& #39 sans-serif& #39 " img src=" https://img1.17img.cn/17img/images/201808/insimg/06638399-24f9-44c5-9f0f-6f0309d6149d.jpg" title=" 专栏5图1.png" / /span /p p style=" text-indent:29px" span style=" font-family: 宋体" 举个例子:设我们对一个颗粒样品进行了10次测量,每次的测量值见表2。其平均值和标准差分别为14.139微米和0.021微米。所以 /span span style=" font-family: Symbol" ` /span span style=" font-family: 宋体" a +S=14.139+0.021=14.160 /span span style=" font-family: 宋体" (微米),把测量值和这个上边界值对比,可以发现第4、第5共2个测量值超出; /span span style=" font-family: Symbol" ` /span span style=" font-family: 宋体" a -S=14.139-0.021=14.118 /span span style=" font-family: 宋体" (微米),把测量值和这个下边界对比,可以发现第6、第10共2个测量值超出;总共有4个测量值超出 /span span style=" font-family: Symbol" ` /span span style=" font-family: 宋体" a-S, /span span style=" font-family: Symbol" ` /span span style=" font-family: 宋体" a+S /span span style=" font-family: 宋体" 的区间,占测量值个数的40%,换言之,有60%的测量值在这个区间内。 /span /p p style=" text-align:center text-indent:29px" span style=" font-family: 宋体" 表2 测量误差的含义举例 /span /p table border=" 0" cellspacing=" 0" cellpadding=" 0" width=" 547" tbody tr style=" height:25px" class=" firstRow" td width=" 113" nowrap=" " rowspan=" 2" style=" border-style: solid border-color: windowtext windowtext black border-width: 1px padding: 0px 7px " height=" 25" p style=" text-align:center" span style=" font-family: 宋体" 序号 /span /p /td td width=" 95" rowspan=" 2" style=" border-style: solid solid solid none border-top-color: windowtext border-top-width: 1px border-bottom-color: black border-bottom-width: 1px border-right-color: windowtext border-right-width: 1px padding: 0px 7px " height=" 25" p style=" text-align:center" span style=" font-family: 宋体" 单次测量值(微米) /span /p /td td width=" 94" rowspan=" 2" style=" border-style: solid solid solid none border-top-color: windowtext border-top-width: 1px border-bottom-color: black border-bottom-width: 1px border-right-color: windowtext border-right-width: 1px padding: 0px 7px " height=" 25" p style=" text-align:center" span style=" font-family: 宋体" 测量值与上边界的差 /span /p /td td width=" 80" rowspan=" 2" style=" border-style: solid solid solid none border-top-color: windowtext border-top-width: 1px border-bottom-color: black border-bottom-width: 1px border-right-color: windowtext border-right-width: 1px padding: 0px 7px " height=" 25" p style=" text-align:center" span style=" font-family: 宋体" 正值表示超出 /span /p /td td width=" 91" rowspan=" 2" style=" border-style: solid solid solid none border-top-color: windowtext border-top-width: 1px border-bottom-color: black border-bottom-width: 1px border-right-color: windowtext border-right-width: 1px padding: 0px 7px " height=" 25" p style=" text-align:center" span style=" font-family: 宋体" 测量值与下边界的差 /span /p /td td width=" 50" rowspan=" 2" style=" border-style: solid solid solid none border-top-color: windowtext border-top-width: 1px border-bottom-color: black border-bottom-width: 1px border-right-color: windowtext border-right-width: 1px padding: 0px 7px " height=" 25" p style=" text-align:center" span style=" font-family: 宋体" 负值表示超出 /span /p /td td style=" border: none " width=" 0" height=" 25" br/ /td /tr tr style=" height:30px" td style=" border: none " width=" 0" height=" 30" br/ /td /tr tr style=" height:20px" td width=" 113" nowrap=" " style=" border-style: none solid solid border-right-color: windowtext border-bottom-color: windowtext border-left-color: windowtext border-right-width: 1px border-bottom-width: 1px border-left-width: 1px padding: 0px 7px " height=" 20" p style=" text-align:center" span style=" font-family: 宋体" 1 /span /p /td td width=" 95" nowrap=" " style=" border-style: none solid solid none border-bottom-color: windowtext border-bottom-width: 1px border-right-color: windowtext border-right-width: 1px padding: 0px 7px " height=" 20" p style=" text-align:center" span style=" font-family: 宋体" 14.149 /span /p /td td width=" 94" nowrap=" " style=" border-style: none solid solid none border-bottom-color: windowtext border-bottom-width: 1px border-right-color: windowtext border-right-width: 1px padding: 0px 7px " height=" 20" p style=" text-align:center" span style=" font-family: 宋体" -0.011 /span /p /td td width=" 80" nowrap=" " style=" border-style: none solid solid none border-bottom-color: windowtext border-bottom-width: 1px border-right-color: windowtext border-right-width: 1px padding: 0px 7px " height=" 20" br/ /td td width=" 91" nowrap=" " style=" border-style: none solid solid none border-bottom-color: windowtext border-bottom-width: 1px border-right-color: windowtext border-right-width: 1px padding: 0px 7px " height=" 20" p style=" text-align:center" span style=" font-family: 宋体" 0.031 /span /p /td td width=" 50" nowrap=" " style=" border-style: none solid solid none border-bottom-color: windowtext border-bottom-width: 1px border-right-color: windowtext border-right-width: 1px padding: 0px 7px " height=" 20" br/ /td td style=" border: none " width=" 0" height=" 20" br/ /td /tr tr style=" height:20px" td width=" 113" nowrap=" " style=" border-style: none solid solid border-right-color: windowtext border-bottom-color: windowtext border-left-color: windowtext border-right-width: 1px border-bottom-width: 1px border-left-width: 1px padding: 0px 7px " height=" 20" p style=" text-align:center" span style=" font-family: 宋体" 2 /span /p /td td width=" 95" nowrap=" " style=" border-style: none solid solid none border-bottom-color: windowtext border-bottom-width: 1px border-right-color: windowtext border-right-width: 1px padding: 0px 7px " height=" 20" p style=" text-align:center" span style=" font-family: 宋体" 14.152 /span /p /td td width=" 94" nowrap=" " style=" border-style: none solid solid none border-bottom-color: windowtext border-bottom-width: 1px border-right-color: windowtext border-right-width: 1px padding: 0px 7px " height=" 20" p style=" text-align:center" span style=" font-family: 宋体" -0.008 /span /p /td td width=" 80" nowrap=" " style=" border-style: none solid solid none border-bottom-color: windowtext border-bottom-width: 1px border-right-color: windowtext border-right-width: 1px padding: 0px 7px " height=" 20" br/ /td td width=" 91" nowrap=" " style=" border-style: none solid solid none border-bottom-color: windowtext border-bottom-width: 1px border-right-color: windowtext border-right-width: 1px padding: 0px 7px " height=" 20" p style=" text-align:center" span style=" font-family: 宋体" 0.034 /span /p /td td width=" 50" nowrap=" " style=" border-style: none solid solid none border-bottom-color: windowtext border-bottom-width: 1px border-right-color: windowtext border-right-width: 1px padding: 0px 7px " height=" 20" br/ /td td style=" border: none " width=" 0" height=" 20" br/ /td /tr tr style=" height:20px" td width=" 113" nowrap=" " style=" border-style: none solid solid border-right-color: windowtext border-bottom-color: windowtext border-left-color: windowtext border-right-width: 1px border-bottom-width: 1px border-left-width: 1px padding: 0px 7px " height=" 20" p style=" text-align:center" span style=" font-family: 宋体" 3 /span /p /td td width=" 95" nowrap=" " style=" border-style: none solid solid none border-bottom-color: windowtext border-bottom-width: 1px border-right-color: windowtext border-right-width: 1px padding: 0px 7px " height=" 20" p style=" text-align:center" span style=" font-family: 宋体" 14.138 /span /p /td td width=" 94" nowrap=" " style=" border-style: none solid solid none border-bottom-color: windowtext border-bottom-width: 1px border-right-color: windowtext border-right-width: 1px padding: 0px 7px " height=" 20" p style=" text-align:center" span style=" font-family: 宋体" -0.022 /span /p /td td width=" 80" nowrap=" " style=" border-style: none solid solid none border-bottom-color: windowtext border-bottom-width: 1px border-right-color: windowtext border-right-width: 1px padding: 0px 7px " height=" 20" br/ /td td width=" 91" nowrap=" " style=" border-style: none solid solid none border-bottom-color: windowtext border-bottom-width: 1px border-right-color: windowtext border-right-width: 1px padding: 0px 7px " height=" 20" p style=" text-align:center" span style=" font-family: 宋体" 0.02 /span /p /td td width=" 50" nowrap=" " style=" border-style: none solid solid none border-bottom-color: windowtext border-bottom-width: 1px border-right-color: windowtext border-right-width: 1px padding: 0px 7px " height=" 20" br/ /td td style=" border: none " width=" 0" height=" 20" br/ /td /tr tr style=" height:20px" td width=" 113" nowrap=" " style=" border-style: none solid solid border-right-color: windowtext border-bottom-color: windowtext border-left-color: windowtext border-right-width: 1px border-bottom-width: 1px border-left-width: 1px padding: 0px 7px " height=" 20" p style=" text-align:center" span style=" font-family: 宋体" 4 /span /p /td td width=" 95" nowrap=" " style=" border-style: none solid solid none border-bottom-color: windowtext border-bottom-width: 1px border-right-color: windowtext border-right-width: 1px background-color: yellow padding: 0px 7px background-position: initial initial background-repeat: initial initial " height=" 20" p style=" text-align:center" span style=" font-family: 宋体" 14.174 /span /p /td td width=" 94" nowrap=" " style=" border-style: none solid solid none border-bottom-color: windowtext border-bottom-width: 1px border-right-color: windowtext border-right-width: 1px padding: 0px 7px " height=" 20" p style=" text-align:center" span style=" font-family: 宋体" 0.014 /span /p /td td width=" 80" nowrap=" " style=" border-style: none solid solid none border-bottom-color: windowtext border-bottom-width: 1px border-right-color: windowtext border-right-width: 1px padding: 0px 7px " height=" 20" p style=" text-align:center" span style=" font-family: 宋体" Over /span /p /td td width=" 91" nowrap=" " style=" border-style: none solid solid none border-bottom-color: windowtext border-bottom-width: 1px border-right-color: windowtext border-right-width: 1px padding: 0px 7px " height=" 20" p style=" text-align:center" span style=" font-family: 宋体" 0.056 /span /p /td td width=" 50" nowrap=" " style=" border-style: none solid solid none border-bottom-color: windowtext border-bottom-width: 1px border-right-color: windowtext border-right-width: 1px padding: 0px 7px " height=" 20" br/ /td td style=" border: none " width=" 0" height=" 20" br/ /td /tr tr style=" height:20px" td width=" 113" nowrap=" " style=" border-style: none solid solid border-right-color: windowtext border-bottom-color: windowtext border-left-color: windowtext border-right-width: 1px border-bottom-width: 1px border-left-width: 1px padding: 0px 7px " height=" 20" p style=" text-align:center" span style=" font-family: 宋体" 5 /span /p /td td width=" 95" nowrap=" " style=" border-style: none solid solid none border-bottom-color: windowtext border-bottom-width: 1px border-right-color: windowtext border-right-width: 1px background-color: yellow padding: 0px 7px background-position: initial initial background-repeat: initial initial " height=" 20" p style=" text-align:center" span style=" font-family: 宋体" 14.161 /span /p /td td width=" 94" nowrap=" " style=" border-style: none solid solid none border-bottom-color: windowtext border-bottom-width: 1px border-right-color: windowtext border-right-width: 1px padding: 0px 7px " height=" 20" p style=" text-align:center" span style=" font-family: 宋体" 0.001 /span /p /td td width=" 80" nowrap=" " style=" border-style: none solid solid none border-bottom-color: windowtext border-bottom-width: 1px border-right-color: windowtext border-right-width: 1px padding: 0px 7px " height=" 20" p style=" text-align:center" span style=" font-family: 宋体" Over /span /p /td td width=" 91" nowrap=" " style=" border-style: none solid solid none border-bottom-color: windowtext border-bottom-width: 1px border-right-color: windowtext border-right-width: 1px padding: 0px 7px " height=" 20" p style=" text-align:center" span style=" font-family: 宋体" 0.043 /span /p /td td width=" 50" nowrap=" " style=" border-style: none solid solid none border-bottom-color: windowtext border-bottom-width: 1px border-right-color: windowtext border-right-width: 1px padding: 0px 7px " height=" 20" br/ /td td style=" border: none " width=" 0" height=" 20" br/ /td /tr tr style=" height:20px" td width=" 113" nowrap=" " style=" border-style: none solid solid border-right-color: windowtext border-bottom-color: windowtext border-left-color: windowtext border-right-width: 1px border-bottom-width: 1px border-left-width: 1px padding: 0px 7px " height=" 20" p style=" text-align:center" span style=" font-family: 