当前位置: 仪器信息网 > 行业主题 > >

止滑性能

仪器信息网止滑性能专题为您整合止滑性能相关的最新文章,在止滑性能专题,您不仅可以免费浏览止滑性能的资讯, 同时您还可以浏览止滑性能的相关资料、解决方案,参与社区止滑性能话题讨论。

止滑性能相关的资讯

  • 高性能金属基润滑耐磨损材料制备有了新思路
    7月30日,科技日报记者从中国科学院兰州化学物理研究所了解到,该所固体润滑国家重点实验室高温摩擦学课题组在新型润滑耐磨损高熵/中熵合金设计制备和性能调控等方面进行了系统研究,取得了系列进展。给出一种构筑多级纳米异质结构和成分波动特征来实现合金低磨损的新方法,相关研究成果近日发表于综合性学术期刊《研究》。新型高熵/中熵合金具有诸多新奇特性,为设计制备高性能金属基润滑耐磨损材料提供了新启发,是目前材料学和摩擦学研究的热点和前沿。在解决高温润滑与磨损方面具有重要应用价值传统合金往往是由一种或两种主要金属元素构成,其他合金化元素的比例相对很低。高熵/中熵合金是近年来发展起来的有别于传统合金的新型合金。高熵合金和中熵合金是由多种主要金属元素构成的合金,二者只是在主要金属元素的种类和数量上有差异。一般而言,高熵合金包含5个或5个以上等原子比的金属元素,而中熵合金则包含3个金属元素。高熵/中熵合金展现出许多优异的力学和物理性能。“高熵/中熵合金有几个明显的特点,主要包括组织结构表现出复杂异质性、成分表现出多组元特征,具有‘质剂不分’的浓缩固溶体结构、晶体结构表现出连续畸变性。”中国科学院兰州化学物理研究所研究员程军介绍,基于其独特的异质结构、成分波动、多级纳米析出相等微观组织结构和多组元特征,高熵/中熵合金展现出卓越的强度—塑性组合、高温结构稳定性、摩擦界面自保护、高温抗氧化等新奇特性。与传统合金相比,高熵/中熵合金具有非常广阔的成分调控空间,通过对高熵/中熵合金中的元素进行替换或增减,能获得一些具有特殊性能的微观组织结构和异质相,为设计制备高性能金属基润滑耐磨损材料提供了新思路。程军告诉记者,针对高熵/中熵合金体系开展润滑耐磨损成分设计,采用熔炼、粉末冶金或喷涂等工艺即可制备出具有润滑与耐磨损性能的高熵/中熵合金材料。“这类新型材料在解决航空航天、轨道交通、核能等领域高端装备运动与传动部件的高温润滑与磨损难题方面具有重要的应用价值和应用前景。”程军介绍。强度、塑性、热稳定性和耐磨性优于传统合金中低温下,金属材料摩擦表界面会发生严重的弹塑性变形、局部断裂和磨粒磨损,而高温下则会发生材料黏着、软化变形和氧化磨损,这些因素导致金属材料在宽温度范围内表现出严重的摩擦磨损。针对上述问题,晶粒细化和复合润滑相/抗磨相是目前提高金属材料耐磨损性能的主要手段。“但是,这两类方法通常会引发新的问题,如当晶粒细化至纳米尺度时,可能会在摩擦过程中引发严重的纳米晶不均匀塑性变形,增加磨损;复合润滑相/抗磨相和基体相之间的错配界面可能会使摩擦界面在磨损过程中发生脆性断裂。”程军说。研究表明,如果在摩擦副界面之间引入一个能够逐级释放摩擦应力的界面层,可极大减小摩擦过程中不均匀塑性变形和界面错配导致的磨损问题。然而,这种特殊的界面层难以通过常规的制备或加工手段获得。基于这个问题,研究人员考虑是否可通过调控合金的成分和结构设计制备一种新型金属材料,使其能在中低温摩擦过程中原位形成逐级释放应力的梯度界面耐磨层,高温摩擦过程中形成耐磨损釉质层,从而在宽温度范围内保持稳定的低磨损性能。高熵/中熵合金独特的浓缩固溶体结构使其表现出优于传统合金的强度、塑性、热稳定性和耐磨性等性能。因此,研究人员以镍元素为溶剂,引入等摩尔比的铝、铌、钛和钒4种元素作为合金化元素,通过将合金化浓度从25 at.%(原子百分数)提高至50 at.%,制备了一种具有纳米分级结构和成分波动特征的新型镍铝铌钛钒中熵合金。为了使溶质元素之间形成高混合熵的过饱和固溶体结构,元素粉末需经历32小时的机械合金化过程,形成面心立方结构和体心立方结构的混合固溶体粉末。研究人员通过放电等离子烧结使粉末在1050℃发生异质相分离,并在冷却后固结成型,最终形成高体积分数的纳米耦合晶粒相和分级纳米沉淀相,其呈现纳米分级结构和成分波动特征。纳米分级结构异质相的形成将使合金可在磨损诱导的变形过程中沿深度方向原位形成梯度界面层,选用高浓度的易氧化的铝和铌会促进合金在高温摩擦过程中快速形成保护性氧化釉质层。此外,高浓度的钛可显著提升合金体系的晶格畸变效应,从而提高摩擦界面层的屈服强度。“与传统合金相比,该合金的结构由分级纳米耦合晶粒组成,表现出纳米尺度的成分波动特征,这种独特的异质性结构使合金在室温至800℃宽温度范围内的磨损过程中自发激活自适应摩擦界面保护行为,形成耐磨损纳米梯度摩擦层或釉质层。该材料作为高温抗磨材料具有重要的应用价值。”程军说。他认为该合金成分可调、可采用热压、喷涂等多种工艺固化成型,有望实现产业化应用。
  • 高性能国产化数字示波器研制
    table border=" 1" cellspacing=" 0" cellpadding=" 0" width=" 600" tbody tr td width=" 123" p style=" line-height: 1.75em " 成果名称 /p /td td width=" 525" colspan=" 3" p style=" line-height: 1.75em " 高性能国产化数字示波器 /p /td /tr tr td width=" 123" p style=" line-height: 1.75em " 单位名称 /p /td td width=" 525" colspan=" 3" p style=" line-height: 1.75em " 中国科学院微电子研究所 /p /td /tr tr td width=" 123" p style=" line-height: 1.75em " 联系人 /p /td td width=" 177" p style=" line-height: 1.75em " 武锦 /p /td td width=" 161" p style=" line-height: 1.75em " 联系邮箱 /p /td td width=" 187" p style=" line-height: 1.75em " wujin@ime.ac.cn /p /td /tr tr td width=" 123" p style=" line-height: 1.75em " 成果成熟度 /p /td td width=" 525" colspan=" 3" p style=" line-height: 1.75em " □正在研发 √已有样机 □通过小试 □通过中试 & nbsp & nbsp □可以量产 /p /td /tr tr td width=" 123" p style=" line-height: 1.75em " 合作方式 /p /td td width=" 525" colspan=" 3" p style=" line-height: 1.75em " □技术转让& nbsp & nbsp □技术入股& nbsp & nbsp √合作开发& nbsp & nbsp □其他 /p /td /tr tr td width=" 648" colspan=" 4" p style=" line-height: 1.75em " strong 成果简介: /strong & nbsp & nbsp & nbsp /p p style=" text-align:center" img src=" http://img1.17img.cn/17img/images/201603/insimg/e210a384-a5fc-480a-b0ae-ad8c860a9218.jpg" title=" 示波器样机.jpg" width=" 350" height=" 243" border=" 0" hspace=" 0" vspace=" 0" style=" width: 350px height: 243px " / /p p style=" line-height: 1.75em " & nbsp & nbsp & nbsp 中科院微电子研究所采用自主知识产权的折叠内插架构设计了采样率为5Gsps精度为 8bit的双通道时间交织ADC芯片,并且最终在国产SiGe BICMOS工艺制程上流片实现。该款芯片是 span style=" text-decoration:underline " 国内目前精度为8bit的最高采样率的ADC芯片 /span ,芯片从外围接口、性能参数、复杂程度等方面均与国外同类产品的性能相当,打破了国外芯片厂商对国内的限运,且价格仅为国外芯片的一半,具有非常高的性价比,该款芯片可以广泛应用在仪器仪表和数据采集领域,具有很高的产品化价值。 br/ & nbsp & nbsp & nbsp 基于该款芯片,北京普源精电科技有限公司研制实现了带宽为1.2GHz的数字示波器样机, span style=" text-decoration:underline " 该款样机填补了国产示波器在1GHz带宽以上市场空白 /span ,为国产示波器厂商进军中高端市场提供了有力的技术支撑,。 /p /td /tr tr td width=" 648" colspan=" 4" p style=" line-height: 1.75em " strong 应用前景: /strong br/ & nbsp & nbsp & nbsp 所研制实现的5Gsps8bitADC是目前国内示波器厂商和数据采集厂商迫切需要的一款主流芯片,预计售价为500元/颗,根据国内市场的调研,该款芯片年需求数量为10万颗,按照占据10%的市场份额计算,预期该款芯片的年度销售额达到500万元。 br/ & nbsp & nbsp & nbsp 对于1GHz 带宽以上的高性能示波器,目前国内的市场需求完全被进口市场所占领,年进口数量为2500台,进口额约为3000万美元。所研制实现的带宽为1.2GHz的数字示波器样机一旦在普源精电实施产业化后,预计单台售价为8万元,3年内累计销售400台,预计未来三年将会带来3200万元的销售额,净利润达到300万元。 /p /td /tr /tbody /table p br/ /p
  • 基于HfS₂/MoS₂范德华垂直异质结的高性能红外探测器
    由范德华(vdW)异质结内产生的层间激子(interlayer excitons)驱动的红外(IR)探测器,能够克服二维材料光电探测器的诸多问题。过渡金属二硫族化合物(TMDC)的范德华异质结为层间激子的产生提供了先进平台,可用于探测单个TMDC的超截止波长。近日,韩国化学技术研究院(Korea Research Institute of Chemical Technology)、韩国忠南国立大学(Chungnam National University)与韩国国立蔚山科学技术院(Ulsan National Institute of Science and Technology)组成的科研团队在Advanced Functional Materials期刊上发表了以“High-Performance Infrared Photodetectors Driven by Interlayer Exciton in a Van Der Waals Epitaxy Grown HfS2/MoS2 Vertical Heterojunction”为主题的论文。该论文的共同第一作者为Minkyun Son、Hanbyeol Jang和Dong-Bum Seo,通讯作者为Ki-Seok An。这项研究首次提出了一种由层间激子驱动的高性能红外光电探测器,该红外探测器由化学气相沉积(CVD)生长的范德华异质结所制备。这项研究标志着光电器件领域进步的一个重要里程碑。研究人员选择HfS₂与MoS₂的组合来构成范德华异质结平台,从而制备成层间激子驱动的红外探测器。这是由HfS₂的选择性生长以及HfS₂与MoS₂的适当能带偏移(band offset)所激发的。在两步CVD工艺中,HfS₂仅在MoS₂上选择性生长,从而构建了具有较大界面面积的垂直异质结,并为层间激子的产生提供有利的条件。图1a展示了采用两步CVD工艺制备HfS₂/MoS₂范德华垂直异质结的过程。图1 HfS₂/MoS₂范德华垂直异质结的制备及成果研究人员利用拉曼光谱和光致发光(PL)技术,探究了原始MoS₂和HfS₂/MoS₂的结构特征和光学性质,结果如图2a至图2c所示。为了进一步阐明异质结构的化学组成,研究人员利用X射线光电子能谱技术(XPS)对HfS₂/MoS₂进行了化学鉴定,测量结果如图2d至图2f所示。图2 原始MoS₂和HfS₂/MoS₂的光谱探测结果以及HfS₂/MoS₂的XPS测量结果随后,为了直接证实HfS₂与MoS₂之间存在垂直异质结,研究人员针对其获取了高分辨率透射电子显微镜(HRTEM)图像以及相应的快速傅里叶变换(FFT)分析,结果如图3所示。图3 HfS₂/MoS₂垂直异质结HRTEM图像和FFT分析接着,研究人员对基于HfS₂/MoS₂的光电探测器的原理及性能做了详细研究。图4a为基于HfS₂/MoS₂的光电探测器示意图,光电性能测试结果如图4b至4d所示。研究人员同时制备了MoS₂光电探测器,并与基于HfS₂/MoS₂的光电探测器的光电性能进行了比较,结果如图4e至图4h所示。图4 基于HfS₂/MoS₂的光电探测器的性能及其与MoS₂光电探测器的比较最后,研究人员探索了不同红外波长(850 nm、980 nm和1550 nm)下基于HfS₂/MoS₂的光电探测器的光响应情况,结果如图5a至图5d所示。图5e展示了在漏极电压(VDS)=−5 V和5 V时,HfS₂/MoS₂能带对齐(band alignment)中层间激子的光致电子提取过程。图5 基于HfS₂/MoS₂的光电探测器的光响应及其层间激子的驱动原理综上所述,这项研究成功制备了基于CVD生长的HfS₂/MoS₂异质结高性能光电探测器。在两步CVD工艺中,HfS₂仅在MoS₂上生长,从而建立了具有较大界面面积的垂直异质结。这种有利结构能够有效促进层间激子的产生。该基于HfS₂/MoS₂的光电探测器表现出卓越的性能,在470 nm波长处,探测率(D*)=5 × 10¹⁴ Jones,比MoS₂光电探测器提高了36倍。值得注意的是,在1550 nm波长处(该波段已超出HfS₂和MoS₂各自的探测范围),基于HfS₂/MoS₂的光电探测器的性能表现为:光响应度(R)=600 A/W,D*=7 × 10¹³ Jones,快速上升和衰减时间分别为60 µs和71 µs。这项研究首次报道了利用CVD工艺生长的TMDC来制备层间激子驱动的红外探测器,这种方法为大规模开发高性能二维材料红外探测器开辟了道路。这项研究获得了韩国国家研究基金会(NRF,2021M3H4A3A01055854和2021M3H4A3A02099208)的资助和支持。
