当前位置: 仪器信息网 > 行业主题 > >

植物果实

仪器信息网植物果实专题为您整合植物果实相关的最新文章,在植物果实专题,您不仅可以免费浏览植物果实的资讯, 同时您还可以浏览植物果实的相关资料、解决方案,参与社区植物果实话题讨论。

植物果实相关的资讯

  • 植物茎流仪、果实生长变化仪、茎秆生长变化计应用于上海市农科院
    2020年5月,我公司为上海果蔬种植基地(上海清澄果蔬专业合作社)提供植物茎流仪、果实生长变化仪、茎秆生长变化计等数据采集系统。 上海清澄果蔬专业合作社占地面积480亩,先后被评为中国农业部和财政部现代农业产业技术示范基地、市农业技术推广服务中心先进科技示范户、2017年上海农业科学院梨树试验示范基地等多项荣誉。合作社坚持农旅结合,打造特色农业生态合作社,并利用网络平台开设微店,生产的各种特色果品深受市民喜爱。 PEM1000X植物生理生态监测系统是北京博伦经纬公司推出的一款新型的植物生理生态监测系统,分别有监测部分、采集部分、传输部分组成,监测部分包括:各种传感器和供电部分;采购部分包括:数据记录仪、数据存储部分和支架配件部分;传输部分包括:有线传输和无线传输。此系统包括:茎秆生长变化、果实生长变化、茎流等指标,可根据客户的需要酌情添加或减少传感器,可以长期地监测植物的生理变化和影响植物生长变化的监测系统。HPV茎流量传感器是一款校准型、低成本的热脉冲液流传感器,输出校准液流量、热速、茎水含量、茎温等数据,功耗低,内置加热控制,同时改善了传统的加热方式,其原理采用热脉冲速率法(HPV),测量范围:-200~+1000cm/hr(热流速度)或-100~+2000cm3/cm2/hr (茎流通量密度),可广泛用于于茎流量监测、植物茎流蒸发计算、植物茎流蒸腾量、植物灌溉等植物茎流是树木内部的“水”运动,而蒸腾是从叶片通过光合作用蒸发流出的水分。树液流量和蒸腾量之间有很强的关联性,通常理解是同一回事。但是,严格地说,它们是不同的,这体现在它们是如何被测量的。SAP流量以L/hr(或每天、每周等)为单位进行测量。蒸腾量以每小时、每天、每星期等毫米(mm)为单位测量。 蒸散量=蒸腾量+蒸发量 蒸腾量以毫米为测量单位,可与降雨量以毫米计作比较。随着时间的推移,降雨量(水输入)应与蒸腾量(输出)相匹配。如果蒸腾作用更高,通常是树木作物的蒸腾作用,那么这种差异必须通过灌溉来弥补。 蒸发量(evaporation),蒸发量是指在一定时段内,由土壤或水中的水分经蒸发而散布到空中的量。1mm(降雨量)=1㎡地面1kg水1mm(蒸腾量)=1㎡叶面积的1升树液流量(水) 例如:在果园和葡萄园等有管理的树木作物系统中,蒸发量与蒸腾量相比非常小。因此,为了简化测量,通常忽略蒸发量,将蒸腾量取为平均蒸散量(ETo)。 技术指标测量范围:-200~+1000cm/hr(热流速度)分辨率:0.001cm/hr准确度:±0.1cm/hr探针尺寸:φ1.3mm*L30mm温度位置:外10mm,内20mm针距:6mm探针材质:316不锈钢温度范围:-30~+70℃响应时间:200ms加热电阻:39Ω,400J/m电源:12V DC电流:空闲5mA, 测量270mA线缆:5m,Max 60mDE-1T 树木生长变化传感器茎秆直径范围:60mm茎秆变化测量范围:0~10mm分辨率:0.005mm温度响应: 0.02% /℃工作环境:0~50℃预热时间:5s电源:10~30V DC功耗:1.5W防护等级:IP64尺寸:90 W × 60 H × 23 Dmm测量杆尺寸:160 L × 4Φ螺纹管口尺寸:10 L × 5Φ标准线缆:4m长,可选择10mFI-LT果实生长传感器是一个系列位移传感器,主要用于记录完全圆形的果实的生长尺寸和生长速度,在7 -160毫米范围内,通过三个直径变化测量。移动臂原始设计为平行四边形,提供牢固的笔直的传感器位置,用于果实研究。FI型传感器由一个安装在特殊夹子上的LVDT变送器,以及一个DC电源信号调节器组成。测量范围:30~160mm分辨率:0.065mm准确度:±0.3mm温度响应: 0.02% /℃工作环境:0~50℃预热时间:5s电源:10~30V DC功耗:1.5W防护等级:IP64标准线缆:4m长,可选择10m
  • 台湾地区修订输入植物或植物产品检疫规定
    台湾地区修订输入植物或植物产品检疫规定,4月1日生效   2013年3月18日,台湾地区“行政院农业委员会”发布农防字第1021490147号公告,修订“输入植物或植物产品检疫规定”,并自2013年4月1日生效。修订要点如下:   1. 订定“澳大利亚产苹果鲜果实输入检疫条件”。   2. 修正“甲、禁止输入之植物或植物产品”第一点第三十一项“国家或地区栏”规定,增列美国科罗拉多州除外规定。   三、修正“甲、禁止输入之植物或植物产品”第一点第四十六项及“乙、有条件输入之植物或植物产品”第二点第五项“国家或地区栏”规定,增列美国马塞诸塞州Worcester郡及俄亥俄州Clermont郡为光肩星天牛疫区,另纽约州Suffolk郡自疫区删除。   四、修正“乙、有条件输入之植物或植物产品”第一点第一项“检疫条件栏”规定,增列澳大利亚产苹果依澳大利亚产苹果鲜果实输入检疫条件办理输入规定。   五、修正“乙、有条件输入之植物或植物产品”第一点第二十三项“国家或地区栏”规定,增列以色列及韩国为细菌性果斑病疫区。   六、修正“乙、有条件输入之植物或植物产品”第一点规定,增列第三十五项马铃薯斑纹病规定。   七、修正“乙、有条件输入之植物或植物产品”第五点规定,增订未带地下部与果实的蔬菜及食用菌的子实体免办理首次输入风险评估的除外规定。   八、修正“乙、有条件输入之植物或植物产品”第十点检疫有害生物清单,于病毒类增列四种有害生物名单,及于杂草类增列四十三种有害生物名单 另于真菌类删除栎树猝死病菌(Phytophthora ramorum)。   详情参见:http://www.xmtbt-sps.gov.cn/download.asp?id=5897
  • 浙江大学研制出植物可穿戴径流传感器
    最近,浙江大学生物系统工程与食品科学学院IBE团队刘湘江、应义斌,信息与电子工程学院汪小知和农业与生物技术学院胡仲远,为植物联合发明一款穿戴式“电子皮肤”。时至今日,通过穿戴电子设备监测心率、脉搏等,已经成为健康管理的重要一环。  这种植物可穿戴茎流传感器,通过将柔性穿戴电子技术应用到植物体表,成功在自然生长状态下,首次持续监测草本植物体内水分的动态传输和分配过程。同时,科研人员还发现植物果实生长与光合作用不同步的现象,这不仅改变人们长期以来对植物生长发育过程的基本认识,更将为作物高产育种及栽培技术研发提供新的思路。  这项研究,近日刊发在《先进科学》上。  柔性传感器实现植物生理监测  众所周知,血液是维持人体生命活动的重要物质,通过血液循环能够把人体所需要的各种营养物质,运输到各个组织和器官。  植物也有类似也“血液”的物质,被称为茎流,是植物在蒸腾作用、渗透势等内外部压力下茎秆中产生的上升液流。茎流也是植物水分、养分、信号分子运输的载体。因此,实现对茎流的长期实时监测就能够探究植物生长过程水养分分配、信号传导以及植物对环境的响应机制等奥秘。  然而,现有的茎流检测方法多为大型侵入式探测器,在测量时会对植物造成物理伤害,而且仪器体积大限制了它们在草本植物上的应用。很长一段时间内,科学界没有一种方法可以在自然生长状态下长期监测植物茎流。  为了解决这一难题,来自浙江大学的智能生物产业装备创新团队(IBE)、智能传感与微纳集成团队、蔬菜种质创新与分子设计育种团队开展了跨学科交叉研究,针对植物茎秆特殊的生理特性,利用芯片级的微纳加工工艺,制备了一种植物可穿戴式茎流传感器。  这款传感器薄如蚕翼,厚度仅0.01毫米,重0.24克,如同“纹身”一样,能贴附在植物茎秆表面进行茎流监测。  另一个工程难题是避免传感器对植物生理产生影响。研究团队通过特殊设计,使得植物正常生长发育所需的阳光、氧气、水和二氧化碳能够自由通过传感器,实现了传感器与植物的长期“和平共处”,最终实现在自然生长状态下长期观察茎流的目的。  “这项工作为今后研制植物可穿戴传感器提供新的研究范式。”汪小知介绍,未来如何针对特定植物表面结构和生理特性,设计制备可穿戴传感器,如何评估传感器对植物生长和生理的影响,都可以从他们的研究中找到技术路径。  发现西瓜生长竟在夜晚生长  工欲善其事必先利其器,有了这么好的检测“传感器”,科研团队开展了一系列丰富的研究。  浙大科研人员在西瓜茎干上几个关键位点部署了茎流传感器,长期无损的观察了水分在西瓜叶片、果实、茎秆等不同器官上的动态分配情况。通过对茎流数据的分析,研究团队首次发现了西瓜果实生长与光合作用不同步的现象。  西瓜果实绝大部份是水(95%左右),然而径流传感器测量发现:在白天只有极少部分水被运输入果实用于生长(5%),绝大部份水被叶片蒸腾作用消耗掉 但是到了夜间,几乎所有的水分都被运输到果实,绝对茎流量相对日间增加了10倍。  “白天积累的光合产物导致的渗透势差应该是夜晚径流激增的主要原因。同时,夜晚没有蒸腾作用消耗水分,促使大量径流输入到西瓜果实,从而实现了果实的重量增加与体积膨大” 胡仲远表示,这一发现也间接证明西瓜果实生长主要在夜间。  这一发现改写了对于植物果实生长的传统认识。教科书中一般认为,植物生物量积累主要靠光合作用,而夜间以消耗生物量的呼吸作用为主。  这个反常识性的发现不仅具有重要的科学价值,同时具有良好的应用前景。浙大科研团队表示,水是珍贵的农业资源,基于茎流对西瓜等耐旱作物体内水分运输和抗旱机理的解析,将为全球干旱地区的农业生产、节水灌溉、抗旱作物选育提供了新理论依据和技术支持。  该研究受到国家自然科学基金、国家重点研发计划、浙江省重点研发计划的支持。
  • 透射电镜在植物科学中的应用
    近年来,透射电镜在植物研究中应用广泛,但由于植物细胞的生物学特征的特殊性,使植物样品的制备难度增大,针对植物细胞壁坚硬等问题,经过1000多个植物样品的制样和观察,其中包括植物的花粉、茎、叶、根、果实等组织细胞结构,对植物样品的制备技术进行改良,植物样品采用定制化方案,使植物的超微结构形态得到清晰的呈现。应用1:观察植物叶肉细胞的叶绿体和淀粉粒本图主要展示水稻叶片一个完整的叶肉细胞(前,X4000),单个叶绿体和叶绿体中的淀粉粒(后,X20000)本图主要展示拟南芥的叶绿体(前,X6000),单个叶绿体(后,X15000)本图主要展示的叶绿体类囊体(前,X30000),放大图,片层和垛叠(后,X100000)应用2:观察植物细胞的胞间连丝高等植物细胞之间通过胞间连丝相互连接,完成植物细胞间的通讯连接,是细胞间物质运输与信息传递的重要通道;胞间连丝见于所有的高等植物、某些低等植物如有些藻类以及真菌。胞间连丝的主要功能是:①细胞间物质包括小泡的运输和转移;②信息、刺激的传导;③影响细胞的生长、发育和分化。本图主要展示竹子叶片的胞间连丝(前,X5000),放大图(后,X10000)应用3:观察植物下胚轴下胚轴即子叶着生部位(子叶节)与根之间的轴状部分。它与根之间的界限不易区分,但有的植物下胚轴与根之间有轴环存在。通常为根茎之间维管组织发生变化的过渡区段,其内部的维管组织结构复杂,形态多种多样。本图主要展示拟南芥胚轴(前,X6000),放大图(后,X12000)应用4:观察花粉花粉是典型的制备难度较大的透射电镜样品,很难观察到样品的超微结构。本图主要展示一个完整的花药(前,X6000),放大图(后,X25000)应用5:观察植物根、茎、叶本图主要展示玉米束鞘细胞围成的一个完整的花环结构(前,X2500),玉米束鞘细胞和叶肉细胞(后,X6000)。
  • 泽泉科技2016植物生理生态及表型技术研讨会成功举办
    2016年11月21日至11月25日,由上海泽泉科技股份有限公司主办的“2016植物生理生态及表型技术研讨会”分别在北京和上海成功召开。来自全国各地90多家科研单位以及公司的近200位专家学者出席此次研讨会。本次会议旨在更好地服务全国的科研用户,为全国高校、研究所的科研工作提供技术保障,让植物科研领域研究人员更深入地了解最新的产品及测量技术。 北京会场 研讨会期间恰逢年度最强寒潮来袭,但严寒阻挡不了求知的欲望!北京上海两地会场,首日皆有百人与会。多位植物生理生态及表型研究领域的中外专家与参会嘉宾围绕叶绿素荧光测量技术、CID产品技术、气体交换光合仪的原理及实验技巧、植物表型测量技术等内容,进行了深入的沟通和交流。德国WALZ公司应用科学家Oliver Meyerhoff以“植物3D荧光成像技术介绍及样机演示”为题,专业地阐述了3D荧光成像技术的原理、使用技巧及最新应用。果实采后生理是目前研究热点之一,美国CID公司总裁Leonard Felix报告的“美国CID及Felix仪器在植物生理生态及果实采后生理研究中的应用”就引起了与会嘉宾的极大关注,由产品公司总裁亲自讲解不仅保证了报告的专业性、可靠性,而且更体现了泽泉科技对技术提供与售后保障的负责态度。上海慧算生物技术有限公司的张国斌博士带来的讲座“从分子到表型——高通量测序与表型关联分析”,则将与会嘉宾的目光从生理生态研究成功转移到了表型研究上,深入浅出的讲解,让基因研究与表型研究的关系变得更加直观明了。 北京会场参会嘉宾 作为东道主,泽泉科技的技术专家也实力不俗。本次研讨会上,泽泉科技技术专家带来的“CT等新技术在根系研究中的应用”,“种子选育技术”,“CONVIRON植物培养解决方案”,“调制叶绿素荧光和P700测量技术原理及Dual/KLAS-NIR光系统I供体侧、受体侧活性同步测量新技术”,“LemnaTec最新植物表型测量技术”,“气体交换光合仪基本原理、实验技巧及日常维护”等报告内容,不仅专业,而且贴近实际,完美的解决了与会嘉宾遇到的各种科研问题。 上海会场 研讨会期间,泽泉科技在两个会场都设置了展台,不仅展示WALZ、LemnaTec、CID等公司的产品,还为与会嘉宾提供现场仪器体验、讲解与维护保养服务。不论新老客户都得其所需,疑问与困惑由公司技术与国外专程远道而来的专家讲解答疑,已购买的仪器也可以现场调试安装,泽泉科技完美的客户服务受到一致好评。 上海会场 研讨会的最后一项活动是亚洲第一个开放式高通量植物基因型-表型-育种平台——AgriPheno的参观考察。50多位老师在AgriPheno平台专业团队的带领下兴致勃勃地参观了德国LemnaTec植物表型平台(Scanalyzer 3D、HTS、PL)、植物生理生态测量平台、农业云物联网监测平台、荷兰Priva温室精准灌溉系统、专业的数据库平台、步入式培养箱和人工气候室等。一系列的参观项目引起了老师的强烈兴趣,原定的参观时间不得不一次次的延长。AgriPheno平台科研人员专业、详细的讲解获得了老师的交口称赞,许多老师表示平台这种服务模式先进化、人性化,对科研的推动具有不可或缺的价值! 与会嘉宾参观AgriPheno平台 上海会场参会嘉宾 本次研讨会受到全国科研单位老师同学的大力支持,会议获得圆满成功。通过本次植物生理生态及表型技术研讨会,泽泉科技进一步加强了与广大专家学者的合作,将一如既往的为广大客户提供优质的产品和完善的服务。
  • 【赛纳斯】什么是毒 品原植物!
