当前位置: 仪器信息网 > 行业主题 > >

植物高度

仪器信息网植物高度专题为您整合植物高度相关的最新文章,在植物高度专题,您不仅可以免费浏览植物高度的资讯, 同时您还可以浏览植物高度的相关资料、解决方案,参与社区植物高度话题讨论。

植物高度相关的资讯

  • 土壤植物机器系统技术国家重点实验室通过验收
    2010年8月9日,科技部组织专家在北京对土壤植物机器系统技术国家重点实验室进行验收。科技部基础研究司、基础研究管理中心、国资委规划局、中国机械工业集团有限公司等相关负责同志参加了验收会。验收专家组由来自全国9所大学及研究机构的专家组成,组长由中国工程院院士、东北农业大学蒋亦元教授担任。   专家组认真听取了实验室的建设情况报告,现场考察了实验室。专家组认为土壤植物机器系统技术国家重点实验室围绕发展现代农业的重大需求,以农业机械与土壤、植物、投入物和环境的相互作用规律及机理为主要研究对象,开展土壤-植物-机器系统应用基础、土壤和植物信息获取与病虫草防控技术与装备、农业雾化工程技术与装备、农业装备智能化技术四个方向的研究工作。研究方向定位准确,研究目标符合现代农业发展要求。建设期内,实验室承担了一批国家级科研项目,在自主研发实验设备和装置方面突出 形成了合理的学术梯队 建立了良好的运行机制 依托单位对实验室建设高度重视,给予了大力的支持。专家组一致同意该实验室通过验收。同时,专家组就加强农机与农艺结合,加强创新性技术研究等方面提出了中肯的建议。
  • 植物愈伤组织能再生器官研究获进展
    组织培养是重要的植物营养繁殖技术,也是基因编辑等现代农业分子育种技术得以应用的基础。20世纪50年代,由Skoog、Miller奠定的组织培养技术沿用至今(Symposia of the Society for Experimental Biology,11:118–130, 1957)。在两步法组织培养技术中,第一步是获取多能性(pluripotency acquisition),即利用高浓度生长素诱导外植体产生具有再生多种器官能力的愈伤组织;第二步是器官发生(organogenesis),即通过高浓度细胞分裂素诱导愈伤组织再生为芽,或通过低浓度生长素诱导愈伤组织再生为根。2010年,Meyerowitz实验室提出愈伤组织类似于根尖分生组织,开启了关于愈伤组织在细胞和分子层面的新认识(Developmental Cell,18: 463-471, 2010)。  愈伤组织的器官再生能力是植物再生领域的核心科学问题之一,而尚未在分子机制方面得到合理解释。为什么愈伤组织能够在不同的激素诱导下再生为不同的器官,而普通体细胞却没有这样的能力?11月15日,中国科学院分子植物科学卓越创新中心徐麟研究组的研究成果(Pluripotency acquisition in the middle cell layer of callus is required for organ regeneration)作为封面文章,发表在Nature Plants上,从单细胞和分子层面揭示了愈伤组织具有器官再生能力的机制。  研究对拟南芥下胚轴产生的愈伤组织展开单细胞测序,确认了愈伤组织类似于根原基或根尖分生组织,大致分为三层:外层细胞类似于根尖的表皮和根冠;中层细胞具有根尖静止中心(quiescent center,QC)的特征;内层细胞类似于根尖的维管初始细胞。研究运用转录组比较分析、特征基因表达模式观察和细胞谱系追踪等方法,发现愈伤组织中层细胞与根尖静止中心QC有高度类似的转录组特征,也是根和芽再生的源头干细胞。在遗传表型方面,根尖静止中心QC的特征转录因子基因WOX5及其同源基因WOX7突变后,愈伤组织的器官再生能力下降;而WOX5/7过量表达可以使愈伤组织在低浓度细胞分裂素的情况下也具有芽再生的能力。分子层面的研究发现,WOX5/7至少通过三条通路促进愈伤组织中层细胞获取多能性:WOX5/7维持愈伤组织中层的干细胞属性;WOX5/7-PLT蛋白复合体能够激活内源生长素合成基因TAA1的表达,促进高浓度生长素的积累;WOX5/7-ARR12复合体能够抑制ARR5基因的表达,从而解除细胞分裂素的负反馈信号通路,达到细胞分裂素超敏感状态。  根据上述结果,研究推测愈伤组织具有器官再生能力的原理。愈伤组织中层细胞具有干细胞特征,处于未分化状态。愈伤组织的中层细胞具有双激素信号高峰的特征,即同时具备高浓度生长素积累和细胞分裂素超敏感的双重特性。这两个特征使愈伤组织具有既能再生根又能再生芽的能力:当培养基中只含有低浓度生长素而不含有细胞分裂素时,愈伤组织由于积累了高浓度生长素而分化为根;当培养基中含有高浓度细胞分裂素时,愈伤组织的细胞分裂素超敏感状态使细胞分裂素能快速有效的激活芽基因的表达,从而发育为芽。而在已分化的体细胞中,生长素途径和细胞分裂素途径相互抑制,无法达到两种激素信号的双高峰状态,因而不具备器官再生的能力。  研究工作得到国家自然科学基金、中科院、植物分子遗传国家重点实验室的支持。愈伤组织转录组数据和单细胞转录组数据可通过线上工具查询(http://xulinlab.cemps.ac.cn/)。  论文链接
  • 五洲东方参加第三届全国植物逆境生物学学术研讨会
    2018年5月16日—19日,在河南开封,植物生物学与生物化学国家重点实验室(中国农业大学)、旱区作物逆境生物学国家重点实验室(西北农林科技大学)、棉花生物学国家重点实验室(河南大学)以及上海植物逆境生物学研究中心(中国科学院)联合召开了“第三届全国植物逆境生物学学术研讨会”。北京五洲东方科技发展有限公司(以下简称“五洲东方”)作为参展商出席了本次会议。本次研讨会,五洲东方展位前咨询Percival植物培养箱和VILBER NEWTON 7.0 BIO植物活体成像体统的客户络绎不绝,老客户给予高度评价,新客户对其也表现出了浓烈兴趣。研讨会邀请了国内植物逆境生物学领域卓有建树的专家学者介绍当前研究的最新进展,结合国内外植物(作物)逆境生物学的发展趋势和国内外研究现状,重点讨论了如何整合力量、突出重点,进一步深入开展植物(作物)逆境信号转导、植物激素互作与逆境应答、植物响应逆境相关基因及其调控、作物抗逆高效的生理及分子基础等方面的研究,促进我国植物(作物)抗逆性研究。最后,本届研讨会在满满的收获中圆满落幕。五洲东方期待与您下次再聚!
  • 植物免疫抑制与广谱抗病机理研究取得重要发现
    9月30日,国际学术期刊Cell在线发表了中国科学院分子植物科学卓越创新中心/植物生理生态研究所何祖华研究团队与国内外研究者合作完成的研究论文。该研究揭示了水稻钙离子感受器ROD1精细调控水稻免疫反应,从而减低广谱抗病引起的生存代价,平衡生殖生长-产量性状。  作为世界近一半人口的主要粮食来源,水稻的产量和品质受到各种病原菌的严重影响。发掘广谱持久的抗病品种是控制水稻病害的有效策略。然而,随着病原菌的不断进化,植物抗病基因所建立的免疫屏障易被不断变化的病原菌毒性效应蛋白所攻克,这类病原菌效应蛋白攻击并操纵植物的靶标,抑制抗病性。这类植物靶标往往是感病基因。近年来,人们发现可通过对植物感病基因的操控,也可以实现对病原菌的广谱抗性,成为植物抗病育种的新技术。  该研究组通过对水稻资源库和育种群体的大规模筛选,鉴定到一份对腐生真菌病害纹枯病具有高度抗病的隐性遗传稳定材料,定名为rod1 (resistance of rice to diseases 1)。rod1对水稻的三大病害纹枯病、稻瘟病和白叶枯病均具有高抗的特性,说明该基因调控的免疫反应具有独特性。为此,他们前后用了15年的时间,解析有关分子和生化机制,探讨该基因的抗病育种应用潜力。他们的研究证明,ROD1基因编码一个新的钙离子感受器,通过识别钙离子信号与脂类结合,将过氧化氢酶CatB招募到细胞质膜,直接在膜区降解活性氧,从而在没有病原菌侵染时抑制免疫反应,促进穗原基发育,有利于水稻的产量性状。而两个E3泛素连接酶RIP1和APIP6靶定ROD1并介导其降解,保证了对病原菌的有效防卫反应。因此,RIP1/APIP6-ROD1以及ROD1-CatB组成了相互制约并高度有序的信号级联通路,对水稻免疫反应进行精细调控。更有意思的,该研究还发现稻瘟病菌分泌的效应蛋白AvrPiz-t具有与ROD1类似的β折叠结构,也可以与RIP1/APIP6以及CatB互作,与ROD1有功能上的替代性,也即病原菌模拟并操控了ROD1的免疫抑制系统,实现其成功的侵染。  进一步,他们通过对水稻不同栽培品种和农家种的基因组序列进行分析,发现ROD1编码序列存在一个单核苷酸多态性变异位点,导致功能氨基酸的改变。该变异将水稻分成两种类型,一种是广泛存在于籼稻、具有较强田间抗性的A型,另一种是在粳稻中富集且较感病的C型。从地理分布来看,含有A型ROD1的品种主要种植于高温高湿、水稻病害易于流行的低纬度地区;而C型ROD1则主要存在与高纬度地区的水稻品种中,说明作物抗病性受地域起源的选择。  综上,该研究揭示了一条以ROD1为核心的植物免疫抑制信号通路和蛋白三维结构模拟(structural mimicry)所介导的植物-病原菌共进化模型。该研究同时说明植物能够选择与气候条件相适应的免疫策略,以达到最佳的抗病与生长发育适应性的平衡。他们还发现ROD1的功能在禾谷类作物中是保守的,并提出了可以通过操纵感病基因实现广谱抗病的新策略,对培育稳产高抗的作物品种具有重要参考价值。  该研究得到国家自然科学基金、中科院战略性先导科技专项、科技部重点专项等的资助。
  • 多重PCR建库技术在植物研究中的应用
    PCR(Multiplex PCR)多重PCR(Multiplex PCR)可在一个反应内加入两对及两对以上的引物,同时扩增两个及两个以上的目标核酸片段。而多重PCR建库技术是一种整合多重PCR及二代测序的靶向测序技术。该方法具有成本低、检测效率高、应用灵活、适应性广等特点。应用方向多重PCR建库技术在植物研究中都有广泛的应用。品种鉴定:国标GB/T38551-2020[1]已经明确水稻、玉米、大豆、棉花等16个物种可通过MNP方式进行原始品种鉴定、实质性派生品种鉴定和品种真实性鉴定。判断依据则是根据测序后得到的标记位点数进行遗传相似度的计算,最后对比待测品种与对照品种的遗传相似度来定论。万人静等[2] 研究了MNP在第六大粮食作物木薯品种鉴定的应用,利用241份木薯的全基因组信息筛选到623个MNP标记位点。基于此,在28个木薯品种中两两比较时,99.47%(376/378)的品种对间的差异大于 46%,比例在 0.3%~81.0%之间,均值为 71.78%,MNP具很更高的品种区分能力。遗传多样性分析:多重 PCR 靶向捕获测序可用于对植物种群中的遗传多样性进行分析。通过选择性引物捕获特定基因组区域, 并对多个样本进行测序比较, 可以研究不同品种或种群中的遗传差异和多态性, 为植物种质资源的保护和利用提供重要的分子标记信息。比如, Zhang 等[3]利用多重 PCR 靶向捕获测序技术对来自中国海南省和广东省的 998份野生稻种质资源进行了基因分型和遗传多样性评估, 最终构建了 299 份野生稻核心种质资源, 为野生稻的分类、保护和创新提供科学依据。多重PCR建库技术原理多重建库技术工作原理[4]是依靠 PCR 对于靶向位点的定点扩增。对多个待测 SNP 位点设计特异扩增引物,在第一轮 PCR 中抑制引物干扰和非特异扩增,使数以千计的靶向引物能够在一管 PCR 反应中实现高度均一化的扩增,从而大量富集目标片段。随后,在 第二轮 PCR 中,加上测序接头和文库条形码,最终获得测序所需的文库。最后通过大规模并行测序 (massively parallel sequencing,MPS)揭示目标位点的标记基因型。多重建库流程步骤多重PCR建库技术的优势1. 高效性:多重PCR建库技术可以同时扩增多个目标序列,从而提高样品处理的效率。相比于逐个扩增目标序列的方法,多重PCR可以大大减少实验的时间和工作量。2. 经济性:由于一次扩增可以处理多个目标序列,多重PCR建库技术可以节省试剂的使用量和实验成本。这对于大规模研究和高通量测序项目尤为重要。3. 信息丰富性:多重PCR建库技术可以同时扩增多个目标序列,从而获取更多的信息。这对于研究复杂疾病、多个基因的相互作用或群体遗传学研究具有重要意义。4. 准确性和一致性:多重PCR建库技术可以在同一反应体系中同时进行扩增,从而保证了不同目标序列在扩增效率和条件方面的一致性。这可以减少实验中的变异性,并提高测序结果的一致性和可靠性。5. 灵活性:多重PCR建库技术可以根据研究需要灵活设计引物组合,从而适应不同的实验设计和研究方向。这使得多重PCR建库技术在个性化分析和定制实验中具有很高的灵活性。多重建库流程 相关设备推荐成都瀚辰光翼自主研发NovaLib 4800 Pro医疗级一体机,领跑核酸提取与文库构建领域~NovaLib 4800 Pro集核酸提取及文库构建于一体,整合了温控模块、加热震荡模块、磁力架模块、PCR模块、冷存模块等,可实现样本进,文库出。无需复杂、繁琐的手工操作,一键即启,可实现多种NGS流程一体化,无需人工干预。提取及文库制备全自动一体机NovaLib 4800 Pro 核心优势灵活性突出:兼顾高通量和灵活,24通道移液模块具备液位探测功能,可根据需要独立灵活使用单通道、8通道、24通道,配合可配置试剂载架,支持试剂原管、预分装多种上样独创先进设计:采用批间流水线设计理念提高并行效率;首创五腔室物理分区隔离设计,配备多腔室压差智能控制和HEPA系统,集成智能路径规划功能实现零污染实现无人值守:无人值守时间长,集成双堆栈耗材系统。一站式交付,从核酸提取到建库全流程自动化,中途无需补充耗材和试剂环保设计理念:固液分离,垃圾处理简单高效,集成大容量废料仓储系统开放式平台:流程可编辑,支持根据需要自定义流程及参数,用户可自由选择试剂NovaLib 4800 Pro 使用流程NovaLib 4800 Pro 应用流程NovaLib 4800 Pro 部分软件画面参考文献【1】GB/T 38551-2020, 植物品种鉴定 MNP 标记法[S]【2】万人静,李琼,周新成,李论,李甜甜,周俊飞,彭海,章伟雄,方治伟.木薯 MNP 标记在品种鉴定中的应用[J/OL].热带作物学报.https://kns.cnki.net/kcms/detail//46.1019.S.20230223.1705.004.html【3】Genetic diversity of wild rice accessions (Oryza rufipogon Griff.) in Guangdong and Hainan Provinces, China, and construction of a wild rice core collection【4】徐云碧,杨泉女,郑洪建,许彦芬,桑志勤,郭子锋,彭海,张丛,蓝昊发,王蕴波,吴坤生,陶家军,张嘉楠.2020.靶向测序基因型检测(GBTS)技术及其应用.中国农业科学,53(15):2983-3004.
