当前位置: 仪器信息网 > 行业主题 > >

植物源性成分

仪器信息网植物源性成分专题为您整合植物源性成分相关的最新文章,在植物源性成分专题,您不仅可以免费浏览植物源性成分的资讯, 同时您还可以浏览植物源性成分的相关资料、解决方案,参与社区植物源性成分话题讨论。

植物源性成分相关的论坛

  • 植物分类系统与化学成分的关系

    现代植物分类是按照植物形态的异同、习性的差别以及亲缘关系的远近系统排列的。因此,一般说来,在植物分类系统中位置愈接近的植物,它们的亲缘关系就愈接近。植物分类系统与化学成分的关系,实际上是指植物亲缘关系与化学成分的关系。    各种植物由于新陈代谢类型的不同,产生了各种不同的化学物质——生物碱类、甙类、萜类等等。这些化学成分在植物中的遗传和变异,是与植物系统位置、植物的环境条件(气候、土壤与生物等)密切有关的。植物分类系统与化学成分的关系可大致归纳为下述几个方面:  1.每一种植物在恒定的环境条件下、具有制造一定的化学成分的特性,而这个特性是这种植物的生理生化特征。如颠茄产生莨菪烷衍生物类生物碱,人参产生三萜类皂甙,薄荷产生萜类等等。  2.亲缘关系相近的植物种类由于有相近的遗传关系,往往具有相似的生理生化特征。亲缘关系愈近,共同性愈多;亲缘关系愈远,共同性愈少。如异喹啉类生物碱主要分布于多心皮类及其近缘类植物的一些科中,如木兰科、睡莲科、马兜铃科、防已科、毛莨科、小檗科、罂栗科、芸香科等。这些科中的生物碱的化学结构也显示相互之间有紧密的亲缘关系,与产生它们的植物科之间的亲缘关系一致。吲哚类生物碱中最大的一族为鸡蛋花烃(Plumerane)型吲哚生物碱,这族生物碱仅存在于夹竹桃科中的鸡蛋花亚科植物中。同属植物的亲缘关系很相近,因而往往含有近似的化学成分。如小檗属(Berberis)植物含小檗碱,大黄属(Rheum)植物含羟基蒽醌衍生物等等。  3.一般说来与广泛存在于植物界的代谢产物有更近似化学结构的简单化学成分(如黄嘌吟与咖啡碱化学结构很近似),在植物界的分布较广,分布的规律性不明显。有些化学成分在系统发育过程中,经过一系列的突变,因而结构也较复杂,如马钱子碱、奎宁等。这类物质的分布往往只限于某一狭小范围的分类群中。但某些起源古老的成分,虽经一系列突变,结构亦较复杂,但它们在植物界中的分布,还是有一定范围的,而且这种类型成分与植物亲缘之间的联系表现得更为明显和突出,例如上述异喹啉类生物碱的分布。  植物分类系统与化学成分间存在着联系性这一概念,已广泛应用于药用植物的研究、野生资源植物的寻找等方面。如具有降压与安定作用的蛇根碱(Reserpine)自印度的夹竹桃科萝芙木属植物蛇根木Rauvolfia serpenitina (L.)Benth ex Kurz中发现后,从该属的其他约20种植物中亦发现了利血平,并根据植物的亲缘关系在萝芙木属的两个近缘属中找到了同类生物碱。为了发掘具抗菌作用的小檗碱的资源植物,经植物分类学与植物化学综合研究,发现小檗碱在中国主要分布在5个科(小檗科、防已科、毛莨科、罂粟科、芸香科)16个属的多种植物中,而以小檗科小檗属较理想。又据研究,莨菪烷类生物碱主要集中分布于茄科茄族(So1aneae)中的天仙子亚族(Hyoscyaminae)、茄参亚族(Mandragorinae)及曼陀罗族(Datureae)植物中,并发现了含碱量较高,有生产价值的新原料植物——矮莨菪(Przewalskia shebbearei(C.E.C.Fischer) Kuang, ined)及马尿泡(P. tangutica Maxim.)。再如生产可的松等激素药物的原料——甾体皂甙,不仅在薯蓣属(Dioscorea)的几十种植物中有发现,而且在亲缘关系相近的一些科中也有发现。必须注意的是,植物的系统发育与其所含化学成分的关系是十分复杂的。由于植物界系统发育的历史很长,发掘出来的古生物学资料不够齐全,加上多数植物的化学成分尚未明了,有些成分的分布规律还未被揭示及认识,所以,有关植物的系统发育与化学成分的关系的研究尚未成熟,有待于进一步研究。在应用植物分类系统与化学成分间的联系性时,必须具体问题具体分析。  近年来,在植物分类学与植物化学这二门学科间出现了一门新的边缘学科——植物化学分类学(P1ant chemotaxonomy)。它的主要研究任务是:  (1)探索各级分类群(如科、属、种等)所含化学成分(包括主要成分、特有成分和次要成分)及其合成途径。   (2)探索各种化学成分在植物系统中的分布规律。  (3)在以往研究的基础上,配合传统分类学及各有关学科,从植物化学成分的角度,共同探索植物的系统发育。  显然,这一新兴学科在认识植物系统发育方面有重大的理论意义,并可为有目的地开发、利用植物的资源、寻找工业原料等提供理论依据。例如通过对毛莨科与单子叶植物的百合目植物所含生物碱、甾体化台物、三萜化合物、氰醇甙和脂肪酸等五类化学成分的比较分析,发现二者具有很多类似的化学成分,有的成分甚至仅仅为它们所共有。联系到百合目与毛莨科的一些原始类群在形态和组织解剖上的某些相似性,从而认为二者有着十分密切的亲缘关系,即单子叶植物通过百合目起源于原始的毛莨科植物。这一研究结果在了解客观存在的植物系统发育的真实情况方面,具有一定的理论意义。  又如根据国内外在药用植物研究工作方面的大量实践、目前从中国药用植物中大致归纳出一些具重要生物活性的成分(生物碱、黄酮类、萜类、香豆精等)及药理作用的植物类群。由此可见,植物化学分类学是一门富有活力的新学科,它的研究成果值得药用植物学与药用植物化学工作者重视与运用。