    盼望着,盼望着,二月龙抬头,春风拂柳,万物复苏,在这万紫千红春光灿烂的时节,有些特殊的植物也悄悄“小荷才露尖尖角”,而它们一旦落入不法分子手中,那么就会变成可怕的毒 品.那什么是毒 品原植物呢?毒 品原植物,即用来提炼、加工成鸦片、海洛因、甲基苯丙胺、吗啡、可卡因等麻醉药品和精神药品的原植物。大麻大麻是一年生植物,含有400多种化学物质,其中有60多种具有类似的化学特性,因此被统称为大麻素。吸食大麻的人会出现严重的健康问题,如支气管炎、肺气肿和支气管哮喘。长期大剂量使用大麻可引起脑退行性变化的脑疾病、严重的行为损伤、免疫系统抑制和神经疾病等。罂粟罂粟是一年生草本。叶片碧绿,花朵五彩缤纷,茎株亭亭玉立,葫果高高在上,夏季开花,花大,单生枝顶。花瓣4片,红色、紫色或白色。果实球形或椭圆形,种子小而多。罂粟是制取鸦片的主要原料,从葫果上提取的汁液,可加工成鸦片、吗啡和海洛因。罂粟成为世界上毒 品的重要根源,因而罂粟这一美丽的植物被称为恶之花。古柯植物古柯原产南美洲高山地区,属于当地的一大特产,可以制作成医用局部麻醉剂。古柯叶能够提取出的古柯碱(Cocaine),主要用于制造毒 品可卡因。恰特草巧茶,又名阿拉伯茶、也门茶、埃塞俄比亚茶、恰特草,是一种卫矛科巧茶属的植物,分布在热带非洲、埃塞俄比亚、阿拉伯半岛等地。"巧茶"酷似市场上常见的苋菜,吸毒者可以直接像吃生菜一样嚼食,如果将恰特草晒千,外形又像茶叶一样,但无论是生吃还是晒干磨粉冲服,服食后的效果与海洛因相差无几,毒效惊人且成瘾性大。迷幻蘑菇“迷幻蘑菇”是一种非食用毒草。外形与普通菇相似,茎粗,顶部亦尖长及细小,在一些地方被加工成粉末食用,味苦,让人神经麻痹出现幻觉,因而得名。迷幻蘑菇中含有一种被称为裸盖菇素的物质,这种物质是一种血清素受体激动剂。在血清素缺席的场合,它能够刺激一些受体,使人产生做梦一样的感受。它能导致神经系统的紊乱和兴奋,人的言行失去控制。手持式拉曼光谱仪针对新形势下禁毒应用,厦门赛纳斯自主研发了1064 nm的手持式拉曼光谱仪,内置大量管控精神类药品和麻醉药品、毒 品数据库,结合表面增强拉曼试剂可实现低浓度(
  • 2016植物生理生态及表型技术研讨会(上海)开幕 座无虚席
    2016年11月24日,继北京会场成功举办后,2016植物生理生态及表型技术研讨会移师上海举行。会议期间的上海正遭受年度最强寒潮的蹂躏,但严寒阻挡不了求知的欲望!上海会场参会嘉宾对新知识、新技术的热情不输北京,研讨会首日,100多人的会场即座无虚席。 与北京一样,上海会场的内容包括叶绿素荧光测量技术的深入培训及现场演示、CID系列设备的介绍与演示、气体交换光合仪的原理及实验技巧、植物表型测量技术介绍、生理生态设备的免费检测与保养等。多位植物生理生态及表型研究领域的中外专家与参会嘉宾现场面对面,专家讲嘉宾听,嘉宾问专家答,频繁的互动极大的活跃了会场交流的气氛。 为了让参会嘉宾对会上讲到的新技术及应用有更深的认识,泽泉科技在会场设置了展台,展示了WALZ公司、LemnaTec公司、CID公司等公司的产品,演示了部分产品的的操作和应用技巧,吸引了大量嘉宾的关注。 11月25日还将有7场报告,亚洲第一个开放式植物高通量表型平台——AgriPheno™ 的介绍和参观考察也将在25日进行,精彩不容错过(请见后文研讨会日程)。泽泉科技携手WALZ公司、LemnaTec公司、CID公司等,竭诚为您服务,欢迎随时与我们交流。 上海会场会议日程:上海青松城大酒店(劲松厅)(11月24日至11月25日)11月24日8:00-9:00 现场注册、报到9:00-9:50 植物3D荧光成像技术介绍及样机演示 (主讲人:Oliver Meyerhoff,德国WALZ公司应用科学家,擅长领域:植物藻类光合作用及电子电路)10:00-10:50 美国CID及Felix仪器在植物生理生态及果实采后生理研究中的应用 (主讲人:Leonard Felix,美国CID公司总裁)11:00-12:00 CT等新技术在根系研究中的应用 (主讲人:袁媛,上海泽泉科技种业事业部项目经理 ,擅长领域:植物生理生态及表型) 合影(酒店一楼6号门) 午餐(青松城大酒店四楼 牡丹厅)13:30-14:00 种子选育技术介绍 (主讲人:李涛,上海泽泉科技种业部项目主管,擅长领域:分子育种,植物表型测量)14:10-14:40 CONVIRON植物培养解决方案介绍 (主讲人:吕中贤,上海泽泉科技项目经理 ,擅长领域:植物生理生态及表型)14:50-15:50 调制叶绿素荧光和P700测量技术原理及Dual/KLAS-NIR光系统I供体侧、受体侧活性同步测量新技术 (主讲人:郑宝刚,上海泽泉科技技术部主管,擅长领域:植物光合作用测量,生理生态仪器使用)15:50-16:10 讨论、休息16:10-17:30 PAM叶绿素荧光仪操作演示、数据分析示例及生理生态设备现场维护 (主讲人:郑宝刚,上海泽泉科技技术部主管,擅长领域:植物光合作用测量,生理生态仪器使用)18:30-20:30 晚餐(青松城大酒店四楼 牡丹厅)11月25日9:00-9:45 Phyto-PAM-II 藻类分类叶绿素荧光测量技术原理与应用 (主讲人:Oliver Meyerhoff,德国WALZ公司应用科学家)9:45-10:15 从分子到表型——高通量测序与表型关联分析(主讲人:张国斌博士,上海慧算生物技术有限公司)10:30-12:00 气体交换光合仪基本原理、实验技巧与日常维护 (主讲人:郭峰,上海泽泉科技股份有限公司) 午餐(青松城大酒店四楼 紫罗兰厅)13:00-14:00 超高通量园艺物流与 LemnaTec 最新植物表型测量技术介绍 (主讲人:李涛,上海泽泉科技股份有限公司)14:15-15:30 CID生理生态仪器介绍、实验技巧及日常维护 (主讲人:陈彦昌,上海泽泉科技股份有限公司)15:30-17:30 植物生理仪器使用现场交流,样机演示14:00-16:00 参观行程 AgriPheno™ 植物基因型-表型-育种平台参观注:当天下午13:30有车辆于青松城大酒店正门口出发前往浦东孙桥,返回青松城大酒店途中只停靠2号线广兰路站。有需要维修和技术答疑的用户可留在酒店会场。 会议注册费全免,交通、食宿、旅游费用自理。会议期间免费提供工作午餐及晚餐。参会即可获赠价值9998元的Agripheno表型测试包。 相关信息:?2016植物生理生态及表型技术研讨会开幕 首日百人参会?2016植物生理生态及表型技术研讨会第三轮通知
  • 输美植物提取物谨防“杀虫剂残留”
    据美国FDA官方网站统计,今年8月份,中国输往美国的植物提取物有6批次因“含有一种杀虫剂”和“含有一种不安全的农药”而遭拒绝入境,而该类产品2012年全年都未见类似通报。主要产品涉及红景天提取物、欧洲越橘提取物、银杏提取物等。     植物提取物是应用现代提取分离技术从植物原料(水果、药食两用植物、中草药等)中定向获取和浓缩的某一种或多种成分,而不改变其有效成分而形成的产品。按照提取植物的成分不同,形成甙、酸、多酚、多糖、萜类、黄酮、生物碱等。其用途非常广泛,不仅可作为制药行业的主要原料,还可应用于普通食品、保健品、膳食补充剂、化妆品、食品添加剂(色素、甜味剂等)、香精香料等行业。在美、日、韩和欧洲等发达国家和地区,以植物提取物为原料的保健品备受消费者青睐,市场需求逐年上升。     中国提取物出口美国量近两年来不断增长,美国FDA今年以来对植物提取物的关注度提高,对农残限量要求呈不断加严趋势。由于植物提取原料来源广泛,目前FDA对植物提取的质量和农药残留进行判定主要基于以下标准:一是对所有在美国药典(USP-NF)中已经列名的提取物,依据美国药典(USP36-NF31)标准进行判定。二是对于其他在药典中无列名的提取物,农残则按照NF28进行检测和判定(NF28相当于USP36,比USP36的限量指标稍微宽松)。美国基于技术性贸易壁垒的考量,不断加重农残限量检测砝码,一些农药检测限量值一般要求在0.01PPM以下,中国部分野生植物和中药材原料的提取物,都有可能被检测出微量残留而遭拒绝入境,今年国内一些大公司出口量比较大的产品而因此遭到美国FDA退货。   美国是宁波地区植物提取物出口的重要出口市场,为防止相关企业再遭美国通报,检验检疫部门提醒各出口企业一定要谨防输美产品杀虫剂和农药残留:一是要把好植物原料、中药材等采购关,对于种植的原料,要调查清楚种植户的用药情况或相关记录。二是要把好原料验收关,原料进厂时,企业应加强抽样自检,有代表性的抽样送往专业机构检测杀虫剂、农药残留等项目,同时,做好原料的批次验收和核销记录,确保植物提取物产品质量可追溯。三是要把好产品出厂检验关,加强成品检验,尤其是针对提取物有效成分高的产品,由于提取浓缩幅度大,溶剂残留和农药残留更容易超标,一定要加大检测把关力度,以避免不必要的退货损失。
  • 被“海马”吹来的“植物木乃伊”
    台风“海马”过境广东河源 意外送来4000年乌木。10月25日河源市和平县彭寨镇土厘村村民在浰江河段意外发掘一棵年约4000年的乌木。这棵乌木轰动了整个土厘村,发现当晚,这棵千年乌木已被当地村民打捞上岸并在该村得到妥善保管和收藏。 原来,发现乌木前两天,台风“海马”过后当地一直暴雨不断,致使浰江河段一度河水暴涨。前日傍晚,当地一位村民路过彭寨镇土厘村浰江中游的鱼潭江河段时,意外发现了河床中漂浮着一棵乌黑的树木,怀疑是古木,遂第一时间向新闻媒体爆料,并提供了一张古木在河床的现场照片。随后媒体联系河源市博物馆馆长杜衍礼核实,杜衍礼初步确认该树木为千年以上的乌木。 初步认定这棵在江中发掘的乌木系千年阴沉木,年约4000年,乌木种类系当地常见的“麻柳树”。杜衍礼称,乌木又叫阴沉木、碳化木,有“东方神木”和“植物木乃伊”之称。杜衍礼称,这棵千年乌木的出土发掘,对于和平县境内的浰江河床变化以及地方古环境的变迁,具有一定的考古科研价值。 这只是一棵“死去”的植物,为什么却引来了新闻媒体、博物馆馆长的关注? 现今乌木在应用上可以制作家具、配饰等。乌木以碳化度定价、以是否返阳定价(晾干稳定)、以颜色定价(黑色普通、金丝楠少见)、以可利用的价值定价等等。 在古代阴沉木格外珍贵,其中原因之一是古代大型的基础建设较少,河流水量也充沛(不像当前这么多干旱)更缺乏大型的挖掘和吊装设备、挖沙船等,因此能发现和运回的阴沉木比较少,此为第一珍贵;其次阴沉木形成的特点也注定它在以往很难发现大型成材,且当它离开形成的环境后,温湿度等都环境变化比较大,保管不善也容易会出现开裂等状况,影响利用率,因此也显珍贵;最后就是传统文化中认为其在地底下埋藏千年而不腐,认为它已具有灵性,能辟邪纳福等等,就更显珍贵了。但同时,在风水先生眼中,真正的阴沉木也吸收至阴至寒之气。 最重要的是,由于乌木为不可再生资源,开发量越来越少,一些天然造型的乌木艺术品有一定的收藏价值。当今著名的考古学家魏学峰、社会学家陈历谋等对乌木的考古、艺术和社会的价值推崇备至,并将春列为“第一藏品”。 它的“尸体”为什么能够为当地河床的变化、地域古环境的变迁带来科研价值?因为乌木由地震、洪水、泥石流将地上植物生物等全部埋入古河床等低洼处,埋入淤泥中的部分树木,在缺氧、高压状态下,细菌等微生物的作用下,经长达成千上万年炭化过程形成乌木。 因此,科学研究中通过14C测定古树死亡年代,再用年轮计算其树龄,获得其生长年代;采用树轮的碳、氧同位素特征反映树木生长时古气候及古环境变化,利用树轮纤维素的碳、氧同位素特征来复原古代气候及环境为地球化学家提供重要依据;从古树洞的泥土中取样筛取(或浮选)其微体古生物进行种属鉴定,利用其生态属性,复原其生存环境;采集粘附于树孔洞中的软体动物外壳,进行鉴定和生态环境分析,研究地理环境变迁等。 对于它那些“还活着”的伙伴,我们又能做些什么?事件中的乌木由于台风、地震等灾害的侵袭,遭到严重的破坏,被村民们发现。那么,像这样的被摧毁,没被人关注到的树木又有多少呢?因此,为了避免这样的情况发生,对于古木的日常管理与养护工作必不可少,时刻了解树木的生长状况,研究树木根系的生长与周边土壤间的环境关系,通过科学手段,了解当地地址古环境变化,为灾害的发生预防做出贡献。 树木的寿命远比人类要长久,几百年、几千年甚至是上万年不等,它们扎根于地下,根系的在历史长河中不断的吸收释放一些物质,这些物质通过时间的积累与转化,形成了历史的印记,见证了环境的变迁,为人类研究历史古文化、古环境提供了良好的素材。因此,我们对古树等珍贵树种应当采取积极的保护,协同博物馆、政府等工作部门做好保护珍贵树种的工作,同时为科学研究保留更多的优质材料。