宋体" 6 /span /p /td td width=" 95" nowrap=" " style=" border-style: none solid solid none border-bottom-color: windowtext border-bottom-width: 1px border-right-color: windowtext border-right-width: 1px background-color: yellow padding: 0px 7px background-position: initial initial background-repeat: initial initial " height=" 20" p style=" text-align:center" span style=" font-family: 宋体" 14.108 /span /p /td td width=" 94" nowrap=" " style=" border-style: none solid solid none border-bottom-color: windowtext border-bottom-width: 1px border-right-color: windowtext border-right-width: 1px padding: 0px 7px " height=" 20" p style=" text-align:center" span style=" font-family: 宋体" -0.052 /span /p /td td width=" 80" nowrap=" " style=" border-style: none solid solid none border-bottom-color: windowtext border-bottom-width: 1px border-right-color: windowtext border-right-width: 1px padding: 0px 7px " height=" 20" br/ /td td width=" 91" nowrap=" " style=" border-style: none solid solid none border-bottom-color: windowtext border-bottom-width: 1px border-right-color: windowtext border-right-width: 1px padding: 0px 7px " height=" 20" p style=" text-align:center" span style=" font-family: 宋体" -0.01 /span /p /td td width=" 50" nowrap=" " style=" border-style: none solid solid none border-bottom-color: windowtext border-bottom-width: 1px border-right-color: windowtext border-right-width: 1px padding: 0px 7px " height=" 20" p style=" text-align:center" span style=" font-family: 宋体" Over /span /p /td td style=" border: none " width=" 0" height=" 20" br/ /td /tr tr style=" height:20px" td width=" 113" nowrap=" " style=" border-style: none solid solid border-right-color: windowtext border-bottom-color: windowtext border-left-color: windowtext border-right-width: 1px border-bottom-width: 1px border-left-width: 1px padding: 0px 7px " height=" 20" p style=" text-align:center" span style=" font-family: 宋体" 7 /span /p /td td width=" 95" nowrap=" " style=" border-style: none solid solid none border-bottom-color: windowtext border-bottom-width: 1px border-right-color: windowtext border-right-width: 1px padding: 0px 7px " height=" 20" p style=" text-align:center" span style=" font-family: 宋体" 14.125 /span /p /td td width=" 94" nowrap=" " style=" border-style: none solid solid none border-bottom-color: windowtext border-bottom-width: 1px border-right-color: windowtext border-right-width: 1px padding: 0px 7px " height=" 20" p style=" text-align:center" span style=" font-family: 宋体" -0.035 /span /p /td td width=" 80" nowrap=" " style=" border-style: none solid solid none border-bottom-color: windowtext border-bottom-width: 1px border-right-color: windowtext border-right-width: 1px padding: 0px 7px " height=" 20" br/ /td td width=" 91" nowrap=" " style=" border-style: none solid solid none border-bottom-color: windowtext border-bottom-width: 1px border-right-color: windowtext border-right-width: 1px padding: 0px 7px " height=" 20" p style=" text-align:center" span style=" font-family: 宋体" 0.007 /span /p /td td width=" 50" nowrap=" " style=" border-style: none solid solid none border-bottom-color: windowtext border-bottom-width: 1px border-right-color: windowtext border-right-width: 1px padding: 0px 7px " height=" 20" br/ /td td style=" border: none " width=" 0" height=" 20" br/ /td /tr tr style=" height:20px" td width=" 113" nowrap=" " style=" border-style: none solid solid border-right-color: windowtext border-bottom-color: windowtext border-left-color: windowtext border-right-width: 1px border-bottom-width: 1px border-left-width: 1px padding: 0px 7px " height=" 20" p style=" text-align:center" span style=" font-family: 宋体" 8 /span /p /td td width=" 95" nowrap=" " style=" border-style: none solid solid none border-bottom-color: windowtext border-bottom-width: 1px border-right-color: windowtext border-right-width: 1px padding: 0px 7px " height=" 20" p style=" text-align:center" span style=" font-family: 宋体" 14.127 /span /p /td td width=" 94" nowrap=" " style=" border-style: none solid solid none border-bottom-color: windowtext border-bottom-width: 1px border-right-color: windowtext border-right-width: 1px padding: 0px 7px " height=" 20" p style=" text-align:center" span style=" font-family: 宋体" -0.033 /span /p /td td width=" 80" nowrap=" " style=" border-style: none solid solid none border-bottom-color: windowtext border-bottom-width: 1px border-right-color: windowtext border-right-width: 1px padding: 0px 7px " height=" 20" br/ /td td width=" 91" nowrap=" " style=" border-style: none solid solid none border-bottom-color: windowtext border-bottom-width: 1px border-right-color: windowtext border-right-width: 1px padding: 0px 7px " height=" 20" p style=" text-align:center" span style=" font-family: 宋体" 0.009 /span /p /td td width=" 50" nowrap=" " style=" border-style: none solid solid none border-bottom-color: windowtext border-bottom-width: 1px border-right-color: windowtext border-right-width: 1px padding: 0px 7px " height=" 20" br/ /td td style=" border: none " width=" 0" height=" 20" br/ /td /tr tr style=" height:20px" td width=" 113" nowrap=" " style=" border-style: none solid solid border-right-color: windowtext border-bottom-color: windowtext border-left-color: windowtext border-right-width: 1px border-bottom-width: 1px border-left-width: 1px padding: 0px 7px " height=" 20" p style=" text-align:center" span style=" font-family: 宋体" 9 /span /p /td td width=" 95" nowrap=" " style=" border-style: none solid solid none border-bottom-color: windowtext border-bottom-width: 1px border-right-color: windowtext border-right-width: 1px padding: 0px 7px " height=" 20" p style=" text-align:center" span style=" font-family: 宋体" 14.139 /span /p /td td width=" 94" nowrap=" " style=" border-style: none solid solid none border-bottom-color: windowtext border-bottom-width: 1px border-right-color: windowtext border-right-width: 1px padding: 0px 7px " height=" 20" p style=" text-align:center" span style=" font-family: 宋体" -0.021 /span /p /td td width=" 80" nowrap=" " style=" border-style: none solid solid none border-bottom-color: windowtext border-bottom-width: 1px border-right-color: windowtext border-right-width: 1px padding: 0px 7px " height=" 20" br/ /td td width=" 91" nowrap=" " style=" border-style: none solid solid none border-bottom-color: windowtext border-bottom-width: 1px border-right-color: windowtext border-right-width: 1px padding: 0px 7px " height=" 20" p style=" text-align:center" span style=" font-family: 宋体" 0.021 /span /p /td td width=" 50" nowrap=" " style=" border-style: none solid solid none border-bottom-color: windowtext border-bottom-width: 1px border-right-color: windowtext border-right-width: 1px padding: 0px 7px " height=" 20" br/ /td td style=" border: none " width=" 0" height=" 20" br/ /td /tr tr style=" height:20px" td width=" 113" nowrap=" " style=" border-style: none solid solid border-right-color: windowtext border-bottom-color: windowtext border-left-color: windowtext border-right-width: 1px border-bottom-width: 1px border-left-width: 1px padding: 0px 7px " height=" 20" p style=" text-align:center" span style=" font-family: 宋体" 10 /span /p /td td width=" 95" nowrap=" " style=" border-style: none solid solid none border-bottom-color: windowtext border-bottom-width: 1px border-right-color: windowtext border-right-width: 1px background-color: yellow padding: 0px 7px background-position: initial initial background-repeat: initial initial " height=" 20" p style=" text-align:center" span style=" font-family: 宋体" 14.115 /span /p /td td width=" 94" nowrap=" " style=" border-style: none solid solid none border-bottom-color: windowtext border-bottom-width: 1px border-right-color: windowtext border-right-width: 1px padding: 0px 7px " height=" 20" p style=" text-align:center" span style=" font-family: 宋体" -0.045 /span /p /td td width=" 80" nowrap=" " style=" border-style: none solid solid none border-bottom-color: windowtext border-bottom-width: 1px border-right-color: windowtext border-right-width: 1px padding: 0px 7px " height=" 20" br/ /td td width=" 91" nowrap=" " style=" border-style: none solid solid none border-bottom-color: windowtext border-bottom-width: 1px border-right-color: windowtext border-right-width: 1px padding: 0px 7px " height=" 20" p style=" text-align:center" span style=" font-family: 宋体" -0.003 /span /p /td td width=" 50" nowrap=" " style=" border-style: none solid solid none border-bottom-color: windowtext border-bottom-width: 1px border-right-color: windowtext border-right-width: 1px padding: 0px 7px " height=" 20" p style=" text-align:center" span style=" font-family: 宋体" Over /span /p /td td style=" border: none " width=" 0" height=" 20" br/ /td /tr tr style=" height:21px" td width=" 113" nowrap=" " style=" border-style: none solid solid border-right-color: windowtext border-bottom-color: windowtext border-left-color: windowtext border-right-width: 1px border-bottom-width: 1px border-left-width: 1px padding: 0px 7px " height=" 21" p style=" text-align:center" span style=" font-family: 宋体" 均值 /span span style=" font-family: 宋体" ( /span span style=" font-family: 宋体" 微米 /span span style=" font-family: 宋体" )& nbsp /span /p /td td width=" 95" nowrap=" " style=" border-style: none solid solid none border-bottom-color: windowtext border-bottom-width: 1px border-right-color: windowtext border-right-width: 1px padding: 0px 7px " height=" 21" p style=" text-align:center" span style=" font-family: 宋体" 14.139 /span /p /td td width=" 94" nowrap=" " style=" border-style: none solid solid none border-bottom-color: windowtext border-bottom-width: 1px border-right-color: windowtext border-right-width: 1px padding: 0px 7px " height=" 21" br/ /td td width=" 80" nowrap=" " style=" border-style: none solid solid none border-bottom-color: windowtext border-bottom-width: 1px border-right-color: windowtext border-right-width: 1px padding: 0px 7px " height=" 21" br/ /td td width=" 91" nowrap=" " style=" border-style: none solid solid none border-bottom-color: windowtext border-bottom-width: 1px border-right-color: windowtext border-right-width: 1px padding: 0px 7px " height=" 21" br/ /td td width=" 50" nowrap=" " style=" border-style: none solid solid none border-bottom-color: windowtext border-bottom-width: 1px border-right-color: windowtext border-right-width: 1px padding: 0px 7px " height=" 21" br/ /td td style=" border: none " width=" 0" height=" 21" br/ /td /tr tr style=" height:21px" td width=" 113" nowrap=" " style=" border-style: none solid solid border-right-color: windowtext border-bottom-color: windowtext border-left-color: windowtext border-right-width: 1px border-bottom-width: 1px border-left-width: 1px padding: 0px 7px " height=" 21" p style=" text-align:center" span style=" font-family: 宋体" & nbsp /span span style=" font-family: 宋体" 标准差 (微米)& nbsp /span /p /td td width=" 95" nowrap=" " style=" border-style: none solid solid none border-bottom-color: windowtext border-bottom-width: 1px border-right-color: windowtext border-right-width: 1px padding: 0px 7px " height=" 21" p style=" text-align:center" span style=" font-family: 宋体" 0.021 /span /p /td td width=" 94" nowrap=" " style=" border-style: none solid solid none border-bottom-color: windowtext border-bottom-width: 1px border-right-color: windowtext border-right-width: 1px padding: 0px 7px " height=" 21" br/ /td td width=" 80" nowrap=" " style=" border-style: none solid solid none border-bottom-color: windowtext border-bottom-width: 1px border-right-color: windowtext border-right-width: 1px padding: 0px 7px " height=" 21" br/ /td td width=" 91" nowrap=" " style=" border-style: none solid solid none border-bottom-color: windowtext border-bottom-width: 1px border-right-color: windowtext border-right-width: 1px padding: 0px 7px " height=" 21" br/ /td td width=" 50" nowrap=" " style=" border-style: none solid solid none border-bottom-color: windowtext border-bottom-width: 1px border-right-color: windowtext border-right-width: 1px padding: 0px 7px " height=" 21" br/ /td td style=" border: none " width=" 0" height=" 21" br/ /td /tr /tbody /table p span style=" font-family: 宋体" & nbsp /span /p p style=" text-indent:29px" span style=" font-family:宋体 color:#0070C0" 【 strong 进阶知识6 /strong 】粒度测量误差的表述及误差的统计理论。人们都希望测量误差越小越好,但是误差却不可避免。误差可分为三类:一是系统误差,二是随机误差,三是疏忽误差。系统误差是指测量系统(包括测量设备和操作者)对一个物理量的进行多次测量得到的平均值与该物理量真值之间的偏离。随机误差是多次测量中的某一次测量值对多次测量平均值的偏离。