  • 药性植物百草园开幕

    穿心莲、槟榔、指甲花、长春花和见血封喉——500多种本区域常见的药性植物今后将汇集一处,让公众边散步边了解即将被遗忘的传统药草知识。陈庆炎总统昨日在植物园为这座我国面积最大的药性植物百草园(Healing Garden)主持了开幕典礼,部分公众得以先睹为快。   植物园经过三年的筹备,完成这座耗资800万元建造、占地2.5公顷的百草园。国家公园局局长潘康源在开幕礼上致词时说,植物园的工作人员和义工在过去三年里,踏遍整个区域寻求传统中医的意见并搜采草药种子。在这个过程中,新加坡同济医院也助植物园一臂之力,把含有药草知识的解说牌翻译成华文,为访客带来富有意义的体验。  有趣的是,这座靠近植物园那森路(Nassim Road)入口的百草园地形犹如一名正在打瞌睡的人,而且还是“五脏俱全”。里面的观赏区共分六大部分,包括耳鼻喉头颈部区、呼吸和循环系统区、消化系统区、肌肉、骨骼、皮肤和神经系统区、生殖系统区以及有毒植物区,栽种在每个区域的药性植物都具有针对那个人体部位或系统的传统功效。  除了有毒植物区目前暂未开放,未来只允许公众在导游带领下进入,其他五大区已开放,公众可在每天(星期一除外)上午5时至傍晚7时30分免费前往百草园,一睹药草的真面目。此外,iPhone用户也可下载植物园百草园程序,方便在园内一眼认出某植物有何传统功效。http://travel.zaobao.com/ssi/images6/travelnews111022.jpg 陈庆炎总统与夫人在植物园职员陪同下,参观我国面积最大的药性植物百草园。陈总统还停下脚步,闻起药性植物的味道。(叶振忠摄)   不过,国家公园局高级研究员斯特普尔斯(George Staples)受访时表示,解说牌上的药草知识并不是药方,建议有疾病的游客还是应该请教自己的医生。  配合百草园开幕,植物园也邀请日本高知县立牧野植物园(Makino Botanical Garden)在植物园内的植物学与园艺学图书馆,展出一批日本江户时代著名插画家关根云停(Untei Sekine)为《本草纲目》创作的药性植物素描,直到下个月11日。  除了百草园,潘康源宣布在未来几年内为植物园增设新景点,巩固植物园作为一个世界级植物机构的地位,并让它成为国家公园局“花园里的城市”(City in a Garden)愿景中的重要绿色地标。报业控股“巨树之旅”  这些新景点就包括泰瑟道(Tyersall Avenue)旁面积占9.8公顷的研习森林(Learning Forest)以及展示芬芳植物的香花园(Fragrant Garden)和展示一些肉食植物的彩叶园(Foliage Garden)。  新加坡报业控股已承诺拨出120万元,帮助植物园发展研习森林内的活动“巨树之旅”(Walk of Giants)。这片展示独特树木和自然走道的原始森林预计将在2013年完成。  报业控股执行总裁陈庆鏻表示,新加坡报业控股作为一个良好的企业公民,将对保护环境不遗余力。他说:“我们很高兴能与国家公园局合作,保护我们的本地文化。借此,希望社区能更靠近本地的动植物,并对我们的环境产生责任心和敬意。”公众提议植物园建捷运  有公众建议,植物园内应该建造捷运系统以便提高园内的流动性、也可通过照明和夜间活动增强夜间魅力、或是通过建造画廊来凸显历史遗产。  自“花园里的城市”(City in a Garden)民众咨询活动在两个月前推出后,国家公园局已收到超过1000个建议和构思,其中超过10%是针对植物园的建议,显示公众对我国花园环境的重视。国家公园局已经整理出一些有潜力的建议,把它们聚集在植物园的访客中心展出。  对于众多建议,国家公园局局长潘康源受访时表示,会选用一些可行的点子。他说,我国晚间天气凉爽,加上治安良好,提高园林的夜间魅力值得考虑。  至于在植物园内建造捷运系统,他说:“植物园地形很长,而地铁站在其中一头,很多人因此建议我们建造捷运系统,不过,我们须仔细研究。”  国家公园局今年8月宣布“花园里的城市”愿景,努力提升我国“花园城市”的美誉。植物园百草园六大区一览1)耳喉鼻头颈部区  积雪草(Indian Pennywort)用来诊治高血压和麻风病,是多种面霜和药膏的天然成分。也用来治疗皮肤问题。2)消化系统区  大高良姜,俗称红豆寇(Thai Ginger)早在公元600年就成为传统药草,根茎中的汁液用于治疗消化不良、皮肤疾病、发烧、支气管炎。3)生殖系统区  东革阿里(Tongkat Ali)传统用于增强男性性功能,及让更年期妇女和产妇服用。4)肌肉、骨骼、皮肤和神经系统区  散沫花,俗称指甲花(Henna)传统上用于诊治疔疮、肠虫和痔疮,根部则治疟疾、痢疾和腹泻。也有人用来治疗秃顶.5)呼吸和循环系统区  长春花(MadagascarPeriwinkle)传统用于诊治糖尿病和高血压,也有消毒功效。从长春花汁液中提取的化学品可用来治疗恶性黑色素瘤和淋巴瘤。6)有毒植物区  见血封喉(Bark Cloth Tree)乳胶为剧毒,果实则可食用。种子用来治疗痢疾,叶子和根部则用于治疗精神疾病。http://travel.zaobao.com/ssi/images6/travelnews111022a.jpg

  • 【资料】中药和相关植物中挥发性成分的气相色谱分析研究(51讲 待续)

    【资料】中药和相关植物中挥发性成分的气相色谱分析研究(51讲 待续)

    [B][center]中药和相关植物中挥发性成分的[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]分析研究(1) 国内[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]应用新进展[/center][/B]这一讲座是有关中药和相关植物中挥发性成分的[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]分析研究的综述报告,它的浓缩性综述论文发表在《分析试验室》,2005,24(4)上。这一讲座是对这一综述的展开性的详细报告的第1部分。[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]是中药中挥发性成分分析十分有用的方法,特别是把GC/MS用于挥发性成分的分析,是对重要表征和鉴定的有效手段,所以有大量文章发表。表 1 是中药和相关植物中挥发性成分的[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]分析的第1部分。 表 1 中药和相关植物中挥发性成分的[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]分析(1) [img]http://ng1.17img.cn/bbsfiles/images/2009/11/200911061651_182265_1912472_3.jpg[/img][img]http://ng1.17img.cn/bbsfiles/images/2009/11/200911061651_182266_1912472_3.jpg[/img]例如:在川芎挥发油成分研究中[1]使用了下面的色谱条件:色谱条件:HP-5 30 m x 0. 25 mm石英毛细管柱柱温:50℃--*240℃,升温速度lO℃/min,载气为高纯氦气,柱前压20 kPa,进样口温度240℃质谱条件:EI离子源,离子源温度240℃电子能量 70ev,电子倍增器高压 1100V,质量扫描 30- 400 u,GC-MS 传输线温度240℃,运行时间 35 min.得到的总离子流图见图 1-1[img]http://ng1.17img.cn/bbsfiles/images/2009/11/200911061652_182267_1912472_3.jpg[/img][img]http://ng1.17img.cn/bbsfiles/images/2009/11/200911061652_182268_1912472_3.jpg[/img]

  • 【求助】食用植物油中矿物油成分检测操作性

    在进行食用植物油中矿物油成分检测操作性上有些疑问。检测的样品有金龙鱼调和油,鲁花5s压榨花生油,凡士林,汽油,机器润滑油在皂化反应后加入沸水,都会出现乳白色。只是颜色深浅的问题。甚至汽油的颜色比食用油还要淡一些。不知道这是否算浑浊。请问这个皂化反应的操作性怎么样?请有经验的大虾给指教一下!

  • 高速逆流色谱在植物有效成分分离中的应用

    高速逆流色谱在植物有效成分分离中的应用国家自然科学基金资助项目袁黎明(云南师范大学化学系 昆明 650092)傅若农(北京理工大学化工与材料学院 北京 100081)张天佑(北京市新技术应用研究所 北京 100035)高速逆流色谱(High-speed Countercurrent Chromatography,简称HSCCC)是由美国国家医学院Yiochiro Ito博士于1982年首先开始的。到目前为止,此项技术已用于生物化学、生物工程、医学、药学、天然产物化学、有机合成、化工、环境、农业、 食品、材料等领域。开展此项技术研究的科学家遍及美国、日本、中国、俄罗斯、法国、英国、瑞士等地。高速逆流色谱具有两大突出优点:1.聚四氟乙烯管中的固定相不需要载体,因而消除了气液色谱中由于使用载体而带来的吸附现象,特别适用于分离极性物质和具有生物活性的物质2.由于其与一般色谱的分离方式不同,使其特别适用于制备性分离。最近的研究结果表明:一台普通的高速逆流色谱仪一次进样可达几十毫升,一次可分离近10g的样品。因此,在80年代后期被广泛地应用于植物化学成分的分离制备研究,本文就其在这方面的成果作一综述。 HSCCC在天然产物中的分离制备是很成功的。既可分离又可定量,进样量可从毫克级到克级,进样体积可从几毫升到几十毫升;不但适用于非极性化合物,而且适用于极性化合物的分离;它可用于天然产物粗提物的去除杂质,也可用于最后产物的精制,甚至直接从粗提物一步纯化到达纯品;当加快仪器转速如1800r/min,其分离速度可与HPLC媲美,用于天然产物化学成分的分离始于1985年,到1988年、1989年达到一个高潮,发表了大量的文章,目前处于平稳发展阶段。1994年HSCCC创始人Ito又发展了pH-zone-refining CCC,使HSCCC的进样量又大大地前进了一步,能方便地分离克量级的样品,使其更加有利于天然植物的分离制备。因此,我们可以说HSCCC已为天然植物的分离制备开辟了一个十分广阔的新天地。

  • 【求助】植物化学成分与生长环境的相关性?