  • 2016植物生理生态及表型技术研讨会开幕 首日百人参会
    2016年11月21日,由上海泽泉科技股份有限公司主办的2016植物生理生态及表型技术研讨会(北京会场)正式开幕。会期恰遇年度最强寒潮来袭,北京天寒地冻,但挡不住与会嘉宾求知的欲望与热情,开幕首日即已吸引百人参会。 本次研讨会包括叶绿素荧光测量技术的深入培训及现场演示、CID系列设备的介绍与演示、气体交换光合仪的原理及实验技巧、植物表型测量技术介绍、生理生态设备的免费检测与保养以及亚洲第一个开放式植物高通量表型平台——AgriPheno™ 的介绍和参观考察等内容。多位植物生理生态及表型研究领域的中外专家与参会嘉宾现场面对面,学术交流气氛热烈。 报告间隙,泽泉科技样机展台很受关注,前来咨询交流的嘉宾络绎不绝。通过跟技术工程师的深入交流,结合样机的实际操作,与会嘉宾进一步的理解和消化了讲座中提到的新技术和新应用。 11月22日还将有7场报告,精彩不容错过(请见后文研讨会日程)。 泽泉科技携手WALZ公司、LemnaTec公司、CID公司等,竭诚为您服务,欢迎您报名参会,免费听讲座! 更多会议信息请点击:2016植物生理生态及表型技术研讨会第三轮通知。 会议时间与地点: 北京:2016年11月21日至11月22日 地点:北京市海淀区增光路55号北京紫玉饭店 上海:2016年11月24日至11月25日 地点:上海市徐汇区肇嘉浜路777号青松城大酒店 会议日程:北京紫玉饭店(玉澜楼二层多功能厅)(11月21日至11月22日)11月21日8:00-9:00 现场注册、报到9:00-9:50 植物3D荧光成像技术介绍及样机演示(主讲人:Oliver Meyerhoff,德国WALZ公司应用科学家,擅长领域:植物藻类光合作用及电子电路)10:00-10:50 美国CID及Felix仪器在植物生理生态及果实采后生理研究中的应用 (主讲人:Leonard Felix,美国CID公司总裁)11:00-12:00 CT等新技术在根系研究中的应用 (主讲人:吕中贤,上海泽泉科技项目经理 ,擅长领域:植物生理生态及表型) 合影(酒店正门) 午餐(紫玉饭店一层自助餐厅)13:30-14:00 种子选育技术介绍 (主讲人:李涛,上海泽泉科技种业部项目主管,擅长领域:分子育种,植物表型测量)14:10-14:40 CONVIRON植物培养解决方案介绍 (主讲人:吕中贤,上海泽泉科技项目经理 ,擅长领域:植物生理生态及表型)14:50-15:50 调制叶绿素荧光和P700测量技术原理及Dual/KLAS-NIR光系统I供体侧、受体侧活性同步测量新技术(主讲人:郑宝刚,上海泽泉科技技术部主管,擅长领域:植物光合作用测量,生理生态仪器使用)15:50-16:10 讨论、休息16:10-17:30 PAM叶绿素荧光仪操作演示、数据分析示例及生理生态设备现场维护 (主讲人:郑宝刚,上海泽泉科技技术部主管,擅长领域:植物光合作用测量,生理生态仪器使用)18:30-20:30 晚餐(紫玉饭店一层自助餐厅)11月22日9:00-10:00 Phyto-PAM-II藻类分类叶绿素荧光测量技术原理与应用 (主讲人:Oliver Meyerhoff,德国WALZ公司应用科学家,擅长领域:植物藻类光合作用及电子电路)10:10-11:00 LemnaTec最新植物表型测量技术介绍(实验室、温室及田间型) (主讲人:李涛,上海泽泉科技种业部项目主管,擅长领域:分子育种,植物表型测量)11:10-12:00 CID生理生态仪器介绍、实验技巧及日常维护(主讲人:陈彦昌,上海泽泉科技CID技术总监,擅长领域:CID仪器应用及维护,植物根系研究) 午餐(紫玉饭店一层自助餐厅)13:30-14:00 超高通量园艺物流与植物表型系统 (主讲人:李涛,上海泽泉科技种业部项目主管,擅长领域:分子育种,植物表型测量)14:10-14:40 从分子到表型——高通量测序与表型关联分析(主讲人:张国斌博士,上海慧算生物技术有限公司,擅长领域:生物信息学)14:50-15:50 气体交换光合仪基本原理、实验技巧及日常维护 (主讲人:郭峰,上海泽泉科技技术部经理,擅长领域:植物光合作用测量,生理生态仪器使用)15:50-16:10 讨论、休息16:10-17:30 光合仪操作演示、数据分析示例及生理生态设备现场维护 (主讲人:郭峰,上海泽泉科技技术部经理,擅长领域:植物光合作用测量,生理生态仪器使用)11月23日 泽泉科技北京分公司办公地址现场答疑及仪器免费维护上海青松城大酒店(劲松厅)(11月24日至11月25日)11月24日8:00-9:00 现场注册、报到9:00-9:50 植物3D荧光成像技术介绍及样机演示 (主讲人:Oliver Meyerhoff,德国WALZ公司应用科学家,擅长领域:植物藻类光合作用及电子电路)10:00-10:50 美国CID及Felix仪器在植物生理生态及果实采后生理研究中的应用 (主讲人:Leonard Felix,美国CID公司总裁)11:00-12:00 CT等新技术在根系研究中的应用 (主讲人:袁媛,上海泽泉科技种业事业部项目经理 ,擅长领域:植物生理生态及表型) 合影(酒店一楼6号门) 午餐(青松城大酒店四楼 牡丹厅)13:30-14:00 种子选育技术介绍 (主讲人:李涛,上海泽泉科技种业部项目主管,擅长领域:分子育种,植物表型测量)14:10-14:40 CONVIRON植物培养解决方案介绍 (主讲人:吕中贤,上海泽泉科技项目经理 ,擅长领域:植物生理生态及表型)14:50-15:50 调制叶绿素荧光和P700测量技术原理及Dual/KLAS-NIR光系统I供体侧、受体侧活性同步测量新技术 (主讲人:郑宝刚,上海泽泉科技技术部主管,擅长领域:植物光合作用测量,生理生态仪器使用)15:50-16:10 讨论、休息16:10-17:30 PAM叶绿素荧光仪操作演示、数据分析示例及生理生态设备现场维护 (主讲人:郑宝刚,上海泽泉科技技术部主管,擅长领域:植物光合作用测量,生理生态仪器使用)18:30-20:30 晚餐(青松城大酒店四楼 牡丹厅)11月25日9:00-10:00 Phyto-PAM-II藻类分类叶绿素荧光测量技术原理与应用 (主讲人:Oliver Meyerhoff,德国WALZ公司应用科学家,擅长领域:植物藻类光合作用及电子电路)10:10-11:00 LemnaTec最新植物表型测量技术介绍(实验室、温室及田间型)(主讲人:张弘,上海泽泉科技应用科学家,擅长领域:植物表型测量,分子生物学)11:10-12:00 CID生理生态仪器介绍、实验技巧及日常维护 (主讲人:陈彦昌,上海泽泉科技CID技术总监,擅长领域:CID仪器应用及维护,植物根系研究) 午餐(青松城大酒店四楼 牡丹厅)13:30-14:00 超高通量园艺物流与植物表型系统 (主讲人:李涛,上海泽泉科技种业部项目主管,擅长领域:分子育种,植物表型测量)14:10-14:40 从分子到表型——高通量测序与表型关联分析 (主讲人:张国斌博士,上海慧算生物技术有限公司,擅长领域:生物信息学)14:50-15:50 气体交换光合仪基本原理、实验技巧及日常维护 (主讲人:郭峰,上海泽泉科技技术部经理,擅长领域:植物光合作用测量,生理生态仪器使用)15:50-16:10 讨论、休息16:10-17:30 光合仪操作演示、数据分析示例及生理生态设备现场维护 (主讲人:郭峰,上海泽泉科技技术部经理,擅长领域:植物光合作用测量,生理生态仪器使用)14:00-16:00 参观行程 AgriPheno™ 植物基因型-表型-育种平台参观注:当天下午13:30有车辆于青松城大酒店正门口出发前往浦东孙桥,返回青松城大酒店途中只停靠2号线广兰路站。有需要维修和技术答疑的用户可留在酒店会场。 会议注册费全免,交通、食宿、旅游费用自理。会议期间免费提供工作午餐及晚餐。参会即可获赠价值9998元的Agripheno表型测试包。 参会二维码
  • “植物源性食品分析检测技术新进展” ——主题约稿函
    植物源性食品是指以植物的种子、果实或组织部分为原料,直接或加工以后为人类提供能量或物质来源的食品。其主要包含谷物、薯类、豆类及其制品、水果蔬菜制品、茶叶等。近年来,随着消费理念的升级、素食文化的兴起、对环境保护与动物福祉责任感的增强等,让植物源性食品自带光环,成为食品领域讨论的焦点。不过,植物源性食品的生长的生态环境、贮藏、加工、运输、销售等环节中带来的安全问题也引发大众讨论。为了进一步促进植物源性食品质量安全检测工作的交流与合作,仪器信息网特别发起“植物源性食品分析检测技术新进展”主题约稿,欢迎各位行业协会/学会、高校/科研院所的专家老师,以及领域内仪器厂商们积极投稿。一、专家约稿主题聚焦植物源性食品分析检测技术新进展,可选择谷物、茶叶、水果、植物奶、坚果等植物源性食品中的某一种具体食品展开讨论:(1)目前有哪些常用的植物源食品分析检测技术或方法?请列举并简要介绍。(2)您认为有哪些新兴的技术或方法可以应用到植物源食品分析检测中?(3)您认为目前植物源食品分析检测面临的主要挑战是什么?又有哪些机遇?(4)您对未来植物源食品分析技术发展有哪些预测或建议?(5)政策法规、标准解读:如,对于目前某一重要的植物源食品的质量标准或分析检测方法标准解读;(6)或其它相关主题。二、厂商约稿提纲(1)贵司在植物源性食品分析检测领域主推的仪器产品是什么?请您谈谈该产品的核心竞争力。(2)在植物源食品分析检测中,您公司是否有针对特定食品营养成分的定制解决方案?(3)目前植物源食品中有毒有害物质检测的主要技术有哪些?有哪些新技术新方法会有较大影响?(4)当前植物源食品中有毒有害物质分析的难点是什么?哪些检测项目是值得特别关注?(5)您如何看待当前植物源食品检测市场及前景?未来看好哪些细分领域? 备注:• 您可以根据上述某一个问题或多个问题进行稿件撰写,也可以由此展开相关话题。• 稿件字符数不少于1000字,如有图片,图片像素应不低于300DPI;• 稿件无抄袭、署名排序无争议,文责自负,请勿一稿多投;• 投稿须为Word文档,本网编辑有权对文稿进行修改,如不同意请注明。• 稿件内容会择时在仪器信息网资讯栏目发布显示(单独成文或/整合综述文章),同时在专题中推送宣传。• 回稿时间:2023年9月30日• 投稿邮箱:caixf@instrument.com.cn
  • CEM-难以消化你的牛奶?植物基奶类中重金属的检测分析