  • 高性能轴承强化与润滑材料联合研发中心成立
    4月27日,中国科学院兰州化学物理研究所和西北轴承股份有限公司、宁夏宝塔石化科技实业发展有限公司在银川签订合作协议联合共建&ldquo 高性能轴承强化与润滑材料联合研发中心&rdquo ,兰州化物所学术委员会主任薛群基致辞。   4月27日,中国科学院兰州化学物理研究所和西北轴承股份有限公司、宁夏宝塔石化科技实业发展有限公司在银川签订合作协议联合共建&ldquo 高性能轴承强化与润滑材料联合研发中心&rdquo 。   4月27日,中国科学院兰州化学物理研究所和西北轴承股份有限公司、宁夏宝塔石化科技实业发展有限公司在银川签订合作协议联合共建&ldquo 高性能轴承强化与润滑材料联合研发中心&rdquo ,并举行中心揭牌仪式。图为薛群基和马希荣为中心揭牌 。   5月4日 据中科院兰州化物所官网报道:4月27日,中国科学院兰州化学物理研究所和西北轴承股份有限公司、宁夏宝塔石化科技实业发展有限公司在银川签订合作协议联合共建&ldquo 高性能轴承强化与润滑材料联合研发中心&rdquo ,并举行中心揭牌仪式。   兰州化物所学术委员会主任薛群基院士、党委书记兼副所长王齐华、科研一处处长张兵、国体润滑国家重点实验室副主任王立平以及实验室相关人员出席了仪式。   仪式上,薛群基、王齐华、宁夏回族自治区科技厅副厅长马希荣分别致辞。薛群基指出,轴承是重大装备的基础零部件,集成了诸多设计理论和制造技术,体现了国家极端制造能力和制造水平,是国民经济和高技术领域重大设备的重要基础保障,而我国轴承企业研发的投入处于较低水平,迫切需要国内有研发实力的研究所与轴承企业联合,加强对轴承前沿技术的研发。王齐华表示,希望通过建设联合研发中心,构建三方长期密切的合作关系,从而促进轴承以及轴承润滑材料领域的科学研究,推动相关产业的发展。马希荣代表宁夏回族自治区对联合研发中心的成立表示祝贺,并希望兰州化物所通过多种渠道加强与宁夏的企业合作,促进当地经济的发展。   联合研发中心是在框架协议指导下共同管理和运作的技术合作联合体,其宗旨是合理配置人才资源,发挥技术优势,通过联合研发和合作项目共同开发、研究先进润滑技术、表面工程技术和新材料技术,推动我国高性能轴承产品的开发应用。中心将以轴承强化与润滑一体化表面加工技术、轴承特种润滑油脂等新材料的应用,轴承材料可靠性分析以及高技术领域用轴承固体润滑表面处理技术的相关研发为重点,并根据各方需要扩展研究领域。中心将充分利用兰州化物所和相关高等院校应用研究的最新成果和企业在中试放大以及工业生产等方面的资源,加速高性能滚动轴承相关领域科技成果的转化。   期间,兰州化物所和西北轴承股份有限公司还签订了轴承表面类金刚石薄膜技术的专利实施许可协议合同。根据合同,兰州化物所将所研发的类金刚石薄膜专利技术用于西北轴承股份有限公司高端轴承产品的提升,并协助西北轴承股份有限公司建立一条轴承表面类金刚石复合薄膜的中试生产线。   西北轴承股份有限公司创建于1965年,1996年改制上市,成为中国轴承行业第一家上市公司。经过近半个世纪的建设发展,西北轴承跨入了中国机械500强和中国轴承50强行列,是我国西部地区最大的专业化轴承生产企业,生产外径40毫米至3500毫米的九大类型滚动轴承4000多种。产品广泛应用于石油机械、冶金机械、重载汽车、工程机械、化工机械、建筑机械、风力发电及机床、电机等行业的主机配套和维修。(
  • 高性能润滑油的稳定性和颗粒特征
    LUM邀请您参加2021年9月14日至17日润滑油和冷却液系列的在线研讨会。本次活动的课题将帮助您更好的了解润滑油以及冷却液的特性,从而帮助您优化并改进您产品的配方。本次课题的在线研讨会都是独立的,您需要单独注册每一个课题。润滑油和冷却液之课题二: 高性能润滑油的稳定性和颗粒特征课题二的讨论重点是如何通过SEPView® 软件的三种分析模块来评价高性能的润滑油的稳定性和颗粒特征。主讲人:Stefan Küchler会议持续时间:60分钟会议语言:英语会议时间:2021年9月16日15:00 (北京时间)报名方法:扫描下方”二维码”填写报名信息,报名成功后会您将会收到会议链接。本次线上活动免费,期待您的参加。如有问题,请联系 event@lum-gmbh.de
  • 如何通过摩擦系数仪优化化妆品日化产品的滑爽性能
    引言在化妆品与日化产品领域,产品的使用体验是吸引并留住消费者的关键因素之一。其中,滑爽性能作为直接影响触觉感受的重要指标,其优化显得尤为重要。摩擦系数仪作为科学评估材料表面滑爽性能的专业工具,在化妆品与日化产品的研发与优化过程中扮演着不可或缺的角色。本文将深入探讨如何通过摩擦系数仪来优化这类产品的滑爽性能,旨在为行业内的研发人员提供一套系统的实践指南。一、理解摩擦系数仪的工作原理与应用1.1 工作原理概述摩擦系数仪通过模拟实际使用场景下的摩擦行为,测量样品表面与其他材质(如皮肤模拟物、包装材料等)之间的摩擦阻力,从而计算出摩擦系数。这一数值直接反映了产品表面的滑爽程度,是评估产品使用体验的重要指标之一。1.2 在化妆品日化产品中的应用在化妆品领域,摩擦系数仪可用于评估乳液、面霜、防晒霜等产品的涂抹顺畅度;在日化产品方面,则可用于检测洗涤剂、洗洁精等产品的去污能力及使用后表面的爽滑感。通过精确测量,研发人员可以更加科学地调整配方,以达到最佳的滑爽性能。二、摩擦系数仪测试前的准备工作2.1 样品的准备确保测试样品具有代表性,即能够真实反映产品整体的滑爽性能。同时,注意样品的储存条件,避免温湿度变化对测试结果的影响。2.2 测试参数的设定根据产品的特性和测试目的,合理设定测试速度、负载、滑动距离等参数。这些参数的设定将直接影响测试结果的准确性和可靠性。2.3 仪器的校准与维护定期对摩擦系数仪进行校准,确保其测量精度符合标准要求。同时,做好仪器的日常清洁与维护工作,避免外界因素对测试结果造成干扰。三、优化化妆品日化产品滑爽性能的策略3.1 调整配方成分通过改变配方中油脂、乳化剂、增稠剂等成分的种类和比例,可以有效调节产品的滑爽性能。例如,增加适量的硅油或天然油脂成分,可以显著提升产品的润滑感和滑爽度。3.2 优化生产工艺生产工艺对产品的滑爽性能同样具有重要影响。通过改进搅拌速度、温度控制、均质时间等工艺参数,可以使产品更加细腻均匀,从而提高其滑爽性能。3.3 引入新型材料随着科技的进步,越来越多的新型材料被应用于化妆品与日化产品中。这些材料往往具有独特的物理化学性质,能够显著改善产品的滑爽性能。例如,纳米材料、生物基材料等新型添加剂的引入,为产品的优化提供了更多可能性。3.4 数据分析与反馈利用摩擦系数仪获得的测试数据,进行深入的统计分析和趋势预测。通过对比不同配方、工艺条件下产品的滑爽性能差异,找出影响滑爽性能的关键因素,并据此制定针对性的优化方案。同时,建立反馈机制,及时调整优化策略,确保产品性能的持续改进。四、案例分析:某品牌面霜滑爽性能优化实践某知名化妆品品牌在其面霜产品的研发过程中,遇到了滑爽性能不佳的问题。为此,该品牌研发团队借助摩擦系数仪进行了深入的测试与分析。通过调整配方中的油脂比例、引入新型乳化剂以及优化生产工艺等措施,成功提升了面霜的滑爽性能。经过市场验证,优化后的面霜不仅涂抹更加顺畅,而且能够显著提升消费者的使用体验。这一成功案例充分展示了摩擦系数仪在化妆品日化产品滑爽性能优化中的重要作用。五、结论与展望综上所述,摩擦系数仪作为评估化妆品日化产品滑爽性能的重要工具,其在产品研发与优化过程中具有不可替代的作用。通过科学合理的测试与分析方法,结合配方调整、工艺优化等策略手段,可以有效提升产品的滑爽性能和使用体验。未来,随着科技的不断进步和消费者需求的日益多样化,化妆品日化产品的滑爽性能优化将成为一个持续的研究热点。我们期待更多的创新技术和方法能够应用于这一领域,为消费者带来更加优质、舒适的产品体验。
  • 医用注射器滑动性能测试仪的应用与重要性
    医用注射器滑动性能测试仪的应用与重要性在制药包装行业中,医用注射器作为一种不可或缺的医疗器械,扮演着至关重要的角色。它们被广泛用于临床医学中,通过吸入并注射药品至患者体内,以实现治疗目的。医用注射器的使用不仅需要确保药品的精确剂量,还需保证其在使用过程中的安全性和可靠性。因此,对医用注射器进行严格的性能测试,特别是滑动性能测试,显得尤为重要。医用注射器的应用与用途医用注射器通常由针管、活塞(芯杆)、针座、活塞柄、护帽和胶塞等部分组成,其设计精巧,操作简便。在制药包装行业中,医用注射器被用于封装各种药品,如注射液、疫苗等,以便安全、有效地传输给患者。其精确的剂量控制和密封性能,使得医用注射器成为临床治疗中不可或缺的工具。滑动性能测试的必要性为了确保医用注射器的使用质量,国家标准《GB15810-2001使用注射器》对其活塞滑动性能做出了严格规定。滑动性能是指活塞在注射器内移动时的顺畅程度,直接关系到注射过程中药品的推送效果和患者的感受。如果注射器的滑动性能不佳,可能会导致药品推注不畅、注射阻力过大或泄漏等问题,进而影响治疗效果和患者安全。因此,进行医用注射器滑动性能测试,是保障其使用质量、确保患者安全的重要措施。通过测试,可以评估注射器的滑动性能是否符合标准要求,及时发现并解决潜在问题。医用注射器滑动性能测试仪及其测试方法医用注射器滑动性能测试仪是一种专门用于检测注射器滑动性能的仪器。该仪器通过模拟实际使用过程中的推拉动作,对注射器的芯杆施加一定的力,并在一定速度下测量其试验拉力和试验推力。具体测试方法如下:固定器身:首先,将注射器的器身固定在测试仪上,确保其在测试过程中不会移动。施加力并测量:然后,给芯杆一端施加一个力,并设定测试仪的速度(通常为100mm/min±5mm/min)。在此速度下,测试仪将记录芯杆与注射器身之间的试验拉力和试验推力。数据记录与分析:测试仪将自动记录施加的力、芯杆的运动情况以及相应的拉力和推力数据。通过这些数据,可以分析注射器的滑动性能是否符合标准要求。值得注意的是,济南三泉中石实验仪器生产的注射器滑动性测试仪还配备了定制注射管夹具,可以精确测定注射时的初始力、滑动力以及保持力等参数。在拉伸和压缩技术试验模式下,控制横梁的上下移动模拟液体的注入和射出过程,生成相关数据,并计算分析报告初始、平均、最大和最小力等关键指标。综上所述,医用注射器滑动性能测试仪在制药包装行业中具有广泛的应用和重要的意义。通过严格的性能测试和评估,可以确保医用注射器的使用质量符合标准要求,保障患者的安全和治疗效果。
  • 冷水机对压缩机润滑油的性能有哪些要求
    冷水机对压缩机润滑油的性能有哪些要求?制冷压缩机是冷水机重中之重的一个部件,因此它使用的润滑油(也称之为冷冻机油)要求很高。为了保证冷水机的压缩机能够正常运转,必须使润滑油的性能满足以下要求。    (1)相容性:给冷水机压缩机选择的润滑油,必须要与该冷水机采用的制冷剂和材料等相容,从而降低对冷水机的不利因素。    (2)粘度:粘度是权衡润滑油好坏的最主要特性,它不仅决定润滑油的润滑性能,同时还影响到冷水机的压缩机性能,以及摩擦零件的冷却和密封性能。    (3)酸值:如果给冷水机选用的润滑油中含有酸性物质,将直接对冷水机中的金属产生腐蚀,严重影响到冷水机的使用寿命。    (4)浊点:选择润滑油的时候,要选择浊点低于冷水机蒸发温度的,否则石蜡析出后,会阻塞冷水机的节流机构,影响冷水机正常运行。    (5)凝点:虽然冷水机所用的行业不同,但是对冷冻油的凝点,一般要低于-40℃。    (6)闪点:通常情况下,冷水机要求润滑油的闪点不低于150℃。如果冷冻油的闪点较低,会引起润滑油的结焦甚至燃烧,因此,冷冻油的闪点必须比排气温高15~30℃以上。    (7)润滑油的化学稳定性及氧化安定性要在规定范围内。    (8)给冷水机选用润滑油时,一定要保证润滑油中没有含水分、机械杂质或者溶胶。  (9)击穿电压:这个是衡量冷冻油电绝缘性能的指标。  一台质量好,运行稳定的冷水机,离不开性能优的制冷压缩机。它就像是人体的心脏一样,掌握着生死大权。因此,用户在使用冷水机的过程中,要定期检查润滑油的情况,必要时一定要更换和冷水机厂一样的润滑油品牌及型号,确保冷水机安全正常的运行。 信息来源:上海田枫仪器有限公司www.tfyqchina.cn www.tfsye.com来源:上海田枫仪器有限公司www.tfyqchina.cn www.tfsye.com关键词:[冷水机][小型冷水机][工业水冷机][实验室冷水机][制冰机][超低温冰箱][冻干机] [实验室冻干机][生产型冻干机]
  • 光伏组件用高性能EVA胶膜实现国产化
    本报讯近日,中国可再生能源学会光电专业委员会在北京组织召开了“光伏组件用高性能EVA胶膜”评审会。经讨论认定,由温州瑞阳光伏材料有限公司和杜邦公司合作研制的“瑞福REVAX”EVA胶膜项目开发成功,产品性能达到国际先进水平,特别是耐老化性能方面取得重大突破,居世界领先水平,满足光伏组件使用寿命需求。完全可替代进口EVA胶膜,实现了高性能EVA胶膜的国产化。     作为太阳能光伏组件中关键原材料之一,EVA封装胶膜的性能在此起着决定性的作用。经过3年潜心研发,瑞阳公司最终成功研制出耐老化性能优良的EVA封装胶膜,经国内权威质量检测机构检验,“瑞福REVAX”EVA胶膜经1000小时紫外老化试验后透光率的保持率超过99%,黄变指数小于2,解决了国内高性能EVA封装胶膜常年依赖进口的局面。   据了解,从2007年起,我国光伏组件产量居世界第一位。根据相关机构测算,到2020年,光伏组件年产量将达到42GW。需要高性能EVA封装胶膜60000万平方米,胶膜产值将达到150亿元。但目前高性能EVA封装胶膜还严重依赖国外进口产品,严重制约我国光伏产业发展。为满足太阳能光伏产业的快速发展,瑞阳将与杜邦公司合作,在浙江温州建设高性能EVA胶膜产业化基地,为中国光伏企业提供快速的本地化服务。(申明)
  • 应用 | 乳化剂对氨基酸洁面膏性能的影响