    不知道发在这个位置合不合适,我是中药专业的,做了几个中药的色谱指纹图谱,但由于采集的样品差异太大,相似度太低,不到0.8。我想是不是,植物中所含成分与其生长的环境有关系?有没有人研究过?另外,既然同种植物间的成分种类及含量相差明显,是不是其基因有差异,就是分成了亚种了?这个我不懂,我不是植物学的。请高人指示!谢谢!

  • 【原创大赛】植物活性美白成分的研究进展

    [align=center][b][font=宋体]植物活性美白成分的研究进展何文[/font][/b][/align][font=宋体]摘要:伴随着我国化工企业的发展,植物活性美白成分研究有了很大进展。皮肤白皙是东方女性所共同关注的话题。由于一些化学的美白成分具有刺激性、致敏性及不良反应大等缺点,很难满足广大消费者的需求。本文综述了植物美白机理,黑色素生成的机理,同时,论述了植物活性美白成分的研究进展。[/font][font=宋体]关键词:植物;活性美白;成分;研究进展[/font][font=宋体]引言[/font][font=宋体]近年来,人们对化妆品的需求越来越大,使得化妆品市场发展迅速,同时美白护肤的理念逐渐深入人心,特别是女性一直都追逐向往白皙的皮肤,光滑无疤痕。但是由于各种因素的影响,如遗传、饮食习惯以及内分泌失调等,导致人体代谢失调,黑色素生成紊乱,从而出现各种皮肤斑痕,甚至导致疾病。传统的美白化妆品由于生产工艺的原因,含有某些毒性成分,存在安全问题,所以被限制使用。随着人们对天然植物提取活性成分的开发和拓展,人们发现它具有安全无毒的特点,天然化妆品的研究已经逐渐成为国内外研究的热点之一。本文就植物活性成分对黑色素生成的抑制作用,展开一系列的研究和综述,为今后的试验和开发拓展提供理论基础。[/font][font=宋体]1[/font][font=宋体]、美白机理[/font][font=宋体]根据黑色素的形成过程,可以通过以下几种方法达到皮肤美白的作用:[/font][font=宋体](1)抑制黑素细胞的增殖;[/font][font=宋体](2)抑制酪氨酸酶、多巴互变酶及氧化酶的活性;[/font][font=宋体](3)还原黑色素形成过程各中间体,或与之结合阻断黑色素的形成,阻断二羟基吲哚聚合为黑色素;[/font][font=宋体](4)抑制黑色素颗粒转移至角质形成细胞;[/font][font=宋体](5)加速角质形成细胞中的黑色素向角质层转移,软化角质层和加速角质层的脱落;[/font][font=宋体](6)减少紫外线、氧自由基等外源性因素对黑色素形成的负面影响。[/font][font=宋体]目前公认的植物提取物美白作用主要通过前两个途径来影响的,而与后几个途径有关的活性成分还有待于进一步开发。[/font][font=宋体]2[/font][font=宋体]、黑色素生成的机理[/font][font=宋体]黑色素体是人体皮肤组织细胞的一种细胞器,可以合成和储存黑色素。其中,黑色素细胞是黑色素生成的主要来源,主要分布在皮肤表层、毛发和中枢神经系统等组织。黑色素全部合成在黑色素体中,一般黑色素的生成可以抵制太阳紫外线的照射,防止过度的灼伤和皮肤癌的产生,调节代谢。然而黑色素过度沉着会导致黑斑、老年斑及雀斑的产生,甚至会诱发黑色素瘤的形成,过去的研究显示体内黑色素失调可能会引发各种神经退行性疾病,主要有阿尔兹海默症和帕金森症。但是人体内黑色素含量过少也可能引发白癜风和白化病。[/font][font=宋体]黑色素的生成主要是由以下三种酶调控:酪氨酸酶、多巴色素异构酶、黑色素前体氧化酶。酪氨酸酶是最重要的一类限速酶,控制整个黑色素生成的快慢。黑色素合成过程如下:在细胞中,酪氨酸酶促进了L-酪氨酸羟基转化为L-多巴(3,4-二羟基苯丙氨酸),然后再将多巴胺氧化为L-多巴醌。然后多巴醌与一些生物大分子发生系列的反应生成白色的多巴色素,最后在一系列相关蛋白(TYR、TRP-1、TRP-2)和其他反应共同作用下最终形成黑色素。[/font][font=宋体]3[/font][font=宋体]、植物活性成分在美白中的发展历程[/font][font=宋体]过去在美白中常常应用一些如氢醌、杜鹃醇等“西药”,效果显著,但有一些会过分抑制黑色素的生成,引发皮肤颜色异常。[/font][font=宋体]古有《千金要方》中题作“治面黑黯皮皱皴散方”,《普济方》中记载的“七白散”,更有慈禧太后亲身验证的“玉容散”。上述古方均是中医组方,不仅说明了皮肤白皙是自古已有的追求,更是说明了自古便有利用中草药进行美白护肤的先例。研究表明,中草药提取物主要通过改善皮肤微循环、抑制黑色素生成以及抗氧化作用协同改善肤色,达到美白的功效,主要起作用的成分有多酚类、多糖类、黄酮类。中草药中的活性成分在抑制酪氨酸酶活性的过程中,多为竞争性抑制,改变酶活力,而不是降低有效的酶量来降低活性,对皮肤温和安全。[/font][font=宋体]从黑色素生成的机理来看,在酪氨酸酶这个环节上,既可以通过清除自由基来减少其参与酪氨酸酶的氧化过程,又可以通过抑制酪氨酸酶活性来减少黑色素生成。以酪氨酸酶抑制率和DPPH自由基清除率为综合指标评价美白功效,并设置相应的比例权重,以酪氨酸酶抑制率∶清除自由基=6∶4来定义美白度,此方式目前得到比较多研究者的认可与应用,并将比例调整为酪氨酸酶抑制率∶清除自由基=7∶3,可能是认为在黑色素的生成过程中酪氨酸酶的作用影响占比不止60%。[/font][font=宋体]4[/font][font=宋体]、植物活性成分的开发和应用[/font][font=宋体]4.1[/font][font=宋体]、植物萜类化合物[/font][font=宋体]植物精油是植物中特有的芳香成分,传统操作是以压榨、蒸馏而成,一般是芳香植物经过高度浓缩得到的产物,主要成分为萜类化合物,由于其分子量小,极易被人体吸收,有很强的美容美白的护肤功效。最常见的为柠檬精油和玫瑰精油,在市场上消费甚广,也有研究丁香、肉桂、柑橘精油,其中含有的脂肪族和芳香族化合物,具有很好地抑制酪氨酸酶的作用,在医疗、抗氧化方面也表现出很大的潜力。[/font][font=宋体]4.2[/font][font=宋体]、白藜芦醇及衍生物[/font][font=宋体]白藜芦醇主要存在于葡萄、虎杖、藜芦等植物中,以浓度依赖性方式抑制黑素细胞的功能及酪氨酸酶的活性,从而减少黑素合成。它还与黑素生成中的酪氨酸酶相关蛋白[酪氨酸相关蛋白(TPR)-1、TPR]及小眼相关转录因子(MITF)有关。并且以浓度依赖方式抑制转录因子的mRNA、蛋白质表达。研究表明外用白藜芦醇可有效地改善肤色,具有一定的美白作用,且无不良反应,安全性好。白藜芦醇具有不稳定、生物利用度差的缺点,研究发现其衍生物(五烷基醚衍生物和四酯衍生物)生物利用度高,能够更好地抑制黑素的合成,在皮肤美白化妆品中具有广阔的应用前景。[/font][font=宋体]4.3[/font][font=宋体]、醛类及其衍生物[/font][font=宋体]醛类及其衍生物主要是羰基与酶中亲核集团,如氨基、羟基、硫基结合形成螯合配体结构即席夫碱结构,产物在活性中心形成空间位阻,阻止底物与活性中心结合,从而抑制酪氨酸酶活性,抑制黑色素的合成。经酶学动力学与方法研究表明2-羟基-4-甲氧基苯甲醛是一种混合型抑制剂,抑制常数K1和K1S分别为为0.131mmol/L和0.253mmol/L。[/font][font=宋体]4.4[/font][font=宋体]、植物多酚类物质[/font][font=宋体]酚类物质主要分布在植物根、茎和果实中,主要为多元酚,是一种次生代谢物,其对美白的作用属于多种效应,包括吸收紫外光、清除自由基、抑制酪氨酸酶活力,来达到美白祛斑的作用。同时植物多酚也具有抗衰老诱变、抗病毒肿瘤等功效。比如苹果、茶树花、藜蒿叶、茶叶等物质中提取的多酚物质均被报道具有清除自由基和调控酪氨酸酶活力的作用。[/font][font=宋体]4.5[/font][font=宋体]、其它[/font][font=宋体]内皮素会刺激黑素细胞增殖、分化,并且激活酪氨酸酶的活性,促进黑色素的生成。从欧洲草本植物洋甘菊中提取内皮素拮抗剂能抑制内皮素,激活酪氨酸酶及促进黑素细胞分化的作用,具有高效性、均匀黑素分布的作用,从而避免色斑的生成。[/font][font=宋体]结语[/font][font=宋体]植物来源的美白原料从单方提取到复方搭配,从多靶点、多方位、多层次寻找安全有效的植物美白活性物,再结合微生物发酵,天然绿色的化妆品原料功效势必会有更多、更大的市场前景。多酚、黄酮类物质可能因为后期灭菌时的高温变性,而丧失了一定的清除自由基的作用。通过改进发酵提取的工艺,保留更多的多酚、黄酮类物质,有望制备出更加安全有效的植物美白剂。[/font][font=宋体]参考文献[/font][font=宋体][1][/font][font=宋体]李溯,丁劲松.黑色素生物合成与酪氨酸酶抑制剂的研究进展[J].中南药学,2013(04):44-48.[/font][font=宋体][2][/font][font=宋体]王玉林,何锦风,王维民.皮肤黑色素的产生及美白浅析[J].日用化学品科学,2013,36(02):33-35,49.[/font][font=宋体][3][/font][font=宋体]舒文,毛华明.黑色素的研究进展[J].国外畜牧学(猪与禽),2003(02):32-35.[/font][font=宋体][4][/font][font=宋体]胡泳华,贾玉龙,陈清西.酪氨酸酶抑制剂的应用研究进展[J].厦门大学学报:自然科学版,2016(55):768.[/font][font=宋体][5][/font][font=宋体]欧霖拱.天然植物美白活性成分的研究进展[J].福建轻纺,2017(10):38-43.[/font][font=宋体] [/font]