    01 引言植物基奶类产品作为传统牛奶的替代品,其受欢迎程度正在迅速上升。虽然像大豆奶和杏仁奶这样的品种已经在市场上占据了一席之地,但其他如椰奶和燕麦奶的选择也在需求激增。这些非乳制奶类产品来源于坚果、种子以及其他植物性原料。它们之所以日益受到欢迎,是因为越来越多的消费者倾向于选择无乳制品、无乳糖和纯素产品。值得注意的是,所有植物都是在土壤中生长的,而土壤天然就含有金属元素。许多植物和坚果树都是无机化合物的有效生物累积者。它们通过根系和维管系统从土壤中吸收金属,并将这些元素集中在叶子、果实和花朵中。因此,当这些植物被加工成下游产品(例如非乳制奶类)时,那些在受污染土壤中生长的植物可能会积累重金属,从而增加了消费者接触这些重金属的风险。特别令人关注的是被称为“四大”重金属(砷、铅、镉、汞),因为它们具有潜在的毒性。在这项研究中,我们测量并比较了植物基奶类产品和牛奶中的金属浓度。这些金属是通过微波消解和电感耦合等离子体质谱(ICP-MS)分析奶样后进行量化的。02 方法和材料样本(使用 CEM MARS&trade 6 一式三份进行消解):&bull NIST SRM 1575A 松针&bull 牛奶2%脂&bull 全脂牛奶&bull 杏仁奶&bull 大豆奶&bull 燕麦奶&bull 椰奶&bull Hemp Milk*对杏仁奶、大豆奶、燕麦奶和椰奶测试了三个不同品牌。消解方法:1. 在 MARSXpress&trade Plus TFM 容器中称量 2 克样品或 0.25 克 SRM。2. 向容器中加入 5 毫升 HNO3 + 1 毫升 HCl 的痕量级酸。3. 盖上容器并放入转盘。消解参数:所有消解液都是清澈无色的。使用安捷伦 7850 型 ICP-MS 对消解液进行了分析。03 结果图1. 使用SPEX CLMS-2和NIST SRM 1575A Pine Needles(n=3)的10 ppb加标酸空白回收率表1. 牛奶和多种植物基奶类的平均元素浓度(ppb)(n=3)04 结论正确的监测和分析奶制品中的元素杂质对于确保消费者安全至关重要。高效的样本制备,为分析提供均匀的解决方案,在这一过程中起着至关重要的作用。在这项研究中,SRM 和高加标酸样本的强回收率显示了消解和分析协议的适用性。在所研究的奶类中,人们发现牛奶的砷、镉和铅含量低于植物基奶类。此外,在加工过程中发现的金属,如铬、镍和铁,在植物基奶类中的含量较高。总体而言,不同品牌之间的差异最小,对所有测试的奶类而言,检测到的金属含量都在规定范围内。
  • 2016植物生理生态及表型技术研讨会主讲人公布(第三轮通知 )
    尊敬的老师: 您好! 为更好地服务全国的科研用户,为全国高校、研究所的科研工作提供技术保障,为植物科研领域研究人员更深入地了解最新的产品及测量技术,上海泽泉科技股份有限公司将于2016年11月21日至11月25日分别在北京和上海两地举办2016植物生理生态及表型技术研讨会。会议内容包括叶绿素荧光测量技术的深入培训及现场演示、CID系列设备的介绍与演示、气体交换光合仪的原理及实验技巧、植物表型测量技术介绍、生理生态设备的免费检测与保养以及亚洲第一个开放式植物高通量表型平台——AgriPheno™ 的介绍和参观考察等。 现向全国高校、研究所科研人员发出诚挚邀请,期待您的光临!上海泽泉科技股份有限公司携手WALZ公司、LemnaTec公司、CID公司等,竭诚为您服务,期待与您的交流与合作。 此致 敬礼! 上海泽泉科技股份有限公司 2016年11月04日 北京:2016年11月21日至11月22日 地点:北京市海淀区增光路55号北京紫玉饭店 上海:2016年11月24日至11月25日 地点:上海市徐汇区肇嘉浜路777号青松城大酒店 ? 强强联合的魅力——WALZ不同生理测量技术的联用 ? CID生理生态测量技术的介绍和应用 ? 土壤测量技术解决方案 ? 调制叶绿素荧光和P700测量技术原理、PAM实验技巧及样机操作演示 ? 高通量植物表型技术介绍 ? 先进种子选育技术介绍 ? 气体交换光合仪原理、实验技巧、日常维护及样机操作演示 ? 根系测量技术解决方案 ? 藻类光合测量的核武器——Phyto-PAM-II介绍 ? AgriPheno™ 高通量植物基因型-表型-育种平台介绍及参观考察 北京紫玉饭店(玉澜楼二层多功能厅)(11月21日至11月22日)11月21日8:00-9:00 现场注册、报到9:00-9:50 植物3D荧光成像技术介绍及样机演示(主讲人:Oliver Meyerhoff,德国WALZ公司应用科学家,擅长领域:植物藻类光合作用及电子电路)10:00-10:50 美国CID及Felix仪器在植物生理生态及果实采后生理研究中的应用 (主讲人:Leonard Felix,美国CID公司总裁)11:00-12:00 CT等新技术在根系研究中的应用 (主讲人:吕中贤,上海泽泉科技项目经理 ,擅长领域:植物生理生态及表型) 合影(酒店正门) 午餐(紫玉饭店一层自助餐厅)13:30-14:00 种子选育技术介绍 (主讲人:李涛,上海泽泉科技种业部项目主管,擅长领域:分子育种,植物表型测量)14:10-14:40 CONVIRON植物培养解决方案介绍 (主讲人:吕中贤,上海泽泉科技项目经理 ,擅长领域:植物生理生态及表型)14:50-15:50 调制叶绿素荧光和P700测量技术原理及Dual/KLAS-NIR光系统I供体侧、受体侧活性同步测量新技术(主讲人:郑宝刚,上海泽泉科技技术部主管,擅长领域:植物光合作用测量,生理生态仪器使用)15:50-16:10 讨论、休息16:10-17:30 PAM叶绿素荧光仪操作演示、数据分析示例及生理生态设备现场维护 (主讲人:郑宝刚,上海泽泉科技技术部主管,擅长领域:植物光合作用测量,生理生态仪器使用)18:30-20:30 晚餐(紫玉饭店一层自助餐厅)11月22日9:00-10:00 Phyto-PAM-II藻类分类叶绿素荧光测量技术原理与应用 (主讲人:Oliver Meyerhoff,德国WALZ公司应用科学家,擅长领域:植物藻类光合作用及电子电路)10:10-11:00 LemnaTec最新植物表型测量技术介绍(实验室、温室及田间型) (主讲人:李涛,上海泽泉科技种业部项目主管,擅长领域:分子育种,植物表型测量)11:10-12:00 CID生理生态仪器介绍、实验技巧及日常维护(主讲人:陈彦昌,上海泽泉科技CID技术总监,擅长领域:CID仪器应用及维护,植物根系研究) 午餐(紫玉饭店一层自助餐厅)13:30-14:00 超高通量园艺物流与植物表型系统 (主讲人:李涛,上海泽泉科技种业部项目主管,擅长领域:分子育种,植物表型测量)14:10-14:40 从分子到表型——高通量测序与表型关联分析(主讲人:张国斌博士,上海慧算生物技术有限公司,擅长领域:生物信息学)14:50-15:50 气体交换光合仪基本原理、实验技巧及日常维护 (主讲人:郭峰,上海泽泉科技技术部经理,擅长领域:植物光合作用测量,生理生态仪器使用)15:50-16:10 讨论、休息16:10-17:30 光合仪操作演示、数据分析示例及生理生态设备现场维护 (主讲人:郭峰,上海泽泉科技技术部经理,擅长领域:植物光合作用测量,生理生态仪器使用)11月23日 泽泉科技北京分公司办公地址现场答疑及仪器免费维护上海青松城大酒店(劲松厅)(11月24日至11月25日)11月24日8:00-9:00 现场注册、报到9:00-9:50 植物3D荧光成像技术介绍及样机演示 (主讲人:Oliver Meyerhoff,德国WALZ公司应用科学家,擅长领域:植物藻类光合作用及电子电路)10:00-10:50 美国CID及Felix仪器在植物生理生态及果实采后生理研究中的应用 (主讲人:Leonard Felix,美国CID公司总裁)11:00-12:00 CT等新技术在根系研究中的应用 (主讲人:袁媛,上海泽泉科技种业事业部项目经理 ,擅长领域:植物生理生态及表型) 合影(酒店一楼6号门) 午餐(青松城大酒店四楼 牡丹厅)13:30-14:00 种子选育技术介绍 (主讲人:李涛,上海泽泉科技种业部项目主管,擅长领域:分子育种,植物表型测量)14:10-14:40 CONVIRON植物培养解决方案介绍 (主讲人:吕中贤,上海泽泉科技项目经理 ,擅长领域:植物生理生态及表型)14:50-15:50 调制叶绿素荧光和P700测量技术原理及Dual/KLAS-NIR光系统I供体侧、受体侧活性同步测量新技术 (主讲人:郑宝刚,上海泽泉科技技术部主管,擅长领域:植物光合作用测量,生理生态仪器使用)15:50-16:10 讨论、休息16:10-17:30 PAM叶绿素荧光仪操作演示、数据分析示例及生理生态设备现场维护 (主讲人:郑宝刚,上海泽泉科技技术部主管,擅长领域:植物光合作用测量,生理生态仪器使用)18:30-20:30 晚餐(青松城大酒店四楼 牡丹厅)11月25日9:00-10:00 Phyto-PAM-II藻类分类叶绿素荧光测量技术原理与应用 (主讲人:Oliver Meyerhoff,德国WALZ公司应用科学家,擅长领域:植物藻类光合作用及电子电路)10:10-11:00 LemnaTec最新植物表型测量技术介绍(实验室、温室及田间型)(主讲人:张弘,上海泽泉科技应用科学家,擅长领域:植物表型测量,分子生物学)11:10-12:00 CID生理生态仪器介绍、实验技巧及日常维护 (主讲人:陈彦昌,上海泽泉科技CID技术总监,擅长领域:CID仪器应用及维护,植物根系研究) 午餐(青松城大酒店四楼 牡丹厅)13:30-14:00超高通量园艺物流与植物表型系统 (主讲人:李涛,上海泽泉科技种业部项目主管,擅长领域:分子育种,植物表型测量)14:10-14:40 从分子到表型——高通量测序与表型关联分析 (主讲人:张国斌博士,上海慧算生物技术有限公司,擅长领域:生物信息学)14:50-15:50 气体交换光合仪基本原理、实验技巧及日常维护 (主讲人:郭峰,上海泽泉科技技术部经理,擅长领域:植物光合作用测量,生理生态仪器使用)15:50-16:10 讨论、休息16:10-17:30 光合仪操作演示、数据分析示例及生理生态设备现场维护 (主讲人:郭峰,上海泽泉科技技术部经理,擅长领域:植物光合作用测量,生理生态仪器使用)14:00-16:00 参观行程 AgriPheno™ 植物基因型-表型-育种平台参观 注:当天下午13:30有车辆于青松城大酒店正门口出发前往浦东孙桥,返回青松城大酒店途中只停靠2号线广兰路站。有需要维修和技术答疑的用户可留在酒店会场。 会议注册费全免,交通、食宿、旅游费用自理。会议期间免费提供工作午餐及晚餐。参会即可获赠价值9998元的Agripheno表型测试包。 1、参会方式: 请参会人员于2016年11月20日前将参会回执(附件1)通过电子邮件发送至邮箱:qinglu.wei@zealquest.com,或传真发至021-32555117。我们将根据参会回执协助推荐住宿和安排参会事宜;扫描以下二维码,提交信息直接参会。参会二维码 2、参观考察回执:本次会议将安排于2016年11月25日下午前往位于上海浦东孙桥现代农业产业园区的AgriPheno™ 高通量植物基因型-表型-育种平台参观考察,本次考察仅限于上海会场参会人员,如您需参加,请前往上海会场参会,并在参观考察回执中填写参观人数,我们会根据您的回执租赁车辆负责接送。 3、仪器维护:本次会议期间将提供生理生态仪器的免费检测与保养,请需要仪器检测的参会人员在参会回执中注明是否携带仪器参会并填写“仪器设备维修服务单”(附件2),与参会回执一同发至会务组;如不方便随身携带仪器参会,可提前将仪器寄至我司上海总部或北京分公司,邮寄前请填写并打印“仪器设备维修服务单”随仪器寄出,并请提前与会务组联系确认。仪器维护工作如无法在会议期间全部完成,我司将在仪器全面维护完成后将其寄回。如涉及更换配件,视仪器质保情况,可能收取配件成本费用。 美国CID德国LemnaTec 德国WALZ 加拿大Conviron 北京会场会务联系人 李俊艳:tracy.li@zealquest.com 电话:010-88824075转618 传真:010-88824075 仪器邮寄地址:北京市海淀区北三环西路43号青云当代大厦1907室(100086) 上海会场会务联系人 魏庆璐:qinglu.wei@zealquest.com 电话:021-32555118转8048 传真:021-32555117 仪器邮寄地址:上海市普陀区金沙江路1038号华东师大科技园2号楼8层(200062) 附件1:2016植物生理生态及表型技术研讨会参会回执.doc 附件2:2016植物生理生态及表型技术研讨会维修服务单.doc