    研究背景皂基类产品有非常强的清洁力,但对皮肤刺激性较强,市场上逐渐兴起氨基酸型清洁产品。常见的氨基酸表面活性剂有甘氨酸型、肌氨酸型、谷氨酸型以及丙氨酸型,而其中甘氨酸型表面活性剂因其易于冲洗,洗后干爽柔滑的使用感被广泛应用于洁面产品中。在实际产品开发中,往往会利用甘氨酸型表面活性剂在pH 6~7时部分酸化形成结晶的特性来制备洁面膏,但是这类产品在研制过程中容易出现发泡能力弱、制备料体稀薄、长时间放置后料体出水或外观粗糙等问题,目前主要通过调整配方中多元醇的种类及添加量,调节产品pH值或者添加高分子来解决,而乳化剂对结晶型氨基酸洁面膏性能影响的研究报道较少。本文主要通过动态泡沫分析仪等,研究了4种不同乳化剂对结晶型氨基酸洁面膏性能的影响,以期为洁面膏中乳化剂的选择提供实践基础以及理论支持,为开发兼具使用性及稳定性的洁面产品提供新的解决思路。实验仪器1.1样品制备表1.洁面膏基础配方1.2 泡沫性能测试DFA100动态泡沫分析仪 泡沫测试采用KRÜ SS的动态泡沫分析仪DFA100完成,包括泡沫高度分析以及泡沫结构分析。首先,用去离子水将洁面膏配成质量分数为10%的溶液,然后用注射器移取50 mL溶液至组装好的量筒配件中。将固定量筒的底座支架插入仪器中,进行泡沫测试。设置参数:发泡方法:搅拌器;搅拌速度:3000 r/min;搅拌3s停止3s(便于记录泡沫高度),循环15次;测试时间:15 min;照相机高度:55 mm;测试温度:25 ℃。结论与讨论2.1 乳化剂对泡沫性能的影响根据表1配方,考察不同类型乳化剂对结晶型氨基酸洁面膏的泡沫性能影响,其中1#配方为不添加乳化剂的空白组,泡沫高度结果如图1。 图1.不同乳化剂制备的洁面膏泡沫高度由图1可知,加入乳化剂,洁面膏泡沫量有不同程度的减少。空白组稳定后的泡沫高度为127.1 mm,其次是泡沫高度与其接近的2#,3#和5#配方,高度分别为126.6 mm,126.1 mm和126.7 mm;4#配方对泡沫总量减少较为明显,泡沫高度为119.4 mm。泡沫结构可以分析泡沫的细密程度以及泡沫的稳定性。图2为稳泡阶段的平均气泡面积随时间的变化曲线,图3为测试结束时的泡沫结构照片。由结果可知,除Eumulgin® S21外,乳化剂的加入都能提高泡沫的细密程度以及稳定性,其中5#配方的泡沫最绵密,稳定性也最好,在测试时间内粒径变化最小,其次是3#与2#配方。定义每平方毫米内气泡个数衰减一半的时间为泡沫半衰期,则1#~4#配方的半衰期分别为615,626,637和553 s,而5#配方在测试周期内未观察到半衰期。这也说明用Hostacerin® DGSB,Hostaphat® KW340D 和Plantasens® Emulsifier HP 30作为乳化剂能使结晶型氨基酸洁面膏的泡沫更加细密稳定,同时又不影响泡沫量。而Eumulgin® S21使洁面膏的泡沫量减少,同时泡沫也更容易变大而破裂。乳化剂由于具有表面活性,在气泡中将被吸附在空气-水的界面,与表面活性剂共同稳定泡沫。结合泡沫的稳定性因素分析,乳化剂可能会增加气泡间液膜强度,减缓气体间的扩散导致泡沫增大,从而提高泡沫的稳定性。Eumulgin® S21为聚醚类乳化剂,但配方中存在较高含量的多元醇和盐,这使得聚醚类乳化剂的浊点降低,从而改变乳化剂的亲水亲油平衡,在体系中的溶解度有限,在气-液界面形成棱镜铺展,取代表面活性剂,从而起到消泡的作用。其中Plantasens® Emulsifier HP 30是一种液晶乳化剂,易于形成多层结构,这也可能是其泡沫稳定性最好的原因:多层液晶结构能赋予气泡间的液膜更高的粘度,可以防止或减慢排液的过程;而且液晶相的存在能增大气-液界面的曲率半径,从而减弱气泡间的Laplace压力;此外,液晶结构还能更大程度的增加液膜的力学强度和刚性,以抵御引起气泡破裂的热和机械扰动。 图2.不同乳化剂制备的洁面膏泡沫大小图3.不同乳化剂制备的洁面膏微观泡沫结构结论通过动态泡沫分析仪等研究了4种不同类型乳化剂对以椰油酰甘氨酸钠为主要表面活性剂的结晶型洁面膏的影响,包括泡沫高度和结构等,得出以下结论:磷酸酯类乳化剂Hostaphat® KW340D能提高洁面膏的泡沫稳定性;Eumulgin® S21作为聚醚类乳化剂,在多元醇与盐含量较高的体系中浊点降低,使得其与体系的兼容性变差,从而导致泡沫量明显减少,泡沫的稳定性也最差;液晶型乳化剂Plantasens® Emulsifier HP 30能显著提高泡沫的细密程度与稳定性,这可能是液晶乳化剂在体系中易于形成多层结构,从而使泡沫更加稳定。以上研究也为洁面膏中乳化剂的选择提供一定的实践结果与理论分析,因此在实际配方过程中,可挑选合适的乳化剂或乳化剂组合来达到改善洁面膏特定性能的目的。此文版权来自科莱恩化工(中国)有限公司,内容有所删减,全文请查看:张美龄,王晨茜,许明力,朱晨江.乳化剂对结晶型氨基酸洁面膏性能的影响[J]. 日用化学品科学, 2022,45(6): 43-47.
  • 国家重点研发计划“高性能制造技术与重大装备”重点专项2021年度申报项目预评审专家名单公告
    根据2021年度国家重点研发计划重点专项评审工作安排,科技部高技术研究发展中心于2021年8月1日至8月7日组织开展了“十四五”“高性能制造技术与重大装备”重点专项2021年度申报项目预评审工作。此次评审采用网络评审方式,评审专家按照科技计划项目评审专家选取和使用的统一要求,从国家科技专家库中产生,共55人。根据《国务院关于改进加强中央财政科研项目和资金管理的若干意见》(国发﹝2014﹞11号),和中共中央办公厅、国务院办公厅印发《关于深化项目评审、人才评价、机构评估改革的意见》(中办发﹝2018﹞37号)等文件精神,现将预评审专家名单予以公布,公示期为8月11日-8月15日。  专项管理办公室联系方式:010-68335972  组1:1.1 重大装备设计基础前沿(青年科学家项目)序号姓名单位名称1王海涛河北工业大学2陈长军苏州大学3何立子东北大学4薛梓中国计量科学研究院5丁香乾中国海洋大学6邓斌西南交通大学7刘建荣中国科学院金属研究所  组2:1.2 高性能基础件基础前沿(青年科学家项目)序号姓名单位名称1周锦松中国科学院空天信息创新研究院2李小灵江南造船(集团)有限责任公司3樊荣中煤科工集团重庆研究院有限公司4王勇广州机械科学研究院有限公司5白振华燕山大学6蔺永诚中南大学7徐丰羽南京邮电大学  组3:1.3 高性能制造工艺基础前沿(青年科学家项目)序号姓名单位名称1刘越东北大学2吴恒安中国科学技术大学3田良成都工具研究所有限公司4苏峰华华南理工大学5沈承金中国矿业大学6张路明中信重工机械股份有限公司7薛文斌北京师范大学8钟毓宁湖北汽车工业学院9张正元中国电子科技集团公司第二十四研究所10练朝春上汽通用五菱汽车股份有限公司11郭明忠盛瑞传动股份有限公司12胡献国合肥工业大学13唐晔北京遥感设备研究所14刘红旗中国联合网络通信集团有限公司15杨卫民北京化工大学16任玉成中国重型机械研究院股份公司17王建峰中国科学院苏州纳米技术与纳米仿生研究所18徐军同济大学19吴兴旺中国船舶重工集团公司20赵铁石燕山大学  组4:2.1 耐高温抗腐蚀传动系统轴承序号姓名单位名称1金百刚鞍钢集团有限公司2王文杭州电子科技大学3强永席杭州颢熙科技有限公司4陆宁云南京航空航天大学5刘永斌安徽大学6周文龙大连理工大学7杨为佑宁波工程学院  组5:2.7 大型薄壁铝合金整体构件精确成形技术序号姓名单位名称1杨志刚同济大学2皮孝东浙江大学3袁国东北大学4王冰昆山双桥传感器测控技术有限公司5袁鸿暨南大学6党选举桂林电子科技大学7魏静重庆大学  组6:3.4 第三代半导体高性能碳化硅单晶制备和外延工艺及成套装备序号姓名单位名称1毕英杰上海宝信软件股份有限公司2庞慰天津大学3孙清清复旦大学4张辉东南大学5恩云飞工业和信息化部电子第五研究所6黄辉大连理工大学7姚友良山推工程机械股份有限公司科技部高技术研究发展中心2021-08-11
  • 2023年度“高性能制造技术与重大装备”等6个国家重点研发计划重点专项申报指南发布
    近日,根据《国家重点研发计划管理暂行办法》和组织管理相关要求,科学技术部发布了《科技部关于发布国家重点研发计划“高性能制造技术与重大装备”等6个重点专项2023年度项目申报指南的通知》,涉及“高性能制造技术与重大装备”、“智能传感器”、“工业软件”、“增材制造与激光制造”、“智能机器人”和“网络空间安全治理”共6个专项。 通知具体内容如下:科技部关于发布国家重点研发计划“高性能制造技术与重大装备”等6个重点专项2023年度项目申报指南的通知各省、自治区、直辖市及计划单列市科技厅(委、局),新疆生产建设兵团科技局,国务院各有关部门,各有关单位:国家重点研发计划深入贯彻落实党的二十大精神,坚持“四个面向”总要求,持续推进“揭榜挂帅”、青年科学家项目等科技管理改革举措,着力提升科研投入绩效,加快实现高水平科技自立自强。根据《国家重点研发计划管理暂行办法》和组织管理相关要求,现将“高性能制造技术与重大装备”“智能传感器”“工业软件”“增材制造与激光制造”“智能机器人”“网络空间安全治理”6个重点专项2023年度项目申报指南予以公布,请根据指南要求组织项目申报工作。有关事项通知如下。一、项目组织申报工作流程1. 申报单位根据指南方向的研究内容以项目形式组织申报,项目可下设课题。项目应整体申报,须覆盖相应指南方向的全部考核指标。项目设1名负责人,每个课题设1名负责人,项目负责人可担任其中1个课题的负责人。2. 整合优势创新团队,并积极吸纳女性科研人员参与项目研发,聚焦指南任务,强化基础研究、共性关键技术研发和典型应用示范各项任务间的统筹衔接,集中力量,联合攻关。鼓励有能力的女性科研人员作为项目(课题)负责人领衔担纲承担任务。3. 国家重点研发计划项目申报过程分为预申报、正式申报两个环节,具体工作流程如下。——填写预申报书。项目申报单位根据指南相关申报要求,通过国家科技管理信息系统公共服务平台填写并提交3000字左右的项目预申报书,详细说明申报项目的目标和指标,简要说明创新思路、技术路线和研究基础。从指南发布日到预申报书受理截止日不少于50天。预申报书应包括相关协议和承诺书。项目牵头申报单位应与所有参与单位签署联合申报协议,并明确协议签署时间;项目牵头申报单位、课题申报单位、项目负责人及课题负责人须签署诚信承诺书,项目牵头申报单位及所有参与单位要落实《关于进一步加强科研诚信建设的若干意见》《关于进一步弘扬科学家精神加强作风和学风建设的意见》等要求,加强对申报材料审核把关,杜绝夸大不实,严禁弄虚作假。预申报书须经相关单位推荐。各推荐单位加强对所推荐的项目申报材料审核把关,按时将推荐项目通过国科管系统统一报送。专业机构受理预申报书并组织首轮评审。为确保合理的竞争度,对于非定向申报的单个指南方向,若申报团队数量不多于拟支持的项目数量,该指南方向不启动后续项目评审立项程序,择期重新研究发布指南。专业机构组织形式审查,并根据申报情况开展首轮评审工作。首轮评审不需要项目负责人进行答辩。根据专家的评审结果,遴选出3~4倍于拟立项数量的申报项目,进入答辩评审。对于未进入答辩评审的申报项目,及时将评审结果反馈项目申报单位和负责人。——填写正式申报书。对于通过首轮评审和直接进入答辩评审的项目申请,通过国科管系统填写并提交项目正式申报书,正式申报书受理时间为30天。专业机构受理正式申报书并组织答辩评审。专业机构对进入答辩评审的项目申报书进行形式审查,并组织答辩评审。申报项目的负责人通过网络视频进行报告答辩。根据专家评议情况择优立项。对于支持1~2项的指南方向,原则上只支持1项,如答辩评审结果前两位的申报项目评价相近,且技术路线明显不同,可同时立项支持,并建立动态调整机制,结合过程管理开展关键节点考核评估,根据评估结果确定后续支持方式。4. 定向项目(含定向委托和定向择优)不填写预申报书,直接在国科管系统填写正式申报书。专业机构在受理项目申报后,组织形式审查,并组织答辩评审,申报项目的负责人进行报告答辩。根据专家评议情况择优立项。二、组织申报的推荐单位1. 国务院有关部门科技主管司局;2. 各省、自治区、直辖市、计划单列市及新疆生产建设兵团科技主管部门;3. 原工业部门转制成立的行业协会;4. 纳入科技部试点范围并且评估结果为A类的产业技术创新战略联盟,以及纳入科技部、财政部开展的科技服务业创新发展行业试点联盟。各推荐单位应在本单位职能和业务范围内推荐,并对所推荐项目的真实性等负责。推荐单位名单在国科管系统上公开发布。三、申报资格要求1. 项目牵头申报单位和参与单位应为中国大陆境内注册的科研院所、高等学校和企业等,具有独立法人资格,注册时间为2022年6月30日前,有较强的科技研发能力和条件,运行管理规范。国家机关不得牵头或参与申报。项目牵头申报单位、参与单位以及团队成员诚信状况良好,无在惩戒执行期内的科研严重失信行为记录和相关社会领域信用“黑名单”记录。申报单位同一个项目只能通过单个推荐单位申报,不得多头申报和重复申报。2. 项目(课题)负责人须具有高级职称或博士学位,1963年1月1日以后出生,每年用于项目的工作时间不得少于6个月。3. 项目(课题)负责人原则上应为该项目(课题)主体研究思路的提出者和实际主持研究的科技人员。中央和地方各级国家机关的公务人员(包括行使科技计划管理职能的其他人员)不得申报项目(课题)。4. 参与重点专项实施方案或本年度项目指南编制的专家,原则上不能申报该重点专项项目(课题)。5. 受聘于内地单位的外籍科学家及港、澳、台地区科学家可作为项目(课题)负责人,全职受聘人员须由内地聘用单位提供全职聘用的有效材料,非全职受聘人员须由双方单位同时提供聘用的有效材料,并作为项目预申报材料一并提交。6. 申报项目受理后,原则上不能更改申报单位和负责人。7. 项目申报查重要求详见附件1。各申报单位在正式提交项目申报书前,可利用国科管系统查询相关科研人员承担国家重点研发计划重点专项、科技创新2030—重大项目等在研项目情况,避免重复申报。8. 具体申报要求详见各申报指南,有特殊规定的,从其规定。四、项目管理改革举措1. 关于“揭榜挂帅”项目。为切实提升科研投入绩效、强化重大创新成果的“实战性”,重点研发计划聚焦国家战略亟需、应用导向鲜明、最终用户明确的攻关任务,设立“揭榜挂帅”项目。突出最终用户作用,实施签订“军令状”“里程碑”考核等管理方式。对揭榜单位无注册时间要求,对揭榜团队负责人无年龄、学历和职称要求,鼓励有信心、有能力组织好关键核心技术攻坚的优势团队积极申报。明确榜单任务资助额度,简化预算编制,经费管理探索实行“负面清单”。2. 关于青年科学家项目。为给青年科研人员创造更多机会组织实施国家目标导向的重大研发任务,重点研发计划设立青年科学家项目。