当前位置: 仪器信息网 > 行业主题 > >

植物作物

仪器信息网植物作物专题为您整合植物作物相关的最新文章,在植物作物专题,您不仅可以免费浏览植物作物的资讯, 同时您还可以浏览植物作物的相关资料、解决方案,参与社区植物作物话题讨论。

植物作物相关的资讯

  • 新芝仪器&植物(作物)种子实验室仪器设备
    一、背景  中国自古以来就是农业大国,对于有着14亿人口的大国来说,如何保障国家粮食安全是一个永恒的课题,种子安全保障更是重中之重。植物(作物)种子实验室的建设是为了攻关种子重大科学问题、解决种源“卡脖子”等关键技术难题,通常用于开展作物育种、种子学研究、种子检验、种子贮藏加工技术、种子处理等实验、实践项目。  一般可以划分为:种子样品接收室、天平称重室、人工气象室、发芽检测室、纯度评定室、净度分析室、生活力检测室、低温储藏室、包衣种子检测室、档案留存室和办公接待室等区域——“种子既是生命的开始,也是终结”。——相关的种子实验室仪器配置清单,包括基础实验所需的设备以及升级设备,供大家参考。  二、新芝仪器  针对于种子实验室的建设,新芝生物可以提供以下仪器设备供大家选择:  1.高通量组织研磨器系列 日常和基本的一个实验就是提取它们的遗传物质—DNA(脱氧核糖核酸)进行基因型鉴定,从而鉴定不同的种子来源。我们将待检测种子初步碾碎后加入离心管后利用高通量组织研磨仪进行组织研磨,获取颗粒更小的粉末,有利于后续种子DNA提取获得更高浓度的基因组模板,有利于后续核酸验证实验的准确性。    高通量组织研磨器应用种子库建设    高通量组织研磨器系列  Southern Blot在种子分子生物学研究中具有重要地位,虽然距离这项技术发明已经过去很多年,但这项检测技术仍被广泛的应用在各种生物实验研究中。Southern Blot可分析具体基因的基因座及拷贝数,可以鉴定同源重组的概率,也可分析基因随机突变风险,是分子研究的“金标准”。实验过程可分为印迹和杂交两个步骤:一是将待测定核酸分子通过一定的方法转移并结合到一定的固相支持物(硝酸纤维素膜或尼龙膜)上,即印迹(blotting),可采用紫外交联仪进行实现 二是固定于膜上的核酸与同位素标记的探针在一定的温度和离子强度下退火,即分子杂交过程,可采用分子杂交炉进行实现。  2.LF系列分子杂交炉 用模块化设计,结构简单,实用可靠 系统采用微电脑控制,触摸屏显示输入 采用钢化玻璃加工的机箱门不仅美观,还加大了使用人员的操作视野。温度控制系统采用模糊PID算法,自动演算,温度控制精确。杂交管旋转支架转速稳定,不受外界电压波动影响,摇匀功能能够快速满足用户摇匀需求。所有功能采用集中控制,操作更简单实用。在核酸分子杂交中对烤膜,预杂交,杂交,洗膜全过程可进行温度自动控制,可以有效的应用于核酸分子杂交技术的研究。  3.紫外交联仪  SCIENTZ03-II紫外交联仪利用中波紫外线提供均匀强度的UV照射,主要用于将核酸交联固定在膜上,还可用于琼脂糖凝胶中DNA的切割、RecA突变筛选、嘧啶二聚体产生的部分限制性内切酶消化、UV灭菌消除PCR污染等。其UV剂量控制精确,使用安全方便、能分紫外能量和时间两种操作模式。    4.SCIENTZ18-A超声波DNA打断仪  超声波DNA打断仪采用等温、非接触的方式对样品进行打断、匀浆和混合,用于无菌、可超微量破碎,隔着离心管能打断染色体。专为二代测序DNA样本与染色质免疫共沉淀实验样本前处理量身订做,对于每天要处理多个样品或者贵重样品的实验室,它具有处理高通量,样本低损耗,无交叉污染等优势。逐渐成为ChIP(染色质免疫共沉淀)和DNA剪切研究平台不可缺少的标准化工具。    6. NP-2032全自动核酸提取仪  NP-2032是通过磁珠法提取、纯化核酸的设备。样品裂解后,释放出来的核酸分子被特异性的吸附在磁珠表面,通过内置磁棒磁吸、转移、洗涤,最后使核酸分子溶解在洗脱液中,搭配不同种类的磁珠核酸试剂,可以快速提取动植物组织、血液、体液、刑事检体等样品中的核酸。    7.加热型功率可调超声清洗机  DTD系列功率可调加热型超声波清洗机主要用于常规清洗、萃取、乳化、混匀、脱气、分散等领域。其优点是大液晶屏幕显示,具有时间、功率、温度均可调等功能,且仪器断电后具有工作参数记忆功能,方便直接调用和数据查询。被广泛应用于验室、机电行业、珠宝首饰、医疗牙科、光学等领域。    8. 恒温水浴系列  恒温槽分单加热型(SC系列)、加热制冷型(DC系列)、单制冷型(DLK系列)、高低温程控机型(CK系列)、高精度机型(GDH/GH系列)5种机型。产品为用户工作时提供一个冷热受控、温度均匀恒定的液体环境,对试验样品或生产的产品进行恒定温度试验或测试,也可作为直接加热或制冷和辅助加热或制冷的热源或冷源。  9.实验型钟罩式冷冻干燥  冷冻干燥机用于种子样品的冻干保存  SCIENTZ-N 系列实验型钟罩式冷冻干燥机是专为实验室用户处理小批量样品打造的专用产品。在保持结构紧凑的同时,兼顾优异的性能。采用性能稳定的进口压缩机,功能强大,可提供高度自动化的高品质冷冻干燥环境(常规空载 -56℃,可选配 -80℃压缩机),是中小型实验室完成冻干工艺实验的理想选择。  10. 真空离心浓缩仪  可用于种子基因组提取物的离心浓缩用于后续检测 可用于种子胞内提取产物的离心浓缩,提高样品浓度,有利用后续检测实验的准确性。  真空离心浓缩仪,自带捕水冷阱,方便快捷。SCIENTZ-10LS 型为分体式离心浓缩仪,可适配 N、ND 系列冻干机,或配置低温冷阱才能实现浓缩冻干。可广泛用于生物学、微生物学、生物化学、制药研究以及分析化学等领域。  11. 台式高速冷冻离心机  为满足低温样本的分离、沉降等需求,并且可根据不同样本的需求更换转子,最小离心管可至 0.2ml(4*PCR8排管),最大离心管可至5ml(12*5ml),是一款性能先进、用途广泛、使用安全、操作简单的高质量产品。  12. XB全自动雪花制冰机  全自动雪花制冰机是一种新型优质的制冰机,特别适用于医院、实验室、学校等医疗科研场所,也可用于餐厅、酒吧、酒店等娱乐场所,还可用于超市、渔业捕捞、化工、食品加工、屠宰冷冻等需要大量使用冰的行业,应用非常范围广。  种子库的建设事关国家兴衰,是关乎全中国、全世界的大事。如果有一天,某个国家或地区的农作物因战争或内乱而遭到毁灭,甚至是全球性的大灾难时,人们就可以从种子库取出之前储存在这里的种子样本,利用这些精心储藏的种子即可重新启动农作物生产。新芝生物作为全球生物样品前处理专家,希望能在种子库建设上为国家、为社会、为全人类贡献自己的一份力量。  以上,就是我们新芝生物能为种子实验室建设提供的仪器清单,供需查询。详情请登录我们的官方网页https://www.scientz.com  ▼  End
  • 我国首个植物基因编辑安全证书下发
    近日,农业农村部发布《2023年农业用基因编辑生物安全证书批准清单》,下发全国首个植物基因编辑安全证书,该证书由舜丰生物获得。  基因编辑是世界生物育种领域的前沿技术。与转基因不同,基因编辑育种仅对作物自身基因进行修饰,并不转入其他物种的基因,其原理等同于常规诱变育种,培育出的品种也与常规育种培育出的品种无异。  “目前国际上诸如美国、日本、印度等地对于没有外源基因的编辑作物不是按照转基因作物管理,而是按照传统作物来对待。因为基因编辑的原理跟传统的诱变育种是一样的,和诱变作物相比,基因编辑产品并没有增加环境安全和食品安全风险。”中国科学院院士、著名水稻育种家刘耀光表示,“《细则》的发布和第一个安全证书的发放让我们看到了基因编辑作物产业化的希望。”  刘耀光院士提及的《细则》是指农业农村部刚发布的《农业用基因编辑植物评审细则(试行)》,进一步明确基因编辑植物的分类标准和简化评审的细则。  “基因编辑育种有着先天的优势,可以快速培育出高产高附加值的优良品种。”得知舜丰生物获得全国首个植物基因编辑安全证书,中国科学院院士许智宏表示,“《细则》的发布和第一个基因编辑安全证书的下发,让我们看到了民族种业振兴的希望。”  美国科学院院士、南方科技大学前沿生物技术研究院院长,舜丰生物首席专家顾问朱健康向记者表示:“此次《细则》的发布是继2022年《农业用基因编辑植物安全评价指南(试行)》发布后的又一个里程碑事件,它从分子特征、环境安全、食品安全三个方面界定评审细则,将已有文献或产业数据表明对环境安全和食品安全没有风险的基因编辑产品,予以简化安全评估流程,这无疑会加速基因编辑的产业化进程。”
  • "植物激素"安全性惹争议 专家称毒性比味精小
    ●农业专家:毒性比味精还小 ●食品专家:滥用会危害健康   最近催熟剂、膨大剂、催红剂、增甜剂等植物生长调节剂被推向风口浪尖,这些调节剂被媒体冠名为"植物激素"之后,引起了消费者的不少担忧。   究竟"植物激素"危害大不大?应该禁止还是推广?针对这些消费者关心的问题,记者昨天采访了有关专家和官员。记者了解到,目前,植物生长调节剂在国内已被广泛应用于多种农作物。农业专家表示,植物生长剂属于农药范畴,基本都属于低毒和微毒农药,大部分毒性比味精和盐还小,是一种农业增产、增效的重要技术措施,并且是安全的。   不过一些食品专家也担忧,瓜农果农菜农为了高额利润,存在滥用植物激素,随意提高浓度,随意更改施用时间等现象,会给人类健康带来很大的风险。   植物生长剂已被广泛使用于多种农作物   "我们认为,最近的一些报道对消费者有误导作用。"昨天,广东省农业厅植保总站研究员江腾辉开门见山地对记者说,最近一些媒体把植物生长剂讲得太过恐怖。   "事实上,植物生长剂归属农药管理,并且属于低毒和微毒农药。"江腾辉说,前几天,省农业厅植保总站邀请华南农业大学、省农科院部分专家,专门召开会议研究植物生长调节剂的问题,与会专家一致认为,包括催熟剂和膨大剂在内的植物生长调节剂作为农作物生产中一项重要的技术措施,在农业增产、增效中发挥了重要作用。应加强对植物生长调节剂使用技术的宣传普及,指导农业生产者科学合理使用,引导社会公众科学看待,避免因一些不实信息或虚假消息误导消费者,切实维护公众的健康安全和广大农民的利益。   "作为一项农业增产、增效的重要技术措施,植物生长剂已被广泛使用于多种农作物,技术也已经比较成熟。"江腾辉说"广东每年使用植物生长调节剂约220吨,大概占全国使用量的3%多一点。"江腾辉说。   "植物生长剂跟化肥以及其他的农药本质是一样的,而且它还是低毒、微毒的。"江腾辉说。   农业专家毒性比味精和盐还小   "绝大部分的植物生长调节剂毒性比味精和盐还小。"华南农业大学资环学院徐汉虹教授说。   徐汉虹说,首先,作为一种农药,我国的农药管理制度还是比较严的。凡是在我国境内生产、销售和使用的植物生长调节剂,都必须进行农药登记。在申办农药登记时,必须进行药效、毒理、残留和环境影响等多项使用效果和安全性试验,经国家农药登记评审委员会评审通过后,才允许登记。   "如果植物生长剂是一种危害很大的农药的话,国家为什么还要允许它的存在和使用?"徐汉虹说,与杀虫剂、除草剂等其他的农药相比,植物生长调节剂的毒性要小得多。   "另一方面,在一些农作物中,植物生长调节剂的使用是必须的。例如香蕉便是这样。"徐汉虹说,在香蕉等一些水果中,使用"乙烯利"几乎是惯例,如果不这样,就得等到香蕉自熟以后再采摘,那么香蕉往往会在运输的过程中便烂掉。   