  • 泽泉科技2016植物表型技术服务周成功举办
    2016年5月31日至6月6日,上海泽泉科技股份有限公司分别在长沙、武汉、南京和北京四地成功举办了2016植物表型技术服务周。本次服务周旨在更好地服务全国的科研用户,为全国高校、研究所的科研工作提供技术保障,让植物表型科研领域研究人员更深入地了解最新的产品及测量技术。服务周期间,泽泉科技携手LemnaTec、ALCI、Force-A、 Phenotyping Screening走进实验室,与科研人员就表型分析与LemnaTec表型系统的性状分析的应用、自动取样与种子质量控制解决方案、生理生态与田间表型分析的光学传感器应用、整幅图片的影响力—植物根系分析、叶绿素荧光技术——检测植物生理状态的有效探针等内容进行了深入的交流。 德国著名植物表型设备制造商公司的系统工程师Stefan Paulus以《Phenotyping Applications and Trait Analyses Performed by LemnaTec》为题向参会嘉宾介绍了表型技术的原理及应用、表型研究装置的构成及功能以及LemnaTec公司产品的最新研究进展。参会嘉宾结合自身研究的情况与演讲嘉宾探讨了研究课题引入表型研究技术的可行性。德国LemnaTec公司是国际上唯一的商业化全自动高通量植物表型平台提供商,具备强大的软硬件开发实力,软件功能十分强大,能对骨架结构、穗表型、生物量等人工难以获得的表型实现静态动态无损分析。现阶段国际上著名的植物表型平台全部都是由LemnaTec提供。作为LemnaTec公司的重要合作伙伴,中科研遗传所凌主任也应邀向大家介绍了植物细胞与染色体工程国家重点实验室的发展历史和取得的骄人成绩。LemnaTec工程师也现场考察了该所Scanalyzer 3D系统安装情况。LemnaTec公司技术工程师讲座 & 现场交流遗传所凌主任讲座 法国ALCI公司是视觉嵌入型机器人系统的领导者,旨在为客户提供处理和转化多元化产品所需的高级视觉解决方案,可为极为复杂的需求提供测量与质量控制。全球几大巨头商业化育种公司,包括孟山都、杜邦先锋、先正达、BASF、法国Limagrain公司,都在广泛使用ALCI公司的定制化产品和服务。特别是近期推出的便携式叶原片采集器POP Tool,在先正达、杜邦先锋公司得到了高度认可,短短几个月内已经获得1000套的采购订单。我们相信,便携式叶原片采集器POP Tool在中国的推出,将大大提高国内遗传育种研究单位的工作效率、以及准确率。销售总监Henri De Los Rios,以高通量植物样品智能采集系统SAS、高通量种子性状自动分析系统SAGA,高通量多光谱植物病理检测系统APAS等产品为例,结合演示视频,详细讲解了产品的操作与应用技巧,解决了参会嘉宾使用过程中遇到的应用性问题。ALCI公司销售总监讲座 & 现场交流 植物多酚是一类广泛存在于谷物类、蔬菜、水果、豆类、茶等植物中的重要次生代谢产物,一直以来都是研究的热点,法国Force-A公司推出的植物多酚-叶绿素测量计通过荧光光谱技术可实现多酚的实时无损测量,突破了传统方法对植物多酚研究的局限。本次服务周,Force-A公司的技术工程师Marc Pastor以《Optical Sensors for Ecophysiology and Field Phenotyping》为题,向与会嘉宾介绍了荧光光谱技术发展现状,并详细介绍了多酚类物质在植物生理、植物营养或植物病理等方面的应用。如类黄酮可作为光或氮素胁迫、植物病害易感性的指标;花青素可作为植物颜色、成熟度判断、温度胁迫的指标;同时芪类物质可作为植物病虫害特别是真菌感染的指标等。Force-A公司技术工程师讲座 & 现场交流 美国Phenotype Screening公司的植物根系X-光扫描成像分析系统RootViz FS是全球第一款为植物根系拍摄X-光照片的系统,是荣获美国R&D100大奖的产品。应泽泉科技邀请,Phenotype Screening公司的技术总监Ronald Michaels博士为大家带来了最新的植物根系分析技术。Ronald Michaels博士通过一张植株图片,详细讲解了RootViz FS能够获取的多方面数据,如根系面积、根系总长度、根系干物质总量等,名副其实的:The Power of the Whole Picture。Phenotype Screening公司技术总监 现场交流 作为本次活动的主办方,泽泉科技的技术工程师以”高通量植物基因型-表型-育种服务平台-中国种业发展的助推器”为题向参会的科研工作者介绍了AgriPheno?高通量植物表型平台及其在育种研究中的应用。光合作用是植物生理研究的重点,服务周期间泽泉科技的技术工程师还介绍了调制叶绿素荧光技术的原理及其丰富多彩的应用,引起了参会嘉宾的重点关注。泽泉科技的技术工程师现场交流 本次服务周吸引了大量科研工作者参加,活动现场学术氛围浓厚,交流热烈,达到了让植物表型科研领域研究人员更深入地了解最新产品及测量技术的目的。 2016植物表型技术服务周得到了湖南省杂交水稻研究中心、中国农科院油料作物研究所、南京农大科学研究院、中科院遗传所的大力支持,泽泉科技在此表示衷心感谢。泽泉科技始终将客户的需求放在首位,我们将一如既往地用真心为广大客户服务!
  • 泽泉科技应邀参加2017年高附加值植物生产的环控技术国际研讨会
    2017年4月24日-25日,“2017年高附加值植物生产的环控技术国际研讨会”在中国农业大学国际交流中心召开,会议由中国农业大学与日本植物工厂研究会共同主办,旨在通过国内外学术交流引导我国未来农业发展实现高产高效与清洁生产。作为农业研究、植物生理研究、生态监测领域的优秀设备供应商,泽泉科技应邀参加了本次会议。会议围绕叶菜、果菜、种苗、药草等高附加值植物生产的光环境调控、生长和品质调控、光合调控等主题进行了18场专题报告,同时设置了墙报展示区,来自国内外的150余位专家进行了深入交流。会议上海泽泉科技股份有限公司做了“高通量园艺物流与植物表型测定技术”的专题报告,引起了与会专家的浓厚兴趣与高度关注。同时在现场设置了展台,向参会嘉宾展示了植物光合生理测量解决方案、植物表型测定方案、根系测量解决方案及植物培养解决方案,吸引了众多新老客户前来咨询交流。
  • 泽泉科技应邀参加第二届分子植物国际研讨会
    2016年8月11日-14日,上海泽泉科技股份有限公司应邀赴北京清华大学参加了&ldquo 第二届分子植物国际研讨会&rdquo ,本次会议主办和协办单位包括:中国科学院上海生科院植物生理生态研究所、中国植物生理与植物分子生物学学会、中国科学院上海生命科学信息中心、Molecular Plant和清华大学生命科学学院植物生物学中心 ,会议邀请国内外有突出成就的专家及优秀中青年学者作学术报告并开展学术交流活动。 大会现场 专家报告 本次会议主题为&ldquo 从基因到网络&rdquo ,来自美国、英国、德国、澳大利亚、韩国和中国等著名学者参加了会议,会议围绕&ldquo 激素,生长和发育&rdquo 、&ldquo 表观遗传学&rdquo 、&ldquo 逆境和适应&rdquo 、&ldquo 生物互作&rdquo 和&ldquo 系统生物学和作物改良&rdquo 等方向进行会议报告。 泽泉科技展台 会议期间,上海泽泉科技股份有限公司展示了AgriPheno&trade 平台的植物基因型-表型-育种咨询和解决方案、植物光合作用测量解决方案和植物培养系统解决方案等,引起了参会专家的浓厚兴趣,泽泉科技近年来在表型方面的工作,也得到了老师的高度认可,泽泉科技技术人员还解答了老用户在仪器使用中遇到的问题,为日后的售后服务和市场等工作奠定了良好的基础。 展台交流
  • 博普特成功参展2024植物表型组学青年科学家论坛
    5月24日—26日,由南京农业大学前沿交叉研究院、《植物表型组学》(Plant Phenomics)期刊、植物表型教育部工程中心联合主办的“2024植物表型组学青年科学家论坛”在南京召开。来自全国各地植物表型组学领域专家、青年学者及学生代表200余人参加了论坛。南京农业大学副校长王源超教授回顾了学校植物表型组学发展历程和取得的新进展,期待参会的代表通过本次论坛深入交流,共同推动我国表型组学和智慧农业的发展。南京农业大学程宗明教授代表期刊欢迎广大参会者参加会议,感谢参会者对期刊的支持。向《植物表型组学》期刊2023年度优秀青年编委、优秀审稿人颁发了证书,同时,公布了入选期刊第二届青年编委的学者名单。北京市农林科学院信息技术研究中心王开义研究员、中国农业科学院重大任务局副局长柴秀娟研究员、南京林业大学曹林教授和浙江大学岑海燕教授分别围绕“作物智能育种系统与算法”“植物表型视觉识别技术探索与应用”“面向智慧林业的林木表型组学研究与应用”和“植物表型三维可见/近红外光谱成像的探索与思考”进行了论坛特邀报告。来自中国科学院分子植物科学卓越创新中心的杨箫主任、高乐旋编辑分别介绍了《分子植物》《植物通讯》期刊的情况,程宗明教授介绍了《植物表型组学》和《园艺研究》期刊的情况。来自全国22所大学、科研院所的27位青年学者围绕植物表型组学领域前沿研究做青年学者论坛报告,并与现场参会者交流讨论。会议还组织了研究生论坛,经遴选,7所大学、科研院所的14位同学汇报了自己的科研进展。北京博普特科技有限公司隆重参展本次会议,展示系列植物表型组学研究产品和解决方案,受到了与会专家的高度评价。
  • 陈宇航研究员团队在植物SLAC1冷冻电镜结构研究中取得进展
    气孔是植物与外界环境进行物质和信息交换的窗口。气孔通过感应和解码多种外界环境信号如干旱、CO2和臭氧等,介导植物对外界环境的适应过程。此外,气孔还是病原微生物的入侵通道,参与植物抗病的免疫响应。气孔控制植物CO2摄取和水分蒸腾散失,其开闭受到高度严格的调控。因此,植物气孔感应重要外界信号分子的机理解析对作物抗旱、粮食稳产和解决水资源短缺具有重要意义。 气孔由特化的护卫细胞形成,通过解码各种不同的外界环境信号,整合为护卫细胞的膨压变化来调控气孔开闭。护卫细胞膨压变化主要通过胞内离子跨膜转运实现,受到多个不同信号通路调控。两种关键离子通道SLAC1和QUAC1位于多个调控通路的交汇点,分别介导护卫细胞慢型(S)和快型(R)阴离子电流。护卫细胞阴离子外流是启动气孔关闭的关键步骤,其如何感知、解码和响应不同外界环境信号的分子机理和动态过程尚不清楚。 中国科学院遗传与发育生物学研究所研究员陈宇航研究组通过冷冻电镜技术解析了高等植物SLAC1的三维结构,并进一步应用电生理学技术系统地鉴定了SLAC1通道的关键磷酸化位点,为阐明SLAC1激活的分子机理奠定了基础。相关研究成果以Structure and activity of SLAC1 channels for stomatal signaling in leaves为题,发表在PNAS上。论文第一作者为陈宇航研究组学生邓亚楠。论文通讯作者为遗传发育所陈宇航、哥伦比亚大学教授Wayne Hendrickson和Oliver Clarke。研究工作获得遗传发育所研究员谢旗、汪迎春和博士黄夏禾,生物物理所博士王权等的帮助,并得到中科院战略性先导科技专项、国家重点研发计划和国家自然科学基金项目的资助。 控制气孔关闭关键离子通道SLAC1冷冻电镜结构和电生理学研究A. 气孔开关调控的分子网络;B. SLAC1单颗粒冷冻电镜研究;C. SLAC1三维结构;D. SLAC1关键磷酸化位点的电生理学分析
  • 转基因植物标准物质研究进展
