当前位置: 仪器信息网 > 行业主题 > >

直接喷射火花塞引燃

仪器信息网直接喷射火花塞引燃专题为您整合直接喷射火花塞引燃相关的最新文章,在直接喷射火花塞引燃专题,您不仅可以免费浏览直接喷射火花塞引燃的资讯, 同时您还可以浏览直接喷射火花塞引燃的相关资料、解决方案,参与社区直接喷射火花塞引燃话题讨论。

直接喷射火花塞引燃相关的论坛

  • 【求助】发动机火花塞裂纹

    近来出现几个发动机火花塞的裂纹,裂纹为沿火花塞轴向贯穿 直裂纹。实验室分析为中部受到冲击造成的。但个人认为受外力冲击很难造成这种规则的直裂纹。不知道大家是否接触过这样的案例,有的话交流一下,也可以发邮件给我。

  • 【求助】点火器火花塞组件能否拆卸的?

    想询问以下点火电阻丝如何拆卸下来与主体重新连接起来的呢,我们的点火电阻丝断掉了,想把电线部分卸下来,剥出一部分电阻丝重新接上,但是火花塞那边一直卸不下来,有什么好方法吗?

  • 对于炬管中心管(或叫喷射管)堵塞的问题

    对于炬管中心管(或叫喷射管)堵塞的问题,堵塞的现象有:样品浓度很低,等离子体中间没有一道黑色阴影通道。原因有下:一是那种一体设计的石英管,由于安装高度太高,使得内管太靠近等离子体,使得熔融封闭。这个损坏是严重的,只有更换,或请高水平玻璃工进行加工修复。应该将安装高度降低点。第二是高盐基体,使得内管堵塞。可以取下,酸溶,低功率超声。在使用时记住要加大冷却气流量,一方面不易灭火,同时也不易堵管。第三是可能含有有机物的样,积碳堵管了。呵呵,同前面第二一样,酸溶,低功率超声,不行就烧。在使用时记住要加大冷却气流量,一方面不易灭火,同时也不易堵管。

  • 空气喷射筛由哪几部分组成?

    空气喷射筛由操作面板、筛盘、标准筛、喷嘴、电机及吸尘器组成。操作面板现在国际上最流行的是触屏面板。筛盘一般是为适应8英寸标准筛的,也就是直径为203毫米的标准筛,在中国内一般选用直径为200毫米的标准筛。喷嘴可以选用不锈钢的,使得空气喷射筛更适用于食品、药品或化学品的筛分。电机直接控制喷嘴的转速,可以针对不同的物料调节速度。吸尘器是用来产生负压,帮助筛分的。更多关于气流筛的知识请访问我们的网站空气喷射筛。

  • 矩管中心的喷射管

    如题,请问ICP矩管中心的喷射管怎么清洗才好?这几天点火都点不着,是不是因为喷射管太脏了??

  • 首次探测到黑洞形成时喷射的引力波

    科技日报讯 据物理学家组织网8月18日报道,由西澳大利亚州16位物理学家组成的团队宣布,在测量科学中一项突破性的新技术打破了量子测量屏障,探测到黑洞形成时喷射的引力波。该研究结果发表在最新一期的《自然·光子学》上。 引力波具有很强的穿透能力,因此它们可使科学家直接观测到超新星爆炸、伽马射线暴和其他大量隐藏宇宙秘密的信息。由于引力波是黑洞并合时爆发喷射的唯一放射线,故研究人员将可首次直接观测到黑洞。该团队带头人大卫·布莱尔教授说:“引力波天文学将成为新的可能真的彻底改变我们对于宇宙认识的天文学,而探测引力波将打开调查宇宙的新途径。这将使我们能够‘听’到大爆炸,以及‘看’到整个宇宙中黑洞的形成。” 根据相对论可知,高速运动的物体和宇宙中大质量的天体碰撞都会产生极强的引力波,当这些引力波传到地球上时会变得微乎其微,因此科学家采用灵敏度极高的激光干涉仪测量空间和时间引力的涟漪。该检测器有一对长4公里的臂,这两条臂封闭在直径1.2米的真空管中,互相垂直呈L形,其上挂有两面高反射率的镜子。 当激光打入到仪器长臂后,激光束在镜子之间来回反射,并被一个振动隔离系统隔绝掉不相干的振动。科学家对此进行由于光程差引起的微小变化的检测,其微小变化仅仅有质子直径大小。该引力波探测器的另一新技术称为“量子挤压”,允许研究人员消除很多由于量子波动所造成的“噪音”。 研究人员说,这证明了物理学家认为会限制灵敏度的量子屏障是可以克服的。这种新的设备允许打破量子测量屏障,这一重大突破使他们更加有信心在短短几年内开始直接测量时空涟漪。而这些仪器代表了新技术的巅峰之作。 研究人员说,他们已经创建了有史以来最完美的反射镜;得到了曾经使用过的任何测量系统中最强大的激光;得到了一个真空管。通过这些新的技术,他们可以测量到历来被测量的最小数量的能量。(华凌) 《科技日报》(2013-08-21 二版)

  • 喷射电极技术能改善分析结果吗?