食品专家过量激素聚集人体会危害健康   "植物激素添加剂真的无害吗?"中国人民大学农业与农村发展学院教授郑风田,一位研究食品安全问题的专家,昨天对记者表示,对这个问题的判定应该看看医学专家们的意见,毕竟那些用了膨大剂的西瓜最终还是要被人吃掉的。那些搞植物激素的专家们应该不会做人体健康试验的,因为这是医学专家们的领地。   "我接触的不少医学专家都认为:反季节蔬菜和水果大部分都是激素催成的,短期内影响不大,但长期食用会对人体产生副作用。"郑风田说,一份报告称,土耳其伊斯坦布尔大学生物系植物学教授因萨尔警告说,果菜中含有的过量激素,聚集在人体内对健康非常有害。   "瓜农果农菜农为了高额利润,存在滥用植物激素,随意提高浓度,随意更改施用时间等现象,会给人类健康带来很大的风险。"郑风田担忧地说。   "其实许多生长剂都不应该去使用,乙烯利等催熟剂必须要去禁止。"郑风田表示。他甚至"教大家一招":在瓜果市场,形状异常,外观色泽太美丽,味道差而平淡,一般都是被催熟剂、膨大剂搞出来的,要尽量少买少吃!   不过对于郑风田的观点,徐汉虹提出了不同的看法。他认为,以一种物质的化学成分来分析它的危害是片面的,科学的态度是,要考虑它的含量问题"植物生长调节剂一般在作物上使用剂量极低,不会对农产品(16.80,0.05,0.30%)质量安全造成危害。"徐汉虹说,作为一种激素,植物生长调节剂很低的含量就可以发挥作用,一般都是几千分之一,甚至上万分之一。"而且植物生长调节剂超剂量使用或使用剂量不够,不但难以达到理想的调控作物生长效果,甚至会影响农作物的正常生长,造成减产减收。"   关键是加强激素残留监测   "植物生长调节剂作为一种低毒或微毒的农药,已有38个经过国家批准登记,它们的安全性都是经过严格的试验的。"广东省农业厅植保总站研究员江腾辉呼吁,各界不要妖魔化植物生长调节剂。   "关键还是要加强监督和管理。"业内人士表示,目前,美国、加拿大、日本等发达国家都对植物生长调节剂制订了严格的农药残留标准。我国今后应加快制订和完善相关标准,加强农产品中农药的残留监测,切实保障农产品质量安全。
  • 中英共建植物和微生物科学联合中心
    p   9月24日,英国约翰· 英纳斯中心和中国科学院共建植物和微生物科学联合研究中心(CEPAMS)在上海正式挂牌。 /p p   英国大学、科研与创新国务大臣乔· 约翰逊主持揭牌仪式时表示,加强国际合作是解决世界性难题、共同面对挑战的重要手段。新成立的研究中心是英国与中国建立科学合作伙伴关系的见证,将把中英双方顶尖科学家的智慧用于提高作物产量,以应对日益增长的世界人口,同时尽可能在农业生产中降低除草剂的使用。 /p p   据介绍,这个中心是英方与中科院两个研究所(遗传与发育生物学研究所和植物生理生态研究所)的合作项目,将中英两国先进的实验室组合在一起,共同应对食品安全和可持续医疗保健全球性挑战,培育优秀科研成果。该跨国研究团队将重点增加农作物产量,生产植物和微生物高附加值产品。新中心的成立得到中科院和英国生物技术与生物科学研究理事会的资助。该机构研究人员最近取得重大突破,发现中药黄芩中含有抗癌成分。 /p p   据了解,中英两国共同投资建立的研究设施数量越来越多,这个中心是其中最新增加的一个机构。英国生物技术与生物科学研究理事会、自然环境研究理事会、经济与社会科学研究理事会和艺术与人文科学研究理事会均已开设虚拟联合中心,支持中英两国的研究合作。 br/ /p
  • 五洲东方参加第三届全国植物逆境生物学学术研讨会
    2018年5月16日—19日,在河南开封,植物生物学与生物化学国家重点实验室(中国农业大学)、旱区作物逆境生物学国家重点实验室(西北农林科技大学)、棉花生物学国家重点实验室(河南大学)以及上海植物逆境生物学研究中心(中国科学院)联合召开了“第三届全国植物逆境生物学学术研讨会”。北京五洲东方科技发展有限公司(以下简称“五洲东方”)作为参展商出席了本次会议。本次研讨会,五洲东方展位前咨询Percival植物培养箱和VILBER NEWTON 7.0 BIO植物活体成像体统的客户络绎不绝,老客户给予高度评价,新客户对其也表现出了浓烈兴趣。研讨会邀请了国内植物逆境生物学领域卓有建树的专家学者介绍当前研究的最新进展,结合国内外植物(作物)逆境生物学的发展趋势和国内外研究现状,重点讨论了如何整合力量、突出重点,进一步深入开展植物(作物)逆境信号转导、植物激素互作与逆境应答、植物响应逆境相关基因及其调控、作物抗逆高效的生理及分子基础等方面的研究,促进我国植物(作物)抗逆性研究。最后,本届研讨会在满满的收获中圆满落幕。五洲东方期待与您下次再聚!
  • 新品力荐|植物根系分析仪功能强大,操作简单
    植物根系分析仪是一套用于洗根后专业根系分析系统,还可以用于根盒培养植物的根系表型分析,可以分析根系长度、直径、面积、体积、根尖记数等,功能强大,操作简单,软件可分析植物根系的形态分析及根系的整体结构分布等,广泛运用于根系形态和构造研究。产品链接https://www.instrument.com.cn/netshow/SH104275/C510092.htm 这种植物根系分析仪还有助于发现根系的问题。当植物遭遇病害、营养不良或其他生长障碍时,其根系往往会出现异常。植物根系分析仪能够及时发现这些异常,帮助科研人员找出问题的根源,为植物的治疗和复苏提供指导。 植物根系分析仪在农业生产中的应用也不容忽视。通过对不同种类或不同生长阶段的植物根系进行研究,科研人员可以为农民提供更加科学的种植建议,如合适的灌溉量、最佳的施肥方案等,从而提高农作物的产量和质量。 植物根系分析仪为科研人员提供了一个全新的视角来探索植物的生长奥秘。它深化了我们对植物生理学的理解,同时为农业生产提供了有力的技术支撑。在未来,随着技术的进步和普及,植物根系分析仪有望在更多领域得到应用,为人类的生活和生态环境带来更大的益处。
  • 植物工厂太阳光谱利用新思路
    近日,中国农业科学院农业环境与可持续发展研究所设施植物环境工程创新团队在植物工厂太阳能多光谱高效转换研究方面取得新进展。该研究提出了太阳能分频导光-光热协同转换的植物光谱互补方法,建立了多波长尺度下光与物质相互作用的理论模型,对进一步降低植物工厂能耗具有重要的意义。相关研究成果发表在《能源转换与管理(Energy Conversion and Management)》上。将太阳光传导照明技术应用于植物工厂,可大大降低植物工厂的光源能耗。然而太阳光中只有部分可见光能直接参与作物光合反应过程,剩余光谱则会引起植物工厂内环境温度的升高,增加空调的制冷能耗。该研究团队提出了一种应用于植物工厂的光谱、光强协同优化系统。该系统在为植物传导光合光谱的同时,也可将非光合有效辐射光谱转换为热能进行储存,系统导光与转能的总效率超五成。同时,为了更好的匹配植物工厂光电需求,该研究将进一步与光伏、温差发电等技术相结合,为实现低能耗和可持续的植物工厂发展开辟新路。该研究得到国家重点研发计划、国家自然科学基金、北京市科技计划等项目资助。原文链接:https://doi.org/10.1016/j.enconman.2022.115788
  • 五洲东方将亮相2017年全国植物生物学大会
    五洲东方邀您参加2017年全国植物生物学大会大会名称:2017年全国植物生物学大会时间:2017 年 10 月 9-12 日地点:重庆市主办方:中国细胞生物学学会、中国遗传学会、中国植物学会、中国植物生理与植物分子生物学学会、中国作物学会等五个全国学会联合举办会议介绍:2017年全国植物生物学大会是国内植物科学领域水平最高、规模最大、影响最深的学术品牌盛会,是广大科研人员交流合作、厂商展示的重要窗口与平台。预计参会人数将超过 1500 人。植物科学领域内十余位院士和百余位优秀中青年科学家将到会进行学术交流,其中包括近十位院士为主导的大会报告和百余场专题报告。会议也将以论文摘要、墙报等多种方式充分反映和展示我国植物科学领域的最新研究成果。
  • 科学家开发新激光系统,可使植物生长加倍
    p style=" line-height: 1.75em " & nbsp & nbsp & nbsp & nbsp 据英国《每日邮报》近日报道,俄罗斯科学家称,他们已在农业方面取得新突破,开发出一种激光系统,可使农作物生长速度快一倍,并且培育过程中不需任何杀虫剂。该技术可用于城市,亦或偏远地区,据称还可大大延长食品的储藏时间,延长食物保鲜期。 /p p style=" text-align: center " img src=" http://img1.17img.cn/17img/images/201604/insimg/b10c8e78-8144-4435-84c2-6b6324ec869c.jpg" title=" ds.jpg" / /p p style=" line-height: 1.75em text-align: center "   图为培育植物所用激光器 /p p style=" text-align: center " img src=" http://img1.17img.cn/17img/images/201604/insimg/4d060ae2-2885-4768-9e9e-9419743620bf.jpg" title=" d.png" / /p p style=" line-height: 1.75em text-align: center "   激光系统 /p p style=" line-height: 1.75em "   报道指出,世界人口2050年将达90亿人,预计对食物的需求量将提高70%。要弥合这一鸿沟,科技将扮演重要的角色。 /p p style=" line-height: 1.75em "   该系统由俄罗斯米丘林国立农业大学(Michurinsk State Agrarian University)的科学家发明。该研究团队称,他们使用了相对便宜的激光系统培育作物,包括番茄、黄瓜、萝卜、茴香等,其生长速度和产量都比自然生长要高得多 并且无需杀虫剂等化学品加速农作物的生长,因此该技术培育出的植物为“生态清洁型”。 /p p style=" text-align: center " img src=" http://img1.17img.cn/17img/images/201604/insimg/b960ff6b-de1e-40b9-962a-b82785565aa8.jpg" title=" a398e51b8d2a19f.png" / /p p style=" line-height: 1.75em text-align: center "   实验室 /p p style=" text-align: center " img src=" http://img1.17img.cn/17img/images/201604/insimg/ade21677-dfad-4c5c-9e40-9df5fe2a9a87.jpg" title=" 258a0deded2db71.png" / /p p style=" line-height: 1.75em text-align: center "   植物每天需经激光照射,但该工作由机器人完成。与传统种植模式相比,此举可节省农民的时间。图为黄瓜接受激光照射 /p p style=" line-height: 1.75em "   该技术对植物用单一波长或颜色的激光进行照射。其他科学家正在研究不同颜色的LED光对促进植物生长分别有何作用。 /p p style=" line-height: 1.75em "   俄罗斯专家称,该激光系统还可提高植物免疫能力,从而治愈患病植物。专家还表示,激光技术还可延长作物储存时间,并发现其体内有毒有害物质。 /p p br/ /p