根据领域和专项特点,采取专设青年科学家项目或项目下专设青年科学家课题等多种方式。青年科学家项目不要求对指南内容全覆盖,不下设课题,原则上不再组织预算评估,鼓励青年科学家大胆探索更具创新性和颠覆性的新方法、新路径,更好服务于专项总体目标的实现。3. 关于部省联动。部分专项任务将结合国家重大战略部署和区域产业发展重大需求,采取部省联动方式实施,由部门和地方共同凝练需求、联合投入、协同管理,地方出台专门政策承接项目成果,在项目组织实施中一体化推动重大科技成果产出和落地转化。4. 关于技术就绪度(TRL)管理。针对技术体系清晰、定量考核指标明确的相关任务方向,“十四五”重点研发计划探索实行技术就绪度管理。申报指南中将明确技术就绪度要求,并在后续的评审立项、考核评估中纳入技术就绪度指标,科学设定“里程碑”考核节点,严格把控项目实施进展和风险,确保成果高质量产出。五、具体申报方式1. 网上填报。请各申报单位按要求通过国科管系统进行网上填报。专业机构将以网上填报的申报书作为后续形式审查、项目评审的依据。申报材料中所需的附件材料,全部以电子扫描件上传。项目申报单位网上填报预申报书的受理时间为:2023年6月20日8:00至7月24日16:00。进入答辩评审环节的申报项目,由申报单位按要求填报正式申报书,并通过国科管系统提交,具体时间和有关要求另行通知。定向项目申报单位填写正式申报书的受理时间为:2023年6月20日8:00至7月24日16:00。2. 组织推荐。请各推荐单位于2023年7月27日16:00前通过国科管系统逐项确认推荐项目,并将加盖推荐单位公章的推荐函以电子扫描件上传。3. 技术咨询电话及邮箱:010-58882999(中继线),program@istic.ac.cn。4. 业务咨询电话:(1)“高性能制造技术与重大装备”重点专项咨询电话:010-68104402。(2)“智能传感器”重点专项咨询电话:010-68104423。(3)“工业软件”重点专项咨询电话:010-68104472。(4)“增材制造与激光制造”重点专项咨询电话:010-68104487。(5)“智能机器人”重点专项咨询电话:010-68207734、68207749。(6)“网络空间安全治理”重点专项咨询电话:010-68207726、68207794。附件:1. 项目申报查重要求2.“高性能制造技术与重大装备”重点专项2023年度项目申报指南及“揭榜挂帅”榜单3.“智能传感器”重点专项2023年度项目申报指南4.“工业软件”重点专项2023年度项目申报指南及“揭榜挂帅”榜单5.“增材制造与激光制造”重点专项2023年度项目申报指南6.“智能机器人”重点专项2023年度项目申报指南及“揭榜挂帅”榜单7.“网络空间安全治理”重点专项2023年度项目申报指南及“揭榜挂帅”榜单科技部 2023年6月1日 根据《通知》要求,请申报单位登录系统,在“公开公示-申报指南”菜单栏中查看申报指南材料。
  • 高性能分离膜材料的规模化关键技术取得突破
    p style=" text-align: center " img title=" 1.jpg" src=" http://img1.17img.cn/17img/images/201709/insimg/eefe34f4-d5d3-47f0-939e-bd1ca31d5a25.jpg" / /p p style=" text-align: center " strong 图片来源于网络 /strong /p p   高性能分离膜是国家节能减排和环境保护的重要基础材料,是新材料领域重要的发展方向之一。高性能分离膜作为新型高效分离技术的核心材料,在过程工业、能源环境等领域具有的良好的应用前景。“十二五”期间,在863计划新材料技术领域,支持了 “高性能分离膜材料的规模化关键技术(一期)”重大项目。近日,863新材料技术领域办公室在北京组织专家对该重大项目进行了验收。 /p p   该项目突破了反渗透膜、纳滤膜、膜生物反应器膜和水质净化膜等膜材料的规模化制备技术并建成了生产线,在海水淡化、污水处理等领域实现了示范应用 突破了陶瓷纳滤膜、疏水性渗透汽化膜、酸碱回收膜等关键技术并建成规模化生产线,在油气分离、酸碱回收等领域取得了应用 攻克了金属微孔膜、纯质碳化硅膜、二氧化碳分离膜、复合钯膜等膜材料规模化制备及应用技术并建成了示范生产线,并在高温气体分离等方面取得示范应用。通过该项目的实施,突破了高性能水处理膜、特种分离膜材料、气体分离膜规模化制备的技术难点,奠定了高性能膜材料制备、应用的技术基础,整合了国内高性能分离膜材料研究的优势力量,推动了该领域自主核心技术的研发和应用。 /p p   “十三五”期间,为进一步推动我国材料领域科技创新和产业化发展,科技部制定了《“十三五”材料领域科技创新专项规划》,在新型功能与智能材料方向规划了高性能分离膜技术,重点研究高性能海水淡化反渗透膜、水处理膜、特种分离膜、中高温气体分离净化膜、离子交换膜等材料及其规模化生产、工程化应用技术与成套装备,制膜原材料的国产化和膜组器技术,旨在攻克高性能分离膜方向的基础科学问题以及产业化、应用集成关键技术和高效成套装备技术。 /p p & nbsp /p
  • “高性能质量流量计开发及产业化” 项目通过验收
    8月13日,耐德工业承担的重庆市“智能化仪器仪表”重大科技专项中的子项——“高性能质量流量计开发及产业化”,一次性通过了重庆市科委组织的结题验收。   该项目于2006年底开始申报,2007年批复该项目资助50万元,研发周期为2008年1月至2009年12月,由重庆罗尼克仪表制造有限公司代表耐德工业具体负责实施。通过多方的努力,2009年底罗尼克公司按时完成了该项目任务书所规定的各项任务,向市科委提交了结题验收申请。   验收会上,重庆市科委领导及专家组在认真听取了项目负责人的技术报告、工作报告及自评估报告,并对相关的技术指标、经济指标等内容进行了现场审查和质询后,认为承担单位在质量流量计的结构设计、真空钎焊焊接工艺、精密相位与频率测量、自补偿和自诊断的DSP等关键技术方面,取得了显著的成效,产品开发成功得以应用并具备了产业化的能力 财务方面,资金的投入和使用基本合规,完成了任务书规定的各项指标,一致同意通过该项目结题验收。
  • 973计划启动高性能声功能材料研究项目
    近日,973计划“高性能声功能材料研究及其在高端超声换能器中的集成”项目启动会在哈尔滨召开,科技部基础研究司、973计划咨询组专家、项目组成员等30余人参加了会议。   在会上,项目首席科学家曹文武教授报告了项目研究方案及工作思路,各课题负责人汇报了工作计划安排,与会专家进行了研讨并提出了建议性意见。我国超声设备产业规模庞大但整体技术水平较低,高端产品被发达国家垄断,根本原因是超声换能器这一核心部件与国外差距较大,成为制约我国超声探测设备产业发展的颈瓶。该项目针对医疗诊断、工业无损检测和水下通讯等国家重大需求,研究弛豫铁电单晶巨压电性的影响因素、大尺寸弛豫铁电单晶制备的调控机制、超声复合材料中的宽频带声传输和吸收机理,以及三类不同声功能材料集成的结构协调增益研究,将为推动我国高端超声探测系统的发展奠定科学基础。
  • 高性能膜材料科技发展“十二五”专项规划发布
    科技部关于印发高性能膜材料科技发展“十二五”专项规划的通知   国科发高【2012】895号   各省、自治区、直辖市、计划单列市科技厅(委、局),新疆生产建设兵团科技局,各有关单位:   为进一步贯彻落实《国家中长期科学和技术发展规划纲要(2006-2020年)》、《国务院关于加快培育和发展战略性新兴产业的决定》和《国家“十二五”科学和技术发展规划》,推动高性能膜材料技术和产业发展,我部组织编制了《高性能膜材料科技发展“十二五”专项规划》。现印发你们,请结合本地区、本行业实际情况认真贯彻落实。   附件:高性能膜材料科技发展“十二五”专项规划.pdf   科技部   2012年8月21日
  • 兰州化物所高熵氧化物红外辐射性能研究获进展
    高温红外辐射涂层作为高效节能新材料,通过热辐射方式提高传热效率,在火力发电、钢铁、电力、石油化工、冶金和焦化行业颇具应用前景。近年来,高熵材料尤其是高熵氧化物具有可调控的主元组分和独特的晶体结构,使其在功能材料研究与应用领域备受关注。然而,鲜有关于高熵材料在高温红外辐射方面的研究报道。中国科学院兰州化学物理研究所清洁能源化学与材料实验室低碳能源材料组高祥虎研究员团队在新型高温红外辐射材料的设计与制备方面开展了系统研究。针对传统尖晶石氧化物在短波长红外区域发射率低、热稳定性不佳的问题,研究提出了利用高熵概念进行材料性能优化设计。科研人员通过简便、低成本的固相合成反应,制备出(CuMnFeCr)3O4尖晶石型高熵氧化物红外辐射材料,重点研究了高熵多主元设计对材料红外辐射性能和高温热稳定性的影响。结果表明,多主元设计可有效提高0.78-2.5μm和2.5-16μm波段的红外发射率,且高熵效应利于长效的化学热稳定性。近日,该团队通过理论与实验相结合的方式,进一步阐明了高熵氧化物的微观结构、元素组分、电子分布与红外辐射性能的构效关系,揭示了高熵工程对材料红外辐射性能提升的内在机制。结果表明,高熵策略产生的轨道杂化可有效增强电子跃迁几率,通过变价金属元素引入大量氧空位,从而减小材料的带隙(图1)。同时,晶格畸变效应降低了晶格振动的对称性。因此,(MnCrFeCoCu)3O4高熵尖晶石氧化物具有优异的近黑体辐射能力。经1300°C退火热处理100h后,材料仍保持单相尖晶石结构,红外辐射衰减率仅为2.1%(图2)。此外,研究人员利用冷喷涂技术将高熵氧化物红外辐射材料沉积在不锈钢基底。该红外辐射涂层具有高的辐射热效率和显著的热稳定性,在0.78-16μm波段红外发射率可达0.943。这种新型高熵红外辐射材料在高温工业热辐射领域颇具应用潜力。相关研究成果以High-Entropy Engineering for Broadband Infrared Radiation为题,发表在《先进功能材料》(Advanced Functional Materials)上。研究工作得到中国科学院战略性先导科技专项(A类)-煤炭清洁燃烧与低碳利用专项、中国科学院洁净能源创新研究院-榆林学院联合基金、兰州化物所“十四五”规划重大突破项目等的支持。图1. 高熵氧化物红外辐射材料宽波段高发射率机理研究图2. 高熵氧化物红外辐射材料宽波段发射率及高温热稳定性评估图3. 高熵氧化物红外辐射材料辐射传热性能验证
  • 新加坡国立大学刘小钢团队:制备用于提高射线成像性能的像素化双锥形光纤阵列
    当前,在全球范围内科技与产业革新的浪潮中,信息光电子、激光加工、激光全息、光电传感等技术正在快速发展。光电产业与能源、信息、医疗等领域的结合和渗透也在加速,推动着新技术、新产品和新商业模式的不断涌现,全球光电产业的竞争格局经历重大重塑。据Market Research Future预测,到2032年,光电市场的规模将从2024年的381.9亿美元增长至845亿美元。预计在2024至2032年期间,该市场的年复合增长率为10.44%,其中光电子在多个不同领域的应用增加以及红外元件利用率的提高是促进市场增长的关键市场驱动力。随着光电子技术的进步和规模化生产,社会生产对光电子相关器件的需求日益增加,互联网与光电产业深度融合。作为高新技术产业基础的光电元件,正快速朝着微型化、精密化、轻薄化以及集成化的方向发展。然而,由于其发展历程相对较短,仍面临诸多挑战和问题需要逐步解决。其中,高能射线成像是一种利用高能射线(如X射线、伽马射线等)进行成像的技术,主要用于医学、工业检测、安全检查和科学研究等领域。但该技术受到的主要限制因素在于厚层闪烁体材料内部存在的自吸收和散射现象。近年来,钙钛矿纳米闪烁体已直接集成到电荷耦合器件中以实现X射线成像。然而,为了有效吸收高能射线,钙钛矿闪烁体层必须达到毫米至厘米的厚度。但由于横向光子散射和固有的自吸收,毫米厚度的钙钛矿闪烁体的光穿透和空间分辨率仍将受到限制。基于此,新加坡国立大学(NUS)化学系的刘小钢教授研究团队开发了一种用于提高射线成像性能的像素化双锥形光纤阵列。该阵列通过双锥面设计可以有效地吸收传递闪烁体层激发的光子,降低闪烁体材料内部的散射和自吸收,从而有效提高射线成像的空间分辨率和成像性能。相关成果以“A double-tapered fibre array for pixel-dense gamma-ray imaging”为题,发表在《Nature Photonics》期刊上。光纤可以增强光耦合,执行光信号传输,并实现具有低损耗接口的光子集成电路。此外,理论研究表明,锥形或双锥形光纤可以通过促进倏逝波在锥形区域的基模上的传播来充当高功率放大器。在这里,研究人员扩展了理论分析,并通过实验验证了使用柔性双锥形光纤阵列和钙钛矿纳米晶闪烁体实现高灵敏度伽马射线成像的可能性。图1. 用于定向光收集的透明双锥形光纤阵列的结构特性研究人员对光收集特性进行了表征,并优化了锥形光纤的几何形状,以最大限度地提高光收集效率和传输效率。研究团队通过成型和层压聚氨酯和有机硅弹性体制造双锥形纤维阵列,首先采用摩方精密面投影微立体光刻(PμSL)3D打印技术制作出光纤阵列模具(nanoArch® S130,精度:2μm),并结合PDMS翻模技术得到双锥形纤维阵列。钙钛矿纳米晶充当闪烁体,通过测量其激发光谱对钙钛矿纳米晶进行表征,其表示作为波长的函数的相对发光强度。钙钛矿闪烁体表现出相对较小的斯托克斯位移和较高的量子产率,导致发射光子的大量重吸收。图2. 用于光子回收和高分辨率X射线成像的双锥形光纤阵列的光学特性双锥形光纤阵列系统的一个关键特征是它适用于发光穿透深度不足的所有情况,例如,具有上转换材料的近红外探测器、具有钙钛矿闪烁体的X射线或伽马射线探测器以及电激发发光二极管。通过将光纤阵列和钙钛矿纳米晶相结合,在实验中实现了输出信号增加了三倍,并通过4 mm厚的闪烁体层实现了6 MeV和10 MeV的伽马射线成像。伽马射线成像对于测量放射治疗、医学诊断和工业三维伽马射线断层扫描期间的皮肤剂量非常重要,因为这需要深度穿透。鉴于双锥形光纤阵列与硅技术的兼容性以及材料的可延展性,有望被大规模生产用于制造超灵敏光子探测器和用于高能辐射的大面积柔性成像设备,在仿复眼学、光场成像、生物分子传感、光学放大器以及发光二极管等领域也有着潜在应用。
  • 动力电池安全性能检测实验室场地建设规划条件