系统误差反映测量系统的准确性( /span strong span style=" font-family:宋体 color:#0070C0" Accurac /span /strong strong span style=" font-family:宋体 color:#0070C0" y /span /strong span style=" font-family: 宋体 color:#0070C0" ),随机误差反映测量系统的精度( /span strong span style=" font-family:& #39 Cambria& #39 ,& #39 serif& #39 color:#0070C0" Precision /span /strong span style=" font-family:宋体 color:#0070C0" )或重复性。在实际操作中,误差一方面来源于测量仪器本身,另一方面来源于操作,包括取样误差,操作失误等等。在颗粒仪器行业,为了客观地考察仪器,尽量避免人为影响,一般采用一次投样,重复测量,考察每次测量结果相对于多次测量的平均值之间的误差来评估仪器精度或重复性。 /span span style=" font-family:宋体 color:#0070C0" 而把不同次取样甚至不同操作者测量同一个样品得到的结果之间的相对误差,叫做再现性 /span span style=" font-family:宋体 color:#0070C0" ( /span strong span style=" font-family:& #39 Cambria& #39 ,& #39 serif& #39 color:#0070C0" Reproductivity /span /strong span style=" font-family:宋体 color:#0070C0" )。重复性和再现性都反应随机误差的大小。疏忽误差是指测量仪器处于不正常状态或者操作者操作错误得到的测量结果与真值之间的偏差。这里不讨论此类误差。 /span /p p style=" text-indent:29px" span style=" font-family:宋体 color:#0070C0" 粒度测量与其他物理量的测量相比有两个特殊性:一是大多数情况下,粒度不存在或者难以确定真值。这是因为多数情况下颗粒的形状是不规则的,客观上不存在一个真实的“直径”。所谓的颗粒直径都是等效的圆球直径。等效的原理不同,结果也不同;甚至等效的原理相同,数据处理的方法不同,也会造成结果的差异,此其一(关于激光粒度仪的等效粒径,作者曾进行过初步研究,有兴趣的读者可参考“张福根等.棒状和片状颗粒在激光粒度仪中的等效粒径(一)、(二).中国颗粒学会首届年会论文集,1997,267-278”)。其二,即使颗粒是圆球形的,但是粗细不均,客观上也难以用绝对方法(指更可靠、更高精度的方法,比如显微镜)测定足够多的颗粒,最终给出在计量学上有说服力的真值。粒度只有在一种很特殊的情况下才能在一定误差范围内获得真值,这就是粒度分布很窄(称为“单分散”)的圆球形颗粒。现在都用这样的颗粒制作微粒标准物质( /span strong span style=" font-family:& #39 Cambria& #39 ,& #39 serif& #39 color:#0070C0" Reference Material /span /strong span style=" font-family:宋体 color:#0070C0" )。所以颗粒测量仪器声称的“准确性”,都是相对于单分散的标准物质来说的。用户需要注意的是,两台不同的粒度仪测标准样时都足够准确,但测量实际样品却可能得出不一样的结果。这是许多用户很费解的事。原因就在于颗粒形状的不规则、大小的不均匀和数据反演算法的差异。 /span /p p style=" text-indent:29px" span style=" font-family:宋体 color:#0070C0" 第二个特殊性是,粒度测量结果的完整表述是由一组数(往往达到几十个)组成的粒度分布,而不是一个数,因此就存在用哪个数或哪几个数来衡量测量误差的问题。通常用平均粒径(如D[4,3]、D[3,2]或者D50,以及上下边界(累积)粒径D10、D90的测量误差来衡量。用户如果有特别关注的某个测量值,比如说碳酸该行业的2µ m以细的含量,也可以用这个测量值的误差来衡量仪器误差。 /span /p p style=" text-indent:29px" span style=" font-family:宋体 color:#0070C0" 下面再谈误差的表达的问题。用标准误差表达重复性或者再现性已经在正文做过简单介绍。这里再补充几点: /span /p p style=" text-indent: 2em " span style=" font-family:宋体 color:#0070C0" (1)置信度和置信区间 /span /p p style=" text-indent:29px" span style=" font-family:宋体 color:#0070C0" 正文已经谈到,单次测量值落在 /span span style=" font-family:Symbol color:#0070C0" ` /span span style=" font-family:& #39 Cambria& #39 ,& #39 serif& #39 color:#0070C0" a-S, /span span style=" font-family:Symbol color:#0070C0" ` /span span style=" font-family:& #39 Cambria& #39 ,& #39 serif& #39 color:#0070C0" a+S /span span style=" font-family:宋体 color:#0070C0" 区间内的概率是 /span span style=" font-family:& #39 Cambria& #39 ,& #39 serif& #39 color:#0070C0" 68.3% /span span style=" font-family:宋体 color:#0070C0" 。这个区间又叫置信区间, /span span style=" font-family:& #39 Cambria& #39 ,& #39 serif& #39 color:#0070C0" 68.3% /span span style=" font-family:宋体 color:#0070C0" 叫做置信度。这里假设了误差的分布满足正态分布规律(注意,这是误差分布,不是粒度分布)。根据概率论中的中心极限定律,如果测量误差是由多个相互独立的因素引起的,只要因素的数量足够多,那么误差的概率分布就满足正态规律。正态分布曲线见下图 /span span style=" font-family:& #39 Cambria& #39 ,& #39 serif& #39 color:#0070C0" , /span span style=" font-family:宋体 color:#0070C0" 一定区间范围内曲线以下的阴影面积就代表发生在该区间内的测量值的概率。 /span span style=" font-size: 16px font-family: 宋体 color: rgb(0, 112, 192) " 由此我们可以推断出,测量值落在μ /span span style=" font-size: 16px font-family: Cambria, serif color: rgb(0, 112, 192) " -2σ,μ+2σ /span span style=" font-size: 16px font-family: 宋体 color: rgb(0, 112, 192) " 区间内的概率是 /span span style=" font-size: 16px font-family: Cambria, serif color: rgb(0, 112, 192) " 95.4% /span span style=" font-size: 16px font-family: 宋体 color: rgb(0, 112, 192) " ,μ /span span style=" font-size: 16px font-family: Cambria, serif color: rgb(0, 112, 192) " -3σ,μ+3σ /span span style=" font-size: 16px font-family: 宋体 color: rgb(0, 112, 192) " 的概率是 /span span style=" font-size: 16px font-family: Cambria, serif color: rgb(0, 112, 192) " 99.7% /span span style=" font-size: 16px font-family: 宋体 color: rgb(0, 112, 192) " 。μ /span span style=" font-size: 16px font-family: Cambria, serif color: rgb(0, 112, 192) " -σ,μ+σ /span span style=" font-size: 16px font-family: 宋体 color: rgb(0, 112, 192) " 、μ /span span style=" font-size: 16px font-family: Cambria, serif color: rgb(0, 112, 192) " -2σ,μ+2σ /span span style=" font-size: 16px font-family: 宋体 color: rgb(0, 112, 192) " 或μ /span span style=" font-size: 16px font-family: Cambria, serif color: rgb(0, 112, 192) " -3σ,μ+3σ /span span style=" font-size: 16px font-family: 宋体 color: rgb(0, 112, 192) " 叫做测量值的置信区间,对应的 /span span style=" font-size: 16px font-family: Cambria, serif color: rgb(0, 112, 192) " 68.3% /span span style=" font-size: 16px font-family: 宋体 color: rgb(0, 112, 192) " 、 /span span style=" font-size: 16px font-family: Cambria, serif color: rgb(0, 112, 192) " 95.4% /span span style=" font-size: 16px font-family: 宋体 color: rgb(0, 112, 192) " 和 /span span style=" font-size: 16px font-family: Cambria, serif color: rgb(0, 112, 192) " 99.7% /span span style=" font-size: 16px font-family: 宋体 color: rgb(0, 112, 192) " 称为相应的置信区间内的置信度。 /span /p p style=" text-align:center" img src=" https://img1.17img.cn/17img/images/201808/insimg/a45cdca6-a484-4a8d-83ee-30adc265602d.jpg" title=" 专栏5图2.jpg" / /p p style=" text-align:center" span style=" font-family:宋体 color:#0070C0" 随机误差的概率分布 /span /p p style=" text-indent: 2em " span style=" font-family:宋体 color:#0070C0" (2)方均根误差与标准误差 /span /p p style=" margin-left: 29px text-align: center " span style=" font-size:14px font-family:& #39 Calibri& #39 ,& #39 sans-serif& #39 " img src=" https://img1.17img.cn/17img/images/201808/insimg/18f3b470-d0b2-49f0-b9b5-22caa8d02452.jpg" title=" 专栏5图3.png" / /span /p p style=" margin-left:29px" span style=" color: rgb(0, 112, 192) font-family: 宋体 font-size: 16px " 显然,标准误差大于均方根误差。当n趋于无穷时,二者趋于一致。 /span /p p style=" text-indent: 2em " span style=" font-family:宋体 color:#0070C0" (3)t分布 /span /p p span style=" font-family:宋体 color:#0070C0" & nbsp & nbsp & nbsp /span span style=" font-family:宋体 color:#0070C0" 可以想象,如果我们用n次测量的平均值 /span span style=" font-family: 宋体" a /span span style=" font-family: PMingLiU, serif" ? /span span style=" font-family:宋体 color:#0070C0" 作为测量的报告值,那么一般而言随机误差会减少。具体会减小多少?或者说置信区间和置信度会发生什么变化?需要用到概率论的t分布函数,有兴趣的读者可以自行参考有关书籍。 /span /p p style=" text-indent:28px" strong span style=" font-family:宋体" 适用多种类型的分散介质 /span /strong /p p style=" text-indent:29px" span style=" font-family:宋体" 绝大部分粒度仪都需要把待测颗粒分散在介质中才能测量。具体选择什么介质,首先取决于颗粒本身的特性,比如颗粒与介质不能发生化学反应,能在介质中良好分散等等。其次是介质的使用成本,越低越好。 /span /p p style=" text-indent:29px" span style=" font-family:宋体" 激光粒度仪测量颗粒时,既可用液体介质(称为“湿法分散”)也可用气体介质(称为“干法分散”),其中液体介质可以是最常见的水,也可以是各种有机溶剂。从而为用户选择适用且经济的介质提供便利。 /span /p p style=" text-indent:28px" strong span style=" font-family:宋体" 操作方便 /span /strong /p p style=" text-indent:29px" span style=" font-family:宋体" 不论使用什么类型的仪器,粒度测量都需要操作者认真仔细地进行,否则就可能引入人为误差。相对而言,激光粒度仪相较于其他粒度仪,操作起来要方便得多。主要表现在: /span /p p span style=" font-family:宋体" & nbsp & nbsp /span span style=" font-family:宋体" (1)对大多数激光粒度仪而言,不需要调整仪器量程。由于动态范围大,0.1微米至1000微米的任何样品都可以在仪器固有的量程范围内完成,无需预先估计样品的粒度分布范围,然后设置好仪器的量程才能测量(目前个别品牌的激光粒度仪还需要选量程,但大多数不需要)。作为对比,电阻法仪器、图像法仪器、沉降法仪器等等,都需要选择量程。 /span /p p & nbsp & nbsp & nbsp span style=" font-family:宋体" ( /span 2 span style=" font-family:宋体" )对分散介质的纯度没有太高要求。这是因为激光粒度仪在测量中有一个“减背景“的操作,杂质颗粒形成的散射光的影响在一定范围内可以通过这个操作消除掉。 /span /p p style=" text-indent:21px" span style=" font-family:宋体" ( /span 3 span style=" font-family:宋体" )一次测量所用的样品量较大,代表性好。另外样品浓度对测量结果的影响也较小。 /span /p p & nbsp & nbsp span style=" font-family:宋体" ( /span 4 span style=" font-family:宋体" )大多产品都具有 /span SOP span style=" font-family:宋体" 功能,进一步降低了操作人员和操作手法不一致带来的测量结果差异。 /span /p p style=" text-indent:28px" strong span style=" font-family:宋体" 局限性 /span /strong /p p style=" text-indent:29px" span style=" font-family:宋体" 上面介绍了激光粒度仪的诸多优点。凡事有优点必然就有缺点。以下是激光粒度仪的缺点: /span /p p style=" text-indent:29px" span style=" font-family:宋体" (1)分辨率低:所谓分辨率是指仪器分辨两个不同粒径的单分散样品的能力。行业一般认为激光粒度仪只能区分粒径相差 /span span style=" font-family:宋体" 3 /span span style=" font-family:宋体" 倍的两个单分散样品。比如把一个 /span span style=" font-family:宋体" 5 /span span style=" font-family:宋体" 微米的样品和 /span span style=" font-family:宋体" 15 /span span style=" font-family:宋体" 微米的样品混合起来,仪器可以测出两个分布的峰。分辨率优异的品牌能够做到 /span span style=" font-family:宋体" 1.5 /span span style=" font-family:宋体" 倍左右。在实用中,需要去区分两个粒径相近的单分散样品的情况很少见,但是分辨率低意味着仪器对样品分布宽度的变化不敏感。有些对粒度均匀性要求很高的样品(比如单分散的标准微球、激光打印机用的碳粉等等)就不适合用激光粒度仪测量了。 /span /p p style=" text-indent:29px" span style=" font-family:宋体" (2)对处在样品的粒度分布范围两端的颗粒不敏感。这是因为激光粒度仪直接测量的是所有颗粒散射光分布叠加在一起的结果,处在粒度分布两端的颗粒占总颗粒的比例很低,例如0.1%,对总光能的贡献很小,容易被噪声淹没。因此用户如果很关注Dmax和Dmin,那么就要注意,激光粒度仪给出的这两个数值是不可靠的。 /span /p p & nbsp & nbsp strong 编者结: /strong span style=" font-family:宋体" 在本文中,张福根博士一根妙笔对激光粒度仪的优势和局限娓娓道来。在下篇系列文章中,张福根博士就激光粒度仪研究界的几个前沿技术问题与大家深度剖析,精彩不容错过! /span /p p style=" text-align: right " span style=" font-family:宋体" (作者:张福根) /span /p
  • 步入式试验室性能及特点
    步入式试验室性能及特点:1、具有极宽的温湿度控制范围,可满足用户的各种需要。采用独特的平衡调温调湿方式,可获得安全、精确的温湿度环境。具有稳定、平衡的加热、加湿性能,可进行高精度、高稳定的温湿度控制。2、装备高精度智能化的温度调节器,温湿度采用LED数字显示方式。可选配温湿度记录仪。3、制冷回路自动选择,自控装置具有随温度的设定值自动选择运转制冷回路的性能,实现高温状态下直接启动制冷机,直接降温。4、内门装有大观察窗,可方便观察供试样品的试验状态。5、装有先进的安全、保护装置-漏电断路器、超温保护器,缺相保护器,断水保护器。高低温试验箱、恒温恒湿试验室、高低温湿热试验室、高低温交变湿热试验室、盐雾腐蚀试验室、以上试验室可根据客户要求定做。技术参数温度范围:-40℃~80℃(可交变温度范围:-40℃~60℃ )温度度动:±0.5℃温度均匀度:±2℃升温速率: 1.0℃~3.0℃/min降温速率: 0.7℃~1.0℃/min 温度范围:RT+10~400℃试验室类型步入式试验室,是配置有保护、加热、制冷的一系列装置,为大型零件、半成品、成品做环境测试的实验室。该实验室在箱体侧面设有带塞子的φ50mm测试孔,塞子材料为硅橡胶低发泡,能耐高低温,兼具保温效能。中文名 步入式试验室 温度度动 ±0.5℃ 温度均匀度 ±2℃ 升温速率 1.0℃~3.0℃/min箱体材料外箱材质:优质碳素钢板.磷化静电喷塑处理内箱材质:SUS304不锈钢优质光板保温材质:聚胺脂硬质发泡大门密封采用双层硅橡胶密封材料观察窗为多层导电膜钢化中空玻璃,为防止低温时玻璃结霜,特设内置式特制发热丝环绕,并设有照明灯,为观察提供照明控制系统采用:进口可编程触摸式液晶中文对话式显示,微电脑集成控制器保护系统整体设备超温/欠相/逆相/定时制冷系统过载/超压其它还有漏电、缺水、运行指示,故障报警后自动停机等保护加热加湿加热器采用瓷架镍铬丝电加热器,此加热器热惰性小,寿命长由仪表输出可控脉冲占空比PID信号,通过固态继电器来控制,控制平稳、可靠制冷系统压缩机:全进口半封闭德国谷轮;美国“艾高”干燥过滤器,台湾“冠亚”油分离器,意大利“卡士妥”电磁阀;冷冻系统采用单元或二元式低温回路系统设计;采用多翼式送风机强力送风循环,避免任何死角,可使测试区域内温度分布均匀;风路循环出风回风设计,风压、风速均符合测试标准,并可使开门瞬间温度回稳时间快;升温、降温、系统完全独立可提高效率,降低测试成本,增长寿命,减低故障率。步入式恒温恒湿室具有试验空间大,操作人员可以试验室对试验品进行操作的特点,为工业生产厂家的批量或者大型零件、半成品、成品提供了温湿度环境测试的条件。采用先进的中文液晶显示画面触摸屏,可进行各种复杂的程序设定,程序设定采用对话方式,操作简单、迅速。可实现制冷机自动运转,最大程度上实现自动化,可配制LAN通讯接口,便于用户远程距离程制和中央集中控制。可记录90天的温度、温度参数,相当配备无纸记录仪。东莞市海银环境测试设备有限公司成立于2010年,是国度高新技术企业,先后荣获ISO9001、国度AAA信誉体系等多项认证。 公司长期从事上下温实验箱,可程式恒温恒湿实验箱,冷热冲击实验箱,复层实环境老化实验箱,步入式上下温湿热实验箱,盐雾实验箱,紫外线加速老化实验机,振动实验台,跌落实验机,IP等级淋雨实验箱,IP等级沙尘实验箱,氙灯老化实验箱等牢靠性测试设备的研发和消费。 本着诚信、高效、感恩、共赢的运营理念,公司与中科院、清华大学、华为等数千家企事业单位坚持长期的良性协作。在此非常感激您的信任和选择,勤卓团队将会全力效劳您的协作需求。让我们携手,共创愈加高精尖的中国制造。
  • 运动发酵单胞菌运动亚种的特点与优势及培养方法!
    运动发酵单胞菌运动亚种的特点与优势及培养方法! 运动发酵单胞菌运动亚种是Zymomonas属的微生物,原产地为美国。G-,细胞具有圆端的短杆状,丛生鞭毛运动,单个或成对排列。主要用途为研究,具体用途为用于细菌发酵酒精的研究。 一、菌种简介平台编号:Bio-66722提供形式:冻干物拉丁属名:Zymomonas Mobilis Subsp. Mobilis中文名称:运动发酵单胞菌运动亚种属名:Zymomonas种名加词:mobilis subsp. mobilis其它中心编号:ATCC 31821来源历史:←北京工商大学化工学院(31821)收藏时间:2008.10.31原始编号:WAY资源归类编码:15131139101模式菌株:非模式菌株主要用途:研究具体用途:用于细菌发酵酒精的研究特征特性:G-,细胞具有圆端的短杆状,丛生鞭毛运动,单个或成对排列。利用葡萄糖、蔗糖或果糖产乙醇和CO2,利用山梨醇,不发酵麦芽糖、阿拉伯糖、鼠李糖、木糖。不还原硝酸盐,不液化明胶,接触酶阳性。 生物危害程度:四类致病对象:无培养基:葡萄糖 100.0g,酵母膏 5.0g,(NH4)2SO4 1.0g,KH2PO4 1.0g,MgSO4?7H2O 0.5g,琼脂 20.0g,蒸馏水 1.0L, pH7.0。培养温度:30℃资源保藏类型:培养物保存方法:真空冷冻干燥法实物状态:有实物共享方式:公益性共享;资源纯交易性共享;合作研究共享;资源交换性共享用途:研究;用于细菌发酵酒精的研究注意事项:仅用于科学研究或者工业应用等非医疗目的不可用于人类或动物的临床诊断或治疗,非药用,非食用(产品信息以出库为准) 二、产品特点1、菌种功能明确、品种稳定、应用 2、产品仅限用于科研本品芽孢含量高,稳定性好、耐高温和挤压 3、繁殖能力快、定植能力强、易存活、耐受低pH值环境 4、复活迅速,可在短期内成为优势种群 5、本品安全高效、无抗药性、不污染环境 6、对多数抗生素不敏感,可与低浓度抗革兰氏阴性菌抗生素同时使用。 三、产品优势1、产品质量稳定,是为科研和提供微生物菌种资源共享服务的专业平台。2、国内首创封闭管包装,冻干后的菌株使用时添加配套的复苏培养基后迅速而完全溶解。针对不同的菌株提供八种不同的培养方法,保证菌种的复苏质量。3、严格的质检程序,确保产品质量的稳定性。4、该类产品广泛使用到食品、药品、化妆品、水产品、化工等行业,疾控中心、质检局、出入境、药检局等等,得到广泛好评。 四、菌种的培养1、菌种是指食用菌菌丝体及其生长基质组成的繁殖材料。菌种分为母种(一级种)、原种(二级种)和栽培种(三级种)三级。工业发酵的有用菌种,其筛选步骤包括菌种分离、初筛和复筛。2、挑选具有某种能力的有用菌种,也称种子制备,是指菌种在一定条件下,经过扩大培养成为具有一定数量和质量的纯 菌种的制备过程。以作接入发酵罐中进一步扩大菌体量及合成产物之用。3、种子制备包括孢子制备和菌丝体制备菌种制备。4、保存在沙土管或冷冻管中的菌种,用无菌手续挑取少许,接入琼脂斜面培养基上,在25℃(或较高温度)下培养5~7天(或较长时间。所得孢子还需进一步用较大表面积的固体培养基以获得更多孢子(对于霉菌类孢子制备,多数采用大米、小米之类的天然培养基)。5、将培养成熟的斜面孢子制成悬浮液,接种到扁瓶固体培养基上,于25~28℃培养14天。将成熟的扁瓶孢子于真空中抽干,使水分降至10%以下,并放入 4℃冰箱中备用。一次制得的孢子瓶可在 上延续使用半年左右。6、如果有些菌种不产孢子,如赤霉素产生菌或产孢子不多的,则可采用摇瓶液体培养制得菌丝体,作种子罐的种子。种子罐的目的是使接入有限的孢子或菌丝体迅速发芽、生长、繁殖成大量菌体。其中的培养基组分应是易于被菌体利用的碳源(如葡萄糖)和氮源(如玉米浆),及无机盐(如磷酸盐)等。作为发酵罐的种子应生命力旺盛、染色深、菌丝粗壮,无杂菌及异常菌体。接种量一般在10%~20%。 五、保藏方法1、传代培养保藏法又有斜面培养、穿刺培养、疱肉培养基培养等(后者作保藏厌氧细菌用),培养后于4-6℃冰箱内保存。2、液体石蜡覆盖保藏法是传代培养的变相方法,能够适当延长保藏时间,它是在斜面培养物和穿刺培养物上面覆盖灭菌的液体石蜡,一方面可防止因培养基水分蒸发而引起菌种死亡,另一方面可阻止氧气进入,以减弱代谢作用。3、载体保藏法是将微生物吸附在适当的载体,如土壤、沙子、硅胶、滤纸上,而后进行干燥的保藏法,例如沙土保藏法和滤纸保藏法应用相当广泛。4、寄主保藏法用于目前尚不能在人工培养基上生长的微生物,如病毒、立克次氏体、螺旋体等,它们必须在生活的动物、昆虫、鸡胚内感染并传代,此法相当于一般微生物的传代培养保藏法。病毒等微生物亦可用其他方法如液氮保藏法与冷冻干燥保藏法进行保藏。5、冷冻保藏法可分低温冰箱(-20-30℃,-50-80℃)、干冰酒精快速冻结(约-70℃)和液氮(-196℃)等保藏法。6、冷冻干燥保藏法先使微生物在极低温度(-70℃左右)下快速冷冻,然后在减压下利用升华现象除去水分(真空干燥)。有些方法如滤纸保藏法、液氮保藏法和冷冻干燥保藏法等均需使用保护剂来制备细胞悬液,以防止因冷冻或水分不断升华对细胞的损害。保护性溶质可通过氢和离子键对水和细胞所产生的亲和力来稳定细胞成分的构型。保护剂有牛乳、血清、糖类、甘油、二甲亚砜等。 欢迎访问微生物菌种查询网,本站隶属于北京百欧博伟生物技术有限公司,单位现提供微生物菌种及其细胞等相关产品查询、咨询、订购、售后服务!与国内外多家研制单位,生物医药,第三方检测机构,科研院所有着良好稳定的长期合作关系!欢迎广大客户来询!