  • 干货分享:酶标仪在植物对逆境胁迫应答中应用
    干货分享:酶标仪在植物对逆境胁迫应答中应用植物生长在开放的自然环境下,不可避免的被迫遭受和应对各种各样恶劣的生存环境,如干旱、盐害、低温、高温和病虫害等,这些不良环境统称为植物逆境或植物胁迫。随着全球环境的日益恶化,各种逆境胁迫因子对植物正常生长和发育的影响日趋严重,也是造成粮食作物和其它经济作物产量和品质下降的主要原因,成为制约现代农业发展的重要因素。植物为了适应各种胁迫环境,经过漫长的进化过程,产生了一系列对抗环境变化的能力,即抗性。植物抗性是绝大多数植物响应环境胁迫的普遍方式,植物抗性可以帮助植物提高对逆境的适应能力,但它是有一定限度的,如果逆境变化过强超出了植物的耐受范围,逆境胁迫会导致植物直接进入衰老和死亡。因此,植物对逆境胁迫的反应一直是植物科学领域的研究前沿。图1:植物与病原互作中的免疫反应人们已经发展出很多检测手段来探索和揭示植物免疫机制和植物抗逆机制,包括高通量测序技术、显微成像技术、色谱-质谱联用技术等,其中酶标仪检测技术作为一种高通量微孔板检测技术,且操作简便的方法,在生物医学、药物研发、农业和微生物学等领域得到了广泛应用。MolecularDevice公司的酶标仪产品可为植物抗逆领域的科学研究提供可行和简便的实验方案。针对钙信号检测,ROS信号检测,定量检测及动态曲线检测,MD都有相对应的完善的解决方案。Flexstation3可以用来检测钙信号,标配5大检测功能并内置自动移液系统,Flex快速动态监测模式,时间间隔最低达到毫秒级,轻松追踪从诱发到衰减完整的钙信号。使用SoftMaxPro软件的PeakPro分析功能,可对钙瞬变和钙振荡的信号进行峰频率、峰宽度、峰数目、峰上升时间及衰减时间等多个峰值属性进行分析。针对ROS信号检测,我们推荐多功能检测酶标仪,如SpectaMaxi3x和SpectaMaxiD系列,这几款仪器都可以配置自动双注射器,既能进行比色法和荧光强度测定,又能进行快速发光反应检测。针对定量检测,SoftMaxPro软件内置21种曲线拟合方式,可用于多种酶活分析和荧光定量分析。针对动态曲线检测,SoftMaxPro软件预置多种动力学参数,可一键输出最大速率、斜率、最大/最小时间和曲线下面积等分析。
  • 国家植物基因研究中心(上海)揭牌
    6月24日,国家植物基因研究中心(上海)揭牌仪式在中科院上海生命科学研究院植物生理生态研究所召开。中科院副院长李家洋、上海市农业委员会副主任陈洪凡、上海生科院院长陈晓亚,以及方荣祥院士、盖钧镒院士、洪孟民院士、林鸿宣院士,和国家植物基因研究中心(上海)11个成员单位近50位领导专家参加了揭牌仪式。   国家植物基因研究中心(上海)是国家转基因生物新品种培育重大专项条件能力建设的重要任务之一,在国家农业部、中国科学院和上海市的共同支持和指导下于2009年开始正式建设。中心的建设创新了跨行政区、跨单位、产学研紧密联合的植物基因科研与产业化协作联动发展的新体制,并着力在水稻、小麦、棉花、大豆等主要作物重要功能基因分离、转基因分子育种等方面开展工作,最终目标是要把中心建设成国际一流水平的植物科学研究基地。   植生生态所所长薛红卫主持揭牌仪式。陈晓亚致辞,李家洋、陈洪凡、农业基地办公室常务副主任段子渊研究员分别对中心的揭牌表示热烈祝贺,并做了讲话。他们指出,中心的建立将对提高我国植物基因研究水平,加快我国植物生物技术产业化进程,增强我国在农业生物技术领域的竞争力,具有明显的促进作用。希望各个共建单位以中心建成为契机,以中心能力提升为平台,进一步凝聚形成合力,为转基因重大专项的实施提供一批有自主知识产权、在农业生产上有良好应用前景的新基因。   李家洋、陈洪凡共同为国家植物基因研究中心(上海)揭牌。揭牌仪式后,与会人员参观了&ldquo 中心&rdquo 上海基地。
  • PlantScreen高通量植物表型系统火热安装中”系列报道(一)
    癸卯春节 安装启动! 2023年农历春节,各地沉浸在轻松欢快的节日氛围,而在中国农科院作科所的温室里,中国农科院的研究人员、PSI公司和北京易科泰公司的工程师投身于PlantScreen高通量植物表型系统——作物高光效高效筛查与鉴定表型平台的安装工作中,现场一片火热繁忙的景象。 从正月的初三到十四,短短的两周时间里,PlantScreen高通量植物表型系统平地而起。庞大的规模、现代感十足的外观、火热的安装场面,吸引假期期间仍在温室里辛苦劳作的研究人员纷纷驻足观看,询问安装进度,热切表达了希望未来能够使用这套系统开展实验的愿望。 PlantScreen高通量植物表型系统由国际知名的表型系统制造厂商PSI研发,整合了LED植物智能培养、自动化植物传送、多种光学成像传感器(FluorCam叶绿素荧光成像、多光谱荧光成像、可见光近红外及短波红外高光谱成像、植物热成像、RGB真彩3D成像、激光雷达3D成像、根系成像等)、自动条码识别管理、自动称重与浇灌、电脑自动控制及数据处理等多项先进技术,能够以最优化的方式对大量植物样品的生理状态、生化组分、形态结构的进行自动成像分析。 系统有效解决了传统植物表型分析技术中存在的精度低、费时费力、适用性差等问题,具备高效准确的特点,并可实现全生育期的无损动态监测;被广泛用于研究不同环境因子及基因型对植物生长、产量、质量的影响,揭示可控环境下基因组与环境等因素互作进而调控作物表型的分子机理。截止2020年底,PlantScreen在全球累积销售/装机量超过50台。主要用户有荷兰瓦格宁根大学、德国莱布尼茨植物遗传和作物研究所、芬兰赫尔辛基大学、澳大利亚国立大学等全球知名的农业学府和顶级研究机构(下图中的PlantScreen系统于2020年安装在都柏林大学),也不乏杜邦先锋、孟山都、巴斯夫等农业企业巨头。 作为PSI公司的合作伙伴和大中华区技术服务中心,成立20年来北京易科泰生态技术有限公司致力于精密、高端植物和藻类实验设备和技术的引进推广及自主研发,迄今为止已为中科院植物所、中国农科院、中科院水生所、中国农业大学、西北农林科技大学等国内知名农业院校和机构提供了大量仪器设备及技术支持。此次安装的PlantScreen高通量植物表型系统通量为4000株种苗/200株成体,配备FluorCam叶绿素荧光成像、RGB真彩3D成像、激光雷达3D成像、植物热成像和高光谱成像等传感器,具备自动称重与浇灌功能,将主要用于水稻等作物高光效高效筛查与鉴定、作物高光效机理研究及新材料创制。 立春已过,农耕将始。今年春天,除了位于北京的中国农科院生物技术研究所,中国水稻研究所(杭州)和东北地理与农业生态研究所(长春)也正在或者即将紧张有序地进行PlantScreen系统的安装。高通量作物表型监测被称为育种的加速器。毫无疑问,PlantScreen高通量植物表型系统的安装运行能够帮助中国作物遗传育种学家深入剖析与产量和胁迫耐受性相关的遗传学数量性状,必将为具有国家战略意义的分子设计育种和种质资源开发应用提供强有力的技术支撑。截止发稿前,农科院生物所PlantScreen系统的安装工作已基本完成,即将进入调试和试运行环节,并将合作举办培训研讨。
  • “第三届全国植物逆境生物学研讨会”圆满落幕!
    2018年5月16日---19日,在河南开封一中州国际饭店展开“第三届全国植物逆境生物学研讨会”,易普易达携PLUS-E3系列超纯水亮相研讨会! 为展示我国植物逆境生物学研究的最新成果,促进我国植物逆境生物学研究和科研人员之间的交流与合作,定于2018年5月16日—19日在河南开封召开“第三届全国植物逆境生物学学术研讨会”。研讨会将邀请国内植物逆境生物学领域卓有建树的专家学者介绍当前研究的最新进展,结合国内外植物(作物)逆境生物学的发展趋势和国内外研究现状,重点讨论如何整合力量、突出重点,进一步深入开展植物(作物)逆境信号转导、植物激素互作与逆境应答、植物响应逆境相关基因及其调控、作物抗逆高效的生理及分子基础等方面的研究,促进我国植物(作物)抗逆性研究。 大会主要内容将围绕以下几个方议题进行: 1.植物逆境信号转导 2.植物激素互作与逆境应答 3.植物逆境基因表达与调控 4.植物响应养分亏缺的生理及分子基础 在这次研讨会上,易普易达E3系列超纯水机不负众望,得到了众多客户的咨询和青睐。在以后的日子里我们会越做越好,以更好的品质回馈大家,我们下次展会不见不散!
  • 浙江大学研制出植物可穿戴径流传感器
    最近,浙江大学生物系统工程与食品科学学院IBE团队刘湘江、应义斌,信息与电子工程学院汪小知和农业与生物技术学院胡仲远,为植物联合发明一款穿戴式“电子皮肤”。时至今日,通过穿戴电子设备监测心率、脉搏等,已经成为健康管理的重要一环。  这种植物可穿戴茎流传感器,通过将柔性穿戴电子技术应用到植物体表,成功在自然生长状态下,首次持续监测草本植物体内水分的动态传输和分配过程。同时,科研人员还发现植物果实生长与光合作用不同步的现象,这不仅改变人们长期以来对植物生长发育过程的基本认识,更将为作物高产育种及栽培技术研发提供新的思路。  这项研究,近日刊发在《先进科学》上。  柔性传感器实现植物生理监测  众所周知,血液是维持人体生命活动的重要物质,通过血液循环能够把人体所需要的各种营养物质,运输到各个组织和器官。  植物也有类似也“血液”的物质,被称为茎流,是植物在蒸腾作用、渗透势等内外部压力下茎秆中产生的上升液流。茎流也是植物水分、养分、信号分子运输的载体。因此,实现对茎流的长期实时监测就能够探究植物生长过程水养分分配、信号传导以及植物对环境的响应机制等奥秘。  然而,现有的茎流检测方法多为大型侵入式探测器,在测量时会对植物造成物理伤害,而且仪器体积大限制了它们在草本植物上的应用。很长一段时间内,科学界没有一种方法可以在自然生长状态下长期监测植物茎流。  为了解决这一难题,来自浙江大学的智能生物产业装备创新团队(IBE)、智能传感与微纳集成团队、蔬菜种质创新与分子设计育种团队开展了跨学科交叉研究,针对植物茎秆特殊的生理特性,利用芯片级的微纳加工工艺,制备了一种植物可穿戴式茎流传感器。  这款传感器薄如蚕翼,厚度仅0.01毫米,重0.24克,如同“纹身”一样,能贴附在植物茎秆表面进行茎流监测。  另一个工程难题是避免传感器对植物生理产生影响。研究团队通过特殊设计,使得植物正常生长发育所需的阳光、氧气、水和二氧化碳能够自由通过传感器,实现了传感器与植物的长期“和平共处”,最终实现在自然生长状态下长期观察茎流的目的。  “这项工作为今后研制植物可穿戴传感器提供新的研究范式。”汪小知介绍,未来如何针对特定植物表面结构和生理特性,设计制备可穿戴传感器,如何评估传感器对植物生长和生理的影响,都可以从他们的研究中找到技术路径。  发现西瓜生长竟在夜晚生长  工欲善其事必先利其器,有了这么好的检测“传感器”,科研团队开展了一系列丰富的研究。  浙大科研人员在西瓜茎干上几个关键位点部署了茎流传感器,长期无损的观察了水分在西瓜叶片、果实、茎秆等不同器官上的动态分配情况。通过对茎流数据的分析,研究团队首次发现了西瓜果实生长与光合作用不同步的现象。  西瓜果实绝大部份是水(95%左右),然而径流传感器测量发现:在白天只有极少部分水被运输入果实用于生长(5%),绝大部份水被叶片蒸腾作用消耗掉 但是到了夜间,几乎所有的水分都被运输到果实,绝对茎流量相对日间增加了10倍。  “白天积累的光合产物导致的渗透势差应该是夜晚径流激增的主要原因。同时,夜晚没有蒸腾作用消耗水分,促使大量径流输入到西瓜果实,从而实现了果实的重量增加与体积膨大” 胡仲远表示,这一发现也间接证明西瓜果实生长主要在夜间。  这一发现改写了对于植物果实生长的传统认识。教科书中一般认为,植物生物量积累主要靠光合作用,而夜间以消耗生物量的呼吸作用为主。  这个反常识性的发现不仅具有重要的科学价值,同时具有良好的应用前景。浙大科研团队表示,水是珍贵的农业资源,基于茎流对西瓜等耐旱作物体内水分运输和抗旱机理的解析,将为全球干旱地区的农业生产、节水灌溉、抗旱作物选育提供了新理论依据和技术支持。  该研究受到国家自然科学基金、国家重点研发计划、浙江省重点研发计划的支持。