    p   近年来,随着新能源政策的利好和社会资本的涌入,新能源行业特别是动力电池制造企业如雨后春笋般不断生长。怎么建设和规划好一个全新的新能源锂电池检测实验室是许多新能源制造关联企业的痛点。新能源锂电池实验室不同于其他家用电器、灯具照明或汽车电子产品实验,由于锂电池在试验过程存在的不确定性和危险性,锂电池可能会产生有毒有害废气、冒烟、明火、甚至出现爆炸、溶液飞溅等情况,这些问题可能导致环境空气污染、设备损坏、实验人员受伤,甚至对人身财产造成巨大损失。因此,无论锂电池试验室规模大小,都有必要在新能源电池实验室的场地建设,设备购置,以及日常的运营成本给予充分的重视和了解。 /p p style=" text-align: center " img title=" 1.png" src=" http://img1.17img.cn/17img/images/201806/insimg/b5a6c188-4150-44ec-aebe-786d32141b2b.jpg" / /p p strong span style=" color: rgb(31, 73, 125) "   span style=" color: rgb(84, 141, 212) "   span style=" color: rgb(0, 112, 192) " 一、(规划)锂电池实验室设计依据及设备部署: /span /span /span /strong /p p    strong 1、依据标准规范: /strong /p p   满足GB/T 32146.2-2015《检验检测实验室设计与建设技术要求 第2部分:电气实验室》标准规范要求设计。 /p p   实验室主要用于锂电池强制性安全检查试验,提供稳定可靠的环境条件。为了评估电池在存储、运输、误用和滥用等情况下,是否会引发过热、明火、爆炸、有害气体溢出、人员安全等情况,由此应运而生的电池安全检测标准有:国际标准(IEC 62660、IEC62133)、欧盟标准(EN62133、EN60086)、中国标准(GB31241-2014)、美国标准(SAE UL)、日本标准(JIS),针对新能源锂电池应用较为广泛的标准是UN 38.3、GB/T31467.3-2015、GB/T 31485-2015、SAND 2005-3123、UL1642、UL2054、UL2580、JIS C 8711、JIS C8714、JIS C 87115、ISO 16750、ISO 12405、SAE J2464。电池标准针对的检测项目,大体可分为电性能适应性、机械适应性和环境适应性测试三大类的检测。 /p p   1)电性能适应性:包括电池工况容量、各种倍率的充放电性能、过充性能、过放性能、短路性能、绝缘性能、自放电特性、电性能寿命等。其中过充、过放、短路的实验过程风险较大,可能会存在明火爆炸等剧烈现场。 /p p   2)机械适应性:加速度冲击、机械振动、模拟碰撞冲击、重物冲击、自由跌落、电池包翻转、洗涤试验、挤压和钢针穿刺等。其中钢针针刺和挤压的实验过程风险较大,可能会存在明火爆炸等剧烈现场。 /p p   3)环境适应性:热滥用(热冲击)、温湿度循环、高低温循环、冷热冲击、温度骤变、真空负压测试、盐雾试验、浸水试验、海水浸泡和明火焚烧等。其中明火焚烧实验过程风险较大,可能会存在爆炸的情况。 /p p    strong 2、(规划)锂电池实验室设备布局: /strong /p p   在实验室建设初期规划实验室,既可以降低实验操作风险,同时也能系统的形成检测能力,通常具有完整测试能力的电池检测实验室,可规划成如下功能分区: /p p   1)电性能检测区,此区域主要涉及的仪器是充放电机柜、内阻测试仪、绝缘强度测试仪、绝缘电阻测试仪、数据采集设备等,由于电池的实测容量与测试温度有关,因此应对此区域的温度、湿度进行控制。 /p p   2)机械性能测试区,此区域主要涉及的仪器包括充放电机柜、振动试验台、冲击碰撞试验台、翻转试验台、三综合实验台,由于设备质量重、体积大、噪音大,且部分检测设备需要下挖,因此此区域多放置在一楼,做好隔音和隔震措施。 /p p   3)环境测试区,此区域主要完成温度、湿度、老化、热分析等实验,涉及的仪器包括充放电机柜、高低温箱、负压箱、温湿度实验箱、热分析仪、数据采集设备等,此区域需要24h连续长时间工作,因此容易出现麻痹大意导致安全事故。 /p p   4)辅助功能区,可根据实际需要进行配置,包括样品室(放置测试前后的电池样品)、库房(放置闲置线缆、工具等)、办公室、会议室、休息区等。样品室存放电池样品,需要频繁检查电池状态。 /p p   5)电池安全测试区,此区域开展的测试均带有危险性,包括样品不成熟导致的风险以及测试本身的风险,包括的测试项目:跌落、针刺、挤压、燃烧、过充、过放、短路、浸水、海水浸泡、高温充放电等项目,涉及的设备包括充放电机柜、跌落试验台、针刺试验机、挤压试验机、燃烧试验机、短路试验机、浸泡设备、高温箱等。由于此区域着火爆炸概率较高,因此需要建设行之有效的尾气排放和处理措施,以避免对环境的影响。 /p p    strong 注意:GB/T 31467.3-2015(电动汽车用锂离子动力蓄电池包和系统 第3部分安全性要求与测试方法)以及GB/T 31485-2015(电动汽车用动力蓄电池安全要求及试验方法)标准部分试验项目适用。 /strong /p p    span style=" color: rgb(0, 112, 192) " strong 二、(规划)锂电池实验室测试程序: /strong /span /p p    strong 1. 电池材料检测 /strong /p p   电池材料的测试主要为材料的组成、结构、性能测试,所有测试过程都不涉及任何化学处理步骤,均属于仪器分析,测试的全过程不产生对环境有害的物质。最终产生的废弃样品及未测试的多余样品均交还送检单位。 /p p style=" text-align: center " img title=" 2.png" src=" http://img1.17img.cn/17img/images/201806/insimg/f6c52bd6-dbf2-4a1a-887f-274ec60e8e5f.jpg" / /p p   工艺流程简述:称取电池材料—电池材料制样—上机分析—结果输出。 /p p    strong 2、电池单体常规测试、电性能、安全性能和失效性能、可靠性检测 /strong /p p   电池单体常规测试包括外观、极性、尺寸和质量,涉及到目检、电压表检测、量具和衡器检测手段,四种测试项目都不涉及任何化学处理步骤,均不产生任何环境有害物质。电池单体电性能测试包括放电容量、倍率、循环寿命,涉及到的设备有电池充放电性能测试仪和电池模块充放电性能测试仪,以上两种设备基于电化学原理进行检测,都不涉及任何化学处理步骤,测试过程中不产生任何环境有害物质。 /p p   电池单体安全性能测试包括过充、过放、短路、跌落、高低温、针刺、挤压多项,涉及到针刺机、挤压机、跌落台、高低温箱和过充过放专用设备,所有的测试项目都在专用测试设备内执行,同时操作人员按照国标要求配备有严格的防护措施,测试过程都不涉及任何化学处理步骤。测试结束后产生的失效电池交由送检单位回收处理,对环境不产生影响。电池单体可靠性测试主要包括循环寿命、不同倍率放电特性、不同温度放电特性、充电特性、自放电特性、不同温度自放电特性、存贮特性、过放电特性、不同温度内阻特性、高温测试、温度循环测试、跌落测试、振动测试、容量分布测试等,以上测试涉及到的设备主要为电性能测试仪和部分安全性测试设备,电化学性能测试设备基于电化学原理对电池进行电性能检测,测试过程都不涉及任何化学处理步骤, 不产生化学反应,不产生对环境有害的物质。 /p p   电池单体失效分析和电池模型分析在上述可靠性检测、安全性检测、常规检测及化学组成检测等基础上开展,检测过程都不涉及任何化学处理步骤,不产生化学反应。对环境不造成污染。 /p p   工艺流程简述:电池单体试样遴选—电池试样连接检测设备—设备自动检测—数据输出。 /p p style=" text-align: center " img title=" 3.png" src=" http://img1.17img.cn/17img/images/201806/insimg/cc2f2757-c359-499b-b8d0-caf36db2fe17.jpg" / /p p    strong 3. 电池模块常规测试、电性能、安全性能和失效性能、可靠性检测 /strong /p p   电池模块常规测试包括外观、极性、尺寸和质量,涉及到目检、电压表检测、量具和衡器检测手段,四种测试项目都不涉及任何化学处理步骤,均不产生任何环境有害物质。电池模块电性能测试包括放电容量、倍率、循环寿命,涉及到的设备有电池充放电性能测试仪和电池模块充放电性能测试仪,以上两种设备基于电化学原理进行检测,都不涉及任何化学处理步骤,测试过程中不产生任何环境有害物质。 /p p   电池模块安全性能测试包括过充、过放、短路、跌落、高低温、针刺、挤压多项,涉及到针刺机、挤压机、跌落台、高低温箱和过充过放专用设备,所有的测试项目都在专用测试设备内执行,同时操作人员按照国标要求配备有严格的防护措施,测试过程都不涉及任何化学处理步骤。测试结束后产生的失效电池模块交由送检单位回收处理,对环境不产生影响。电池模块可靠性测试主要包括循环寿命、不同倍率放电特性、不同温度放电特性、充电特性、自放电特性、不同温度自放电特性、存贮特性、过放电特性、不同温度内阻特性、高温测试、温度循环测试、跌落测试 、振动测试、容量分布测试等,以上测试涉及到的设备主要为电性能测试仪和部分安全性测试设备,电化学性能测试设备基于电化学原理对电池进行电性能检测,测试过程都不涉及任何化学处理步骤, 不产生化学反应,不产生对环境有害的物质。 /p p   电池模块失效分析和电池模型分析在上述可靠性检测、安全性检测、常规检测及化学组成检测等基础上开展,检测过程都不涉及任何化学处理步骤,不产生化学反应。对环境不造成污染。 /p p   工艺流程简述:电池模块试样遴选—电池模块试样连接检测设备—设备自动检测—数据输出。 /p p img title=" 4.png" src=" http://img1.17img.cn/17img/images/201806/insimg/b7a7a4dd-b45a-46cf-bc6f-1964c0ab31ef.jpg" / /p p    strong 4. 电池系统常规性能、电性能、安全性能和失效性能检测、可靠性检测 /strong /p p   电池系统常规测试包括外观、极性、尺寸和质量,涉及到目检、电压表检测、量具和衡器检测手段,四种测试项目都不涉及任何化学处理步骤,均不产生任何环境有害物质。电池系统电性能测试包括放电容量、倍率、循环寿命,涉及到的设备有电池充放电性能测试仪和电池模块充放电性能测试仪,以上两种设备基于电化学原理进行检测,都不涉及任何化学处理步骤,测试过程中不产生任何环境有害物质。 /p p   电池系统安全性能测试包括过充、过放、短路、跌落、高低温、针刺、挤压多项,涉及到针刺机、挤压机、跌落台、高低温箱和过充过放专用设备,所有的测试项目都在专用测试设备内执行,同时操作人员按照国标要求配备有严格的防护措施,测试过程都不涉及任何化学处理步骤。测试结束后产生的失效电池系统交由送检单位回收处理,对环境不产生影响。电池系统可靠性测试主要包括循环寿命、不同倍率放电特性、不同温度放电特性、充电特性、自放电特性、不同温度自放电特性、存贮特性、过放电特性、不同温度内阻特性、高温测试、温度循环测试、跌落测试、振动测试、容量分布测试等,以上测试涉及到的设备主要为电性能测试仪和部分安全性测试设备,电化学性能测试设备基于电化学原理对电池进行电性能检测,测试过程都不涉及任何化学处理步骤, 不产生化学反应,不产生对环境有害的物质。 /p p   电池系统失效分析和电池模型分析在上述可靠性检测、安全性检测、常规检测及化学组成检测等基础上开展,检测过程都不涉及任何化学处理步骤,不产生化学反应。对环境不造成污染。 /p p   工艺流程简述:电池系统试样遴选—电池系统试样连接检测设备—设备自动检测—数据输出。 /p p style=" text-align: center " img title=" 5.png" src=" http://img1.17img.cn/17img/images/201806/insimg/b6ae167e-9e9b-439b-8098-99f7fc7e2f3f.jpg" / /p p    strong 5、(温馨提示) 由于新能源锂电池能量高度集中,且密集安装,因此即便是正常的试验测试(如各种充放电性能、高空模拟),也可能因误操作导致危险,下面列举新能源锂电池存在的潜在风险: /strong /p p   1)着火、燃烧、爆炸 /p p   磷酸铁锂电池在电解液中添加过充添加剂非水有机体系的电解液具有低燃点的易燃性质,它在温度升高的密闭电池体系内极易和充放电过程中非常活跃的电极材料发生一连串催化放热反应,从而引起热失控。同时电解液和电极材料之间的副反应伴有气体产生,当电池内压力达到设定的阀值,泄爆阀开启,并伴随气体泄放。如果电池内部集聚温度过高,与空气种的氧气的接触的情况下引起有机电解液的燃烧,最终导致电池的爆炸。 /p p   电池检测中的各种滥用实验的实质,是通过各种手段使电池发生外部短路或内部短路,引起正负材料和电解液的直接反应,电池温度急剧升高。电池的散热性和压力的释放能量决定了电池着火、燃烧或爆炸。对实验现场的着火、燃烧、爆炸的防护,重点是保证试验现场压力要有足够的释放空间,防止燃烧扩展和压力的突然释放,可采取加固防爆壳体、快速压力泄放、通过多传感器融合技术进行预警检测,以实现不爆炸货弱能量的反应。 /p p   2)有毒气体的排放 /p p   由于电解液含有有机溶剂,在安全检测过程中,电解液的高温气化导致有毒气体的排放,通常有毒气体是通过电池泄爆阀打开后溢出,其气味刺激。当被测样品是大功率的新能源电池时,有毒气体的含量较多,且成分更为复杂,其排放问题更要注意,UL 2580规定了有毒气体释放量的检测要求。有毒气体的排放的防护重点,是加装有害气体检测传感器监测有害气体含量,加装抽风装置或无害化处理装置将有毒气体抽离实验室,避免操作人员与有害气体的接触。 /p p   3)漏液的污染性 /p p   电池在检测过程中容易出现漏液,漏液会腐蚀设备和测试台的外表面。应加倍关注富液设计电池的这种危害。因此无论是在有意破坏的漏液,或是实验过程意外泄露,都应该关注人员防护、设备防护和测试环境防护。