  • "植物激素"安全性惹争议 专家称毒性比味精小
    ●农业专家:毒性比味精还小 ●食品专家:滥用会危害健康   最近催熟剂、膨大剂、催红剂、增甜剂等植物生长调节剂被推向风口浪尖,这些调节剂被媒体冠名为"植物激素"之后,引起了消费者的不少担忧。   究竟"植物激素"危害大不大?应该禁止还是推广?针对这些消费者关心的问题,记者昨天采访了有关专家和官员。记者了解到,目前,植物生长调节剂在国内已被广泛应用于多种农作物。农业专家表示,植物生长剂属于农药范畴,基本都属于低毒和微毒农药,大部分毒性比味精和盐还小,是一种农业增产、增效的重要技术措施,并且是安全的。   不过一些食品专家也担忧,瓜农果农菜农为了高额利润,存在滥用植物激素,随意提高浓度,随意更改施用时间等现象,会给人类健康带来很大的风险。   植物生长剂已被广泛使用于多种农作物   "我们认为,最近的一些报道对消费者有误导作用。"昨天,广东省农业厅植保总站研究员江腾辉开门见山地对记者说,最近一些媒体把植物生长剂讲得太过恐怖。   "事实上,植物生长剂归属农药管理,并且属于低毒和微毒农药。"江腾辉说,前几天,省农业厅植保总站邀请华南农业大学、省农科院部分专家,专门召开会议研究植物生长调节剂的问题,与会专家一致认为,包括催熟剂和膨大剂在内的植物生长调节剂作为农作物生产中一项重要的技术措施,在农业增产、增效中发挥了重要作用。应加强对植物生长调节剂使用技术的宣传普及,指导农业生产者科学合理使用,引导社会公众科学看待,避免因一些不实信息或虚假消息误导消费者,切实维护公众的健康安全和广大农民的利益。   "作为一项农业增产、增效的重要技术措施,植物生长剂已被广泛使用于多种农作物,技术也已经比较成熟。"江腾辉说"广东每年使用植物生长调节剂约220吨,大概占全国使用量的3%多一点。"江腾辉说。   "植物生长剂跟化肥以及其他的农药本质是一样的,而且它还是低毒、微毒的。"江腾辉说。   农业专家毒性比味精和盐还小   "绝大部分的植物生长调节剂毒性比味精和盐还小。"华南农业大学资环学院徐汉虹教授说。   徐汉虹说,首先,作为一种农药,我国的农药管理制度还是比较严的。凡是在我国境内生产、销售和使用的植物生长调节剂,都必须进行农药登记。在申办农药登记时,必须进行药效、毒理、残留和环境影响等多项使用效果和安全性试验,经国家农药登记评审委员会评审通过后,才允许登记。   "如果植物生长剂是一种危害很大的农药的话,国家为什么还要允许它的存在和使用?"徐汉虹说,与杀虫剂、除草剂等其他的农药相比,植物生长调节剂的毒性要小得多。   "另一方面,在一些农作物中,植物生长调节剂的使用是必须的。例如香蕉便是这样。"徐汉虹说,在香蕉等一些水果中,使用"乙烯利"几乎是惯例,如果不这样,就得等到香蕉自熟以后再采摘,那么香蕉往往会在运输的过程中便烂掉。   食品专家过量激素聚集人体会危害健康   "植物激素添加剂真的无害吗?"中国人民大学农业与农村发展学院教授郑风田,一位研究食品安全问题的专家,昨天对记者表示,对这个问题的判定应该看看医学专家们的意见,毕竟那些用了膨大剂的西瓜最终还是要被人吃掉的。那些搞植物激素的专家们应该不会做人体健康试验的,因为这是医学专家们的领地。   "我接触的不少医学专家都认为:反季节蔬菜和水果大部分都是激素催成的,短期内影响不大,但长期食用会对人体产生副作用。"郑风田说,一份报告称,土耳其伊斯坦布尔大学生物系植物学教授因萨尔警告说,果菜中含有的过量激素,聚集在人体内对健康非常有害。   "瓜农果农菜农为了高额利润,存在滥用植物激素,随意提高浓度,随意更改施用时间等现象,会给人类健康带来很大的风险。"郑风田担忧地说。   "其实许多生长剂都不应该去使用,乙烯利等催熟剂必须要去禁止。"郑风田表示。他甚至"教大家一招":在瓜果市场,形状异常,外观色泽太美丽,味道差而平淡,一般都是被催熟剂、膨大剂搞出来的,要尽量少买少吃!   不过对于郑风田的观点,徐汉虹提出了不同的看法。他认为,以一种物质的化学成分来分析它的危害是片面的,科学的态度是,要考虑它的含量问题"植物生长调节剂一般在作物上使用剂量极低,不会对农产品(16.80,0.05,0.30%)质量安全造成危害。"徐汉虹说,作为一种激素,植物生长调节剂很低的含量就可以发挥作用,一般都是几千分之一,甚至上万分之一。"而且植物生长调节剂超剂量使用或使用剂量不够,不但难以达到理想的调控作物生长效果,甚至会影响农作物的正常生长,造成减产减收。"   关键是加强激素残留监测   "植物生长调节剂作为一种低毒或微毒的农药,已有38个经过国家批准登记,它们的安全性都是经过严格的试验的。"广东省农业厅植保总站研究员江腾辉呼吁,各界不要妖魔化植物生长调节剂。   "关键还是要加强监督和管理。"业内人士表示,目前,美国、加拿大、日本等发达国家都对植物生长调节剂制订了严格的农药残留标准。我国今后应加快制订和完善相关标准,加强农产品中农药的残留监测,切实保障农产品质量安全。
  • 同田中标中科院昆明植物所高速逆流色谱仪项目
    经过大半年的技术跟进,上海同田中标中科院昆明植物所高速逆流色谱仪项目,这也是昆植所本部首次采购高速逆流色谱仪。 中科研昆明植物研究所是国内顶级的植物学研究机构,现已建成具有先进水平的科技信息、仪器分析测试、标本馆、种质资源库以及植物园等重要科技支撑条件。设有&ldquo 两室一园一库&rdquo (即生物地理与生态学研究室、植物化学研究室、植物园和中国西南野生生物种质资源库),拥有植物化学与西部植物资源持续利用国家重点实验室、国家大科学工程中国西南野生生物种质资源库、中国科学院生物多样性与生物地理学重点实验室。本次采购预示着高速逆流色谱技术已逐渐成为常规的分离技术手段,被广泛的使用。 仪器简介: TBE -300B 制备型高速逆流色谱仪 背景技术简介 高速逆流色谱 ( high-speed countercurrent chromatography , HSCCC )是 20 世纪 80 年代发展起来的一种连续高效的液&mdash 液分配色谱分离技术, 它不用任何固态的支撑物或载体。 它利用两相溶剂体系在高速旋转的螺旋管内建立起一种特殊的单向性流体动力学平衡,当其中一相作为固定相,另一相作为流动相,在连续洗脱的过程中能保留大量固定相。 由于不需要固体支撑体,物质的分离依据其在两相中分配系数的不同而实现,因而避免了因不可逆吸附而引起的样品损失、失活、变性等,不仅使样品能够全部回收,回收的样品更能反映其本来的特性,特别适合于天然生物活性成分的分离。而且由于被分离物质与液态固定相之间能够充分接触,使得样品的制备量大大提高,是一种理想的制备分离手段。 它相对于传统的固&mdash 液柱色谱技术,具有适用范围广、操作灵活、高效、快速、制备量大、费用低等优点。目前 HSCCC 技术正在发展成为一种备受关注的新型分离纯化技术,已经广泛应用于生物医药、天然产物、食品和化妆品等领域, 特别在天然产物行业中已被认为是一种有效的新型分离技 术;适合于中小分子类物质的分离纯化。 我国是继美国、日本之后最早开展逆流色谱应用的国家,俄罗斯、法国、英国、瑞士等国也都开展了此项研究。美国 FDA 及世界卫生组织( WHO )都引用此项技术作为抗生素成分的分离检定, 90 年代以来,高速逆流色谱被广泛地应用于天然药物成分的分离制备和分析检定中。 关于上海同田生物 上海同田生物是高速逆流色谱领域的领导者;公司致力于高速逆流色谱仪( HSCCC )、双柱塞恒流泵、超纯水机以及高纯度天然产物有效成分单体、天然药物原料 / 中间体的研究开发、生产和销售。 欲了解更多信息,请浏览公司网站:www.tautobiotech.com 上海同田市场部 2010.9.9
  • 岛津创新技术标准化 CSTM团体标准《SFC植物油苯并(a)芘测定》宣贯会召开
    仪器信息网讯 为了简化食用油中脂溶性成分的分析步骤,提高分析效率,中国材料与试验标准化委员会(CSTM)与中国分析测试协会团体标准委员会(CAIA)联合包括岛津企业管理(中国)有限公司在内的多家合作单位,开发、建立并正式发布了团体标准《T/CSTM 00745-2022/T/CAIA/SH 018-2022(IDT)植物油 苯并(a)芘测定 超临界流体色谱在线净化-反相高交液相色谱法》(以下简称《植物油苯并(a)芘测定团体标准》)。该标准利用超临界流体色谱技术的快速分离能力与油脂样品互溶性好等特点,极大提升了食用油中脂溶性成分的检测效率。为了向行业内更好地传达新标准具体实施细节,介绍新技术方法的检测优势,2023年3月29日,CSTM标准化委员会联合岛津公司,共同举办了《植物油苯并(a)芘测定团体标准》的标准宣贯会。来自北京及周边地区的行业专家、相关科研及检测机构从业人员近30位参与了本次标准宣贯会,仪器信息网作为特邀媒体参与并对活动进行了报道。活动现场岛津企业管理(中国)有限公司创新中心李晓东部长致辞会议伊始,岛津企业管理(中国)有限公司创新中心李晓东部长致辞。李晓东在致辞中表示,2019年,为了更好地应对市场变化,发挥岛津宽产品线的优势,岛津中国整合成立了分析计测事业部,整合多条产品线,旨在为分析检测客户提供更全面的解决方案,近年来也推出了一系列新产品、新技术。2019年,岛津还成立岛津中国创新中心,为尖端用户提供与岛津合作研究及成果转化平台,取得了一系列丰硕成果。今天会议所宣贯的团体标准,就是岛津与专家用户合作的又一成果实例,我们将通过实际工作案例分享,结合现场仪器操作展示,共同促进该标准推广,以及SFC特色技术在油品检测方面的应用。岛津愿与客户共谋发展,共同进步。本次标准宣贯会,特别邀请了CSTM标准化委员会主任委员、中国钢研技术集团王海舟院士就标准相关话题做主题报告。CSTM标准化委员会主任委员 中国钢研技术集团王海舟院士报告题目:《科学试验与标准化》以标准化手段规范科学试验研究的过程,对于确保科学试验结果的可靠性,促进创新科学技术加速发展有着重要作用。报告详细阐述了科学实验标准化的重要作用以及相关理论延伸,包括标准化熵减理论、标准化多维矩阵结构理论以及标准化多元交织链网构型理论等三个基础理论的定义、认知及其指导作用。同时,王海舟院士还介绍了CTSM/FC98科学试验领域标委会筹备建立及在标准制定领域所做的工作。在王海舟院士报告之后,国家粮食和物资储备局科学研究院副主任谢刚研究员、岛津分析计测事业部市场部食品安全行业专员张园园以及岛津创新中心高级专家郭彦丽博士分别作主题报告。国家粮食和物资储备局科学研究院 副主任 谢刚研究员报告题目:《粮油领域食品安全问题的挑战和机遇》粮食安全,是事关人类生存的根本性问题。我国是人口大国,也是农业大国,高度关注粮食安全,是我国治国理政的头等大事。粮食安全包含粮食数量、粮食储备、粮食质量、监管制度以及技术安全等多方面。报告从多方面阐述了当下我国粮油领域食品安全的现状,并着重介绍了目前以色谱、质谱、光谱为代表的分析检测技术以在粮油检测领域目前的应用及发展现状,并提出了对相关检测技术未来发展的需求。岛津 分析计测事业部市场部食品安全行业专员 张园园报告题目:《岛津粮油行业综合解决方案》粮油质量安全关乎国运民生,而分析检测技术,对于保障粮油生产和质量安全至关重要,在粮油生产的全产业链上都发挥着重要作用。而岛津为了助力行业发展,也推出了针对粮油行业全流程、多维度的综合解决方案。报告以多个食品安全国家标准为例,介绍了岛津针对真菌毒素、氨基酸、添加剂、矿物油、污染物、农残等多品类检测方案。岛津企业管理(中国)有限公司创新中心高级专家 郭彦丽报告题目:《SFC-LC二维联用技术及应用介绍》超临界流体色谱(SFC)是一种色谱分离技术,使用超临界流体(通常是二氧化碳)作为流动相。由于超临界由于具有较低的粘度和较高的扩散系数,因此在SFC中样品分子可以更快地扩散到固定相表面,导致更快的分离速度和更短的分离时间,同时二氧化碳作为流动相也更加经济、绿色环保。报告主要介绍了,岛津利用SFC与反相色谱搭建的二维色谱系统及其在食用油检测苯并(a)芘中的应用。该技术可极大提升食用油中脂溶性成分的检测效率,相关实例已经形成团体标准。会议由岛津分析计测事业部市场部色谱产品经理尹宏瑞主持除了精彩的报告之外,为了让与会代表对新的SFC-LC二维联用技术检测食用油中苯并(a)芘的实验步骤以及技术操作有更清晰的认识。在报告环节之后,还组织了真机演示环节,并针对前处理、仪器操作等方面进行了详细说明。岛津郭彦丽博士现场演示参观创新中心关于利用SFC-LC二维色谱联用检测植物油中苯并(a)芘的更多细节,请见视频