  • 根系扫描仪-一款对植物根系生长状况分析的仪器2024实时更新
    型号推荐:根系扫描仪-一款对植物根系生长状况分析的仪器2024实时更新,根系扫描仪作为现代农业科技与植物研究的重要工具,通过非侵入性的方式,为植物根系生长状况的分析提供了前所未有的精准度和便利性。以下将从四个方面详细阐述根系扫描仪对植物根系生长状况分析的帮助。 一、精准测量根系参数 根系扫描仪能够精准测量根系的长度、直径、面积、体积以及根尖数量等关键参数。这些参数的获取,不仅为研究人员提供了详尽的根系生长数据,还使得定量分析根系生长状况成为可能,有助于揭示根系的生长规律和发育机制。 二、三维重建根系结构 根系分析系统利用高质量图形扫描仪获取高分辨率植物根系彩色图像或黑白图像,该扫描仪在扫描面板下方和上盖中安装有专门的双光源照明系统,并且在扫面板上预留了双光源校准区域。此外,还配备有不同尺寸的专用、高透明度根系放置盘。扫描时,扫面板下的光源和上盖板中的光源同时扫过高透明度根盘中的根系样品,这样可以避免根系扫描时容易产生的阴影和不均匀等现象的影响,有效地保证了获取的图像质量。研究人员可以更加全面地了解根系的生长状况,为优化植物种植结构和提高作物产量提供科学依据。 三、提升研究效率与准确性 根系扫描仪的操作简单,软件界面友好,用户可以通过软件轻松地进行数据分析和处理。此外,根系扫描仪还可以与计算机连接,实现数据的快速传输和存储,大大提升了研究效率。同时,非侵入性的检测方式减少了对植物根系的破坏,保证了测量结果的 准确性和可靠性。 四、广泛应用于植物研究与农业生产 根系扫描仪广泛应用于植物生长发育、植物营养状况、植物逆境耐受性等领域的研究。在农业生产中,根系扫描仪可用于实时检测作物根系的生长情况,为作物提供适宜的养分和水分管理方案;同时,通过根系结构分析,可以筛选具有优良根系特征的作物品种,提高作物的抗逆性和产量。 五、仪器用途 根系分析系统用于洗根后专业根系分析,还可以用于根盒培养植物的根系表型分析,可以分析根系长度、直径、面积、体积、根尖记数等,功能强大,操作简单,软件可分析植物根系的形态分析及根系的整体结构分布等,广泛运用于根系形态和构造研究。 综上所述,根系扫描仪以其精准测量、三维重建、提升研究效率与准确性以及广泛应用的优势,为植物根系生长状况的分析提供了强有力的支持。随着技术的不断进步和应用领域的拓展,根系扫描仪有望在植物研究和农业生产中发挥更加重要的作用。
  • 30min搞定植物转基因检测——盘古快速定量PCR系统
    导读3月19日,农业农村部种业管理司公告显示,27个转基因玉米和3个转基因大豆品种通过初审。这是继2023年末首批51个转基因玉米、大豆品种通过国家品种审定后,第二批通过初审的转基因玉米、大豆品种。这一成果不仅标志着我国农业科技创新迈出了坚实的一步,也为我国农业可持续发展注入了新的活力。植物转基因技术是指把从动物、植物或微生物中分离到的目的基因或者经过修饰的基因导入植物体内,使目的基因能够在受体内进行稳定的表达和遗传,从而使植物具有人们所需要的性状(如抗病、抗虫、抗逆等)的方法。转基因是一种分子杂交育种的方式,是一种更准确、更高效、更有针对性的定向杂交。转基因植物的构建转基因技术已经成为全球发展最成熟、应用最广泛的生物育种技术,为农作物的遗传改良提供了广阔的前景。大豆、玉米、棉花、油菜是全球最主要的转基因作物,本世纪以来,以上四种转基因作物全球总种植面积占比均在98%以上。全球转基因作物的商业化种植面积,在2019年已经达到了1.904亿m² ,1996-2019年转基因作物的累计种植面积已经达到27亿m² 。通过对作物进行转基因检测,能帮助农业部门快速了解转基因农产品的情况并对其进行针对性控制,为转基因作物安全监管提供有力的技术支持。艾普拜生物一直致力于为用户提供新型生命科学研究仪器和分析产品以及优化的整体应用解决方案。在转基因成分的快速检测方面,艾普拜生物也有一整套的解决方案。核酸提取使用样本DNA直提试剂,裂解速度快,无需额外加热,6分钟内即可完成。核酸快速扩增试剂重复性好,稳定性高,快速qPCR扩增。核酸检测试剂盒该系列转基因检测试剂盒,特异性强,灵敏度高,可用于转基因株系的快速检测,大大提高检验效率。快速qPCR检测
  • 多重PCR建库技术在植物研究中的应用
    PCR(Multiplex PCR)多重PCR(Multiplex PCR)可在一个反应内加入两对及两对以上的引物,同时扩增两个及两个以上的目标核酸片段。而多重PCR建库技术是一种整合多重PCR及二代测序的靶向测序技术。该方法具有成本低、检测效率高、应用灵活、适应性广等特点。应用方向多重PCR建库技术在植物研究中都有广泛的应用。品种鉴定:国标GB/T38551-2020[1]已经明确水稻、玉米、大豆、棉花等16个物种可通过MNP方式进行原始品种鉴定、实质性派生品种鉴定和品种真实性鉴定。判断依据则是根据测序后得到的标记位点数进行遗传相似度的计算,最后对比待测品种与对照品种的遗传相似度来定论。万人静等[2] 研究了MNP在第六大粮食作物木薯品种鉴定的应用,利用241份木薯的全基因组信息筛选到623个MNP标记位点。基于此,在28个木薯品种中两两比较时,99.47%(376/378)的品种对间的差异大于 46%,比例在 0.3%~81.0%之间,均值为 71.78%,MNP具很更高的品种区分能力。遗传多样性分析:多重 PCR 靶向捕获测序可用于对植物种群中的遗传多样性进行分析。通过选择性引物捕获特定基因组区域, 并对多个样本进行测序比较, 可以研究不同品种或种群中的遗传差异和多态性, 为植物种质资源的保护和利用提供重要的分子标记信息。比如, Zhang 等[3]利用多重 PCR 靶向捕获测序技术对来自中国海南省和广东省的 998份野生稻种质资源进行了基因分型和遗传多样性评估, 最终构建了 299 份野生稻核心种质资源, 为野生稻的分类、保护和创新提供科学依据。多重PCR建库技术原理多重建库技术工作原理[4]是依靠 PCR 对于靶向位点的定点扩增。对多个待测 SNP 位点设计特异扩增引物,在第一轮 PCR 中抑制引物干扰和非特异扩增,使数以千计的靶向引物能够在一管 PCR 反应中实现高度均一化的扩增,从而大量富集目标片段。随后,在 第二轮 PCR 中,加上测序接头和文库条形码,最终获得测序所需的文库。最后通过大规模并行测序 (massively parallel sequencing,MPS)揭示目标位点的标记基因型。多重建库流程步骤多重PCR建库技术的优势1. 高效性:多重PCR建库技术可以同时扩增多个目标序列,从而提高样品处理的效率。相比于逐个扩增目标序列的方法,多重PCR可以大大减少实验的时间和工作量。2. 经济性:由于一次扩增可以处理多个目标序列,多重PCR建库技术可以节省试剂的使用量和实验成本。这对于大规模研究和高通量测序项目尤为重要。3. 信息丰富性:多重PCR建库技术可以同时扩增多个目标序列,从而获取更多的信息。这对于研究复杂疾病、多个基因的相互作用或群体遗传学研究具有重要意义。4. 准确性和一致性:多重PCR建库技术可以在同一反应体系中同时进行扩增,从而保证了不同目标序列在扩增效率和条件方面的一致性。这可以减少实验中的变异性,并提高测序结果的一致性和可靠性。5. 灵活性:多重PCR建库技术可以根据研究需要灵活设计引物组合,从而适应不同的实验设计和研究方向。这使得多重PCR建库技术在个性化分析和定制实验中具有很高的灵活性。多重建库流程 相关设备推荐成都瀚辰光翼自主研发NovaLib 4800 Pro医疗级一体机,领跑核酸提取与文库构建领域~NovaLib 4800 Pro集核酸提取及文库构建于一体,整合了温控模块、加热震荡模块、磁力架模块、PCR模块、冷存模块等,可实现样本进,文库出。无需复杂、繁琐的手工操作,一键即启,可实现多种NGS流程一体化,无需人工干预。提取及文库制备全自动一体机NovaLib 4800 Pro 核心优势灵活性突出:兼顾高通量和灵活,24通道移液模块具备液位探测功能,可根据需要独立灵活使用单通道、8通道、24通道,配合可配置试剂载架,支持试剂原管、预分装多种上样独创先进设计:采用批间流水线设计理念提高并行效率;首创五腔室物理分区隔离设计,配备多腔室压差智能控制和HEPA系统,集成智能路径规划功能实现零污染实现无人值守:无人值守时间长,集成双堆栈耗材系统。一站式交付,从核酸提取到建库全流程自动化,中途无需补充耗材和试剂环保设计理念:固液分离,垃圾处理简单高效,集成大容量废料仓储系统开放式平台:流程可编辑,支持根据需要自定义流程及参数,用户可自由选择试剂NovaLib 4800 Pro 使用流程NovaLib 4800 Pro 应用流程NovaLib 4800 Pro 部分软件画面参考文献【1】GB/T 38551-2020, 植物品种鉴定 MNP 标记法[S]【2】万人静,李琼,周新成,李论,李甜甜,周俊飞,彭海,章伟雄,方治伟.木薯 MNP 标记在品种鉴定中的应用[J/OL].热带作物学报.https://kns.cnki.net/kcms/detail//46.1019.S.20230223.1705.004.html【3】Genetic diversity of wild rice accessions (Oryza rufipogon Griff.) in Guangdong and Hainan Provinces, China, and construction of a wild rice core collection【4】徐云碧,杨泉女,郑洪建,许彦芬,桑志勤,郭子锋,彭海,张丛,蓝昊发,王蕴波,吴坤生,陶家军,张嘉楠.2020.靶向测序基因型检测(GBTS)技术及其应用.中国农业科学,53(15):2983-3004.
