当前位置: 仪器信息网 > 行业主题 > >

脂质组数据

仪器信息网脂质组数据专题为您整合脂质组数据相关的最新文章,在脂质组数据专题,您不仅可以免费浏览脂质组数据的资讯, 同时您还可以浏览脂质组数据的相关资料、解决方案,参与社区脂质组数据话题讨论。

脂质组数据相关的资讯

  • 沃特世推出全新CCS数据库,用于代谢组学/脂质组学生物标志物的结构鉴定
    囊括900多个内源性物质的CCS(碰撞截面积)数据库,提高分析人员对非目标性生物标志物鉴定的信心沃特世公司(纽约证券交易所代码:WAT)近日针对基于离子淌度质谱技术的科学研究推出了全新的代谢组学与脂质组学分析数据库。此数据库囊括了900多个化合物的碰撞截面(CCS)测得值,CCS值体现了测量气态离子的三维构象,为确认生物标志物的结构提供了另一个参数。此外,数据库中还包括600个化合物MS/MS质谱图,用于生物标志物的结构确认。 这一全新的数据库目前已经整合至沃特世公司独有的软件平台UNIFI科学信息系统中,该平台兼具仪器控制、数据分析、可视化以及色谱和质谱结果管理功能。此外,该数据库还可与Progenesis QI软件联合使用。沃特世已经在美国质谱协会(ASMS)第64届年会上隆重介绍了这款全新的数据库。 借助全新的CCS数据库,科学家们可以通过离子淌度分离技术准确鉴定复杂样品基质中的生物标志物。CCS值是一项精确的离子物理化学性质,与气态离子的大小、形状和所带电荷有关。在样品量有限且样品高度复杂的非靶向代谢组学与脂质组学研究中,研究人员可利用数据库中的CCS值确认不同样品组中表现出显著统计差异的内源性代谢物和脂质的鉴定结果。 沃特世组学解决方案高级市场开发经理David Heywood表示:“代谢组学与脂类组学是生物标志物发现和转化研究的关键技术,无论我们是需要通过鉴定目标内源性生物标志物进行功效研究,或者需要了解疾病进展,这些技术都在研究中占据着重要的位置。在非靶向代谢组学与脂质组学研究中,研究人员需要尽可能多地获取基本生物学信息,因此离子淌度质谱技术必不可少。离子淌度技术可提高总体色谱峰容量,而CCS值则能够帮助研究人员更加有信心地对特定代谢物进行准确鉴定。” 适用于UNIFI的代谢组学与脂质组学分析CCS数据库可与Vion IMS QTof和SYNAPT G2-Si HDMS系统配合使用,使高分辨淌度质谱的使用更加简单方便。 高分辨淌度质谱技术则能够与Progenesis? QI软件配合使用,可以帮助从事生物标志物鉴定的研究人员在代谢组学与脂质组学中获得稳定可靠的鉴定结果。 更多信息:http://www.waters.com/clarity 关于沃特世公司(www.waters.com)沃特世公司(纽约证券交易所代码:WAT)专注于为实验室相关机构开发和生产先进的分析和材料科学技术。50多年来,公司开发出一系列分离科学、实验室信息管理、质谱分析和热分析技术。 ###Waters、UNIFI、Progenesis、Vion、SYNAPT和HDMS是沃特世公司的商标。
  • 超4000种 融智生物发布全球首个商用化生物组学微生物质谱数据库
    p   近日,融智生物宣布建设完成基于全新生物组学理念的微生物质谱数据库。这是全球首次发布 span style=" color: rgb(255, 0, 0) " 商品化生物组学微生物质谱数据库 /span 。 /p p   传统上,基于不同的细菌或真菌内蛋白组成分特别是核糖体蛋白有显著的差异,对核糖体蛋白组的质谱测试,可用于快速、高准确度鉴定微生物。基质辅助激光解吸电离飞行时间质谱(MALDI-TOF MS,)亦因此应用,广泛应用于欧美等发达国家以及我国的三甲医院、省市级食品安全监管机构等。结合了该方法的质谱在业内一般被称为“微生物质谱”。限于传统MALDI-TOF MS的性能局限,该方法未能利用更丰富的生物信息。 /p p    span style=" color: rgb(79, 129, 189) " strong 超4000种,生物组学微生物信息数据库 /strong /span /p p   微生物质谱可实现对已知微生物的鉴定,其鉴定核心之一为微生物数据库容量。传统的微生物数据库建设方式为使用质谱仪采集经过形态学或基因组学确认的已知微生物核糖体蛋白特征峰信息,并形成数据库。该方法效率低、成本高,准确性难以保障。也因此,虽然地球上的微生物种类多达百万种以上,但目前可用于微生物质谱鉴定的微生物只有数千种。 /p p   拥有先进科学仪器和生命科学背景的融智生物创新性地利用了新的微生物数据库理念,改变了传统的建库流程,近期完成了QuanID微生物数据库的建设。通过生物组学信息的结合,在独特数据算法支持下,高效率地建设质谱鉴定微生物数据库。截至目前,QuanID微生物数据库已建成包含超过4000种微生物(细菌、真菌),涵盖临床、食品安全、畜牧兽医、环境生态和科研等多个领域的巨大微生物质谱数据库。经过临床、疾控、食品安全、水产畜牧等多行业近万个样本的实际验证,(种、亚种级)准确率高达95%以上。融智生物认为,基于生物组学的QuanID微生物数据库代表了新一代质谱微生物数据库的发展方向,将取代传统的建库方式。 /p p   在全新建库方式之外,融智生物还与多家国内知名菌种保藏单位合作,不断完善本地特有微生物数据库的建设,使得该微生物数据库不仅可胜任国际通用微生物鉴定,同时,更适合国内用户需求。未来,融智生物还将进一步快速扩展微生物数据库容量,使微生物质谱可适用于更广泛的行业。 /p p style=" text-align: center" img src=" http://img1.17img.cn/17img/images/201807/insimg/cffd7d06-3359-4771-89aa-c140b0875c28.jpg" title=" 1.jpg" / /p p style=" text-align: center " span style=" color: rgb(0, 0, 0) " strong QuanID微生物鉴定质谱系统 /strong /span /p p   2017年,融智生物宣布推出新一代宽谱定量飞行时间质谱QuanTOF,基于该质谱平台,融智生物开发了包括糖化血红蛋白定量检测系统、QuanID微生物鉴定质谱系统、SNP基因分型质谱系统、猪肉品质鉴定系统等多个应用产品。该平台于2018年4月被由两院院士等专家组成的专家委员会评定为“整体性能达到世界先进水平”。 /p p    strong 关于融智生物 /strong /p p   由两院院士领衔、国家千人计划特聘专家创立,是专业致力于生命科学分析仪器设备、耗材及解决方案的研发、生产、销售、服务的国家级高新技术企业,注册资本5000万元。公司在美国波士顿、北京、青岛、南京和杭州等地布局了研发、生产、应用开发、销售、服务等分中心,建有院士工作站,与中国农业大学、中国科学院等多家科研机构建立了联合实验室,并承担了多项国家和地方科技创新研发项目。 /p p   作为一家拥有自主知识产权的研发型高科技企业,公司成立以来累计研发投入超过5000万元,目前已拥有“宽谱定量飞行时间质谱(新一代基质辅助激光解吸飞行时间质谱)”及“微流控芯片核酸快速分析”两大技术平台,其中“宽谱定量飞行时间质谱平台”被两院院士组成的鉴定委员会鉴定为“整体性能达到国际领先水平”。 /p p   基于两大核心技术平台,融智生物开发了微生物快速鉴定质谱系统、SNP基因分型质谱系统、蛋白定量分析质谱系统、质谱成像系统、食品溯源质谱系统以及食源性致病菌快速检测系统、呼吸道病原体检测系统、禽流感病毒检测系统、转基因测试系统等系列产品,应用涵盖临床医疗、检验检疫、食品安全、疾控等领域。公司已获CFDA二类医疗器械注册证1项、医疗器械生产许可证1项 1类IVD试剂证8项。 /p p   扎根国内,放眼国际,成为具有国际竞争力的生物科技企业是融智生物的经营目标,融智生物将持之以恒地为高端生命科学仪器的国产化、国人医疗健康水平的提高做出贡献。 /p
  • 赛默飞推出质谱用蛋白质组学数据独立采集控制软件
    应用于Thermo Scientific Q Exactive质谱仪的新型控制软件能够在同一台仪器上实现DIA和目标定量 中国上海,2012年9月28日 &mdash &mdash 近日,科学服务领域的世界领导者赛默飞世尔科技(以下简称:赛默飞)推出用于 Thermo Scientific Q Exactive 高性能四极杆-轨道阱 LC-MS/MS 的全新数据独立采集(DIA)蛋白质组学功能。新型 DIA 功能使 Q ExactiveTM 质谱仪选择宽广的 m/z 窗口并在该窗口中裂解所有母体,从而采集样品中所有离子的 MS/MS 谱图,使仪器能够在单次运行中对样品中几乎所有已检测的肽段进行定量。 与其他具有DIA 功能的质谱仪平台不同的是,那些仪器需要切换到三重四杆仪器进行目标肽段定量,而Q Exactive LC/MS 能够使用户在同一台仪器上执行 DIA 和目标定量实验。 在 Q Exactive 质谱仪上采集的 DIA 数据能够由 Thermo Scientific Pinpoint 软件 1.3 进行处理。DIA 采集策略将另一个多重检测方法添加至 Q Exactive 仪器,该方法允许用户在全 MS 和 MS/MS 模式中多重检测多达 10 个母离子。Q Exactive 质谱仪通过降低目标肽段的干扰提供高达 140,000 的超高分辨率,由此提高选择性并最终获得更为准确的定量信息,对在DIA 实验中定量分析感兴趣蛋白质/肽段尤其有用。Q Exactive 仪器提供与选择反应监测(SRM)相当的定量性能。 &ldquo 新一代高通量定量蛋白质组学正飞速发展&rdquo ,赛默飞市场总监 Andreas Huhmer 如是说,&ldquo 多重检测策略如数据独立采集方法在将定量蛋白质组学提升至新高度中发挥至关重要的作用,组合式轨道阱的独特设计将对推动这一技术的发展起重要作用。&rdquo 对于希望采用 DIA 功能的 Q Exactive LC/MS客户,仪器控制软件以开发人员套件形式给予提供。Q Exactive 仪器是首台将四极杆母离子选择性和高分辨率精确质量(HR/AM)Orbitrap质量分析相结合的商业化仪器,旨在提供高置信度定性和定量工作流程。