  • 【求助】求助:想用动态顶空分析植物的花香成分??

    我想用动态顶空的方法分析一下植物的花香成分,因为没做过这方面的实验,各位做色谱的肯定做过前期样品采集过程的实验,所以想问问大家采样的一些材料哪里可以购买?我参考的论文上是用polyvinylacetatebags或者是圆柱形树脂玻璃器皿(0.5L),内径 7mm的硼硅酸盐玻璃柱,硅化玻璃毛,带teflon盖的硼硅酸盐玻璃瓶,PorapakQ(80-100目)填充材料,还有就是抽气用的真空泵不知该如何选择,希望各位有经验的大侠能提供一些销售厂家资料或者对实验提供一些建议,不胜感激。也可以发信息到我邮箱regia.chyu@yahoo.com.cn,谢谢 另外补充一下的是,在杭州地区哪里可以[url=https://insevent.instrument.com.cn/t/bp][color=#3333ff]气质联用[/color][/url]进行花香成分分析,我们这边的都只分析农药的残留,有知道的麻烦留个电话号码吧!

  • 【讨论】植物成分分析

    我最近想做一个植物的成分分析。请问各位大侠,有那些比较好的分析方法?分析之前需要做哪些处理?谢谢

  • 植物源性食品中208种农药及其代谢物残留量的测定

    [align=right][b]SGLC-GC/MS-004[/b][/align][b]摘要:[/b]建立了植物源性食品中208种农药及其代谢物残留量同时测定的方法。本应用按照新国标方法,采用岛津SHIMSEN QuEChERS 产品对梨、韭菜、大米、茶叶4类样品基质进行净化,同时采用岛津[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱[/color][/url]串联质谱 [url=https://insevent.instrument.com.cn/t/bp][color=#3333ff]GCMS[/color][/url]-TQ8050,岛津SH-1701 色谱柱进行分析,回收率及重现性良好。该方法前处理速度快,重现性好,灵敏度高,适用于梨、韭菜、茶叶和大米等植物源性食品基质中多种农药残留的同时检测。[b]关键词:[/b]QuEChERS 多农残 植物源性食品 [url=https://insevent.instrument.com.cn/t/bp][color=#3333ff]GC-MS[/color][/url]/MS[b]1. 实验部分1.1 实验仪器及耗材仪器配置:[/b]岛津[url=https://insevent.instrument.com.cn/t/bp][color=#3333ff]GCMS[/color][/url]-TQ8050 [url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱[/color][/url]-串联质谱联用仪;[b]耗材方法包:[/b][img=植物源性食品中208种农药及其代谢物残留量的测定]https://img.shimadzumall.com/Storage//userfiles/images/Img_articles/SGL-[url=https://insevent.instrument.com.cn/t/bp][color=#3333ff]GCMS[/color][/url]-004_1.png[/img][font=arial, &][size=12px][/size][/font]本耗材方法包所含明细如下:[font=arial, &][size=12px][/size][/font][img=植物源性食品中208种农药及其代谢物残留量的测定]https://img.shimadzumall.com/Storage//userfiles/images/Img_articles/SGL-[url=https://insevent.instrument.com.cn/t/bp][color=#3333ff]GCMS[/color][/url]-004_2.png[/img][img=植物源性食品中208种农药及其代谢物残留量的测定]https://img.shimadzumall.com/Storage//userfiles/images/Img_articles/SGL-[url=https://insevent.instrument.com.cn/t/bp][color=#3333ff]GCMS[/color][/url]-004_3.png[/img]SHIMSEN Pipet[url=https://insevent.instrument.com.cn/t/9p][color=#3333ff]移液枪[/color][/url]:SHIMSEN Pipet PMII-10(P/N:380-00751-02);SHIMSEN Pipet PMII-100(P/N:380-00751-04);SHIMSEN Pipet PMII-1000(P/N:380-00751-06)。[b]1.2 分析条件1.2.1 色谱条件:[/b]毛细管柱: SH-1701 毛细管柱(30m* 0.25mm *0.25μm)程序升温:初始温度40℃保持1 min, 以40℃/min升温到120℃,再以5℃/min升温到240℃,以12℃/min升温到300℃, 保持10 min;载气:He流速:1.0 mL/min进样口温度:280 ℃进样量:1μL进样方式:不分流进样[b]1.2.2 质谱条件:[/b]电离模式:电子轰击电离(EI);电子轰击能量:70 eV离子源温度: 230 ℃接口温度:280 ℃溶剂延迟:3min数据采集模式:MRM;[b]1.3 样品前处理[/b]略[b]2. 结果及讨论2.1 标准品的总离子流色谱图[/b][img=植物源性食品中208种农药及其代谢物残留量的测定]https://img.shimadzumall.com/Storage//userfiles/images/Img_articles/SGL-[url=https://insevent.instrument.com.cn/t/bp][color=#3333ff]GCMS[/color][/url]-004_4.png[/img][font=arial, &][size=12px][/size][/font][align=center]109种农药混合标准品的总离子流色谱图[/align][img=植物源性食品中208种农药及其代谢物残留量的测定]https://img.shimadzumall.com/Storage//userfiles/images/Img_articles/SGL-[url=https://insevent.instrument.com.cn/t/bp][color=#3333ff]GCMS[/color][/url]-004_5.png[/img][font=arial, &][size=12px][/size][/font][align=center]113种农药混合标准品的总离子流色谱图[/align][font=arial, &][size=12px] [/size][/font][b]2.2 植物源性食品中208种农药及其代谢物的[url=https://insevent.instrument.com.cn/t/bp][color=#3333ff]GC-MS[/color][/url]/MS检测添加回收结果[/b]将梨、韭菜空白样品进行40.0 μg/kg浓度加标;大米空白样品进行100.0 μg/kg浓度加标;茶叶空白样品进行250.0 μg/kg浓度加标后,按照上述前处理方法处理后上机,平行3份样品考察回收率和RSD,具体结果如下:梨样品加标回收率为73.75%-124.82%,RSD为0.11%-9.60%;韭菜样品加标回收率为76.47%-125.81%,RSD为0.05%-11.66%;茶叶样品加标回收率为60.24%-112.83%,RSD为0.39%-22.65%;大米样品加标回收率为66.61%-118.60%,RSD为0.38%-14.62%。