当前位置: 仪器信息网 > 行业主题 > >

植物基质

仪器信息网植物基质专题为您整合植物基质相关的最新文章,在植物基质专题,您不仅可以免费浏览植物基质的资讯, 同时您还可以浏览植物基质的相关资料、解决方案,参与社区植物基质话题讨论。

植物基质相关的论坛

  • 决定植物“个头”关键机制被破解

    日本一项新研究发现,植物体内几种蛋白质的结合程度决定了植物的“身高”。这一发现有望帮助提高农作物生产率。 植物会为适应环境而控制自己的高度,此前研究已知,“ERECTA”蛋白质作为一种受体,与植物的高度有关,但其发挥作用的机制一直未能探明。 日本奈良尖端科学技术大学院大学研究人员在美国新一期《国家科学院院刊》网络版上报告说,他们使用拟南芥,研究了在其茎部内皮细胞中产生的“EPFL4”和“EPFL6”这两种蛋白质,结果发现这两种蛋白质与“ERECTA”蛋白质结合后,拟南芥的“身高”会迅速增加,如果这两种蛋白质出现缺陷,拟南芥“个头”会明显偏矮。 生物体内存在决定其特性的“开关”,如同钥匙插入锁孔才能打开锁一般,细胞受体只有与配位体相配合才能发挥作用。研究人员发现这两种蛋白质就是与植物长高有关的配位体。研究人员说,通过阻碍或者促进这两种蛋白质发挥作用,有望开发出不通过转基因也可控制农作物高度的技术,从而提高其生产率。

  • 【转帖】植物遗传资源保护与利用的市场化机制和国际制度

    提 要 随着植物物种资源的不断减少和因生物技术迅猛发展对植物遗传资源需求的不断增加,植物遗传资源正逐步由公共物品转变为稀缺物品。坚持《生物多样性公约》所确立的遗传资源效益公平分享原则,完善现有国际多边体系,促进以“遗传编码功能”价值概念和遗传资源保护效应“内部化”与“补偿”方案为基础的植物遗传资源市场化保护与利用机制的形成,建立“植物遗传资源交易所”和“生物多样性合作社”,将有助于提高世界各国尤其是发展中国家保护植物遗传资源的积极性,实现全球植物遗传资源的可持续利用。[img]http://www.instrument.com.cn/bbs/images/affix.gif[/img][url=http://www.instrument.com.cn/bbs/download.asp?ID=102839]植物遗传资源保护与利用的市场化机制和国际制度[/url]

  • 昆明植物所在香茶菜属植物二萜及其抗癌机制研究中获进展

    香茶菜属(Isodon)植物隶属唇形科(Lamiaceae),是我国民间广泛使用的草药,多具抗菌、消炎和祛无名肿毒之功效。中国科学院昆明植物研究所孙汉董研究员课题组自1975年以来,已对国产67种香茶菜属植物的化学和生物活性成分进行了系统而深入的研究,从中共分离鉴定了965个新的二萜化合物,发现了20余个化合物具有潜在的开发应用前景。迄今为止,共发表论文290余篇(其中SCI论文202篇,学科前15%论文88篇)。所研究植物的总数和发现的新化合物均占到了全世界该研究领域的70%以上,这不仅丰富了萜类化学的内容,同时也是我国在世界植物化学领域居领先地位、成就最显著的领域之一。 值得一提的是,研究组近年来在该属新颖结构二萜和抗癌作用机制研究方面又取得了新的突破:从腺叶香茶菜(Isodon adenolomus)中分离得到了一个罕见的、高氧化度的碳苷类对映-贝壳杉烷二萜neoadenoloside A(Chem. Commun., 2012, 48, 7723-7725);从疏花毛萼香茶菜(Isodon eriocalyx var. laxiflora)中分离得到了2个具有新奇骨架的螺环内酯型二萜neolaxiflorins A和B(Org. Lett., 2012, 14(1), 302-305);从三叶香茶菜(Isodon ternifolius)中得到了分子中具有罕见10元内酯环的一类新二萜(ternifonane型)ternifolide A(Org. Lett., 2012, 14(12), 3210-3213)。 抗癌作用机制研究方面,研究人员与上海交通大学的陈国强教授合作研究发现,腺花素 (adenanthin) 能直接以过氧化还原酶(prx.)I/II为靶标,诱导急性早幼粒细胞性白血病(APL)细胞的分化,阐释了白血病细胞分化的新机理,研究结果已发表在国际权威杂志《自然—化学生物学》(Nature Chemical Biology, 2012, 8, 486-493)上。 以上研究结果得到了国家基金委-云南省联合基金项目(U0832602),国家重点基础研究发展计划(2009CB522300)和国家自然科学基金面上项目(81172939)的联合资助。http://www.cas.cn/ky/kyjz/201207/W020120716343366879493.jpg新颖结构和活性二萜化合物

  • 细胞外基质化组织工程神经移植物修复大鼠臂丛神经缺损的研究

    【序号】:4【作者】:宋丽丽【题名】:细胞外基质化组织工程神经移植物修复大鼠臂丛神经缺损的研究【期刊】:吉林大学【年、卷、期、起止页码】:2022【全文链接】:https://kns.cnki.net/kcms2/article/abstract?v=hqt_j-uEELGBdZ64e_NeKorNyHTEXc4WYj-JgSxFHTEpCLC63y8VE8Mu3IzigvqsHSk6VdDKHqm2DTJ_TXRYEqQmRqDJKz4V5h2yvTxnQgxouHPXRH9w56VOku-572pIgg-Gv-EJdinh9kmJyVIkbA==&uniplatform=NZKPT&language=CHS

  • 谈谈植物中的单宁

    单宁是来源于植物的酚类次生代谢物,广泛分布于蔬菜和水果中,主要分为缩合单宁和水解单宁。单宁类物质具有许多生物活性功能,如抗氧化、抗炎、抗病毒、抗癌等。由于具有酚羟基,单宁类物质通常可以结合各种大分子物质,如多糖,蛋白质等。目前已有研究探究了单宁类物质对胰腺脂肪酶的作用机制。然而,胆固醇酯酶和单宁类物质之间相互作用的机制仍然不清楚。

  • 植物呼吸测定仪是什么

    [img=,690,690]https://ng1.17img.cn/bbsfiles/images/2024/05/202405241141356426_8312_5604214_3.jpg!w690x690.jpg[/img]   植物呼吸测定仪是一种专门用于测量植物呼吸作用的科学仪器。它基于生物学和物理学原理,通过精准地监测植物在特定环境下的气体交换,从而揭示植物呼吸作用的内在规律和机制。  植物呼吸测定仪的主要功能包括测量植物在光合作用和呼吸作用过程中产生的二氧化碳和消耗的氧气量,以及监测环境参数如温度、湿度和光照强度等。这些参数对于理解植物的生长状态、生理过程以及响应环境变化的机制至关重要。  在农业领域,植物呼吸测定仪发挥着不可替代的作用。它可以帮助农业科研人员深入了解作物生长过程中的呼吸特性,为优化作物种植条件、提高产量和品质提供科学依据。此外,植物呼吸测定仪还可以用于监测植物病害的发生和发展,为病害防治提供有力的技术支持。  在生态学和环境科学领域,植物呼吸测定仪同样具有广泛的应用。通过测量植物在不同生态系统中的呼吸作用,研究人员可以评估生态系统的碳平衡和能量流动,为制定科学合理的生态保护和恢复策略提供数据支持。  随着科学技术的不断发展,植物呼吸测定仪的性能和精度也在不断提高。未来,这种仪器将更加智能化、便携化,为植物生理生态研究提供更为便捷和高效的工具。同时,随着研究的深入,我们有望更加深入地了解植物呼吸作用的奥秘,为农业生产、生态保护和全球气候变化等领域的研究和发展提供新的视角和思路。