  • 岛津创新技术标准化— CSTM团体标准《SFC植物油苯并(a)芘测定》宣贯会召开
    仪器信息网讯 为了简化食用油中脂溶性成分的分析步骤,提高分析效率,中国材料与试验标准化委员会(CSTM)与中国分析测试协会团体标准委员会(CAIA)联合包括岛津企业管理(中国)有限公司在内的多家合作单位,开发、建立并正式发布了团体标准《T/CSTM 00745-2022/T/CAIA/SH 018-2022(IDT)植物油 苯并(a)芘测定 超临界流体色谱在线净化-反相高交液相色谱法》(以下简称《植物油苯并(a)芘测定团体标准》)。该标准利用超临界流体色谱技术的快速分离能力与油脂样品互溶性好等特点,极大提升了食用油中脂溶性成分的检测效率。为了向行业内更好地传达新标准具体实施细节,介绍新技术方法的检测优势,2023年3月29日,CSTM标准化委员会联合岛津,共同举办了《植物油苯并(a)芘测定团体标准》的标准宣贯会。来自北京及周边地区的行业专家、相关科研及检测机构从业人员近30位参与了本次标准宣贯会,仪器信息网作为特邀媒体参与并对活动进行了报道。活动现场岛津企业管理(中国)有限公司创新中心李晓东部长致辞会议伊始,岛津企业管理(中国)有限公司创新中心李晓东部长致辞。李晓东在致辞中表示,2019年,为了更好地应对市场变化,发挥岛津宽产品线的优势,岛津中国整合成立了分析计测事业部,整合多条产品线,旨在为分析检测客户提供更全面的解决方案,近年来也推出了一系列新产品、新技术。2019年,岛津还成立岛津中国创新中心,为尖端用户提供与岛津合作研究及成果转化平台,取得了一系列丰硕成果。今天会议所宣贯的团体标准,就是岛津与专家用户合作的又一成果实例,我们将通过实际工作案例分享,结合现场仪器操作展示,共同促进该标准推广,以及SFC特色技术在油品检测方面的应用。岛津愿与客户共谋发展,共同进步。主题报告本次标准宣贯会,特别邀请了CSTM标准化委员会主任委员、中国钢研技术集团王海舟院士就标准相关话题做主题报告。CSTM标准化委员会主任委员 中国钢研技术集团王海舟院士报告题目:《科学试验与标准化》以标准化手段规范科学试验研究的过程,对于确保科学试验结果的可靠性,促进创新科学技术加速发展有着重要作用。报告详细阐述了科学实验标准化的重要作用以及相关理论延伸,包括标准化熵减理论、标准化多维矩阵结构理论以及标准化多元交织链网构型理论等三个基础理论的定义、认知及其指导作用。同时,王海舟院士还介绍了CTSM/FC98科学试验领域标委会筹备建立及在标准制定领域所做的工作。在王海舟院士报告之后,国家粮食和物资储备局科学研究院副主任谢刚研究员、岛津分析计测事业部市场部食品安全行业专员张园园以及岛津创新中心高级专家郭彦丽博士分别作主题报告。国家粮食和物资储备局科学研究院 副主任 谢刚研究员报告题目:《粮油领域食品安全问题的挑战和机遇》粮食安全,是事关人类生存的根本性问题。我国是人口大国,也是农业大国,高度关注粮食安全,是我国治国理政的头等大事。粮食安全包含粮食数量、粮食储备、粮食质量、监管制度以及技术安全等多方面。报告从多方面阐述了当下我国粮油领域食品安全的现状,并着重介绍了目前以色谱、质谱、光谱为代表的分析检测技术以在粮油检测领域目前的应用及发展现状,并提出了对相关检测技术未来发展的需求。岛津 分析计测事业部市场部食品安全行业专员 张园园报告题目:《岛津粮油行业综合解决方案》粮油质量安全关乎国运民生,而分析检测技术,对于保障粮油生产和质量安全至关重要,在粮油生产的全产业链上都发挥着重要作用。而岛津为了助力行业发展,也推出了针对粮油行业全流程、多维度的综合解决方案。报告以多个食品安全国家标准为例,介绍了岛津针对真菌毒素、氨基酸、添加剂、矿物油、污染物、农残等多品类检测方案。岛津企业管理(中国)有限公司创新中心高级专家 郭彦丽报告题目:《SFC-LC二维联用技术及应用介绍》超临界流体色谱(SFC)是一种色谱分离技术,使用超临界流体(通常是二氧化碳)作为流动相。由于超临界由于具有较低的粘度和较高的扩散系数,因此在SFC中样品分子可以更快地扩散到固定相表面,导致更快的分离速度和更短的分离时间,同时二氧化碳作为流动相也更加经济、绿色环保。报告主要介绍了,岛津利用SFC与反相色谱搭建的二维色谱系统及其在食用油检测苯并(a)芘中的应用。该技术可极大提升食用油中脂溶性成分的检测效率,相关实例已经形成团体标准。会议由岛津分析计测事业部市场部色谱产品经理尹宏瑞主持真机演示除了精彩的报告之外,为了让与会代表对新的SFC-LC二维联用技术检测食用油中苯并(a)芘的实验步骤以及技术操作有更清晰的认识。在报告环节之后,还组织了真机演示环节,并针对前处理、仪器操作等方面进行了详细说明。岛津郭彦丽博士现场演示参观创新中心本文内容非商业广告,仅供专业人士参考。
  • 植物研究所成立资源植物研发重点实验室
    12月29日上午,植物研究所举行资源植物研发重点实验室启动仪式。中科院副院长李家洋院士,中科院生命科学与生物技术局综合规划处处长刘杰、副处长许航,整合生物学处处长娄治平出席仪式,李家洋、植物所所长方精云院士、植物所匡廷云院士、洪德元院士为资源植物研发重点实验室揭牌。植物所领导班子成员及有关研究中心研究人员参加了启动仪式。   仪式由方精云主持,植物所副所长葛颂从资源植物研发的重要性及国内外现状,资源植物研发重点实验室成立的必要性,定位和研究内容,研究基础和条件,发展目标,组织结构和管理模式等五个方面介绍了资源植物研发重点实验室的基本情况。   资源植物研发重点实验室是植物所举全所之力,整合植物所在资源植物基础研究和应用开发方面的核心力量而成立的所级重点实验室,是植物所为适应国家中长期发展战略对生物资源的新需求,在深入分析中科院和植物所的定位和长远科技目标基础上,对植物所学科布局、科研组织方式做出的重要调整和尝试。   在学科定位上,资源植物研发重点实验室将面向国家重大战略需求,以我国特色与优势资源植物为研究对象,发挥植物所基础研究和多学科交叉的优势,系统开展资源植物的收集、评价、研究和开发利用 在资源植物生物学研究领域开展创新性的整合研究,解决我国在资源植物发掘与利用方面的重大科技难题和实际需求。主要研究内容包括:(1)资源植物的收集、评价和共享 (2)资源植物关键生物学特性的研究 (3)资源植物优良种质的发掘和利用。   资源植物研发重点实验室的目标是力争1-2年内在资源植物基础研究领域取得明显进展,形成具有国际竞争力的研发队伍,建成中国科学院重点实验室 争取在5-8年内,在资源植物基础研究和种质资源开发方面取得重大突破,引领我国资源植物的创新发展,显著提升我国资源植物相关产业的国际竞争力,推动生物产业升级,带动生物产业发展,为国家经济社会发展做出重要贡献,争取最终纳入国家重点实验室序列。   在组织与管理形式上,作为植物所科研组织形式改革的试点机构,资源植物研发重点实验室将采取新的管理模式,以研究群(Research Team)和研究组(Research Group)为基本运行单位,每个群下设若干研究组。实验室目前设有6个研究群: 1)资源植物收集与评价研究群 2)植物抗逆机理与应用研究群 3)环境和能源植物研发研究群 4)园艺植物研发研究群 5)种子特性及应用研究群 6)药用植物研发研究群。   在评估评价机制上,实验室将根据基础类、应用基础类、技术开发类研究任务的特点,建立合理的评价体系。在人才队伍方面,植物所引进了“千人计划”研究员桑涛任实验室主任,聘任华中农业大学校长邓秀新院士作为学术委员会主任,并即将就研究群负责人(Team Leader)面向国内外公开招聘。   刘杰受院生物局局长张知彬、副局长苏荣辉的委托致辞,对成立资源植物研发重点实验室表示祝贺,并希望植物所继续发挥基础性研究优势,加强交叉和综合性研究,特别是加强系统性研究。他说,资源植物研发重点实验室的成立,是研究所在经过深入研讨后做出的重要战略部署,资源植物研发重点实验室在强调基础性研究的同时,也强调科技成果产业化,整合分散的研究力量开展面向国家重大战略需求的集成性研究,符合中科院以科学发展观为指导所要着力实现的“9个转变”,符合院“十二五”发展规划,相信植物所在今后几年内一定会做出好成绩来,同时祝实验室早日进入院重点实验室序列。   李家洋对植物所在学科布局调整中的举措给予了充分肯定,指出植物所在资源植物研究方面有很好的研究基础,而成立资源植物研究重点实验室,可以将分散的研究力量整合起来,集中开展面向科学前沿和国家重大战略需求相结合的系统性研究,体现了植物所的特色和优势。李家洋特别强调,作为历史悠久的基础类研究所,植物所需要找准定位,进一步凝练学科目标,凝聚研究力量,在保留传统优势的同时,积极开拓新兴前沿领域。李家洋希望植物所紧密结合“十二五”规划和院“创新2020”规划,做好研究所的战略部署,统筹强弱学科、传统与新兴学科的发展,争取更多的支持,通过“特色”学科建设,推动“特色”研究所建设。   方精云对院领导的到来表示感谢,同时感谢院领导和生物局对植物所工作的肯定与支持,感谢以葛颂为组长的资源植物研发重点实验室筹备组前期的努力工作。他简要阐述了重点实验室成立的简要背景,为适应国家“十二五”规划的新需求,植物所将系统与进化、生态环境、发育与信号转导、光合作用和植物资源科学利用等5个研究领域作为重点领域进行部署。资源植物研发重点实验室的成立,是植物所面向国家对生物资源的重大战略需求而进行的重要举措,是植物所发展史上的重要事件。研究所将用更加精良的装备,更加宽松良好的环境,更加灵活有效的管理机制,更加合理的评估体系来建设和管理实验室,使其在资源植物的基础研究和应用开发方面取得双丰收,并争取把若干个项目推向产业化。   植物所将以资源植物研发重点实验室的成立为契机,进一步凝练和优化研究方向,整合研究和开发队伍,引进高端人才特别是领军人才,加快形成植物研究所的资源植物研发的特色和优势,推动植物研究所“十二五”规划和“创新2020”规划的目标的实现。
  • 华南植物园发现新的重金属超富集植物
    由于工矿企业的发展,农业化肥的过量使用,污水灌溉等,中国乃至世界的土壤重金属污染越来越严重。植物修复技术是目前重金属污染治理的研究热点,它具有治理效果的永久性、治理过程的原位性、治理成本的低廉性、环境美学的兼容性、后期处理的简易性等优点。这个技术成功的关键在于寻找超富集植物。虽然目前全世界已发现400多种超富集植物,但是大多数超富集植物都有生物量小,生长缓慢,弱抵抗力,种子少,缺乏与当地植物竞争的能力等缺点,所以能够真正应用于植物修复技术的超富集植物并不多。因此采用更有效的方法来筛选更多超富集植物是非常必要的。   中科院华南植物园土壤生态与生态工程研究组博士研究生张杏锋在导师夏汉平研究员的指导下,首次提出了用土壤种子库-重金属浓度梯度法来筛选重金属超富集植物,并成功找到一种Cd的超富集植物——少花龙葵(Solanum photeinocarpum)。该方法是指利用土壤种子库筛选对重金属具有超富集特性的植物,然后通过重金属浓度梯度实验对其超富集特性进行验证。结果发现,当土壤Cd浓度为60mg/kg时,少花龙葵的生长未受影响,根部Cd含量高达473mg/kg,茎、叶和地上部Cd含量分别达215、251和230mg/kg。在两个浓度梯度实验中,少花龙葵地上部Cd含量均超过Cd超富集植物的临界含量标准(100mg/kg),具有Cd超富集植物的基本特征,是Cd的超富集植物。   这一研究结果近期发表在环境工程领域主流杂志Journal of Hazardous Materials (2011,189: 414–419)上。   土壤种子库—重金属富集植物初步筛选实验中的植物种类(重金属添加到土壤中65天后)。最高的植物为少花龙葵。盆中数字分别表示如下:1-CK, 2-Cd4, 3-Cd8, 4-Zn100, 5-Pb300, 6-Pb600, 7-Cu100, 8-Cu300。