    目前好像只有牛津的直读光谱仪使用了喷射电极技术(JET STREAM),在其宣传资料上看到如下的描述“在激发状态下,电极周围会形成氩气喷射气流,这种技术会带来以下独一无二的优势:激发点周围的氩气流保证了激发过程不受外界干扰;节省了氩气的使用,降低了客户的使用成本;样品台无须密封,线材等小样品也可以非常方便的借助适配器进行分析。”在其他的资料上看到,喷射电极技术(jet electrode)可以更有效地将氩气引入激发斑点区域,消除样品中释放的氧对激发的影响,同时能够减小激发斑点的直径,进而缩短预燃所需的时间,但是并不能期望使用这种技术改善分析结果。不考虑牛津仪器与其他主流仪器的性能,单单就喷射电极这一技术而言,其是否能改善分析结果呢?欢迎各位版友讨论

  • 干冰冷喷射清洗技术原理与应用

    清洗原理:  干冰清洗技术也称干冰冷喷射清洗技术。是利用极低温的干冰颗粒,在压缩空气作用下,喷射向处理物,使其表面污垢急剧冷冻至脆化及爆裂。当干冰颗粒钻进 污垢的裂缝后,随即汽化,其体积膨胀近600倍,从而把污垢带离物体表面。第一是利用冲击剥离污垢;第二是利用温差使剥离提升;第三是利用干冰升华作用清 除附着物。  清洗方法:  以液体二氧化碳为原料,通过干冰颗粒机制取干冰颗粒,再将其装入干冰喷射清洗机中,由喷射机专用喷枪将干冰颗粒喷射至待清洗物体表面,实现清洗。  清洗特点:  比喷沙和高压清洗更具优越性。首先它无二次污染,便于在线操作和缩短废弃物清扫时间;其次能清除橡胶模具、塑料模具以及夹缝油污等难清除的污垢。  能带电清洗输变电设备。  典型应用:  一,轮胎模具、塑胶模具、金属压铸模具等多种模具表面污垢的在线清理。  二,石化炼油厂加热炉(热媒炉)结垢吹除清理。  三,涡轮机叶片不拆卸清理除垢。  四,食品烘烤生产线的清理除污。  五,精密印刷机械油墨的清理。  干冰清洗设备组成:  低温贮槽:贮存液体二氧化碳。  干冰颗粒机:制取干冰颗粒。  干冰清洗机:喷射干冰颗粒。  空气压缩机:提供干燥气源。  干冰冷藏箱:贮存、运输干冰颗粒。  在核工业这个特殊行业中,核废料的处理是世界各国专家面临的最大难题。核工业设备的清洗要求十分严格,很多常规的工业清洗方法,如喷沙等清洗方法不适宜,因为要污染清洗介质,形成新的核废料,会增加更多的核废料,给处理核废料增加更大的工作量。  干冰清洗却不同,因为干冰清洗介质是干冰颗粒,它喷射到被清洗物体,完成清洗任务后,已经变成为二氧化碳气体,不存在新增加污染介质的问题,需要进一步处理的介质仅仅为有核污染的被清洗物体上的积垢等废料  所以干冰清洗是核工业的首选清洗方式。目前,国际上清洗核设施多采用干冰清洗方法,特别是在法国,它们的所有核电站设施全部采用干冰清洗技术清洗。

  • 图像尺寸测量仪测量汽车零配件的应用原理

    一、 火花塞测量背景 随着汽车行业的迅猛发展,汽车的零配件厂家也发展迅速,现代汽车行业要求制造和加工的要求也越来越严格。火花塞作为发动机点火设备的重要零件,其电极间隙、工位尺寸、外观质量等质量都影响着汽车的性能。 火花塞的作用是使高压电流跳过电极之间的空隙而产生火花,点燃汽缸中的所燃混合气。这个电极之间的空隙就是火花塞的间隙。火花塞间隙大小会影响发动机的功率。若电极间隙值太小,则跳火时间较早且电火花太小,使混合气的燃烧不够完善。若电极间隙值太大,则跳火时间较晚且电火花持续时间太短,甚至无电火花产生,导致发动机高速运转时缺火或火花弱,不利于发动机高速、加速性能的发挥。火花塞电极间隙值偏小的是因为调整不当。而偏大的原因可能是调整不当,也有可能是使用时间过长。因为长时间使用,燃烧使得火花塞的中心电极缩短,从而加大了电极间隙值。[align=center][img]http://www.chotest.com/Upload/2019/9/201909056431132.png[/img][/align]二、测量要求  火花塞电极间距:分电器触点点火式的汽油发动机来说,火花塞电极间隙值正常情况下应为0.6mm~0.8mm,而对汽油喷射式或电子点火式发动机来说,火花塞电极间隙值正常情况下应为0.9mm~1.1mm。三、 传统的测量解决方法 传统的火花塞检测主要由人工实现,配以简单的检测设备,检测速度和检测精度已经远远不能满足要求。人工检测的缺点和局限性:(1)人工检测劳动强度大,生产效率低;(2)主观性会直接影响产品的质量,没有严格统一的质量标准,尤其在一些无法量化的定性检测上每个人的质量标准都不可能严格一致,从而直接影响检测结果:(3)在一些高速的生产环节,人工检测无法实现实时全检,抽检的结果会导致大量不合格产品的产生;(4)在高精度的检测要求下,人工检测的慢速度无法对所有产品进行准确检测;在某些高温或有毒场合,也难以通过人工方式进行检测;(5)人工检测的数据无法准确及时地纳入质量管理系统;(6)检测过程中,有些如尺寸的精确快速测量、条码识别、形状匹配、颜色辨识等,利用人眼根本无法连续稳定地进行 因此,对于这种带有高精度性和智能性的工作,人工检测在给工厂增加巨大的人工成本和管理成本的同时,准确性和规范化难以保证,无法得到满意的检测效果。四、中图仪器测量解决方案 [b]中图仪器图像尺寸测量仪[/b]采用双远心高分辨率光学镜头,结合高精度图像分析算法,并融入一键闪测原理。CNC模式下,只需按下启动键,仪器即可根据工件的形状自动定位测量对象、匹配模板、测量评价、报表生成,真正实现一键式快速精准测量。中图仪器基于机器视觉的自动测量技术,无需操作人员的参与,减少了人工成本,具有非接触、速度快、成本低、稳定性好、抗干扰能力强等突出优点,生产效率提高,缩短了生产周期,减少了设备折旧成本,有效地解决了传统测量方法存在的一系列问题。[align=center][img]http://www.chotest.com/Upload/2019/8/201908293306602.jpg[/img][/align]