其防护重点是通过严格操作流程管理和规范,将漏液的腐蚀侵害降至最低。 /p p    span style=" color: rgb(0, 112, 192) " strong 三、(规划)锂电池实验室——通风系统特点: /strong /span /p p   1、因锂电池在做破坏性测试时可能会产生大量的烟雾或者燃烧废气,需要考虑到通风环保设施要求 系统所作用的通风设备较复杂,流量较大。通风设备在工作期间可根据实际须要控制使用数量,风机负载随通风设备增减而变化。 /p p   2、系统控制采用各实验室布点控制,即利用同系统的各通风设备的电动调风阀或在附近设置信号开关,利用电动调风阀或信号开关输送信号远距离控制风机启停。采用电动调风阀对通风设备进行流量调节。 /p p   3、采用在风机入口处加装消声器的方式对通风系统进行噪声处理,对于电机功率小于4KW,A式传动的风机采用橡胶减振,对于电机功率大于4KW,C式传动的风机采用阻尼弹簧减振器减振。 /p p   4、因应节能要求及实际需要,对全面排风系统P1及局部排风系统P3、P4、P5、P6系统功率≥4KW的通风系统采用变风量变频控制系统控制。节约电能同时也可大大延长风机使用寿命。 /p p   5、因应现代环保要求,根据废气类别对P4、P5、P6系统的排气采用酸雾净化塔、活性炭干附等进行环保治理。 /p p   6、实验室的通风换气次数取每小时10~20次。 /p p   7、支管内风速取6~12m/s,干管内风速取8~14 m/s。 /p p   8、通风设备设计风量:单台1800*800*2350mm排毒柜设计排风量:1400~2100CMH 单台1500*800*2350mm排毒柜设计排风量:1100~1700CMH 单台500*500mm原子吸收罩设计排风量:800~1300CMH 单台万向排烟罩设计排风量 180~300CMH。 /p p    strong span style=" color: rgb(0, 112, 192) " 四、(规划)锂电池实验室——内部装饰 /span /strong /p p    strong 1、天花 /strong /p p   (1)实验室、办公室天花采用轻钢龙骨吊600*600mm的铝合金扣板天花。 /p p   (2)结合通风和机电要求,实验室天花选用铝合金扣板天花可以大幅度降低通风和机电施工难度和强度,也利于日后的正常维护和检修。 /p p   (3)实验室天花采用铝合金扣板天花美观,大方,无污染,还可以搭配其他一体化装修完成整个装修工程。 /p p   (4)实验室天花采用铝合金扣板天花可以有效的防霉、防潮。 /p p   (5)洁净室采用彩钢板天花板。 /p p    strong 2、地面 /strong /p p   (1)实验室地面按照甲方要求保留原有抛光砖地面600*600mm。 /p p   (2)抛光砖技术成熟,整洁,美观,灰缝小,易于清洁。 /p p   (3)在装修过程中,抛光砖的铺设最适合于办公场所。 /p p   (4)抛光砖可承受多人办公场所的磨损,维护后不变色不需打蜡抛光等繁复操作。 /p p   (5)洗涤室利用原有地面,节约成本。 /p p   (6)优质防滑地砖可以有效杜绝液积留在地板上对实验室工作人员造成的不便。 /p p    strong 3、墙体 /strong /p p   (1)新砌墙身采用轻质砖砌180mm厚砖墙,双面批荡面贴500*500抛光砖。 /p p   (2)采用其他墙体全部贴500*500抛光砖 /p p   (3 走廊用12mm厚钢化玻璃做玻璃隔墙,踢脚线材质选用抛光砖。 /p p   (4)采用玻璃间隔的设计使得开放式实验成为一种可能。 /p p   (5)采用玻璃间隔的设计令人视野开阔,整体实验室洁净、明亮。 /p p    strong 4、门窗 /strong /p p   (1)实验室统一采用12mm厚钢化玻璃地弹簧门,增加实验室通透性。按照规划设计要求,分为900*2100mm、1200*2100mm、1500*2100 mm三种规格,根据具体情况,洁净室的门为800*2100 mm。 /p p   (2)实验室主通道入口用1500*2100mm钢化玻璃双开门,外加电脑磁卡感应门锁(配10张卡)。 /p p    span style=" color: rgb(0, 112, 192) " strong 四、(建议)锂电池实验室注意事项: /strong /span /p p   实验室设计之初就应该全面性的考虑到被测试锂电池出现爆炸、燃烧、漏液等问题。 /p p    strong 1.爆炸前预警: /strong 由于电池起火爆炸前会有很大的变化,可以传感器充分检测指标达到爆炸前预警的目的。这些变化包括——温度升高、电流突然增大、泄爆阀打开、有害气体溢出等,其中温度和电流是预警的重要指标,对相同规格的电池具有相似的指标,通过概率分布可形成较好的爆炸预测。 /p p    strong 2.爆炸过程控制: /strong 电池连锁爆炸是爆炸过程控制的重点,通过切断电流回路、降低爆炸现场温度、阻断燃烧路径、撤离着火源头等方式,其中以切断电流回路和干冰灭火方式最为有效。既能起到控制火情,同时也保留了测试样品。 /p p    strong 3.污染物可回收: /strong 污染物包括固态污染物和气体污染,通过电池回收罐收集固态污染物回收时,要避免二次危险。有害气体的回收成本非常高昂,可根据实际情况酌情处理。 /p p    strong 4.试验室防爆系统: /strong 房间内安装2个传感探头。测试单元放置在室外可随时的监测试验室内的气体是否超标。报警系统分2级控制当第1级报警时启动声音报警,此时不切断电路。当浓度继续升高时达到2级报警时报警器自动打开风阀启动抽排风系统并切断实验室电源。防爆室内部采用1.2mm厚的钢板焊接而成,墙体可采用铝塑板或其他材料支撑,整改防爆室具有耐火、防止爆炸物飞出等功能。防爆门采用往里面推开的开门方式,必须具有防止冲击波导致开门的问题,门上配置有防爆玻璃观察窗,并且窗上焊接有铁柱防止玻璃破裂。防爆室上空设置有铁制的通风管道,其作用有二 1、当有燃烧、烟雾时,开启风机抽风,2、主要用于泄放爆炸时的压力。因此通风管道需要做宽,建议尺寸不小于500mm× 600mm× 870000mm。 /p p    strong 5.每个防爆室配置有防爆灯,视频监控探头。 /strong 视频监控探头对准被测物位置。每个防爆室的底部设置有设备的连线门洞:100mm× 200mm 在高1000mm处也设置有直径500mm的连线门洞,门洞的里面一侧设置有钢铁挡板。防爆室作为样品储存室使用,并配置有小一匹分体式空调作为恒温,外墙配置有直径120mm的排气扇。里面配置有消防烟感探头。 /p p    strong 6.充放电区: /strong 设置有试验台,台面分有仪器操作位置和样品区,样品区四周及底面采用1.2mm不锈钢板焊接 前面设置有开门 上方开孔,用于泄放用。也可以在上方加装排气管道。样品区的侧面开有直径50mm的孔用于连接线。样品区可放置定做的防爆箱。 /p p    strong 7.消防要求: /strong 在人员操作区和样品区设置有消防烟感探头。 /p p    strong 8.视频监控要求: /strong 共用七个视频监控探头,五个用于防爆室,两个用于冲放电区,在防爆室外配置有视频监控显示器,可在测试过程中查看到里面情况,并具有连接内网功能,可便于在办公室查看具体情况。空调恒温功能:在人员操作区采用原来配置有的5匹空调,另外在A防爆室加装小一匹空调用于储存室。 /p p    strong 9.实验室噪音: /strong 实验室噪声源主要为测试设备、风机等设备运行时产生的噪声,其噪声值约为 50~75dB(A)之间。 /p p    strong 10.电气控制柜及电气连线,有永久性的标志,并与图纸相符,同时符合国家有关的标准。 /strong 设备供电采用三相五线制供电。可靠地保护人身安全。测试系统应增加电源切换开关,能够给各台位提供不同频率的电源(同时包括每台的一路市电供电。试验室有高温保护装置,具有过流、漏电保护、有保险丝。 /p p    strong span style=" color: rgb(0, 112, 192) " 五、(规划)锂电池实验室水电要求: /span /strong /p p   1.配备电源:3Φ5W 380V,50/60Hz 总功率约130KVA /p p   2.独立地线:接地电阻≤4Ω /p p   3.给水:配管连接直径Φ20 水压≥0.15MPa,水质洁净无杂质 /p p   4.排水:配管连接直径Φ100。 /p p    span style=" color: rgb(0, 112, 192) " strong 六、(设计)锂电池实验室测量系统精度: /strong /span /p p   1.所以控制值的准确度应在以下范围内 /p p   2.电压:± 1.0% /p p   3.电流:± 1.0% /p p   4.温度: ± 2℃ /p p   5.时间:± 1.0% /p p   6.尺寸:± 1.0% /p p   7.容量:± 1.0%。 /p p    strong span style=" color: rgb(0, 112, 192) " 七、锂电池防爆实验室典型设计应用: /span /strong /p p style=" text-align: center " strong span style=" color: rgb(0, 112, 192) " img title=" 6.png" src=" http://img1.17img.cn/17img/images/201806/insimg/99c27761-dfaf-494b-a3db-5c2355573e90.jpg" / /span /strong /p p style=" text-align: center " (锂电池实验室效果图) /p p style=" text-align: center " img title=" 7.png" src=" http://img1.17img.cn/17img/images/201806/insimg/cab6d5f4-6ae1-4329-ab4d-24dfb53560e9.jpg" / /p p style=" text-align: center " (测试系统综合交钥匙工程) /p p style=" text-align: center " img title=" 8.png" src=" http://img1.17img.cn/17img/images/201806/insimg/839110f4-dffb-4911-a168-6afd61901ad6.jpg" / /p p style=" text-align: center " (电池整体实验室正面) /p p style=" text-align: center " img title=" 9.png" src=" http://img1.17img.cn/17img/images/201806/insimg/d9e4888e-a8a8-465a-9cfc-f8526ff437aa.jpg" / /p p style=" text-align: center " (电池整体实验室背面) /p p    strong 作者:东莞市高升电子精密科技有限公司(DELTA德尔塔仪器) /strong /p
  • 通用高分子材料高性能化协同创新中心在沪成立
    9月16日,通用高分子材料高性能化协同创新中心在复旦大学揭牌成立。据悉,该协同创新中心将下设理事会,实行首席科学家负责制,中科院院士杨玉良担任中心首席科学家。   据介绍,高分子材料在国民经济和社会可持续发展中占有重要地位。由复旦大学、中石化北京化工研究院和上海石化共同组建的通用高分子材料高性能化协同创新中心,将以解决大品种通用高分子、高性能碳纤维等若干国家重大需求为总体目标,通过高校与工业研究院、大型企业的强强联合,创造产学研用合作共赢的无缝衔接新模式,建成代表我国通用高分子材料领域科学研究、产业开发和人才培养水平与能力的研发高地。同时,协同创新中心将在科技创新、人才培养和体制机制建设等方面加强改革与创新。   据悉,从1999年起,杨玉良团队与中石化北京化工研究院和上海石化一起,承担了关系国计民生的通用高分子材料和具有国家战略意义的碳纤维材料的研究,在国家科技部重大科技项目“通用高分子材料”及“高性能碳纤维”项目的支持和牵引下,为解决企业产业化中的实际问题作出了突出贡献。   他们研发的双轴拉伸聚丙烯已完全替代进口产品并开始出口,彻底改变了基本依赖进口的被动局面 在高性能碳纤维研究与产业化生产方面,2010年3月,3000吨/年硫氰酸钠法原丝工艺软件包和1500吨/年碳纤维整体工艺开发通过中石化鉴定并开工建设,总投资8.4亿元,项目一期已于2012年3月第一次打通全流程,预计于2013年年底全部完工。   复旦大学副校长金力希望,该中心能建成校企协同创新的典范,从而带动复旦协同创新体制机制的改革和创新能力的提升,加快建设世界一流大学的步伐。
  • 国产万亿次高性能计算机向产业化迈进
    12月26日,中国科技大学召开的成果发布会上透露,我国产KD-50-I-E增强型万亿次国产高性能计算机已成功应用于城市交通控制与管理、防灾减灾,并将于明年在合肥、杭州以及淮河流域等更大范围推广应用,这是中科大“985工程”二期建设取得的丰硕成果之一,它标志着我国产高性能计算机向产业化迈进了一步。   去年12月底,我国首台采用国产高性能通用处理器芯片“龙芯2F”和其他国产器件、设备和技术的万亿次高性能计算机“KD-50-I”在中科大研制成功,功能定位于大规模科学计算。为了让该项成果直接服务于国民经济建设,在中科大 “985工程”二期建设和安徽省科技厅的支持下,陈国良院士领导的科研团队大胆改进计算节点设计,提高系统主频,采用纠错能力更强的存储芯片、速度更快的交换芯片、合理的结构布局和新的生产工艺,使整机性能得到大幅度的提升,运行更加稳定可靠。今年11月,他们研制出了两台面向行业应用的增强型高性能计算机KD-50-I-E,除具有高性能、高稳定特点外,通过配置数据服务节点和其他应用部件,可灵活地构建出适应不同行业应用需求的万亿次高性能计算机系统。
  • 首个国产高性能芯片“魂芯一号”填补国产化空白