  • 【“仪”起享奥运】内生菌对宿主植物的促生机制

    [font='PingFang SC', system-ui, -apple-system, BlinkMacSystemFont, 'Helvetica Neue', 'Hiragino Sans GB', 'Microsoft YaHei UI', 'Microsoft YaHei', Arial, sans-serif][size=17px][color=rgba(0, 0, 0, 0.901961)]内生菌对宿主植物的促生机制已被初步解析,主要为以下[/color][/size][/font][font='PingFang SC', system-ui, -apple-system, BlinkMacSystemFont, 'Helvetica Neue', 'Hiragino Sans GB', 'Microsoft YaHei UI', 'Microsoft YaHei', Arial, sans-serif][size=17px][color=rgba(0, 0, 0, 0.901961)]3[/color][/size][/font][font='PingFang SC', system-ui, -apple-system, BlinkMacSystemFont, 'Helvetica Neue', 'Hiragino Sans GB', 'Microsoft YaHei UI', 'Microsoft YaHei', Arial, sans-serif][size=17px][color=rgba(0, 0, 0, 0.901961)]方面: ([/color][/size][/font][font='PingFang SC', system-ui, -apple-system, BlinkMacSystemFont, 'Helvetica Neue', 'Hiragino Sans GB', 'Microsoft YaHei UI', 'Microsoft YaHei', Arial, sans-serif][size=17px][color=rgba(0, 0, 0, 0.901961)]1[/color][/size][/font][font='PingFang SC', system-ui, -apple-system, BlinkMacSystemFont, 'Helvetica Neue', 'Hiragino Sans GB', 'Microsoft YaHei UI', 'Microsoft YaHei', Arial, sans-serif][size=17px][color=rgba(0, 0, 0, 0.901961)])促进[/color][/size][/font][font='PingFang SC', system-ui, -apple-system, BlinkMacSystemFont, 'Helvetica Neue', 'Hiragino Sans GB', 'Microsoft YaHei UI', 'Microsoft YaHei', Arial, sans-serif][size=17px][color=rgba(0, 0, 0, 0.901961)]宿主植物吸收土壤中难吸收的营养物质直接促进植物生长,如通过表达氮化酶活性,增加植物的氮供应[/color][/size][/font][font='PingFang SC', system-ui, -apple-system, BlinkMacSystemFont, 'Helvetica Neue', 'Hiragino Sans GB', 'Microsoft YaHei UI', 'Microsoft YaHei', Arial, sans-serif][size=17px][color=rgba(0, 0, 0, 0.901961)];或是分泌酸性磷酸酶溶解沉淀的磷酸盐增加植物对磷的利用率[/color][/size][/font][font='PingFang SC', system-ui, -apple-system, BlinkMacSystemFont, 'Helvetica Neue', 'Hiragino Sans GB', 'Microsoft YaHei UI', 'Microsoft YaHei', Arial, sans-serif][size=17px][color=rgba(0, 0, 0, 0.901961)],如薏苡中分离得到的溶磷内生菌[/color][/size][/font][font='PingFang SC', system-ui, -apple-system, BlinkMacSystemFont, 'Helvetica Neue', 'Hiragino Sans GB', 'Microsoft YaHei UI', 'Microsoft YaHei', Arial, sans-serif][size=17px][color=rgba(0, 0, 0, 0.901961)]L21[/color][/size][/font][font='PingFang SC', system-ui, -apple-system, BlinkMacSystemFont, 'Helvetica Neue', 'Hiragino Sans GB', 'Microsoft YaHei UI', 'Microsoft YaHei', Arial, sans-serif][size=17px][color=rgba(0, 0, 0, 0.901961)]和[/color][/size][/font][font='PingFang SC', system-ui, -apple-system, BlinkMacSystemFont, 'Helvetica Neue', 'Hiragino Sans GB', 'Microsoft YaHei UI', 'Microsoft YaHei', Arial, sans-serif][size=17px][color=rgba(0, 0, 0, 0.901961)]R24[/color][/size][/font][font='PingFang SC', system-ui, -apple-system, BlinkMacSystemFont, 'Helvetica Neue', 'Hiragino Sans GB', 'Microsoft YaHei UI', 'Microsoft YaHei', Arial, sans-serif][size=17px][color=rgba(0, 0, 0, 0.901961)]对薏苡生长有显著促进作用[/color][/size][/font][font='PingFang SC', system-ui, -apple-system, BlinkMacSystemFont, 'Helvetica Neue', 'Hiragino Sans GB', 'Microsoft YaHei UI', 'Microsoft YaHei', Arial, sans-serif][size=17px][color=rgba(0, 0, 0, 0.901961)];植物可以通过内生菌产生的铁络合剂[i][/i]吸收铁元素[/color][/size][/font][font='PingFang SC', system-ui, -apple-system, BlinkMacSystemFont, 'Helvetica Neue', 'Hiragino Sans GB', 'Microsoft YaHei UI', 'Microsoft YaHei', Arial, sans-serif][size=17px][color=rgba(0, 0, 0, 0.901961)]; [/color][/size][/font][font='PingFang SC', system-ui, -apple-system, BlinkMacSystemFont, 'Helvetica Neue', 'Hiragino Sans GB', 'Microsoft YaHei UI', 'Microsoft YaHei', Arial, sans-serif][size=17px][color=rgba(0, 0, 0, 0.901961)]([/color][/size][/font][font='PingFang SC', system-ui, -apple-system, BlinkMacSystemFont, 'Helvetica Neue', 'Hiragino Sans GB', 'Microsoft YaHei UI', 'Microsoft YaHei', Arial, sans-serif][size=17px][color=rgba(0, 0, 0, 0.901961)]2[/color][/size][/font][font='PingFang SC', system-ui, -apple-system, BlinkMacSystemFont, 'Helvetica Neue', 'Hiragino Sans GB', 'Microsoft YaHei UI', 'Microsoft YaHei', Arial, sans-serif][size=17px][color=rgba(0, 0, 0, 0.901961)])分泌或促使宿主植物产生植物激素,生长素和乙烯是植物[/color][/size][/font][font='PingFang SC', system-ui, -apple-system, BlinkMacSystemFont, 'Helvetica Neue', 'Hiragino Sans GB', 'Microsoft YaHei UI', 'Microsoft YaHei', Arial, sans-serif][size=17px][color=rgba(0, 0, 0, 0.901961)]-[/color][/size][/font][font='PingFang SC', system-ui, -apple-system, BlinkMacSystemFont, 'Helvetica Neue', 'Hiragino Sans GB', 'Microsoft YaHei UI', 'Microsoft YaHei', Arial, sans-serif][size=17px][color=rgba(0, 0, 0, 0.901961)]内生菌相互作用中最重要的激素,内生菌产生的生长素可以增加植物的根系生物量和表面积,并增加宿主植物的侧根数量[/color][/size][/font][font='PingFang SC', system-ui, -apple-system, BlinkMacSystemFont, 'Helvetica Neue', 'Hiragino Sans GB', 'Microsoft YaHei UI', 'Microsoft YaHei', Arial, sans-serif][size=17px][color=rgba(0, 0, 0, 0.901961)];[/color][/size][/font][font='PingFang SC', system-ui, -apple-system, BlinkMacSystemFont, 'Helvetica Neue', 'Hiragino Sans GB', 'Microsoft YaHei UI', 'Microsoft YaHei', Arial, sans-serif][size=17px][color=rgba(0, 0, 0, 0.901961)]1-[/color][/size][/font][font='PingFang