  • GB/T 8019-2008燃料胶质含量的测定 喷射蒸发法等效ASTM D381中规定的方法

    SH8019实际胶质测定仪是专门用于测定航空汽油和车用汽油中实际胶质含量的仪器。适用于按GB/T 8019-2008《燃料胶质含量的测定 喷射蒸发法》等效ASTM D381中规定的方法,对航空汽油和车用汽油进行实际胶质试验,配备专用的无油静音空压机。主要技术参数和技术性能1、工作电源: AC(220±10%)V,50Hz,3500W。2、蒸发浴型式、尺寸: 铝浴块φ260㎜×130mm(直径×高)。3、试验孔数: 3个。4、试验孔尺寸: φ51㎜×70mm(内径×深)。5、工作温度: (160~165)℃。6、温度控制方法: 自动控温。7、温度显示: 数字显示。8、流量显示: 由浮球式空气流量计显示。9、空气减压阀工作压力: 0.07MPa。10、喷气嘴出口空气流速: 每孔(1000±150)mL/秒。11、外型尺寸: 590㎜×480㎜×340mm(长×宽×高、不含温度计架)。

  • 求助喷针的正常状态?

    昨晚换了一根使用半年的喷针,直接连接在泵上时,用0.2ml/min流速就可以呈线性斜角度45度喷射,因此怀疑这根喷针被电击损坏了。换了一根新的,继续用0.2ml/min流速,发现液体呈液滴状滴下,换用1ml/min后才是垂直向下呈线性喷射。而且压力也小了10bar,灵敏度也回到了从前那么请问喷针在正常工作时,小流速是以液滴的形式向下滴的吗?为什么不是线性柱状喷射,这样岂不是更有利于喷雾离子化?谢谢各位老师指点

  • 火花直读光谱仪

    http://www.gnrsd.com/UploadFiles/image/20151228/20151228162471087108.jpg火花直读意大利GNR光谱仪S5  火花直读光谱仪专为中国铸造企业量身定制.高分辨率的多CCD分光系统使用了真空技术,可以检测从165nm到780nm的全部谱线,这样就可以精准地分析铁基材料中的各种元素.  三面开放式的火花台设计几乎可以检测各种尺寸形状的样品,尤其是一些大尺寸的特殊样品.同时,由于氩气喷射气流技术,不需要样品完全覆盖火花孔就可以分析各种不规则的样品.减少制样时间.样品夹可以各个方向移动,配有安全接地电路,确保快速样品切换.专用夹具用于棒材、线材、薄样试样分析.可以选配专用的小样品分析工作曲线.  内部容积的降低配合氩气流优化使氩气消耗量减少了一半,同时降低了火花台内粉尘的沉积.新氩气节约模式更使得氩气的消耗大大降低.长时间待机状态氩气被完全关闭.仪器重新工作前氩气会自动冲洗火花台.低粉尘沉积使得火花台清理工作大大降低.光学透镜可以不用工具而快速清洁更换.  开放一体式火花台  世界上唯一的开放一体式火花台 火花台与仪器一体式设计,可用于检测重型样品  开放式火花台可以检测大型、长型样品 http://www.gnrsd.com/UploadFiles/image/20151228/20151228162430593059.jpg  无光纤设计  世界首创全透镜入光设计,免除用户2年更换光纤的经济成本及时间成本 http://www.gnrsd.com/UploadFiles/image/20151228/20151228162747604760.jpg  500mm焦距 | 3648像素CCD  世界上焦距最长的CCD直读光谱仪  世界上CCD分辨率最高的直读光谱仪 http://www.gnrsd.com/UploadFiles/image/20151228/20151228162770607060.png