赛默飞以新术语&ldquo Quanfirmation&rdquo 描述仪器在单次运行中进行化合物识别、定量和确认的能力。 若要获取用于 Q Exactive 的新型 DIA 功能的更多信息,请登录网站http://www.thermo.com.cn/Product5729.html;www.thermoscientific.com/qexactive ,或致电1-800-532-4752 或发送邮件至analyze@thermo.com。 关于赛默飞世尔科技 赛默飞世尔科技(纽约证交所代码: TMO)是科学服务领域的世界领导者。我们的使命是帮助客户使世界更健康、更清洁、更安全。公司年销售额120亿美元,员工约39,000人。主要客户类型包括:医药和生物技术公司、医院和临床诊断实验室、大学、科研院所和政府机构,以及环境与过程控制行业。借助于Thermo Scientific、Fisher Scientific和Unity&trade Lab Services三个首要品牌,我们将创新技术、便捷采购方案和实验室运营管理的整体解决方案相结合,为客户、股东和员工创造价值。我们的产品和服务帮助客户解决在分析领域所遇到的复杂问题与挑战,促进医疗诊断发展、提高实验室生产力。欲了解更多信息,请浏览公司网站:www.thermofisher.com 关于赛默飞中国 赛默飞世尔科技进入中国发展已有30年,在中国的总部设于上海,并在北京、广州、香港、成都、沈阳、西安等地设立了分公司,目前已有2000名员工、6家生产工厂、5个应用开发中心、2个客户体验中心以及1个技术中心,成为中国分析科学领域最大的外资企业。赛默飞的产品主要包括分析仪器、实验室设备、试剂、耗材和软件等,提供实验室综合解决方案,为各行各业的客户服务。为了满足中国市场的需求,目前国内已有6家工厂运营,苏州在建的大规模工厂2012年也将投产。赛默飞在北京和上海共设立了5个应用开发中心,将世界级的前沿技术和产品带给国内客户,并提供应用开发与培训等多项服务;位于上海的中国技术中心结合国内市场的需求和国外先进技术,研发适合中国的技术和产品;遍布全国的维修服务网点和特别成立的维修服务中心,旨在提高售后服务的质量和效率。我们致力于帮助客户使世界更健康、更清洁、更安全。欲了解更多信息,请登录www.thermofisher.cn
  • 495万!清华大学第三代测序仪与大容量生命组学测序数据服务器购置项目
    项目编号:BIECC-22ZB1200/清设招第20221106号项目名称:清华大学第三代测序仪与大容量生命组学测序数据服务器购置项目预算金额:495.0000000 万元(人民币)最高限价(如有):495.0000000 万元(人民币)采购需求:应用于全基因组测序、外显子测序、靶向测序、宏基因组、全长转录体(cDNA)、直接RNA测序、表观遗传学等多个研究领域;可实现基因组DNA、扩增子/PCR产物、cDNA、RNA等类型的样本测序。测序数据服务器主要用于超大存储容量,应对数据爆炸式增长,即时在线扩展,避免资源闲置、浪费,容量可达EB级。支持文件分级存储功能,可以同时支持块、文件、对象三种接口的存储,能够构建大规模、高性能、动态可扩展的存储架构,可对接云平台、大数据、虚拟化、容器等应用。具体要求详见第四章。包号名称数量01第三代测序仪1台大容量生命组学测序数据服务器1 套合同履行期限:合同签订后90日内交付。本项目( 不接受 )联合体投标。
  • 沃特世发布全新代谢组学和脂质组学软件
    在刚结束的2024 ASMS上,沃特世发布了代谢组学和脂质组学全新软件MARS和Lipostar 2。MARS和Lipostar 2具有完备的组学工作流程,丰富了使用者分析组学数据的体验,提高了组学数据处理的工作效率。 图1.工作流程。 关键特性 可处理大部分主流品牌仪器采集的数据 LCHRMS非靶向、半靶向、靶向代谢/脂质组学以及空间代谢/脂质组学数据处理 正离子数据、负离子数据同时导入合并处理,合并共有特征 多种归一化方法,包括LOESS方法 数据库管理模块,通过基于规则或导入MS/MS实验数据,生成MS/MS数据库,包括HMDB,MassBank(北美),Lipidmap等开源数据库;植物组学数据库(29,000化合物),暴露组学数据库(28,000化合物) 灵活的特征注释方法,包括:▷ 谱图匹配注释方法 ▷ 基于脂质类别特定碎片识别的高通量自底向上的注释方法 ▷ 氧化物脂质的高通量注释 使用减少缺失值的空白填充算法 各种图形可视化和细化鉴定结果 各种多元统计分析工具 代谢物通路映射富集分析工具 处理离子淌度数据并使用CCS值注释特征 按照化合物类别选择并浏览数据 药物/外源物质代谢产物鉴定功能软件界面浏览 图2.正负离子数据合并处理。 图3.多维度,按化合物类别浏览化合物在样本中的分布。图4.按照疾病模型进行通路富集。 如需软件试用,请发送您的“单位名称、姓名、手机号、邮箱、地址”信息到xu_bai@waters.com,我们将尽快与您联系! 6月26日,沃特世将于北京举行 “逐极而质|沃特世代谢组学与脂质组学研讨会 — 暨Xevo MRT新产品发布会”,并同时开启线上直播。扫描下方二维码即可报名参加,届时可近距离深度了解这款集高分辨率、高灵敏度和快速的数据采集速率于一体的新品高分辨质谱,期待与您在云端相见! △扫码立即报名
  • 大会报告:蛋白质组数据处理技术研究进展
    仪器信息网讯,2010年5月15日,蛋白质组数据处理暨全国生物质谱学术交流会”在云南省丽江市召开。会议为期两天,主要讨论了蛋白质组学技术和应用、数据挖掘和生物质谱等方面的现状及其进展。在所有的大会报告中,除一些关于蛋白质组学技术最新研究进展的大会特邀报告外,第一天的专家报告集中讨论了糖蛋白组的最新分析技术与研究进展,第二天的报告集中讨论了蛋白质数据处理技术,包括蛋白质组生物数据库及分析平台的构建、数据统计分析方法的研究等方面。   蛋白质组数据库被认为是蛋白质组知识的储存库,包含所有鉴定的蛋白质信息。而基于质谱技术的蛋白质组学数据分析,是识别新型生物标记物模式的有效手段。质谱仪检测的数据含有大量潜在信息,因此,建立完善的蛋白质组学数据库,开发实用性强的数据处理软件工具,以及提供良好的蛋白质组数据分析、处理方对蛋白质组学的发展至关重要。在本次大会上,中国科学院计算技术研究所贺思敏研究员、浙江大学生物医学工程与仪器科学学院段会龙教授、国防科技大学机电工程与自动化学院谢红卫教授等专家学者作了关于此方面最新研究进展的报告,本文作简要报道:   报告题目: 蛋白质组数据分析软件pFind系统新进展   报告人:中国科学院计算技术研究所贺思敏研究员 贺思敏研究员   pFind系统是中国科学院计算技术研究所自2002年开始持续研发的蛋白质组数据分析软件,可以替代同类国际主流软件,已安装在国内多家蛋白质组学重点研究单位,并在ABRF组织的国际评测以及核心岩藻糖化修饰位点鉴定等科研实战中表现出色。   贺思敏研究员在报告中首先介绍pFind系统不同于国际同类软件的核心算法设计和系统实现,然后介绍pFind系统近期在开放式修饰类型发现、高精度一级质谱分析、新型碎裂方式串联质谱分析、肽序列从头测序、标记定量分析以及并行加速系统研制等方面的进展,最后介绍了pFind系统的下一步研究设想。   报告题目:构建心血管蛋白质组生物医学数据库及分析平台   报告人:浙江大学生物医学工程与仪器科学学院段会龙教授 段会龙教授   心血管疾病是威胁人类健康的主要疾病。以高分辨率质谱技术为基础的心脏蛋白质组研究是发展心血管研究的一个重要方向。段会龙课题组通过对心血管医学和生物学、蛋白质组学和生物医学信息学的多学科交叉研究,构建了心血管生物医学数据库,重点在心血管蛋白质组数据集成、处理和分析,生物医学数据库体系构建、数据共享和发布等诸多关键技术上进行突破。   该课题组目前已完成了如下工作:   (1)心血管蛋白质组数据体系结构:构建了以蛋白质组信息为主体的数据库体系结构,以心脏线粒体蛋白质组为基础建立了核心数据集,该核心数据集包含了1663种心脏线粒体蛋白质以及与之相对应的2万7千多个生物质谱谱图。   (2)心血管蛋白质组数据库搜索引擎:初步建立了数据搜索引擎,可通过蛋白、肽段序列等信息对相应的生物质谱谱图进行检索,实现了与欧洲生物信息学研究所 (EBI) 的IPI蛋白质数据库间的数据关联。   (3)心血管生物医学数据库平台:研究和开发了相应的数据库网络公共平台。该网络平台的首个版本将在2010年末面向全世界发布,通过对心血管生物医学数据信息和资源的实时共享,服务于全世界心血管研究群体。   报告题目:大规模蛋白质组研究中的质谱数据定量分析方法   报告人:国防科技大学机电工程与自动化学院谢红卫教授 谢红卫教授   谢红卫教授利用一系列大规模定量分析的数据集,包括稳定同位素标记和进行重复实验的无标记定量数据,进行了一系列分析和研究,目前取得了很大的结果:   (1)总结了无标记和稳定同位素标记定量数据分析的典型流程,并且结合实际的数据分析结果,初步研究了各种分析流程优势和问题。   (2)针对丁来那个信息提取问题,利用重复实验数据集,比较优化了其关键步骤。   (3)利用实际实验数据,初步研究了同位素分布实验误差和质荷比误差等对定量分析参数选择有重要影响的问题。   (4)针对定量计算速度慢的问题,提出了索引文件和基于hash表的信息检索方式,将定量计算的时间缩短为原来的1/10。   (5)设计了一种可逆的色谱保留时间对齐模型,大大缩短了无标记定量数据处理中色谱保留时间对齐的计算复杂度。   (6)提出了一种以信号强度为参量的差异分布模型,能够提高差异检验的灵敏度。   (7)开发了无标记定量软件LFQuant、标记定量软件SILVER,已经无鉴定定量分析工具XICFinder。其中SILVER能够支持自定义标记方法,提供了图形化界面。LFQuant速度和定量精度等性能经过了多次优化。   报告题目:多层次蛋白质磷酸化分析中的数据处理方法研究   报告人:中国科学院大连化学物理研究所叶明亮研究员 叶明亮研究员   叶明亮研究员在报告中提到,根据研究目的的不同,蛋白质磷酸化的分析可以划分为三个层次:信号转导通路中关键节点蛋白质的磷酸化、生物体内的所有蛋白质的磷酸化(即磷酸化蛋白质组)、生物体内的所有激酶与底物的相互作用(磷酸化调控网络)。不同层次的分析有不同的目的,样品的复杂度也不同,因此需要不同的数据处理方法。   在节点蛋白质的磷酸化分析方面,为实现对某一感兴趣蛋白质中磷酸化位点的全面分析鉴定,发展了一种基于改进的目标-伪数据库用于数据检索,来高覆盖率、高可靠鉴定简单蛋白样品中的磷酸化位点信息的方法。并且从搜库耗时上,允许用多种低特异性的酶来提高简单蛋白样品的序列鉴定的覆盖度,从而更加全面的鉴定样品的磷酸化位点信息。   在磷酸化蛋白质组层次上要实现在保持较高可信度和灵敏度的情况下对海量质谱数据以及检索数据进行自动化处理。针对磷酸化蛋白质组学中磷酸化肽段鉴定难,假阳性率高,主要依赖于人工验证的现状,发展了一种结合MS2和MS3图谱以及正伪数据库检索的自动磷酸化肽段鉴定方法。该方法结合了MS2和MS3的鉴定信息,提高了磷酸化肽段鉴定的灵敏度和可信度,可以自动的对磷酸化肽段进行鉴定而无需进一步的人工验证。利用这种方法,结合磷酸肽的多维分析已经可以从人肝组织中鉴定超过8000个磷酸化位点。最近,其课题组还发展了一种基于分类筛选的磷酸化肽段鉴定方法,该方法结合了MS2/MS3方法的高可信度,并且考虑了部分不易发生中性丢失的磷酸化肽段的鉴定,进一步提高了磷酸化肽段鉴定的灵敏度。   在磷酸化调控网络层次主要是揭示激酶与底物蛋白质上磷酸化位点的对应关系,叶明亮研究员表示,这是该课题组今后研究的一个重要方向,目前已经在与合作者利用生物信息学的方法模拟构建磷酸化网络图。