SC', system-ui, -apple-system, BlinkMacSystemFont, 'Helvetica Neue', 'Hiragino Sans GB', 'Microsoft YaHei UI', 'Microsoft YaHei', Arial, sans-serif][size=17px][color=rgba(0, 0, 0, 0.901961)]氨基环丙烷[/color][/size][/font][font='PingFang SC', system-ui, -apple-system, BlinkMacSystemFont, 'Helvetica Neue', 'Hiragino Sans GB', 'Microsoft YaHei UI', 'Microsoft YaHei', Arial, sans-serif][size=17px][color=rgba(0, 0, 0, 0.901961)]-1-[/color][/size][/font][font='PingFang SC', system-ui, -apple-system, BlinkMacSystemFont, 'Helvetica Neue', 'Hiragino Sans GB', 'Microsoft YaHei UI', 'Microsoft YaHei', Arial, sans-serif][size=17px][color=rgba(0, 0, 0, 0.901961)]羧酸([/color][/size][/font][font='PingFang SC', system-ui, -apple-system, BlinkMacSystemFont, 'Helvetica Neue', 'Hiragino Sans GB', 'Microsoft YaHei UI', 'Microsoft YaHei', Arial, sans-serif][size=17px][color=rgba(0, 0, 0, 0.901961)]1-aminocyclopropane-1-carboxylate[/color][/size][/font][font='PingFang SC', system-ui, -apple-system, BlinkMacSystemFont, 'Helvetica Neue', 'Hiragino Sans GB', 'Microsoft YaHei UI', 'Microsoft YaHei', Arial, sans-serif][size=17px][color=rgba(0, 0, 0, 0.901961)],[/color][/size][/font][font='PingFang SC', system-ui, -apple-system, BlinkMacSystemFont, 'Helvetica Neue', 'Hiragino Sans GB', 'Microsoft YaHei UI', 'Microsoft YaHei', Arial, sans-serif][size=17px][color=rgba(0, 0, 0, 0.901961)]ACC[/color][/size][/font][font='PingFang SC', system-ui, -apple-system, BlinkMacSystemFont, 'Helvetica Neue', 'Hiragino Sans GB', 'Microsoft YaHei UI', 'Microsoft YaHei', Arial, sans-serif][size=17px][color=rgba(0, 0, 0, 0.901961)])是植物内源激素乙烯合成的直接前体,乙烯浓度升高会抑制植物生长,部分内生菌可以产生[/color][/size][/font][font='PingFang SC', system-ui, -apple-system, BlinkMacSystemFont, 'Helvetica Neue', 'Hiragino Sans GB', 'Microsoft YaHei UI', 'Microsoft YaHei', Arial, sans-serif][size=17px][color=rgba(0, 0, 0, 0.901961)]ACC[/color][/size][/font][font='PingFang SC', system-ui, -apple-system, BlinkMacSystemFont, 'Helvetica Neue', 'Hiragino Sans GB', 'Microsoft YaHei UI', 'Microsoft YaHei', Arial, sans-serif][size=17px][color=rgba(0, 0, 0, 0.901961)]脱氨酶[/color][/size][/font][font='PingFang SC', system-ui, -apple-system, BlinkMacSystemFont, 'Helvetica Neue', 'Hiragino Sans GB', 'Microsoft YaHei UI', 'Microsoft YaHei', Arial, sans-serif][size=17px][color=rgba(0, 0, 0, 0.901961)],水解乙烯的前体[/color][/size][/font][font='PingFang SC', system-ui, -apple-system, BlinkMacSystemFont, 'Helvetica Neue', 'Hiragino Sans GB', 'Microsoft YaHei UI', 'Microsoft YaHei', Arial, sans-serif][size=17px][color=rgba(0, 0, 0, 0.901961)]ACC[/color][/size][/font][font='PingFang SC', system-ui, -apple-system, BlinkMacSystemFont, 'Helvetica Neue', 'Hiragino Sans GB', 'Microsoft YaHei UI', 'Microsoft YaHei', Arial, sans-serif][size=17px][color=rgba(0, 0, 0, 0.901961)]从而降低乙烯浓度,解除乙烯的生长抑制,促进植物生长; ([/color][/size][/font][font='PingFang SC', system-ui, -apple-system, BlinkMacSystemFont, 'Helvetica Neue','Hiragino Sans GB', 'Microsoft YaHei UI', 'Microsoft YaHei', Arial, sans-serif][size=17px][color=rgba(0, 0, 0, 0.901961)]3[/color][/size][/font][font='PingFang SC', system-ui, -apple-system, BlinkMacSystemFont, 'Helvetica Neue', 'Hiragino Sans GB', 'Microsoft YaHei UI', 'Microsoft YaHei', Arial, sans-serif][size=17px][color=rgba(0, 0, 0, 0.901961)])以拮抗植物病原体的方式,抑制病原体从而间接促进植物的生长。对于某些具有物种特异性的内生菌,其促生长能力还与宿主植物基因型相关[/color][/size][/font][font='PingFang SC', system-ui, -apple-system, BlinkMacSystemFont, 'Helvetica Neue', 'Hiragino Sans GB', 'Microsoft YaHei UI', 'Microsoft YaHei', Arial, sans-serif][size=17px][color=rgba(0, 0, 0, 0.901961)],而内生菌基因型也会影响对宿主植物的生长促进作用[/color][/size][/font][font='PingFang SC', system-ui, -apple-system, BlinkMacSystemFont, 'Helvetica Neue', 'Hiragino Sans GB', 'Microsoft YaHei UI', 'Microsoft YaHei', Arial, sans-serif][size=17px][color=rgba(0, 0, 0, 0.901961)]。张雪梅等[/color][/size][/font][font='PingFang SC', system-ui, -apple-system, BlinkMacSystemFont, 'Helvetica Neue', 'Hiragino Sans GB', 'Microsoft YaHei UI', 'Microsoft YaHei', Arial, sans-serif][size=17px][color=rgba(0, 0, 0, 0.901961)]发现红景天内生真菌[/color][/size][/font][font='PingFang SC', system-ui, -apple-system, BlinkMacSystemFont, 'Helvetica Neue', 'Hiragino Sans GB', 'Microsoft YaHei UI', 'Microsoft YaHei', Arial, sans-serif][size=17px][color=rgba(0, 0, 0, 0.901961)][i]Fusarium [/i][/color][/size][/font][font='PingFang SC', system-ui, -apple-system, BlinkMacSystemFont, 'Helvetica Neue', 'Hiragino Sans GB', 'Microsoft YaHei UI', 'Microsoft YaHei', Arial, sans-serif][size=17px][color=rgba(0, 0, 0, 0.901961)]sp. HJT-P-2[/color][/size][/font][font='PingFang SC', system-ui, -apple-system, BlinkMacSystemFont, 'Helvetica Neue', 'Hiragino Sans GB', 'Microsoft YaHei UI', 'Microsoft YaHei', Arial, sans-serif][size=17px][color=rgba(0, 0, 0, 0.901961)]次级代谢产物会促进红景天根的生长;多花黄精的内生菌提高了种子的发芽势与发芽率,且对萌发幼苗的生长具有不同程度的促生功效[/color][/size][/font][font='PingFang SC', system-ui, -apple-system, BlinkMacSystemFo

  • 重金属污染土壤植物可修复

    土壤重金属污染是全球主要环境危害之一,并可能通过农作物进入人类食物链。近日,合肥工业大学曹树青教授课题组通过一种新型基因工程技术,首次发现使植物能将有毒物质镉吸收后“转存隔离”的新机制,从而降低并解决土壤中的镉污染问题。您觉得重金属污染土壤植物可修复技术可行吗?执行可行吗?