  • 判断喷雾器是否堵塞的最简单的方法

    最近在本版中,经常看有的版友求助说仪器没有吸光值了或者吸光值低了等问题,于是有的热心的应助版友们就提醒楼主说:“是不是喷雾器堵塞了啊?”。这个提醒的确是有一定道理的,因为当遇到上述故障时,喷雾器堵塞的几率占有很大的比例。可是如何判断喷雾器是否堵塞了呢?大多数应助版友没有下文了。判断喷雾器是否被堵塞了,最保险的金标准就是使用一个10毫升的量筒,在点火状态下记录每分钟样品的提升量。可是对于仪器操作者而言,做这种提升量的检查还需要找量筒和秒表,比较费事。其实最简单的办法就是用“[color=#ff0000]耳[/color]”听。在正常的状态下,燃烧头的火焰点燃后是没有什么声音的。当把进样毛细管插入到溶液中后,立即就会听到火焰中发出一种清晰的“嘶嘶”声;如果没有或者“嘶嘶”声过小,以及反应时间过长,则说明喷雾器完全或者局部堵塞了,这是一种非常简便的方法,无需使用任何额外的器材,我在维修中经常使用这种方法,并且每每屡试不爽。但是采用这种听声的做法要注意以下事项:(1)保持周围环境的安静。(2)由于样品的粘稠度不同,听到“嘶嘶”声略有差异,但是总的来说不应该长于2秒。(3)为此在判断是否堵塞时,最好使用纯水,因为水的吸入速度很快,基本即插即有,从毛细管插入水中到听见“嘶嘶”声的过程,不会长于1秒。(4)仪器操作者需要在平时多练练,多听听在点火状态下,吸入纯水的声音和反应时间,做到心中有数,形成了一个条件反射。有兴趣的版友不妨试一试?

  • 柴油车氮氧化物超标怎么处理

    [b]以尝试以下方法解决:[/b]1、车主可以更换空气滤芯器,并且清洗空气滤芯器前端进气管道和火花塞上的油污。2、车主可以去购买纯碱清洗剂来清洗车辆的排气管路,因为纯碱可以将NOX溶解使得降低氮氧化物。3、还可以去购买一支化油器清洁剂,将化油器或者喷油嘴进行清洗。4、如果检测是仅仅NOX超标的话,就有可能是三元催化器的问题,可以去维修店拆下清洗或者购买清洁剂清洗。5、尝试向油箱加入一瓶乙醇,再倒入高标号的汽油,使水和杂质融化然后达到清洁的效果。

  • 汽车日常养护最容易忽略的八个部位

    “我的车子行驶五千公里,排气管已经烂过两次。”在众多车主的观念中,汽车保养无非是更换三滤、机油等消耗品,为了车身漆面焕发光彩,再做个打蜡处理。其实不然,汽车上有很多的易损零部件,如果不定期检查、保养的话,说不定什么时候就会出现故障,给行车带来不便。下面绅卡就为大家介绍汽车保养中最易忽略的八个部位,看看你是否也忽略过呢! 雨刷器保养不当减寿命 若在大雨中开车,那视线不清必定是最大的隐患,雨刷的重要性就显现出来了。如果雨刷不能很好刷掉雨水,那将会给行车安全带来很大危险。由于雨刮片的材料主要是橡胶,时间长会老化变硬,车主可以到汽车用品店购买一种橡胶养护剂,每个月往雨刮片的橡胶部位喷洒,至少可以延长橡胶条30-50%的使用寿命。若叶片老化、硬化或者出现裂纹,就应及时更换。更换叶片的工作并不复杂,可以自己动手。 表盘警示灯坏危害大 人人都看到了表盘上亮起的警示灯,然而多数人都会继续驾驶而不采取任何措施。据CarMD公布的一组数据显示,64%的驾驶员承认他们至少有过一次逾期未检修的经历,过半的驾驶员曾经在警示灯亮起的情况下仍继续驾驶超过三个月。仪表盘上的警示灯会亮起大多是因为火花塞或者火花塞导线的问题,维修费用并不高。 仪表盘还要注意清洁,清理的时候最好根据不同的地方来进行清理。为提高仪表盘的光亮度,清洗过后,可以添加几滴核桃油或橄榄油于抹布上,然后擦亮部件。 转向拉杆变形存隐患 在停车时,如果方向盘不回正,车轮会拽着转向拉杆无法回位,同时方向盘的齿轮和转向拉杆的齿条也处于受力状态,久而久之就会造成这些零件加速老化或变形。在保养时,一定要仔细检查这一部位,做法很简单:握住拉杆,用力摇晃,如果没有晃动,就说明一切正常,否则,就应更换球头或拉杆总成。 排气管生锈声音变大 汽车因排气管生锈腐蚀破洞造成燥声变大动力损失,其主要原因是没进行保养所导致。如果排气管出现消声器变色的情况,以及在深水路面行驶时排气管进水,再赶巧发动机熄火,那么这种损害对汽车来说则是致命的。因此,排气管是车底最容易受损的部件之一,检修时别忘了看一眼,尤其是带三元催化器的排气管,更应仔细检查。建议,新车在上牌后进行一次维护,平时按每半年维护一次。 点火线老化影响性能 多数车主已经到了爱车打火能量不足、产生高油耗、低动力甚至断火现象时,才意识到是点火线带来的问题。在发动机运转时,点火线上经常有数万伏的高压脉冲电流,由于它长时间工作在高温、多尘、振动的环境中,不可避免地要发生老化甚至破损。点火系统中的分电器盖、分火头、点火线圈、火花塞插头等部件也应在例行保养、检查范围之内。 制动盘磨损影响行车安全 车主们一直盯着的是刹车片,很少注意制动盘,时间一久,就将直接影响制动安全。制动盘如果有清晰的划痕,建议更换新的,一般来说,在制动蹄片更换2至3次之后,制动盘也应更换。 减震器影响行驶平稳性 减震器是汽车使用过程中的易损配件,减震器工作好坏,将直接影响汽车行驶的平稳性和其它机件的寿命。当汽车缓慢行驶而紧急制动时,若汽车振动比较剧烈,说明减震器有问题。当然,由于承载量、使用时间、道路情况和驾驶方法等不同因数的影响,也是会造成减震器不同程度地衰减。 [font=T

  • 喷针堵塞有哪些原因?