    转基因植物标准物质研究进展日期:2012-05-17 作者:董莲华 赵正宜 李亮 隋志伟 王晶 来源:《农业生物学报》.-2012,(2).-203-210 点击:107  近年来,随着转基因技术的飞速发展,转基因作物及其产品大量涌现。但是由于转基因作物及其产品对人体健康和生物多样性的影响未经过长期检验,所以一直以来其安全性都受到社会各界的关注。为了保护消费者对转基因产品的知情权、选择权和健康权,各国都建立了多种方法对转基因植物及其产品中的转基因特征分子进行检测,以期对转基因植物从源头到餐桌进行全程监控。目前,由于各国对于转基因产品的标识有不同的要求,有些国家规定必须标明转基因成分的含量,并且各个国家对所标识转基因含量的要求不尽相同,为了解决贸易争端等问题,转基因产品的定性、定量检测成为关键。但是,由于缺乏国际普遍认同的标准,所以检测结果不可比的问题尤为突出。转基因检测标准的制定是解决转基因产品检测结果不可比的根本。转基因检测标准包括标准检测方法和标准物质。而转基因标准物质在保汪转基因检测结果可比和可溯源方面起着重要作用。标准物质是具有高度均匀性、良好稳定性和量值准确性的一种测量标准。因此转基因生物标准物质的使用可以保证转基因产品检测缔果的有效和可比。 国外尤其是欧美国家自上个世纪起就已经开始转基因检测标准和标准物质相关研究。目前我国制定了一些急需的转基因安全检测标准和规范(GB/T19495.3~5-2004,NY/T719.l~719.3-2003,NY/T720.1~720.3-2003,NY/T 72l.1~721.3-2003),但是,转基因生物标准物质的缺乏,已成为制约我国转基因生物检测技术应用与发展的一个土要技术瓶颈。本文将对国内外转基因植物标准物质的研究现状及相关技术进行综述,以期为我国转基因植物标准物质研制和相关研究提供参考。1 转基因植物标准物质种类 目前国内外研制的转基因植物标准物质上要自基体标准物质(Gancberg et al.,2007;Trapmann et al.,2004a;Trapmann et al.,2004b)和核酸分子标准物质(Corbisier et al.,2007;AOCS 0306-A(http.//WWW.aocs org/LabServices))。基体标准物质是与被测样品具有相同或相近基体的实物标准,是给被测物质赋值的最有效的标准物质。目前所研制的基体标准物质根据存在形式不同主要有种子标准物质(AOCS 0304-B(http//WWW.aocs.org/yech/crm))和种子粉末标准物质(Trapmann et al.,2004b)。核酸分子标准物质是含有已知量值(目标基因拷贝数或含量)的植物基因组DNA或质粒DNA分子,目前已有的核酸分子标准物质主要有基因组DNA分子标准物质(Fluka69407(http//www. sigmaaldrich.com/etc/medialib/docs/Fluka/Datasheet/69407dat. Par. 0001 File.tmp/69407dat.pdf);AOCS 0306-A)和质粒DNA分子标准物质(Corbisiei et al.,2007),而基因组DNA分子标准物质主要有叶片DNA(AOCS 0306-A;AOCS 0208-A2(http://WWW aocs. org/tech/crm);AOCS 0306-H(Http://WWW. aocs org/tech/crm))和种子DNA(F1uka 69407)分子标准物质两种。每种类型的标准物质在制备、保存和使用中都有其优缺点。具体见表1略。 由表1略可知,基体标准物质由于具有与待测物相同司或相近的基体效应,而且可以用于核酸和蛋白两个水平的检测,应用相对较。但是其纯度和均匀性不容易保证,使用不方便、价格昂贵,而且原材料获得以及复制难度较大。核酸分子标准物质可以解决均匀性问题,其中质粒分子标准物质还有容易获得和使用方便等特点(Allnutt et al.,2006),但是因为其PCR扩增效率与基因组DNA的扩增效率可能存在差异,使用质粒分子标准物质对转基因产品定量时须谨慎。基因组DNA分予标准物质虽然不存扩增效率差异,但因为纯度难以控制,所以复制比较难,价格最高。2 转基因标准物质制备过程中关键点2.1 转基因基体标准物质 转基因植物基体标准物质的研制技术关键包括候选物品种纯度鉴定、标准物质均匀性研究,标准物质定值和不确定度评价等技术研究。基体标准物质候选物纯度鉴定非常关键,因为这直接关系到转基因成分含量的准确性,在目前所有基体标准物质研制报告中,都提供了该标准物质候选物纯度及鉴定方法(Clapper and Cantrill,2009;Trapmann et al.,2010a)。纯度鉴定分遗传背景纯度和基因型纯度鉴定。遗传背景纯度鉴定一般是标准物质候选物供应商(目前国际上主要的供应商为拜尔公司、先正达公司和孟山都公司)通过田间性状筛选、分子水平和蛋白水平的纯度检测完成。分子水平检测技术一般采用定性PCR(聚合酶链式反应)、荧光定量PCR、Southem杂交等技术。蛋白水平检测技术包括Western杂交和免疫试纸条法等(Trapmann et al.,2004b)。基因型纯度检测方法一般采用PCR、Invader(亲染探针法)和SNP Wave技术检测等位基因的纯合或杂合(Eijk et al.,2004;Twyman et al. 2005)。此外,标准物质生产者还要对标准物质候选物进行转化体特异性检测,如对转基因玉米NK603标准物质候选物进行转化体特异性鉴定时要排除转基因玉米其它的转化体(GA21、MON863和MON810)(Trapmann et a.,2005a)。不同的转化体特异性纯度鉴定水平依赖于该转化体特异性定量PCR方法的检测限(Limit of Detection,LOD),由于每个转化体特异性方法的检测限不同,因此对每种转化体的转基因标准物质候选物可检测的纯度水平不一致,如对转基因玉米GA21可鉴定纯度99.935%(LOD=0.065%,Trapmann et al.,2004c),对转基因玉米NK603可鉴定纯度99.970%(LOD=0.030%,Trapmann et al.,2005a)对转基因玉米TCl507可鉴定纯度99.960%(LOD=0.040%,Trapmann et al.,2005b),对转基因土豆EH92-527-1可鉴定纯度99.980%(LOD=0.020%,Trapmann et al.,2011)。 基体标准物质均匀性研究目前主要采用实时荧光定量PCR(Trapmann,et al.,2011)和金标记中子活化法(Trapmana et al.,2010a,b,c)。采用荧光定量PCR方法进行均匀性检验是通过测定目标基因与内标准基因的比值这一特性量值来考察瓶间与瓶内的一致性。利用这种方法进行均匀性检测的优点是测定的量值与标准物质特性量值一致,但缺点是PCR方法精密度低,从而导致均匀性检验对标准物质量值不确定度贡献较大。采用金标记中子活化法进行均匀性检测优点是灵敏度高,重复性好,但缺点是该方法的成本比较高。2.2 转基因植物质粒分子标准物质 转基因植物质粒分子标准物质的研制技术关键包括目标序列和内标准基因序列的选择和扩增、质粒分子标准物质定值和适用性验证等,其中对于质粒分子的定值和适用性验证是质粒分子标准物质研制的技术难点。内标准基因序列的选择一般取决于转基因检测时常用的基因,研制的玉米中常用的内标准基因有adh(Alcoholdehydrogenase,乙醇脱氢酶)、zSSIIB(淀粉合成酶基因)和hmg(High mobilitygroup,高迁移率族蛋白基因),转基因玉米Mon810质粒分子标准物质ERM-AD413的内标准基因为adh基因片段(Corbisier et al.,2007);报道的转基因玉米质粒分子pNK603和pUC57-Btll则选择zSSIIB基因作为内标准基因(董莲华等,201la;董莲华等,2011b)。水稻中常用的内标准基因有REB4(Starch branching enzymes,淀粉分枝酶基因)、SPS(Sucrose phosphate synthase,蔗糖磷酸合成酶)、GOS9和PLD(Phospholipdase D磷脂酶基因)(Ding et al.,2004;Wang et al.,2010)。Cao等(2011)在构建转基因水稻TT51-1质粒标准分子时选择了PLD基因作为标准基因。大豆中常用的内标准基因是Lectin(凝集素基因),棉花中常用的内标准基因是Sad(Steroyl-ACP desatuTase,硬脂酰-ACP脱饱和酶)(Yang et al.,2005)。 目标基因的选择可以是启动子或终止子基因序列,可以是转入的功能基因序列,也可以是转化体特异性边界序列基因(即一部分来源于植物基因组,一部分来源于转入的外源基因)。目前研究最多的是选择边界序列作为外源基因进行构建质粒分子,如Cao等(2011)构建的转基因水稻TT51-l质粒分子目标基因为3′端边界序列,Taveniers等(2005)等构建的Btl76和GA21质粒分子也选择了3′端边界序列作为目标基国。2.3 转基因植物基因组分子标准物质 转基因植物基因组分子标准物质的研制技术关键包括候选物纯度鉴定、基因绸DNA纯化和定值。对候选物纯度鉴定与和转基因基体标准物质研制中的候选物纯度鉴定一样关键,因为纯度直接决定了量值的准确性。基因组DNA的纯化同样至关重要,PCR抑制因子的存在会严重影响后续PCR的扩增,从而影响对待测样品的赋值。目前,基因组DNA纯度一般以A260/A280和A260/A230这两个比值的大小来进行评价:A260/A280比值要求在1.8~2.0之间,而A260/A230比值则要求2.0。PCR抑制因子的存在与否,可通过倍比稀释PCR扩增后比较测定的Ct值与推测Ct值之差进行确定(ENGL,2008)。3 转基因标准物质量值确定方法 基体标准物质定值方式目前主要有两种:第一是重量法,即以制备时的重量配比给标准物质进行赋值,单位一般为g/k或者以%表示,采用重量法进行量值时其不确定度来源主要包括称量引入的不确定度和标准物质的纯度引入的不确定度。目前欧洲标准物质和标准方法研究院(Institute for Reference Materials and Measuremnents,IRMM)所制备的转基因标准物质大部分都是使用这一方法进行量值(Trapmann et al.,2004a;TraPmann,et al.,2010b;Trapmann et al.,2004c;Trapmann et al.,2005a)。第二是采用定量PCR方法对目标基因与内标准基因的拷贝数进行测定,以拷贝数的百分数(%)表示。由于PCR方法为相对定量,而且精密度低,所以使用该方法进行量值时标准物质的不确定度较大。在IRMM最新发布的标准物质研制报告(Andade et al.,2011)采用了荧光定量PCR方法对转基因玉米NK603标准物质进行量值。 此外,数码PCR(digital PCR)技术是新发展起米的可应用于转基因检测及标准物质定值的方法,因为数码PCR技术不需要外标而可以进行绝对定量,因此在标准物质定值方面有很大的发展前景(Bhat etal,2009),如在BIPM组织的关键比对CCOM-K86中,有证据表明数字PCR对转基因盲样测定的结果与定量PCR测定结果一致(Corbisier et al.,2011),但该方法测定结果的不确定度和溯源途径还有待于进一步研究。最新出现的Droplet digital PCR(ddPCR)技术(Markey et al.,2010)也是一种不依赖于外标的绝对定量方法,用于转基因含量的测定和目标基因的绝对定量方面具有良好的发展满力。 对于转基因基因组和质粒分子标准物质的量值与基体标准物质不同,除了需要明确转基因成分含量外,还要明确DNA浓度。目前,对转基因基因组或质粒DNA标准物质浓度量值IRMM采用紫外分光光度法,还可用PicoGreen荧光染料法,但是这些方法在标准物质量值溯源性方面都不能满足要求(Haynes et al.,2009)。最近发展的超声波-高效液相色谱(董莲华等,2011c)和超声波一同位素稀释质谱法可以解决核酸浓度定量测定的溯源性问题。此外电感耦合等离子体发射光谱技术(ICP-OES)也是溯源清晰的核酸浓度定定量方法(English et al.,2006)。用于转基因成分含量或拷贝数量值确定的方法主要是荧光定量PCR方法。荧光定量PCR方法是发展起来比较成熟的转基因定量方法(Ronning et al.,2003;Holst-Jensen et al.,2003;Cankar et al.,2006),但由于该方法是依赖于外标的相对定量,且重复性较差,难以成为标准物质定值的绝对方法。目前对于质粒分子标准物质的量值方式还没有合理的模式,因为质粒分予标准物质不同于基体含量标准物质,首先质粒分子本身的量值为目标基因和内标准基因的比值,而这一比值可以通过基因测序法来确定,也可通过定量PCR方法来确定。通过测序方法对标准值进行确定,其不确定度基本可以忽略(董莲华等,201lb),而通过PCR方法进行定值,不确定度需要考虑PCR过程中的影响因素,一般不确定度都较大(董莲华等,2011b1)。 此外,质粒分子作为标准物质是要用于转基因成分含量检测的,检测对象是基因组DNA,因为分子大小差异可能会导致PCR扩增效率有差异,因此对质粒分子标准物质定值还要充分考虑质粒和基因组可替代性问题。可替代性是指标准相对于未知样品的行为。一般观点认为,质粒DNA与基因组DNA是否可以替代主要取决于PCR过程中两者产生的标准曲线,具体反应在两者标准曲线的斜率(与PCR扩增效率相关)、截据和线性相关系数。但笔者认为这些参数中最关键的是两者标准曲线的斜率,其次是截据,线性相关系数只是反应标准曲线自身的线性,该参数更多的是取决于标准曲线制备过程中的梯度稀释。如果斜率和截据这两个参数之间没有显著差异,那么两者基本就可以替代(Taverniers et al.,2009)。但是如果斜率没有差异,截据存在差异,不能简单的认为两者不可以替代,这种情况F可经过实际样品验证,如果两者对于已经标准值的物质或者有证标准物质进行定量测定的结果一致,也可以证明两者是可以替代的(董莲华等,2011a;董莲华等,2011b)。或者通过大量实验找出质粒分子与基因组分子扩增之间的系数,也是解决这一问题的方法。4 国内外转基因标准物质研究现状与展望 目前国际上主要由IRMM、美国油料化学会(American Oil Chemists’Society,AOCS)和Sigma公司等专业机构进行转基因标准物质的研制和销售。国外对转基因标准物质的研制多集中在基体标准物质,目前仅有一个质粒分子标准物质(MON810)申请了有证标准物质(Corbisier et al.,2007),具体见表2略。国内目前仅有一种转基因大豆粉二级标准物质(GB/W100042/43),还没有有证质粒分子标准物质。但是我国目前批准的转基因标准品已有20种,这些转基因标准也具有明确的量值,它们与标准物质的区别在于转基因标准品的研制以应用为首要目标和出发点,对溯源性并不关注,因此其溯源途径尚不明确。而转基因标准物质除了以应用为目的具有明确的量值和不确定度外,对量值的溯源性也要声明。我国自2009年启动转基因生物新品种培育重大专项以来,研制的转基因标准物质涉及的国内外16个转化体30多个基体和质粒分子标准物质,分别由中国计量科学研究院、上海交通大学、中国农科院油料所研制。目前的这些标准物质正在进行有证申报。预计这些转基因标准物质将很快能够服务于我国的进出口贸易和出入境检验检疫等,从而有效的避免贸易争端。5 展望 转基因标准物质的使用将有效地解决转基因检测不可比的问题,从而避免国际贸易争端。然而,只有转基因标准物质的量值得到国际互认,才可真正有效地避免贸易争端,消除贸易壁垒。而要达到国际互认最简便有效地方式是通过国际比对或各国协同定值。具有国际互认量值的标准物质才能够更好的服务于进出口贸易检测。此外,未来的转基因标准物质研制应以简单实用为主,由于基体标准物质会受其原材料的限制,而质粒分子标准物质自身的特点决定了其应用的广泛性和使用的方便性。况且,如果将多个转化体特异性检测片段同时构建在同一个质粒分子上,可达到一个标准物质进行多个转化体检测应用的目的,这样既可提高标准物质的利用率,又可节约成本,应是未来的转基因标准物质研制的发展方向。 作者单位:(中国计量科学研究院,北京 100013) 文章采集:caisy 注明:国家科技支撑项目(No.2008BAK41B01)和转基因生物新品种培育重大专项(No.2008ZX08012-003)。