  • 章诒学:Pittcon2014有六个特点
    编者注:3月3日,美国匹兹堡2104报告会暨展览会(pittcon 2014)在芝加哥举行。仪器信息网特别向北京瑞利分析仪器公司技术顾问章诒学老师约稿,章诒学老师以专业的眼光带给我们匹兹堡最新、最有创意的光谱技术、以及参会感想。 章诒学老师研制原子吸收分光光度计已有30多年历史,亲身经历、参与和见证了中国的原子吸收等光谱仪器发展。   据章诒学老师介绍,参观pittcon2014展会的第一印象,它有些像芝加哥这两日的风雪天,寒意十足。第一日展会开幕式上,展览馆馆长就宣布,今年来参加大会的报告会和展会的总人数创下历史新低,只有1.8万人,往年总人数平均都在3万。大会官方宣布的参展商总数也创新低,只有939家,而其中美国公司是716家,倒是参展的中国公司今年增加到44家。实际在展会上看,有不少展台的参展商根本就没有到场。而展会上缺席的著名仪器公司又增加了,除珀金埃尔默公司继续缺席展会之外,安捷伦和耶拿也没有在展会亮相。因此整个展会会场上,能看到高大公司品牌标记、占据大展位面积的仪器公司只有Hitachi\Shimadzu\HORIBA\Thermo\Waters\JASCO六家,其中四家日本公司。   以下为章诒学老师应仪器信息网约稿(www.instrument.com.cn)全文。      一、大型实验室仪器寥寥   今年参展仪器特点之一是更少见到大型实验室仪器。近年来很热的MS,几大公司都没有展出。   三家展出ICP-AES仪器的有Leeman公司Prodigy7型、岛津公司ICPE-9000型、HORIBA公司Ultima Expert型。其中HORIBA公司宣称是新研发的产品。Leeman公司用交直流电弧光源及高压火花光源的AES仪器均未展出。 Leeman公司Prodigy7 岛津公司ICPE-9000型 HORIBA公司Ultima Expert   三家展出AAS仪器的有岛津公司曾经在中国北京BCEIA2013展出的AAS-7000型,另有美国Buck公司的Accusy2100型和加拿大Aurora公司的TRACE1800型。其中Buck公司仪器的火焰原子化系统某些结构设计有新意。   加拿大Aurora公司还展出一台AFS。据了解,是根据购买的国内某公司产品改造而来。 岛津公司AAS-7000型 Buck公司Accusy2100型 Aurora公司TRACE1800型 Aurora公司LUMINA3300/AFS   二、 参展光谱类仪器仍以小型仪器居多   在展台看到多家公司展出光谱仪器,但大多是小型仪器,如UV、VIS、UV/VIS、IR、FTIR等等。有台式,也有不少便携式。国内制造商中,除了经常参展的上海美普达公司外,第一次出席的还有上海尤尼柯公司。   日本JASCO公司展出FT/IR6600、FT/IR4600、VIS670、UV/VIS630四款仪器。 JASCO公司FT/IR4600 JASCO公司FT/IR6600 JASCO公司UV/VIS-630 JASCO公司VIS-670   三、拉曼和近红外仪器渐热   在展台浏览中,印象突出的是Raman光谱仪和NIR光谱仪很多。ABB公司、StellarNet公司展出便携式和在线式FT/IR和FT/NIR光谱仪,美国AXSUN公司展出便携式NIR光谱仪。 StellarNet公司-NIR   四、寻找有创意的产品   创意之一:AnasysInstruments公司展出的nanoIR,与AFM(原子力显微镜)组合,突破传统红外光谱仪分辨率限制,可测纳米尺度样品的物理化学性质。   创意之二:AXSUN公司的便携式NIR,使用基于微机电系统的可调谐激光器为光源,波长范围1350-1800nm,仪器尺寸502× 400× 188mm,重量8,8kg。可用于药品、食品物理化学性质的现场检测。据展商介绍,中国的质检和药检机构对这款仪器感兴趣。 美国AXSUN公司P-NIR   创意之三:Spectrum Scientific 公司的SBC470-B型光谱仪使用凹面闪耀光栅和CCD检测器,体积很小,分辨率更高。 美国SSI公司SBC470-B型CCD光谱仪   创意之四:Snowy Range Instruments公司的手持式CBEx1064拉曼光谱仪,大小尺寸为114× 79× 57mm,与手机相近 重量0.77kg 显示屏是2.8英寸的有机发光﹙OLED﹚电阻式触摸屏。其产品样本介绍,具有先进的ORS﹙Orbital RaserScaning﹚技术。需要质疑的是,2013年12月获得英国《分析科学家》杂志颁发的15项〝分析科学家创新大奖〞之一的美国海洋光学公司的ROS﹙Raster OrbitalScaning﹚技术即栅格环绕扫描技术,是15项大奖中唯一的光谱创新技术。该项技术是用高度聚焦光斑按一定轨道快速扫描样品表面,可大大改善非均质样品的拉曼检测结果,在不损失分辨率的前提下,可提高灵敏度5-10倍。而SRI公司命名的ORS技术,只是名词顺序不同,是否有实质性差异和技术所有权之争,则不得而知。 SRI公司CBEx1064   五、为何仪器辅助设备、耗材、仪器零部件、标样、辅料、工具的参展商多   与我看过的2012年展会相似之处是,与仪器和分析实验室相关的辅助设备、仪器光机电的零部件、耗材、标样、辅料、工具等等的制造商或经销商,来参展的非常多,起码是占据半壁江山。我认为年年如此的道理有两个,一是使用者购买仪器后,经常更换仪器的可能性不大,而耗材、标样以及一些易损零部件、器件是用户永远的需求。二是携带此类产品参展比携带大型仪器参展的成本要低很多,其寻找商机与成本之比是合算的。   六、中国公司参展增加是好事   Pittcon2014大会官方公布的中国参展商数量是44家,比2012年的18家,增加一倍多。除了北分-瑞利、上海美普达这样的常客,多数是第一次出席。例如长春光机所属的长春新产业光电技术有限公司,携带二极管激光器、Q开关激光器、低噪音激光器、便携激光器等首次参展。江苏、浙江、山东、河南、深圳等地均有公司参展。中国的公司在这样的场合,可以很方便的看世界,比差距,寻商机。 (作者:章诒学)
  • ICP-MS盘点(一):主流产品技术特点及典型应用
    p   电感耦合等离子体质谱(Inductively Coupled Plasma - Mass Spectrometry,ICP-MS) 是20世纪80年代发展起来的无机元素分析技术。它以独特的接口技术将ICP 的高温等离子体电离特性与质谱仪的灵敏、快速扫描的优点相结合,形成一种新型的元素分析技术。与电感耦合等离子体光谱(ICP-AES)、原子吸收(AAS)和原子荧光(AFS) 等无机元素分析技术相比,ICP-MS技术具有检出限低、动态线性范围宽、干扰少、精密度高、速度快以及可提供精确的同位素信息等分析特性,性能有较大的提升。ICP-MS还可以与其他技术如高效液相色谱(HPLC)、气相色谱(GC)和激光烧蚀进样系统(LA)联用,进行元素的形态、分布特性等分析。 /p p   近年来,中国ICP-MS市场发展迅速,每年采购量超过600台。而且,未来ICP-MS将是增长最快的无机元素分析仪器。 /p p   最近两年,ICP-MS方法越来越多地被纳入到国家方法标准、法规之中,如:2015版中国药典中,不但新增了ICP-MS法检出限和方法定量限,而且方法可用于I、II、III部。同时2015药典中新增了As和Hg的LC-ICP-MS形态分析方法。2016年3月21日正式实行的《GB 5009.11-2014食品中总砷和无机砷的测定》增加了总砷测定的ICP-MS法以及无机砷测定的LC-ICP-MS法。2016年5月28日,国务院印发了《土壤污染防治行动计划》(简称“土十条”),计划明确指出加强土壤污染防治,逐步改善土壤环境质量等,土壤重金属污染监控是其中重要的一环。随之,环保部发布了与土十条适用的土壤检测标准,其中包括了ICP-MS测定重金属方法。可以预期,未来几年中国ICP-MS市场仍会强势增长。接下来还将有一系列的针对ICP-MS的国家标准即将出台,不只是食品领域,医药、材料等领域的标准都会有,以及ICP-MS计量标准也正在酝酿和讨论中。我们相信,今后所有的相关行业标准都会慢慢的加入ICP-MS方法,ICP-MS方法是未来元素分析的发展趋势。 /p p   2017年中国质谱学会无机及同位素质谱学术会议召开在即(2017年8月18-21日,四川成都),届时,国内外ICP-MS领域专家、以及主流厂商和主流产品齐聚。借此良机,编辑先预热下,为大家介绍下ICP-MS主流产品的技术特点、典型用户及典型应用案例,以及各厂商对ICP-MS的热点市场需求的看法等。 /p p   ICP-MS的主要生产商有安捷伦、赛默飞、珀金埃尔默、德国耶拿、岛津、天瑞仪器、聚光科技、钢研纳克、东西分析等。其主推产品或新产品有:安捷伦8900 ICP-QQQ(2016)和7800 ICP-MS(2015),赛默飞iCAP RQ(2016)和三重四极杆iCAP TQ(2017),珀金埃尔默NexION 2000(2017),岛津ICPMS-2030(2016),德国耶拿PlasmaQuant MS(2015,原瓦里安),天瑞仪器ICP-MS 2000E(2014),聚光科技Expec 7000(2015)和谱育科技(聚光科技子公司)SUPEC 7000(2016,在线),钢研纳克PlasmaMS 300(2016),东西分析OptiMass 9500 ICP TOFMS(2007,原GBC)等。 /p p style=" line-height: 1.5em "    span style=" font-size: 18px " strong span style=" color: rgb(255, 0, 0) " ICP-MS产品技术特点及典型应用 /span /strong (回稿时间排序) /span /p p style=" text-align: center " img width=" 300" height=" 300" title=" 耶拿ICP-MS.jpg" style=" width: 300px height: 300px " src=" http://img1.17img.cn/17img/images/201708/insimg/0ba9110c-892a-4902-90ba-c66e2f3bd18f.jpg" border=" 0" vspace=" 0" hspace=" 0" / /p p style=" text-align: center " span style=" color: rgb(0, 0, 0) " strong 德国耶拿PlasmaQuant MS /strong /span /p p    strong PlasmaQuant MS的技术特点: /strong 仪器灵敏度与性噪比更高,灵敏度达到千兆赫兹,背景噪音保持在1.0以下 整体设计更为环保,后续使用成本更低,比普通ICP-MS节省一半的氩气使用量 操作维护更为方便。 /p p    strong PlasmaQuant MS的典型用户及典型应用案例: /strong 中科院贵阳地化所漆亮老师采用湿法及LA-ICP-MS法测定各类地质样品中元素分布及含量。此类应用更注重仪器的高灵敏度与稳定性,“且”由于仪器整体设计更为环保,后续使用成本更低,操作维护更为方便,因此在实际使用中获得了理想的数据与结果。 /p p style=" text-align: center " img width=" 300" height=" 300" title=" PE NexION 2000.jpg" style=" width: 300px height: 300px " src=" http://img1.17img.cn/17img/images/201708/insimg/e00e9c40-a0bf-4782-96d9-b41a095ed857.jpg" border=" 0" vspace=" 0" hspace=" 0" / /p p style=" text-align: center " strong 珀金埃尔默NexION 2000 /strong /p p    strong NexION 2000的技术特点: /strong 大锥口3锥设计,有效提升基体耐受性,获得超群的长期稳定性 LumiCoil射频发生器线圈,自散热设计,无需水冷和空冷,高纯铝制成,有效避免了氧化和热应力导致的器件退化,几乎无需维护和更换 四极杆离子偏转器(QID),一方面将光子隔离在主四级杆之外,降低由此引起的仪器噪声,另一方面完全将未电离物质隔离在通用池和主四级杆之外,使得质谱仪内部持久保持清洁 通用池技术(UC),可使用包括高纯氨气的反应性气体对干扰进行消除,质谱干扰严重的元素可获得ppt级别的检出限,还可应用电子稀释技术(EDR)调谐离子传输,针对个别元素实现信号稀释,从而在一次样品运行时,实现高低含量同时分析,可扩大分析动态线性范围至12个数量级,优化工作效率的同时保护了检测器的使用寿命 单纳米颗粒/单细胞分析能力:专利的进样系统+业内最快的瞬时数据采集速率+独有的单颗粒/单细胞分析软件,可对纳米颗粒和细胞实现定性定量分析,获得包括纳米颗粒尺寸、含量、个别细胞中包含的金属含量等关键信息。 /p p    strong NexION 2000的典型用户及典型应用案例: /strong 南开大学环境科学与工程学院利用NexION 2000的单颗粒检测功能开展了环境中纳米颗粒的形成机理、结构特性和生物毒性方面的研究。 /p p style=" text-align: center " img title=" 纳克ICP-MS.jpg" src=" http://img1.17img.cn/17img/images/201708/insimg/8ebf268f-3a6d-4948-98c5-8caa83458bfc.jpg" / /p p style=" text-align: center " strong 钢研纳克的PlasmaMS 300 /strong /p p    strong PlasmaMS 300的技术特点: /strong 钢研纳克是唯一一家具有同时生产ICP-MS与激光烧蚀进样系统(LA)能力的仪器厂商。PlasmaMS 300实现了ICP-MS固体直接进样,避免了复杂的样品前处理制备过程 Plasma MS 300与激光原位进样技术结合(LA-OPA),独创了市场上唯一的一款激光原位-电感耦合等离子体质谱仪Plasma MS 300-LA-OPA,结合了钢研纳克独创的原位统计分析功能,在实现材料中各痕量元素成分及夹杂物的含量测定的同时,通过大范围的扫描统计分析,实现元素成分和状态的分布分析。 /p p    strong PlasmaMS 300的典型用户及典型应用案例: /strong 第三方检测实验室的用户利用PlasmaMS 300进行土壤中重金属检测 用户在制备钕铁硼样品时利用PlasmaMS 300对样品中铽和镝两种元素进行元素分布分析,其测试结果与使用的工艺吻合,由此可实现工艺的溯源。 /p p style=" text-align: center " img title=" 安捷伦7900 ICP-MS.jpg" src=" http://img1.17img.cn/17img/images/201708/insimg/fc70973c-1e64-46f9-b2ba-8cc45b600a9f.jpg" / /p p style=" text-align: center " strong 安捷伦7800 ICP-MS /strong /p p    strong 7800 ICP-MS的技术特点: /strong 简单易用:零基础,24小时学会使用和维护,附赠中文教学视频 性能优异:灵敏度高,耐受性好。(酱油无需消解,稀释后直接分析) 维护成本低:维护周期长,保养维护简便,操作者可自行维护。(维护保养无需卸真空,无需打开真空腔) 一体化的色谱联用功能。 /p p    strong 7800 ICP-MS的典型用户及典型应用案例: /strong 环境监测站利用7800 ICP-MS进行土壤、水质、大气中多元素的检测 食品药品检验所利用7800 ICP-MS进行食品中多元素的检测。 /p p style=" text-align: center " img title=" 安捷伦8900 ICP-QQQ.jpg" src=" http://img1.17img.cn/17img/images/201708/insimg/37e85f8f-1e08-44fc-8f84-e580cbe9d184.jpg" / /p p style=" text-align: center " strong 安捷伦8900 ICP-QQQ /strong /p p    strong 8900 ICP-QQQ的技术特点: /strong 精准无忧,扫清一切干扰 灵活反应池技术,20多种反应性/惰性气体供选择,个性化的应用 最佳丰度灵敏度,浓度差异大的相邻元素干扰可彻底消除 最强大的被干扰元素纳米粒子分析能力:如Ti、Si、Fe等元素。 /p p    strong 8900 ICP-QQQ的典型用户及典型应用案例: /strong 高校、科研院所利用8900 ICP-QQQ进行高纯稀土基体中的其他稀土杂质分析或生命科学研究(如单细胞、单纳米粒子、蛋白/多钛绝对定量和磷酸化研究等)。 /p p style=" text-align: center " img title=" 天瑞ICP-MS 2000E.jpg" src=" http://img1.17img.cn/17img/images/201708/insimg/d9a70bea-11de-4b1a-b1f2-02e9952754f9.jpg" / /p p style=" text-align: center " strong 天瑞仪器ICP-MS 2000E /strong /p p    strong ICP-MS 2000E的技术特点: /strong 采用新型的变频等离子体发生器,可直接对有机溶剂进行分析,如100%乙腈 添加全新的碰撞/反应池功能,能有效的消除多原子离子干扰,降低易受干扰元素的检出限 配有专用自动进样器AS 2000,使测试过程更加自动化,提高测试效率等。 /p p    strong ICP-MS 2000E的典型用户及典型应用案例: /strong 核工业领域用户利用ICP-MS 2000E进行核燃料的放射性同位素的分析,初级冷却水的污染分析等。 /p p & nbsp /p p style=" text-align: center line-height: 1.75em " img width=" 300" height=" 169" title=" 谱育科技.jpg" style=" width: 300px height: 169px " src=" http://img1.17img.cn/17img/images/201708/insimg/2e4a0a4b-ca94-4433-a680-a508aed1e104.jpg" border=" 0" vspace=" 0" hspace=" 0" / /p p style=" text-align: center " strong 谱育科技(聚光科技子公司)SUPEC 7000(在线) /strong /p p    strong SUPEC 7000的技术特点: /strong 全中文操作系统,操作简便 环境适应性强 自动化程度高 分析结果稳定可靠 可实现车载和在线应用模式。 /p p    strong SUPEC 7000的典型用户及典型应用案例: /strong 上海青泽原水管理有限公司是上海城投原水公司的子公司,负责上海1/4的原水供应。该公司取水口位于太浦河上,重金属锑Sb经常有超标情况,特别是太湖限流时,锑含量会迅速上升,但是水库不能超过48小时不取水,之前采用人工检测的方式,一小时一组数据,工作量大,人力成本高。安装了SUPEC 7000在线ICP-MS后,实时监测锑金属含量,自动化程度得到了大幅度提升,客户反馈非常好。 /p p style=" text-align: center " img width=" 300" height=" 300" title=" 东西分析ICP-MS.jpg" style=" width: 300px height: 300px " src=" http://img1.17img.cn/17img/images/201708/insimg/f3cc95e7-df13-41da-837e-8d29a18b4d9f.jpg" border=" 0" vspace=" 0" hspace=" 0" / /p p style=" text-align: center " strong 东西分析OptiMass 9500(ICP-TOFMS) /strong /p p   strong  OptiMass 9500的技术特点: /strong 同时获得1-260amu范围内的全部离子信息,具有指纹图谱功能,十分方便谱图比对,也可实现可回溯的半定量分析 对比四级杆ICP-MS,OptiMass 9500拥有更高的分辨率(对U238& gt 1800),分析速度约为四级杆ICP-MS的5倍 OptiMass 9500可以分析宽浓度范围相邻质量数同位素,采集总离子,同位素比精度远远高于四极杆ICP-MS 分析少量样品的激光烧蚀装置提供的是瞬态信号,采用具有同步扫描特点的OptiMass 9500处理是最好的选择。 /p p    strong OptiMass 9500的典型用户及典型应用案例: /strong 中科院生态中心利用OptiMass 9500进行大气灰霾单颗粒物元素筛查。 /p p style=" text-align: center " img width=" 300" height=" 300" title=" 赛默飞ICP-MS.jpg" style=" width: 300px height: 300px " src=" http://img1.17img.cn/17img/images/201708/insimg/301c49e0-3829-4549-8784-7d19eeed6653.jpg" border=" 0" vspace=" 0" hspace=" 0" / /p p style=" text-align: center " strong 赛默飞iCAP RQ /strong /p p    strong iCAP RQ的技术特点: /strong 采样锥、截取锥和提取透镜均安装在一个稳固的接口开门上,直接旋转即可打开该门,维护方便 直角正离子偏转透镜(RAPID透镜)技术实现分析离子的90度偏转和聚焦功能,将光子和中性粒子噪音降到最小,并且大幅提高了分析的稳定性,无需日常清洁维护,离子聚焦的效果更好,从而大大改善了ICP-MS的信噪比 四级杆碰撞反应池QCell Flatapole具有质量筛选功能,结合具有动能歧视效应的氦气碰撞模式,能够获得优异的干扰消除效果,即便是低质量元素(如锂、铍和硼)也可获得ppt级的检出水平 采用了全新的、具有超长点火可靠性的固态射频发生器。 /p p style=" text-align: center " img title=" 岛津ICP-MS.jpg" src=" http://img1.17img.cn/17img/images/201708/insimg/a7b66d18-690f-4d9f-a9c5-9f3f32aee7c6.jpg" / /p p style=" text-align: center " strong 岛津ICPMS-2030 /strong /p p    strong ICPMS-2030的技术特点: /strong 具备助手功能的智能化软件,分别缩短建立方法与数据分析的时间,使效率大大提高。方法开发助手基于内置的全元素数据库,自动选择最佳的质量数和内标元素,并自动给出校正曲线样品的浓度范围。诊断助手能自动检查存在的干扰,提高了数据的可靠性。另一个特点是采用了广受好评的Mini矩管,将氩气的消耗量控制在同类产品的二分之一左右。而且,ICPMS-2030可以使用纯度为99.95%的氩气。ICPMS-2030通过采用Mini炬管系统、Eco模式和99.95%纯度氩气即可运行三种手段,降低了仪器的运行成本,其运行成本低于常规ICP-MS的30%。 /p p    strong ICPMS-2030的典型用户及典型应用案例: /strong 农业部客户使用ICPMS-2030分析农产品和土壤样品,灵敏度等性能表现优异。 /p p   2017年已经过去了大半,相信各ICP-MS仪器厂商都取得了不错的业绩。那么,在2017年接下来的时间以及2018年,又会有哪些需求可能带动ICP-MS市场的增长呢?仪器厂商对市场的变化是最敏感的,那么,让我们来听听ICP-MS主流厂商们对市场是如何看待的吧! /p p style=" line-height: 1.5em "   详细内容见: a title=" " style=" color: rgb(255, 0, 0) font-size: 18px text-decoration: underline " href=" http://www.instrument.com.cn/news/20170815/226740.shtml" target=" _blank" strong span style=" color: rgb(255, 0, 0) font-size: 18px " ICP-MS盘点(二):各大厂商如何看待ICP-MS热点市场需求 /span /strong /a /p p style=" text-align: right line-height: 1.5em " 编辑:刘丰秋 /p p span style=" color: rgb(255, 0, 0) font-size: 18px " /span /p
  • 种子恒温发芽箱的特点及应用范围|莱恩德新品
    点击此处可了解更多产品详情:种子恒温发芽箱  种子恒温发芽箱是一种用于种子发芽和生长的设备,具有温度、湿度和光照等控制系统。下面是一篇关于种子恒温发芽箱的文章的正文内容:    一、种子恒温发芽箱的概述    种子恒温发芽箱是一种专业的种子发芽设备,通过模拟自然环境中的温度、湿度和光照等条件,为种子的生长提供最佳的发芽环境。该设备可以有效地提高种子的发芽率和生长质量,广泛应用于农业、林业和园艺等领域。    二、种子恒温发芽箱的特点    1. 温度控制系统:种子恒温发芽箱具有精准的温度控制系统,可以根据不同种子的生长需求进行调节。同时,具有自动恒温功能,能够保持温度的稳定,避免温度波动对种子生长的影响。    2. 湿度控制系统:湿度是种子发芽的关键因素之一,种子恒温发芽箱具有独立的湿度控制系统,可以根据不同的种子类型和生长阶段进行调节。同时,配有水位指示和水位报警功能,确保湿度的稳定和种子的正常生长    3. 光照控制系统:光照是种子发芽的重要因素之一,种子恒温发芽箱具有独立的光照控制系统,可以根据不同的种子类型和生长阶段进行调节。同时,配有光照强度指示和光照强度报警功能,确保光照的稳定和种子的正常生长。    4. 可编程控制:种子恒温发芽箱具有可编程控制功能,可以根据不同的种子类型和生长阶段进行编程控制,实现自动化管理。    5. 移动便捷:种子恒温发芽箱设计轻便,移动便捷,方便用户在不同场所使用。    三、种子恒温发芽箱的应用范围    1. 农业领域:种子恒温发芽箱可用于研究不同作物种子的发芽特性和生长规律,为农业生产提供科学依据。    2.林依业领域:种子恒温发芽箱可用于研究不同树种的生长特性和适应能力,为林业生产提供技术支持。    3. 园艺领域:种子恒温发芽箱可用于研究不同花卉、草种的生长特性和花期控制,为园艺设计提供帮助。    4.科研领域:种子恒温发芽箱可用于科研实验,为研究不同植物种子的萌发和生长过程提供实验设备。    5. 教育领域:种子恒温发芽箱可用于学校和教育机构的生物课程和实验活动,帮助学生了解植物生长的过程和环境因素对植物生长的影响。    四、总结    种子恒温发芽箱是一种先进的种子发芽设备,具有温度、湿度和光照等控制系统,可以为种子的生长提供最该佳设的备发广芽泛环应境用。于农业、林业、园艺等领域以及科研和教育领域。其移动便捷、可编程控制等特点使得它在不同场所的使用变得更加方便和高效。随着科技的不断进步和发展,相信种子恒温发芽箱的技术和质量会不断得到提升和完善,为植物的生长和研究提供更加可靠的支持。种子恒温发芽箱的特点及应用范围|莱恩德新品
  • 【莱恩德新品】生物病理冷冻切片机的性能特点
    点击此处可了解更多产品详情:生物病理冷冻切片机  生物病理冷冻切片机 ,是对人体及动植物组织作快速病理切片分析的设备。 它广泛应用于医院、 医学院、法医、动植物科研单位作病理诊断、分析、研究之用。    生物病理冷冻切片机的性能特点:  1、彩色液晶触摸显示屏,可分别显示切片总数量和切片总厚度、切片厚度、标本回缩值、温度控制及日期、 时间、温度、定时休眠开关机、手动及自动除霜等功能。  2、人性化休眠功能:在选择休眠状态后,冷冻室温度可自动控制在-5 至-15℃之间,取消休眠后,可以在 15 分钟内达到切片温度。  3、温度传感器自检功能 ,可自动检测传感器工作状态。  4、双压缩机为冷冻箱、冷冻台、刀架及样本夹头、组织压平器五点分别制冷。  5、刀架配彩色刀片推进器及护刀杆覆盖刀片全长 ,安全保护使用者。  6、配置:X 轴 360° .Y 轴 12°万向旋转卡扣式组织夹头 ,安装组织更加快捷。  7、防粘组织压平器加入制冷 ,温度可达-50° ,方便急冻组织 ,节省操作时间。  8、单层加热玻璃视窗 ,有效防止水雾凝结。  9、手轮定位 360°任意点锁紧功能。  10、消毒方式: UV 紫外线消毒。    生物病理冷冻切片机的主要组成部分:  1. 该机上部分为微机控制部分及面板操作 ,温度显示 ,工作状态显示部分。  2. 中间部分为低温冷冻室 ,为活检组织速冻 ,切片操作部分。  3. 下半部分为压缩机组制冷部分。  4. 中后部分为机械传动、 电机驱动部分。【莱恩德新品】生物病理冷冻切片机的性能特点
  • 综述:现代分析仪器及其应用发展的六大特点和有关问题
    李昌厚(中国科学院上海生物工程研究中心 上海 200233)  由于科学仪器是“四两拨千斤”的产业,发展前景非常广阔。基于它在国家的科技、经济、国防、民生和社会发展中战略地位的重要性,在“农、轻、重、海、陆、空、吃、穿、用”各行各业,无所不在,无所不有。所以,加速科学仪器产业发展已成为世界各国关注的重点之一。本文简单介绍我国科学仪器和应用发展的有关情况。  一、分析仪器的主要发展趋势和方向(潮流)  近10多年来,由于纳米级的精密机械研究成果、分子层次的现代化学研究成果、基因层次的生物学研究成果、特种功能材料研究成果和全球网络技术推广应用成果等一大批当代最新技术成果竞相问世,使得全球科学仪器领域发生了根本性的变革。  1、分析仪器发展的趋势(方向):  目前国际上的科学仪器发展总体上呈现出以下的发展趋势:  1)检测原子、分子和组份的仪器向多功能、智能化、网络化方向发展   2)进行分离、分析的仪器向多维分离和分析方向发展   3)生命科学仪器向原位、在体、实时、在线、高灵敏度、高通量、高选择性方向发展   4)检测复杂组份样品的仪器向联用分析仪器方向发展   5)用于环境、能源、农业、食品、临床检验的仪器向专用、小型化方向发展   6)样品前处理仪器向专用、快速、自动化方向发展   7)用于国防和生命科学的仪器向集成化、微型全分析系统方向发展   8)监控工业生产过程的分析仪器向小型化、在线分析、原位分析方向发展。  2、分析仪器的发展潮流  微型、微量、快速、专用、在线检测是目前国际上分析仪器的主要发展方向或发展潮流:  微型:应用需求 便携、占地方小   微量:应用需求 兔子耳窝2微升液体要求做一个方法研究   快速:应用需求 疾控应急、食物中毒、车载、网络实验室   专用:应用需求 流水线、环保、食品   在线:自动化仪器发展的需要 特别是水质检测,每年10亿RMB的市场   因为研发出的仪器是给使用者用的,所以,分析工作者的需求是:微型、微量、快速、专用、在线;所以,分析仪器的发展方向也是微型、微量、快速、专用、在线。  这些方向或潮流,是现代分析仪器研发工作者应该重视的问题之一。  科学仪器是一种高科技产品,它受益于采用各种前沿技术的最新成果,同时也面临各种前沿技术不断地创新和发展的挑战。可以预测,随着信息科学、生命科学、材料科学、能源科学、海洋科学、空间科学、环境科学、民生科学和公共安全科学的发展,以及新技术的不断出现,科学仪器会在微型、微量、快速、专用、在线等方面将不断的创新、不断发展。  二、分析仪器及其应用发展的特点  1、分析测试对象发生了战略转移,对分析仪器提出了更高的要求  众所周知,五十年代以前的分析测试,主要是无机化学领域的定量分析,七十年代前后的分析测试,则以成分分析为主,同时结合结构分析。目前的分析测试,已发生了很大变化,已突破了传统的分析测试专业界限,涉及到现代科学技术的各个领域。  近几年来,国际上高新技术的发展日新月异,令人眼花缭乱,其中最有代表性、最核心和最能代表未来方向的高新技术有六个方面,它们被科学家们称之为六大技术群,即信息技术群、新材料技术群、新能源技术群、生物技术群、海洋技术群和空间技术群。这六大技术群,都离不开现代分析测试技术。  1)信息技术群:它是新兴技术群体的核心和先导,是未来世界的中枢神经系统。但信息技术群中所有仪器设备材料的光、机、电、磁学等性能和成分、结构分析测试都离不开现代分析测试仪器   2)新材料技术群:它是新兴产业的基础,被称为技术发展的骨骼的肌肉组织,但不论有机材料还是无机材料,其结构分析,特别是微观、亚微观结构分析、功能材料分析、微量杂质含量的分析等,都必须依靠现代分析测试仪器。  3)新能源技术群:是替代传统石油、煤等燃料能源的途径,是未来社会物质运作的动力源泉,相当人体的心血管系统,但它的每一细小环节,都少不了分析测试。  4)生物技术群:是前沿科学中的前沿,是利用生物体及其组织和功能的全新领域,开发前景广阔。但生物体及其组织和功能的开发研究、复杂体系的分离、生物大分子的测试、生物活性的测试、空间构象的测试等都必须要有分析测试仪器。  5)海洋技术群:是充分利用和开发占地球表面71%的海洋和海底资源的现代手段,但海洋和海底物质资源的提纯、分离等,都涉及到现代分析测试仪器。  6)空间技术群:是当今科技发展的伟大象征,是探索地球、太阳系、银河系、乃至整个宇宙的新起点,但空间技术中的新材料和太空物质资源的开发研究等,都与分析仪器发展密切相关。  综上所述,纵观当今世界上科技发展的现状和世界分析测试技术发展的历史,人们会深深认识到现代分析测试技术领域已发生了巨大变化,出现了一个明显的特点,那就是分析对象已经发生了战略性的转移,已经从过去的成分分析和一般的结构分析,发展到了趋向于从微观和亚微观结构这两个层次上去寻找物质的功能与物质结构之间的内在关系,寻找物质分子间相互作用的微观反应规律。同时,要求进行快速、准确的定性和定量分析。可以说,分析对象的战略转移对分析仪器的要求进一步提高,或者说分析仪器必须适应分析对象的战略转移,这是现代分析仪器和应用发展的第一个特点。  2、分析测试技术的难度明显增大,分析仪器必须相适应  随着现代分析测试对象的战略转移,分析测试研究的深度、广度和难度都发生了很大的变化,特别是当今的分析测试技术的难度,比过去有明显增大。纵观世界上分析测试技术领域的现状,可以明显看出,当今世界上分析测试技术的主要难点集中反映在以下三个方面:第一,大分子的分析测试 第二,复杂体系的分析测试 第三,动态分析测试。  所谓大分子的分析测试,主要指生物分子的微量提纯和分离、结构的测定(一级、二级、三级结构测定)、表征生物大分子活性的空间构象的测定、细胞的骨架、细胞膜、受体细胞等的测定等等。这些都是当代分析测试技术中的难点。  所谓复杂体系,主要指材料科学。材料科学本身就是复杂体系,再加上添加剂、辅助剂等就更加复杂。有时只要万分之几或十万分之几的添加剂,就可以改变材料的全部特性,如离子束注射技术就是如此,只需在材料中注入极少量的离子,材料的机械、电子、光学、磁学等特性就会发生极大的变化。例如,目前全世界一致公认,人工心脏瓣膜的最好材料是热解碳,但它有凝血性。热解碳做成的人工心脏瓣膜装入人体后,病人必须长期每天吃药,以使血液流过人的心脏时,不产生血栓,否则会导致生命危险!但吃药后,又有副作用,尤其对有生育能力的人影响极大。为此,我国的科技工作者,用离子束注射热解碳,再用它做成人工心脏瓣膜,就可提高抗凝血性,所以装入人体后,可以不吃药。这是一个有重大意义的课题,但其分析测试工作的难度很大,既要作离子束注射后热解碳的材料分析,又要作动物乃至人体的血液相溶性分析测试,工作量巨大,要求很高 又如无机大分子,有机高分子和簇类物质(原子、分子簇,即人们所讲的纳米材料)的聚合态结构研究,特别是其三维分子结构、低维分子结构、分子取向度、表面结构等的分析测试,都属于材料科学的难点。并且,这些方面的分析测试工作都属于当代材料分析测试技术中的热点。人们正在开展纳米结构半导体发光材料的研究,这是材料科学中一个有重大意义的课题,但其分析测试非常困难。因要寻找晶粒在一定程度上可控的纳米薄膜,以制备高致密度、与衬底有高结合力的纳米晶粒薄膜,故分析测试工作量很大,且难度非常大。这项工作在微电子学中有重大意义。  还有,现代分析测试技术中,往往要求快速、准确的解决被测对象中某些组分的含量,如钢铁、冶金、机械等行业中最普遍,而又是最重要的C、S、Mn、Si、P等含量的现场、快速、实时的分析测试就是如此,这些实时的现场快速分析测试,也是相当难的。  所谓动态测试,主要指的是反应动力学。在对亚稳态、分子、离子、自由基等物质的实时分析测试时,全部要求在动态过程中进行。就拿一个简单的化学反应来讲,一般我们知道的是反应后的结果产物,分析测试的也是反应结束后的最终产物。但若要知道反应过程中,任何一个△t时间上的具体细微信息,就相当困难了。如果是一个复杂体系的动态测试,那就更难了。  综上所述,分析测试的难度明显增大,对分析仪器的要求就会提高。