  • 【资料】浅谈土壤重金属污染的植物吸收处理

    土壤受重金属污染的状况在世界上越发成为重要的环境议题。尤其在中国、中南半岛与印度等亚洲国家,随著重工业的发展,土壤重金属的污染也越发严重起来。传统重金属污染土壤的修复技术包括化学吸脱附、客土法(从外地运载乾净土壤加入受污染土壤达到降低污染物的浓度)、现地淋洗土壤法以及现地电熔法等也存在著许多难以克服的缺陷,包括资金耗费与化学药剂的问题等。近年来,一种运用植物来去除有毒重金属的新型态植物修复技术(或称植物吸收处理技术、植物处理技术、植物复育等名称,phytoremediation)给这一问题提供了另外的一套思考路径。该技术在国外也被认为是一种低成本而有效的"绿色"技术。我在本文中略为大家作一些说明。 植物修复技术是透过植物体本身吸收并累积重金属的过程来移除土壤中的重金属。利用植物来进行受重金属污染的土地复育工作。这当中主要依靠一些可耐高量重金属之植物物种,但它们生长的速度皆相当缓慢。因此也有人利用速生植物进行转殖,并提高其耐金属及累积金属的涵量(capacity)来进行土地复育的工作。   在植物忍受与隔离重金属危害的机制中,金属硫蛋白(Metallothionein, MT)与金属螯合素(Phytochelatins, PCs)是其中担负重金属处理机制中最重要的角色。典型的金属硫蛋白具有61-74个胺基酸,其中含有20个半胱胺酸(cysteine),每一个金属硫蛋白就可结合七个二价重金属离子如镉、铬、锌等。金属螯合素则主要由麸光甘汰(glutathione, GSH)所组成,其结构为麸胺酸-半胱胺酸-甘胺酸(r-Glu-Cys-Gly)。GSH可以保护植物细胞减少经由重金属产生的氧化逆境伤害(oxidative stress damage),例如由镉所引起的脂质过氧化反应。GSH同时也是金属螯合胜汰(phyto-chelations peptides,简称PCs)的前驱物。PCs这一群金属螯合胜肽的一般结构为(r-Glu-Cys)n-Gly,,n= 2-11。当金属离子进入细胞时,会破坏胞内酵素,这时金属螯合胜肽会和金属离子结合形成小分子量的复合物并降低金属对植物细胞的毒害,之後再将这些金属复合物运送到液胞中与硫结合形成较稳定的结构。 许多耐受重金属的植物都被用做植物复育技术的对象。但也并非每一种耐受重金属植物都具备上述的机制。目前经常被作为植物吸收重金属试验的植物包括有:仙丹花、鹅掌藤、马齿苋、变叶木、美人蕉、孔雀草以及向日葵等,这些植物吸收重金属的能力以及在污染场址的生长状态都还不错。花卉植物可说是处理重金属很重要也十分有潜力的植物类群,因为它们吸收了重金属以後,再大幅采收,又可以卖钱。又可销售掉这些含有重金属的植物。(也许你会觉得很可怕,母亲节或情人节送一朵重金属花给你的爱人,但实际上,花朵只是观赏用的。基本上只要不吃它,问题比较不大。)当然也可用其他的後续处理法来处理这些被采摘的植体,如焚化後的分处掩埋等。重金属不比一般的污染物质,在化学上元素是不灭的,所以要降低污染最重要的步骤就是降低它在环境中过度集约和累积的浓度。当可耐受重金属植物经过一次又一次的收割并运往他处销售或处理以後,便可平分(淡化)原污染地重金属的含量,并降低重金属污染的风险。 植物复育可说是十分有潜力的重金属处理法。但是它有它的局限,其中最主要的缺点是整治的周期较长,而且植物还需要经过筛选和培育等过程。如何让土壤中重金属在植物体内累积速率的提升或处理的功效,以减缓重金属元素如镉、铅、汞、砷、硒、锌、铬等在土壤中的累积和污染。这是科学家的科研重点所在。近代以来也有所谓复合式的污染处理法,也就是鸡尾酒式的治理法。不过那不在我这篇文章的介绍范围了。

  • 植物根系分析仪有什么用

    [img=,690,690]https://ng1.17img.cn/bbsfiles/images/2024/05/202405241126218307_5132_5604214_3.jpg!w690x690.jpg[/img]  植物根系分析仪是一种基于图像识别技术的专业仪器,主要用于植物离体洗净后的根系分析。它以其强大的功能和广泛的应用领域,为植物学研究和农业生产提供了重要的科学依据。本文将深入探讨植物根系分析仪的用途及其在各个领域中的具体应用。  首先,植物根系分析仪能够准确测量和分析植物根系的多种参数。通过该仪器,研究人员可以方便地获取根的总数量、根尖数量、根总长、根平均直径、根总体积、分叉点等相关指标。此外,它还能对颜色进行分析,从而更全面地了解根系的生长状态和形态特征。这些参数的获取对于研究植物的生长规律、生理特性以及适应环境的能力具有重要意义。  在农学领域,植物根系分析仪发挥着关键作用。通过该仪器,研究人员可以深入了解不同作物根系的生长情况,包括形态、结构、生长速度以及受环境因素的影响程度等。这有助于制定更合理的栽培管理措施,提高作物的产量和品质。同时,植物根系分析仪还可以用于研究植物对逆境的响应机制,为培育抗逆性强的作物品种提供科学依据。  在生物学和生态学领域,植物根系分析仪同样具有广泛的应用价值。通过分析根系材料中的水分、氮素、碳素以及微生物等成分,研究人员可以更好地了解植物与土壤之间的相互作用关系。此外,该仪器还可以用于研究植物根系的分泌物及其对环境的影响,为生态修复和环境保护提供有力支持。  此外,植物根系分析仪在植物育种领域也发挥着重要作用。通过分析不同作物品种根系的生长速度、形态结构及其生长规律,研究人员可以筛选出具有优良根系特性的品种,为作物育种提供宝贵的资源。同时,该仪器还可以用于评估不同栽培模式下植物根系的生长状况,为优化栽培模式提供科学依据。

  • 【求助】植物原料药、植物药原料药和植物药产品三者的区别

    在FDA的植物药工业产品指南(Guidance for IndustryBotanical Drug Products)中,有如下几个概念:  [B]植物药产品[/B](botan ical drug product botanical drug) : 植物药是指作为药物使用的植物产品 由植物原料药制备的药品称植物药产品, 有溶液(例如茶)、粉末剂、片剂、胶囊剂、酊剂、外用药和局部用药等多种剂型。  [B]植物药原料药[/B](botanical drug substance) : 来自一种或一种以上植物、藻类或肉眼可见真菌的药物。它由[B]植物原料药[/B]经过如下的一种或多种加工方法, 如粉碎、煎煮、压榨、水提、醇提或其他类似方法制备而成。它以诸如粉末、泥膏、浓缩液、汁、胶、糖浆或油等多种物质形态出现。植物原料药可以由一种或一种以上植物原药材(见单味和复方植物原料药或产品) 制得。植物原料药不包括天然来源的高度提纯或化学修饰的物质。我读了半天也没明白植物原料药、植物药原料药和植物药产品这三者到底分别是指什么,三者之间是什么关系,请教高手帮忙解释一下。万分谢谢!!!