  • 安捷伦公司金牌赞助第二届植物代谢国际会议
    安捷伦公司金牌赞助第二届植物代谢国际会议 2011年6月30日,第二届植物代谢国际会议在美丽的海滨之城青岛隆重拉开帷幕。大会以&ldquo 植物代谢与现代农业&rdquo 为主题,邀请到近400位国际植物代谢领域著名科学家分享和讨论了萜类、维生素、酚类、色素和细胞壁的生物合成,碳和氮的代谢,代谢组学和代谢工程等诸多研究方向的最新进展和发展趋势。 作为生命科学领域重要的解决方案供应商,安捷伦公司此次重点以植物代谢组学为主题参与了相关的学术及展示活动。近年来,安捷伦在代谢组学领域经过不断的积累与发展,目前可提供业内最为完备的代谢组学解决方案。从代谢组学应用领域上,安捷伦可全面提供包括疾病、健康、临床、药物开发、植物、营养、食品、中药代谢组学、系统生物学等解决方案;从产品平台上,安捷伦是目前全球唯一能够同时提供一流的液相色谱仪,液质联用仪、气相色谱仪、气质联用仪、毛细管电泳仪、毛细管电泳质谱联用仪及迄今最全面的适用于气质、液质系统的内源性代谢物数据库和谱库,以及当今最强大的生物信息学软件的方案供应商。 于7月1日晚进行的大会学术交流活动上,来自安捷伦公司的液质联用应用工程师冉晓蓉博士为大家带来了题为《Agilent New Bioinformatics Tools and Its Application on Metabolic Biomarkers Discovery》(安捷伦最新生物信息学软件及在植物代谢组学中应用)的精彩报告。报告主要围绕以下安捷伦独特的代谢组学方案进行了探讨和阐释:植物代谢物在生物系统中扮演着重要的角色,其在体内的变化可以为生物化学研究提供非常有价值的信息。通过代谢组学手段寻找的代谢标记物与基因、蛋白所构建的相互作用网络可以有效的研究植物的代谢及调控。安捷伦提供行业内植物代谢组学研究功能最全面的软件解决方案- Mass Profiler Professional(MPP)。MPP覆盖化学计量学分析、潜在生物标记物鉴定及代谢通路分析,其最新配套的样本类别预测功能可有效的对植物产地进行溯源,MPP强大的功能无疑可以为植物及中药代谢组学的研究提供最全面的软件支持。 上述讲座内容引发在场听众的高度关注与热烈讨论,冉晓蓉博士就大家所普遍关心的问题逐一给予详细解答。MPP软件除支持路径与数据库的用户自定义扩充外,还可兼容多种数据格式,因此能够灵活有效地进行第三方数据分析,方便用户在已有工作基础上,进行组学乃至系统生物学全面、系统的深入研究。   有关安捷伦代谢组学更多信息及材料索取,请登录网站:   http://www.antpedia.com/special/118-collection.html   http://www.metabolomics-lab.com/ 关于安捷伦科技 安捷伦科技公司(纽约证交所:A)是全球领先的测量公司,同时也是通信、电子、生命科学和化学分析领域的技术领导者。公司的18500 名员工为100 多个国家的客户提供服务。在2010 财政年度,安捷伦的业务净收入为54 亿美元。要了解更多安捷伦科技的信息,请访问:www.agilent.com.cn。
  • Life Technologies呈现全方位植物研究解决方案
    2012年8月20日,第十三届全国植物基因组学大会在山东泰安正式召开。来自全国各地包括国外高校的700余名专家学者齐聚一堂,针对植物研究中的最新技术、热点问题和前沿趋势展开了深入的他讨论交流。 Life Technologies作为基因组测序的领头羊企业受邀参与大会,并带来了本世纪后光学时代的顶级产品&mdash &mdash 高通量个体化基因组测序仪(ion torrent PGMTM, ProtonTM)、全球最高端的高通量荧光定量pcr仪QuantStudioTM(集基因表达定量、基因表达谱筛选,数字PCR,基因分型于一体的全功能qPCR),为此次基因组大会助阵。 Life Technologies 展台 来自美国的Jenny Xiao 博士代表Life,为大会带来的题目是通过高通量测序平台进行基因分型来发现大麦的高密度分子标记物,这是Life旗下测序平台在植物研究应用方面的最新成果:依托于Life的高通量测序平台,科学家们能在极短的时间内得到研究数据,为基于植物基因组研究命题的科学工作者带来了开创性的解决方案,从此基因组测序迎来了高速发展、中等实验室成本消耗可实现的的后基因组时代。 Jenny Xiao博士介绍,Life Technologies提供集成式的基因分析平台,能满足科学家在植物研究方面的各种需求。比如,在育种方面,与传统的遗传育种相比,分子育种的快速高效,极大地提升了育种的效率,使科学家们能更快的得到理想成果。而与市面上其他品牌产品横向比较,ion torrent半导体芯片测序技术在时间和成本方面更是具有明显优势。 Life Technologies Jenny Xiao 博士作大会报告 Life Technologies除了为科学家们提供研究平台之外,也拥有一系列为植物研究开发的试剂产品,全方位的支持科学家的植物科学领域研究。Life旗下的Taqman® 配套试剂能满足各种样品和标记物数量,为植物科研工作者节省了设计实验方案的时间;此外,Life独有的Plant Engineering试剂,能有效准确的把目标基因转化到作物中,为转基因作物研究进行奠基工作。 Life Technologies呈现的全方位植物研究解决方案获得了参会代表的高度重视,在大会伊始,Life展台便吸引了大量老师驻足询问。 20日晚,Life与大会组委会合办了名为&ldquo Life之夜&rdquo 的开幕晚宴,几百名专家学者欢聚一堂,在享用精美餐点的同时还观赏了Life Technologies为大家准备的精彩演出。Life大中国区销售总监Dale Patterson先生致祝酒辞,祝愿大家在今后的研究生涯中百尺竿头更进一步,Life Technologies愿与所有的专家学者一起,为了让生活更美好而携手共进。 Life Technologies大中国区销售总监Dale Patterson先生致祝酒辞 泰山脚下清风送爽,诸位专家学者与Life员工相互交流,共同度过了一个难忘的夜晚。
  • 中科院微生物所等发表植物基因组编辑研究综述
    p   序列特异性核酸酶使得基因组编辑成为可能,快速推动了基础和应用生物学的发展。CRISPR-Cas9系统自出现以来,作为可转化植物的基因组编辑工具已得到广泛应用。CRISPR-Cas9对基因组靶位点进行定向切割,造成DNA双链断裂。DNA双链断裂主要通过两种高度保守的机制进行修复,即非同源末端连接(Non-homologous end joining, NHEJ)和同源重组(Homologous recombination, HR)。通过NHEJ方式,断裂的DNA会重新连接,但往往是不精确的,断裂位置会产生少量核苷酸的插入或删除,通常产生基因敲除突变体 与之相反,HR方式以同源序列为模板进行合成修复,可以产生精确的定点替换或插入突变,精准编辑靶基因。通过基因组定向突变进行基因功能鉴定和性状改良在植物中已得到广泛应用。然而,在植物中进行精准基因组编辑的需求极其迫切,尤其是对于那些难以转化的物种。目前,新开发出来的Cas9变体、新型RNA导向的核酸酶、碱基编辑系统和无DNA的CRISPR-Cas9递送方法都为植物基因组工程提供了前所未有的机遇。近日,中国科学院微生物研究所邱金龙研究组最近发表文章综述了植物基因组编辑的现状,重点关注由于植物基因组编辑的自身特点(如图)所带来的特殊挑战和机遇,并介绍了新近发展出的基因组编辑工具、方法及其在植物中潜在的应用。文章最后还展望了植物基因组编辑的前景和未来方向。 br/ /p p   该文章已于近日在线发表在《自然-植物》(Nature Plants)上。邱金龙研究组助理研究员尹康权为第一作者,邱金龙和中科院遗传与发育生物学研究所研究员高彩霞为共同通讯作者。相关研究得到了国家转基因专项(2016ZX08010-002)、国家重点研发项目(2016YFD0100602)北京市科委项目(Z171100001517001)、中科院战略性先导科技专项(XDB11030500)和国家自然科学基金(31672015)等经费支持。(来源:中科院遗传与发育生物学研究所) /p p    a href=" https://www.nature.com/articles/nplants2017107" target=" _self" title=" " 文章链接 /a /p p br/ /p
  • 泽泉科技应邀参加第十七届全国植物基因组学大会 备受关注
    2016年8月19日-22日,上海泽泉科技股份有限公司应邀赴福建省福州市参加了“第十七届全国植物基因组学大会”,本次会议由中国遗传学会植物遗传与基因组学专业委员会主办,福建农林大学以及福建省遗传学会承办。会议邀请1000多位国内外有突出成就的专家及优秀中青年学者作学术报告并开展学术交流活动,大会议题主要包括: ? 基因组测序及新技术 ? 功能基因组学及蛋白质组学 ? 代谢组学及生物信息学 ? 转基因技术及基于基因组学的育种 ? 基因组多样性 ? 表观遗传学及表观遗传组学 大会现场 参展期间,上海泽泉科技股份有限公司向用户展示了AgriPheno™ 平台的植物基因型-表型-育种咨询和解决方案、高通量植物样本DNA取样解决方案、植物光合作用测量解决方案和植物培养系统解决方案等,还另外获得墙报展示、交流的机会,引起了参会专家的浓厚兴趣。随着基因测序技术的广泛运用,植物学乃至整个生命科学研究进入高通量和组学时代。表型组是上世纪90年代就已经提到的概念,是指植物外在表型和内在表型的总和。广义上的表型组学还涉及表观遗传组学、转录组学、蛋白质组学及代谢组学等相关研究领域。泽泉科技近年来在表型及表型组学方面的工作,也得到了与会老师的高度认可。中国科学院遗传与发育研究所杨维才所长专门到展台,关心我们表型平台的运转状态,此前杨所长带领团队已经参观过我们AgriPheno™ 高通量基因型-表型-育种服务平台。泽泉公司一定会继续以先进的表型测量技术和良好的服务为基础,大力支持表型及表型组学的研究,为推动国内高校和科研院所的基础科研以及作物育种进程,做出企业自身的贡献与努力。 中科院遗传所杨维才所长一行参观AgriPheno™ 平台 会议报告人除了来自中科院遗传与发育研究所、上海生科院植物生理与生态研究所、复旦大学、华中农业大学等国内知名高校和科研院校的顶级专家,还有来自英国JIC、美国亚利桑那大学的植物基因组学专家。其中美国亚利桑那大学正在安装一套大型的高通量田间表型系统,所使用系统正是德国LemnaTec公司生产的野外型高通量植物表型平台——Field Scanalyzer。此前,国家科技部网站刊登了一则关于全球第一套野外型高通量植物表型平台Scanalyzer Field在英国洛桑研究所投入运行的消息(http://www.zealquest.com/news/view.asp?id=769)。现阶段国际上著名的植物表型平台全部都是由LemnaTec提供的产品,包括杜邦、先锋、巴斯夫、法国农科院、澳大利亚植物加速器等多家跨国种业巨头和很多科研单位。田间作物表型测定是未来表型及表型组学发展一大趋势。 英国洛桑研究所的野外型高通量植物表型平台Scanalyzer Field 泽泉科技墙报展示 此外,公司人员在会议现场还解答了老用户在仪器使用中遇到的问题,为未来的售后服务和市场推广等工作奠定了良好的基础。除了与参会专家的会场交流与互动,上海泽泉科技股份有限公司也非常重视与基因组学相关产品与技术服务参展商的密切互动。有理由相信在未来的几十年里,表型组学与其他组学的交叉合作机会愈来愈频繁,由此带动的产品、技术和服务的范围会越来越广泛。我们上海泽泉科技股份有限公司在生理生态、基因型-表型-育种领域的影响,也会随着相关行业和领域的发展,逐步实现交互融合,共赢发展。 泽泉科技展台 展台交流