这是现代分析仪器和应用发展的第二个特点。  3、现代分析测试技术涉及的专业面越来越广  随着分析对象的战略转移,分析测试技术涉及的专业也发生了变化。因为要寻找物质的功能与物质的结构间的内在关系,要寻找物质分子间相互作用的微观反应规律,要快速、准确的测定成分和结构,首先要解决的就是要得到物质的有关信息。因此,如何获得信息,是解决分析测试问题的首要前提,信息获得就成了分析测试的重要基础。而现代科学仪器是信息的源头,它包含许多基础科学和应用学科方面的内容,包含许多边缘科学、交叉学科、实验技能知识。现代分析测试技术必须依赖于现代科学仪器。分析技术涉及的面越广,对仪器的要求就越高。这是现代分析仪器和应用发展的第三个特点。  4、要求分析仪器制造者和使用者,越来越重视仪器学理论  由于分析对象转移、难度增大、涉及的面更广,做仪器和用仪器的人就需要有理论支撑,这个理论就是仪器学理论。仪器学理论是一种综合性学科的理论,是一门涉及到多个领域的、复杂的、交叉的、边缘学科的理论,是涉及到光学、机械学、电子学、计算机、应用等各个领域的理论,特别是现代分析仪器,都离不开这些方面。  仪器学理论是一切科学仪器研发者、生产者、使用者,是最基本、最重要的理论之一。  目前,很多仪器设计者没有重视仪器学理论,往往出现数据不准确或发生疑虑时、分析数据与文献值不一致时,大家就不知所措!如:当试样很稀或很浓时,分析误差很大!但是中等浓度时,分析误差就正常,为什么?这个问题很多人不清楚!因为,从仪器学理论来讲,所有根据比耳定律设计的分析仪器,都只能适用于一定浓度 噪声N都是限制被分析样品浓度下限的。根据仪器学的S/N理论:信号S一定,噪声N大,则仪器S/N就小、灵敏度就低。同时仪器的分析测试误差就会大。而杂散光SL是限制被分析样品浓度上限的,试样很浓时,浓度与吸光度不成正比、就偏离比耳定律,分析误差就会很大。如果有人要求用UVS检测0.0004Abs的样品,这是违背仪器学理论的。目前世界上最好的UVS,美国Varian的6000i,其BF(基线平整度,表征仪器全波长范围内的每个波长上的噪声)为± 0.001 Abs,仪器的噪声都比0.0004Abs大几倍,根本不能检测0.0004Abs的样品。所以,懂了一点仪器学理论,你才会知其然,也知其所以然,才会当仪器出现误差大、不稳定、重复性差等问题时,能够解释或顺利解决。所以,越来越需要和重视仪器学理论是现代分析仪器和应用发展的需要,也是现代分析仪器和应用发展的第四个特点。  5、分析仪器制造者和使用者结合越来越紧密  分析仪器是给仪器分析工作者使用的,因此仪器分析工作者对分析仪器的要求是“好用” 所谓“好用”,就是分析仪器要稳定可靠 而所谓稳定,就是漂移小、重复性好 所谓可靠,作者在30年前提出,应分为狭义和广义两种。狭义可靠性主要指分析仪器的故障率,它不能全面完整的表达可靠性的内涵。仪器故障不出,但是,分析测试的数据不准,这是最大的不可靠。所以作者提出了广义可靠性的定义,即指分析仪器的可靠性,主要指分析测试数据的准确度高、稳定性好、故障率低和售后服务好。因此,分析仪器的优劣,要在分析测试工作中检验,应由仪器分析工作者来评价。使用者是裁判员,分析仪器的好坏,必须要经过分析测试实际使用的检验后才能下结论!由于许多分析仪器研发、制造工作者,不了解使用者如何使用分析仪器,不了解使用者的思路,导致做仪器和用仪器的人脱节,互不沟通。所以,做出的分析仪器有时不大好用,甚至不好用,这是造成我国分析仪器落后的主要原因之一。所以,分析仪器制造者如果离开使用者,就没有目标。  一台(或一种)新的分析仪器问世,必定是来自仪器分析工作的需要或仪器分析工作的实践。许多分析仪器都来自应用实践的需求。如:八十年代中期,中科院上海有机化学研究所的知名有机化学家汪猷教授在核酸的研究中发现:五种核苷中有的对UVS有吸收,有的对UVS没有吸收 有的有天然荧光,有的没有天然荧光 国外用HPLC分析测试时,往往用两种检测器(紫外、荧光)串连检测,这样,会使峰形扩散,降低灵敏度。当时,汪猷教授提出,能否研制一种紫外/荧光同时检测(记谱)的HPLC检测器?作者根据他的要求(实践需要),在他的启发下,与他紧密结合,很快发明了一种紫外可见分光光度计和荧光光度计一体化设计、一机两用的多功能新型仪器。它作为HPLC检测器,只需要8微升样品,一次进样,就可得到试样的紫外和荧光两种信息。该仪器大大减少了试样的扩散,具有很高的灵敏度。并且一次进样,可将五种核苷中的发荧光和不发荧光、有紫外吸收和没有紫外吸收的核苷区分开。该仪器1988年获得了国家发明奖,至今还未见国外报道过同类仪器。这就是分析仪器来自分析测试工作实践的一个很好的典型例子。我们的仪器研发人员应该重视研发仪器与使用仪器的关系。要走出去,向用户学习。从他们那里吸取营养、拓宽思路。  还有,诺贝尔化学奖得主之一是日本岛津公司的田中耕一,他之所以能得诺贝尔化学奖,主要是他提出了“基体辅助激光解吸质谱法”,这是一种对生物分子进行确认和结构分析的新方法。他用激光照射成团的生物大分子,成功的将生物大分子完整地相互分开,并电离,再用飞行时间质谱来测量。这一发明解决了世界上两大难题:第一,解决了成团的生物分子的结构和成份不受破坏地拆成单个分子的难题 第二,解决了用飞行时间质谱来测量分子量大到50-60万的生物大分子的难题。这一发明,使人类可以通过对蛋白质的详细分析,从而加深对生命进程的了解,使新药开发发生了革命性的变化,并在食品控制、癌症的早期诊断等领域有广泛的应用!我们可以设想一下:如果没有先进的激光仪器和先进的飞行时间质谱仪器,田中耕一能发明“MALDI-TOF-MS”方法吗?他能得诺贝尔化学奖吗?回答是不能。  以上事实,足以说明仪器分析工作者(用仪器)与分析仪器(生产仪器)之间的关系。更能说明分析仪器与仪器分析必须紧密结合、相互沟通、相互促进,这个问题,必须引起广大分析仪器工作者的极大关注。这是当前世界分析仪器和应用发展的显著特点之五。  6、正在朝着联用技术方向大发展  联用技术的迅速发展,是当前国际上分析仪器及其应用发展的热门话题之一。很多工作,某一种技术解决不了,但是,两种或多种技术联用就迎而解了。例如:单纯一台薄层扫描仪器或单纯一台拉曼光谱仪器都不能解决的问题,二者联用(薄层扫描仪起分离作用,拉曼光谱仪起检测作用),问题就很容易解决了,这对复杂体系、中药的分析等特别有意义。又如:FIA(流动注射分析)与AAS联用、ICP-MS、LC-MS、GC-MS等等均系如此。所以,联用技术发展,在集成创新方面将有广阔的前景,它是现代分析仪器及其应用发展的显著特点之六。  三、有关问题  1、再次希望分析仪器和应用行业的广大科技工作者注重学习,要特别重视仪器学理论、要不断注意扩大自己的知识面、多参加各类专业学术会议、多看文献、重视与同行之间的交流、不断提高和充实自己。特别是仪器使用者,一定要注意研究影响分析误差的五大主要因素及其排除方法(作者将另文论述)。  2、建议大家参考以下几本书。这些书的内容都具可操作性。因为作者在大学里学仪器,毕业后,50多年来一直使用仪器、研发仪器、维修仪器。这些书是作者的经验教训总结,既有仪器学理论内容,又有应用实践的内容 对研发仪器、生产仪器、使用用仪器、维修仪器和管理者都有参考意义。这五本书都是著的,而不是编的。它们是:  (1)李昌厚著,《紫外可见分光光度计》,北京:化学工业出版社,2005。  一般科技新书首印2000册 这本书首印4000册,后来重印过两次,总共销售1万多册。内容都具有可操作性。  (2)李昌厚著,《紫外可见分光光度计及其应用》,北京:化学工业出版社,2010。  这本书有很多设计、使用的具体例子,都具有可操作性。  (3)李昌厚著,《原子吸收分光光度计仪器及其应用》,北京:科学出版社,2006  这本书很多科技工作者作为起蒙书籍在读。特别是分析行业的研发生产仪器、使用仪器、维修仪器、销售仪器的人,都有参考价值。  (4)李昌厚著,《仪器学理论与实践》(仪器学理论与光学类分析仪器整机及关键核心部件的设计、制造、测试、使用和维修),北京:科学出版社,2008  仪器学理论是研发仪器、生产仪器、使用仪器、维修仪器的科技工作者必须了解的基础理论 它可以保证你掌握仪器指标与分析误差的关系、使你做出优质仪器 可以使你把仪器用到最佳水平、得到最佳的、最可靠分析数据。  (5)李昌厚著,《高效液相色谱仪器及其应用》,北京:科学出版社,2014  此书三位院士作序。第六章“HPLC一百问”得到了很多读者青睐。  目前分析仪器类的书很多,特别是光谱、色谱仪器方面的书更多。但大多都是专讲仪器或专讲应用,真正将仪器和应用有机结合起来介绍作者的科研成果的书比较少。上述5本书在仪器及其应用的结合方面有独到之处,建议读者参考。  主要参考文献从略。仪器信息网特约撰稿人招募中,丰厚稿酬等您来!!!  投稿人职称在副研/副教授以上,喜欢以文会友 稿件要求原创 内容完整,无需修改,单篇1000字以上 一经录用,单篇稿件稿费500-1000元!  内容:聚焦科学仪器及分析测试行业(拒绝广告),包括但不限于:仪器及技术发展综述 仪器/技术/应用/方法等重大成果研究进展 相关政策、法规、标准解读 仪器技术发展趋势/方向展望/预测 仪器行业“观点”分享… …   投稿邮箱:yej@instrument.com.cn
  • DF-100型火花直读光谱的特点及应用
    应用及特点: DF-100型光谱仪广泛应用于冶金、机械及其它工业部门,进行冶炼炉前的在线分析以及中心实验室的产品检验,是控制产品质量的有效手段之一.主要用于对各种金属及合金材料中化学元素的精确成分分析,进行定性、定量的检测,方便、快捷.DF-100型光谱仪借鉴了多国仪器的先进功能,经过本行业专家、学者的精心打造,突出仪器使用的稳定、方便、快速的特点,以其卓越的性能,全新的设计,先进的技术跻身到光谱仪生产的国际市场. 技术参数: 1光学系统 --巴邢一龙格架法,温度稳定结构 --光栅焦距750mm --全息凹面光栅,刻分别为2400条/mm 3600条/mm --波长范围120-800nm --色散率 2400条/mm光栅,0.55nm/mm 3600条/mm 0.275nm/mm(1级光谱) --光路氩气冲洗系统 2.火花台 --最小氩气用量的冲氩式激发室 --易于更换的火花台盖板 --快速更换试样的火花架 3.光谱分析系统控制和数据处理系统 --12位模/数转换器 --3.5英寸,1.4MB软盘驱动器 --品牌电脑(17英寸液晶显示器) &ndash 品牌打印机 4.内部恒温系统 --仪器内部温度恒定在30+_0.2摄氏度 5.分析软件 --强度,强度化,再效准强度比,校正强度比,校正通道浓度值,实际浓度值.类型再校准浓度值输出. --根据用户要求,可自动或人工计算多次分析结果的平均值及统计数据的计算(RSD,CV) --根据含量范围自动选择谱线 --干扰元素的加合及多重校正 --基体校正 --工作曲线的多项式及多边形拟合 --类型再校准,再校准 --自动标记超过工作曲线范围的分析结果 --可自动或人工控制向外部计算机,附加打印机和显示器传送数据 --硬件自诊断功能 6.校准软件 --自动或手动选择多项式拟合工作曲线 --光谱干扰的计算和干扰元素的计算 --标准样品的分组鉴别 --标准样品的目录 --易于操作的&rdquo 下拉式&rdquo 菜单 --常规操作功能键 --DF数据管理软件
  • 默克无菌检测培养基的特点
    相信经过前两期小编的详细介绍:无菌成品检测培养基的生产工艺,验证情况等,大家已经对无菌检测培养基有了初步了解了。那么,小编会给大家总结下成品培养基的特点。照例,在新解说开始之前,我们先进行一个小测验。这么多天过去了,不知道大家还记得多少呢?问:无菌检测培养基的严格的生产流程包含哪些?选择高质量的干粉培养基做为原料,使用一次性无菌耗材转移至灌装线对瓶子进行纯化水清洗,并干燥使用一次性过滤器降低生物负载并截留颗粒使用一次性管路进行罐装灭菌程序灭菌目视检查澄清度问:无菌检测培养基的验证包括哪些验证?答:物理特性的验证微生物特性的验证包装性能的验证不记得的小伙伴们,戳生产工艺复习哦!现在正式进入无菌检测培养基的特点篇无框式螺旋帽优化消毒程序这种无框式设计在擦拭消毒的时候,有效规避死角,都可以消毒到可以避免消毒剂在表面的残留,从而引发假阴性大直径隔垫易于操作人员安全高效刺入大直径的隔垫,方便插入,有效避免了粒子脱落。尤其是冲洗液的隔垫,常规设计的需要多次插入,使用这个大直径隔垫就方便多了二维码追溯系统产品瓶子上的二维码,记录了产品货号,批号,有效期等信息,通过扫码枪扫描就可以读取,使用更方便。满足很多公司对日益严格的数据完整性需求。颜色-外包装盒及螺旋盖易于分辨 不同的产品颜色不同,这样使用的时候就不容易出错。绿色是TSB红色是FTM黑色是冲洗液从无菌检测培养基的工艺到验证,再到这篇文章,我们向大家简单介绍了产品的部分情况与优点,希望能够给大家带来一些有用的知识,提高工作效率。相见不嫌晚为了更好得供应中国用户,默克无菌检测培养基得产品线已经在南通的生命科学亚太区生产中心生产了! 在保证质量的同时,大大缩短了供货周期。以下是具体的产品货号,如果您有相关需求,可以扫描下方二维码简单登记,我们将尽快与您联系。感谢您对默克微生物检测的支持!
  • Waters 高效液相色谱分析柱特点(二)
    高效液相色谱分析柱   USP 分类号 pH范围(室温下) 温度限制 粒径 孔径 比表面积 含碳量 XBridge HPLC色谱柱 对应于UPLC柱供方法无忧转移、提升效率:ACQUITY UPLC BEH 系列, 1.7&mu m BEH300 C18 (肽分离技术,参见&ldquo 肽分离技 术&rdquo 章节)   L1 1-12 Low pH = 80℃ High pH = 60℃ 3.5, 5, 10µ m 300Å 90m2 /g 12% 选择性特点:对pH和温度耐受稳定,大孔径,C18,专用于肽分析与纯化,按肽谱方法特别质控。柱规格覆盖从UPLC柱到OBD制备柱。产品详细见于肽分离专用色谱柱分。 键合相:基于亚乙基桥杂化颗粒(BEH)基质的三键键合C18,全封端 BEH300 C4 (蛋白质分离技术,参见&ldquo 蛋 白质分离技术&rdquo 章节)   L26 1-10 Low pH = 80℃ High pH = 50℃ 3.5µ m 300Å 90m2/g 8% 选择性特点:对pH和温度耐受稳定,大孔径,C4,专用于蛋白反相分析,按蛋白混标特别质控。产品详细见于蛋白质分离专用色谱柱部分。 键合相:基于亚乙基桥杂化颗粒(BEH)基质的专利的单键键合C4 BEH C18 (寡核苷酸分离技术 ,参见&ldquo 寡核苷酸分离技术&rdquo 章节)   L11-12 Low pH = 80℃ High pH = 60℃ 2.5µ m 130Å 185m2/g 18% 选择性特点:对pH和温度耐受稳定,小孔径,C18,专用于合成DNA和RNA的分析与纯化。按合成DNA阶梯混标特别质控。柱规格覆盖从UPLC柱到HPLC柱。产品详细见于寡核苷酸分离专用色谱柱部分。 键合相:基于亚乙基桥杂化颗粒(BEH)基质的三键键合C18,全封端 SunFire HPLC色谱柱 C18 L1 2-8 Low pH = 50℃ High pH = 40℃ 2.5, 3.5, 5,10µ m 100Å 340m2 /g 16% 选择性特点:通用型方法开发色谱柱。极高的样品载量,特别适用于在低pH条件下对碱性分析物的分析与分离。特别适用于纯化制备与杂质表征。 键合相:二键键合C18,全封端,基于高纯硅胶基质 C8 L7 2-8 Low pH = 40℃ High pH = 40℃ 2.5, 3.5, 5,10µ m 100Å 340m2 /g 12% 选择性特点:通用型方法开发色谱柱。极高的样品载量,特别适用于在低pH条件下对碱性分析物的分析与分离。疏水性稍弱,因此相对于C18柱对大多数分析物的保留性弱。 键合相:二键键合C8,全封端,基于高纯硅胶基质 Atlantis HPLC色谱柱 T3 L1 2-8 Low pH = 45℃ High pH = 45℃ 3, 5, 10µ m 100Å 330m2/g 14% 选择性特点:保留极性化合物,与100%水相流动相完全兼容,在低pH条件下具有卓越的稳定性。特别设计用于增强对极性分析物的保留。 键合相:基于高纯硅胶基质的T3(C18)键合相与封端技术 HILIC L3 1-5 Low pH = 45℃ High pH = 45℃ 3, 5µ m 100Å 330m2/g 无键合 选择性特点:对高极性、碱性、水溶性分析物的保留极佳。特别设计并经质控测试用于在高有机相比例条件下的HILIC分离 键合相:未经键合的高纯硅胶颗粒 dC18 L1 3-7 Low pH = 45℃ High pH = 45℃ 3, 5,10µ m 100Å 330m2/g 12% 选择性特点:保留极性化合物,与100%水相流动相完全兼容 键合相:基于高纯硅胶基质的二键键合C18,全封端 HSS HPLC色谱柱 对应于UPLC柱供方法无忧转移、提升效率:ACQUITY UPLC HSS 系列, 1.7&mu m HSS C18 L1 1-8 Low pH = 45℃ High pH =45℃ 3.5, 5µ m 100Å 230m2/g 15% 选择性特点:高性能C18固定相,增加了保留能力,峰形卓越,在低pH条件下抗酸性水解。设计满足用户需要硅胶基质C18选择性的UPLC分离时。可在UPLC与HPLC之间进行无缝转移。 键合相:高覆盖的三键键合C18,全封端,基于高强度硅胶(High Strength Silica,HSS)HPLC硅胶颗粒。 HSS C18 SB L1 2-8 Low pH = 45℃ High pH= 45℃ 3.5, 5µ m 100Å 230m2/g 8% 选择性特点:独特的、未经封端的C18固定相,为方法开发科学家特别设计。为低pH条件下对碱性分析物提供独特的选择性(Selectivity for Base,SB)。可在UPLC与HPLC之间进行无缝转移。 键合相:中等覆盖的三键键合C18,无封端,基于高强度硅胶(High Strength Silica,HSS)HPLC硅胶颗粒。 HSS T3 L1 2-8 Low pH = 45℃ High pH = 45℃ 3.5, 5µ m 100Å 230m2/g 11% 选择性特点:能兼容于全水相的HPLC色谱柱,设计用于极性分析物的保留。可在UPLC与HPLC之间进行无缝转移。 键合相:基于高强度硅胶(High Strength Silica,HSS)HPLC硅胶颗粒的T3(C18)键合相与封端技术 *SunFire与Atlantis HPLC柱不提供亚二微米粒径规格 所有系列均有制备柱产品可供无忧放大,详见&ldquo 制备色谱产品&rdquo 章节。
  • 盘点:部分主流飞行时间、离子阱质谱产品及其技术特点