    导致喷针堵塞一般都有哪些原因?用了一年,堵了三根喷针,平时做样品自认为已经很注意了,过滤膜,离心什么的都做,真心有点儿害怕了。请大家帮忙解惑,谢谢

  • 原子发射光谱常用光源原理

    光源作为原子发射光谱仪主要部件之一,是决定光谱分析灵敏度和准确度的重要因素,它分为电弧光源、火花光源以及近年发展的电感耦合等离子体光源和辉光放电光源。各光源的原理和特点又是什么呢?  原子发射光谱仪由光源、分光系统、检测系统和数据处理系统四个部分组成。而光源是光谱仪检测主要的部分之一,光源的作用是提供样品蒸发和激发所需的能量。它先把样品中的组分蒸发、离解成气态原子,然后再使原子的外层电子激发产生光辐射。光源是决定光谱分析灵敏度和准确度的重要因素,它分为电弧光源、火花光源以及近年发展的电感耦合等离子体光源和辉光放电光源。  一、激发光源  1.原子发射光谱对激发光源的要求  (1)光源应具有足够的激发容量,利于样品的蒸发、原子化和激发,对样品基体成分的变化影响要小。  (2)光源的灵敏度要高,具有足够的亮度,对元素浓度的微小变化在线状光谱的强度上应有明显的变化,利于痕量分析。  (3)光源对样品的蒸发原子化和激发能力有足够的稳定性和重现性,以保证分析的精密度和准确度。  (4)光源本身的本底谱线要简单,背景发射强度弱,背景信号要小,对样品谱线的自吸效应要小,分析的线性范围要宽。  (5)光源设备的结构简单,易于操作、调试、维修方便等。  二、电弧光源  电弧是较大电流通过两个电极之间的一种气体放电现象,所产生的弧光具有很大的能量。若把样品引入弧光中,就可使样品蒸发、离解,并进而使原子激发而发射出线状光谱。它可分为直流电弧和交流电弧。  1.直流电弧直流电弧发生器及直流电弧如图1所示。电源可用直流发电机或将交流电整流后供电,电压为220~380V、电流为5~30A,可变电阻R用于调节电流的大小,电感L用来减小电流的波动。  图1 直流电弧发生器和直流电弧  E-直流电源 V-直流电压表 L-电感 R-可变电阻 A-直流电流表 I-阳极 2-样品槽 3-电弧柱 4-电弧火焰 5-阴极  带有凹槽的石墨棒阳极,可放置样品粉末,其与带有截面的圆锥形石墨阴极之间的分析间隙约为4~6mm。点燃直流电弧后,两电极间弧柱温度达4000~7000K,电极温度达3000~4000K。在弧焰中样品蒸发、离解成原子、离子、电子,粒子间碰撞使它们激发,从而辐射出光谱线。  直流电弧光源的弧焰温度高,可使70种以上的元素激发,适用于难熔、难挥发物质的分析,测定的灵敏度高、背景小,适用于定性分析和低含量杂质的测定。因弧焰不稳定易发生谱线自吸现象,使分析精密度、再现性差。阳极温度高不适用于定量分析及低熔点元素分析。  2.交流电弧交流电弧发生器由交流电源供电。常用110~120V低压交流电弧,其设备简单、操作安全。用高频引燃装置点火,交流电弧放电具有脉冲性,弧柱温度比直流电弧高,稳定性好,可用于定性分析和定量分析,有利于提高准确度。其不足之处是蒸发能力低于直流电弧,检出灵敏度低于直流电弧。  单纯的电弧光源至今仍保留在地质试样、粉末和氧化物样品中的杂质元素分析中。  三、火花光源  高压火花发生器可产生10~25kV的高压,然后对电容器充电,当充电电压可以击穿由试样电极和碳电极构成的分析间隙时,就产生火花放电。放电以后,又会重新充电、放电,反复进行。  火花光源的放电电路见图2。它由放电电容C、电阻R、电感圈L和放电分析间隙G组成。  图2 火花光源的放电电路  1-碳电极 2-试样电极  当电极被击穿时产生的火花在电极间产生数条细小弯曲的放电通道,短时间释放大量能量,放电的电流密度达105~106A/cm2,使样品呈现一股发光蒸气喷射出来,喷射速度约105cm/s,称为焰炬。每次放电都在电极表面的不同位置产生新的导电通道,单个火花直径约0.2mm,当曝光数十秒时,可发生几千次击穿,由于每次击穿的面积小,时间短,使电极灼热并不显著。  高压火花放电的平均电流比电弧电流小,约为十分之几安培,但在起始的放电脉冲期间,瞬时电流可超过1000A,此电流由一条窄的仅包含极小一部分电极表面积的光柱来输送,此光柱温度可达10000~40000K。虽然火花光源的平均电极温度比电弧光源温度低许多,但在瞬时光柱中的能量却是电弧光源的几倍,因此高压火花光源中的离子光谱线要比电弧光源中明显。此种光源的特点是放电稳定性好,分析结果重现性好,适于做定量分析。缺点是放电间隔时间长,电极温度较低,对试样蒸发能力差,适于低熔点、组成均匀的金属或合金样品的分析。由于灵敏度低,背景大,不宜做痕量元素分析。  