  • 植物研究所成立资源植物研发重点实验室
    12月29日上午,植物研究所举行资源植物研发重点实验室启动仪式。中科院副院长李家洋院士,中科院生命科学与生物技术局综合规划处处长刘杰、副处长许航,整合生物学处处长娄治平出席仪式,李家洋、植物所所长方精云院士、植物所匡廷云院士、洪德元院士为资源植物研发重点实验室揭牌。植物所领导班子成员及有关研究中心研究人员参加了启动仪式。   仪式由方精云主持,植物所副所长葛颂从资源植物研发的重要性及国内外现状,资源植物研发重点实验室成立的必要性,定位和研究内容,研究基础和条件,发展目标,组织结构和管理模式等五个方面介绍了资源植物研发重点实验室的基本情况。   资源植物研发重点实验室是植物所举全所之力,整合植物所在资源植物基础研究和应用开发方面的核心力量而成立的所级重点实验室,是植物所为适应国家中长期发展战略对生物资源的新需求,在深入分析中科院和植物所的定位和长远科技目标基础上,对植物所学科布局、科研组织方式做出的重要调整和尝试。   在学科定位上,资源植物研发重点实验室将面向国家重大战略需求,以我国特色与优势资源植物为研究对象,发挥植物所基础研究和多学科交叉的优势,系统开展资源植物的收集、评价、研究和开发利用 在资源植物生物学研究领域开展创新性的整合研究,解决我国在资源植物发掘与利用方面的重大科技难题和实际需求。主要研究内容包括:(1)资源植物的收集、评价和共享 (2)资源植物关键生物学特性的研究 (3)资源植物优良种质的发掘和利用。   资源植物研发重点实验室的目标是力争1-2年内在资源植物基础研究领域取得明显进展,形成具有国际竞争力的研发队伍,建成中国科学院重点实验室 争取在5-8年内,在资源植物基础研究和种质资源开发方面取得重大突破,引领我国资源植物的创新发展,显著提升我国资源植物相关产业的国际竞争力,推动生物产业升级,带动生物产业发展,为国家经济社会发展做出重要贡献,争取最终纳入国家重点实验室序列。   在组织与管理形式上,作为植物所科研组织形式改革的试点机构,资源植物研发重点实验室将采取新的管理模式,以研究群(Research Team)和研究组(Research Group)为基本运行单位,每个群下设若干研究组。实验室目前设有6个研究群: 1)资源植物收集与评价研究群 2)植物抗逆机理与应用研究群 3)环境和能源植物研发研究群 4)园艺植物研发研究群 5)种子特性及应用研究群 6)药用植物研发研究群。   在评估评价机制上,实验室将根据基础类、应用基础类、技术开发类研究任务的特点,建立合理的评价体系。在人才队伍方面,植物所引进了“千人计划”研究员桑涛任实验室主任,聘任华中农业大学校长邓秀新院士作为学术委员会主任,并即将就研究群负责人(Team Leader)面向国内外公开招聘。   刘杰受院生物局局长张知彬、副局长苏荣辉的委托致辞,对成立资源植物研发重点实验室表示祝贺,并希望植物所继续发挥基础性研究优势,加强交叉和综合性研究,特别是加强系统性研究。他说,资源植物研发重点实验室的成立,是研究所在经过深入研讨后做出的重要战略部署,资源植物研发重点实验室在强调基础性研究的同时,也强调科技成果产业化,整合分散的研究力量开展面向国家重大战略需求的集成性研究,符合中科院以科学发展观为指导所要着力实现的“9个转变”,符合院“十二五”发展规划,相信植物所在今后几年内一定会做出好成绩来,同时祝实验室早日进入院重点实验室序列。   李家洋对植物所在学科布局调整中的举措给予了充分肯定,指出植物所在资源植物研究方面有很好的研究基础,而成立资源植物研究重点实验室,可以将分散的研究力量整合起来,集中开展面向科学前沿和国家重大战略需求相结合的系统性研究,体现了植物所的特色和优势。李家洋特别强调,作为历史悠久的基础类研究所,植物所需要找准定位,进一步凝练学科目标,凝聚研究力量,在保留传统优势的同时,积极开拓新兴前沿领域。李家洋希望植物所紧密结合“十二五”规划和院“创新2020”规划,做好研究所的战略部署,统筹强弱学科、传统与新兴学科的发展,争取更多的支持,通过“特色”学科建设,推动“特色”研究所建设。   方精云对院领导的到来表示感谢,同时感谢院领导和生物局对植物所工作的肯定与支持,感谢以葛颂为组长的资源植物研发重点实验室筹备组前期的努力工作。他简要阐述了重点实验室成立的简要背景,为适应国家“十二五”规划的新需求,植物所将系统与进化、生态环境、发育与信号转导、光合作用和植物资源科学利用等5个研究领域作为重点领域进行部署。资源植物研发重点实验室的成立,是植物所面向国家对生物资源的重大战略需求而进行的重要举措,是植物所发展史上的重要事件。研究所将用更加精良的装备,更加宽松良好的环境,更加灵活有效的管理机制,更加合理的评估体系来建设和管理实验室,使其在资源植物的基础研究和应用开发方面取得双丰收,并争取把若干个项目推向产业化。   植物所将以资源植物研发重点实验室的成立为契机,进一步凝练和优化研究方向,整合研究和开发队伍,引进高端人才特别是领军人才,加快形成植物研究所的资源植物研发的特色和优势,推动植物研究所“十二五”规划和“创新2020”规划的目标的实现。
  • 华南植物园发现新的重金属超富集植物
    由于工矿企业的发展,农业化肥的过量使用,污水灌溉等,中国乃至世界的土壤重金属污染越来越严重。植物修复技术是目前重金属污染治理的研究热点,它具有治理效果的永久性、治理过程的原位性、治理成本的低廉性、环境美学的兼容性、后期处理的简易性等优点。这个技术成功的关键在于寻找超富集植物。虽然目前全世界已发现400多种超富集植物,但是大多数超富集植物都有生物量小,生长缓慢,弱抵抗力,种子少,缺乏与当地植物竞争的能力等缺点,所以能够真正应用于植物修复技术的超富集植物并不多。因此采用更有效的方法来筛选更多超富集植物是非常必要的。   中科院华南植物园土壤生态与生态工程研究组博士研究生张杏锋在导师夏汉平研究员的指导下,首次提出了用土壤种子库-重金属浓度梯度法来筛选重金属超富集植物,并成功找到一种Cd的超富集植物——少花龙葵(Solanum photeinocarpum)。该方法是指利用土壤种子库筛选对重金属具有超富集特性的植物,然后通过重金属浓度梯度实验对其超富集特性进行验证。结果发现,当土壤Cd浓度为60mg/kg时,少花龙葵的生长未受影响,根部Cd含量高达473mg/kg,茎、叶和地上部Cd含量分别达215、251和230mg/kg。在两个浓度梯度实验中,少花龙葵地上部Cd含量均超过Cd超富集植物的临界含量标准(100mg/kg),具有Cd超富集植物的基本特征,是Cd的超富集植物。   这一研究结果近期发表在环境工程领域主流杂志Journal of Hazardous Materials (2011,189: 414–419)上。   土壤种子库—重金属富集植物初步筛选实验中的植物种类(重金属添加到土壤中65天后)。最高的植物为少花龙葵。盆中数字分别表示如下:1-CK, 2-Cd4, 3-Cd8, 4-Zn100, 5-Pb300, 6-Pb600, 7-Cu100, 8-Cu300。
  • IVIS视角——IVIS系统在植物领域的应用(一)
    在往期分享中,我们介绍了IVIS成像系统在动物水平的众多应用,其实IVIS同样可以用于全植物成像。此次我们就分享IVIS在水稻氮代谢研究中的应用。氮是植物生长发育所必需的养分,但其在土壤中的浓度往往达不到最佳作物生长浓度。因此,提高作物氮素利用率被认为是农业生物技术的一个主要目标。然而,关于作物氮代谢仍有许多需要了解的地方。在此,研究人员开发了一个分子传感器系统来监测水稻中氮的状态,该方法发表在《Frontiers in Plant Science》杂志上。研究中首先利用该系统研究了尿囊素的作用,尿囊素分解为尿囊素衍生的代谢物,在低浓度下作为氮源使用。参与尿素代谢的两个基因尿囊素酶(OsALN)和尿素渗透酶1 (OsUPS1),对氮状态高度敏感,在低氮条件下,OsALN迅速上调,而高氮条件下OsUPS1表达上调。基于上述机制,研究人员培育了含有氮分子传感器系统的[proALN::ALN-LUC2]和[proUPS1::UPS1-LUC2]转基因水稻。这种转基因的表达可以模拟内源性的转录调控,即OsALN和OsUPS1基因对外源N状态的响应。文中使用两种方法来测定分子氮传感器的能力:方法一:在长期培养中,转基因水稻植株在高浓度氮源培养基(GM+N)或不含氮源的生长培养基(GM-N)中培养5天,随后使用IVIS活体成像系统进行成像及定量。结果显示,生长在GM+N培养基中的 proUPS1::UPS1-LUC2 水稻植株表现出更高的荧光素酶活性(图1A)。为了对发光信号进行定量,研究人员测定了5个独立的纯合系(具有单个基因拷贝)。生长在GM+N培养基中的proUPS1::UPS1-LUC2 植株发光信号强于GM-N组20倍,而强于对照组约2,800倍(图1B)。方法二:在短期培养实验中,转基因水稻植株先在GM-N培养基中培养4天,第5天在加入100nM硫酸铵。结果显示,同长期实验结果一样,生长在后期加 氮培养基中proUPS1::UPS1-LUC2 植株,发光信号更强(图1C)。同样对5株独立的纯合系进行了定量,生长在后期加N培养基中的proUPS1::UPS1-LUC2 植株生物发光信号强于GM-N培养基中约50倍,而强于对照组13,000倍(下图1D)。图1.在高氮培养条件下,proUPS1::UPS1-LUC2 具有很强的发光信号。 (A)对照组和proUPS1::UPS1-LUC2 植株在GM+N或者GM–N培养基 中培养5天;(B)5个独立的纯合子proUPS1::UPS1-LUC2 在(A)条件下,发光定量结果;(C)对照组和proUPS1::UPS1-LUC2 植株在GM–N生长5天, 或者在GM–N培养基中生长4天,然后加入100 mM硝酸铵培养1天;(D)5个独立的纯合子proUPS1::UPS1-LUC2 在(C)条件下的定量结果,以对照组作为基准进行标准化 。这些结果说明,proUPS1::UPS1-LUC2 传感器能够通过发光信号水平检测外源氮的情况。同样在研究中对proALN::ALN-LUC2 植株进行了相同的处理。结果显示,在长时间的培养实验中,GM+N和GM-N培养基生长的proALN::ALN-LUC2 没有明显差异(图2A)。对5株独立的纯品系进行发光信号定量,相比GM+N培养基,GM-N培养基生长的proALN::ALN-LUC2 植株发光信号要高约1.8倍,比对照组高约17倍(图2B)。因此很难鉴定GM+N和GM-N培养基对生长的影响。而在短时间培养实验中,连续生长在GM-N培养基中的proALN::ALN-LUC2,发光信号要强于加高氮培养1天的。图2.在低氮培养条件下,proALN::ALN-LUC2 植株显示强的生物发光信号。(A)对照组和proALN::ALN-LUC2 植株,在GM+N or GM–N培养基中培养.;(B)A组相对定量结果;(C)对照和proALN::ALN-LUC2 植株在 GM–N中培养5天,或者在GM–N培养基中培养4天,然后加入100 mM 硝酸铵再培养1天 ;(D)C组相对定量结果;GM–N培养基生长的对照组植株作为基准进行标准化。此外,在文章中,还利用IVIS活体成像系统,探讨了该传感器对于氮源是否具有选择性及对于氮源的敏感性。结果显示proUPS1::UPS1-LUC2 和proALN::ALN-LUC2 对于氮源无特异性,可以广泛的作为水稻等植株中分子氮的传感器。并且proUPS1: UPS1-LUC2 植株在硝酸铵、硫酸铵或硝酸钾浓度 1mM即表现出强烈的生物发光信号,而低氮浓度( 10mM)。综上,分子氮传感器的信号反映了分子氮的内部状态。结合IVIS活体成像技术,proALN::ALN-LUC2和proUPS1::UPS1-LUC2 可作为分子传感器在不同研究中监测大米内部氮状态。文献来源:Dong-Keun Lee, Mark C. F. R. Redillas, Harin Jung, Seowon Choi, Youn Shic Kim and Ju-Kon Kim. A Nitrogen Molecular Sensing System, Comprised of the ALLANTOINASE and UREIDE PERMEASE 1 Genes, Can Be Used to Monitor N Status in Rice. Front. Plant Sci, 18 April 2018.