    p   2017年10月,第十七届北京分析测试学术报告会暨展览会(BCEIA 2017)召开期间,仪器信息网邀约飞行时间、离子阱质谱市场的部分主流厂商,汇总了各品牌质谱仪主流产品的技术特点和应用案例,并请各厂商预测了未来一段时间内此类仪器的市场热点及潜力。由于篇幅所限,本文首先盘点了部分主流厂商产品及技术特点(下文按约稿回复先后排序),后续文章将继续其他主流产品的盘点。 /p p   strong  品牌:安捷伦 /strong /p p style=" text-align: center " strong img width=" 550" height=" 367" title=" 安捷伦液质.jpg" style=" width: 550px height: 367px " src=" http://img1.17img.cn/17img/images/201710/insimg/5f0f6d45-10aa-41b3-b2b9-38acda751d89.jpg" border=" 0" vspace=" 0" hspace=" 0" / /strong /p p style=" text-align: center " strong Agilent 6545XT AdvanceBio LC/Q-TOF /strong /p p    strong 液质 /strong strong 型号: /strong strong Agilent 6545XT AdvanceBio LC/Q-TOF、Agilent 6560 ion mobility QTOF 质谱系列 /strong /p p    strong 技术特点: /strong 其中6545XT是一套专门为生物药研究和分析的用户设计的完整解决方案,是一款集分离色谱柱、6545QTOF以及生物药专业分析软件Bio confirm,涵盖样品前处理、分离、检测和分析的产品。保证biopharm科学家们更加高效地表征生物分子的结构和功能,从而加快药物上市时间并提高药效。另外值得指出的是,被优化的6545XT也用于发现完整蛋白质、肽谱分析以及鉴定翻译后修饰。关于6560 离子淌度质谱更加有效地在质量过滤的基础上提供更多一维的分离,提供更详细的信息。6560离子淌度 Q-TOF 液质联用系统除可提供无与伦比的分离能力、灵敏度和选择性外,还可揭示传统高分辨率液质联用系统无法提供的结构信息。 /p p    strong 应用案例一: /strong 某地商检用6545飞行时间质谱接Dart源快速筛查并定量鸡蛋中氟虫腈,每个样本检测时间6S。常规定量分析连接色谱柱最少5分钟完成每次检测,该方法极大提高分析效率,真正意义上实现高通量。 /p p    strong 应用案例二: /strong 某有机化学研究所使用的秘密武器是Agilent 6560离子淌度飞行时间质谱。在活性物质的分析和鉴定过程中,无需液相色谱分离,采用直接进样方式,最大限度保持中间产物的活性时间,借助离子淌度 Q-TOF系统,除质量过滤外对化合物增加了另一个信息维度,实现相同质量不同结构化合物的分离和捕捉,揭示化合物分子质量及结构信息。 /p p    strong 市场分析: /strong /p p   除了在食品行业常规筛查,环境领域污染物筛查等方面应用外,在生命科学领域疾病研究、药效分析等方面代谢组学相关的物质代谢逐步成为今后发展的新方向以及逐渐扩展的生物药领域。 /p p style=" text-align: center " img width=" 400" height=" 430" title=" 安捷伦7250.png" style=" width: 400px height: 430px " src=" http://img1.17img.cn/17img/images/201710/insimg/a3b5d3c3-ce93-4bd8-a9a5-5aa1899588c8.jpg" border=" 0" vspace=" 0" hspace=" 0" / /p p style=" text-align: center " strong Agilent 7250 GC/Q-TOF /strong /p p    strong 气质 /strong strong 型号: /strong strong Agilent 7250 GC/Q-TOF 气质联用四极杆飞行时间质谱 /strong /p p    strong 技术特点: /strong 相对于其他品牌,这款质谱首先表现在采用了低能量EI源的设计。因此就保证了能在保证离子化效率的条件下,获得更多分子离子,更加有助于定性和定量未知化合物 同样重要的是,这款仪器分辨率和灵敏度也有较大提升,特别适合进行筛查或者其他高通量定性定量工作。 /p p    strong 应用案例: /strong 安捷伦与环境所老师进行的短链氯化石蜡(SCCPs)分析,是这款四极杆飞行时间质谱很好的应用案例。客户使用这款仪器,对于膳食暴露的SCCP分析取得了很好的结果。采用这款仪器可以避免大量异构体和同系物的干扰,同时降低了对于标准物质的依赖。可以在极低的浓度水品和复杂的基质条件下对SCCPs进行定性和定量工作。 /p p    strong 市场分析: /strong 除了在SCCPs这样的污染物分析中的应用,气质飞行时间质谱还可以应用与成分解析,天然有机物分析等工作。比如烟草成分的分析、嗅味物质分析等等。 /p p    strong 品牌:布鲁克 /strong /p p style=" text-align: center " img width=" 400" height=" 421" title=" 布鲁克.jpg" style=" width: 400px height: 421px " src=" http://img1.17img.cn/17img/images/201710/insimg/4320709a-cab9-4a1d-94f7-9404fd4737b5.jpg" border=" 0" vspace=" 0" hspace=" 0" / /p p style=" text-align: center " strong Bruker TimsTOFTM Pro捕集离子淌度质谱 /strong /p p strong   型号:Bruker TimsTOF sup TM /sup Pro捕集离子淌度质谱 /strong /p p    strong 技术特点: /strong 这款质谱基于Bruker专利的捕集离子淌度技术,针对鸟枪法蛋白质组学用户的需求进行了优化。全新的平行累积连续碎裂(PASEF)技术可以对离子依次进行累积、淌度分离、MSMS裂解、TOF检测,从而实现接近100%的离子利用率,随之带来了质谱灵敏度的大幅提高,为鸟枪法蛋白质组学提供了全新的解决方案。 /p p    strong 应用案例: /strong /p p   德国Max-Planck-Institute的Matthias Mann教授,首先提出了PASEF的概念,并与Bruker公司合作,将这一设想付诸实践。通过PASEF技术,Matthias Mann教授实现了对复杂样品的深度蛋白质测序。此外,Matthias Mann教授已经将该技术应用与临床蛋白质组学研究,显示了该技术的巨大应用潜力。 /p p    strong 市场分析: /strong 市场对飞行时间质谱的需求会继续上升,随着质谱灵敏度的不断提高,将继续扩大飞行时间质谱的应用领域。 /p p    strong 品牌:沃特世 /strong /p p style=" text-align: center " img width=" 331" height=" 315" title=" 沃特世产品.png" style=" width: 331px height: 315px " src=" http://img1.17img.cn/17img/images/201710/insimg/ee51113c-9a08-4b0f-89b4-4cc5f0a55aa1.jpg" border=" 0" vspace=" 0" hspace=" 0" / /p p style=" text-align: center " strong Waters Vion IMS QTof 离子淌度质谱 /strong /p p   strong  型号:Waters Vion IMS QTof 离子淌度质谱 /strong /p p   技术特点:Waters是第一个将淌度技术商品化的公司,无论是在硬件还是在软件,在使用淌度技术方面都积累了丰富的经验,同时,Waters的客户也使用淌度技术发表了大量的文章。近年来,Waters新推出的带离子淌度的高分辨质谱Vion IMS QTof,可以说是淌度质谱里程碑式的产品,它将复杂的淌度技术通过强大的智能软件平台的处理,整合成常规的、可应用于日常检测的一款淌度高清质谱。它可以提供除保留时间(RT)、荷质比(m/z)在外的另一维度漂移时间(drift time)或碰撞横截面积(CCS值)的分离,可得到更丰富的样品信息,为结果的判断提供更有利的证明。此款淌度高清质谱将淌度池置于了四极杆的前端,可实现一级母离子的淌度分离、选择,并通过专利型的压力控制器来调节淌度池内的压力变化,保持淌度池内的压力及真空度,减少前端液相色谱及大气压离子源对淌度池内压力的影响,使漂移时间和CCS值更稳定。 /p p   CCS值,这种跟化合物本身结构、分子形状和带电状态有关、而不受样品基质影响的物理参数,已被大量文献证明可用于筛查或鉴定化合物的重要参数。Waters通过多年与用户的合作,已积累大量化合物关于CCS值的数据库,如农药和兽药的CCS数据库、代谢组学CCS数据库等,都可以使化合物的筛查和鉴定变的更加轻松,更加准确。 /p p   多年来,由于提供数据信息较多,数据量较大,软件一直是制约淌度质谱发展的瓶颈,而Waters近年来在质谱软件平台上有了突飞猛进的发展,推出的UNIFI软件,不但在合规性方面无可匹敌,也可以非常人性化地处理包含代谢、筛查、大分子等高分辨质谱常用领域的各种数据,在处理淌度质谱数据时也非常轻松,可直接提供用户所需要的包含CCS值的所有信息。也正是由于软件的巨大进步,使以前只能用于研究领域的淌度概念使用起来更加方便、简单易用,使之应用于日常的常规检测中来,更大限度发挥淌度的作用。 /p p style=" text-align: center " img width=" 550" height=" 344" title=" 沃特世.png" style=" width: 550px height: 344px " src=" http://img1.17img.cn/17img/images/201710/insimg/3a899487-79f3-4304-82ac-ebb6df021f2d.jpg" border=" 0" vspace=" 0" hspace=" 0" / /p p    strong 应用案例: /strong 离子淌度质谱已被应用于食品环境领域的很多用户,用于农药或兽药的筛查检测中;也被应用于小分子药物开发或大分子研究领域中,用于同分异构体的分离和鉴定。 /p p    strong 市场分析: /strong 由于国家加大对精准医疗和科研院所的投入力度,精准医疗及组学研究将会是进年来高分辨质谱的热点市场。 /p p    strong 品牌:岛津 /strong /p p style=" text-align: center " img width=" 500" height=" 220" title=" 岛津1.jpg" style=" width: 500px height: 220px " src=" http://img1.17img.cn/17img/images/201710/insimg/da5c9768-f479-49de-a547-60372f614d34.jpg" border=" 0" vspace=" 0" hspace=" 0" / /p p style=" text-align: center " strong Shimadzu& nbsp LCMS-IT-TOF /strong /p p    strong 型号:Shimadzu LCMS-IT-TOF /strong /p p   strong  技术特点: /strong 岛津LCMS-IT-TOF,即液相色谱-离子阱-飞行时间质谱,通过独创一系列关键的专利技术,将离子阱质谱的多级质谱分析和飞行时间质谱的高灵敏度、高质量准确度、高分辨率结合在一起,可以前所未有的进行多级质谱解析,每一级质谱又能达到高质量精度的强大功能。简而言之,可以实现“多级高分辨”的功能。 /p p    strong 应用案例: /strong 对于食品,药物等的突发中毒事件的研究工作,如药物中毒的原因探明等,对于样品中毒物需要快速定性分析,而传统质谱仪器在该问题上往往束手无策或者很难进行准确的分析定性。而LCMS-IT-TOF可以对我们找到的可疑化合物进行高质量精度的多级质谱分析,得到目前为止最丰富的可疑化合物的质谱信息,根据化学式推定软件和裂解规律的结构分析,可以快速的推断出该化合物的化学式和可能的结构,从而实现对该可疑化合物的快速定性分析,满足及时的药物突发事件定性的要求。 /p p   岛津某一用户实验室负责对该区域食品,药物等突发中毒事件的研究工作,如药物中毒的原因探明等。用户利用LCMS-IT-TOF进行中药和保健品中化学药成分分析,对于修饰过的化合物也能准确鉴定,准确查明了保健品中非法添加的化学药成分。 /p p    strong 市场分析: /strong 蛋白组学、代谢组学、生物标志物发现、高通量筛查等应用领域需要高分辨飞行时间质谱。 /p p strong   品牌:SCIEX /strong /p p style=" text-align: center " img width=" 350" height=" 385" title=" sciex1.png" style=" width: 350px height: 385px " src=" http://img1.17img.cn/17img/images/201710/insimg/460c4251-b3c3-431e-b8c3-a11f099ba065.jpg" border=" 0" vspace=" 0" hspace=" 0" / /p p style=" text-align: center " strong   SCIEX X500R QTOF高分辨质谱 /strong /p p strong   液质型号: /strong strong SCIEX X500R、X500B以及TripleTOF 5600+/6600高分辨质谱系列 /strong /p p strong   技术特点: /strong X500R QTOF的智能工程设计,采用简约的全新台式设计,能提供出色性能,且稳定可靠。X500R系统采用独有的 N型离子通路,在保证高分辨的同时,也能获得高的灵敏度 恒温的TOF管设计,保证了质量稳定 同时X500R也延续了TripleTOF系列快的扫描速度,结合硬件方面多项专利技术,X500R在灵敏度、扫描速度、质量精度、线性动态范围、MS/MS 采集和分辨率在内的一些关键参数方面达到完美平衡。结合精心设计的全新 SCIEX OS 用户界面,让系统变得易学易用,不同经验水平的操作人员都能快速地处理和查看数据。结合农、兽残、毒素、非法添加毒物、天然产物等数据库,使结果更准确。同时, 在X500R也推出了代谢物、代谢组学、脂质组学、中药成分分析、产地溯源、未知物筛查和鉴定等解决方案,助力科研研究。 /p p   X500R高性能使其在推出不到一年时间就获得LABOORPAXIS “2016年最佳奖项”。 /p p   鉴于X500R的优异性能和表现,2017年1月25日发布了全新的X-系列高分辨质谱家族新成员:X500B QTOF系统,全新友好的SCIEX OS软件界面搭配强大的BioPharmaViewTM 2.0生物药数据分析软件,为不同层次的质谱用户提供一个无与伦比的规范化的生物药物表征整体LC-MS解决方案。 /p p   SCIEX高分辨质谱系列革命性的SWATH& reg 非数据依赖型采集 (DIA) 技术,是一项突破性技术,它让分析人员只需一次分析,就能同时对样品中几乎所有可检测的化合物进行全面鉴定和定量分析 (MS/MSALL)。SWATH 采集技术具有独一无二的定量分析准确性,可在具有宽动态范围的多个样品之间提供极高的重现性。重要的是,这项技术还可为整个样品创建永久的数字化定量 MS/MS 数据记录。随着 SWATH 成功用于蛋白质组学研究,这项技术如今已广泛用于蛋白质组学研究的工业化,现在还可以为法医学、食品检测、环境分析和生物药等其他领域的分析科学家提供极大优势。 /p p    strong 应用案例一: /strong 欧盟参考实验室成功的在X500R上,利用SWATH数据采集对加工过的婴儿食品中常规农残分析。试验结果展示:SWATH数据采集在不降低灵敏度的情况下实现快速定量的数据,且同时得到了MS/MS的确证,且可获得离子对比率结果,符合欧盟标准。 /p p    strong 应用案例二: /strong 某客户在煎饼引起的突发性食物中毒事件,利用X500R的高性能,一次进样就能完成581种中毒物质的快速筛查与确证,利用数据库对质谱检测结果进行筛查分析,无需标准品对照。”该方法简单、快速、准确,为突发性食物中毒事件的快速筛查检测提供了有力的分析平台,可为临床医生救治病人提供关键的数据信息,为挽救生命争取宝贵的时间。” /p p style=" text-align: center " img width=" 400" height=" 400" title=" sciex 6500+.jpg" style=" width: 400px height: 400px " src=" http://img1.17img.cn/17img/images/201710/insimg/d5179920-6091-486c-bdea-8445247cc91d.jpg" border=" 0" vspace=" 0" hspace=" 0" / /p p style=" text-align: center "    strong SCIEX QTRAP 6500+ 三重四极杆线性离子阱质谱 /strong /p p    strong 液质型号: /strong strong SCIEX QTRAP 3200、QTRAP 4500、QTRAP 5500和QTRAP 6500+三重四极杆线性离子阱质谱系列 /strong /p p   strong  技术特点: /strong QTRAP系列质谱仪是SCIEX公司独有的三重四极杆-线性离子阱复合型质谱仪,它将业界知名的灵敏度、稳定性和扫描速度等三重四极杆黄金标准技术,与灵敏的、速度同样出色的的线性离子阱质谱技术结合在一起,既保留了串联四极杆质谱仪的很多优势:如母离子扫描(PS)、中性丢失扫描(NL)以及MRM高灵敏度的定量功能,又将线性离子阱高灵敏度的全扫描功能,MS sup n /sup 的多级扫描功能发挥到恰到好处;可同时进行定量和定性,真正意义上实现了“一台仪器、两台质谱、三种功能”。高选择性的MRM3定量功能,简化样品前处理方法,能有效地避免复杂基质的干扰。复合扫描模式MRM/NL/Prec-IDA-EPI功能,可以在发现未知化合物的同时,进一步定性确证,可用于代谢物鉴定、筛查和中药成分分析等相关应用研究。