  • 【转帖】土壤植物机器系统技术国家重点实验室通过验收

    [table=710][tr][td]科技部门户网站 www.most.gov.cn 2010年08月18日 来源:科技部[/td][/tr][tr][td][/td][td][/td][/tr][/table][table=714][tr][td=1,1,714][align=left] 2010年8月9日,科技部组织专家在北京对土壤植物机器系统技术国家重点实验室进行验收。科技部基础研究司、基础研究管理中心、国资委规划局、中国机械工业集团有限公司等相关负责同志参加了验收会。验收专家组由来自全国9所大学及研究机构的专家组成,组长由中国工程院院士、东北农业大学蒋亦元教授担任。 专家组认真听取了实验室的建设情况报告,现场考察了实验室。专家组认为土壤植物机器系统技术国家重点实验室围绕发展现代农业的重大需求,以农业机械与土壤、植物、投入物和环境的相互作用规律及机理为主要研究对象,开展土壤-植物-机器系统应用基础、土壤和植物信息获取与病虫草防控技术与装备、农业雾化工程技术与装备、农业装备智能化技术四个方向的研究工作。研究方向定位准确,研究目标符合现代农业发展要求。建设期内,实验室承担了一批国家级科研项目,在自主研发实验设备和装置方面突出;形成了合理的学术梯队;建立了良好的运行机制;依托单位对实验室建设高度重视,给予了大力的支持。专家组一致同意该实验室通过验收。同时,专家组就加强农机与农艺结合,加强创新性技术研究等方面提出了中肯的建议。[/align][/td][/tr][/table]

  • 到底氢化植物油属不属于植物油

    最近在做反式脂肪酸,植物油不饱和脂肪酸,氢化植物油加氢变饱和按照GB/T 22110的方法,它是强调只适用于植物油以及含植物油食品,不适用于动物油制品然后GB/T 22110是用十三烷酸做内标的,我用SN/T 1945做烘烤糕点时提取的脂肪衍生是没有十三烷酸,而氢化植物油和代可可脂衍生后是含有十三烷酸的那GB/T 22110还适用于氢化植物油或代可可脂制品吗?

  • 手持式植物养分速测仪如何检测植物叶面温度

    手持式植物养分速测仪如何检测植物叶面温度

    [size=16px]  手持式植物养分速测仪如何检测植物叶面温度  手持式植物养分速测仪通常不用于测量叶面温度,而是用于测量植物的营养元素含量、叶绿素含量等参数。要测量叶面温度,通常需要使用红外热像仪或红外温度计等专门的仪器。以下是如何使用红外热像仪来测量植物叶面温度的一般步骤:  准备手持式植物养分速测仪:  打开手持式植物养分速测仪,并确保它已经达到稳定的工作状态。  根据仪器的使用说明,进行必要的校准和设置。  准备测量环境:  在测量之前,确保测量环境没有明显的干扰因素,如直射阳光、风、或其他热源。  将手持式植物养分速测仪对准要测量的植物叶面区域。  进行测量:  按下手持式植物养分速测仪上的触发按钮来拍摄或记录叶面的红外热图像。  等待仪器处理图像数据,以获取叶面温度信息。  手持式植物养分速测仪可以直接显示叶面温度,而其他仪器可能需要将数据传输到计算机或移动设备上进行分析。  分析结果:  分析所获得的红外热图像,查看叶面温度的分布情况。  记录或分析所需的温度数据,以了解植物的温度状况。  云唐手持式植物养分速测仪能够测量物体表面的温度,因此可以用于监测植物叶面的温度分布,以帮助农业和植物研究人员更好地理解植物的生长和健康状态。要获得准确的叶面温度数据,确保仪器的使用和环境设置是适当的,并根据仪器的说明进行操作。[img=,690,690]https://ng1.17img.cn/bbsfiles/images/2023/09/202309181128595765_5081_6098850_3.jpg!w690x690.jpg[/img][/size]

  • 便携式光合测定仪适用于什么植物

    [font=-apple-system, BlinkMacSystemFont, &][color=#05073b][size=16px]  便携式光合测定仪适用于什么植物,便携式光合测定仪是一种现代化的科研工具,因其小巧轻便、易于携带、智能化程度高以及稳定性强等特点,在植物生理生态学研究中有着广泛的应用。以下是关于便携式光合测定仪适用的植物类型及相关信息:  适用植物类型:  便携式光合测定仪可广泛应用于各种植物,包括但不限于大田作物、果蔬、蔬菜、牧草、观赏植物等。该仪器主要用于测量不同植物的叶片光合速率、蒸腾速率、气孔导度等关键参数。  具体应用场景:  农林业:科研人员可利用该仪器对农作物叶片的光合速率、气孔导度、胞间二氧化碳浓度等参数进行精确测量,评估不同品种的适应性、抗逆性以及产量潜力。同时,通过测定不同生长环境下的光合参数,为优化农作物的种植管理提供科学依据。  生态学:生态学家可利用该仪器研究不同生态系统中植物的光合作用特性,了解生态系统对气候变化的响应机制。例如,通过测定不同海拔、纬度或土壤类型下的植物叶片光合参数,揭示生态系统结构、功能以及生物多样性的变化规律。  园艺和草地科学:该仪器可用于研究观赏植物和牧草的光合作用特性,为品种改良和种植管理提供理论依据。  测量参数:  便携式光合测定仪能够测量的参数非常丰富,包括但不限于CO2浓度、H2O浓度、空气温度、叶片温度、相对湿度、蒸汽压亏缺、露点温度、大气压、内置光强、外置光强、净光合速率、蒸腾速率、胞间CO2浓度、气孔导度等。这些参数能够全面反映植物的光合作用状况,为科研工作者提供宝贵的数据支持。  特点:  该仪器具有便携性、智能化程度高、稳定性强等特点,适用于野外试验、现场监测等多种环境。同时,它支持活体、离体测量,并且室内外两用,满足了科研工作的多样化需求。  综上所述,便携式光合测定仪适用于多种类型的植物,包括但不限于大田作物、果蔬、蔬菜、牧草等,能够为科研人员提供全面、准确的光合作用相关参数数据,对于植物生理生态学研究具有重要意义。[img=,690,690]https://ng1.17img.cn/bbsfiles/images/2024/06/202406131145594548_7165_6098850_3.jpg!w690x690.jpg[/img][/size][/color][/font]

  • 植物消解问题

    测定水生植物体内重金属含量。植物前处理:植物为某湖泊沉水植物,采集来之后55度过夜烘干,磨碎。消解称取0.2g样品,消解试剂为5mL硝酸+3mL双氧水+1mL盐酸,过夜预消解;之后用CEM公司的MARS5 微波消解,程序:25min阶梯升至180度、180度保持5min。之后发现消解罐侧壁通红(浓硝酸挥发),消解液溶液大约剩有3-5mL。消解液呈淡黄色,但是溶液里有大量絮状白色沉淀物。遂即又加了1mL HF电热板消解,始终未见沉淀消失。请问这是不是消解不完全,如果是的话,消解时间大约是多少?我怀疑是不是植物体内盐度太高,溶液过饱和析出的缘故?我加了水发现溶液开始变的澄清,但是盐度仪没有读数(超出检测限)。当稀释了近50倍的时候发现此时含盐量为48.6g/L.请问这种分析有没有道理?应该怎么判断呢?按说植物是很好消解的呀,为什么我试了次都不行呢?