  • 对10万患者基因测序,以色列将建基因组数据库
    p style=" text-indent: 2em " 今年早些时候,为确立自己在精准医学和数字健康领域的世界领先地位,以色列提出了一项开发基因组和临床数据研究平台的国家倡议。 strong 近日,以色列宣布将开启一项大型人口基因组计划,计划到2023年,对超过10万名患者进行基因组测序,以改善患者的个体化医疗服务。该计划还将于2019年初开始与以色列健康管理组织(HMO)合作并收集患者样本。 /strong span id=" _baidu_bookmark_start_25" style=" line-height: 0px display: none " ? /span /p p style=" text-align: center " img width=" 598" height=" 240" title=" 311.jpg" style=" width: 529px height: 218px " alt=" 311.jpg" src=" https://img1.17img.cn/17img/images/201812/uepic/7f38dd31-6fc6-4abb-998b-cd6924afd51f.jpg" / /p p style=" text-align: center " strong 凭借独特优势 建立国家健康数据库 /strong /p p   据悉,以色列政府计划花费约10亿新谢克尔(约2.66亿美元)来支持这项基因组和个性化医疗计划。该计划的共同组织者、以色列创新管理局技术基础设施部门高级专家Ora Dar表示,该计划的 strong 最初动机就是改进数字医疗健康技术和基础设施,使以色列人民受益。 /strong 除创新管理局外,以色列总理办公室、财政部、卫生部、社会平等部、经济部、科学技术部以及高等教育委员会的领导人也在牵头开展这项计划。据他透露,领导该计划的CEO已经被选举出来,将负责政府以外的资金筹集工作,详细信息目前尚未公布。 /p p   Dar介绍道,工作团队将专注于整合医学、学术科研和工业转化,以便为患有多种疾病患者提供个性化的解决方案。作为该计划的一部分,研究团队还将开展Mosaic Project,招募可代表以色列流行病和种族特征的志愿者, strong 在保证隐私安全和匿名的前提下,收集其临床和基因组信息,最终建立一个可用于研究遗传学和医学信息的国家健康数据库 /strong 。研究团队将在常规医院收集志愿者的生物样本,包括血液、唾液、尿液、粪便以及其他类型的样本,以收集全面的生物信息。志愿者还可以预约进行特定样本收集。 /p p   在Mosaic数据库中,研究人员可以通过识别不同患者的信息,选择性进行NGS测序和其他检测。同时,该研究团队也将开发数据分析技术,尤其是肿瘤的个性化治疗研究领域,但患者样本采集收集工作流程仍需要详细的验证。此外,该计划也将建立科学和伦理委员会,负责研究项目批准和测序资金分配。人们需要申请以获得数据可的访问权。 /p p   Mosaic数据库将借助以色列的独特“竞争优势”得到充实,包括国家获取的患者医疗数据,多样化的遗传人群、先进的科学研究项目以及日益增长的创业环境等。 strong 因为在过去的20年中,98%的以色列人口已经完全被电子医疗记录体系覆盖 /strong ,包括以色列人、贝都因人以及来自世界各地的人,而且大部分人都获得了两个大型HMOS的投保。Dar相信,借助近20年的医疗健康信息,Mosaic Project能够展示以色列公民患有的长期疾病和发病趋势。 /p p   尽管有政府支持,但不可否认的是,该计划的实施仍存在一些障碍。首先就是进一步加强数据系统和数据标准化。为方便人工智能检查患者的数据,要对患者的电子医疗记录、医学影像和样本进行实时监测。同时,还要改善和扩大研究人员获取临床数据的机会,以及加强数据分析人员的培训和资格认证。在道德伦理审查、知情同意和隐私安全方面也要投入大量精力。 /p p style=" text-align: center " strong 大人群基因组计划的兴起 /strong /p p   除了以色列的基因测序计划,也有多个国家先后宣布启动大型人口基因组测序计划,夯实以基因数据为基础的精准医学,为疾病诊疗、药物研发提供更多的数据基础。近日,英国方面宣布,其“十万人基因组计划”工作已经完成。该计划于2012年启动,历经5年半,耗资超5亿美元。计划收集的10万人的基因组测序信息可以帮助科学家和医生更好的了解罕见病和癌症,创造新型“基因组医学服务”框架。此外,2018年10月,英国政府宣布将在未来5年内开展500万人基因组计划,这是迄今为止全球最大规模的人群基因组计划。 /p p   2017年12月,中国正式启动“十万人基因组计划”。这是我国在人类基因组研究领域实施的首个重大国家计划。该计划将绘制中国人精细基因组图谱,研究疾病健康和基因遗传的关系。其覆盖地域包含我国主要地区,涉及人群除汉族外,还将选择人口数量在500万以上的壮族、回族等9个少数民族。 /p p   2018年5月,美国国立卫生研究院正式启动All of Us 研究项目,以加速精准医学研究、改善健康状况。All of Us是NIH近年来资助规模最大的项目之一,也是一项全民参与的健康研究项目。该项目预计纳入100万人的队列研究,参与者包括各种族、不同年龄和性别的人群,也包括病人和健康人。 /p p   此外,法国、澳大利亚、日本等国家都启动了大型的人口基因组测序计划。所有这些计划都指定了多个公司作为合作伙伴,为研究的开展提供特定测序技术服务,帮助分析基因组数据。以以色列的基因组计划为例,目前有500多家以色列公司在数字健康处理方面为该计划提供服务,同时将有更多技术型企业加入合作,某些公司还可以开发网络技术保护患者的个人数据和隐私。具体信息将在2019年年初公布。 /p p   基因组医学为医学研究带来了一场革命。随着世界各国万人级别基因组测序计划的逐渐兴起,以基因组学为基础的精准医学也迅猛发展,大数据竞备赛的帷幕已经拉开。大量基因测序计划的实施为为开发医疗解决方案和创建大数据分析平台提供了数据基础,为癌症、罕见病等疾病的研究提供了数据支持。同时,从事医疗设备、药品、医疗人工智能和数据分析的科学公司也能从中获得临床、基因组和其他相关数据,并最终造福患者。 /p p   参考资料: /p ol class=" list-paddingleft-2" style=" list-style-type: decimal " li p Israel to Sequence 100K People, Create Genomic Database to Support & #39 Digital Health& #39 /p /li /ol
  • Sanjay Chikarmane:基因组数据改变医疗
    医疗和生物信息学领袖期待精准医疗的未来,讨论如何应对大数据测序成本的大幅下降正促使精准医疗不断接近现实。随之而来的是大量的基因组数据,它们需要尖端的生物信息学才能转化为有用的信息。Illumina企业信息部门的高级副总裁兼总经理Sanjay Chikarmane期待能将大数据转化成智能数据 – 也就是说,在合适的时间,将合适的数据提供给合适的人 – 从而为保健决策提供信息,增进保健决策。Chikarmane在5月的圣地亚哥大数据高管论坛上发言,认为只有当你理解大数据,结合背景并能够从中做出明智的决策时,大数据才有意义。Illumina正利用其全面的基因组学软件方案BaseSpace Informatics Suite来应对这些挑战。“从这一激增的数据中获得生物学相关信息的能力还存在许多挑战 – 从存储和计算到确定特定突变,以及将这些数据转化成有用的信息”, Chikarmane解释说,我们已经设计出一个自动化的解决方案,可加快从初始样品中获得答案的过程,以便帮助专业人士做出由数据驱动的决策。”在Biocom主办的峰会上,Chikarmane加入了一个由生命科学和医疗保健行业高管组成的小组,包括Kaiser Permanente、Amazon Web Services和IBM。本次峰会召集各路领袖来集中讨论企业如何能够有效地管理、保护和利用基因组数据和信息。本次活动的重点是在最佳实践上,讨论了围绕数据处理、保护和隐私,满足行业规范和法规,以及计算和存储的策略和技术。小组一致同意,对于有益的数据,它必须是可访问、可使用、可操作且共享的。他们还将合作定义为一个关键的机会,因为信息共享将对精准医疗行动的成功至关重要。“最大的机遇是跨学科的合作,跨领域和行业的合作,”Kaiser Permanente的首席信息官John Mattison博士谈道。圣地亚哥在高性能计算、预测分析和软件开发上的专长,再加上它在基因组学、脑科学、生物技术和数字健康上不容置疑的领导地位,让这一区域在这个数据—生物学交汇点上独占鳌头。Mattison博士补充说,“我的理念是让你所从事的技术与邻近的技术发展个人关系,并找到你认为可以建立长期信任关系的人,这样才能实现最成功的合作。”