    日前,由中国电子科技集团公司38所自主研发的首个国产化高性能芯片“魂芯一号”,在北京“十一五”国家重大科技成就展上首次精彩亮相。   “魂芯一号”项目是国家“核高基”重点研制项目之一,而该芯片也是“核高基”展区唯一皖籍高科技产品。中国电科38所副总工程师洪一介绍,“魂芯一号”是完全自主研发的产品,可谓真正的中国“芯”、民族“魂”,而每秒钟运算300亿次的“高性能”,不仅能与国际市场同类产品相媲美,甚至还超过了国际上目前通用的一些产品。   “魂芯一号”运算能力超强,体积上却是个“小不点”,看上去仅比1元硬币稍大一点,但如果雷达装备了这一小块“秘密武器”后,由于运算速度大大提高,电磁波探测能力会如虎添翼 芯片还能用于电子对抗、通信、仪器仪表、视频监控等多个领域的信号处理。   据了解,目前,“魂芯一号”已经完成测试,半年内将在38所部分产品中率先应用。
  • FREEDOM迷你拉曼实现小型化和高性能之间的完美平衡
    全球领先的石英玻璃透射光栅和工业级光谱仪模块的生产厂商Ibsen Photonics13号宣布发布新的用于分析和过程控制仪器集成的FREEDOM HR VIS-NIR光谱仪平台。   FREEDOM迷你拉曼采用Ibsen Photonics独特的透射光栅技术,仪器设计中完美的实现了小型化和高性能之间的平衡。此款光谱仪抗噪性能好、几乎没有热变化,可以在苛刻的环境条件下运行。   这些优势使FREEDOM迷你拉曼适合于过程控制和现场应用的小体积、掌上和便携型仪器,如制药和安保领域等。   FREEDOM迷你拉曼的大小只有61 x 64 x 19毫米,拥有宽的光谱范围(475 nm - 1100 nm)和高的分辨率(0.6nm)。该款光谱仪非常灵活,可以选用许多不同的激光波长,包括常用的532、785、830nm。例如,使用785nm的激光可以覆盖200-3650cm&ndash 1波段,分辨率为10cm-1 。   此外,FREEDOM迷你拉曼支持一系列不同的探测器,用户可以根据特定的应用选择最适合的检测器,可以在成本、灵敏度和噪声之间实现很好的平衡。
  • 月旭科技-专家讲座系列之《高性能色谱分离填料的性能解读》
    1讲座主题《高性能色谱分离填料的性能解读》色谱柱是HPLC的“心脏”。目前,液相色谱柱的分离速度和性能有了很大大的提高,同时对液相色谱柱的稳定性和重现性也提出了较高的要求。而色谱分离材料的性能是决定色谱柱性能的关键因素。因此,本讲座立足于色谱分离材料的各种理化性能参数,从填料基质硅胶的性质、适用于色谱硅胶基质参数的控制、键合基团的特征、固定相的稳定性和重现性的控制、以及如何根据所需要分离的目标物的理化性质特点去选择合适的色谱固定相进行讲解,以帮助广大色谱分离工作者不仅会运用色谱柱去建立一个耐用、可靠性好的色谱分离方法。并且,更重要是让广大色谱工作者学会了解色谱柱(色谱分离材料)的各种性能参数和特点,这样以便于色谱工作者在工作中有的放矢地应用色谱分离技术解决各种实际问题。2内容摘要1. 色谱硅胶基质的性能解读;2. 色谱分离材料的性能解决;3. 色谱分离材料的稳定性和重现性控制;4. 如何根据目标物的理化性质选择合适的色谱固定相;5. 如何建立一个耐用、可靠性好的色谱分离方法。3主讲人简介薛昆鹏月旭科技研发总监浙江师范大学硕士生导师硕士、材料化学专业高级工程师,在色谱分离材料领域具有15年的科研和工作经验、长期立足于根据目标物的理化性质设计、合成制备各种色谱分离材料、特别立足于色谱分离材料的稳定性和重现性研究、并且对色谱分离方法有独到的认知和见解。目前在色谱分离材料领域内申请中国发明专利11项,其中授权8项,6项为di一发明人,发表各种SCI和中文核心期刊论文30余篇,承担各类国jia级、省级、市级色谱分离材料领域内的科研项目10余项。4讲座时间2022年5月27日(本周五)14:00
  • 上海光谱通过“高性能石墨炉原子化器”子课题技术测试
    由上海光谱仪器有限公司承担的&ldquo 高效原子化器&mdash &mdash 高性能石墨炉原子化器&rdquo 项目是 &ldquo 十一五&rdquo 科技支撑计划项目《科学仪器设备研制与开发》课题&ldquo 高稳定度光源的研究与开发&rdquo 的子课题,2010年10月15日,科技部、国家质检总局测试专家组在上海对该课题联合承担单位上海光谱进行了现场技术测试。专家们认真听取了课题组的研究工作汇报,审查了相关的技术资料、文档,依据课题任务书中规定的考核指标要求逐项进行了审核及测试,现场测试与审查结果表明,课题组成功地完成了任务书规定的考核任务及各项技术指标,上海光谱仪器有限公司作为该课题技术测试的第一站圆满完成了任务,为大课题顺利验收奠定了良好基础。 市场部 2010年10月18日
  • 中国科大在高性能金刚石量子器件制备上取得重要进展
    中国科学技术大学中科院微观磁共振重点实验室杜江峰、王亚等人在金刚石量子器件制备方向取得重要进展,发展了一种全新的基于自对准的光子学器件制备加工技术,可将氮-空位色心这一原子级量子传感器以纳米级精度加工到金刚石器件最佳工作位置,实现接近最优光学探测性能的量子传感器阵列。这项研究成果以“Self-aligned patterning technique for fabricating high-performance diamond sensor arrays with nanoscale precision”为题发表在《科学进展》[Sci. Adv.8, eabn9573 (2022)]上。金刚石,俗称“钻石”,具有高硬度、高稳定性、高透光性、高热导率以及超高的禁带宽度等优异的物理化学性质,在超精密加工、光学材料以及半导体电子器件等工业领域有着广泛的应用。近十多年来,科学家发现金刚石中一种可以发光的原子尺度晶格缺陷--氮-空位色心(简称NV色心)具有极大的量子应用前景,让存在缺陷的不“完美”金刚石变得在实用性上更加“完美”。NV色心不仅可以以纳米空间分辨率对电磁场、压力等多种物理量在室温大气乃至极端环境下进行精密测量,也可以建立多体量子纠缠,用于研究量子信息等基础问题,在前沿基础科学、高科技产业等领域有重大应用价值。图1:制备技术方法示意图。制备高性能金刚石量子器件是金刚石量子信息技术实用化的关键技术。以金刚石量子传感器为例,其原理是利用器件内的NV色心将外界的微弱物理信号转换为自身荧光强度信号来进行探测,因此在不牺牲其他物理性质前提下,提高NV色心光子计数率是提升传感器性能的一个关键指标。在过去几年中,人们积极致力于开发用于提高NV色心荧光强度的金刚石微纳米光子学结构,例如固体浸没透镜、柱形波导、圆形牛眼光栅、抛物面反射器、倒置纳米锥等。但目前传统的制备技术无法精确控制微纳米结构中NV色心位置,导致器件制备效率低下,性能难以达到预期(图2(a)),其主要原因是NV色心制备工艺和金刚石结构刻蚀工艺之间的对准难题(图1左)。通常这一对准精度需要优于20纳米,方能达到光学器件理论上最优的光学性能。图2:器件制造效果展示。(a)传统工艺制造器件光学计数率分布;(b)自对准工艺制造器件光学计数率分布;(c)金刚石纳米柱传感阵列电镜照片;(d)单个NV色心荧光饱和曲线测试。针对以上难题,本工作研究团队发展了一种基于自对准策略的光子学器件加工技术,通过双层掩膜图形化工艺设计实现生成NV色心所需的氮离子注入工艺和金刚石结构刻蚀工艺的自对准,精度可以达到15纳米(图1右)。使用该技术,研究团队实现了高性能金刚石纳米柱传感阵列的制造,该纳米柱传感器可用于生物传感、纳米级磁性材料成像等前沿应用。与传统制造技术相比,器件显示出高度一致且最优的光子计数率以及接近理论预期的器件产率。通过金刚石晶体取向进一步控制荧光发射偶极方向,团队最终实现单个NV色心饱和光子计数率达到~4.34Mcps,荧光强度提升大约20倍(图2)。该方法具有可工程化、简单且高精度的特点,不仅可批量化制备高性能金刚石量子传感器,对金刚石量子技术实用化具有重要意义,还可以应用于碳化硅、稀土离子等其他固态量子体系。相关技术与器件已申请国际专利进行保护。中科院微观磁共振重点实验室特任副研究员王孟祺为该论文的第一作者,杜江峰院士、王亚教授为共同通讯作者。该研究得到了科技部、中科院、国家自然科学基金委和安徽省的资助。论文链接:https://www.science.org/doi/10.1126/sciadv.abn9573
  • 用细菌制造出高性能绝缘纳米纸
    中国科学技术大学俞书宏院士团队研制出了一种高性能纤维素基纳米纸材料,其在极端条件下仍可保持优异的机械和电绝缘性能。相关成果日前发表于《先进材料》。 复合纳米纸的的制备与结构示意图 中国科大供图随着人类对南极洲、月球和火星等极端环境探索的深入,不断出现的极端环境条件,包括强紫外线环境、原子氧和高低温交替环境等,已经成为今后深入探索的主要障碍。在这些极端环境下,材料的物理化学特性会发生变化,严重时甚至会导致重要设备和装置的损坏。在传统材料当中,金属和陶瓷本身具有出色的机械性能和对极端环境的耐受性,但金属材料面临密度过高重量过大的问题,而陶瓷材料则面临脆性和难以加工等问题。聚合物具有轻质和可塑的特点,但目前大多数聚合物基复合材料在极端环境长期服役会产生高温软化和低温脆性等问题。因此,设计和制备一种能长期在极端环境下服役的高性能防护材料是材料领域面临的难题之一。在大自然中,珍珠母的“砖-泥”结构为其提供了极好的力学性能。近年来,这种精巧的有序结构的其他功能(如隔水、隔氧以及对能量场的均匀分散等)也逐渐成为研究热点。受天然珍珠母“砖-泥”结构的启发,在此次工作中,研究人员首先采用气溶胶辅助生物合成方法,利用细菌产出的纤维素纳米纤维将分散的合成云母纳米片均匀而紧密地缠结得到复合水凝胶,然后通过热压的方式,得到最终的仿珍珠母结构的纳米纸材料。得益于纳米纸内部精细的“砖-泥”结构和连续三维网络,该纳米纸表现出高强度、高模量、高韧性、可折叠性和抗弯曲疲劳性等优异的力学性能。同时,材料内部的“砖-泥”结构充分发挥了云母的高介电强度,从而赋予了该纳米纸较高的电击穿强度。与纯纤维素纳米纸相比,该复合纳米纸的耐电晕寿命显著提高,甚至超过了商用聚酰亚胺薄膜。此外,该项研究报道的高性能纤维素基纳米纸在高低温交替、紫外线和原子氧等极端条件下,仍表现出优异的综合性能,这为未来人们对极端环境的探索提供了一个极好的防护材料选择。
  • 中国电镜产业链系列走访第8站祺跃科技:致力原位扫描电镜产业化,赋能材料结构与性能一体化表征
    秉承“国产科学仪器腾飞行动”宗旨,仪器信息网于 2018 年启动“国产科学仪器腾飞行动”之“创新 100”项目,通过筛选一批具备自主创新能力的中小仪器厂商,在企业发展的关键时期“帮一把”。五年以来,天时地利人和至,中国电镜产业迎来发展窗口期,国内电镜产业链企业们也纷纷抓住历史机遇,实现生机蓬勃的发展之势。2023 年迎来国产电镜的“全新时代”。此背景下,“创新 100”项目组在2023年底走进13家中国电镜产业链代表性企业,邀请电镜专家联合走访,探寻中国电镜产业发展进展,为发展新阶段赋能,也为 2024 年即将在苏州举办的“第三届中国电镜产业化发展论坛”的内容筹备作前期调研。交流现场走访第8站,由仪器信息网材料物性组执行主编杨厉哲、“创新 100”项目负责人韦东裕、营销服务中心经理韩永风、牛群山等组成的走访项目组走进浙江祺跃科技有限公司(以下简称“祺跃科技”),祺跃科技董事长张跃飞、研发总监唐亮等接待了走访一行人员。——企业发展进展浙江祺跃科技有限公司主要从事材料显微结构与性能一体化检测的纳米分辨可视化原位扫描电镜、真空与镀膜装备的研发、生产、销售和维护服务,并提供材料检测、材料大数据与AI应用、原位微观表征解决方案服务。祺跃科技的技术根基源自浙江大学张泽院士主持的国家重大科研仪器设备研制项目。基于该项目的研究成果,2019年,张跃飞和祺跃科技踏上了扫描电镜纳米分辨高温力学原位仪器的产业化之路。从创办第一年,只能生产电子显微镜的一个功能模块,到2022年短短三年,祺跃科技已经研制出满足市场上扫描电子显微镜的系列化原位高温力学功能模块与整机,完成多项科技成果转化。期间,祺跃科技还获批浙江省“院士工作站”、国家高新技术企业、浙江省级研发中心、承担国家重点研发计划,杭州市领军型创新团队项目等。经过坚实且成果斐然的初创期之后,祺跃科技稳健地迈向发展新阶段,于2023年成功完成天使轮融资。——产品技术与布局2019年,张泽院士主持的“国家重大科研仪器项目”成果落地转化,祺跃科技研制出原位拉伸力学与原位加热测试装置,极限载荷与温度分别为2000N、1150℃。2020年,原位拉伸力学与原位加热测试装置产品型号愈加丰富,产品性能进一步提升,极限载荷与温度分别进一步提升到5kN、1200℃ 。2021年,祺跃科技提高产品的标准化与通用性,发布尺寸最小的原位拉伸台、长时间原位真空疲劳测试系统等多款设备。2022年,祺跃科技形成系统解决原位方案,推出系列化原位SEM疲劳和蠕变台、原位电化学测试台,原位冷热台;同时,原位SEM拉伸台载荷提升至10kN,EBSD测试温度提升至1000℃和-180℃原位低温力学测试,开发出了原位SEM-EBSD-DIC关联应用原位表征测试方法。原位扫描电镜In-situ SEM 660F值得一提的是,预计在2024年祺跃科技将正式发布首台原位扫描电子显微镜(In-situ SEM 660F)。In-situ SEM 660F作为一款创新性的产品,填补了国内外原位高温微观结构与力热耦合一体化测试仪器的空白,可以实现1400℃纳米级高分辨成像,并可以与多种原位测试系统联用,在高/低温条件下对样品进行原位力学、氧化腐蚀、电化学等多场耦合测试。该仪器提供跨尺度研究材料液-固、固-固相转变过程演化研究的新方法,可以在高/低温环境作用下对样品施加拉伸、疲劳、蠕变、电化学、氧化腐蚀等多场耦合作用,表征样品/样件性能与微观组织演变实时相关的过程信息,极大程度满足用户的多功能、多场景测试需求。目前,祺跃科技基于长期研发投入,在高温-应力耦合加载同时保持电子显微纳米级分辨快速成像的核心技术方面具有领先优势,已布局原位扫描电子显微镜、原位测试模块、真空镀膜设备等系列化高端科学仪器。未来,公司将充分发挥产学研用一体化优势,以“成为微观过程可视化检测行业引领者,提供材料与高端制造业升级和创新的眼睛与大脑”为愿景,聚焦于开发显微结构与性能一体化高通量原位表征新仪器,为客户提供创新性的材料原位检测研究新产品与高水平分析测试服务。实验室参观——国产电镜发展观点国产电镜的发展近年来取得了显著的进步,但同时也面临着多方面的挑战。技术创新与突破:国产电镜在技术创新方面已经取得了长足的进步。通过不断研发新技术、新材料和新工艺,国产电镜的性能和稳定性得到了显著提升。然而,与国际先进水平相比,国产电镜在某些关键技术方面仍存在一定的差距。因此,加大技术创新力度,持续推动技术进步,是国产电镜发展的关键。市场需求与拓展:随着科学技术的快速发展,电镜在材料科学、生命科学等领域的应用越来越广泛。这为国产电镜提供了巨大的市场机会。然而,国产电镜在高端市场领域的份额仍然有限。因此,国产电镜厂商需要深入了解市场需求,加强产品研发和市场推广,提高产品的竞争力和市场占有率。人才培养与团队建设:电镜技术的研发和应用需要一支高素质、专业化的团队。然而,目前国产电镜领域的人才储备相对不足,尤其是缺乏高层次的专业人才。因此,加强人才培养和团队建设,提高从业人员的专业素养和技能水平,是国产电镜持续发展的重要保障。国际竞争与合作:在国际市场上,国产电镜面临着来自国际知名品牌的激烈竞争。这要求国产电镜厂商不仅要提高自身的技术水平,还要积极参与国际合作与交流,学习借鉴国际先进经验和技术成果。同时,通过与国际同行的合作与交流,可以推动国产电镜技术的国际化发展,提高国际竞争力。合影留念附1:2024年4月,“第三届中国电镜产业化发展论坛”将在苏州举办,现进入论坛内容筹备阶段,为更好解决产业痛点,切实助力产业发展,现向广大网友征集论坛内容建议,欢迎大家积极参与,建议被采用的网友或专家将获得论坛定向邀请函,邀请现场与电镜业界专家、企业精英共议行业发展!扫码填写论坛内容建议或点击链接填写:https://www.wjx.cn/vm/hxJFe0g.aspx#或直接邮件或电话沟通,邮箱:yanglz@instrument.com.cn,电话(同微信):15311451191。附2:2023年年底中国电镜产业链系列走访名单走访企业聚束科技惠然科技速普仪器大束科技格微仪器康尔斯特国仪量子祺跃科技雷博科仪屹东光学苏州冠德上海精测纳克微束