  • 奥思德仪器应邀参加第八届中国植物蛋白质研究大会
    七月的贵阳,天气凉爽宜人。2023年7月28日至31日,由中国植物学会指导,贵州大学和中国生物化学与分子生物学会蛋白质组学专业委员会联合主办,贵州大学生命科学学院等单位承办的“第八届中国植物蛋白质研究大会暨首届贵阳生命科学新高地顶尖科学家论坛”,在贵州省贵阳市国际会展生态会议中心成功举办,重庆奥思德仪器设备有限公司应邀参加本次盛会。本届大会以“后基因组生命科学新高地时代的植物蛋白质研究”为主题,邀请了蛋白质科学和植物组学领域有重要影响力的科学家做大会报告,集中展示了近五年来相关领域的最新研究成果;会议期间,展区E15展位展示了奥思德M+系列、E系列实验室超纯水机等产品。奥思德M+系列超纯水机奥思德M+系列超纯水机,采用ABS机壳,是专门为中小型实验室量身定制的高纯水制备系统,该机型结合优良的预处理和先进的反渗透技术,以自来水为进水直接生产纯水/超纯水,产水量10-30L/h,纯水电导率≤5μs/cm@ 25℃,超纯水电阻率18.2MΩcm@ 25℃, 适用于微生物、光谱、色谱等多种实验需求。奥思德E系列超纯水机奥思德E系列超纯水机,采用一体成型ABS机箱,智能化的人机交互操控系统及7寸LCD彩色电容触摸屏,配有2.5m半径独立取水手臂,是一款实验室中小超纯水系统,结合优良的预处理和先进的反渗透技术,以便捷、经济的自来水为进水直接生产纯水/超纯水,产水量10-30L/h,纯水电导率≤5μs/cm@ 25℃,超纯水电阻率18.2MΩcm@ 25℃,TOC<3ppb,可选配高效EDI模块,TOC在线检测显示功能,物联网模块,EDI纯水电阻率>5MΩcm@ 25℃(典型值10-16MΩcm@ 25℃);适用于药物研发及检测实验室,微生物检测实验室,痕量分析实验室,实验动物中心等。会议现场,奥思德超纯水机以其国际化的外观造型,创新性的功能设计吸引了多位专家和业内人士驻足参观,围绕实验室超纯水技术解决方案和产品性能等各项信息进行详细问询,奥思德公司技术人员亲切接待、耐心讲解,赢得了业界同仁的充分肯定和专家的高度认可。奥思德企业简介 奥思德公司成立于2017年,由深耕纯水领域20余年的专业人士组建,2022年荣获国家高新技术企业,现坐落于重庆市高新区二郎启迪科技园区,是一家专注实验室纯水/超纯水系统研发、生产、销售、服务于一体的科技型公司。 公司自成立以来,紧跟国家产业政策导向,竭力做好国产优质超纯水机,在科研上狠下功夫,连同全国各大高校、科研院所展开合作,在EDI去离子技术和TOC降解技术上取得重大突破,已获得多项国家发明专利。 公司主要产品有实验室超纯水机S、M、E、V四个系列,产品具有机型小巧、水质稳定、耗材量少、产水量大、更换便捷、使用周期长等优势,其中E系列超纯水机更是耗材使用少,性价比高,在多个实验室(CTC、SGS)成为明星产品和指定产品。
  • 中国首套机载植物荧光高光谱系统AisaIBIS成功安装试飞
    2020年5月25日,中国套自主集成安装的SPECIM航空机载植物荧光高光谱系统AisaIBIS在海南成功安装试飞,此次试飞是由Quantum Design 中国和合作伙伴中测瑞格共同协助林业和草原局用户进行。芬兰SPECIM AisaIBIS现场安装调试此次安装的芬兰SPECIM AisaIBIS植物荧光高光谱系统,由AisaIBIS高光谱相机、高精度航测相机、GNSS/IMU惯导系统以及控制单元组成。其中,系统的核心部件AisaIBIS 高光谱相机是由芬兰SPECIM和德国尤里希研究中心合作研发,是基于夫琅禾费荧光探测法的原理进行太阳诱导荧光探测。同时,该设备也是针对欧洲太空局(ESA)地球探测计划“荧光探测任务”FLEX研发的预研设备。AisaIBIS在拥有超高光谱采样精度(0.11 nm)和好成像质量的同时,也具有低噪声,高动态采集范围以及的信噪比等优点。可以在地面或空中对小到一片叶子大到整个生态系统进行光合作用活性探测。芬兰SPECIM AisaIBIS成功安装揭开了国内航空遥感植物荧光探测研究的序幕,也标志着国内自主安装集成航空遥感系统的成功。该系统将用于探测植被的高光谱荧光数据,研究植被的光合作用和生长状态,从而弥补林业碳汇计量监测能力不足,为我国陆地生态系统碳监测卫星进行预研工作。林业和草原局用户对芬兰SPECIM和QD中国工程师的专业性以及对待工作高度敬业的态度表达了赞赏,我们也希望SPECIM高光谱设备可以帮助用户在未来的科研工作中取得更大的成就。 Quantum Design中国工程师与用户的现场合影 公司背景:芬兰SPECIM公司是上早研发商用高光谱相机的厂商,从1995年至今已有二十余年的生产历史,累计有5000余套设备应用于全球各个领域,其产品拥有优质的数据质量。AISA 航空高光谱相机系列是针对航空和国防应用开发的专业设备,光谱范围涵盖了VNIR (380-1000 nm), SWIR (1000-2500 nm) 和用于热成像的LWIR (7.6-12.4um)。产品包括:AisaKESTREL系列—高端无人机载高光谱相机;AisaIBIS—超光谱植物荧光探测高光谱相机;AisaFENIX系列—全光谱(400-2500nm)采集高光谱相机;AisaOWL—热红外(7.5-12.5um)高光谱相机。其高光谱传感器无与伦比的性能,使ASIA系统成为在航空高光谱领域的,已有近100套系统在全球范围内使用。为满足我国研究者对高光谱成像采集的需求,Quantum Design中国引进了行业领军企业——芬兰SPECIM的高光谱相机系列,其产品种类多样,包含工业高光谱相机、实验室高光谱成像系统以及机载高光谱遥感系统等,可被广泛应用于农业遥感、环境监测、矿物勘查、工业集成以及国防安全等领域,我们将竭诚为您提供全面的高光谱成像解决方案。
  • 新芝仪器&植物(作物)种子实验室仪器设备
    一、背景  中国自古以来就是农业大国,对于有着14亿人口的大国来说,如何保障国家粮食安全是一个永恒的课题,种子安全保障更是重中之重。植物(作物)种子实验室的建设是为了攻关种子重大科学问题、解决种源“卡脖子”等关键技术难题,通常用于开展作物育种、种子学研究、种子检验、种子贮藏加工技术、种子处理等实验、实践项目。  一般可以划分为:种子样品接收室、天平称重室、人工气象室、发芽检测室、纯度评定室、净度分析室、生活力检测室、低温储藏室、包衣种子检测室、档案留存室和办公接待室等区域——“种子既是生命的开始,也是终结”。——相关的种子实验室仪器配置清单,包括基础实验所需的设备以及升级设备,供大家参考。  二、新芝仪器  针对于种子实验室的建设,新芝生物可以提供以下仪器设备供大家选择:  1.高通量组织研磨器系列 日常和基本的一个实验就是提取它们的遗传物质—DNA(脱氧核糖核酸)进行基因型鉴定,从而鉴定不同的种子来源。我们将待检测种子初步碾碎后加入离心管后利用高通量组织研磨仪进行组织研磨,获取颗粒更小的粉末,有利于后续种子DNA提取获得更高浓度的基因组模板,有利于后续核酸验证实验的准确性。    高通量组织研磨器应用种子库建设    高通量组织研磨器系列  Southern Blot在种子分子生物学研究中具有重要地位,虽然距离这项技术发明已经过去很多年,但这项检测技术仍被广泛的应用在各种生物实验研究中。Southern Blot可分析具体基因的基因座及拷贝数,可以鉴定同源重组的概率,也可分析基因随机突变风险,是分子研究的“金标准”。实验过程可分为印迹和杂交两个步骤:一是将待测定核酸分子通过一定的方法转移并结合到一定的固相支持物(硝酸纤维素膜或尼龙膜)上,即印迹(blotting),可采用紫外交联仪进行实现 二是固定于膜上的核酸与同位素标记的探针在一定的温度和离子强度下退火,即分子杂交过程,可采用分子杂交炉进行实现。  2.LF系列分子杂交炉 用模块化设计,结构简单,实用可靠 系统采用微电脑控制,触摸屏显示输入 采用钢化玻璃加工的机箱门不仅美观,还加大了使用人员的操作视野。温度控制系统采用模糊PID算法,自动演算,温度控制精确。杂交管旋转支架转速稳定,不受外界电压波动影响,摇匀功能能够快速满足用户摇匀需求。所有功能采用集中控制,操作更简单实用。在核酸分子杂交中对烤膜,预杂交,杂交,洗膜全过程可进行温度自动控制,可以有效的应用于核酸分子杂交技术的研究。  3.紫外交联仪  SCIENTZ03-II紫外交联仪利用中波紫外线提供均匀强度的UV照射,主要用于将核酸交联固定在膜上,还可用于琼脂糖凝胶中DNA的切割、RecA突变筛选、嘧啶二聚体产生的部分限制性内切酶消化、UV灭菌消除PCR污染等。其UV剂量控制精确,使用安全方便、能分紫外能量和时间两种操作模式。    4.SCIENTZ18-A超声波DNA打断仪  超声波DNA打断仪采用等温、非接触的方式对样品进行打断、匀浆和混合,用于无菌、可超微量破碎,隔着离心管能打断染色体。专为二代测序DNA样本与染色质免疫共沉淀实验样本前处理量身订做,对于每天要处理多个样品或者贵重样品的实验室,它具有处理高通量,样本低损耗,无交叉污染等优势。逐渐成为ChIP(染色质免疫共沉淀)和DNA剪切研究平台不可缺少的标准化工具。    6. NP-2032全自动核酸提取仪  NP-2032是通过磁珠法提取、纯化核酸的设备。样品裂解后,释放出来的核酸分子被特异性的吸附在磁珠表面,通过内置磁棒磁吸、转移、洗涤,最后使核酸分子溶解在洗脱液中,搭配不同种类的磁珠核酸试剂,可以快速提取动植物组织、血液、体液、刑事检体等样品中的核酸。    7.加热型功率可调超声清洗机  DTD系列功率可调加热型超声波清洗机主要用于常规清洗、萃取、乳化、混匀、脱气、分散等领域。其优点是大液晶屏幕显示,具有时间、功率、温度均可调等功能,且仪器断电后具有工作参数记忆功能,方便直接调用和数据查询。被广泛应用于验室、机电行业、珠宝首饰、医疗牙科、光学等领域。    8. 恒温水浴系列  恒温槽分单加热型(SC系列)、加热制冷型(DC系列)、单制冷型(DLK系列)、高低温程控机型(CK系列)、高精度机型(GDH/GH系列)5种机型。产品为用户工作时提供一个冷热受控、温度均匀恒定的液体环境,对试验样品或生产的产品进行恒定温度试验或测试,也可作为直接加热或制冷和辅助加热或制冷的热源或冷源。  9.实验型钟罩式冷冻干燥  冷冻干燥机用于种子样品的冻干保存  SCIENTZ-N 系列实验型钟罩式冷冻干燥机是专为实验室用户处理小批量样品打造的专用产品。在保持结构紧凑的同时,兼顾优异的性能。采用性能稳定的进口压缩机,功能强大,可提供高度自动化的高品质冷冻干燥环境(常规空载 -56℃,可选配 -80℃压缩机),是中小型实验室完成冻干工艺实验的理想选择。  10. 真空离心浓缩仪  可用于种子基因组提取物的离心浓缩用于后续检测 可用于种子胞内提取产物的离心浓缩,提高样品浓度,有利用后续检测实验的准确性。  真空离心浓缩仪,自带捕水冷阱,方便快捷。SCIENTZ-10LS 型为分体式离心浓缩仪,可适配 N、ND 系列冻干机,或配置低温冷阱才能实现浓缩冻干。可广泛用于生物学、微生物学、生物化学、制药研究以及分析化学等领域。  11. 台式高速冷冻离心机  为满足低温样本的分离、沉降等需求,并且可根据不同样本的需求更换转子,最小离心管可至 0.2ml(4*PCR8排管),最大离心管可至5ml(12*5ml),是一款性能先进、用途广泛、使用安全、操作简单的高质量产品。  12. XB全自动雪花制冰机  全自动雪花制冰机是一种新型优质的制冰机,特别适用于医院、实验室、学校等医疗科研场所,也可用于餐厅、酒吧、酒店等娱乐场所,还可用于超市、渔业捕捞、化工、食品加工、屠宰冷冻等需要大量使用冰的行业,应用非常范围广。  种子库的建设事关国家兴衰,是关乎全中国、全世界的大事。如果有一天,某个国家或地区的农作物因战争或内乱而遭到毁灭,甚至是全球性的大灾难时,人们就可以从种子库取出之前储存在这里的种子样本,利用这些精心储藏的种子即可重新启动农作物生产。新芝生物作为全球生物样品前处理专家,希望能在种子库建设上为国家、为社会、为全人类贡献自己的一份力量。  以上,就是我们新芝生物能为种子实验室建设提供的仪器清单,供需查询。详情请登录我们的官方网页https://www.scientz.com  ▼  End
  • 活体成像 | NEWTON7.0 Bio 植物活体成像落户袁隆平及官春云两大院士团队实验室
    近日,两台Newton 7.0 Bio植物活体成像陆续抵达长沙,分别落户国家杂交水稻工程技术研究中心以及国家油料改良中心湖南分中心,已安调成功,将助力袁隆平院士及官春云院士两大团队进行水稻和油料作物研究。 新款的Newton 7.0 Bio植物成像系统增加了箱体顶部中心的高度,具有更大的成像视野。且CCD相机和样品台均可Z轴升降,除了便于调整植株高度外,也方便植株焦点的选择而无需进行相机对焦。双样品台设计,30°旋转的载物台适用于盆栽植物,而样品板则适用于叶片成像。 采用独特的镀膜技术,GFP,RFP等专用的窄波发射滤光片可有效分离信号荧光和叶绿素自发荧光,从而避免了自发荧光的干扰(如下图,油料改良中心及杂交水稻研究中心的实验结果,GFP及mCherry标记)。深度制冷,高灵敏度的CCD相机,尤其适用于LUC报告基因的检测;多通道扫描式荧光光源,涵盖400~800nm,激发均一性≥99%,除用于GFP外,还可以满足YFP,RFP等多种报告基因检测;搭载功能强大的图像获取及分析软件,使得Newton 7.0 Bio在植物基因表达调控,转基因鉴定,植物逆境胁迫,突变体筛选,微生物侵染,植物生物节律等领域都能展现出无与伦比的性能。Newton 7.0 Bio将会是植物研究领域科研人员的得力助手!END昊诺斯生物更专业 更优质 更贴心与实验室相伴
  • PCR在动植物病害检测和鉴定中的应用|iCPCR2023在线开讲