  • 与机织物比较,针织物具有以下特性!

    与机织物比较,针织物具有以下特性:(1)、针织物的脱散性:针织物的线圈断裂或失去串套联系时,线圈在横向外力作用下会依次由串套的线圈中脱出,分离解体。(2)、针织物的卷边性:针织物在自由状态下,布边会发生包卷。由热塑性纤维制成的针织物,经热定型处理,卷边性减少。(3)、针织物的歪斜性:针织物在自由状态下,线圈会发生纵行歪斜。纵、横向密度大时,线圈的歪斜性变小

  • 植物及植物提取物糖类检测

    [font=&][size=16px][color=#333333]点击链接查看更多:[url]https://www.woyaoce.cn/service/info-39931.html[/url]服务背景[/color][/size][/font][font=&][color=#333333][/color][/font]糖类是自然界中广泛分布的一类重要的有机化合物,又称碳水化合物,是多羟基醛或多羟基酮及其缩聚物和某些衍生物的总称。糖类在生命活动过程中起着重要的作用,是一切生命体维持生命活动所需能量的主要来源。植物中最重要的糖是淀粉和纤维素,动物细胞中最重要的多糖是糖原。[font=&][size=16px][color=#333333]检测内容[/color][/size][/font][font=&][color=#333333][/color][/font]总糖含量检测可溶性总糖含量检测还原糖含量检测糖组分(葡萄糖、果糖和蔗糖)单糖组分检测(DL-木糖、DL-木糖、蔗糖、鼠李糖、 阿拉伯糖、麦芽糖、棉子糖、D-半乳糖、甘露醇、海藻糖、D-山梨醇、D-果糖)多糖含量检测可溶性固形物含量检测β-葡聚糖含量检测多糖检测植物样本:植物干样、鲜样[font=&][size=16px][color=#333333]检测标准[/color][/size][/font][font=&][color=#333333][/color][/font][table][tr][td]产品名称[/td][td]检测项目[/td][td]检测标准[/td][/tr][tr][td]植物[/td][td]总糖含量检测 可溶性总糖含量检测 还原糖含量检测 糖组分(葡萄糖、果糖和蔗糖) 单糖组分检测(DL-木糖、DL-木糖、蔗糖、鼠李糖、 阿拉伯糖、麦芽糖、棉子糖、D-半乳糖、甘露醇、海藻糖、D-山梨醇、D-果糖) 多糖含量检测 可溶性固形物含量检测 β-葡聚糖含量检测[/td][td]实验室方法[/td][/tr][/table][font=&][size=16px][color=#333333]我们的优势[/color][/size][/font][font=&][color=#333333][/color][/font]菲优特检测服务形式委托检测:环境检测、食品/医药/保健品检测、化工检测、水产养殖检测、微生物检测等。科研服务:高校科研服务(氨基酸类、维生素类、脂肪类、糖代谢类、有机酸类、动/植物激素类、核苷酸类、生物胺类、花青素类、黄酮酚酸类、皂苷类、氮代谢类、植物提取物类、神经递质类等。生物项目研发(毒理测试、动物饲养、动物模型构建、保健食品功能性评价服务、动物实验技术服务等)。仪器共享:HPLC检测平台、[url=https://insevent.instrument.com.cn/t/Yp][color=#3333ff]LC-MS[/color][/url]检测平台、[url=https://insevent.instrument.com.cn/t/bp][color=#3333ff]GC-MS[/color][/url]检测平台、动物实验服务平台。方法开发及咨询:实验室检测方法开发和应用、实验室管理咨询和培训、质量控制咨询与培训、实验仪器配置和选型等

  • 【分享】植物奶油虽美味却亟待立法规范

    据中国之声《新闻纵横》报道,由于上高中的的女儿钟情于蛋糕、饼干、奶茶等速食,身为母亲的杨女士每个星期都要去超市做一次食品大采购。最近她了解到许多食品中都添加了一种叫做"植物奶油"的成分,于是在采购的过程中特别留意了一下,不看不知道,一看吓一跳:面包,饼干,薯片,方便面,巧克力,咖啡以及速冻食品中,“植物奶油”字眼随处可见。杨女士直言,她平时真的没有注意到,否则也不会给女儿吃这么多的零食了。  不看不知道 一看吓一跳  杨女士:现在是知道这个植物奶油的危害了,但是都吃了这么多年了没有人去提醒我们不要吃,本来是对孩子好,谁知道最后恰恰相反了。  植物奶油是以大豆等植物油和水、盐、奶粉等加工而成的一种添加剂,它有一个化学名称叫做氢化油,俗称"植物奶精"、也被称作"植脂末"、"起酥油"、"植物奶油"、"植物黄油"等等。科学家发现氢化油因为是"假油",所以无法被身体分解,也无法被代谢出去,最后只能留在体内,囤积在细胞或血管壁上产生反式脂肪酸。美国哈佛大学医学院发现:反式脂肪酸除了增加心血管疾病的危险性外,还会干扰必要脂肪酸的代谢,影响儿童的生长发育及神经系统健康,增加2型糖尿病的患病风险并导致妇女不孕,有科学家甚至把氢化油和杀虫剂相比。中国人民解放军总医院营养微量元素研究室主任赵霖:  任赵霖:氢化油这个东西是1869年发明的,50年以后美国大量食用,就在1993年哈佛大学做了一个研究,发现美国妇女的心脏病和人造奶油就是植物奶油的摄入量有关系,我们国家现在95%的糖尿病都是2型的,我们也是认为很可能这些东西长期吃有关系的。  在山师东路附近的多家小蛋糕店调查时,记者发现几乎所有蛋糕都是植物奶油制作。而在省体育中心一家连锁蛋糕店内,十几分钟内就卖出了好几个生日蛋糕,名牌蛋糕是否就值得信任呢?当记者问及这些蛋糕的奶油是什么奶油时,店员表现的十分敏感,并且说不上来到底是什么奶油。  记者:这个蛋糕用的是植物奶油吗?  店员:不是植物奶油。  记者:那是什么奶油呢?  店员:都是鲜奶里面提取的,具体是什么奶油我不清楚,反正不是电视上说的那种。  90%的冰淇凌 80%的人造奶油 71%的饼干均检出含有植物奶油  在国外很多国家,早就有对于反式脂肪酸和氢化油的限定。2003年丹麦率先规定,市场上任何含反式脂肪酸超过2%的油脂都被禁止;同年,美国食品和药品管理局也规定,食品营养标签中必须标注产品的饱和脂肪酸含量及反式脂肪酸的含量。此后,加拿大、荷兰、法国、瑞典等也作出相关规定。  但在中国,氢化油仍在普遍使用。有关专家曾做了调查,约90%的冰淇凌、80%的人造奶油、71%的饼干均检出含有植物奶油。  对此,山东经贸学院食品营养与科学专业教师邓健建,国家应该尽快出台相关标准,明确植物奶油的概念,让不安全食品远离餐桌:  邓健建:由于相关的法律法规还没有出台,某一个厂家生产的植脂奶油中到底有含不含氢化植物油我们是不知道的,希望国家有关部门能对此进行界定。让老百姓真正明白什么是营养、什么是干净卫生的食品,同时国家在立法上面也要形成自己的管理机制,让不安全的食品远离我们的餐桌。