  • 北京基因组所等开发出叶绿体基因组综合数据库
    叶绿体是植物将光能转化为化学能的重要细胞器,具有独立的基因组。自植物叶绿体基因组被发现以来,被广泛应用于植物系统进化关系研究、光合作用调控机制研究、叶绿体基因工程等方面。随着基因测序技术的发展,尽管已发布了海量的植物叶绿体基因组序列,但如何整合应用这些数据目前仍面临数据命名标准不统一、数据信息不全以及较高经济价值的物种尚未进行测序等问题。  近日,中国科学院北京基因组研究所(国家生物信息中心)国家基因组科学数据中心章张、宋述慧团队,联合中国中医科学院中药资源中心袁媛、黄璐琦团队,开发了迄今为止物种数量最多的叶绿体基因组综合数据库Chloroplast Genome Information Resource(CGIR )。CGIR收录了来自11,946个物种的19,388条叶绿体基因组序列,包括利用全国第四次中药资源普查标本自测的718种未发表的叶绿体基因组序列,按照基因组(Genomes)、基因(Genes)、微卫星序列(SSRs)、DNA条形码(Barcodes)、DNA特征序列(DSSs)五个功能模块对数据进行组织与管理。相关研究成果以Towards comprehensive integration and curation of chloroplast genomes为题,发表在Plant Biotechnology Journal上。  根据生物物种名录(The Catalogue of Life),经过大规模人工审编,CGIR对所收录叶绿体基因组的物种分类信息进行审编,按照纲、目、科、属、种不同分类层级进行整理,并依据权威植物研究机构邱园发布的世界功能植物名录(World Checklist of Useful Plant Species)对药用植物、食用植物、环境植物、能源植物、有毒植物、能源植物等进行标注。同时,CGIR审编修正基因名的不规范命名、异名、错误注释等情况。在此基础上,CGIR系统整理各基因组的基因注释信息,为用户检索、浏览和信息获取提供便利。  针对分子标记开发这一叶绿体基因组最为常见的应用情景,CGIR使用生物信息学方法计算了所收录叶绿体基因组的微卫星序列、DNA条形码和DNA特征序列三种不同类型分子标记信息,同时,开发了相应的树型视图方便用户根据分类层级信息快速寻找目标标记,简化了科研人员开发分子标记的流程。  CGIR通过自主测序、整合公开基因组资源和人工数据审编向用户提供了目前最全面、物种数量最多的叶绿体基因组数据。经审编的物种分类、物种功能、基因名称与序列、分子标记等保证了数据的高度可靠,对植物系统发育、物种鉴定、叶绿体基因工程的发展均具有重要意义。  研究工作得到科技基础资源调查专项、中国中医科学院科技创新工程项目、中央本级重大增减支项目“名贵中药资源可持续利用能力建设项目”的支持。  论文链接 CGIR数据处理示意图及主要功能模块的数据统计
  • 沃特世在ASMS 2016发布代谢组学离子淌度数据库
    Waters(沃特世公司)在第64届美国质谱年会(ASMS 2016)发布了为以离子淌度质谱为基础的研究提供代谢分析参考的全新数据库Metabolic Profiling CCS Library。Metabolic Profiling CCS Library包含了900余种碰撞横截面值(CCS), CCS能够评价气相分子的三维形状,是另一维度的分子鉴定标准,能够从不同角度验证常规质谱的分析结果。该数据库还包括600余种MS/MS质谱信息。  Waters UNIFI Scientific Information System是Waters一款将仪器控制与数据分析相结合的独特软件平台,能够实现色谱和质谱结果的可视化管理。Metabolic Profiling CCS Library是UNIFI Scientific Information System中的一部分。  Metabolic Profiling CCS Library能够使得科学家在应用离子淌度技术时能够准确的鉴定复杂样品基质中的生物标记物。CCS是能够精确反应离子大小、形状的重要参数,在非靶向代谢组学研究中涉及极为复杂的少数样品时,研究者可通过CCS分辨不同样品组间显示的显著区别,从而鉴别其内源性代谢物与脂质。  “无论是鉴别内源性生物标记物的作用还是了解疾病的发展阶段,代谢组学和脂质组学对于生物标记物的发现与翻译研究非常重要。对于想要更深入的了解生物学基础的研究者,促进非靶向代谢组学研究的离子淌度质谱是非常合适的工具。离子淌度可以增加色谱峰的峰容量,其CCS能够提高研究者鉴定特定代谢物的准确性。”Waters 组学解决方案高级业务发展经理 David Heywood评论说。  Waters Vion IMS QTof and SYNAPT G2-Si HDMS 高分辨质谱系统能够减少离子淌度分析中的操作复杂性。Metabolic Profiling CCS Library适用于这两套质谱系统。编译:郭浩楠
  • 功能基因组学高峰论坛---基因大数据时代
    p & nbsp /p p & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp strong 仪器信息网讯 /strong 第四届全国功能基因组学高峰论坛共设基因与大数据、基因组与功能基因组学、基因科技与精准医疗三个分会场有近七十位学术专家带来了精彩报告。报告内容涉及基因组学在各领域内的前沿及研究进展,可谓百花齐放,百家争鸣,与会专家积极提问交流,现场反响热烈。 /p p & nbsp /p p strong 基因大数据时代的关键是数据分析 /strong /p p style=" text-align: center " img title=" IMG_6778_副本.jpg" src=" http://img1.17img.cn/17img/images/201710/insimg/7f5c106c-ac3e-492a-a21d-318f0cce4688.jpg" / /p p style=" text-align: center " 中国科学院生物物理研究所院士陈润生 /p p & nbsp /p p & nbsp & nbsp & nbsp & nbsp & nbsp 中国科学院生物物理研究所的陈润生院士是中国最早从事理论生物学和生物信息学研究的科研人员之一,他站在开拓者的高度上为大家带来了报告:大数据· 精准医疗。 /p p & nbsp & nbsp & nbsp & nbsp & nbsp 陈润生院士介绍:在美国的牵头下,精准医疗已被各国列入战略规划,因其有着直接解决当前医疗行业面临的诸多困难的潜力,预计接下来的几年将会爆发式的增长,到2018年全球市场规模会到达2238亿美元。随着技术的发展,测序已不再是难题,现在制约发展的关键是大量测序数据如何到高效的解读。陈院士打了一个有趣的比喻说,一个人的基因数据写成每本100页的书要10000本书才能写完,数据量如此大,并且生物个体间的测序数据又呈现异质化。故大量并且高度异质化的数据如何与表型正确关联,解决这一难题才是真正的挑战。 /p p & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp 挑战往往伴随着机遇,数据解读大有可为,同时陈院士指出:基因中只有3%符合中心法则,而97%的非编码RNA存在着大量的遗传密码暗信息。对这一领域的探究也孕育着颠覆性的发现,甚至我们认可的中心法则都有可能被改写。本次会议中有多位专家带来了其在非编码RNA领域的研究成果,其中北京大学高歌研究员建立了非编码RNA数据库并在会上与大家做了分享。期待该领域研究的重大发现! /p p & nbsp /p p strong 基因测序离不开技术的支持 /strong /p p style=" text-align: center " img title=" IMG_6775_副本.jpg" src=" http://img1.17img.cn/17img/images/201710/insimg/1b758035-9f85-4e17-82af-4bb2e646723e.jpg" / /p p style=" text-align: center " 中国科学院北京基因组研究所研究员于军 /p p & nbsp & nbsp & nbsp & nbsp & nbsp 中国科学院北京基因组研究所于军研究员在会上分析了二代测序的优势,突破及局限并展望了三代、四代测序仪未来体外诊断技术方面应用的发展前景。于军研究员还带来了他纳米孔在测序仪方面应用的研究进展,纳米孔技术在分析研究DNA,RNA的变化行为,如共价修饰方面的应用有着巨大的潜力。 /p p & nbsp /p p style=" text-align: center " img title=" 腾讯云,百迈克.jpg" src=" http://img1.17img.cn/17img/images/201710/insimg/b01749bb-a38c-4e51-819c-f5ecc4ff20c1.jpg" / /p p & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp 数据处理就离不开计算机技术平台的配合支持,大会中百迈克公司与腾讯达成了合作。计算机技术显示出其在大数据领域的前景,腾讯开发了服务基因行业的PAAS平台—腾讯双螺旋,浪潮公司会上报告分享了其开发的在基因测序数据的整合和分析平台。 /p p & nbsp /p p strong 基因组学助力各领域科研 /strong /p p img title=" 辛业芸.JPG" src=" http://img1.17img.cn/17img/images/201710/insimg/263b29a2-456a-4d5e-813a-d5e2d86a31fa.jpg" / /p p style=" text-align: center " 湖南杂交水稻研究中心袁隆平团队中心研究员辛业芸 /p p & nbsp & nbsp & nbsp & nbsp & nbsp 湖南杂交水稻研究中心袁隆平团队中心辛业芸研究员的报告中指出:其利用基于表型组、基因组和转录组综合分析杂交水稻产量优势相关的基因和QTLs对推动杂交稻的分子设计育种实践有重要的意义。