  • 植物免疫抑制与广谱抗病机理研究取得重要发现
    9月30日,国际学术期刊Cell在线发表了中国科学院分子植物科学卓越创新中心/植物生理生态研究所何祖华研究团队与国内外研究者合作完成的研究论文。该研究揭示了水稻钙离子感受器ROD1精细调控水稻免疫反应,从而减低广谱抗病引起的生存代价,平衡生殖生长-产量性状。  作为世界近一半人口的主要粮食来源,水稻的产量和品质受到各种病原菌的严重影响。发掘广谱持久的抗病品种是控制水稻病害的有效策略。然而,随着病原菌的不断进化,植物抗病基因所建立的免疫屏障易被不断变化的病原菌毒性效应蛋白所攻克,这类病原菌效应蛋白攻击并操纵植物的靶标,抑制抗病性。这类植物靶标往往是感病基因。近年来,人们发现可通过对植物感病基因的操控,也可以实现对病原菌的广谱抗性,成为植物抗病育种的新技术。  该研究组通过对水稻资源库和育种群体的大规模筛选,鉴定到一份对腐生真菌病害纹枯病具有高度抗病的隐性遗传稳定材料,定名为rod1 (resistance of rice to diseases 1)。rod1对水稻的三大病害纹枯病、稻瘟病和白叶枯病均具有高抗的特性,说明该基因调控的免疫反应具有独特性。为此,他们前后用了15年的时间,解析有关分子和生化机制,探讨该基因的抗病育种应用潜力。他们的研究证明,ROD1基因编码一个新的钙离子感受器,通过识别钙离子信号与脂类结合,将过氧化氢酶CatB招募到细胞质膜,直接在膜区降解活性氧,从而在没有病原菌侵染时抑制免疫反应,促进穗原基发育,有利于水稻的产量性状。而两个E3泛素连接酶RIP1和APIP6靶定ROD1并介导其降解,保证了对病原菌的有效防卫反应。因此,RIP1/APIP6-ROD1以及ROD1-CatB组成了相互制约并高度有序的信号级联通路,对水稻免疫反应进行精细调控。更有意思的,该研究还发现稻瘟病菌分泌的效应蛋白AvrPiz-t具有与ROD1类似的β折叠结构,也可以与RIP1/APIP6以及CatB互作,与ROD1有功能上的替代性,也即病原菌模拟并操控了ROD1的免疫抑制系统,实现其成功的侵染。  进一步,他们通过对水稻不同栽培品种和农家种的基因组序列进行分析,发现ROD1编码序列存在一个单核苷酸多态性变异位点,导致功能氨基酸的改变。该变异将水稻分成两种类型,一种是广泛存在于籼稻、具有较强田间抗性的A型,另一种是在粳稻中富集且较感病的C型。从地理分布来看,含有A型ROD1的品种主要种植于高温高湿、水稻病害易于流行的低纬度地区;而C型ROD1则主要存在与高纬度地区的水稻品种中,说明作物抗病性受地域起源的选择。  综上,该研究揭示了一条以ROD1为核心的植物免疫抑制信号通路和蛋白三维结构模拟(structural mimicry)所介导的植物-病原菌共进化模型。该研究同时说明植物能够选择与气候条件相适应的免疫策略,以达到最佳的抗病与生长发育适应性的平衡。他们还发现ROD1的功能在禾谷类作物中是保守的,并提出了可以通过操纵感病基因实现广谱抗病的新策略,对培育稳产高抗的作物品种具有重要参考价值。  该研究得到国家自然科学基金、中科院战略性先导科技专项、科技部重点专项等的资助。
  • 五洲东方全力赞助2012年全国植物生物学大会
    开幕式 为促进我国从事植物遗传学、分子生物学、细胞生物学、功能基因组学、分子育种等领域的科研人员之间的交流,研讨相关领域的最新成果和进展,中国细胞生物学会、中国遗传学会、中国植物生理学会、中国植物学会和中国作物学会等单位主办的 &ldquo 2012年全国植物生物学大会&rdquo 于2012年10月11-13日在陕西西安杨凌国际会展中心召开。研讨会邀请了相关领域专家共800人研讨和交流植物分子生物学和现代农业研究的最新成果,北京五洲东方科技发展有限公司联合德国普兰德公司全力赞助了本次盛会。 嘉宾报告 作为美国Percival科技公司独家代理商的五洲东方公司多年来一直全力赞助全国植物生物学大会,本次也派专人参展2012全国植物生物学大会,其十多年独家代理的美国Percival系列植物培养箱和德国BRAND系列移液产品得到全国植物培养领域各位专家的广泛认可和大力支持。 客户咨询 签到交流 拥有百年历史的Percival科技公司不断为环境控制工业建立标准,现已生产13个种类,近80个型号的培养箱,覆盖整个动物、植物培养领域和环境测试领域。另外,可根据客户具体需求定制特殊箱体。值得一提的是,所有Percival产品从设计到生产都由美国Percival公司严格控制和把关,其产品值得信赖。Percival产品目前已遍布世界各地,默克(Merck)、礼来(Eli Lilly)、罗氏(Roche)、法玛西亚普强(Pharmacia &Upjohn)、美国陶氏益农公司(Dow AgroSciences)、美国国家宇航局(NASA)、杜邦(DuPont)、孟山都(Monsanto)、诺华(Novartis)及法国葡萄酒酿造厂等著名跨国企业都是Percival的客户。在我国,北京大学、清华大学、复旦大学、中科院、农科院、北京生命科学研究所、天药药业、泰德制药等众多知名科研院所和企业也正在使用Percival的各类产品。 五洲东方(www.ostc.com.cn)竭诚为实验室提供最先进的产品、最优质的服务,欢迎致电垂询:400-011-3699。
  • 会议邀请 I 瀚辰光翼邀您参加2023全国植物生物学大会
    为了展示我国植物生物学研究的最新成果和进展,促进植物科学交叉融合和发展,助力解决种业“卡脖子”问题,加强相关领域科研人员之间的交流与合作,中国细胞生物学学会、中国作物学会、中国植物学会、中国植物生理与植物分子生物学学会、中国遗传学会联合举办“2023全国植物生物学大会”。大会定于2023年8月2-6日在甘肃兰州召开,将邀请国内植物生物学相关领域取得突出成果的专家学者与优秀青年科学家进行学术报告。旨在促进植物科学工作者们之间的交流与合作,推动植物科研成果在农业生产实践中的转化应用,助力种业振兴。组委会诚挚邀请国内外同行和相关高校、科研院所研究生参加本次大会。 瀚辰光翼参加此次大会并设立展位,欢迎各位专家学者莅临交流!会议信息 大会主题:植物科学振兴种业会议时间:2023年8月2-6日会议地点:甘肃省兰州市甘肃国际会展中心主办单位:中国细胞生物学学会、中国作物学会、中国植物学会、中国植物生理与植物分子生物学学会、中国遗传学会兰州大学承办单位:兰州大学大会主席:李家洋、许智宏瀚辰光翼展位信息展位号:B58大会报告嘉宾
  • 便携式光合速率测定仪了解植物的生长状况【恒美仪器】
    便携式光合速率测定仪是一种先进的仪器,用于测量植物的光合速率。光合速率是反映植物光合作用能力的重要指标,对于了解植物的生长状况、评估环境因素对植物生长的影响以及提高农业产量等方面都具有重要意义。 产品链接https://www.instrument.com.cn/netshow/SH104275/C309618.htm 该仪器采用先进的光合作用测量技术,能够实时、准确地测量植物叶片的光合速率。通过与计算机连接,用户可以方便地获取测量数据,并进行数据处理和分析。此外,该仪器还具有操作简便、易于携带等特点,可以随时随地进行植物光合速率的测量,不受时间和地点的限制。 便携式光合速率测定仪的应用范围广泛。在农业生产中,它可以用于监测作物的生长状况,指导合理施肥和灌溉,提高农作物的产量和品质。在生态研究中,它可以用于评估环境因素对植物生长的影响,了解植物对环境的适应性和生态系统的平衡。此外,该仪器还可以用于植物生理学、园艺学、林学等领域的研究。 综上所述,便携式光合速率测定仪对于了解植物光合作用能力、提高农业产量和生态研究等方面都具有重要作用。通过使用该仪器,可以更好地了解植物的生长状况和环境因素对植物生长的影响,为农业生产和生态研究提供科学依据。
  • 使用TF-SPME采集植物挥发有机物VOCs
    自然界存在数以千计的植物品种,每一个都会产生数以千计的化合物,这些化合物构成了多样化且独特的植物挥发性组分。 这些挥发性有机化合物 (VOC) 主要由萜类化合物、脂肪酸、芳烃和氨基酸衍生物组成。在植物代谢组学中, 测定植物的挥发性组分越来越受到关注,因为挥发性组分为代谢物及其过程提供了有关表型的重要信息。在为优化植物以实现更绿色生产和食品可持续性、采后保护、提高作物产量和消费者接受度而进行的育种中起到了关键的作用。在本应用中,薄膜固相微萃取 (TF-SPME)从植物周围的顶空收集挥发物,用于随后的GC/MS测定。使用紫星牵牛花、橡叶绣球花、驱蚊香草和柠檬百里香植物作为样品。结果证明,TF-SPME进行被动采样,可以涵盖更广泛的植物挥发有机物种类,与其他技术相比可以达到更低的检测下限。 相关链接:TF-SPME技术及其应用使用涂有二乙烯基苯/聚二甲基硅氧烷 (DVB/PDMS) 的薄膜固相微萃取 (TF-SPME) 进行对植物顶空被动空气采样,持续约14小时。随后将TF-SPME取出,放入TDU热脱附管中进行热脱附。配置了热脱附TDU的GERSTEL多功能进样平台,可以用于多种热脱附进样,如直接样品热萃取、吸附管热脱附、搅拌棒吸附萃取SBSE、薄膜固相微萃取TF-SPME, SPME,顶空进样等十大功能结果赏析使用 PDMS/DVB TF-SPME从紫星牵牛花中提取植物挥发物后获得的 TIC使用 PDMS/DVB TF-SPME 从橡叶绣球花中提取植物挥发物后获得的 TIC使用 PDMS/DVB TF-SPME 从驱蚊香草中提取植物挥发物后获得的 TIC使用 PDMS/DVB TF-SPME从柠檬百里香中提取植物挥发物后获得的TIC,硅氧烷峰标记为S
  • 国外成功研发用于植物养分分析的拉曼传感器
    p style=" text-align: justify text-indent: 2em " 据外媒报道,如果作物植物没有获得足够的养分,它们的氮含量通常会低于正常水平。一种便携式的新设备可以让农民当场检查这些水平,这样他们就可以尽快开始解决这个问题。由新加坡-麻省理工学院研究与技术联盟(SMART)的一个团队开发的原型小工具实际上是一个紧凑的拉曼光谱传感器。 /p p style=" text-align: center" img style=" max-width: 100% max-height: 100% width: 399px height: 218px " src=" https://img1.17img.cn/17img/images/202012/uepic/610d7f1c-19c1-4071-9a68-109fd8377391.jpg" title=" 79f92a47fc824f5786e8686235fe7efa.png" alt=" 79f92a47fc824f5786e8686235fe7efa.png" width=" 399" height=" 218" / /p p style=" text-align: justify text-indent: 2em " 与全尺寸的同类产品一样,它的工作原理是将单色激光照射到样品上--在本例中是一片活叶。该材料中的分子随之振动,以独特的方式散射光。因此,通过分析该散射光,可以确定样品中存在哪些化学物质。 /p p style=" text-align: justify text-indent: 2em " 在农业应用中使用这种技术时,通常必须将植物样品从田间带到实验室的台式拉曼光谱仪上。相比之下,新设备可以携带到田间,并在众多正在生长的植物叶子上使用。 /p p style=" text-align: center" img style=" max-width: 100% max-height: 100% width: 408px height: 559px " src=" https://img1.17img.cn/17img/images/202012/uepic/22582d3a-42f6-4506-a135-b0b5e991eab5.jpg" title=" d3478038db854101bc6e2f8a8e9e0fdb.png" alt=" d3478038db854101bc6e2f8a8e9e0fdb.png" width=" 408" height=" 559" / /p p style=" text-align: justify text-indent: 2em " 除了通过低氮水平检测养分不足,该传感器还可以通过测量其他代谢物的水平来识别其他问题。