  • 分子植物卓越中心等发现新型植物RNA低温感受器
    低温胁迫是限制植物分布的主要环境因素之一,感知低温信号是植物适应寒冷环境的基础。植物在低温中呈现出生长减缓、开花延迟等表型以适应低温环境。鉴定植物的冷感受器是解析植物低温感知分子机制的关键。   10月20日,中国科学院分子植物科学卓越创新中心/CAS-JIC植物和微生物科学联合研究中心研究员杨小飞研究组、东北师范大学教授张铧坤研究组,以及英国约翰英纳斯中心(John Innes Centre,JIC) 研究员丁一倞研究组合作,在《自然-通讯》(Nature Communications)上,发表了题为RNA G-quadruplex structure contributes to cold adaptation in plants的论文。   温度依赖的大分子结构变化决定生物大分子发挥细胞温度计的功能,如蛋白质、核糖核酸等。为寻找与温度感知有关的RNA结构域特征,科研团队对1000种植物转录组项目(1KP)的RNA序列开展研究。该研究对其中的906种陆生植物与环境因素的相关性分析表明,生长在低温地区的植物RNA中普遍富含鸟嘌呤(Guanine)。鸟嘌呤(G-rich)序列在体外可以折叠为特殊的鸟嘌呤四链体(RNA G-quadruplex,RG4)结构,耐寒植物中具有更多的RG4结构,暗示富含G-rich序列与植物的耐寒性有关。   为探究RG4折叠与冷响应间的关系,科研人员对模式植物拟南芥进行低温处理,并利用此前开发的RG4检测方法SHALiPE-seq对体内RG4折叠进行定量检测。结果表明,低温处理显著诱导植物体内RG4结构的折叠,证明植物RG4具有感知低温的能力。研究系统分析了拟南芥的mRNA降解组数据,发现包含有冷诱导RG4的mRNA降解速率明显降低,暗示RG4或抑制了mRNA的降解。为验证RG4结构在mRNA降解中的作用,科研团队挑选了一个受低温显著诱导的RG4基因,命名为CORG1。通过碱基替换将G突变为A,可将包含RG4结构的野生型wtRG4-CORG1突变为不能形成RG4结构mutRG4-CORG1基因。进一步研究发现,mutRG4-CORG1在冷胁迫中的降解速率显著高于wtRG4-CORG1的降解速率,证明低温诱导的RG4结构形成抑制mRNA的降解。同时,低温对mutRG4-CORG1的转基因植物的生长抑制也明显弱于wtRG4-CORG1的拟南芥,表明RG4结构突变降低植物对低温响应的敏感性。   综上所述,冷处理诱导植物mRNA的RG4折叠,进一步选择性抑制mRNA的降解从而减缓植物在低温环境下的生长速度。转录组中RG4结构的选择性富集帮助陆生植物感知低温信号,促进植物对寒冷环境的适应性进化。该研究迄今为止首次发现RG4结构抑制mRNA的降解,阐明了RG4结构的全新分子调节功能,且RG4结构是植物中发现的第一个RNA低温感受器。美国哈佛大学和耶鲁大学研究人员对动物细胞的同期研究工作表明,多种胁迫因素(如低温、饥饿)促进3’UTR的RNA结构折叠,并提高mRNA的稳定性(https://www.biorxiv.org/content/10.1101/2022.03.03.482884v1)。这些研究暗示环境依赖的RNA结构折叠作为胁迫感受器,在自然界广泛存在。   研究工作得到国家自然科学基金、英国生物技术与生物科学研究委员会基金和欧洲研究委员会基金等的支持。耐寒植物中的RG4富集提高了植物对寒冷环境的感知能力
  • 国家植物基因研究中心植物激素检测平台举办技术讲座
    植物激素是植物体内合成的一系列天然微量有机物小分子化合物, 调控着植物生长发育过程中重要的生理反应,但其定量分析检测一直是限制研究深入的瓶颈问题。为了解决这一难题,国家植物基因研究中心(北京)从2007年开始致力于植物激素测定平台的建设,经过不断努力探索,目前已经建立了稳定的生长素、脱落酸、茉莉酸和水杨酸等激素的测定方法,并对外提供技术服务,部分数据已发表在Plant Cell、Cell Host & Microbe等杂志上。   为了充分发挥植物激素检测平台的作用,国家植物基因研究中心(北京)于11月26日举办了植物激素检测技术讲座。   此次讲座由负责植物激素检测平台工作的褚金芳主持。Waters公司的王则含首先介绍了超高效液相—三重四级杆串联质谱仪的工作原理、特点及其在痕量组分定性、定量分析中的应用及优势。随后,褚金芳就国内外植物激素检测的现状、植物激素检测平台的建设和运行、植物激素检测方法的建立以及植物激素检测流程需要注意的问题作了详细说明。来自所内外多个科研院所的70多名科研人员参加了此次培训。大家就植物激素检测相关问题踊跃提问,并得到了细致耐心的解答。
  • 第十届全国药用植物及植物药学术研讨会
    我公司于2011年8月10日至12日在素有“春城”美誉的云南省昆明市参加了“第十届全国药用植物及植物药学术研讨会”。本次会议由中国植物学会药用植物及植物药专业委员会和中国科学院昆明植物研究所联合主办,由中国科学院昆明植物研究所植物化学与西部植物资源持续利用国家重点实验室承办。邀请了国内相关领域院士和知名专家学者,同时首次邀请多名国外该领域的知名学者作大会报告,扩大该系列会议的影响,提高办会水平,促进与国内外同行的交流与合作。本次会议中,我公司冠名了茶歇,并展示了旋转蒸发仪、低温磁力搅拌等仪器,产品受到了广泛关注,并得到了诸多专家学者们的好评,大大增加了我公司品牌的市场影响力和知名度!
  • 植物也要“摘口罩”:Nature主刊揭示植物气孔如何重新打开
    人们面对病毒入侵,会通过佩戴口罩进行有效抵御。同样,植物也会通过调节气孔的开放和关闭来抵抗病原入侵。气孔关闭可减少水分流失并限制病原体进入,然而长时间关闭气孔,会导致植物光合作用以及蒸腾作用的减弱,水分的过度积累甚至会促进植物体内病原体的定殖。所以,植物其实也是需要在合适的时间“摘掉口罩”。那么,植物是如何动态调节气孔关闭和开放的?其背后的分子机理仍不清楚。今年5月,美国德州农工大学何平教授、单立波教授与山东建筑大学侯书国教授在Nature主刊合作发表了相关研究,发现了一类新的调控免疫和水分流失的分泌小肽SCREWs,阐明了SCREWs参与植物重新打开气孔的分子机制。这也是山东建筑大学首篇Nature主刊文章。植物基因里编码数以千计的小肽,而其中多数小肽的功能仍是未知的。一些小肽是植物免疫的细胞因子,被驻扎在细胞表面的受体激酶所感知。作者首先分析了拟南芥小肽合成基因的转录组学,发现受细菌鞭毛蛋白刺激时,一些小肽的合成会明显提高,并且这些小肽具有保守的C端(图1)。用这些小肽处理种苗后,发现小肽诱导激活了MAPKs(mitogen-activated protein kinases),及包括WRKY30,WRKY333,WRKY353和FRK1在内的多种PTI(pattern-triggered immunity)标志物的表达,并且证明了C端保守的两个半胱氨酸(CC)对诱导免疫反应十分重要。体内实验发现这些小肽直接决定了拟南芥是否易感染Pst DC3000(Pseudomonas syringae pv. tomato DC3000)。由此作者鉴定这些小肽为一类新的植物细胞因子,被命名为SCREWs(SMALL PHYTOCYTOKINES REGULATING DEFENSE AND WATER LOSS)。图1 细胞因子SCREWs的序列比对作者的下一步是找到SCREWs的受体。受体激酶,特别是LRR-RKs(leucine-rich repeat receptor kinases)是很多内源肽的受体。作者筛选了拟南芥的受体激酶,发现NUT(AT5G25930)介导了SCREWs诱导的免疫反应。为了确定NUT是不是SCREWs的直接受体,作者使用Biacore T200,通过把NUT胞外域固定在CM5芯片上,SCREWs作为分析物流过芯片,检测得到SCREW1与NUT的亲和力达到12.95μM,SCREW2与NUT的亲和力达到6.23μM(图2)。图2 Biacore鉴定SCREWs的受体NUT(pH 7.5)为了更加接近体内的环境,作者同样使用Biacore方法检测了pH5.7条件下SCREWs与NUT的亲和力,发现在非原质体的pH条件下,SCREWs与NUT的亲和力基本一致(图3)。图3 Biacore检测非原质体酸碱条件(pH 5.7)下SCREWs与NUT亲和力前面提到,SCERWs羧基端的保守半胱氨酸对诱导免疫十分重要,这里作者同样用Biacore做了体外实验的验证,结果发现保守区域半胱氨酸的突变会使SCREWs与NUT的亲和力显著降低(图4)。由此,藉由Biacore完整、可靠的实验结果,作者确定了NUT就是SCREWs的受体。图4 关键氨基酸的突变使SCREWs与NUT的亲和力显著降低很多LRR-PKs的受体都是BAK1和相关的SERKs,利用免疫沉淀实验发现SCREW会刺激NUT-BAK1复合物的产生后,作者同样使用Biacore检测SCREW2-NUT-BAK1三元的结合(图5)。同样把NUT胞外域固定在CM5芯片上,分析物则设置固定浓度的BAK1预混多浓度的SCREW2,并且检测NUT与单独BAK1的结合试验作为对照。结果发现,BAK1的存在显著提高了NUT和SCREW2的亲和力,达到了0.38μM。图5 Biacore检测SCREW2-NUT-BAK1三组分的结合除了调控免疫,作者还发现SCREW-NUT可以调控植物的水分流失。植物缺水时,ABA会促进气孔的关闭,调控植物的水分利用和耐旱性。作者发现,SCREW-NUT通过调控ABI(ABA INSENSITIVE)的磷酸化,导致ABI磷酸酶对OST1(OPEN STOMATA 1,一种介导ABA和MAMP诱导的气孔关闭的关键激酶)的活性增加,降低S型阴离子通道的活性,最终抑制气孔关闭。总结图6 文章整体研究思路综上所述,团队首次发现了植物应对病原体侵染或水分缺失时,会通过SCREWs-NUT来控制气孔的重新开放。SCREW-NUT系统广泛分布于双子叶和单子叶植物中,说明本研究在优化植物对非生物和生物胁迫的适应性方面有重要作用。Biacore作为分子互作的金标准,轻松应对信号通路的二元,三元体系研究,在研究植物生长发育和抗逆的信号通路,转录调控等方面,深受广大农业和植物科学家的信赖。Biacore可靠的实验数据,加上科学家创新又严谨的研究思路,定会加速我国科学家们在农业和植物领域的科研进展,巩固我们在此领域的领军地位。Biacore,for a better life参考文章:Liu, Z., Hou, S., Rodrigues, O. et al. Phytocytokine signalling reopens stomata in plant immunity and water loss. Nature 605, 332–339 (2022).