其团队对水稻杂种优势的表型及分子基础进行了综合分析找出了小花数与有效穗数两种造成水稻产量优势的两个重要原因。 /p p & nbsp /p p img title=" 康.JPG" src=" http://img1.17img.cn/17img/images/201710/insimg/cda305f5-0beb-49e4-ae7d-ff76b70af471.jpg" / /p p style=" text-align: center " 首都医科大学附属天坛医院教授康熙雄 /p p & nbsp & nbsp & nbsp & nbsp & nbsp 首都医科大学附属天坛医院的康熙雄教授在报告中指出临床个体化系统的建立与应用生物治疗给临床带来了崭新的治疗领域。分子检测技术的发展为实现精准医疗提供了巨大的支撑。康教授为大家带来了其在建立免疫检测点评价体系方面的研究进展,目前正在尝试新的功能辨识平台,也在寻找实验室评价体系依赖的治疗方法和抗体药物。 /p p & nbsp & nbsp & nbsp & nbsp & nbsp 基因组学研究,基因大数据分析,精准医疗等领域专家都报告了可喜的研究进展,但也可见:生物大数据时代,科研路漫漫其修远兮,任重而道远。每处研究进展都是为了让世界更明了更美好,向科研人员致敬! /p p & nbsp /p
  • 我国开发定量蛋白质组学数据解析软件
    中科院计算所究团队与董梦秋实验室合作,成功开发了定量蛋白质组学数据解析软件,用计算方法排除干扰信号的影响、提高肽段和蛋白质的定量准确度并对每个定量值进行准确性评价。   基于质谱的定量蛋白质组学是现代生物学技术的生长点之一,用于测量复杂生物体系中蛋白质及其翻译后修饰在不同条件下的丰度变化,是研究蛋白质功 能和药物作用机制的重要工具。已有的定量软件往往不能有效排除干扰信号,定量值的计算方法有待完善,而且缺乏准确性评价,致使输出结果&ldquo 鱼龙混杂&rdquo ,引起 的假阳和假阴两方面的困扰都比较严重。  为了更好地解决问题,开发者研究了几百个可疑定量值的原始质谱图和色谱图数据,找原因、攒经验,充分挖掘肽段的质谱、色谱信号特点以及从肽段定量到蛋白 质定量的方法,灵活应用各种组合和统计算法,建立了一整套非常细致的数据分析流程。为了验证软件的性能,董梦秋实验室的同学通过轻重SILAC或 14N/15N标记哺乳动物细胞或细菌,从10:1到1:10按不同比例混合得到14套标准样品,产生了14套测试数据集。 测试结果表明,定量结果的准确性明显超过定量蛋白质组学领域的两个主流软件Census和MaxQuant,主要表现在输出的非数比值数目(即 不能定量的部分)占总比值数目的0.01&ndash 0.5%,远低于Census的MaxQuant的对应比例2.5&ndash 10.7%和 1.8&ndash 2.7%;Census和MaxQuant输出了许多不准确结果,其定量值的标准差是软件的1.3&ndash 2倍;给出了肽段和蛋白质定量比值的置信区 间,而Census和MaxQuant没有准确性评价。目前,该研究工作得到了科技部、基金委、中科院和北京市政府的资助。
  • 汤富酬课题组实现基于单细胞测序数据的人类基因组从头组装
    随着三代测序技术(TGS,也即单分子测序技术)的发展,基于大量细胞的三代基因组测序数据被广泛应用于各种复杂大型基因组的组装,由于其读长相比于二代测序(NGS)技术有数百倍的增加,因此基因组中重复序列区域以及染色体重排等复杂结构变异区域都能被更好地组装出来。对于人类基因组的组装研究,端粒到端粒(T2T)联盟在2022年3月,使用纯合二倍体细胞系CHM13率先发布了首个完整的端粒到端粒的人类基因组参考序列CHM13v1.1。2022年3月,人类泛基因组联盟(HPRC)在预印本平台bioRxiv上发布了首个高质量人类杂合二倍体细胞系HG002的单倍型组装结果。目前,高质量的基因组组装通常依赖于大量细胞混合样本的三代测序数据,需要大量的基因组DNA(通常需要从数百万个细胞中提取几十微克基因组DNA),然而在基因组组装的实际应用中常常要面对两个困难:1、细胞群体中存在遗传异质性。基于大量细胞三代测序数据的基因组组装需要确保测序的样本中每个细胞的遗传背景高度一致,否则组装结果将很难区分同一个细胞内的不同单倍型基因组之间的差异和不同细胞亚群之间的基因组差异。只有降低或者消除细胞间的遗传异质性才能确保单倍型组装的准确性。但是,在人体正常组织样本中也常常广泛存在体细胞拷贝数变异(CNA)。与此同时,正常的人类细胞也会不断积累突变,同一块人体组织常常是由很多包含不同突变的细胞克隆组成。在癌症研究中,同一个肿瘤样本中不同癌细胞亚克隆之间的基因组异质性就更为明显。2、细胞数量稀少。在很多情况下,很难获取上百万个细胞以提取大量(几微克)基因组DNA。例如,在早期胚胎发育研究、司法检验、特别是在癌症基因组研究中(如循环肿瘤细胞、肿瘤活检样本、脑脊液中的肿瘤细胞、以及腹水中的肿瘤细胞等),能够获取的细胞数量常常很稀少,而且这些细胞很难在体外培养和扩增;即使偶尔可以培养扩增,也不能保证在体外培养扩增过程中其基因组不会进一步产生新的遗传变异。基于二代测序(NGS)平台的单细胞基因测序技术被广泛应用于微生物等简单小型基因组的组装。许多种类的细菌无法在实验室中培养,单细胞基因组测序可以与宏基因组学方法结合起来完成微生物的基因组组装。由于人类基因组结构、大小、以及复杂程度远超细菌等微生物,单纯使用基于二代测序平台的大量细胞基因组测序数据也无法组装出高质量的人类基因组参考序列(NG50很难达到Mb(百万碱基对)级别),那么使用少量DNA甚至单细胞基因组测序数据组装人类基因组则更具挑战性,它不仅需要基于三代测序平台的单细胞基因组长读长测序技术的支持,还需要合适的组装软件以及良好的生物信息学分析策略。2022年7月12日,北京大学生物医学前沿创新中心(BIOPIC)汤富酬课题组在Nucleic Acids Research发表了题为De novo assembly of human genome at single-cell levels的研究论文。该研究使用优化的SMOOTH-seq单细胞基因组三代测序技术,基于Pacific Biosciences(PacBio)HiFi和Oxford Nanopore Technologies(ONT)两种三代测序平台首次在单细胞水平上完成了Mb级连续性的人类基因组组装,并使用多种评价指标,充分探索了不同测序策略和组装工具对基因组组装结果的影响。1、全面优化了SMOOTH-seq单细胞基因组三代测序技术,使其同时适用于PacBio和ONT两种主流单分子测序平台。此前的SMOOTH-seq技术只适用于PacBio单分子测序平台,使用场景有较大的局限性。优化后的SMOOTH-seq技术既可以用于PacBio单分子测序平台,也可以用于ONT单分子测序平台,使用场景更加灵活,可以兼顾测序数据准确性和测序成本。2、使用hifiasm,Hicanu,wtdbg2等主流组装工具和95个单细胞的三代基因组测序数据(Pacbio HiFi平台),对人类慢性粒细胞性白血病(CML)细胞系K562进行了高质量基因组组装。组装出的主要叠连群(primary contig)的NG50(可覆盖50%的已知基因组区域的最短叠连群的长度)可达2.11Mb,也就是说在这个组装出的参考序列中,人类基因组中一半(15亿碱基对)以上的区域都被至少2.11Mb以上的叠连群覆盖了。最长叠连群可达14.12Mb,完整的通用单拷贝同源基因基准(Complete BUSCOs)比例接近95%,且大部分组织相容性复合体(MHC)位点(基因组上的一个有代表性的复杂区域,全长约6Mb)被成功组装出来(如图1所示)。图1. 95个K562细胞的基因组组装结果(Pacbio HiFi)3、使用hifiasm,Hicanu,wtdbg2等主流组装工具和人类正常二倍体细胞系HG002的157个单细胞的基因组三代测序数据(Pacbio HiFi平台)对人类基因组进行了高质量组装。组装出的主要叠连群(primary contig)的NG50可达0.65Mb,最长的叠连群可达6.82Mb,完整的通用单拷贝同源基因基准(Complete BUSCOs)比例接近91%。在使用此数据进行HG002的单倍型组装的过程中该研究发现经过指数扩增的基因组数据的k-mer分布会发生偏移,因此使用有双亲二代测序数据作为辅助的Trio-binning模式进行基因组单倍型组装结果更为准确。因此该研究分别使用Trio hifiasm和Trio Hicanu两种组织工具进行单倍型组装,得到的亲本叠连群的NG50可达0.3Mb左右,完整的通用单拷贝同源基因基准(Complete BUSCOs)比例均超过84%。通过比较HG002亲本六种经典人类白细胞抗原(HLA)位点的组装分型结果,Trio Hicanu能够正确组装出HLA区域的两个亲本的大部分基因位点(如图2所示)。图2. 157个HG002细胞的基因组组装结果(Pacbio HiFi)4、使用Flye,Necat,wtdbg2等主流组装工具和人类正常二倍体细胞系HG002的192个单细胞的三代基因组测序数据(ONT平台,低测序深度)对人类基因组进行高质量组装。研究发现,不同的组装工具对最终组装结果有很大影响,Flye展现出更为适合单细胞ONT三代测序数据的特性,组装出的叠连群的NG50可达1.38Mb,最长叠连群可达11.42Mb,完整的通用单拷贝同源基因基准(Complete BUSCOs)比例超过93%,多项指标都远超另外两个组装工具。同时组装结果能够补齐39个hg38版本的人类参考基因组中未组装出的缺口(gap)区域,其中14个区域在hg38中注释的长度超过50Kb(如图3所示)。图3. 