    PCR在动植物疫病应用广泛5月29日,《自然通讯》(Nature Communications)杂志网站刊登了“在猪中检测到高致死性基因型I和II重组非洲猪瘟病毒”的研究。研究称,哈兽研研究团队在江苏、河南和内蒙采集的猪样本中分离出3株非洲猪瘟病毒基因I型和基因II型的重组体,结果表明,重组病毒JS/LG/21在猪中是高度致死和可传播的。重大动物疫病、人畜共患病危及公共卫生安全。非洲猪瘟从2018年延绵到现在,一直被生猪养殖界称为世界性难题。值得关注的是,荧光PCR检测方法是非洲猪瘟确诊的重要标准,世界粮农组织及中国农村农业局均推荐优先采用荧光PCR检测方法进行核酸检测诊断非洲猪瘟。而植物病害严重危害农业生产,不仅危害农作物产量的减少,而且在一定程度上还严重威胁农产品质量安全及国际贸易。应用PCR扩增技术可将很少的病原微生物核酸扩增放大,可以用于植物病害的早期诊断。病害的防治通常是预防大于治疗,浓度偏低的病毒病标样的准确诊断和检测对病害的有效控制非常重要。目前,PCR技术在我国植物病害检测中已得到了广泛应用,覆盖真菌类、细菌类、病毒类的检测研究。聚焦动植物疫病,iCPCR2023全阵容嘉宾开讲PCR和建立在PCR基础上的分子生物学技术以其灵敏、快速、简便等优点,能将病害快速、准确的鉴定出来,在动植物病害检测和鉴定中得到了广泛应用。2023年6月28-30日,由仪器信息网举办的第七届PCR技术网络会议(iCPCR 2023)将在线开播,众位PCR技术和仪器研发专家,PCR技术应用专家,前沿科学研究PI等嘉宾将在3i讲堂分享精彩报告。本次会议特别设置了【动植物疫病应用】分会场,特邀多位嘉宾分享PCR在动植物疫病检查中的应用与经验。立即报名》》》精彩报告提前揭晓:原霖 实验室技术总监 北京中科基因技术股份有限公司《数字PCR在污水等复杂基质中的动物病原检测》(6月30日上午开讲 点击报名 )原霖 博士 高级兽医师,北京中科基因技术股份有限公司 实验室技术总监,“原博士带你做检测”公众号创始人。毕业于中国农业大学。全国标准物质技术评审专家库专家、全国标准样品技术委员会动物防疫标准样品专业工作组(SAC/TC118/WG15)组员、全国生化检测标准化技术委员会(SAC/TC 387)成员。目前主要从事检测实验室质量控制与标准化研究。已经研制了ASFV和PRRSV等10余项国家标准物质/标准样品。PRRSV核酸标准物质为我国兽医领域第一个核酸定量有证标准物质。建立了非洲猪瘟、禽流感和蓝耳病等数十个数字PCR方法。主持及参与国家重点研发计划2项,参与起草《医学实验室 核酸检测质量和安全指南》(CNAS-TRL-018)等标准10项,参编书籍6本;发表学术论文30余篇。王少林 教授 中国农业大学动物医学院《高通量扩增子检测技术在动物病原与耐药性检测中的应用》(6月30日上午开讲 点击报名 )王少林,教授,现就职于中国农业大学动物医学院,2003年获得中国农业大学生物学学士学位,2009年获得美国奥本大学分子遗传学博士学位,入选中组部万人计划“青年拔尖人才”。主要从事药理基因组, 毒理基因组,微生物基因组、宏基因组和生物信息学方面的研究;在重要国际期刊上发表SCI论文100余篇,主要研究成果论文引用5000次以上,参与出版英文著作4个章节,主持国家重点研发计划课题、自然科学基金、农业部细菌耐药性监测项目等10项。史喜菊 博士/研究员 中国海关科学技术研究中心《多重荧光PCR在动物疫病检测中的应用》(6月30日上午开讲 点击报名 )史喜菊博士,研究员,中国海关科学技术研究中心,主要从事境外动物疫病风险评估、进出境动物疫病分子诊断技术研究和实验室质量管理体系研究。“十三五”、“十四五”国家重点研发计划课题主持人,先后主持/负责完成国家级、省部级科研课题22项,科研成果曾获得北京市科技奖励二等奖1项、三等奖1项、原国家质检总局科技兴检二等奖1项,三等奖3项,获海关总署科技成果评定三等奖1项。获得授权的国家发明专利9项,副主编出版专著2部,参编、参译著作7部;以第一作者发表文章50多篇,其中SCI文章6篇,主持/参与制定行业标准15项。夏应菊 高级兽医师 中国兽医药品监察所《猪瘟和非洲猪瘟假病毒的研制与应用》(6月30日下午开讲 点击报名 )夏应菊博士,高级兽医师,中国兽医药品监察所,国家/WOH猪瘟参考实验室骨干。从事猪瘟、非洲猪瘟等重大猪病诊断方法、疫苗评价及免疫机制等研究工作。国家猪瘟参考实验室学术委员会委员、中国畜牧兽医学会动物传染病学分会青年学者专业组委员。主持和参加 “十四五”、“十三五”国家重点专项课题、国家自然科学基金面上项目等国家和省部级课题8项。发表论文30余篇,主编、参编著作3部,获专利3项。邓丛良 研究员 中国海关科学技术研究中心《数字荧光PCR技术在检验检疫中的应用》(6月30日下午开讲 点击报名 )邓丛良,博士,研究员,北京植物病理学会常务理事,现在中国海关技术研究中心动物研究所从事物种查验工作。在植物病毒检测技术研究方面具有深入研究,第一作者和通讯作者发表论文30余篇,研究成果分获省部级1等奖,2等奖和3等奖计5项。冯小宇 正高级兽医师北京市动物疫病预防控制中心《动物疫病检测用标准物质的研究与应用》(6月30日下午开讲 点击报名)冯小宇,北京市动物疫病预防控制中心正高级兽医师。中国微生物学会兽医微生物学专业委员会委员,北京市奶牛创新团队岗位专家。从事动物疫病监测诊断、防控技术研究及推广应用工作。主持或参与省部级科研项目 15 项;获省部级奖励 6 项、国家标准物质 2 项、新兽药证书 1 项、发明专利 9 项、实用新型专利 4 项,发表论文30 余篇。获北京市青年文明号、北京市动植物疫情防控先进个人、北京市郊区青年致富带头人等荣誉称号。蒲静 研究员 中国海关科学技术研究中心《PCR技术在动物源性成分鉴定中的应用》(6月30日下午开讲 点击报名 )蒲静,研究员,2005年毕业于中国农业大学,获预防兽医学博士学位。现任职于中国海关科学技术研究中心动物检疫研究所,同时担任进出境濒危物种鉴定实验室联盟技术专家。主要从事进出境动物及动物源性产品的检验检疫、濒危物种鉴定及动物源性成分鉴定等国门生物安全动物领域相关工作,在精准分子检测及鉴定技术方面开展科研创新,主要研究成果包括“濒危动物及其制品鉴定技术体系”、“主要动物疫病快检技术平台”等。主持和参加国家科技支撑计划、海关总署科研项目等12项,获得省部级科技进步奖3项;主持发布国家标准3项;取得授权发明专利12项;发表核心期刊论文和会议论文30余篇。 参会指南 快速报名入口:https://www.instrument.com.cn/webinar/meetings/icpcr2023/一、主办单位仪器信息网二、会议时间2023年6月28日-30日三、会议日程第七届PCR前沿技术与应用网络会议(iCPCR 2023)时间专场主题6月28日 上午新产品与新技术6月28日 下午分子诊断应用6月29日 上午药品/生物制品应用6月29日 下午农林育种应用6月30日 上午动植物疫病应用(上)6月30日 下午动植物疫病应用(下)扫码直达报名页面温馨提示1) 报名后,直播前一天助教会统一审核,审核通过后,会发送参会链接给报名手机号。填写不完整或填写内容敷衍将不予审核。2) 通过审核后,会议当天您将收到短信提醒。点击短信链接,输入报名手机号,即可参会。四、会议联系会议内容及报告赞助仪器信息网 刘编辑:13683372576,liuld@instrument.com.cn
  • PerkinElmer ICP-MS助力科学家揭秘植物砷含量控制的关键基因
    随着工业的发展,环境污染已日益成为亟待解决的问题,而土壤及水中的重金属会通过农作物的吸收而转移到人们的餐桌上。在进行环境治理的同时,科学家们也在研究如何将这些危害健康的元素截流在作物之外,使我们的食品安全多一层保障。上海生科院植物生理生态研究所植物分子遗传国家重点实验室的晁代印研究组与英国阿伯丁大学及南京农业大学等研究团队合作,发现了控制植物内砷积累调控的关键基因HAC1,为培育低砷或无砷植物奠定了良好基础。国际学术期刊《PLoS Biology 》日前在线刊发了相关研究论文,并做了专题报道。研究发现,模式植物拟南芥叶片砷含量存在着巨大的自然变异,利用全基因组关联分析以及图位克隆技术,发现了控制这一变异的重要功能基因HAC1(High Arsenic Content)。HAC1可有效阻止植物体内砷的积累,而其突变则导致植物体内积累高达数百倍的砷。原来,该基因可使植物产生砷酸盐还原酶,并主要分布在根的外皮层及根毛细胞中。由于自然界中的砷多以砷酸盐的形式存在,而砷酸盐在化学性质上与磷酸盐非常相似,因此植物很难区分两者,从而在吸收矿质营养磷酸盐的同时也将砷酸盐摄入体内。为了限制砷向地上部迁移而危害植物的生长代谢,在植物根部的外表皮和根毛中高度表达HAC1蛋白,有效识别砷酸盐并将其催化形成与磷酸盐化学性质迥异的亚砷酸盐并排出植物体外。该基因的发现在促进我们理解植物耐砷分子机制的同时,也为将来培育低砷甚至无砷农作物提供重要的操作靶标,具有重大的应用潜力。该研究团队借助PerkinElmer NexION 300D及Elan DRC ICP-MS进行植物离子组学的分析,并使用HPLC-ICP-MS联用技术分析植物样品中不同形态的砷含量。离子组学的概念是由David E. Salt 教授及其同行在2003年提出,它主要研究的是生物体中的离子及其无机化合物,利用现代高通量的元素分析手段(如ICP-MS/OES)在分析植物离子组的基础上,结合生物信息学和功能基因组学等手段,在基因组的规模上对植物体内的离子谱(Ion Profile)进行绘制、对比研究,从而系统地研究揭示植物体内控制离子平衡的遗传网络与分子机制。可以说,离子组学的发展与PerkinElmer ICP-MS息息相关,从最初的提出到现在的逐渐成熟,从Elan系列到NexION 350系列ICP-MS,PerkinElmer快速、高效、高灵敏度和优异稳定性的仪器将帮助科学家在植物离子组学的道路上探索更多自然奥秘。
  • 分子植物卓越中心等发现新型植物RNA低温感受器
    低温胁迫是限制植物分布的主要环境因素之一,感知低温信号是植物适应寒冷环境的基础。植物在低温中呈现出生长减缓、开花延迟等表型以适应低温环境。鉴定植物的冷感受器是解析植物低温感知分子机制的关键。   10月20日,中国科学院分子植物科学卓越创新中心/CAS-JIC植物和微生物科学联合研究中心研究员杨小飞研究组、东北师范大学教授张铧坤研究组,以及英国约翰英纳斯中心(John Innes Centre,JIC) 研究员丁一倞研究组合作,在《自然-通讯》(Nature Communications)上,发表了题为RNA G-quadruplex structure contributes to cold adaptation in plants的论文。   温度依赖的大分子结构变化决定生物大分子发挥细胞温度计的功能,如蛋白质、核糖核酸等。为寻找与温度感知有关的RNA结构域特征,科研团队对1000种植物转录组项目(1KP)的RNA序列开展研究。该研究对其中的906种陆生植物与环境因素的相关性分析表明,生长在低温地区的植物RNA中普遍富含鸟嘌呤(Guanine)。鸟嘌呤(G-rich)序列在体外可以折叠为特殊的鸟嘌呤四链体(RNA G-quadruplex,RG4)结构,耐寒植物中具有更多的RG4结构,暗示富含G-rich序列与植物的耐寒性有关。   为探究RG4折叠与冷响应间的关系,科研人员对模式植物拟南芥进行低温处理,并利用此前开发的RG4检测方法SHALiPE-seq对体内RG4折叠进行定量检测。结果表明,低温处理显著诱导植物体内RG4结构的折叠,证明植物RG4具有感知低温的能力。研究系统分析了拟南芥的mRNA降解组数据,发现包含有冷诱导RG4的mRNA降解速率明显降低,暗示RG4或抑制了mRNA的降解。为验证RG4结构在mRNA降解中的作用,科研团队挑选了一个受低温显著诱导的RG4基因,命名为CORG1。通过碱基替换将G突变为A,可将包含RG4结构的野生型wtRG4-CORG1突变为不能形成RG4结构mutRG4-CORG1基因。进一步研究发现,mutRG4-CORG1在冷胁迫中的降解速率显著高于wtRG4-CORG1的降解速率,证明低温诱导的RG4结构形成抑制mRNA的降解。同时,低温对mutRG4-CORG1的转基因植物的生长抑制也明显弱于wtRG4-CORG1的拟南芥,表明RG4结构突变降低植物对低温响应的敏感性。   综上所述,冷处理诱导植物mRNA的RG4折叠,进一步选择性抑制mRNA的降解从而减缓植物在低温环境下的生长速度。转录组中RG4结构的选择性富集帮助陆生植物感知低温信号,促进植物对寒冷环境的适应性进化。该研究迄今为止首次发现RG4结构抑制mRNA的降解,阐明了RG4结构的全新分子调节功能,且RG4结构是植物中发现的第一个RNA低温感受器。美国哈佛大学和耶鲁大学研究人员对动物细胞的同期研究工作表明,多种胁迫因素(如低温、饥饿)促进3’UTR的RNA结构折叠,并提高mRNA的稳定性(https://www.biorxiv.org/content/10.1101/2022.03.03.482884v1)。这些研究暗示环境依赖的RNA结构折叠作为胁迫感受器,在自然界广泛存在。   研究工作得到国家自然科学基金、英国生物技术与生物科学研究委员会基金和欧洲研究委员会基金等的支持。耐寒植物中的RG4富集提高了植物对寒冷环境的感知能力
  • 国家植物基因研究中心植物激素检测平台举办技术讲座
    植物激素是植物体内合成的一系列天然微量有机物小分子化合物, 调控着植物生长发育过程中重要的生理反应,但其定量分析检测一直是限制研究深入的瓶颈问题。为了解决这一难题,国家植物基因研究中心(北京)从2007年开始致力于植物激素测定平台的建设,经过不断努力探索,目前已经建立了稳定的生长素、脱落酸、茉莉酸和水杨酸等激素的测定方法,并对外提供技术服务,部分数据已发表在Plant Cell、Cell Host & Microbe等杂志上。   为了充分发挥植物激素检测平台的作用,国家植物基因研究中心(北京)于11月26日举办了植物激素检测技术讲座。   此次讲座由负责植物激素检测平台工作的褚金芳主持。Waters公司的王则含首先介绍了超高效液相—三重四级杆串联质谱仪的工作原理、特点及其在痕量组分定性、定量分析中的应用及优势。随后,褚金芳就国内外植物激素检测的现状、植物激素检测平台的建设和运行、植物激素检测方法的建立以及植物激素检测流程需要注意的问题作了详细说明。来自所内外多个科研院所的70多名科研人员参加了此次培训。大家就植物激素检测相关问题踊跃提问,并得到了细致耐心的解答。
  • 第十届全国药用植物及植物药学术研讨会
    我公司于2011年8月10日至12日在素有“春城”美誉的云南省昆明市参加了“第十届全国药用植物及植物药学术研讨会”。本次会议由中国植物学会药用植物及植物药专业委员会和中国科学院昆明植物研究所联合主办,由中国科学院昆明植物研究所植物化学与西部植物资源持续利用国家重点实验室承办。邀请了国内相关领域院士和知名专家学者,同时首次邀请多名国外该领域的知名学者作大会报告,扩大该系列会议的影响,提高办会水平,促进与国内外同行的交流与合作。本次会议中,我公司冠名了茶歇,并展示了旋转蒸发仪、低温磁力搅拌等仪器,产品受到了广泛关注,并得到了诸多专家学者们的好评,大大增加了我公司品牌的市场影响力和知名度!