  • 【分享】不同环境污染物的吸附类植物或敏感性植物

    1.二氧化硫: ①抗性强的植物:大叶黄杨、雀舌黄杨、瓜子黄杨、海桐、蚊母、山茶、女贞、小叶女贞、枳橙、棕榈、凤尾兰、夹竹桃、枸骨、枇杷、构树、无花果、枸杞、白蜡、木麻黄、相思树、榕树、十大功劳、九里香、侧柏、银杏、广玉兰、北美鹅掌楸、柽柳、梧桐、重阳木、合欢、皂荚、刺槐、国槐等。 ②敏感的植物:苹果、梨、羽毛槭、郁李、悬铃木、雪松、油松、马尾松、云南松、落叶松、白桦、樱花、毛樱桃、贴梗海棠、梅花、玫瑰、月季等。 2.氯气: ①抗性强的植物:龙柏、侧柏、大叶黄杨、海桐、蚊母、山茶、女贞、夹竹桃、凤尾兰、棕榈、构树、木槿、紫藤、无花果、樱花、枸骨、臭椿、榕树、九里香、小叶女贞、丝兰、广玉兰、柽柳、合欢、皂荚、国槐、黄杨、白榆、丝棉木、正木、沙枣、苦楝、白蜡、杜仲、厚皮香、桑树、柳树、枸杞等。 ②敏感的植物:池柏、薄壳山核桃、枫杨、小锦、樟子松、紫椴、赤杨等。 3.氟化氢: ①抗性强的植物:大叶黄杨、海桐、蚊母、山茶、凤尾兰、瓜子黄杨、龙柏、构树、朴树、花石榴、石榴、桑树、香椿、丝棉木、青冈栎、侧柏、皂荚、国槐、柽柳、木麻黄、白榆、正木、沙枣、夹竹桃、棕榈、红茴香、杜仲、细叶香桂、红花油茶、厚皮香等。 ②敏感的植物:葡萄、杏、山桃、榆叶梅、紫荆、梓树、金丝桃、慈竹、池柏、白千层等。 4.乙稀: ①抗性强的植物:夹竹桃、棕榈、悬铃木、凤尾兰、女贞、榆树、枫杨、重阳木、乌桕、红叶李等。 ②敏感的植物:月季、十姐妹、大叶黄杨、苦栎、刺槐、臭椿、合欢、玉兰等。 5.氨气: ①抗性强的植物:女贞、樟树、丝棉木、腊梅、柳杉、银杏、紫荆、杉木、石楠、石榴、朴树、无花果、皂荚、木槿、紫薇、玉兰、广玉兰等。 ②敏感的植物:紫藤、小叶女贞、杨树、虎杖、悬铃木、薄壳山核桃、杜仲、珊瑚树、枫杨、芙蓉、栎树、刺槐等。

  • 植物分类系统与化学成分的关系

    现代植物分类是按照植物形态的异同、习性的差别以及亲缘关系的远近系统排列的。因此,一般说来,在植物分类系统中位置愈接近的植物,它们的亲缘关系就愈接近。植物分类系统与化学成分的关系,实际上是指植物亲缘关系与化学成分的关系。    各种植物由于新陈代谢类型的不同,产生了各种不同的化学物质——生物碱类、甙类、萜类等等。这些化学成分在植物中的遗传和变异,是与植物系统位置、植物的环境条件(气候、土壤与生物等)密切有关的。植物分类系统与化学成分的关系可大致归纳为下述几个方面:  1.每一种植物在恒定的环境条件下、具有制造一定的化学成分的特性,而这个特性是这种植物的生理生化特征。如颠茄产生莨菪烷衍生物类生物碱,人参产生三萜类皂甙,薄荷产生萜类等等。  2.亲缘关系相近的植物种类由于有相近的遗传关系,往往具有相似的生理生化特征。亲缘关系愈近,共同性愈多;亲缘关系愈远,共同性愈少。如异喹啉类生物碱主要分布于多心皮类及其近缘类植物的一些科中,如木兰科、睡莲科、马兜铃科、防已科、毛莨科、小檗科、罂栗科、芸香科等。这些科中的生物碱的化学结构也显示相互之间有紧密的亲缘关系,与产生它们的植物科之间的亲缘关系一致。吲哚类生物碱中最大的一族为鸡蛋花烃(Plumerane)型吲哚生物碱,这族生物碱仅存在于夹竹桃科中的鸡蛋花亚科植物中。同属植物的亲缘关系很相近,因而往往含有近似的化学成分。如小檗属(Berberis)植物含小檗碱,大黄属(Rheum)植物含羟基蒽醌衍生物等等。  3.一般说来与广泛存在于植物界的代谢产物有更近似化学结构的简单化学成分(如黄嘌吟与咖啡碱化学结构很近似),在植物界的分布较广,分布的规律性不明显。有些化学成分在系统发育过程中,经过一系列的突变,因而结构也较复杂,如马钱子碱、奎宁等。这类物质的分布往往只限于某一狭小范围的分类群中。但某些起源古老的成分,虽经一系列突变,结构亦较复杂,但它们在植物界中的分布,还是有一定范围的,而且这种类型成分与植物亲缘之间的联系表现得更为明显和突出,例如上述异喹啉类生物碱的分布。  植物分类系统与化学成分间存在着联系性这一概念,已广泛应用于药用植物的研究、野生资源植物的寻找等方面。如具有降压与安定作用的蛇根碱(Reserpine)自印度的夹竹桃科萝芙木属植物蛇根木Rauvolfia serpenitina (L.)Benth ex Kurz中发现后,从该属的其他约20种植物中亦发现了利血平,并根据植物的亲缘关系在萝芙木属的两个近缘属中找到了同类生物碱。为了发掘具抗菌作用的小檗碱的资源植物,经植物分类学与植物化学综合研究,发现小檗碱在中国主要分布在5个科(小檗科、防已科、毛莨科、罂粟科、芸香科)16个属的多种植物中,而以小檗科小檗属较理想。又据研究,莨菪烷类生物碱主要集中分布于茄科茄族(So1aneae)中的天仙子亚族(Hyoscyaminae)、茄参亚族(Mandragorinae)及曼陀罗族(Datureae)植物中,并发现了含碱量较高,有生产价值的新原料植物——矮莨菪(Przewalskia shebbearei(C.E.C.Fischer) Kuang, ined)及马尿泡(P. tangutica Maxim.)。再如生产可的松等激素药物的原料——甾体皂甙,不仅在薯蓣属(Dioscorea)的几十种植物中有发现,而且在亲缘关系相近的一些科中也有发现。必须注意的是,植物的系统发育与其所含化学成分的关系是十分复杂的。由于植物界系统发育的历史很长,发掘出来的古生物学资料不够齐全,加上多数植物的化学成分尚未明了,有些成分的分布规律还未被揭示及认识,所以,有关植物的系统发育与化学成分的关系的研究尚未成熟,有待于进一步研究。在应用植物分类系统与化学成分间的联系性时,必须具体问题具体分析。  近年来,在植物分类学与植物化学这二门学科间出现了一门新的边缘学科——植物化学分类学(P1ant chemotaxonomy)。它的主要研究任务是:  (1)探索各级分类群(如科、属、种等)所含化学成分(包括主要成分、特有成分和次要成分)及其合成途径。   (2)探索各种化学成分在植物系统中的分布规律。  (3)在以往研究的基础上,配合传统分类学及各有关学科,从植物化学成分的角度,共同探索植物的系统发育。  显然,这一新兴学科在认识植物系统发育方面有重大的理论意义,并可为有目的地开发、利用植物的资源、寻找工业原料等提供理论依据。例如通过对毛莨科与单子叶植物的百合目植物所含生物碱、甾体化台物、三萜化合物、氰醇甙和脂肪酸等五类化学成分的比较分析,发现二者具有很多类似的化学成分,有的成分甚至仅仅为它们所共有。联系到百合目与毛莨科的一些原始类群在形态和组织解剖上的某些相似性,从而认为二者有着十分密切的亲缘关系,即单子叶植物通过百合目起源于原始的毛莨科植物。这一研究结果在了解客观存在的植物系统发育的真实情况方面,具有一定的理论意义。  又如根据国内外在药用植物研究工作方面的大量实践、目前从中国药用植物中大致归纳出一些具重要生物活性的成分(生物碱、黄酮类、萜类、香豆精等)及药理作用的植物类群。由此可见,植物化学分类学是一门富有活力的新学科,它的研究成果值得药用植物学与药用植物化学工作者重视与运用。