例如,如果一株植物被称为类胡萝卜素的色素水平异常低,那么它可能患有“避荫综合征”--出现这种情况时会阻碍植物叶片的发育,并在此过程中产生结构上的缺陷。 /p p style=" text-align: justify text-indent: 2em " “该传感器在多个蔬菜品种上进行了演示,并支持生产营养丰富的低成本蔬菜的努力”,该研究的共同首席作者Nam-Hai Chua教授说。“将这项工作推广到更多种类的作物上,可能有助于在全球范围内提高作物产量,增强气候适应性,并通过减少化肥使用量来减轻环境污染。” /p p style=" text-indent: 2em text-align: justify " strong 相关阅读: /strong /p p style=" text-indent: 2em text-align: justify " a href=" https://www.instrument.com.cn/news/20201214/567512.shtml" target=" _blank" span style=" color: rgb(84, 141, 212) " strong 便携式拉曼光谱仪在投毒案件现场毒物快检应用—食药环侦局 /strong /span /a /p p style=" text-indent: 2em text-align: justify " a href=" https://www.instrument.com.cn/news/20201120/565338.shtml" target=" _blank" span style=" color: rgb(84, 141, 212) " strong 邮票毒品走私防不胜防,手持式拉曼助力海关守护国门安全 /strong /span /a /p p style=" text-indent: 2em text-align: justify " a href=" https://www.instrument.com.cn/news/20201109/564212.shtml" target=" _blank" span style=" color: rgb(84, 141, 212) " strong 拉曼光谱法在16种多环芳烃(PAHs)检测快检解决方案 /strong /span /a /p
  • 深圳获批筹建国家植物转基因检测重点实验室
    近日,深圳检验检疫局正式获批筹建&ldquo 国家植物转基因检测重点实验室(深圳)&rdquo 。据了解,该实验室预计于两年内完成筹建,建成后将成为华南地区唯一一家专门从事植物转基因检测的国家级重点实验室,为深圳乃至全国进出口植物及其产品转基因检测提供稳定可靠的技术支持。   近年来,随着转基因作物产业化进程加快,公众对转基因作物的食用安全性及其对国内农业、生态的风险性重视度不断提升。建立重点实验室对转基因产品检测新技术和应用等科学问题进行攻关,推动国内转基因检测水平提高,对保障百姓知情权、保护我国农业和生态安全具有重要意义。   目前,该局已部署将&ldquo 国家植物转基因检测重点实验室(深圳)&rdquo 筹建列入重点工作范畴,按照统筹规划、分步实施和立足深圳、服务华南、辐射全国的思路,大力加强实验室装备投入和检验检疫技术能力建设,推动筹建工作尽快完成。
  • IVIS视角——IVIS系统在植物领域的应用(一)
    在往期分享中,我们介绍了IVIS成像系统在动物水平的众多应用,其实IVIS同样可以用于全植物成像。此次我们就分享IVIS在水稻氮代谢研究中的应用。氮是植物生长发育所必需的养分,但其在土壤中的浓度往往达不到最佳作物生长浓度。因此,提高作物氮素利用率被认为是农业生物技术的一个主要目标。然而,关于作物氮代谢仍有许多需要了解的地方。在此,研究人员开发了一个分子传感器系统来监测水稻中氮的状态,该方法发表在《Frontiers in Plant Science》杂志上。研究中首先利用该系统研究了尿囊素的作用,尿囊素分解为尿囊素衍生的代谢物,在低浓度下作为氮源使用。参与尿素代谢的两个基因尿囊素酶(OsALN)和尿素渗透酶1 (OsUPS1),对氮状态高度敏感,在低氮条件下,OsALN迅速上调,而高氮条件下OsUPS1表达上调。基于上述机制,研究人员培育了含有氮分子传感器系统的[proALN::ALN-LUC2]和[proUPS1::UPS1-LUC2]转基因水稻。这种转基因的表达可以模拟内源性的转录调控,即OsALN和OsUPS1基因对外源N状态的响应。文中使用两种方法来测定分子氮传感器的能力:方法一:在长期培养中,转基因水稻植株在高浓度氮源培养基(GM+N)或不含氮源的生长培养基(GM-N)中培养5天,随后使用IVIS活体成像系统进行成像及定量。结果显示,生长在GM+N培养基中的 proUPS1::UPS1-LUC2 水稻植株表现出更高的荧光素酶活性(图1A)。为了对发光信号进行定量,研究人员测定了5个独立的纯合系(具有单个基因拷贝)。生长在GM+N培养基中的proUPS1::UPS1-LUC2 植株发光信号强于GM-N组20倍,而强于对照组约2,800倍(图1B)。方法二:在短期培养实验中,转基因水稻植株先在GM-N培养基中培养4天,第5天在加入100nM硫酸铵。结果显示,同长期实验结果一样,生长在后期加 氮培养基中proUPS1::UPS1-LUC2 植株,发光信号更强(图1C)。同样对5株独立的纯合系进行了定量,生长在后期加N培养基中的proUPS1::UPS1-LUC2 植株生物发光信号强于GM-N培养基中约50倍,而强于对照组13,000倍(下图1D)。图1.在高氮培养条件下,proUPS1::UPS1-LUC2 具有很强的发光信号。 (A)对照组和proUPS1::UPS1-LUC2 植株在GM+N或者GM–N培养基 中培养5天;(B)5个独立的纯合子proUPS1::UPS1-LUC2 在(A)条件下,发光定量结果;(C)对照组和proUPS1::UPS1-LUC2 植株在GM–N生长5天, 或者在GM–N培养基中生长4天,然后加入100 mM硝酸铵培养1天;(D)5个独立的纯合子proUPS1::UPS1-LUC2 在(C)条件下的定量结果,以对照组作为基准进行标准化 。这些结果说明,proUPS1::UPS1-LUC2 传感器能够通过发光信号水平检测外源氮的情况。同样在研究中对proALN::ALN-LUC2 植株进行了相同的处理。结果显示,在长时间的培养实验中,GM+N和GM-N培养基生长的proALN::ALN-LUC2 没有明显差异(图2A)。对5株独立的纯品系进行发光信号定量,相比GM+N培养基,GM-N培养基生长的proALN::ALN-LUC2 植株发光信号要高约1.8倍,比对照组高约17倍(图2B)。因此很难鉴定GM+N和GM-N培养基对生长的影响。而在短时间培养实验中,连续生长在GM-N培养基中的proALN::ALN-LUC2,发光信号要强于加高氮培养1天的。图2.在低氮培养条件下,proALN::ALN-LUC2 植株显示强的生物发光信号。(A)对照组和proALN::ALN-LUC2 植株,在GM+N or GM–N培养基中培养.;(B)A组相对定量结果;(C)对照和proALN::ALN-LUC2 植株在 GM–N中培养5天,或者在GM–N培养基中培养4天,然后加入100 mM 硝酸铵再培养1天 ;(D)C组相对定量结果;GM–N培养基生长的对照组植株作为基准进行标准化。此外,在文章中,还利用IVIS活体成像系统,探讨了该传感器对于氮源是否具有选择性及对于氮源的敏感性。结果显示proUPS1::UPS1-LUC2 和proALN::ALN-LUC2 对于氮源无特异性,可以广泛的作为水稻等植株中分子氮的传感器。并且proUPS1: UPS1-LUC2 植株在硝酸铵、硫酸铵或硝酸钾浓度 1mM即表现出强烈的生物发光信号,而低氮浓度( 10mM)。综上,分子氮传感器的信号反映了分子氮的内部状态。结合IVIS活体成像技术,proALN::ALN-LUC2和proUPS1::UPS1-LUC2 可作为分子传感器在不同研究中监测大米内部氮状态。文献来源:Dong-Keun Lee, Mark C. F. R. Redillas, Harin Jung, Seowon Choi, Youn Shic Kim and Ju-Kon Kim. A Nitrogen Molecular Sensing System, Comprised of the ALLANTOINASE and UREIDE PERMEASE 1 Genes, Can Be Used to Monitor N Status in Rice. Front. Plant Sci, 18 April 2018.
  • 动植物检疫实验室常见废弃物的危害和处理方法!
    动植物检疫实验室常见废弃物的危害和处理方法!百欧博伟生物:本文说明了一般的动植物检疫实验室所产生的废弃物对人类和环境所带来的危害,并参阅有关资料,整理和总结出一些对废弃物处理的方法,并提出一些减少实验室废弃物的建议,使实验室人员能够认识并重视到废弃物的危害,在处理废弃物时可以借鉴和参考,从而减少实验室废弃物所带来的环境污染和生态破坏,保护生物安全。一、前言随着世界贸易的进一步发展,我国进出口贸易的范围也在进一步扩大,作为一般的动植物检疫实验室,所检测的商品将会更多,所用到与检疫实验有关的药品、试剂、一次性用具、实验器械等将会增多,因此所产生的废弃物也将会随之增加。近年来,实验室所产生的废弃物由于没有进行必要的处理而直接排入外界所造成的危害,已经崭露头角,实验室已经成为一个不容忽视的污染源,特别是生物性实验室,所产生的废弃物或检疫样,可能携带一些危害性生物,极有可能造成疾病的流行或某些有害生物的疯狂生长,破坏生态环境。二、动植物检疫实验室废弃物的分类动植物检疫实验室的废弃物可以分为:⒈化学性废弃物:有氰化物、硝酸盐、邻苯二胺、砒霜等;⒉生物性废弃物:有作废的动植物标本、动植物检疫样品、微生物培养物、染色液等;⒊一般的废物:打碎的玻璃器皿、废纸、废纱布、橡胶以及塑料制品。三、动植物检疫实验室废弃物的危害⒈化学性废弃物⑴氰化物和硝酸盐:氰化钾和硝酸盐常用作微生物培养剂的制作。①氰化物属于剧毒物质,在酸性条件下易产生氰化氢,氰化氢为剧毒气体,在实验现场的z高含量须≤0.3 mg/m3;在居民大气中z高含量须≤0.8mg/m3。CN—能与细胞色素酶牢固结合阻止Fe+3还原,是组织细胞缺氧而窒息,从而抑制多种酶的活性。②硝酸盐容易诱发糖尿病,易造成肾脏的损害,如果人们摄取了高浓度的硝酸盐,肾脏的负担加重,容易引起溶血性贫血。并且硝酸盐可以在酶和细菌的作用下,被还原成亚硝酸盐,亚硝酸盐与人体血液作用,形成高铁血红蛋白,从而使血液失去携氧功能,使人缺氧中毒,轻者头昏、心悸、呕吐、口唇青紫,重者神志不清、抽搐、呼吸急促,抢救不及时可危及生命。不仅如此,亚硝酸盐在人体内外与仲胺类作用形成具有“三致” 作用的亚硝胺类,可严重危害人体健康。⑵邻苯二胺:邻苯二胺是ELISA实验常用的化学药品,可经过吸入、食入和皮肤侵入,对眼睛、粘膜、呼吸道有刺激作用;可以致微生物突变,遇火、高热可燃,受热分解放出有毒的氧化氮烟气。⑶砒霜(As2O3):为剧毒物质,砷化合物易和体内酶的巯基(-SH)结合,使酶失去活性,阻碍细胞正常代谢,使细胞变性坏死,从而损害神经系统、肝脏和肾脏。慢性砷中毒可伴随“三致”的发生。⒉生物性废弃物⑴动植物标本:动植物标本一般都用福尔马林作为防腐剂,被浸泡过的标本废弃后,上面会有甲醛气体散出。