192个HG002细胞以及30个HG002细胞的基因组组装结果(ONT)5、使用Flye,wtdbg2等组装工具和人类正常二倍体细胞系HG002的30个单细胞的三代基因组测序数据(ONT平台,高测序深度)对人类基因组进行高质量组装。为了探究仅使用极少量单细胞的基因组测序数据进行人类基因组组装的极限情况,该研究分别使用1个、10个、20个和30个单细胞尝试进行人类基因组组装,发现仅需要高测序深度的30个单细胞的基因组测序数据(平均基因组覆盖度~41.7%)就能完成叠连群 NG50高达1.34Mb连续性的组装。同时组装结果能够补齐38个hg38版本的人类参考基因组未组装出的gap区域,其中15个区域在hg38注释的长度超过50Kb(如图4所示)。图4. 30个基因组高覆盖度HG002细胞的基因组组装结果(ONT)6、通过对K562细胞系基因组的从头组装,该研究相比于使用原始单细胞基因组三代测序数据能更精准地鉴定出更多的基因组插入事件和复杂结构变异事件。对于K562这样的白血病细胞系,基因组从头组装之后是否能更好地鉴定出基因组结构变异(SV)事件是癌症研究中的重要问题。该研究分别使用hifiasm和Hicanu组装出的主要(primary)叠连群和替代(alternate) 叠连群来进行结构变异鉴定。发现组装后的叠连群比起原始单细胞数据直接比对能更准确地鉴定出基因组插入事件,召回率达到70%以上,精确度达到90%以上。同时,K562中的三对经典融合基因:CDC25A-GRID1、BCR-ABL1和NUP214-XKR3都能被精准地鉴定出来,而CDC25A-GRID1融合在原始单细胞基因组数据直接比对到参考基因组时是无法被发现的 (如图5所示) 。为了进一步验证基因组从头组装后找到的结构变异事件的准确性,该研究挑选了20个(14个插入事件,6个缺失事件)在组装后的叠连群中被鉴定到、但是在单细胞基因组原始测序数据直接比对到参考基因组时没有被鉴定出来的结构变异事件进行了PCR验证,准确率高达80%,证明了组装后的叠连群对结构变异事件的鉴定是精准可靠的(如图6所示)。图5. 组装后叠连群(contig)中结构变异事件检测的准确性 图6. PCR验证基因组结构变异事件的结果综上,为了解决基因组从头组装在实际应用中遇到的细胞遗传异质性和细胞稀缺性的问题,该研究使用优化的SMOOTH-seq技术在两种不同的主流三代测序平台上,采用不同的测序策略(高通量、低深度测序策略(multi-cells with low sequencing depth)和低通量、高深度测序策略(few-cells with high sequencing depth)),使用多种不同组装软件(hifiasm,Hicanu,wtdbg2, Flye,Necat等)、多个评价指标、以及不同组装策略,探讨了利用单细胞测序数据从头组装人类基因组的可行性,并确定了影响组装结果的主要因素,将基因组组装的分辨率提高到单细胞水平(少至30个单细胞)。未来随着单细胞测序技术和基因组组装策略的进一步发展,最终必将实现只用一个单细胞的测序数据就能组装出Mb级连续性的人类参考基因组的梦想。北京大学生命科学学院博士生谢昊伶以及北京大学前沿交叉学科研究院博士生李文为该论文的并列第一作者。北京大学生物医学前沿创新中心汤富酬教授为该论文的通讯作者。该研究项目得到了北大-清华生命科学联合中心、国家自然科学基金委、北京市科技委和北京未来基因诊断高精尖创新中心的支持。论文链接:https://doi.org/10.1093/nar/gkac586汤富酬研究员简介:汤富酬,博士,北京大学BIOPIC/ICG研究员,国家“优青”(2013)、“杰青”(2016)。1998年本科毕业于北京大学,2003年在北大获得细胞生物学博士学位,2004-2010年间在英国剑桥大学Gurdon研究所从事博士后研究, 2010年回到北京大学组建实验室,主要从事人类早期胚胎发育的单细胞功能基因组学研究。在国际上率先系统发展了单细胞功能基因组学研究体系,并利用一系列技术体系对人类早期胚胎发育进行了深入、系统的研究,揭示了人类早期胚胎DNA去甲基化过程的异质性以及其他表观遗传学关键特征,发现了人类早期胚胎中基因表达网络的重要表观遗传学调控机理,为人们提供了一个全面分析人类早期胚胎表观遗传调控网络的研究框架,加深了对人类原始生殖细胞的发育以及表观遗传重编程过程的认识。
  • 扩展数据分析软件工具增强了对2-D DIGE数据组的生物学解读能力
    2005年8月12日英国Chalfont St Giles消息 ——通用电气医疗集团推出了DeCyderTM 扩展数据分析(Extended Data Analysis,EDA)1.0版,―个针对蛋白质组研究市场的先进的软件解决方案。它能对不同数据组进行联合分析,并通过检索公共和本地数据库对结果进行生物学解读。由于增强了新版DeCyder v6.5 DIGE 图像分析软件的分析能力,EDA对2-D DIGE实验分析非常有用。 “EDA v1.0是一个功能强大的,尖端的2-D DIGE 软件解决方案,它以一种便于使用的形式提供先进的统计学分析,”GE Healthcare全球市场经理Kumar Bala 说道,“这种有用的分析工具将促进对调控途径的更深入了解,并帮助蛋白质组学研究人员更快更精确地识别区别于正常组织样品和疾病组织样品、以及不同疾病状态和肿瘤类型间的差异蛋白质。” DeCyder EDA采用多变量分析和高级的聚类分析方法,揭示由2-D DIGE实验所得到的实验数据的蛋白表达模式。该软件采用一个“数据组”(data set)作为2-D凝胶分析的基础,将匹配的蛋白点定义为蛋白图谱的一个点群(group),根据实验目的,每个数据组都能以不同方式被展示出来。 DeCyder EDA是进行生物学差异分析(Biological Variance Analysis,BVA)的一种理想工具,它能回答的问题有: - 在一个特定的数据组中存在有多少个蛋白点群和样品类别? - 是否有蛋白点表现出类似的表达模式,暗示着共调控作用? - 是否有蛋白质或蛋白表达模式可能是某种生物学或疾病状态的特征? - 是否有特定的蛋白质对开发非侵害性诊断或预后性症状检测有用? - 通用电气医疗集团特别设计的DeCyder软件包是Ettan 2-D DIGE 技术平台的关键组件,可精确检测和匹配Ettan DIGE凝胶的多重荧光图像。
  • 【报名进行时】2024国际脂质组学会议暨深圳医科院结构脂质组学研讨会
    由国际脂质组学学会委托清华大学深圳国际研究生院、深圳医学科学院及深圳清华大学研究院主办,清谱科技(苏州)有限公司协办的《第三届国际脂质组学学会会议暨深圳医科院结构脂质组学研讨会》(The 3rd International Lipidomics Society Conference & SMART Symposium on Structural Lipidomics)将于2024 年 10 月 24 日至 27 日(周四—周日) 在中国深圳召开。会议内容涉及脂质组学技术、脂质生物学和应用的最新发展。会议程序包括:大会特邀报告、口头报告、墙报展讲、专题研讨会等。会议还将组织脂质组学领域的知名厂商开展相关产品展示与技术交流。本次大会将在清华大学深圳国际研究生院举办,会期为 4 天,预计将有 300 余名脂质组学学术界以及产业界代表参加。会议地点中国深圳市南山区清华大学深圳国际研究生院国际一期会议日程安排日期时间活动10月24日8:00-18:30会议报到13:30-14:30会议开幕式14:00-16:00短时报告会16:30-17:30专题研讨会117:30-18:30专题研讨会(清谱科技)18:30-晚餐10月25日8:30-17:00会议报到8:30-10:00主题报告会1: 脂质功能10:30-12:00主题报告会2:脂质组学在健康和疾病领域中的应用12:00-14:00午餐 & 海报、展商交流会14:00-15:00主题报告会3:脂质代谢15:00-16:00主题报告会4:食品脂质组学16:30-17:15大会报告117:30-18:30专题研讨会218:30晚餐10月26日8:30-10:00主题报告会5:用于脂质分析的异构体解析质谱方法10:30-12:00主题报告会6:脂质组学新技术(I)12:00-14:00午餐 & 海报、展商交流会14:00-15:00主题报告会7:脂质组学新技术(II)15:00-16:00主题报告会8:脂质成像16:30-17:15大会报告217:30-18:30专题研讨会318:30-晚宴10月27日8:30-10:00主题报告会9:脂质定量10:30-11:50主题报告会10:脂质组学数据分析12:00-13:00午餐 & 展商交流会13:30-15:30主题报告会11:脂质膜和膜蛋白16:00-16:45大会报告316:45-17:15颁奖典礼及会议闭幕式会议注册及缴费1. 注册参会参会代表请访问注册链接:https://ilsconf.org/2024-registration-payment ,在网站上注册,获取用户名和密码,再登录会议注册系统填写参会信息。2. 注册费参会代表需缴纳会议注册费,2024年9月15日前享受优惠注册收费标准;2024年9月15日后注册为正常收费标准。详细标准如下:注册费金额(人民币)金额(美金)金额(人民币)金额(美金)常规代表¥2,800$380¥4,000$550ILS 会员¥2,000$280¥3,200$440学生¥1,600$220¥2,400$330ILS 学生会员¥1,200$150¥2,000$280缴纳注册费方法:登录会议注册系统,选择Registration,按照指示填写信息后点击提交,之后使用银联/支付宝/微信进行线上支付。会议住宿10月正值深圳旅游旺季,请各位参会代表尽早自行预订会议期间住宿,可通过电话及邮件预订。