此外独有的MIDAS可高通量实现蛋白标志物的验证工作。 /p p    strong 应用案例一: /strong 某客户利用QTRAP4500独有的MRM-IDA-EPI,快速鉴定出20多种体内维拉帕米代谢物。体现了MRM高灵敏度发现代谢物的同时,同时获得相应的高灵敏度MS/MS,进行代谢物鉴定。 /p p    strong 应用案例二: /strong 某客户在出口肉类食品中,被当地鉴定出阳性结果,通过QTRAP独有的MRM-IDA-EPI和MRM3方式最终确定假阳性结果,避免造成损失。 /p p strong & nbsp & nbsp & nbsp 品牌:赛默飞世尔 /strong /p p style=" text-align: center " & nbsp img title=" thermo1.png" src=" http://img1.17img.cn/17img/images/201710/insimg/6d6e4b9c-2e49-4ae0-86c3-7066aba191bc.jpg" / /p p style=" text-align: center " strong   Orbitrap Fusion& #8482 Lumos& #8482 Tribrid& #8482 三合一质谱仪 /strong /p p strong   型号:Orbitrap Fusion& #8482 Lumos& #8482 Tribrid& #8482 三合一质谱仪 /strong /p p    strong 技术 /strong strong 特点: /strong Orbitrap Fusion Lumos作为第二代“三合一”质谱(同时拥有四极杆质量过滤器、线性离子阱及Oritrap质量分析器三种检测器),对Q-OT-qIT系统进行深度优化,同时配合智能平行运行技术(ADAPTTM)将质谱所有部件充分调动,相互配合同时工作,极大的提升了性能。而2017年三大性能更新,更是将性能推向极致。就像“Lumos”一词的本意“点亮魔杖荧光的咒语”,为我们照亮未知的分析领域。整体Thermo离子阱质谱,以Fusion/Fusion Lumos为代表,行业中属于高端产品,具体在蛋白质组学、脂质代谢组学等方面有着较好的运用。 /p p   赛默飞液质联用仪, 性能大幅提升,树立了灵敏度、性能和生产力的新标准。Q Exactive& #8482 HF-X质谱仪使用大容量传输管可使更多离子通过,增加信号强度。 电动离子漏斗设计,可在更广泛的质量范围聚焦和传输离子,以及高场Orbitrap质量分析器。这些组合在一起, 可以快速识别和分析肽, 进行非标和TMT的组学定量,Top-down的蛋白质组分析, 精密的DDA和DIA数据采集,动态保留时间PRM和生物药物的表征得到巨大提升。 /p p & nbsp /p
  • 新业XY-650HZ低浓度恒温恒湿称重系统特点
    新业XY-650HZ低浓度恒温恒湿称重系统特点新业XY-650HZ低浓度恒温恒湿称重系统特点结构特点1、 内室采用镜面不锈钢制作,半圆弧四角易清洁,箱内搁板间距调。2、 微电脑温湿度控制器控温(控湿)精确,稳定可靠。3、 7吋触摸屏,操作简单,清晰显示。4、 强迫式循环风道,确保工作室温湿度均匀。 5、 风道内安装有加热器、制冷器、除湿器、加湿器、温湿度传感器。6、 大尺寸玻璃门观察窗,箱内安装有照明灯,观察方便。7、 制冷系统与箱体隔离,减少压缩机震动对测量的影响。8、 加湿器内置,减少整体称重系统占用空间。产品安装调试1、运输中注意不要在前面板玻璃上用力,也不要用力碰撞箱体。禁止倒置或与地面大于45°的斜放。2、设备落地后,应放置平稳。如地面不平应予以修正。底部四角安装万向轮,定位后可逆时针方向旋转把手固定仪器。如需移动仪器,需顺时针旋转把手后再行移动仪器!3、避免阳光直射或高温潮湿的地方使用仪器,使用环境温度保持在 10-30℃。4、本设备应远离电磁干扰源,并应将设备的接地线有效接地。5、本设备在正常运行时,箱内载物摆放应不影响空气流通以保证箱内空气流通、温度均匀。6、电源为AC 220V50HZ,必须使用10A三芯插座,并有可靠接地线,不得擅自使用二芯插座。7、电源线不要紧靠后面,也不要让仪器或其他物品压在电源线上,以免损伤电源线。
  • 云唐新品介绍|大米重金属检测仪功能特点概述
    云唐新品介绍|大米重金属检测仪功能特点概述←←←点击查看产品升级信息  大米重金属检测仪是一种用于检测大米中是否含有重金属污染物质的设备,新升级大米重金属检测仪功能特点可以包括以下几个方面:  高精度检测:大米重金属检测仪具有高精度的检测能力,能够检测出微量的重金属元素,如铅、镉、汞等,确保产品的安全性。  快速检测:这种仪器通常具有快速检测的功能,能够在短时间内完成检测过程,提高生产效率。  多元素检测:除了单一元素的检测,大米重金属检测仪通常还可以同时检测多种重金属元素,以确保综合性的检测结果。  高效操作:操作简便,通常只需样品的准备和一些简单的设定,操作人员可以迅速完成检测流程。  数据记录和分析:仪器通常具有数据记录和分析功能,可以记录检测结果,并生成报告,便于质量控制和合规性验证。  环保和经济性:一些大米重金属检测仪采用无害的检测方法,不会对环境造成污染,同时在使用成本方面相对经济。  适用范围广泛:不仅可以用于大米,还可以用于其他食品和农产品的重金属检测,具有广泛的应用领域。  云唐大米重金属检测仪具有高效、精确、多功能等特点,能够帮助食品生产和质检部门确保产品质量和食品安全,减少重金属污染对人体健康的潜在风险。
  • 云唐新品首发|便携式atp荧光检测仪功能特点介绍
    云唐新品首发|便携式atp荧光检测仪功能特点介绍山东云唐仪器工厂为您讲解,点击即可查看产品信息  便携式ATP荧光检测仪是一种用于测量ATP(三磷酸腺苷)分子的荧光强度,从而评估样品中微生物活性和生物负荷的设备。这些检测仪器通常用于卫生检测和卫生监测,以确保表面、食品、水源和空气的卫生状况。以下是便携式ATP荧光检测仪的主要功能和特点:  快速检测:便携式ATP荧光检测仪具有快速检测的特点,通常能够在几秒到几分钟内提供结果。这使得用户能够迅速了解样品的卫生状况,以便采取必要的措施。  便携性:这些仪器通常设计紧凑,便于携带,适用于不同的场所和应用。它们适用于现场测试,例如食品生产线、医院病房、酒店客房和实验室工作台。  高灵敏度:便携式ATP荧光检测仪通常具有高度灵敏的检测能力,能够探测微生物和微生物生物负荷的低水平。  数据存储和分析:许多仪器具有内置的数据存储功能,可以记录和存储多个测试结果。一些仪器还提供数据分析和报告生成功能,以帮助用户跟踪和分析卫生状况的变化。  易于使用:这些仪器通常具有用户友好的界面,使用简单,无需专门的培训。它们通常采用触摸屏、按钮或菜单,以便用户能够轻松操作。  多种应用:便携式ATP荧光检测仪广泛应用于不同领域,包括食品服务、医疗保健、酒店管理、制药、水处理和环境监测。它们可以用于表面、食品、水源和空气的卫生检测。  可充电电池:为了确保长时间的使用,许多便携式ATP荧光检测仪器具有可充电电池,以减少对电池的频繁更换。  可替换的试剂:这些仪器通常使用可替换的ATP试剂或载玻片,以确保测试的准确性和一致性。 便携式ATP荧光检测仪在维护卫生标准、食品安全和环境卫生方面发挥着关键作用。它们为用户提供了一个快速、准确和便携的工具,以确保产品和环境的卫生和安全,减少微生物污染的风险。这使得它们在各行各业中成为不可或缺的检测仪器。
  • 低温恒温槽的用途、特点及注意事项
    低温恒温水槽广泛用于石油、化工、电子仪表、物理、化学、生物工程、医药卫生、生命科学、轻工食品、物性测试及化学分析等研究部门,等院校,企业质检及生产部门,为用户工作时个热冷受控,温度均匀恒定的场源,对试验样品或生产的产品进行恒定温度试验或测试,也可作为直接加热或制冷和辅助加热或制冷的热源或冷源。低温恒温水槽 特点:1、风冷式全封闭压缩机组制冷,降温速度快。 2、制冷系统具有过热、过电流等多重保护装置。 设有循环泵,可把槽内被恒温液体外引,建立第恒温场,还可作为冷源,把槽内被制冷液体引到机外实验容器。 3、低温恒温水槽结构紧凑,外壳为钢板喷塑,内胆采用不锈钢材料。 4、低温恒温水槽采用微机智能控制系统。触摸软键快速设定温度,操作方便。 5、微机修正温度测量值偏差,数显精度0.1℃。 6、低温恒温水槽具有超温报警系统。低温恒温水槽使用注意事项:(1) 低温恒温水槽使用前应加入液体介质(2) 使用电源50HZ 220V,电源功率要大于或等于仪器总功率,电源必须有良好的”接地”装置。(3) 低温恒温水槽应安置于通风干燥处,后背及两侧离开障碍物30mm距离。(4) 低温恒温水槽使用完毕,所有开关要处于关机状态,拔下电源插头。
  • 2013年度国家科技奖奖励工作特点
    项目特点   评审组织   政策引导
  • 浅谈 | 激光共聚焦显微镜特点及应用
    激光扫描共聚焦显微镜(LSCM)是基于共轭焦点技术设计的显微镜类型,即为使激光光源、被测样品和探测器都处于彼此的共轭位置上。基本原理在一般的显微镜中通过将物镜的焦平面与探测器重合使得观测的像平面与相邻的轴平面隔离开来,而在共聚焦显微镜中通过使用衍射受限的光点照亮样品,并在该光点共轭焦点处的收集光路径中使用针孔来过滤杂散光达到产生这种隔离效果从而提高分辨率。激光共聚焦显微镜原理图成像特点—不同的焦平面上生成“z叠层”图像—上图所示结构中,只有在共轭的样品层反射回的光可以通过收集光路径中的小孔,其余无关的样品层反射被小孔阻隔。这可以得到显著的分辨率的提升。如下图所示的是同一厚样品的多维荧光显微镜和共聚焦显微镜的并排比较。当在不同的焦平面上拍摄一系列图像时,可以生成通常被称为“z叠层”的图像,这一图像显示了共聚焦显微镜提供的分辨率和对比度增益以及这些增益的根本原因。可以看到在成像平面位于组织上方的堆栈顶部检查图像可以发现荧光图像中带有大量的散射光,而共聚焦显微镜的图像则显示为黑色。这种轴向上的PSF的减少直接导致了z叠层中间光学界面上观察到的分辨率差异。同一厚样品多维荧光显微镜和共聚焦显微镜成像比较成像特点—光学切片扫描成像—激光扫描共聚焦显微镜的另一个特点是它是一种扫描成像技术,传统的宽场照明技术是将整个样品都照亮,因此可以图像可以直接被肉眼或探测器捕捉,但是LSCM采用一束或多束聚焦光束穿过样品扫描成像,这样得到的图像被称为光学切片,下所示即为传统的宽场照明方式与激光扫描共聚焦照明方式的区别。传统宽场显微镜和激光扫描共聚焦显微镜照明方式区别因此现代共聚焦显微镜的一种实际的工作方式如下图所示,激光发出的激发光通过二向色镜,通过一对振镜在样品x方向和y方向进行扫描,样品激发(或反射)的光通过针孔进入PMT检测器被记录,记录下的扫描图像通过计算机重构出实际的样品图像。一种实际的激光扫描共聚焦显微镜示意图成像特点—分辨率对比宽场照明大幅提升—在荧光显微镜中,单点发射的光强度由点扩散函数(PSF)描述,其图案就是一个艾里斑,荧光系统的分辨率可以由艾里斑的半径来描述,艾里斑的半径可以由物镜的数值孔径和激发光的波长决定:另一种荧光系统分辨率测量方式是半高宽最大值,即强度下降到峰值50%的值,此时宽场荧光照明的横向分辨率为:激光扫描共聚焦显微镜的分辨率为:这表明,共聚焦显微镜的理论最大分辨率比宽场照明提高了倍。下图表示了宽场显微镜与共聚焦显微镜的对比,左图为宽场显微镜得到的图像,右图为共聚焦显微镜得到的图像。宽场显微镜与共聚焦显微镜成像对比主要应用领域—医疗领域
  • ST120G不规则颗粒硬度计的原理及技术特点
    ST120G全自动硬度计是按研究所特殊要求研制生产的,不规则的颗粒自动硬度的检测原理为:根据自动成像软件及单片机软件相结合,自动测量出不规则颗粒的面积及硬度。面积的测定采用自动成像原理,成像传感器自动感应上压板向下加压的接触面积,并自动计算接触面积,单片机软件通过判定自动计算出颗粒的硬度值,硬度的单位可以选择Mpa或者Kg/cm3.。试验方法规定研究开发采用现代机械设计理念和微机处理技术进行精心合理设计的一种新型高精度智能型试验仪,采用先进的元器件、配套部件、单片微机,进行合理的构造和多功能设计,配置液晶中文显示,具有标准中包含的各种参数测试、转换、调节、显示、记忆、打印等功能。产品特点1.机电一体化现代设计理念,结构紧凑,外观美观大方,维修方便;2.仪器采用上压板固定式,高精度称重传感器,保证仪器力值数据采集的快速性和准确性;测量精度高。3.采用高速ARM处理器,自动化程度高,数据采集快,全自动测量,智能判断功能,安全可靠具有强大的数据处理功能,可直接得出各项数据的统计结果,并且能自动复位,操作方便,容易调节,性能稳定。4.可显示压力和变形量,实时显示抗压力,变形量等信息;5.采用模块式一体型热敏打印机,打印速度快,换纸方便;6.中英文双语操作菜单(中文-English),并可随时切换;7.可连接计算机软件,具有实时显示抗压曲线功能及数据分析管理、保存、打印等功能
  • 国外仪器仪表发展特点
    国外仪器仪表发展特点1、新技术的应用。目前普遍采用EDA(电子设计自动化)、CAM(计算机辅助制造)、CAT(计算机辅助测试)、DSP(数字信号处理)、ASIC(专用集成电路)及SMT(表面贴装技术)等。 2、产品结构变化。注重性能价格化。在重视高档仪器开发的同时,注重高新技术和量大面广产品的开发与生产。 注重系统集成,不仅着眼于单机,更注重系统、产品软化,随着各类仪器装上了CPU,实现了数字化后,软件上投入了巨大的人力、财力、今后的仪器归纳成一个简单的公式:仪器=AD/DA+CPU+软件,AD芯片将模拟信号变成数字信号,再经过软件处理变换后用DA输出。 3、产品开发准则发生了变化。从技术驱动转为市场驱动,从一味追求高精尖转为“恰到好处”。开发一项成功产品的准则是,用户有明确的需求;能用最短的开发时间投放市场;功能与性能要恰到好处;产品开发准则的另一变化是收缩方向,集中优势。 4、生产技术注重专业生产,不大而全。生产过程采用自动测试系统。目前多以GP-IB仪器组建自动测试系统。生产线上尽是一个个大的测试柜,快速地进行自动测试、统计、分析、打印出结果。 内容来自看仪器网
  • 霍尔德新品|便携式常量氧气体分析仪的应用和特点
    【便携式常量氧气体分析仪←点击此处可直接转到产品界面,咨询更方便】氧气是不可或缺的生活元素,它的检测仪,就像我们生活中的小守护神,时时刻刻守护着我们的健康。工业生产中,燃烧过程及工艺反应过程中,氧含量的测定和控制,对产品质量、产量及消耗等指标都直接产生重要的影响。因此,氧含量的测定和控制成为了工业生产中的重要环节。随着生产的发展,对氧含量的测量范围和精度要求也越来越高。便携式常量氧气体分析仪应用领域:空分制氮、化工流程、电子行业保护性气体以及玻璃、槽车、充氮、气罐气瓶,建材行业及各种混合气体中氧气含量的便携快速检测分析。便携式常量氧气体分析仪仪器特点:1、仪器采用全中文菜单操作,通俗易懂、简单可靠,越限自身报警(蜂鸣器及屏幕显示),并可随意设置控制方式;2、选用进口传感器,具有寿命长、精度高、响应快等特点;3、无人职守时,定时自动存储功能,可随时查看存储数据;4、内置温度补偿,减小样气温度和环境的变化对测量精度的影响;5、采用新型的气路稳流系统;具有技术先进、精度高、响应快、性能稳定、功能齐全、操作方便、气体分析过程连续等优点;6、配有大功率电池,一次充电保证仪器连续工作25小时以上。
  • 真空干燥箱:工作原理、特点、技术参数及使用方法
    真空干燥箱是一种常用的实验室设备,它通过降低环境气压和升高温度,快速有效地去除样品中的水分和溶剂。由于其具有干燥速度快、干燥效果好、使用方便等优点,真空干燥箱在科研、制药、化工、食品等领域得到了广泛应用。本文将介绍真空干燥箱的工作原理、特点、技术参数及使用方法等方面的知识。真空干燥箱的工作原理是利用真空泵将箱体内的空气抽出,降低气压,同时加热样品以促进水分和溶剂的蒸发。这种干燥方法可以在较低的温度下实现,从而避免了高温对样品的损害。此外,真空干燥还可以有效地防止氧化和污染,提高干燥效果和样品质量。上海和晟 HS-DZF-6021-MT 无油真空干燥箱真空干燥箱的优点包括:干燥速度快、效率高;可降低样品在高温下变质的可能性;可避免空气中的氧气对样品产生氧化作用;可减少能源消耗,因为可以在较低的温度下实现干燥。然而,真空干燥箱也存在一些不足之处,例如:需要定期维护和保养;对样品形状和大小有一定限制;不能干燥所有类型的样品。真空干燥箱的技术参数包括真空度、温度和湿度等。真空度指的是箱体内的气压,一般分为低真空、高真空和超高真空三种。温度是控制样品干燥速度的重要因素,可根据样品的特性和需要进行调节。湿度则表示箱体内的水分含量,对于某些样品需要严格控制湿度以避免水分的引入。使用真空干燥箱时,需按照以下步骤进行操作:将样品放入干燥箱内,并将干燥箱密封;连接真空泵并启动设备;调整真空度和温度等参数以满足样品干燥需求;记录干燥时间和观察干燥效果;干燥完成后,关闭设备并取出样品。在使用过程中,需要注意以下几点:真空干燥箱应放置在平稳的工作台上,避免震动和高温;使用前需检查设备的密封性能和管道连接是否良好;根据样品的特性和要求合理设置真空度和温度等参数;如果出现异常情况,应立即关闭设备并检查故障原因;定期对真空干燥箱进行维护和保养,保证其长期稳定运行。总之,真空干燥箱是一种高效的实验室设备,可快速有效地去除样品中的水分和溶剂。在使用过程中,应按照操作规程正确使用和维护保养设备,以保证其正常运行和使用寿命。同时,还需要注意安全问题,避免意外情况的发生。
  • 溶媒脱气仪的八大主要特点
    溶媒脱气仪的八大主要特点:  1.自动制备和分配溶出介质  溶出介质可能是酸和水及缓冲液的混合物,在过滤,混合,加热,真空脱气,以误差不超过±5g的准确度加入8个单独的容器中,整个过程可以准确监控,而且单个容器的分配容积可以打印出来或传输到电脑已提供认证文件。  2.酸混合  一个通道可以准确的添加盐酸,通过一个精密天平计算和执行整个构成组分所需要添加的重量。使工作中使用酸性介质的风险降到较小。  3.过滤  在添加管中安装了一个容易更换的在线过滤头,通过监控过滤总容积和流动阻力自动监测过滤器的容积。当过滤量过大时,系统提醒用户跟换过滤头。  4.加热  在脱气发生之前,一台特制的连续流动加热器使溶出介质温度缓慢升温到设定的温度,这样可以在溶出测试中,提高脱气效果,节省大量时间。  5.脱气  溶出介质在真空度下,缓慢加热,不断搅拌的条件下达到较佳的脱气效果。  6.快速添加和分配  为了节省时间,溶媒甚至需要在溶出测试进行时准备,整个工程需要在15分钟内处理完8升溶媒。通过分配管直接添加溶媒进入溶媒脱气仪的溶出杯。需要在大约25秒的时间内高度准确的分配1000ml溶媒。  7.节省时间和费用  可以在无人值守的情况下完成混合,脱气,预热工作。准确的直接分配溶媒进入样品杯,节省时间,无需用特殊方式使用溶媒。节省预热溶媒合溶出测试之间的时间,提高生产率。  8.整个过程自动完成,特别是在制备酸和溶媒分配过程中,实验人员的危险降到较低。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制