甲醛对神经系统、免疫系统、肝脏等有严重的损害,还会刺激眼结膜、呼吸道粘膜和皮肤,引起过敏性皮炎、结膜炎、咽喉炎、支气管炎等,损害视神经和视网膜,引起头痛、视力下降或失明,并且具有致癌、致畸作用。目前,世界卫生组织(WHO)和美国环境保护局(EPA)已将其列为具有潜在危险的致癌、致畸物质和重要的环境污染物。风干的标本可能因为保存不当而孳生一些病原生物(如:虫子、虫卵或霉菌等)而成为一个传染源,若不进行熏蒸或再烘干处理,则有可能损害其它标本或物品。⑵检疫样品①植物性检疫样:棉花、棉短绒、废丝、水果、花卉、木材等上面可能携带一些杂草籽、霉菌、细菌、病毒以及一些害虫等,检疫实验室对于这些检疫样品一定要妥善保管和处理,若使有害生物进入到外界环境,就有可能在新的地方疯狂生长,从而形成“生物入侵” 。如19世纪美洲仙人掌传入澳大利亚,z初是用来做篱笆,圈养牛羊,但是它迅速生长,到了1925年已侵染牧场,使得其中很大部分不能放牧,土地不能耕种,并且还以惊人的速度扩散。还有就是发生在我国的,在上世纪90 年代初,我国在大量引进观赏植物巴西铁(Dracaena fragrans )时,蔗扁蛾(Opogona sacchari )随之传入,并随巴西铁迅速扩散,现已分布于北京及南方各省,并且由南向北蔓延。经调查,蔗扁蛾目前在北京各花卉生产基地均有不同程度的发生,严重时,每年巴西铁因此虫的淘汰率达50%以上,现已成为北京温室花卉生产中的主要害虫之一。外来生物入侵的危害:diyi,造成严重的生态破坏和生物污染。比如,原产于南美洲的水葫芦现已遍布华北、华东、华中、华南的河流、湖泊、水塘,疯长成灾,严重破坏水生生态系统的结构和功能,导致大量水生动植物的死亡,并且阻塞河道。第二,外来物种通过压制或排挤土著物种,形成单优势种群,导致生物多样性的丧失。第三,生物入侵导致生态灾害的频繁爆发,对农、林、渔业等造成严重损害,给国民经济带来巨大损失。近年来,松材线虫、湿地松粉蚧、美国白蛾等森林入侵害虫严重发生与危害的面积,每年达150万公顷;稻水象甲、非洲大蜗牛、美洲斑潜蝇等农业入侵害虫每年超过140万公顷,据保守估计,全国主要外来物种造成的农林业经济损失平均每年达574亿元。第四,直接威胁到畜禽和人类的健康。如豚草、三裂叶豚草的花粉就是引起人类花粉过敏的主要病原物;紫茎泽兰含有的毒素能使马匹和羊患上气喘病,四川省凉山彝族自治州曾因紫茎泽兰入侵而在一年内减少了6万多头羊,畜牧业损失达2100多万元。由于紫茎泽兰对土壤肥力的吸收力强,能极大地耗尽土壤养分,对土壤可耕性的破坏也极为严重。②动物性检疫样:血液、呕吐物、分泌物、皮张、蚕茧、精液、胚胎、肉、奶、蛋等也可能携带一些我国没有而其它国家有的动物疾病,或者是国家明文规定的一、二类传染病病原(有细菌、病毒、支原体、衣原体、寄生虫等),这些疫病,一旦爆发或流行,将会对我国的畜牧业养殖造成巨大的危害。比如:血液中可能含有致病菌、病毒或者一些血液源性寄生虫(疟原虫、血吸虫、焦虫、边虫、锥虫等);皮张中极有可能含有炭疽;动物的呕吐物、分泌物中含有大量的病原微生物;精液和蛋中可能含有一些垂直传播的疾病(如:精液可以携带猪瘟、PRRS、非洲出血热、口蹄疫等病原微生物;蛋中会携带沙门氏菌、禽白血病、EDS-76等病原微生物… … 这些传染病随时有可能传入我国,作为检验检疫机构,检疫是重中之重,并且检验检疫时,工作人员一定要早好自身的防护。⑶微生物培养物、染色液:微生物的培养、鉴定以及染色观察是实验室常用的用于微生物的观察、研究和判定,废弃后的培养基、染色液上会携带微生物,还有与微生物有过接触的废弃物,如一次性用品:手套、帽子、口罩、工作服、移液器的枪头以及玻璃仪器,均要做好管理和消毒灭菌处理,否则,会造成疾病的流行。例如:2003年非典流行过后,许多生物实验室加强对SARS病毒的研究,之后所报道的非典感染者,多是科研工作者在实验室研究时,由于没有做好自身的保护以及这些危险物的管理和处理工作而被感染的。⒊一般性废物:在实验室,许多打碎的玻璃器皿、废纸、废纱布、橡胶或者塑料制品被直接装进垃圾袋,扔进垃圾堆,z后再掩埋或焚烧。焚烧后,有的燃烧不彻底,又会产生新的固体废物和有害气体,造成二次污染;直接掩埋后,许多在环境中不易或不能降解,因此对土壤和作物的生长发育产生不良影响:①由于这些物质的阻隔,土壤水分运动受阻,孔隙度、通透性降低,不利于土壤空气的循环及交换,致使土壤中CO2含量过高,不利于作物正常生长发育。有些含有有害成分(如聚氯乙烯类塑料),接触种子或幼芽后,会抑制种子萌发,或会使芽、幼苗灼伤。②使土壤物理性能不良而导致作物扎根困难,吸肥、吸水性能降低而减产。③如果不回收利用或回收不彻底,将会造成资源的浪费。四、动植物检疫实验室废弃物的处理动植物检疫实验室所产生的废弃物因具有潜在的感染性、传播性以及危害性,若处理不当,将会严重的污染环境,危及人类、动物和自然的安全,因此需要进行必要的处理,才能废弃,除了焚烧和深埋以外,还应该提倡回收和综合利用的方式,减少资源浪费。⒈实验室废弃物处理的一般原则为防止污物扩散、污染,应该分类收集、存放,分别集中处理,尽可能采取废物回收以及固化、焚烧或深埋等方法处理。在实际工作中,选择合适的方法进行处理,尽可能减少废物量,减少污染。⒉动植物检疫实验室废弃物的具体处理措施生物类废物应根据其病源特性、物理特性选择合适的容器和地点,专人分类收集进行消毒、烧毁处理,日产日清。液体废物一般可加漂白粉进行氯化消毒处理。固体可燃性废物分类收集、整理,z后作焚烧处理。固体非可燃性废物分类收集,可加漂白粉进行氯化消毒处理,满足消毒条件后作最终处置。⑴生物性废弃物的处理①一次性使用的制品如手套、帽子、工作物、口罩等使用后放入污物袋内集中烧毁或及时用消毒剂浸泡,彻底消毒后,统一上交,集中存放,重新回收,再利用,减少资源浪费。 ②植物检疫样,如没有发现病虫害,则可以利用;若发现有病虫害,可以装于密闭容器内,在60-120℃下烘干1-2 h后,做焚烧或深埋处理。③动物检疫样,肉、蛋、奶、精液、胚胎、蚕茧等在没用异常的情况下可以加以利用,若有病变或异常,则应集中销毁,或焚烧或深埋。对于利用效 率不大或不能利用的检样(小块皮张等),高压灭菌后,应集中储存,妥善保管,z后统一作深埋或焚烧处理。如果量大,可以化制处理,生产一些有用的工业副产品,减少资源浪费,变废为宝、化害为利。④微生物检验接种培养过的琼脂平板或不能回收的染色液应高压灭菌30min,趁热倒掉废弃处理。尿、唾液、血液、分泌物等生物样品,加漂白粉搅拌后作用2-4h,倒入化粪池或厕所或者进行焚烧处理。⑤可重复利用的玻璃器具如玻片、吸管、玻璃瓶等可以用1-3g/L有效氯溶液浸泡2-6h.然后清洗灭菌后重新使用。⑥盛标本的玻璃、塑料、搪瓷容器可煮沸15min.或者用1g/L有效氯漂白粉澄清液浸泡2-6h,消毒后用洗涤剂及流水刷洗、沥干;用于微生物培养的,用压力蒸汽灭菌后使用。⑵化学性废弃物的处理①氰化物用NaOH调节PH10,加入KMnO4或者漂白粉,经充分搅拌,静置,使氰化物完全被氧化分解。②硝酸盐或者亚硝酸盐类可以,加入尿素,调为酸性条件,充分搅拌,使反应生成氮气。③邻苯二胺可以在酸性条件下加入高锰酸钾,使其氧化分解;也可以利用H-103树脂吸附处理,再用稀盐酸作为脱附剂回收或利用磷酸三丁脂萃取等。奇兵等人应用液膜处理高浓度的邻苯二胺废水,效果较好,主要过程包括制备乳液、液膜萃取、澄清分离等过程,用氯仿作为传质介质,将邻苯二胺以盐的形式回收,乳液可以重复利用或破乳后在制乳。④含砷废液:在含砷废液中加入FeCl3,使Fe/As达到50,然后用消石灰将废液的PH值控制在8-10。利用新生氢氧化物和砷的化合物共沉淀的吸附作用,除去废液中的砷。静置,分离沉淀,上清液达标后可排放。⑶化学性废弃物的处理一般性废弃物如打碎的玻璃器皿、废纸、废纱布、橡胶或者塑料制品,应经消毒和灭菌后,分类装进垃圾袋,统一深埋或焚烧或做回收处理。五、减少生物性废弃物的措施⒈不要购买暂时不用的药品和试剂,不要购买过多的药品和试剂。⒉促进实验室人员的知识更新,加强技术培训,避免在实验工程中污染。⒊提高实验室人员的环境保护意识,加强责任心教育和废弃物的管理,做好回收利用工作。⒋制定相应的实验室废弃物管理和处理的制度和措施,使其更加制度化和规范化。⒌研究无毒害、无污染的替代品,减少剧毒物的利用。⒍采用微型实验,开发绿色实验室。六、小结实验室是实践学习和科学研究的试验基地,检疫实验室除此作用外,在进出口贸易中还具有检测货物中的病虫害,发出预警通知,防止外来疫情或有害生物的侵入的作用。所以,检疫实验室产生的废弃物,更应该先处理,后废弃,切实做好国门卫士的角色。为避免检疫实验室的污染危害,实验室要更加完善废弃物的管理和处理制度(保证生物性废弃物能够专库贮存,专人看管,分类存放,贮存废物的容器或垃圾袋必须贴上标签,标明废弃物种类、贮存时间等,贮存时间不能太长,贮存数量也不能太多,合理及时有效的处理生物性废弃物,z大限度地保护实验工作人员的健康,保护我们的生存环境,保护我国的农业、林业、畜牧业及山产养殖业的健康发展,这样才能更好的保护人民的生命财产安全,充分体现社会主义以人为本、以民为贵的优良作风。现今,我们对于废弃物的z终处理,最常用的是焚烧和深埋两种。我国还应该加强对废弃物处理这一领域的研究工作,寻求更彻底、更简便的方法,避免焚烧和深埋带来的二次污染,并且要回收可以重复利用的废弃物,做到既不污染环境又不浪费资源。北京百欧博伟生物技术有限公司拥有对菌种、细胞、培养基、配套试剂等产品需求者的极优质服务,对购买项目的前期资料提供,中期合同保证,后期货物跟踪到z终售后的确保项目准确到位,都有相关人士进行维护,确保您在中国微生物菌种查询网中获得z优质服务!也正因为此,北京百欧博伟生物技术有限公司与国内外多家研制单位、生物制药、第三方检测机构和科研院所院校、化工企业有着良好、长期和稳定的合作关系!
  • 托普云农高通量植物表型采集分析平台全新上线!
    随着智慧农业发展,植物表型研究成为农业科技创新的前沿阵地。深耕智慧农业十余年,托普云农基于在植物表型领域的深厚积累,隆重推出高通量植物表型采集分析平台,实现植物表型测量的高通量、高精度、无损化、可复现。01 重磅上线盆栽植物数字表型采集分析系统左:盆栽植物二维/三维数字表型采集分析系统右:高光谱植物数字表型采集分析系统温室型植物表型采集分析平台左:逆境模拟及植物生长监测平台右:温室型高通量植物表型采集分析平台田间植物表型采集分析平台左:田间无人机式高通量植物表型采集分析平台右:田间轨道式高通量表型采集分析平台左:田间无人车式高通量植物表型采集分析平台右:田间固定式植物表型监测系统02 核心优势高通量可进行植物单器官、单株到群体的表型分析实现自动化传送、自动化采集自动解析识别,一次可获得上百种参数单器官表型分析单株表型分析群体表型分析高精度在可见光、高光谱成像基础上通过自研算法与计算机技术实现植物快速、高精度测量提升株高、冠幅、生物量等参数的测量准确性可见光二维成像可见光三维成像高光谱成像高效率二维单株分析时间小于5秒三维单株解析时间小于2分钟高光谱单株分析时间小于5秒三维单株动态展示无损化采用无接触测量法能够全程监测作物从出苗到成熟的每一个生长阶段实现精准的重复对比分析辣椒缺水状态的重复对比实验多维度对植物的器官-单株-群体从二维图像解析/三维高精度重构/高光谱曲线交互分析等维度解析植物的形态结构和生理功能满足多维度综合型实验数据需要让结果更全面、更精准三维、高光谱成像下植物病害识别展示高光谱成像下30个植被指数可视化动态展示应用广托普云农高通量植物表型采集分析平台,能够测量不同生境下,植物器官-单株-群体等表型数据,并提供智能分析、数据挖掘等功能。广泛适用于遗传育种、分子生物学植物生理学、植物病理学生态学、环境科学、植物保护等研究领域多年深耕精研,托普云农以科研端、产业端真实需求为导向,运用先进的光谱成像、图像识别、深度学习等技术,精心打造多元化植物表型仪器,并与多家科研机构携手,推动表型产品快速落地应用。托普云农期待与更多伙伴携手,以科技力量洞察生命之秘!