大会推荐酒店:序号酒店名称酒店地址协议价(元)预订方式1博林天瑞喜来登酒店广东省深圳市南山区留仙大道4088号豪华大床房 1000(45m² )单早豪华双床房 1000(45m² )单早Grace Yang电话:+86-13923841909邮箱:grace.yang@sheraton.com2丽枫酒店(大学城地铁站店)广东省深圳市南山区平山一路大园工业区云谷二期1栋大床房 328(15m² )含早双床房 348(20m² )含早翁经理电话:+86-139027910993维也纳国际好眠酒店(塘朗地铁站)广东省深圳市南山区留仙大道地铁运营大厦大床房/双床房 468元(均为35m² )含早孟经理电话:+86-18676782368邮箱:22962372@qq.com4维也纳酒店(大学城店)广东省深圳市南山区桃源街道平山村平山一路49号豪华房(大床/双床,均30m² )448元含早商务房(大床/双床,均30m² )478元含早项经理电话:+86-13923430842邮箱:2781244855@qq.com5深圳璟峯酒店 (西丽大学城店)广东省深圳市南山区留仙大道4168号众冠时代广场B座豪华大床房(32m² )388元无早/428元单早/468元双早豪华双床房(32m² )428元无早/508元双早邓经理电话:+86-13530884964邮箱:744757463@qq.com特别说明:1、预订时,需要说明“国际脂质组学学会会议暨深圳医科院结构脂质组学研讨会/ILS Conference & SMART Symposium on Structural Lipidomics”入住,才可享受协议价。2、由于上述酒店均含早餐,会务组不单独负责早餐。若代表自行选择了其他住宿酒店,请留意可能需要自行负责早餐。3、住宿发票统一由酒店开具,如需发票,请各位代表住店或离店时自行与酒店前台联系。4、房间数量有限,以预定时酒店安排为准,请参会代表提前预订。关键时间节点优惠注册费缴纳截止日期:2024年9月15日更多会议信息将会在官方网站(https://ilsconf.org/)更新,敬请关注。会务及联系方式会务组负责人及会议咨询:吕延 联系电话 13260471616江兆玲 联系电话 13166020016会务组邮箱地址:conference@purspec.cn 赞助厂商:赞助招商相关事宜,委托协办单位清谱科技(苏州)有限公司负责:吴俊函 联系电话:17801050084 邮箱地址:junhan.wu@purspec.cn清华大学深圳国际研究生院2024年8月30日
  • 新型分析软件不断出现 让组学的数据分析不再抓狂
    与其他的组学学科相似,代谢组学的数据收集是个问题,但肯定不是研究人员面对的最大问题。大多数人都同意,更大的问题是弄清楚代谢组学数据集到底意味着什么。幸运的是,不断出现的分析工具正在帮助打破这个瓶颈。   研究人员逐渐懂得,如果你真的想要了解细胞行为,你需要研究代谢物。基因编码蛋白质,而蛋白质作用于小分子。这些分子的存在和丰度,被统称为代谢组(metabolome),反映和影响了健康、营养、免疫系统等。   与其他的组学学科相似,代谢组学的数据收集是个问题,但肯定不是研究人员面对的最大问题。大多数人都同意,更大的问题是弄清楚代谢组学数据集到底意味着什么。&ldquo 数据分析仍是个巨大的瓶颈,&rdquo 赛默飞世尔代谢组学的市场部经理Yingying Huang说。   幸运的是,不断出现的分析工具正在帮助打破这个瓶颈。   光谱图库   代谢组学的数据分析主要分为两个部分:峰值检出(peak picking)和峰值鉴定(peak identification)。峰值检出是利用代表不同条件(如健康和患病)的多个数据库进行筛选的过程,并鉴定出它们之间不同的光谱特征。在这些峰被发现之后,它们所代表的化合物必须被鉴定。   多个软件包可处理第一个问题,包括商业化工具(如安捷伦的MassHunter Profinder,布鲁克的ProfileAnalysis,赛默飞世尔的SIEVE&trade 和Waters的Progenesis QI)以及免费工具(MZmine和XCMS Online)。而一些图库正在开发或已被开发出,以解决第二个问题。   斯克里普斯研究所(Scripps Research Institute)代谢组学和质谱中心的主任Gary Siuzdak谈到,他的METLIN数据库目前列出了240,000种化合物,其中11,600种有MS/MS光谱数据。而人类代谢组数据库(HMDB)有近42,000种化合物,其中1,164种有MS和MS/MS数据。此外还有其他选择,包括ChemSpider和MassBank。   当然,我们不可能收集每个代谢产物的实验数据,加州大学戴维斯分校的Oliver Fiehn认为。目前有太多的代谢产物,而并非全部都有纯化形式作为标准品。&ldquo 在某些时候,你必须预测MS/MS图谱会怎么样,&rdquo 他说。   Fiehn解决这个问题的工具是LipidBlast,它包含200,000个预测的脂类光谱。&ldquo 这很难[做到],&rdquo Fiehn承认,因为与肽段不同,代谢物有各种形状、形式和大小。有了LipidBlast,用户能够将它们未知的图谱与图库进行比较,看看是否有hit,就像DNA研究人员利用BLAST将基因序列与GenBank比较。赛默飞世尔也有个类似的工具,叫LipidSearch&trade 。   阿尔伯塔大学(University of Alberta)的化学教授Liang Li最近推出了一个类似的项目,MyCompoundID.org,以扩展HMDB的用途。MyCompoundID的建立是从HMDB中抽取8,000种代谢物,并计算它们的质量以及经历76种可能的生物转化(如磷酸化、甲基化或D-核糖基化)后的预测光谱特征。这些结果将帮助研究人员缩小未知光谱特征的可能身份。   SWATH采集   代谢组学研究可能是靶向,也可能是非靶向的。对于前者,研究人员设定他们的仪器(通常是三重四级杆质谱仪)来扫描特定的代谢物。而对于后者,仪器扫描特定质量范围内的一切,但只收集高丰度离子的MS/MS碎片数据。   这种所谓的数据依赖的流程是为方便起见而设计的。不过Fiehn认为,它不尽如人意,有时研究人员发现样品之间的特定离子变化明显,但没有被碎裂,因为它是低丰度的。   最近,苏黎世联邦理工学院的Ruedi Aebersold介绍了这个问题的解决方案1,它已被AB SCIEX商业化。这种被称为SWATH&trade MS的策略避开了数据依赖处理,而支持数据非依赖的处理,即所有进入质谱仪的离子都被碎裂和分析。它逐步分析用户定义的分离窗口,重复,并通过计算整理出产生的碎片,从而覆盖很宽的质量范围。   2013年,华盛顿大学的化学家Gary Patti利用安捷伦的6520 Q-TOF质谱仪和定制的R package,在代谢物上应用了一种类似的方法2。据AB SCIEX的高级营销经理Fadi Abdi介绍,AB SCIEX如今正将SWATH技术应用在蛋白质组学上。   用户在TripleTOF® 质谱仪上收集高速的光谱数据,并利用MS/MS光谱图库来解释它,这与蛋白质组学的方法相似。&ldquo 在数据依赖的分析中,如果您没有触发您的分子,则无法识别它,&rdquo Abdi谈道。&ldquo SWATH允许您收集样品中所有可检测种类的数据,带来更为全面的定量覆盖。&rdquo   通路分析   在研究人员鉴定出有趣的代谢物后,他们需要找出它们在生物系统中的作用。这时就需要通路分析的工具。通路分析让研究人员能够将代谢物定位到已知的生化通路上,为可能的遗传角色及其他代谢物提供线索。   Fiehn的实验室写了一个通路分析的工具,名为MetaMapp,而大部分商业化的代谢组学数据分析包也包含通路分析。赛默飞世尔的SIEVE数据分析包中就有这样的模块,它关联到KEGG通路数据库,而Bruker Daltonics也即将推出它的Compass PathwayScreener工具。   不过,Metabolon(北卡罗来纳州的一家代谢组学服务供应商)的首席科学家Mike Milburn认为,仅仅将代谢物定位到已知的通路商,还不足以看清整幅图像。Metabolon已经完成了约3000项代谢组学研究,每年开展600-700项,半数是科研客户。这些经验使得他们能够看到其他研究人员难以获得的代谢鸟瞰图。   对许多研究人员而言,开始代谢组学流程所需的技能、专长和费用使得外包给Metabolon这样的公司更为常见。但是那些愿意自己承担重任的研究人员也会发现,他们并不缺少计算上的工具。   无论采用哪种方式,Bruker Daltonics代谢组学的市场部经理Aiko Barsch说,&ldquo 我会鼓励新客户进入代谢组学,因为那儿包含了那么多的信息。有那么多新东西有待发现。&rdquo
  • 贝叶斯模型分析“鸟枪法”鉴定蛋白质组数据
    北京蛋白质组研究中心/蛋白质组学国家重点实验室朱云平研究员课题组张纪阳博士等通过建立贝叶斯模型分析“鸟枪法”鉴定蛋白质组数据,大幅提升蛋白质组质谱数据的利用率。相关论文发表在最新一期国际蛋白质组学权威杂志:《分子与细胞蛋白质组学》(Molecular & Cellular Proteomics, MCP)上面,同期杂志还发表了该所姜颖副研究员课题组、钱小红研究员课题组的两篇研究论文,创该刊单期同一单位发文数之最。   大规模、高通量的蛋白质组研究产生了海量的数据,其中包含了大量的噪声,而高可靠的数据是进一步生物学分析的基础,故目前的分析方法均采用了过严的标准,但在降低假阳性的同时也人为地造成了数据较高的假阴性及较低的利用率。因此,"在保证高可信度的前提下,最大限度地利用实验数据"一直是蛋白质组学界的追求。"鸟枪法"是目前蛋白质组鉴定中地位最重要、应用最广泛的技术策略。他们基于随机数据库策略、非参概率密度模型和贝叶斯公式,建立了串联质谱数据过滤的多元贝叶斯非参模型。通过标准蛋白和复杂样品的严格考核,表明该模型具有良好的灵敏性和普适性,可将质谱数据的利用率提高10~40%,创本领域最好水平。   原始出处:   Molecular & Cellular Proteomics 8:547-557, 2009.doi:10.1074/mcp.M700558-MCP200
  • 基因组大数据、生物质谱等将为生物医学带来新机遇