四、等离子体光源  电感耦合等离子体(inductively coupled plasma, ICP)光源它由高频发生器、等离子体炬管和雾化器组成,为现代原子发射光谱仪中广泛使用的新型光源。  1.高频发生器高频发生器在工业上称射频(radio frequency,RF)发生器,在ICP光源中称高频电源或等离子体电源,它通过工作线圈向等离子体输送能量,是ICP火焰的能源。高频发生器有两种类型,即自激式和它激式,它们都能满足ICP分析的需求。  自激式高频发生器由整流稳压电源、振荡回路和大功率电子管放大器三部分组成,提供40.68MHz高频振荡电场。它的电路简单,造价低廉,具有自动补偿、白身调节作用是目前仪器厂商广泛使用的技术。  它激式高频发生器是由石英晶体振荡器、倍频、激励、功放和匹配五部分组成,它采用标准工业频率振荡器6.87MHz工作,经4~6倍的倍频电路处理,产生27.12MHz或40.68MHz的工作频率,经激励、放大,由匹配箱和同轴电缆输送到ICP负载上,此种发生器频率稳定性高、耦合效率高,功率输出易于自动控制,但其电路比较复杂,易发生故障,因而应用厂商较少。  现在被广大厂商广泛采用的是固态高频发生器,它是由一组固态场效应管束代替自激式高频发生器中的大功率电子管,以获得大功率高频能量的输出。它具有体积小,输出功率稳定、耐用、抗震、抗干扰能力强,已成为新一代ICP光谱仪使用的主流产品,使用寿命已大干5000h。  高频发生器产生的频率和它的正向功率(系指在ICP燃炬负载线圈上获得的功率)是两个重要的性能指标,二者有紧密的相关性。  高频发生器产生的振荡频率和它的正向功率呈反比关系,如使用5MHz频率,维持ICP放电的功率为5~6 kW 使用9MHz,功率为3kW 使用21 MHz,功率为1.5kW,因而提高振荡频率 可使ICP放电所需的功率降低,并进而降低激发时的温度和电流密度,还会降低冷却氩气的消耗量,振荡频率的稳定性应≤0.1%。  高频发生器的功率应1.6kW,当输出功率为300~500W时,能维持ICP火焰燃烧,但不稳定,不能进行样品分析工作,当输出功率800W时,ICP火焰才能保持稳定,才可进行样品分析,输出功率的稳定性应≤0.1%,它直接影响分析的检出限和分析数据的精密度。  2011年美国PE公司在Optima 8000系列仪器上,采用平行铝板作为高频感耦元件,称为平板等离子体。其在射频发生器上用两块平行放置的铝板,取代传统的螺旋铜管感应线圈,构成电感耦合等离子体炬,可降低氩气消耗在10L/min以下,并且平行铝板不需用水冷却,当等离子体冷却气只有8L/min,等离子体炬焰仍然稳定,使操作成本大大降低,并有良好的稳定性和分析性能。  2.等离子体炬管高频发生器通过用水冷却的空心管状铜线圈围绕在石英等离子体炬管的上部,可辐射频率为几十兆赫的高频交变电磁场。等离子体炬管由三层同心圆的石英玻璃管组成,工作氩气携带经适当方法雾化后的样品气溶胶,从等离子体矩管的中心管进入等离子体火焰的中央处,中心管的个外层同心管以切线的方向通入冷却用的氩气,它可抬高等离子体火焰、减少炭粒沉积,起到既可稳定等离子体炬焰,又能冷却中心进样石英管管壁的双重保护作用。中心管的第二个外层同心管通入能点燃等离子体火焰的辅助氩气。开始时由于炬管内没有导电粒子,不能产生等离子体炬焰,可用电子枪点火产生电火花,会触发少量工作氩气电离产生导电粒子,其可在高频交变电磁场作用下高速运动,再碰撞其它氩原子,使之迅速大量电离,形成“雪崩”式放电,电离的Ar+在垂直于磁场方向的截面上形成闭合环形路径的涡流,即在高频感应线圈内形成电感耦合电流,这股高频感应电流产生的高温又再次将氩气加热、电离,而在石英炬管上口形成一个火炬状的稳定等离子体炬焰,此炬焰的外层电流密度大,温度高,试样在此炬焰中蒸发、原子化并进行电离,再激发而呈现辐射光谱。  电感耦合等离子体光源结构示意图,见图3。  1-等离子体炬焰 2-高频线圈 3-三个同心石英管 4-辅助氩气 5-冷却氩气(冷却中心炬管) 6-工作氩气及样品入口(由雾化室进入)  (1)等离子体炬焰的稳定曲线理想的ICP炬管应易点燃,节省工作氩气并且炬焰稳定。通用ICP炬管的不足之处是氩气消耗量大,降低冷却氩气流量又会烧毁ICP炬管。为了降低氩气的消耗量,必须保持高频输入的正向功率与等离子体消耗能量之间的平衡,才能使ICP炬焰稳定。等离子体输入的正向功率,一般为1 kW,消耗能量包括工作气流和冷却气流带走的能量、热辐射和光辐射散失的能量,试样和溶剂蒸发、气化和激发消耗的能量,炬管壁传导和热辐射能量。当这些消耗能量的总和大于高频输入的正向功率时,会使等离子体炬焰熄灭,而高频输入的正向功率过大又会烧毁等离子体炬管,对每一支ICP石英炬管都有保持ICP炬焰稳定的曲线,对直径22 mm的ICP炬管的等离子体炬焰的稳定曲线如图4所示。  (2)等离子体炬焰中,三股氩气的作用  ①工作氩气也称载气或样品雾化气,此股氩气经雾化器,使样品溶液转化成粒径只有1~10um的气溶胶,并将样品气溶胶引入到ICP炬焰中还起到不断清洗雾化器的作用,它的流量约为0.4~1.0L/min,其压力约为15~45psi(1psi=6894.76Pa)。  ②冷却氩气它沿中心炬管的切线方向引入,主要起冷却作用,保护中心炬管免被高温熔化,冷却等离子体炬焰的外表面并与中心炬管的管壁保持一定距离,保护中心炬管顶端温度不会发生过热。其流量一般为10~20L/min,新型炬管此流量可降至8L/min。  ③辅助氩气它从三个同心石英管的外层通入,其作用是点燃等离子体火炬,也起到保护中心炬管和中间石英管的顶端不被烧熔,并减少样品气溶胶夹带的盐分过多沉积在中心炬管的顶端,其流量为0.1~1.5L/min。  冷却气和辅助气都可起到提升ICP火焰高度,实现变换高度来观测ICP火焰的作用。  (3)等离子体炬焰的观测方式  ①垂直观测又称径向观测或侧视观测。此时观测方向垂直于ICP炬焰,能够观测火焰气流方向的所有信号,是常用的观测方式,适用于任何基体试液,并有较小的基体效应和干扰效应,此时,可以观察到电感耦合等离子体的炬焰分为焰心区、内焰区和尾焰区三个部分,如图5所示。各个区域的温度不同,功能也不相同。  1-Ar气导入区 2-预热区 3-ICP焰心 4-ICP内焰 5-ICP尾焰 6-电感线圈 7-在电感线圈上方进行观测的高度  ICP的焰心区呈白炽状不透明,是高频电流形成的涡电流区,温度高达10000K,试样气溶胶通过该区时被预热、蒸发,停留约2ms。  ICP的内焰区在焰心上方,在电感线圈上方约10~20mm,呈浅蓝色半透明状,温度约6000~8000K,试样中的原子在该区被激发,龟离并产生光辐射,试样停留约1 ms,比在电弧光源和高压火花光源中的停留时间(约10-3~10-2 ms)长,利于原子的离解和激发。  ICP的尾焰区在内焰的上方,呈无色透明状,温度约6000K,仅能激发低能态原子的试样。  ②水平观测又称轴向观测或端视观测。此时水平放置ICP炬管,火焰气流方向与观测方向呈水平重合,由于整个火焰各个部分的光都可被采集,灵敏度高。缺点是基体效应高,电离干扰大,炬管易积炭和积盐而沾污,适用于水质分析。  此时由于尾焰温度低可能会产生自吸和分子光谱,导致测量偏差加大,为此应采用尾焰消除技术(如压缩空气切割技术、冷锥技术或加长炬管),以消除分子复合光谱干扰、降低基体效应,以提高灵敏度,扩展线性动态范围。  ③双向观测即在水平观测基础上,增加一套侧向观测光路,就可实现水平/垂直双向观测,可同时实现全部元素的水平观测及垂直观测,也可实现部分元素的水平测量或垂直测量。此时为实现垂直观测,会在炬管上开口,而导致缩短炬管使用寿命,此时会降低分析速度,增加了分析消耗。  3.雾化器雾化器可将试样溶液雾化后转化成气溶胶,并被工作氩气携带进入等离子体炬中。  现在广泛使用玻璃同心雾化器,又称迈哈德(Meinhard)雾化器,其构造如图6(a)所示。  (a)雾化器的双流体结构 (b)喇叭口形雾化器结构(防止盐类在喷口处沉积) (c)雾化器喷口的A、C、K型的结构 1-液体样品入口 2-喷雾气体入口 3-喷液毛细管 4-气溶胶喷口 5-玻璃外壳  玻璃同心雾化的双流体结构中有两个通道,喷液毛细管(中心管)和外管之间的缝隙为0.01~0.35mm,毛细管气溶胶喷口的孔径约为0.15~0.20mm,毛细管壁厚为0.15~0.10mm。其喷雾原理是当喷雾气体(载气)通入雾化器后,在毛细管喷口形成负压而自动提升液体样品,将溶液粉碎成细小液滴,并载带微小液滴从喷口喷出气溶胶。  为防止液体盐类在喷口处沉积,可将喷口制成喇叭口形,使出口保持湿润,而不易堵塞[见图6(b)]。  由于加工方法不同,气溶胶喷口的形状有三种,即A、C、K型[见图6(c)]。A型为平口型(标准型),喷口内管和外管在同平面上,喷口端面磨平。C型为缩口型,中心管比外管缩进0.5mm,且中心管被抛光。K型与C型相同,但中心管未被抛光。A型喷口雾化效率高,C型和K型,耐盐能力强,不易堵塞。  雾化器的进样效率是指进入等离子体焰炬的气溶胶量与被提升试液量的比值。当增加载气压力时,会增加试液的提升量,但进样效率会降低,这点由雾化器的结构决定的,因此使用雾化器时,应确定进样效率适当值时,所对应载气的压力和流量。过度增加试液提升量,会增加大液滴的数量使废液量增加,易造成喷口阻塞,反而使进样效率下降。  在PE公司Optima系列仪器上还配备了eNeb雾化器。  