  • 会议邀请 I 瀚辰光翼邀您参加2023分子植物育种与生物技术交流研讨会
    为进一步推进植物分子育种技术的融合发展与应用,不断提升种业自主创新能力水平,充分发挥全国植物育种行业协同创新优势,加强科研团队间的交流,促进我国植物分子育种技术创新,分享当前最新育种技术成功经验,为大学和科研单位、种业企业、分子育种服务企业建立一个交流和合作的平台,届时将邀请国内相关领域知名专家学者做大会学术报告,以高端主题报告、口头报告、技术交流,产品展示等方式进行深入、广泛的研讨和交流,共同探讨交流最新成果。瀚辰光翼参加此次大会并设立展位,诚邀各位专家学者莅临交流指导!大会时间:2023年12月15日-12月17日 (15日周五全天报到)主办单位:2023NMPB大会组委会、中国健康农业产学研协同创新平台、中农博后(北京) 农业科学研究院、中农博后作物栽培与耕作学术委员会、中食高科农业科技发展中心承办单位:西南大学柑桔研究所、西南大学园艺园林学院、重庆大学生命科学学院.高科农业分子植物育种科创平台协办单位:果蔬产业技术创新战略联盟、农业农村部热带果蔬遗传资源评价利用实验室、德诺杰亿 (北京) 生物科技有限公司、上海泽泉科技股份有限公司、北京雅欣理仪科技有限公司、南京集思慧远生物科技有限公司、慧诺瑞德(北京)科技有限公司支持媒体:《中国生物器材网》《溪远讲植物科学》《中国果菜》《活动家会议网》《植物生物技术pbj》《分析仪器网》《中国作物种质资源信息网》《果蔬产业前沿动态》《种业商务网》《植物科学SCI》等大会地点:重庆雅诗特酒店
  • 博伦气象发布HPV 植物茎流传感器/植物液流计新品
    HPV 茎流量传感器/Sap Flow SensorHPV茎流量传感器是一款校准型、低成本的热脉冲液流传感器,输出校准液流量、热速、茎水含量、茎温等数据,功耗低,内置加热控制,同时改善了传统的加热方式,其原理采用双方法(DMA)热脉冲法,测量范围:-200~+1000cm/hr(热流速度)或-100~+2000cm3/cm2/hr (茎流通量密度),可广泛用于于茎流量监测、植物茎流蒸发计算、植物茎流蒸腾量、植物灌溉等植物茎流是树木内部的“水”运动,而蒸腾是从叶片通过光合作用蒸发流出的水分。树液流量和蒸腾量之间有很强的关联性,通常理解是同一回事。但是,严格地说,它们是不同的,这体现在它们是如何被测量的。SAP流量以L/hr(或每天、每周等)为单位进行测量。蒸腾量以每小时、每天、每星期等毫米(mm)为单位测量。 蒸散量=蒸腾量+蒸发量 蒸腾量以毫米为测量单位,可与降雨量以毫米计作比较。随着时间的推移,降雨量(水输入)应与蒸腾量(输出)相匹配。如果蒸腾作用更高,通常是树木作物的蒸腾作用,那么这种差异必须通过灌溉来弥补。 蒸发量(evaporation),蒸发量是指在一定时段内,由土壤或水中的水分经蒸发而散布到空中的量。1mm(降雨量)=1㎡地面1kg水1mm(蒸腾量)=1㎡叶面积的1升树液流量(水) 例如:在果园和葡萄园等有管理的树木作物系统中,蒸发量与蒸腾量相比非常小。因此,为了简化测量,通常忽略蒸发量,将蒸腾量取为平均蒸散量(ETo)。 技术指标测量范围:-200~+1000cm/hr(热流速度)分辨率:0.001cm/hr准确度:±0.1cm/hr探针尺寸:φ1.3mm*L30mm温度位置:外10mm,内20mm针距:6mm探针材质:316不锈钢温度范围:-30~+70℃响应时间:200ms加热电阻:39Ω,400J/m电源:12V DC电流:空闲5mA, 测量茎流量传感器参考文献:1. Kim, H.K. Park, J. Hwang, I. Investigating water transport through the xylem network in vascular plants.J. Exp. Bot. 2014, 65, 1895–1904. [CrossRef] [PubMed]2. Steppe, K. Vandegehuchte, M.W. Tognetti, R. Mencuccini, M. Sap flow as a key trait in the understanding of plant hydraulic functioning. Tree Physiol. 2015, 35, 341–345. [CrossRef] [PubMed]3. Vandegehuchte, M.W. Steppe, K. Sap-flux density measurement methods: Working principles andapplicability. Funct. Plant Biol. 2013, 40, 213–223. [CrossRef]4. Marshall, D.C. Measurement of sap flow in conifers by heat transport. Plant Physiol. 1958 , 33, 385–396.[CrossRef] [PubMed]5. Cohen, Y. Fuchs, M. Green, G.C. Improvement of the heat pulse method for determining sap flow in trees. Plant Cell Environ. 1981, 4, 391–397.[CrossRef]6. Green, S.R. Clothier, B. Jardine, B. Theory and practical application of heat pulse to measure sap flow.Agron. J. 2003, 95, 1371–1379. [CrossRef]7. Burgess, S.S.O. Adams, M.A. Turner, N.C. Beverly, C.R. Ong, C.K. Khan, A.A.H. Bleby, T.M. An improved heat-pulse method to measure low and reverse rates of sap flow in woody plants. Tree Physiol. 2001 , 21, 589–598. [CrossRef]8. Forster, M.A. How reliable are heat pulse velocity methods for estimating tree transpiration? Forests 2017 , 8, 350. [CrossRef]9. Bleby, T.M. McElrone, A.J. Burgess, S.S.O. Limitations of the HRM: Great at low flow rates, but no yet up to speed? In Proceedings of the 7th International Workshop on Sap Flow: Book of Abstracts, Seville, Spain, 22–24 October 2008.10. Pearsall, K.R. Williams, L.E. Castorani, S. Bleby, T.M. McElrone, A.J. Evaluating the potential of a novel dual heat-pulse sensor to measure volumetric water use in grapevines under a range of flow conditions. Funct. Plant Biol. 2014, 41, 874–883. [CrossRef]11. Clearwater, M.J. Luo, Z. Mazzeo, M. Dichio, B. An external heat pulse method for measurement of sap flow through fruit pedicels, leaf petioles and other small-diameter stems. Plant Cell Environ. 2009 , 32, 1652–1663.[CrossRef]12. Green, S.R. Romero, R. Can we improve heat-pulse to measure low and reverse flows? Acta Hortic. 2012 , 951, 19–29. [CrossRef]13. Green, S. Clothier, B. Perie, E. A re-analysis of heat pulse theory across a wide range of sap flows. Acta Hortic. 2009, 846, 95–104. [CrossRef]14. Ferreira, M.I. Green, S. Concei??o, N. Fernández, J. Assessing hydraulic redistribution with thecompensated average gradient heat-pulse method on rain-fed olive trees. Plant Soil 2018 , 425, 21–41.[CrossRef]15. Romero, R. Muriel, J.L. Garcia, I. Green, S.R. Clothier, B.E. Improving heat-pulse methods to extend the measurement range including reverse flows. Acta Hortic. 2012, 951, 31–38. [CrossRef]16. Testi, L. Villalobos, F. New approach for measuring low sap velocities in trees. Agric. Meteorol. 2009 , 149, 730–734. [CrossRef]17. Vandegehuchte, M.W. Steppe, K. Sapflow+: A four-needle heat-pulse sap flow sensor enabling nonempirical sap flux density and water content measurements. New Phytol. 2012, 196, 306–317. [CrossRef] [PubMed]18. Kluitenberg, G.J. Ham, J.M. Improved theory for calculating sap flow with the heat pulse method.Agric. For. Meteorol. 2004, 126, 169–173. [CrossRef]19. Vandegehuchte, M.W. Steppe, K. Improving sap-flux density measurements by correctly determiningthermal diffusivity, differentiating between bound and unbound water. Tree Physiol. 2012 , 32, 930–942.[CrossRef]20. Looker, N. Martin, J. Jencso, K. Hu, J. Contribution of sapwood traits to uncertainty in conifer sap flow as estimated with the heat-ratio method. Agric. For. Meteorol. 2016, 223, 60–71. [CrossRef]21. Edwards, W.R.N. Warwick, N.W.M. Transpiration from a kiwifruit vine as estimated by the heat pulsetechnique and the Penman-Monteith equation. N. Z. J. Agric. Res. 1984, 27, 537–543. [CrossRef]22. Becker, P. Edwards, W.R.N. Corrected heat capacity of wood for sap flow calculations. Tree Physiol 1999 , 19, 767–768. [CrossRef]23. Hogg, E.H. Black, T.A. den Hartog, G. Neumann, H.H. Zimmermann, R. Hurdle, P.A. Blanken, P.D. Nesic, Z. Yang, P.C. Staebler, R.M. et al. A comparison of sap flow and eddy fluxes of water vapor from aboreal deciduous forest. J. Geophys. Res. 1997, 102, 28929–28937. [CrossRef]24. Barkas, W.W. Fibre saturation point of wood. Nature 1935, 135, 545. [CrossRef]25. Kollmann, F.F.P. Cote, W.A., Jr. Principles of Wood Science and Technology: Solid Wood Springer: Berlin Heidelberg, Germany, 1968.26. Swanson, R.H. Whitfield, D.W.A. A numerical analysis of heat pulse velocity and theory. J. Exp. Bot. 1981 ,32, 221–239. [CrossRef]27. Barrett, D.J. Hatton, T.J. Ash, J.E. Ball, M.C. Evaluation of the heat pulse velocity technique for measurement of sap flow in rainforest and eucalypt forest species of south-eastern Australia. Plant Cell Environ. 1995 , 18, 463–469. [CrossRef]28. Biosecurity Queensland. Environmental Weeds of Australia for Biosecurity Queensland Edition Queensland Government: Brisbane, Australia, 2016.29. Steppe,K. de Pauw, D.J.W. Doody, T.M. Teskey, R.O. A comparison of sap flux density using thermaldissipation, heat pulse velocity and heat field deformation methods. Agric. For. Meteorol. 2010 , 150, 1046–1056. [CrossRef]30. López-Bernal, A. Testi, L. Villalobos, F.J. A single-probe heat pulse method for estimating sap velocity in trees. New Phytol. 2017, 216, 321–329. [CrossRef] [PubMed]31. Forster, M.A. How significant is nocturnal sap flow? Tree Physiol. 2014, 34, 757–765. [CrossRef] [PubMed]32. Cohen, Y. Fuchs, M. Falkenflug, V. Moreshet, S. Calibrated heat pulse method for determining water uptake in cotton. Agron. J. 1988, 80, 398–402. [CrossRef]33. Cohen, Y. Takeuchi, S. Nozaka, J. Yano, T. Accuracy of sap flow measurement using heat balance and heat pulse methods. Agron. J. 1993, 85, 1080–1086. [CrossRef]34. Lassoie, J.P. Scott, D.R.M. Fritschen, L.J. Transpiration studies in Douglas-fir using the heat pulse technique. For. Sci. 1977, 23, 377–390.35. Wang, S. Fan, J. Wang, Q. Determining evapotranspiration of a Chinese Willow stand with three-needleheat-pulse probes. Soil Sci. Soc. Am. J. 2015, 79, 1545–1555. [CrossRef]36. Bleby, T.M. Burgess, S.S.O. Adams, M.A. A validation, comparison and error analysis of two heat-pulse methods for measuring sap flow in Eucalyptus marginata saplings. Funct. Plant Biol. 2004 , 31, 645–658.[CrossRef]37. Madurapperuma, W.S. Bleby, T.M. Burgess, S.S.O. Evaluation of sap flow methods to determine water use by cultivated palms. Environ. Exp. Bot. 2009, 66, 372–380. [CrossRef]38. Green, S.R. Measurement and modelling the transpiration of fruit trees and grapevines for irrigationscheduling. Acta Hortic. 2008, 792, 321–332. [CrossRef]39. Intrigliolo, D.S. Lakso, A.N. Piccioni, R.M. Grapevine cv. ‘Riesling’ water use in the northeastern UnitedStates. Irrig.Sci. 2009, 27, 253–262. [CrossRef]40. Eliades, M. Bruggeman, A. Djuma, H. Lubczynski, M. Tree water dynamics in a semi-arid, Pinus brutiaforest. Water 2018, 10, 1039. [CrossRef]
  • 泽泉科技参加2016全国植物生物学大会 助力现代农业绿色发展
    泽泉科技应邀于2016年10月9日至12日参加了在武汉举办的2016全国植物生物学大会。本次大会由中国遗传学会、中国细胞生物学学会、中国植物学会、中国植物生理与植物分子生物学学会、中国作物学会联合举办,其主旨为展示我国植物生物学研究的最新成果和进展,促进现代农业绿色发展与相关领域科研人员之间的交流与合作,吸引了来自中国科学院遗传所、中国农科院、中国农业大学、中科院植物所、武汉大学、中科院植物生理生态研究所等全国100多个科研机构及院校的1500多名专家学者到会。 大会邀请国内具有重要学术影响的专家学者以及优秀青年科学家进行报告,围绕植物基因组学与基因组演化、植物表观遗传学、植物细胞生物学、植物发育生物学、植物激素生物学、非生物胁迫适应机理、生物胁迫与植物免疫、光合作用与光信号、作物营养学与代谢组学、复杂农艺性状解析与分子育种等10个专题进行了交流和研讨。陈晓亚院士、李家洋院士、戚益军教授、张启发院士、赵进东院士、朱健康院士、朱英国院士等做了大会报告,88名中青年科学家做了分会报告。除口头报告外,大会收到会议摘要150余篇、墙报120余份。口头报告和墙报展示充分体现了我国植物生物学研究的突出进展,使大会成为具有国际一流水准的学术盛会。 与会期间,泽泉科技与参会老师热烈讨论了许多技术问题,推广了很多结合实验的技术解决方案。例如,与来自中科院遗传所的老师讨论了利用X光研究根系的详细细节,根据老师的具体实验需求,我们还提供了利用LemnaTec 3D或者CT三维成像技术来帮助他完成实验需求的方案。再如,我们与来自北京大学的老师探讨了Imaging-PAM和GFS-3000的使用,这两台设备不仅可以单独使用,完成对叶绿素荧光和植物气体交换的单独测量,用以表现其光系统、电子传递链和碳同化等不同位置的活性;这两台设备还可以联合使用,实现光系统和碳同化的同时监控。再如,与来自四川农业大学的老师探讨了植物培养的解决方案,我们不仅提供国际上应用最多的CONVIRON植物培养箱,还可以根据客户的不同培养需求,提供不同的LED培养解决方案,能够真正实现一箱多用,为客户解决了很多植物培养方面的困难。 展会期间,泽泉科技提供了很多卓有成效的系列产品解决方案,为的就是从实验方面为客户解决一些问题,而不是单纯的产品销售。目前,泽泉科技的自有品牌“高通量植物基因型-表型育种平台——AgriPheno™ 正日趋受到广大客户的认可,我们愿意与更多的客户合作,共同为我国农业做出一份贡献!
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制