  • 中科院植物所中科三安植物工厂丨NMT设备已完成安装
    中科三安植物工厂丨NMT即将应用于果蔬生产 近期,中国科学院植物研究所成功采购了第二套扬格/旭月品牌的非损伤微测系统。这台设备将由位于厦门的中科三安植物工厂使用。 2020年1月11日,该设备已按照中关村NMT联盟标准在中科三安植物工厂完成安装验收。
  • 中国科大实现对多种植物叶片代谢物空间成像
    记者14日从中国科学技术大学获悉,该校科研团队在植物叶片代谢物质谱成像取得新进展,实现对多种植物叶片中代谢物的空间成像。  这一成果由该校国家同步辐射实验室潘洋教授团队利用自行研发的质谱成像平台,实现对多种植物叶片中代谢物的“拍照”。  研究成果近日发表于国际分析化学领域著名期刊 Analytical Chemistry杂志。  在已知植物种群中,有约200,000个植物代谢物的化学结构被鉴定出来。植物代谢物的成分分析和空间成像对探讨植物代谢物的生物合成、运输、生理机制、自我调节机制及植物与生态的相互作用具有重要意义。  质谱成像是近年来涌现出的分子成像技术,具有免荧光标记、不需要复杂样品前处理等优点。然而,由于植物角质层和表皮蜡的存在,常规软电离技术很难穿透角质层作用于叶肉组织,从而无法对植物叶片中的代谢物进行直接成像。  课题组通过印迹方法,将叶片中的植物代谢物转移至多孔聚四氟乙烯材料上,并对印迹后的材料进行成像,可实现对叶片植物代谢物的间接成像。由于使用DESI/PI技术,相比于传统DESI方法,正离子模式下可新检出多达百种萜类、黄酮类、氨基酸和苷类等次生代谢产物 负离子模式下整体代谢物信号强度可增强一个数量级。  课题组进一步利用该技术对茶叶进行研究,发现咖啡因在叶中脉富集、茶氨酸在叶柄富集并延伸至中脉和叶尾,为咖啡因主要在茶叶中脉合成和茶氨酸在茶叶根部合成并转运至叶片的生物合成位点及转运路径提供了强有力的证据。  实验还检测到茶叶中儿茶素生物合成网络中重要的黄酮类代谢物并以质谱成像的形式展示出空间分布,表明印迹DESI/PI成像技术在探索植物代谢转化位点和途径方面有巨大的潜力。
  • 恒美-植物光合作用测定仪检测植物的活体叶片光合作用-新品
    点击了解更多产品详情→植物光合作用测定仪 植物光合作用测定仪是一种用于测量植物光合作用效率和光合速率的设备。它可以帮助我们了解植物的光合作用情况,评估植物的健康状况和生长状态。 植物通过光合作用将光能转化为化学能,产生氧气和养分。光合作用测定仪通过测量植物叶片的光合速率和光能利用效率,可以评估植物的光合作用强度和效果。 使用植物光合作用测定仪非常简单。首先,将测定仪的探头或传感器放置在植物叶片表面。然后,仪器会通过测量叶片表面的光反射和吸收情况,计算出植物的光合速率和光能利用效率,通过测量植物的光合速率和光能利用效率,可以评估植物的健康状况。如果植物的光合作用效率较高,说明植物能够有效利用光能进行光合作用,代表植物健康良好。相反,如果植物的光合速率较低或光能利用效率较低,可能意味着植物存在养分缺乏、叶片受伤或其他生理问题。 植物光合作用测定仪可以监测植物的生长状态。通过定期测量植物的光合速率和光能利用效率,可以了解植物的生长过程中光合 作用的变化和适应能力。根据测量结果,可以调整光照、水分和养分等环境因素,以促进植物的健康生长。 优植物光合作用测定仪可以帮助研究人员和植物园艺师优化光合作用条件。通过测量不同光照、温度和其他环境因素对植物光合速率和光能利用效率的影响,可以确定最佳的光合作用条件,提高植物的生长效率和产量。 植物光合作用测定仪对于植物检测具有重要的作用。它可以帮助我们了解植物的光合作用情况,评估植物的健康状况和生长状态,优化光合作用条件,为植物的种植和研究提供科学依据。
  • 五洲东方参加中国植物学会植物细胞生物学专业委员会2010年学术年会
    2010年10月29-31日,由中国植物学会细胞生物学专业委员会主办的中国植物学会细胞生物学专业委员会2010年学术年会在风景秀丽的中国南京紫金山山麓的国际会议大酒店召开。 来自包括清华、北大、上海交大、武大、浙大、南大、中国农大、南京农大,以及中科院系统等在植物学领域的院士既学者教授超过300位参与了这次会议。五洲东方作为特邀赞助商也参加了本次会议,并在大会上由产品经理刘凯敏做了《全自动梯度准备与分离系统》的专题报告。 两天的主题会议中,各位知名学者教授从多个方面阐述了植物在发育遗传中的信号转导既调控机制。需要特别注意的是植物在不同光合作用条件下,或在高光强、低温、干旱、高盐等逆境胁迫下的调控机理正在成为新的研究热点,而此类研究往往需要良好的植物培养条件。比如可以调控不同光谱(红、蓝、远红等)条件下的培养箱(三色光培养箱),可以调控不同湿度、温度(零下15℃到60℃)、光强(最高1200umol/m2/s)并可根据各种培养条件进行温/湿/光编程的培养箱。同时,对植物细胞组分的精确分离也成为研究后期的重要步骤。 基于上述热点,众多老师对我公司的美国PERCIVAL植物培养箱以及加拿大BIOCOMP全自动密度梯度制备和分离系统表现出了浓厚的兴趣。
  • 美国农业部修订种植植物进口法规
    美国农业部动植物卫生检验局(APHIS)近日发布一份最终通知,向“待有害生物风险分析后批准的植物列表”(NAPPRA)中添加来自所有国家的31种检疫性有害生物和几乎来自所有国家的107种宿主的13种检疫性害虫。该法规将于2013年5月20日生效。这是APHIS首次向NAPPRA添加新的类别。   2011年,APHIS建立一项新的“待有害生物风险分析后批准的植物列表”,旨在防止检疫性害虫进入美国境内。最终规则建立了两个分类单元列表:一个列表为检疫性有害种植植物名单,另一个列表为检疫性有害生物宿主植物名单。已经被认定为含有检疫性有害种植植物的单元列表,其列表将包括单元列表名称。对于检疫性有害生物宿主植物单元列表,该列表将包括单元列表名称、该类植物未被批准进口的国家以及受到关注的检疫性害虫。一旦有证据表明进口的植物类群有可能构成风险,NAPPRA就允许APHIS迅速采取行动,同时继续允许公众参与该过程。   APHIS预计将在未来几天发布最终规则和相关提案。
  • 专家:无科学依据证明“植物奶油”有害
    不久前,国外某调查机构就全球人们最担心的问题作了调查排行,在中国人最担心的问题中,食品安全排在第一位。11月7日央视报道指出,俗称“奶精”、“人造奶油”的氢化植物油,含有大量反式脂肪酸,会增加心血管疾病、糖尿病等风险,更有科学家称氢化油堪比杀虫剂敌敌畏中的滴滴涕。这也让食品安全的话题再度牵动了人们敏感的神经。   那么,被广泛运用于面包、蛋糕、饼干等食品生产的氢化植物油,会不会对人体健康产生危害?记者采访食品安全专家得到的答案是:目前没有科学依据证明氢化植物油有害。   内情调查:使用成本远低普通植物油   从1910年“植物奶油”问世后,人们先是用它来涂在面包上食用。之后经过不断发展,氢化植物油被加入到薯条、鸡块,蛋糕、饼干、面包甚至是冰激凌、奶茶等各种大众食品里。   11月8日,记者走访了南宁各大超市,发现大部分商场里出售的奶茶、饼干、薯片、咖啡等食品,都标注含有氢化植物油。   为什么这么多食品选择使用氢化植物油?一位从事食品添加剂经营的店主给记者算了一笔账,一箱普通的15公斤氢化植物油零售价为120-160元不等,每公斤为8-12元 而市场上普通的花生油每公斤达到18元左右。使用成本的差异,一目了然。另外,使用氢化植物油做出来的食品口感较好。   记者走访了南宁市中华路多家食品添加剂经营店和奶茶原料店了解到,氢化油是一个内容范围非常广泛的名词,在实际使用中用途不同其名称会不同,如用于爆米花制作的称为“人造奶油”,用于炸鸡块、炸薯条的称为“起酥油”,用于糕点、饼干制作的称为“植物油”等。由于氢化油有用途广泛、价格低廉、不可替代等特点,经营者均表示,销售量非常好,经常有顾客一次进货达几十箱,用于各种食品制作。   专家说法:氢化油非明确危害物质   在采访中,一位大型超市的食品促销人员对记者说,氢化油能广泛运用于面包、蛋糕、饼干等食品当中这么多年,说明它的危害性不大,只要消费者不过量食用,还是安全的。   “氢化植物油原则上不是明确的危害物质,只是在生产过程中性状发生改变。”广西大学轻工与食品工程学院副院长、广西大学食品安全研究中心副主任刘小玲开门见山地表示,氢化油是将植物油脂中液态的不饱和脂肪,通过加氢硬化变成固态或半固态的油脂,其目的在于防止油脂变质,增加口感及美味。   作为常见的食品配料,氢化油实际上只是一个加工方法。最近有媒体在报道中提到的“反式脂肪酸”,刘小玲认为,这是在加工氢化植物油过程中产生的物质之一,不能因此就对氢化油作出不科学的判定,而把其与杀虫剂滴滴涕相提并论,更是有些危言耸听了。   广西区食品药品监管局餐饮服务食品安全管理处处长彭琪元也告诉记者,目前还没有明确的科学定论证明,“人造奶油”之类的氢化植物油对人体健康有副作用,国家允许在食品生产过程中科学使用氢化植物油。   监管现状:国内尚缺标准   相比于食品添加剂受到严格监管,在食品配料方面,我国尚无具体的管理办法和相关标准,没有严格的报批程序和使用范围、使用量的限制。   刘小玲对此也表现出担忧,她说:“虽然氢化油没有实质性危害,但它毕竟是通过化学加工的方法制成,如果原材料和加工程序有问题,生产出来的食品质量谁都不能保证。”加大食品生产厂家的监管,才是治本之道。彭琪元亦表示,政府监管部门也在密切地关注,食品生产在使用氢化油时是否有违规行为。
  • 五洲东方参加“第21届国际植物生长物质会议”
    由国际植物生长物质协会、中国科学院上海生命科学研究院植物生理生态研究所(以下称乙方)、植物分子遗传国家重点实验室、中国植物生理与植物分子生物学学会共同主办的&ldquo 第21届国际植物生长物质会议&rdquo (IPGSA Conference 2013)于2013年6月18-22日在上海国际会议中心召开。五洲东方作为赞助商参加了本次会议。   美国PERCIVAL公司成立于1886年,20世纪50年代20世纪50年代生产了第一台专业的植物培养箱。拥有百年历史的PERCIVAL是专业的植物培养箱体生产厂家,现已生产14个种类,近90个型号的培养箱,覆盖整个动物、植物培养和环境测试领域。另外,可根据客户具体需求定制特殊箱体。所有PERCIVAL产品从设计到生产都由PERCIVAL严格控制和把关,其产品值得信赖。   PERCIVAL产品目前遍布于世界各地,很多跨国企业及我国重点院校,知名科研院所和企业都正在使用PERCIVAL的各类产品。五洲东方公司作为PERCIVAL公司的全国独家代理商已有十余载,我们会和PERCIVAL一起继续为广大客户提供卓越的产品和全方位的服务。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制