[img=植物源性食品中208种农药及其代谢物残留量的测定]https://img.shimadzumall.com/Storage//userfiles/images/Img_articles/SGL-[url=https://insevent.instrument.com.cn/t/bp][color=#3333ff]GCMS[/color][/url]-004_6.png[/img][img=植物源性食品中208种农药及其代谢物残留量的测定]https://img.shimadzumall.com/Storage//userfiles/images/Img_articles/SGL-[url=https://insevent.instrument.com.cn/t/bp][color=#3333ff]GCMS[/color][/url]-004_7.png[/img][img=植物源性食品中208种农药及其代谢物残留量的测定]https://img.shimadzumall.com/Storage//userfiles/images/Img_articles/SGL-[url=https://insevent.instrument.com.cn/t/bp][color=#3333ff]GCMS[/color][/url]-004_8.png[/img][img=植物源性食品中208种农药及其代谢物残留量的测定]https://img.shimadzumall.com/Storage//userfiles/images/Img_articles/SGL-[url=https://insevent.instrument.com.cn/t/bp][color=#3333ff]GCMS[/color][/url]-004_9.png[/img][img=植物源性食品中208种农药及其代谢物残留量的测定]https://img.shimadzumall.com/Storage//userfiles/images/Img_articles/SGL-[url=https://insevent.instrument.com.cn/t/bp][color=#3333ff]GCMS[/color][/url]-004_10.png[/img][img=植物源性食品中208种农药及其代谢物残留量的测定]https://img.shimadzumall.com/Storage//userfiles/images/Img_articles/SGL-[url=https://insevent.instrument.com.cn/t/bp][color=#3333ff]GCMS[/color][/url]-004_11.png[/img][font=arial, &][size=12px][/size][/font][b]3. 结论[/b]综上,本方案按照新国标方法,采用岛津的SHIMSEN QuEChERS产品对梨、韭菜、茶叶、大米等植物源性食品样品进行净化,同时采用岛津[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱[/color][/url]串联质谱 [url=https://insevent.instrument.com.cn/t/bp][color=#3333ff]GCMS[/color][/url]-TQ8050,岛津SH-1701色谱柱进行分析,对普通水果、有色蔬菜、茶叶和谷物等4类植物源性食品中208种农药及其代谢物残留的检测方法进行了验证,结果表明,该方法操作简单、分析速度快、重现性好、准确度高,可以应对植物源性食品中多种农药残留同时测定的要求。

  • 植物化学成分的生源学说

    植物中众多的化学成分有许多已阐明了它们的化学结构和药理作用,其中不少已用于临床。这些成分中有的已可用化学的或生物的方法进行合成。但尚存在的问题是:这些成分在植物体内是怎样形成的?是由何种物质、经过什么新陈代谢途径形成的?为了解决这个问题,许多植物学、生物学、植物化学、生化学的研究工作者从可能的新陈代谢过程,生物化学反应等多方面地进行推测这些成分在植物体内的形成过程,这就是植物化学成分的生源学说(Biogenesis Biogenetic Origin)。  植物化学成分的生源研究主要是研究各类成分在体内生物合成的途径,各种酶在过程中所起的作用以及过程中所产生的各种中间产物的化学并测定它们的结构。生源的研究有多种设想与途径,因而也形成了多种学说,如异戊二烯法则、醋酸学说等已普遍应用于研究药用植物有效成分的生物合成及其途径。随着同位素示踪技术和化学技术的发展,生源研究的进展也更为迅速。  生源研究的意义基本上可归纳为下列几点:  1. 了解了各类成分的生物合成途径以及某种成分最初由何种物质(这种物质称为前体 Precursors)形成和各种中间产物后,就可以人为地于植物中注入前体或中间产物来增加所需成分的积累和产量。达到人工控制、定向培育的目的。例如于枸椽酸的新陈代谢途径中加入乌头酶(Aconilase)就可以增加枸椽酸在植物体内的积累,因枸椽酸的生成过程中必须有此种酶的存在。这是研究植物生源最主要的目的。但是,前体并非一成不变,例如熊果甙在不同科时它们的生源就有可能不同。  2.从生源关系密切的成分中来扩大生物活性物质的资源。如三萜类与许多甾体衍生物类在生源上具密切关系,甾体衍生物类常具多种生物活性,三萜类成分在植物界分布广泛,故有可能从三萜类成分来寻找具广泛生物活性的物质。  3.从生源学说来确定某类成分的结构类别。如四环三萜类成分原分类不属于三萜,以后通过生源关系的探讨,才明确地将它们划在三萜范围内。  4.了解某类成分在植物体内的原始状态与代谢途径后,就可以为进行植物成分的生物合成提供理论规律,这将能更好地对生产与实践(如生药的采收时间与部位,有效成分的合成等)起指导作用。  植物体内各种成分的生源基本上可分为两类,一类是植物本身必须的营养物质如糖类,脂肪、蛋白质等成分的新陈代谢途径,一类是植物次生物质,如生物碱、甙类、萜类等成分的新陈代谢途径。有关这些代谢途径的学说很多,其中不少还是设想,例如认为醋酸酯一丙二酸酯(Acetate-Melonate)途径合成脂肪酸、酚性化合物、蒽醌等成分,3,5-羟基一3-甲基戊酸酯(Mevalonate)途径合成萜类、甾类等成分,莽草酸(shikimicacid)途径合成芳香族氨基酸、有机酸及其他化合物;氨基酸途径合成生物碱等成分。  1.植物体内各类成分的生源关系:  2.各类植物次生物的生源学说,列举数例说明它们的生物合成途径:  (1)有机酸类: 有14C可以说明许多较复杂的有机酸类由 CH3COOH形成,如上所述6-甲基不杨酸的生物合成途径:   (2)生物碱: 生物碱的生源学说曾有多种路线的设想,但目前己主要集中一种学说,即生物碱是由醋酸、单萜和多种简单氨基酸如苯丙氨酸(Phenylalanine)、色氨酸(TrYptophan)、蛋氨酸(Meih1onine),鸟氨酸(Ornithine)等作为前体而形成的。这些理论因为标记化合物的发展已可用实验证实。方法是给予植株以一定的具标记元素的化合物为前体,(常用的为具14C的化合物),待植株经过一定时期的生长后,分离生物碱,从前体与生成物标记元素的位置来确定二者之间的关系。由于应用了这种技术,许多生物碱如烟碱(Nicoitine)、)吗啡(Morphine)、莨菪碱(Hyoscyamine)、秋水仙碱(Col一chicine)、罂粟碱(Papaverine)、芦竹碱(Gramine)等已证明是由氨基酸形成。有些简单的生物碱已可按生源学说途径在实验室里用氨基酸进行人工合成。目前关于生物碱的生源研究有一较大的突破,即认为除了上述各种前体外,还有许多特殊的中间物质参与了生物合成过程。   例:自鸟氨酸等形成的生物碱  (3)香豆精类:  (4)蒽醌类: 许多蒽醌类成分在植物体内的前体至今未完全确定。有的学者认为苔藓酸(Orsellinic acid,广泛分布于地衣和真菌)为一前体。由其形成蒽醌类成分的生源学说路线。  (5)萜类: 一般认为由CH3COOH与辅酶A(CoenzymeA,简作:CO.A)缩合成酯,再经过脱水、氧化-还原、环化、分子重排等反应形成C5——C10——C15——C20——C30——C40……的各种萜类。  以上仅列举了部分植物化学万分的生源学说,由于大家对此项工作的意义日益重视,有关生源研究的科研工作日益增多,原来的一些设想也得到了实验证实。但由于植物成分的本身种类和结构变化多样,加上在这些成分生物合成过程中所产生的各种中间产物的化学结构以及它们之间关系的复杂性,植物成分的生源研究还需要进行大量的深入的工作。