  • 基金委发布功能基元序构的高性能材料基础研究重大研究计划2022项目指南
    10月19日,国家自然科学基金委员会发布功能基元序构的高性能材料基础研究重大研究计划2022年度项目指南。该项目2022年度资助研究方向包括:功能基元序构新材料的设计理论、方法和物理基础;下一代信息技术核心材料及器件;超高性能结构材料;面向未来的高性能能量转换与存储新材料及器件。对于有比较好的创新性研究思路或比较好的苗头但尚需一段时间探索研究的申请,将以培育项目方式予以资助。鼓励对功能基元序构材料基本原理、材料逆向设计、太赫兹材料器件和超高性能结构材料方向的探索性研究。2022年度拟资助培育项目10项,直接费用平均资助强度约60万元/项,资助期限为3年。对于有较好研究基础和积累、有明确的重要科学问题需要进一步深入系统研究、体现学科交叉特征的申请,将以重点支持项目的方式予以资助。2022年度拟资助重点支持项目8项,直接费用平均资助强度约300万元/项,资助期限为4年。指南全文如下:功能基元序构的高性能材料基础研究重大研究计划2022年度项目指南 功能基元序构的高性能材料是指以功能基元为基本单元,通过空间序构构成具有突破性、颠覆性宏观性能的高性能材料。“功能基元”是在原子/分子尺度和宏观尺度之间引入具有特定功能的中间结构单元,序构指“功能基元”通过人工设计制造而成的特定的空间堆垛、排列方式,如有序结构、长/短程有序结构、梯度结构等。功能基元序构的材料可以突破元素种类的限制,为探索具有变革性和颠覆性的高性能材料提供了更大的空间。一、科学目标本重大研究计划瞄准材料科学前沿,通过功能基元序构构建高性能新材料,满足信息、结构、能源等应用领域对材料的需求,解决其中的关键科学问题与技术问题,揭示功能基元序构材料中蕴含的规律,建立相应的理论,发展材料设计的新原理和先进制备技术,逐步实现按需设计变革性和颠覆性新材料的目标。在此基础上,探索和发展“功能基元序构的高性能材料”的研究新范式,提高我国在国际材料科学前沿的整体创新能力。二、核心科学问题本重大研究计划将组织材料、信息、数理、化学等学科的科学家共同开展研究,拟解决的核心科学问题如下:(一)功能基元的本征特性(如物理化学性质、微纳结构、形态、尺寸、分布等)对宏观性能的影响规律及其调控机理。关注功能基元的临界尺寸效应和量子限域效应;明确功能基元(如铁电畴、铁磁畴、孪晶、组分、结构、低维量子材料、人工谐振单元等)与材料宏观性能(如力、热、光、声、电、磁)之间的关联;发现和构筑影响材料宏观新奇物性的关键功能基元。(二)序构对材料宏观性能优化增强的作用规律。研究序构(如有序结构、长/短程有序结构、梯度结构、无序结构等)引发的功能基元间的耦合、增强效应;明晰序构对材料宏观性能的影响机制。(三)功能基元序构的协同关联效应。揭示功能基元序构的协同关联作用机制;发现超越功能基元本身的高性能甚至全新的性能;阐明“功能基元+序构”与宏观性能的关联;建立按需设计功能基元序构的高性能材料的方法。(四)功能基元序构高性能材料的制备科学与表征技术。发展“自上而下”“自下而上”制备功能基元序构高性能新材料的方法与技术;发展人工序构材料的结构和性能表征技术。三、2022年度资助研究方向(一)功能基元序构新材料的设计理论、方法和物理基础。1. 研究“功能基元-人工序构-超越性能”三者之间关系的物理基础,探索功能基元序构导致变革性材料的新规律、新理论和计算方法。包括功能基元结构和性能(力、热、光、声、电、磁等)的特征尺寸效应、量子限域效应等;基元之间的关联和耦合效应;序构导致的合作、增强和突现性效应等。2. 基于功能基元序构的突破性和变革性新材料体系,发展功能基元序构高性能材料的系统性设计理论和逆向设计方法,形成相应的设计软件和数据库等。(二)下一代信息技术核心材料及器件。1. 为满足下一代信息系统应用的迫切需求,探索解决光波和电磁波等信息载体在发射、探测和成像中的瓶颈问题, 发展基于“功能基元+序构”的太赫兹波段的高效辐射及探测材料和原型器件。研究如下高性能材料及器件:室温条件下,工作频率范围在0.6-1THz的高功率、连续波输出的自由电子太赫兹相干辐射器件;基于二维电子栅控小尺度可编码有源动态超构表面的高速高阶太赫兹调制器;基于人工表面等离激元超构材料的太赫兹片上高通量信道传输原型器件;工作频率范围在0.1-6THz、具有大动态范围和高辐射功率、在通讯波段下工作的光电导太赫兹源和探测器。2. 发展基于紫外光学材料的超构透镜设计方法和加工技术,制备大尺寸、多阵元、高效率的紫外超构透镜光学系统原型器件。3. 调控极性拓扑畴的自发序构,研究和发现拓扑畴三维空间的原子构型及其新奇特性(如负电容、太赫兹谐振等效应),制备可重构、低功耗、高集成度的新型信息功能器件。(三)超高性能结构材料。1. 发展针对高性能结构材料的功能基元序构的理论方法,建立相关的理论模型和设计软件。重点研究高性能结构材料中功能基元的特征尺寸、序构方式与宏观力学性能之间的定量关系,探索序构后功能基元间的耦合所呈现的强韧化新效应,发展相应的数值模拟方法,研发先进的材料制备技术;通过研究高性能材料的变形、断裂等力学行为,验证设计理论与方法的实用性,形成功能基元序构高性能结构材料的逆向设计和优化方法、软件和数据库等。2. 为满足航空航天和国家重大工程等应用的迫切需求,基于“功能基元+序构”的途径,重点解决传统材料强度与塑性和韧性的矛盾,发展出综合性能优异的金属和无机材料及其制备技术;发现超轻、超弹、超强、高温隔热、吸/透波等新材料,满足极端服役条件对材料性能的苛刻要求,加强对结构-功能一体化塑性陶瓷的探索。(四)面向未来的高性能能量转换与存储新材料及器件。1. 研究功能基元序构热电材料中电子/声子相互作用动力学的新过程、新机制、新规律和新效应,为新一代热电材料的结构设计和创制、热电性能的颠覆性突破提供重要的理论指导;设计和制备多场作用的电-磁-热多功能基元序构而成的热电材料,研究序参量互作用增强的耦合效应,发展高效固态制冷材料。2. 基于功能基元序构新原理,研究用于固态电池、光电转化和高效催化的关键材料及器件。四、项目遴选的基本原则为确保实现总体科学目标,本重大研究计划要求申请项目的研究内容必须符合本指南要求,围绕“功能基元+序构”的研究思路,以“突破性”“颠覆性”性能为研究导向,提炼其中的基础科学问题,开展创新性研究。(一)在申请书中需要明确“功能基元”和“序构”的定义。“功能基元”的性能可以是寻常的,但“功能基元+序构”导致的宏观材料的性能应该超越功能基元本身,力争实现变革性或颠覆性性能。(二)提出并研究“功能基元+序构”导致新效应和高性能的科学和技术问题。(三)要明确对实现本重大研究计划总体科学目标和解决核心科学问题的贡献。(四)鼓励开展实质性的国际合作。五、2022年度资助计划对于有比较好的创新性研究思路或比较好的苗头但尚需一段时间探索研究的申请,将以培育项目方式予以资助。鼓励对功能基元序构材料基本原理、材料逆向设计、太赫兹材料器件和超高性能结构材料方向的探索性研究。2022年度拟资助培育项目10项,直接费用平均资助强度约60万元/项,资助期限为3年,培育项目申请书中研究期限应填写“2023年1月1日-2025年12月31日”。对于有较好研究基础和积累、有明确的重要科学问题需要进一步深入系统研究、体现学科交叉特征的申请,将以重点支持项目的方式予以资助。2022年度拟资助重点支持项目8项,直接费用平均资助强度约300万元/项,资助期限为4年,重点支持项目申请书中研究期限应填写“2023年1月1日-2026年12月31日”。六、申请要求及注意事项(一)申请条件。本重大研究计划项目申请人应当具备以下条件:1. 具有承担基础研究课题的经历;2. 具有高级专业技术职务(职称)。在站博士后研究人员、正在攻读研究生学位以及无工作单位或者所在单位不是依托单位的人员不得作为申请人进行申请。(二)限项申请规定。执行《2022年度国家自然科学基金项目指南》“申请规定”中限项申请规定的相关要求。(三)申请注意事项。申请人和依托单位应当认真阅读并执行本项目指南、《2022年度国家自然科学基金项目指南》和《关于2022年度国家自然科学基金项目申请与结题等有关事项的通告》中相关要求。1. 本重大研究计划项目实行无纸化申请。申请书提交日期为2022年11月18日-11月23日16时。(1)申请人应当按照科学基金网络信息系统中重大研究计划项目的填报说明与撰写提纲要求在线填写和提交电子申请书及附件材料。(2)本重大研究计划将紧密围绕核心科学问题,对多学科相关研究进行战略性的方向引导和优势整合,成为一个项目集群。申请人应根据本重大研究计划拟解决的核心科学问题和项目指南公布的拟资助研究方向,自行拟定项目名称、科学目标、研究内容、技术路线和相应的研究经费等。(3)申请书中的资助类别选择“重大研究计划”,亚类说明选择“培育项目”或“重点支持项目”,附注说明选择“功能基元序构的高性能材料基础研究”,根据申请的具体研究内容选择相应的申请代码。培育项目和重点支持项目的合作研究单位不得超过2个。(4)申请人在申请书“立项依据与研究内容”部分,应当首先说明申请符合本项目指南中的资助研究方向,以及对解决本重大研究计划核心科学问题、实现本重大研究计划科学目标的贡献。如果申请人已经承担与本重大研究计划相关的其他科技计划项目,应当在申请书正文的“研究基础与工作条件”部分论述申请项目与其他相关项目的区别与联系。2. 依托单位应当按照要求完成依托单位承诺、组织申请以及审核申请材料等工作。在2022年11月23日16时前通过信息系统逐项确认提交本单位电子申请书及附件材料,并于11月24日16时前在线提交本单位项目申请清单。3. 其他注意事项。(1)为实现重大研究计划总体科学目标和多学科集成,获得资助的项目负责人应当承诺遵守相关数据和资料管理与共享的规定,项目执行过程中应关注与本重大研究计划其他项目之间的相互支撑关系。(2)为加强项目的学术交流,促进项目群的形成和多学科交叉与集成,本重大研究计划将每年举办一次资助项目的年度学术交流会,并将不定期地组织相关领域的学术研讨会。获资助项目负责人有义务参加本重大研究计划指导专家组和管理工作组所组织的上述学术交流活动。(四)咨询方式。国家自然科学基金委员会工程与材料科学部材料科学一处联系电话:010-62327144
  • 我国大科学装置又一关键设备性能实现国际领先
    6月5日,我国首台高品质因数1.3 GHz超导加速模组通过专家评审。该模组是大科学装置的关键技术设备之一。专家组指出,该模组在国际上率先实现了中温退火高品质因数超导腔模组技术路线,具有完全自主知识产权,性能处于国际领先水平,使我国高品质因数超导加速器技术走在了国际前沿。目前,我国正在建设及规划中的多个重大科技基础设施,如上海硬X射线自由电子激光装置(SHINE)、深圳中能高重复频率X射线自由电子激光装置(S3FEL)、未来高能环形正负电子对撞机(CEPC)等,都需要大量的高品质因数1.3 GHz超导加速模组。中国科学院高能物理研究所研究员潘卫民介绍,该模组是当前国际先进加速器技术竞争的制高点,是我国和国际上多个大科学工程的关键核心设备,技术极为复杂、造价高昂,属于“要不来、买不来、讨不来”的技术,是加速器领域的国之重器。攻克这一关键核心技术并实现国产化,有助于我国在关键领域实现新时代高水平科技自立自强,否则将造成加速器造价和运行费用大幅上涨,或者不得不花大价钱购买国外的产品和部件。专家组评审认为,该模组的成功研制,标志着中温退火工艺稳定可靠、易于实现,可作为未来高品质因数超导加速器的主要技术路线,为我国建设国际领先的连续波电子加速器完成了高品质因数超导腔及模组关键技术和样机验证,具有重大的实际意义和广阔的应用前景。专家组同时指出,该模组性能满足了大连先进光源(DALS)的超导加速模组设计要求,也超过了美国直线相干光源二期项目(LCLS-II)及其能量升级项目(LCLS-II-HE)的超导加速模组设计指标(此为国际目前最高设计指标),超导腔平均品质因数优于LCLS-II-HE的掺氮工艺批量超导加速模组性能。据悉,该项目由中国科学院高能所项目团队历时三年研制、总装、调试完成。继2020年在国际上首次改进中温退火工艺,并成功实现1.3 GHz 9-cell超导腔的中温退火工艺之后,为满足国家战略需求,坚持自主创新,项目团队瞄准国际最高水平全力攻坚,实现了比掺氮工艺更为先进的中温退火高品质因数超导腔模组技术路线,创造了超导加速器品质因数的世界纪录,满足了我国相关大科学工程的迫切需求。1.3 GHz 9-cell超导加速模组总装。中国科学院高能所供图
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制