eNeb雾化器的机理为:采用两个均匀微米级细孔的有机薄膜,不需高压雾化气流,仅在膜片的两端加以高频电场,在激烈振荡的电场作用下,从薄膜的微孔处不断喷射出大小一致的液滴,形成而均匀细小的气溶胶,直接进入等离子炬。其雾化效率可得到提高。气溶胶喷头的膜片,采用耐腐蚀的高分子Kapton材料薄膜制成,经激光打孔形成10um以下的均匀密集微孔,孔径和形状可保持严格的一致性,使得形成的气溶胶颗粒具有很好的一致性,并且粒径可控制在不超过10um的很窄范围内,从而使其雾化效率得到很好的提高。进样的精密度和长时间稳定性良好。  4.电感耦合等离子体光源的特性  (1)此光源的工作温度高于其它光源,等离子体炬表面层温度可达10000K以上,在中心管通道温度也达6000~8000K,在分析区内有大量具有高能量的Ar+等离子,它们通过碰撞极有利于试样的蒸发、激发、电离,有利于难激发元素的测定,可测70多种元素,具有高灵敏度和低的检测限,适用于微量及痕量元素分析。  (2)此光源不使用电极,可避免由电极污染带来的干扰。因使用氩气作为工作气体,产生的光谱背景千扰低、光源稳定性良好,可使分析结果获得高精密度(标准偏差为1%~2%左右)和准确度,定量分析的线性范围可达4~6个数量级。  由于电感耦合等离子体光源具有良好的分析性能和广泛的应用范围,在近二十年受到广泛重视,发展迅速。  此光源使用氮气发生器从空气中提取氮气,作为产生等离子体的气源,而不使用昂贵的氩气。它不使用高频发生器的电场作为等离子体炬的能源,而是使用大功率1000W工业级磁控管产生的电磁场作为N2等离子体炬的能源。这种使用磁场而非电场来耦合微波能量并激发N2等离子体的技术,大大降低了发射光源的成本,原子化温度达5000℃,并具有即开即用、操作简便的特点。  此光源使用的炬管,可随时拆卸,安装时可实现炬管的快速定位和与气源的连接,保证了定位精度和快速启动。  此光源使用One Neb通用雾化器(见图7),采用惰性材料制作,耐有机溶剂和强酸,其特殊的防阻塞设计使其成为高盐、高固体溶解浓度样品溶液进行雾化的选择。  1-试液样品入口 2-雾化N2入口 3-四氟乙烯喷液毛细管 4-气溶胶喷口 5-聚乙烯外壳  五、辉光放电光源  辉光放电(glow discharge, GD)可用作原子发射光谱的激发光源,它具有较高的稳定性,能直接用于固体样品的成分分析和逐层分析。  辉光放电有直流放电(DC)模式,可用于金属等导体分析,射频放电(RF)模式可用于所有固体样品(导体、半导体和绝缘体)的分析。  辉光放电光源,基本上都是格里姆(Grimm)型,其结构见图8。  此光源中,阳极空心圆筒伸入环形阴极中,它们之间为聚四氟乙烯绝缘体。两个电极间的距离和阳极圆筒下端面与阴极试样之间的距离皆为0.2 mm。光源内部抽真空至10Pa后,充入压力约100~1000Pa的低压放电气体氩,然后在两电极间施加500~1500V直流电压 阳极接地保持零电位,阴极施加负高压。使光源内氩气被激发、离解成Ar+和电子,在两电极间形成Ar+等离子体。在电场作用下Ar+与阴极样品碰撞,在样品表面的原子,获得可以克服晶格束缚的5~15eV的能量,并以中性原子逸出表面,其再与Ar+和自由电子产生一系列的碰撞,会被激发电离、产生二次电子发射,从而在负辉区产生样品特征的发射光谱。负辉区主要构成阴极的金属原子的溅射和光辐射,它产生大的电流密度和电子动能,会使挥发出的气态原子强烈电离,并激发出光辐射(见图9)。  1-石英窗 2-阳极 3-环形阴极 4-绝缘体 5-放电气体(Ar)入口 6-放电气体出口 7-样品 8-负辉区  辉光放电光源,除使用直流电压供电分析金属导体外,还可在两电极间施加具有一定频率的射频电压,此时样品可交替作为阴极或阳极,其表面轮流受到正离子和电子的碰撞,增大了样品原子被撞击的频率,提高了样品原子化和被激发离子化效率,它可直接分析导体、半导体和绝缘体样品。  辉光放电过程,样品原子被不断地逐层剥离,随溅射过程的进行,光谱信息反映的化学组成,由表面到里层所发生的变化,可用于深度分析。

  • 喷码机技术的种类有很多

    喷码机技术的种类有很多 喷码机是一种自动化在线式将产品的信息标注在产品(或包装)的表面的标识设备。  喷码机分为连续供墨(CIJ)和按需供墨(DOD)。CIJ系统就是平时常说的小字符喷码机,而DOD系统则是大字符喷码机和高解像喷码机。  小字符(CIJ)喷码机是从一个喷孔里连续射墨,通过晶体的震荡将墨水分为很多的小墨点,然后通过高压充电(一般充电电压在几百伏),最后通过高压电场(几千伏)形成偏转,从而完成字符的扫描,最终将字符喷射在产品上。

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制