  • 植物源性食品中多种农药残留量的测定

    [align=right][b]SGLC-GC/MS-001[/b][/align][b]摘要:[/b]建立了植物源性食品中多种农药残留量同时测定的方法。采用岛津 SHIMSEN QuEChERS 产品对5类植物源性食品样品进行快速净化,同时采用岛津[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱[/color][/url]串联质谱 [url=https://insevent.instrument.com.cn/t/bp][color=#3333ff]GCMS[/color][/url]-TQ8040,岛津 SH-1701 色谱柱进行分析,回收率及重现性良好。该方法前处理速度快,重现性好,适用于黄瓜、葡萄、韭菜、茶叶和大米等基质中多种农药残留的同时检测。[b]关键词:[/b]QuEChERS 多农残 植物源性食品 [url=https://insevent.instrument.com.cn/t/bp][color=#3333ff]GC-MS[/color][/url]/MS[b]1. 实验部分1.1 实验仪器及耗材[/b]岛津[url=https://insevent.instrument.com.cn/t/bp][color=#3333ff]GCMS[/color][/url]-TQ8040 [url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱[/color][/url]-串联质谱联用仪;色谱柱SH -1701(30 m×0.25 mm×0.25 μm;P/N:221-75777-30);SHIMSEN QuEChERS萃取盐包Ⅰ(P/N:380-00148);SHIMSEN QuEChERS萃取盐包Ⅱ(P/N:380-00151);SHIMSEN QuEChERS净化管Ⅰ(P/N:380-00123);SHIMSEN QuEChERS净化管Ⅱ(P/N:380-00124);SHIMSEN QuEChERS净化管Ⅲ(P/N:380-00129);SHIMSEN QuEChERS净化管Ⅳ(P/N:380-00145);陶瓷均质子(P/N:380-00171);SHIMSEN Arc Disc HPTFE针式过滤器(P/N:380-00341-05);[url=https://insevent.instrument.com.cn/t/bp][color=#3333ff]GC-MS[/color][/url]认证样品瓶LabTotal Vial(P/N:227-34002-01);SHIMSEN Pipet[url=https://insevent.instrument.com.cn/t/9p][color=#3333ff]移液枪[/color][/url]:SHIMSEN Pipet PMII-10(P/N:380-00751-02);SHIMSEN Pipet PMII-100(P/N:380-00751-04);SHIMSEN Pipet PMII-1000(P/N:380-00751-06)。[b]1.2 分析条件1.2.1 色谱条件:[/b]毛细管柱:SH- 1701毛细管柱(30 m×0.25 mm×0.25 μm;P/N:221-75777-30)程序升温:初始温度40℃保持1 min, 以40℃/min升温到120℃,再以5℃/min升温到240℃,以12℃/min升温到300℃,保持6 min;载气:He流速:1.0 mL/min进样量:1 μL进样方式:不分流进样[b]1.2.2 质谱条件:[/b]电离模式:电子轰击电离(EI);电子轰击能量:70 eV离子源温度:280℃传输线温度:280℃溶剂延迟:3 min数据采集模式:MRM;各化合物MRM参数如下:[img=植物源性食品中多种农药残留量的测定]https://img.shimadzumall.com/Storage//userfiles/images/Img_articles/SGLC-[url=https://insevent.instrument.com.cn/t/bp][color=#3333ff]GCMS[/color][/url]-001_1.png[/img][img=植物源性食品中多种农药残留量的测定]https://img.shimadzumall.com/Storage//userfiles/images/Img_articles/SGLC-[url=https://insevent.instrument.com.cn/t/bp][color=#3333ff]GCMS[/color][/url]-001_2.png[/img][img=植物源性食品中多种农药残留量的测定]https://img.shimadzumall.com/Storage//userfiles/images/Img_articles/SGLC-[url=https://insevent.instrument.com.cn/t/bp][color=#3333ff]GCMS[/color][/url]-001_3.png[/img][font=arial, &][size=12px][/size][/font][b]1.3 样品前处理1.3.1 普通蔬菜(黄瓜)、水果(葡萄)[/b]称取10 g样品(精确到0.01 g),于50 mL离心管中,加入10 mL乙腈,充分摇匀后,加入QuEChERS萃取盐包Ⅰ(P/N:380-00148,4 g MgSO4、1 g氯化钠、0.5 g柠檬酸氢二钠、1 g柠檬酸钠,50根离心管 & 50包试剂包/p),盖上离心管盖,手动快速摇匀后,涡旋30 s。4200 r/min下离心5 min,取上清液6 mL置于净化管Ⅰ中(P/N:380-00123,SHIMSEN QuEChERS SPE 15 mL PSA净化管 150 mg PSA、900 mg MgSO4,50/p),涡旋混匀1 min。4200 r/min离心5 min,取上清液4 mL于10 mL离心管中,加入100 μL内标,40℃氮吹至干,用乙酸乙脂2 mL进行复溶,过微孔滤膜,用于GC/MS检测。[img=植物源性食品中多种农药残留量的测定]https://img.shimadzumall.com/Storage//userfiles/images/Img_articles/SGLC-[url=https://insevent.instrument.com.cn/t/bp][color=#3333ff]GCMS[/color][/url]-001_4.png[/img][font=arial, &][size=12px][/size][/font][align=center][b]图1 普通蔬菜和水果提取、净化流程图[/b][/align][font=arial, &][size=12px] [/size][/font][b]1.3.2 有色蔬菜(韭菜)[/b]称取10 g样品(精确到0.01g),于50 mL离心管中,加入10 mL乙腈,充分摇匀后,加入QuEChERS萃取盐包Ⅰ(P/N:380-00148,4 g MgSO4、1 g氯化钠、0.5 g柠檬酸氢二钠、1 g柠檬酸钠,50根离心管 & 50包试剂包/p),盖上离心管盖,手动快速摇匀后,涡旋30 s。4200 r/min下离心5 min,取上清液6 mL置于净化管Ⅱ中(P/N:380-00124,SHIMSEN QuEChERS SPE 15 mL PSA/GCB净化管 885 mg MgSO4、150 mg PSA、15 mg GCB,50/p),涡旋混匀1 min。4200 r/min离心5 min,取上清液4 mL于10 mL离心管中,加入100 μL内标,40℃氮吹至干,用乙酸乙脂2 mL进行复溶,过微孔滤膜,用于GC/MS检测。