  • 植物也要“摘口罩”:Nature主刊揭示植物气孔如何重新打开
    人们面对病毒入侵,会通过佩戴口罩进行有效抵御。同样,植物也会通过调节气孔的开放和关闭来抵抗病原入侵。气孔关闭可减少水分流失并限制病原体进入,然而长时间关闭气孔,会导致植物光合作用以及蒸腾作用的减弱,水分的过度积累甚至会促进植物体内病原体的定殖。所以,植物其实也是需要在合适的时间“摘掉口罩”。那么,植物是如何动态调节气孔关闭和开放的?其背后的分子机理仍不清楚。今年5月,美国德州农工大学何平教授、单立波教授与山东建筑大学侯书国教授在Nature主刊合作发表了相关研究,发现了一类新的调控免疫和水分流失的分泌小肽SCREWs,阐明了SCREWs参与植物重新打开气孔的分子机制。这也是山东建筑大学首篇Nature主刊文章。植物基因里编码数以千计的小肽,而其中多数小肽的功能仍是未知的。一些小肽是植物免疫的细胞因子,被驻扎在细胞表面的受体激酶所感知。作者首先分析了拟南芥小肽合成基因的转录组学,发现受细菌鞭毛蛋白刺激时,一些小肽的合成会明显提高,并且这些小肽具有保守的C端(图1)。用这些小肽处理种苗后,发现小肽诱导激活了MAPKs(mitogen-activated protein kinases),及包括WRKY30,WRKY333,WRKY353和FRK1在内的多种PTI(pattern-triggered immunity)标志物的表达,并且证明了C端保守的两个半胱氨酸(CC)对诱导免疫反应十分重要。体内实验发现这些小肽直接决定了拟南芥是否易感染Pst DC3000(Pseudomonas syringae pv. tomato DC3000)。由此作者鉴定这些小肽为一类新的植物细胞因子,被命名为SCREWs(SMALL PHYTOCYTOKINES REGULATING DEFENSE AND WATER LOSS)。图1 细胞因子SCREWs的序列比对作者的下一步是找到SCREWs的受体。受体激酶,特别是LRR-RKs(leucine-rich repeat receptor kinases)是很多内源肽的受体。作者筛选了拟南芥的受体激酶,发现NUT(AT5G25930)介导了SCREWs诱导的免疫反应。为了确定NUT是不是SCREWs的直接受体,作者使用Biacore T200,通过把NUT胞外域固定在CM5芯片上,SCREWs作为分析物流过芯片,检测得到SCREW1与NUT的亲和力达到12.95μM,SCREW2与NUT的亲和力达到6.23μM(图2)。图2 Biacore鉴定SCREWs的受体NUT(pH 7.5)为了更加接近体内的环境,作者同样使用Biacore方法检测了pH5.7条件下SCREWs与NUT的亲和力,发现在非原质体的pH条件下,SCREWs与NUT的亲和力基本一致(图3)。图3 Biacore检测非原质体酸碱条件(pH 5.7)下SCREWs与NUT亲和力前面提到,SCERWs羧基端的保守半胱氨酸对诱导免疫十分重要,这里作者同样用Biacore做了体外实验的验证,结果发现保守区域半胱氨酸的突变会使SCREWs与NUT的亲和力显著降低(图4)。由此,藉由Biacore完整、可靠的实验结果,作者确定了NUT就是SCREWs的受体。图4 关键氨基酸的突变使SCREWs与NUT的亲和力显著降低很多LRR-PKs的受体都是BAK1和相关的SERKs,利用免疫沉淀实验发现SCREW会刺激NUT-BAK1复合物的产生后,作者同样使用Biacore检测SCREW2-NUT-BAK1三元的结合(图5)。同样把NUT胞外域固定在CM5芯片上,分析物则设置固定浓度的BAK1预混多浓度的SCREW2,并且检测NUT与单独BAK1的结合试验作为对照。结果发现,BAK1的存在显著提高了NUT和SCREW2的亲和力,达到了0.38μM。图5 Biacore检测SCREW2-NUT-BAK1三组分的结合除了调控免疫,作者还发现SCREW-NUT可以调控植物的水分流失。植物缺水时,ABA会促进气孔的关闭,调控植物的水分利用和耐旱性。作者发现,SCREW-NUT通过调控ABI(ABA INSENSITIVE)的磷酸化,导致ABI磷酸酶对OST1(OPEN STOMATA 1,一种介导ABA和MAMP诱导的气孔关闭的关键激酶)的活性增加,降低S型阴离子通道的活性,最终抑制气孔关闭。总结图6 文章整体研究思路综上所述,团队首次发现了植物应对病原体侵染或水分缺失时,会通过SCREWs-NUT来控制气孔的重新开放。SCREW-NUT系统广泛分布于双子叶和单子叶植物中,说明本研究在优化植物对非生物和生物胁迫的适应性方面有重要作用。Biacore作为分子互作的金标准,轻松应对信号通路的二元,三元体系研究,在研究植物生长发育和抗逆的信号通路,转录调控等方面,深受广大农业和植物科学家的信赖。Biacore可靠的实验数据,加上科学家创新又严谨的研究思路,定会加速我国科学家们在农业和植物领域的科研进展,巩固我们在此领域的领军地位。Biacore,for a better life参考文章:Liu, Z., Hou, S., Rodrigues, O. et al. Phytocytokine signalling reopens stomata in plant immunity and water loss. Nature 605, 332–339 (2022).
  • 台湾地区修订输入植物或植物产品检疫规定
    台湾地区修订输入植物或植物产品检疫规定,4月1日生效   2013年3月18日,台湾地区“行政院农业委员会”发布农防字第1021490147号公告,修订“输入植物或植物产品检疫规定”,并自2013年4月1日生效。修订要点如下:   1. 订定“澳大利亚产苹果鲜果实输入检疫条件”。   2. 修正“甲、禁止输入之植物或植物产品”第一点第三十一项“国家或地区栏”规定,增列美国科罗拉多州除外规定。   三、修正“甲、禁止输入之植物或植物产品”第一点第四十六项及“乙、有条件输入之植物或植物产品”第二点第五项“国家或地区栏”规定,增列美国马塞诸塞州Worcester郡及俄亥俄州Clermont郡为光肩星天牛疫区,另纽约州Suffolk郡自疫区删除。   四、修正“乙、有条件输入之植物或植物产品”第一点第一项“检疫条件栏”规定,增列澳大利亚产苹果依澳大利亚产苹果鲜果实输入检疫条件办理输入规定。   五、修正“乙、有条件输入之植物或植物产品”第一点第二十三项“国家或地区栏”规定,增列以色列及韩国为细菌性果斑病疫区。   六、修正“乙、有条件输入之植物或植物产品”第一点规定,增列第三十五项马铃薯斑纹病规定。   七、修正“乙、有条件输入之植物或植物产品”第五点规定,增订未带地下部与果实的蔬菜及食用菌的子实体免办理首次输入风险评估的除外规定。   八、修正“乙、有条件输入之植物或植物产品”第十点检疫有害生物清单,于病毒类增列四种有害生物名单,及于杂草类增列四十三种有害生物名单 另于真菌类删除栎树猝死病菌(Phytophthora ramorum)。   详情参见:http://www.xmtbt-sps.gov.cn/download.asp?id=5897
  • 国内首套芬兰SPECIM植物荧光高光谱相机AisaIBIS于河北省科学院成功安装并顺利验收
    2017年3月中旬,中国套芬兰SPECIM植物荧光高光谱相机AisaIBIS在河北省科学院地理科学研究所孙雷刚老师课题组成功安装并顺利验收,这次安装也受到了国内植物荧光研究领域的专家学者的高度关注,林业局、中科院遥感所以及北京师范大学等机构的专家亲临现场,指导参观。地理科学研究所孙雷刚老师(左三)进行植物荧光高光谱相机AisaIBIS功能体验 欧洲太空局(ESA)有一项地球探测计划“荧光探测任务”FLEX。这个计划旨在提供全球植被荧光图,用于探测植物的光合作用活力。作为此计划的子任务,ESA需要一个新型探测相机。芬兰SPECIM和德国的尤里希研究中心针对此项计划合作研发出植物荧光高光谱相机AisaIBIS。这款相机可以根据夫琅禾费荧光探测法的原理进行太阳诱导荧光的探测,微弱的荧光信号在670-780nm这段特定光谱区间中的两个氧气吸收波谷处被探测出。通过运用SPECIM的高透光率(F/1.7)的成像光谱仪以及新型的摄像探测技术SCMOS,即使快速成像的飞行状态中,AisaIBIS在拥有超高的光谱采样精度(0.11nm)和好的成像质量的同时,也具有低噪声,高动态采集范围以及的信噪比的优点。因此,这款高光谱成像仪可以在地面或空中对小到一片叶子大到整个生态系统进行光合作用活性探测。河北地理所AisaIBIS安装培训现场 河北地理所的孙雷刚老师将使用AisaIBIS着重研究地面农作物生长状态,通过检测农作物不同阶段、不同时间的荧光数据,建立生长状态预测模型,在植物荧光领域进一步开拓研究。孙老师对芬兰SPECIM及QDC工程师在高光谱领域的专业性以及对待工作高度敬业的态度表达了赞赏,我们也祝愿孙雷刚老师在未来的科研工作中取得更多的成就。相关产品链接:芬兰SPECIM高光谱航空遥感成像系统http://www.instrument.com.cn/netshow/SH100980/C160539.htm芬兰SPECIM工业高光谱相机http://www.instrument.com.cn/netshow/SH100980/C265811.htm更多产品信息请到公司在本站内主页:QUANTUM量子科学仪器贸易(北京)有限公司http://www.instrument.com.cn/netshow/SH100980/
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制