  • 求助:植物样品前处理

    我要测植物中的氮磷,还有Cu,Pb,Zn,Cd,As等重金属 在40度烘箱内烘,会不会对氮磷有影响? 植物样品烘干后 研磨碎怎么这么难 一般是不是还要过40目尼龙筛? 尼龙筛哪里能买到?一般的仪器店怎么都没有尼龙筛,都是不锈钢的 有谁有关于植物样品前处理的资料, 请各位多多指教,多谢!

  • 【转帖】华南植物园发现新的重金属超富集植物

    由于工矿企业的发展,农业化肥的过量使用,污水灌溉等,中国乃至世界的土壤重金属污染越来越严重。植物修复技术是目前重金属污染治理的研究热点,它具有治理效果的永久性、治理过程的原位性、治理成本的低廉性、环境美学的兼容性、后期处理的简易性等优点。这个技术成功的关键在于寻找超富集植物。虽然目前全世界已发现400多种超富集植物,但是大多数超富集植物都有生物量小,生长缓慢,弱抵抗力,种子少,缺乏与当地植物竞争的能力等缺点,所以能够真正应用于植物修复技术的超富集植物并不多。因此采用更有效的方法来筛选更多超富集植物是非常必要的。 华南植物园土壤生态与生态工程研究组博士研究生张杏锋在导师夏汉平研究员的指导下,首次提出了用土壤种子库-重金属浓度梯度法来筛选重金属超富集植物并成功找到一种Cd的超富集植物—少花龙葵(Solanum photeinocarpum)。该方法是指利用土壤种子库筛选对重金属具有超富集特性的植物,然后通过重金属浓度梯度实验对其超富集特性进行验证。结果发现,当土壤Cd 浓度为60mg/kg时,少花龙葵的生长未受影响,根部Cd含量高达473mg/kg,茎、叶和地上部Cd含量分别达215、251和230mg/kg。在两个浓度梯度实验中少花龙葵地上部Cd含量均超过Cd超富集植物的临界含量标准(100mg/kg),具有Cd超富集植物的基本特征,是Cd的超富集植物。

  • 植物样品测定

    麻烦大家,想请教一下,我最近需要测植物中重金属,需要采用微波消解法对植物进行预处理,我有很多疑问:首先,我看到很多文献中都提到了要同时做试剂空白实验,这里我不太理解,试剂空白指的是在消解管中加入与样品质量相同的去离子水,并加入相同的试剂,随后与样品在同样的条件下消解,赶酸,定容么?其次,有的文献中还同时做了质量控制样品的消解,想问这个一定要做么,如果必须做的话,质量控制样品怎么选择呢?最后,有的文献中还计算了加标回收率什么的,我就是仅仅想要得到植物中重金属浓度,那这些还必须要计算么?希望大家能帮我解答一下,谢谢了

  • 【求助】植物组织消解问题

    用干法消化植物组织,根据国标方法,高温消化多个小时后,加入稀硝酸溶解,但是很多不溶物,为什么呢?茎叶是已经灰白色了,植物茎还是有明显褐色物质……请有经验者帮分析一下,谢谢!

  • 植物甾醇的作用

    [color=#333333]植物甾醇能够抑制胆固醇的吸收,从而降低胆固醇。植物甾醇广泛存在于油脂和植物性食物中,例如米糠油、玉米油、芝麻油、蔬菜、水果、豆类、坚果及谷物。[/color]

  • 【分享】从植物中提取食品添加剂的发展动向

    功能性食品和饮料是当今国内外食品工业新的增长点。鉴于近年消费者对食品安全的关注,因而从天然物中提取,特别是从通常食用的植物中提取功能性食品添加剂和配料,也自然成为国内外开发的热点。  本文介绍了近年国内外从天然植物中提取功能性食品添加剂的发展动向,以及几种具有开发前景的食用植物提取物:绿茶提取物茶多酚、葡萄皮及籽的提取物、大豆异黄酮、番茄红素及植物甾醇的功能和发展动向。  1 天然植物提取物的国际发展动向  在西方国家,由于不合理的饮食结构,脂肪和蛋白质摄入过多,超体重者和高血脂、高血压患者比较普遍,所以欧美一直十分强调低热量、低脂肪食品和添加剂的开发。  以糖醇类食糖替代物生产无蔗糖甜食品,用菊粉等产品的代脂肪食品,还有用中碳链脂肪酸合成的低热量脂肪等,在国际上均占有领先地位。但过去很长一段时间,对采用具有生理活性的天然提取物,并不十分重视和提倡。在亚洲国家,有药食同源的传统,注重保健、功能食品的开发。  功能性食品添加剂,特别是一些天然提取物的明显功效,也得到国际的公认。因此大量保健功能食品,以食物补充剂的方式进入美国和国际市场。近年在环保、安全、回归大自然的影响下,西方国家也不甘落后,致力于天然提取物的开发,对中国传统的食药两用的植物,也开展了深入的研究。目前已有不少天然提取的功能性食品添加剂,从欧美进入中国市场。  2000年和2002年两届欧洲健康食品添加剂配料展览,参展企业400多家。从展出的产品看,天然提取物非常突出。如展台中有植物提取物74处、植物化学品31处、天然抗氧剂75处、膳食纤维44处、大豆异黄酮38处。  展出产品中比较热门和突出的有:标示有妇女保健、降低血脂、改善心血管疾病、改善骨质疏松4大功能的大豆异黄酮;有护眼功能的叶黄素;消除自由基抗氧化活性高于维生素E100倍的番茄红素等。2002年6月在美国IFT的展出,包括食物补充剂、含有生理活性物质的功能性饮料和食品、植物提取的天然色素和抗氧剂、果蔬加工品(脱水物和微粉)、生物合成的功能低聚糖和肽等。  2002年8月在西安,由中国食品科学技术学会主持召开的“功能食品科技与发展国际研讨会”上,参加会议的有我国(包括台湾地区)、日本、美国、加拿大的专家学者150人左右。主要新技术新产品的报告,绝大多数是关于天然物或其提取物的。如植物异黄酮和骨质疏松症、酶法提取番茄红素、灵芝抗癌机制、枇杷叶提取物改善动物糖代谢、美国加州杏仁多功能、山药的抗氧化活性、白黎芦醇对骨代谢的影响、生物合成伽玛氨基丁酸、竹叶抗氧剂、香椿萃取液对人类精子运动能力影响的研究等。

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制