[img=植物源性食品中多种农药残留量的测定]https://img.shimadzumall.com/Storage//userfiles/images/Img_articles/SGLC-[url=https://insevent.instrument.com.cn/t/bp][color=#3333ff]GCMS[/color][/url]-001_5.png[/img][font=arial, &][size=12px][/size][/font][align=center][b]图2 有色蔬菜提取、净化流程图[/b][/align][font=arial, &][size=12px] [/size][/font][b]1.3.3 谷物(大米)[/b]称取5 g样品(精确到0.01g),于50 mL离心管中,加入10 mL水,涡旋混匀,静置水化30 min。加入含有1%乙酸的乙腈溶液15 mL,盖上离心管盖,充分摇匀,加入QuEChERS萃取盐包Ⅱ(P/N:380-00151,6 g MgSO4、1.5 g醋酸钠,50根离心管 & 50包试剂包/p),盖上离心管盖,手动快速摇匀1 min。4200 r/min下离心5 min,取上清液8 mL置于净化管Ⅲ中(P/N:380-00129,SHIMSEN QuEChERS SPE 15 mL PSA/C18净化管 1200 mg MgSO4、400 mg PSA、400 mg C18,50/p),涡旋混匀1 min。4200 r/min离心5 min,取上清液4 mL于10 mL离心管中,加入100 μL内标,40℃氮吹至干,用乙酸乙脂2 mL进行复溶,过微孔滤膜,用于GC/MS检测。[img=植物源性食品中多种农药残留量的测定]https://img.shimadzumall.com/Storage//userfiles/images/Img_articles/SGLC-[url=https://insevent.instrument.com.cn/t/bp][color=#3333ff]GCMS[/color][/url]-001_6.png[/img][font=arial, &][size=12px][/size][/font][align=center][b]图3 谷物提取、净化流程图[/b][/align][font=arial, &][size=12px] [/size][/font][b]1.3.4 茶叶[/b]称取2 g样品(精确到0.01 g),于50 mL离心管中,加入10 mL水,涡旋混匀,静置水化60 min。加入含有1%乙酸的乙腈溶液15 mL,盖上离心管盖,充分摇匀,加入QuEChERS萃取盐包Ⅱ(P/N:380-00151,6 g MgSO4、1.5 g醋酸钠,50根离心管 & 50包试剂包/p),盖上离心管盖,手动快速摇匀1 min。4200 r/min下离心5 min,取上清液8 mL置于净化管Ⅳ中(P/N:380-00131,SHIMSEN QuEChERS SPE 15 mL PSA/C18/GCB净化管 1200 mg MgSO4、400 mg PSA、400 mg C18、400 mg GCB,50/p),涡旋混匀1 min。4200 r/min离心5min,取上清液4 mL于10 mL离心管中,加入100 μL内标,40℃氮吹至干,用乙酸乙脂2 mL进行复溶,过微孔滤膜,用于[url=https://insevent.instrument.com.cn/t/bp][color=#3333ff]GC-MS[/color][/url]/MS检测。流程图见图4。[img=植物源性食品中多种农药残留量的测定]https://img.shimadzumall.com/Storage//userfiles/images/Img_articles/SGLC-[url=https://insevent.instrument.com.cn/t/bp][color=#3333ff]GCMS[/color][/url]-001_7.png[/img][font=arial, &][size=12px][/size][/font][align=center][b]图4 茶叶提取、净化流程图[/b][/align][font=arial, &][size=12px] [/size][/font][b]2. 结果及讨论2.1 标准样品的MRM谱图[/b][img=植物源性食品中多种农药残留量的测定]https://img.shimadzumall.com/Storage//userfiles/images/Img_articles/SGLC-[url=https://insevent.instrument.com.cn/t/bp][color=#3333ff]GCMS[/color][/url]-001_8.png[/img][font=arial, &][size=12px][/size][/font][b]2.2 植物源性食品中68种农药的[url=https://insevent.instrument.com.cn/t/bp][color=#3333ff]GC-MS[/color][/url]/MS检测添加回收结果[/b]将黄瓜、韭菜、茶叶和大米空白样品进行100.0 μg/L浓度加标;葡萄空白样品进行10.0 μg/L和50.0 μg/L浓度加标后,按照上述前处理方法处理后上机,平行6份样品考察回收率和RSD,具体结果如下(葡萄样品加标结果见文章:田菲菲,张曦,马金凤,杨晓春,范军,[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱[/color][/url]-串联质谱法同时分析葡萄基质中196 种农药残留,食品安全质量检测学报,2016:7(3)1069-1081):黄瓜样品加标回收率为86.04%-119.97%,RSD为0.68%-8.36%;韭菜样品加标回收率为81.74%-119.64%,RSD为2.92%-9.20%;茶叶样品加标回收率为83.13%-121.16%,RSD为0.29%-9.02%;大米样品加标回收率为88.98%-106.33%,RSD为0.80%-8.96%。[img=植物源性食品中多种农药残留量的测定]https://img.shimadzumall.com/Storage//userfiles/images/Img_articles/SGLC-[url=https://insevent.instrument.com.cn/t/bp][color=#3333ff]GCMS[/color][/url]-001_9.png[/img][img=植物源性食品中多种农药残留量的测定]https://img.shimadzumall.com/Storage//userfiles/images/Img_articles/SGLC-[url=https://insevent.instrument.com.cn/t/bp][color=#3333ff]GCMS[/color][/url]-001_10.png[/img][font=arial, &][size=12px][/size][/font][b]3. 结论[/b]综上,采用岛津的SHIMSEN QuEChERS产品对黄瓜、葡萄、韭菜、茶叶、大米等植物源性食品样品进行净化,同时采用岛津[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱[/color][/url]串联质谱 [url=https://insevent.instrument.com.cn/t/bp][color=#3333ff]GCMS[/color][/url]-TQ8040,岛津SH- 1701(30 m×0.25 mm×0.25 μm) 色谱柱进行分析,对普通蔬菜、水果、有色蔬菜、茶叶和谷物等5类植物源性食品中68种农药残留的检测方法进行了验证,结果表明,该方法操作简单、分析速度快、重现性好、准确度高,可以应对植物源性食品中农药残留量的测定要求。

  • GPC应用在植物成分制备上

    各位老师,我们单位有一台莱伯泰科的GPC,又紫外检测器,自动浓缩装置,还有自动进样装置,GPC柱子规格不清楚,原本用作农药残留净化用,定量环2ml,工程师说还可以加到8ml。现在我想利用它做一个植物功能成分的制备,在这个植物初提取物中,这类功能物质分子量在190-250之间。工程师说他们没有做过这方面的工作,请问各位老师,我该选择什么样的GPC柱子呢,还有什么工作要做?谢谢!

  • 求助关于植物中脂溶性成分的提取的问题

    各位大侠,我想分析某种中药的脂溶性成分有哪些,越全越好我的想法是,用低极性的提取溶剂来提取,比如正己烷,石油醚,然后提取液过滤进GC-MS。但是一些文献上是用高浓度的乙醇提取,然后再用低极性的溶剂去萃取。我想问这两种方法对脂溶性成分的提取有什么影响?还有就是脂溶性成分进GC-MS是否需要甲酯化?很多文献上都有甲酯化,我百度了一下,说是为了降低脂肪酸的沸点。。不知道正不正确 求高人指点

  • 植物源杀虫剂的古往今来。

    植物源杀虫剂的古往今来。

    在欧洲用植物防治昆虫可追溯到3000多年前。起初,人们以一些芳香植物和其提取物或汤液防治害虫,特别是作为驱避剂对付肠虫或外寄生虫等讨厌的昆虫,也用植物来保护贮存的粮食或食物免受仓储害虫的危害。第一个商业化植物源杀虫剂出现在17世纪,当人们发现烟草叶中的尼古丁能杀死豆象虫后,开发上市。1850年左右,一种叫做鱼藤酮的植物源杀虫剂问世了,它是从鱼藤的根中提取获得。第二次世界大战之后,在欧洲廉价的合成杀虫剂(有机氯和有机磷酸盐)的出现(主要由部分化武制剂脱毒而成),使商业化植物源杀虫剂的进一步发展受到限制。http://ng1.17img.cn/bbsfiles/images/2017/03/201703261604_01_1623180_3.jpghttp://ng1.17img.cn/bbsfiles/images/2017/03/201703261604_02_1623180_3.jpg注:相关内容摘自《世界农药》

  • 【转帖】华南植物园发现新的重金属超富集植物

    由于工矿企业的发展,农业化肥的过量使用,污水灌溉等,中国乃至世界的土壤重金属污染越来越严重。植物修复技术是目前重金属污染治理的研究热点,它具有治理效果的永久性、治理过程的原位性、治理成本的低廉性、环境美学的兼容性、后期处理的简易性等优点。这个技术成功的关键在于寻找超富集植物。虽然目前全世界已发现400多种超富集植物,但是大多数超富集植物都有生物量小,生长缓慢,弱抵抗力,种子少,缺乏与当地植物竞争的能力等缺点,所以能够真正应用于植物修复技术的超富集植物并不多。因此采用更有效的方法来筛选更多超富集植物是非常必要的。 华南植物园土壤生态与生态工程研究组博士研究生张杏锋在导师夏汉平研究员的指导下,首次提出了用土壤种子库-重金属浓度梯度法来筛选重金属超富集植物并成功找到一种Cd的超富集植物—少花龙葵(Solanum photeinocarpum)。该方法是指利用土壤种子库筛选对重金属具有超富集特性的植物,然后通过重金属浓度梯度实验对其超富集特性进行验证。结果发现,当土壤Cd 浓度为60mg/kg时,少花龙葵的生长未受影响,根部Cd含量高达473mg/kg,茎、叶和地上部Cd含量分别达215、251和230mg/kg。在两个浓度梯度实验中少花龙葵地上部Cd含量均超过Cd超富集植物的临界含量标准(100mg/kg),具有Cd超富集植物的基本特征,是Cd的超富集植物。

  • 关于HPLC法测定某植物中的总黄酮、总多酚成份条件的选择

    小弟在做某植物的总黄酮、总多酚类化合物的成分分析,由于实验条件限制,仅能用到的是HPLC来做成分分析。通过知网和web of science中直接搜索我的植物的黄酮类化合物的成分分析,没有能直接照搬的HPLC条件,有用UHPLC-TOF-MS做的,那应该怎么搜索HPLC条件呢?(如洗脱液、温度、流速等条件)。能否替换植物,直接在知网中搜索关键词“”黄酮类化合物成分分析-HPLC(高效[url=https://insevent.instrument.com.cn/t/5p][color=#3333ff]液相色谱[/color][/url]法)“”?求大神指点迷津。

  • 【求助】GC-MS做植物叶片成分分析样品预处理问题

    [color=#DC143C]大家好,本人新手,问一个初级问题,麻烦有知道的帮忙给解答下,十分感谢! 我打算用[url=https://insevent.instrument.com.cn/t/bp][color=#3333ff]气质联用仪[/color][/url]对植物叶片的化学成分做一个分析,从文献上看前人大多是用GC-MS分析植物叶中的挥发油成分,但我想对植物叶中乙醇提取液、丙酮提取液中的化学成分做个全面分析,而其中大多是不易挥发成分,且其中应该还有蛋白质等生物大分子物质的干扰,怎样预处理一下样品才能达到最好的效果?[/color]

  • 21.1 濒危植物桃儿七化学成分及其资源研究

    21.1 濒危植物桃儿七化学成分及其资源研究

    【作者】 熊文勇;【导师】 魏朔南;【作者基本信息】 西北大学, 中药学, 2010, 硕士【摘要】 桃儿七(Sinopodophyllum hexandrum (Royle)Ying)是小檗科(Berberidaceae)鬼臼亚科(Podophylloideae)桃儿七属多年生草本植物,其根和根茎中含有大量的鬼臼毒素及其衍生物,其中鬼臼毒素(podophyllotoxin)具有很高的抗癌活性,是近年来合成抗癌药物VP-16(etoposide)和VM-26 (teniposide)等的前体物质。目前,已发现桃儿七的根及根茎中主要含有木脂素类、黄酮类、皂苷、多糖及鞣质等化学成分。其中木脂素类成分主要为鬼臼毒素、去甲鬼臼毒素、鬼臼苦素、去氢鬼臼毒素、鬼臼毒酮、盾叶鬼臼毒素,鬼臼毒素苷、4’-去甲鬼臼毒素苷、盾叶鬼臼毒素苷、4’-去甲鬼臼毒酮、山荷叶素等。黄酮类成分主要为槲皮素和山柰酚及其苷类等。本课题选取濒危植物桃儿七为研究对象,从药物化学的角度出发,测定不同产地桃儿七不同部位中主要成分鬼臼毒素的含量,利用高效液相色谱-质谱(HPLC-ESI-MS)连用技术分析鉴定各产地桃儿七中的主要化学成分,在此基础上,建立桃儿七HPLC指纹图谱,探讨各产地品种间主要化学成分之间的变化,分析各生长地桃... http://ng1.17img.cn/bbsfiles/images/2012/07/201207301330_380554_2379123_3.jpg

  • 植物冠层分析仪的重要性

    植物冠层分析仪的重要性

    [size=16px]  植物冠层分析仪的重要性  植物冠层分析仪是一种用于研究植物冠层结构和功能的工具,具有重要性的多个方面:  生态研究:植物冠层是生态系统中的关键组成部分,影响着能量流、物质循环和生物多样性。植物冠层分析仪可用于研究植物群落的结构和功能,帮助科学家了解生态系统的生态学过程。  气候变化研究:植物冠层分析仪可以用来监测植物的生长、光合作用和蒸腾等生理过程。这对于研究气候变化对植物生态系统的影响以及植物对气候变化的响应至关重要。  农业和林业管理:在农业和林业领域,植物冠层分析仪可以用来评估作物或森林的生长情况、叶片面积、叶片光合效率等重要参数,有助于提高农作物产量和森林管理效率。  生态系统管理:植物冠层分析仪还可用于监测自然生态系统的健康状况,例如森林、湿地和草原。这有助于保护和管理这些生态系统,以维持生物多样性和生态平衡。  水资源管理:植物冠层分析仪可以用来估算植物的蒸腾率,从而帮助管理地下水和地表水资源。这对于水资源管理和干旱监测非常重要。  城市规划:在城市规划中,植物冠层分析仪可以用来评估城市绿化程度、城市热岛效应和城市空[url=https://insevent.instrument.com.cn/t/bp][color=#3333ff]气质[/color][/url]量,以改善城市环境和居民生活质量。  总之,云唐植物冠层分析仪在生态学、气候研究、农业、林业、城市规划等领域都有着重要的应用价值,可以提供关键的数据和信息,帮助人们更好地理解和管理植物冠层及其与周围环境的互动关系。这有助于维护生态平衡、应对气候变化和改善生活质量。[img=,690,690]https://ng1.17img.cn/bbsfiles/images/2023/09/202309151009031666_868_6098850_3.png!w690x690.jpg[/img][/size]

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制