    p   云计算正在成为生物医学界的“宠儿”。——8月14日,北京贝瑞和康生物技术有限公司与阿里云共同向外界宣布双方达成合作,共同打造以海量的中国人群基因组数据为核心的数据云,实现对个人基因组数据的精准解读。 /p p   此次,双方共同合作的“神州基因组数据云项目”将首先聚焦于基因组大数据在云平台上的批量计算、分析、存储,进而在基因大数据领域共同进行前沿探索。 /p p   “打造基因组大数据,相当于建立了一个中国人基因版的《本草纲目》,将记载中国人群最核心的基因信息、生命信息,为中国人群重大疾病的预测、预防、诊断和治疗奠定基础。它的意义将不亚于《本草纲目》这部东方医药巨典。”贝瑞和康首席生物信息官于福利博士说。 /p p   中国是世界出生缺陷率最高发地区之一。每年1600万至2000万的出生人口中,有80万至120万出生缺陷儿。1996年到2010年,中国新生儿出生缺陷发生率增幅达70.9%,每一万名新生儿中就有149.9人患有先天性缺陷。 /p p   这一不利的局面将随着“神州基因组数据云”项目的实现得到改观。据了解,贝瑞和康自主构建的中国人群基因组大数据库目前已包含超过四十万份基因组数据。通过对该数据资源的深入挖掘,能够进一步揭示中国人群遗传突变分布,这将极大助益于提升中国人遗传疾病诊断的效率和精准程度。 /p p   贝瑞和康作为国际领先的基因测序技术临床转化服务商,致力于为临床医学疾病筛查和诊断提供“无创式”整体解决方案,是无创DNA产前检测和针对肿瘤循环DNA的肿瘤个体化医疗基因检测的行业领导者。 /p p   基因测序是一种新型基因检测技术,能够从血液或唾液中分析测定基因全序列,预测罹患多种罕见疾病的可能性,如地中海贫血病。 /p p   业内人士指出,随着下一代基因测序、生物质谱和医学成像等医学技术的迅猛发展,大数据浪潮为生物医学带来了前所未有的机遇,将根本性的改变生物医学基础研究和医疗实践,但同时生物医学领域数据爆炸式的增长也对海量数据的存储和分析提出新的挑战。云计算将大量计算资源、存储资源和软件资源虚拟化,形成规模庞大的共享资源池,可以有效解决生物医学对IT资源的弹性需求。 /p p   目前,新一代基因测序技术要得到比较准确的信息,一般认为30X 的基因测序深度是必须的,所以一个人的基因组检测大约需要产生 90Gb 的数据。如此大的数据,在一般的电脑或小型服务器上运行起来非常困难。 /p p   阿里云是全球领先的云计算服务平台。客户通过阿里云,用互联网的方式即可远程获取海量计算、存储资源和大数据处理能力。根据IDC调研报告,阿里云是国内最大的公共云计算服务提供商。 /p p   此次,阿里云与贝瑞和康达成合作,正是基于阿里云批量计算服务的强大能力,利用云计算的优势降低成本,提高数据分析的速度。 /p p   阿里云批量计算服务是一种适用于大规模并行批处理作业的分布式云服务,适用于生物基因分析、渲染、多媒体转码、科学计算、金融保险分析等多个行业领域。 /p p   阿里云高级专家林河山介绍说,“借助批量计算服务,用户可以调动海量计算资源快速完成基因大数据的处理。批量计算服务提供简单易用的API,允许用户通过有向无环图的方式灵活组建工作流,计算资源管理、作业调度和数据分发由系统自动完成。同时,批量计算服务支持自定义镜像,并允许应用通过网络文件系统(NFS)协议高效访问阿里云对象存储(OSS)上的数据,使得用户原有分析流程可以轻松上云。结合阿里云对象存储,批量计算服务能够帮助生物信息分析专家在云上快速构建大规模基因组学应用。” /p p   他进一步说,“此次与贝瑞和康的合作,阿里云将不断优化基于基因组学的云解决方案,以契合医学时代发展的需求。” /p p   业内专家预计,双方合作完成的基因组数据云将对中国临床医学的精准诊断,预防和治疗的发展产生深远的推动力。 /p p   无疑,借助阿里云的批量计算服务,用户将更便捷、更简单、更迅速完成基因大数据计算,大大降低客户的成本。同样,因为云计算的赋能,为研究人员开展大规模的基因组学研究大开“方便之门”,将催生一批影响人类健康相关的变革性成果。 /p
  • 岛津最新推出《脂质组学解决方案》
    脂质是生物有机体重要的组成成分和能量来源,与生物膜结构和功能密切相关,在调控信号通路、炎症反应等过程起着重要作用。脂质组学是代谢组学的一个重要分支,旨在研究受外部刺激或扰动后内源性脂质的整体代谢及其变化规律。近年来,脂质组学受到研究者越来越多的关注,目前国内外使用脂质组学对众多疾病如心血管疾病、癌症、糖尿病和肥胖症进行研究并取得了不少突破。国家自然科学基金“十三五”发展规划,“十三五”第一批重大项目指南均涉及脂代谢相关内容,因此脂质组学是当今分析化学和生命科学的一个前沿的交叉学科,有广阔的发展前景。组学研究是生命科学、分析化学、化学计量学等学科交叉的前沿领域,高度依赖分析仪器特别是质谱及其前端系统进行数据采集。而脂质种类众多,在体内的分布广泛,且不同脂质的浓度范围相差极大,这对分析仪器及数据分析手段均提出了巨大的考验。 岛津公司作为全球著名的分析仪器综合生产厂商,不但是世界上顶尖的液相、气相等分离仪器的生产厂商,也是质谱领域的领先者。质谱仪器与分离技术联用,加上专业的数据分析和处理软件(如Travers MS软件和Garuda生物分析平台),可以满足组学研究的各种需求。岛津公司迎合客户需求和行业发展趋势,推出了《脂质组学解决方案》。 岛津有非常广泛的前端分离或前处理仪器产品线,为组学研究提供全面的分离技术手段。对于常规分离需求,有普通气相色谱、液相色谱、快速液相色谱和超高效液相色谱等多种色谱产品;对于成分复杂或结构类似的样品,可以使用多款二维LC或二维GC系统以提高分离度;对于化合物极性分布范围广的样品,可以选择超临界流体色谱(SFC)或超临界流体萃取-超临界流体色谱(SFE-SFC)联用的Nexera-UC分析系统;对于一些痕量化合物或本身响应弱的目标物,可以采用Micro-LC或Nano-LC以大幅提高质谱响应信号,从而提高方法的灵敏度。另外,岛津还提供如CLAM-2000用于液体生物样品的全自动样品前处理-液质质联用分析,彻底解放实验人员的双手和时间,极大的提高方法的重现性。此外,岛津的Nexera-MX平行液相等可以显著提高分析通量,ATLAS-USIS可以提供自动化的液液萃取,这些仪器都能进一步提高样品前处理和分析的自动化和通量,为组学研究提供便利并提高数据质量。岛津拥有深厚的质谱研发基础和实力。岛津从上世纪70年代研发扇形质谱,成功生产了世界上第一台商品化扇形磁场型质谱GCMS LKB9000;80年代研发了MALDI-TOF和ICP-MS,2002年岛津科学家田中耕一先生更因为MALDI离子源的研发获得了诺贝尔物理学奖。目前岛津质谱的产品线齐全,有机质谱包括单四极杆质谱、三重四极杆质谱、高分辨质谱LCMS-IT-TOF和Q-TOF;无机质谱有ICP-MS;生命科学领域还有MALDI-TOF、质谱显微镜等。这些质谱仪器与分离技术联用,满足组学研究的各种需求。关于岛津 岛津企业管理(中国)有限公司是(株)岛津制作所于1999年100%出资,在中国设立的现地法人公司,在中国全境拥有13个分公司,事业规模不断扩大。其下设有北京、上海、广州、沈阳、成都分析中心,并拥有覆盖全国30个省的销售代理商网络以及60多个技术服务站,已构筑起为广大用户提供良好服务的完整体系。本公司以“为了人类和地球的健康”为经营理念,始终致力于为用户提供更加先进的产品和更加满意的服务,为中国社会的进步贡献力量。
  • 共话数据密集型环境下组学研究的新发展——2021年代谢组学与暴露组学高端论坛成功召开
    仪器信息网讯 2021年6月11日,由中国科学院大连化学物理研究所主办的“代谢组学与暴露组学高端论坛”在美丽的滨城大连成功举办。会议主题为代谢组学和暴露组学新技术及其在健康研究中的应用,会议为期2.5天,共吸引参会嘉宾超过300位。仪器信息网作为本届会议的支持媒体全程报道本次盛会。会议现场会议开幕式上,中国科学院大连化学物理研究所李先锋研究员和大会主席中国科学院大连化学物理研究所许国旺研究员分别致辞。中国科学院大连化学物理研究所副所长 李先锋研究员致辞中国科学院大连化学物理研究所许国旺研究员致辞在致辞中,许国旺研究员对各位专家学者的到来表示欢迎,向大家介绍了本次会议的举办背景。他介绍到,代谢组学是生命体中内源性代谢物的总称,而暴露组是指一个人从出生至生命结束全过程各种暴露的总和。人类的健康或疾病状态是由环境和遗传因素共同作用决定的,环境中的有毒有害物质的接触暴露直接影响人类的身心健康和生活质量。可以说代谢组学主要研究内源性代谢物,而内源性代谢物同时也受遗传、环境的影响,因此暴露组学可以促进以组学为手段的暴露/疾病标志物的研究。基于此,本次会议围绕代谢组学与暴露组学研究过程中的关键科学问题,邀请到分析化学、生物、医学以及生物信息学等多领域的专家学者分享最新的研究进展,共同探讨代谢组学与暴露组学研究的新技术、新应用的发展。报告题目:数字健康报告人:中国科学院大连化学物理研究所 杨胜利院士2017年美国FDA明确提出数字健康概念,2018年《自然杂志》专门在创刊号里阐述数字化医学和数字健康。数字化医学即用数字工具提升医疗实践,以高度精准和集成的个性化为目标。数字健康指利用人体传感器和数字模型追踪复杂的生命系统,并以此为基础,将大数据、云计算和人工智能整合到数字医学范围里。杨院士在报告中还提到,生物医学大数据主要由生命组学、医学大数据、移动传感器三部分组成。此外,生物医学信息还包括环境信息和交通运输信息,高度异质性的大数据库。报告题目:基于离子液体的蛋白质组学分析进展报告人:中国科学院大连化学物理研究所 张玉奎院士蛋白质组学的深入研究有助于加深对蛋白质功能的认识,但是蛋白质在非水相中的溶解性及稳定性是蛋白质化学研究的难题之一。离子液体以其独特的可修饰、调变的阴阳离子结构以及优良的物理化学性质被应用于蛋白质的溶解及稳定研究中。报告中,张玉奎还表示,随着完成蛋白质组调查的进度放缓,蛋白质组学领域已从蛋白质的鉴定和分类转移到探索其生物学功能和疾病相关性的研究。随后,张玉奎详细介绍了其团队基于离子液体的单一蛋白质分析、蛋白质组分析以及离子液体在透析病研究中的应用进展。报告题目:肠道菌群与代谢调节报告人:上海交通大学附属瑞金医院 王卫庆教授肠道菌群参与营养感知、吸收,调节宿主代谢免疫等,维持宿主能力代谢稳态。目前的研究表明,肠道菌群通过其产生的代谢物调节宿主摄食行为、能量吸收、消耗等各个过程。报告介绍到目前的一些干预手段,包括二甲双胍、阿卡波糖等药物以及代谢手术均可改变肠道菌群结构和相关代谢物组分,起到代谢改善作用。随着对微生物功能和生理作用越来越深入的认识,靶向肠道菌群的干预手段将为肥胖、代谢性疾病治疗提供新的思路。报告题目:成组毒理学与暴露组学报告人:中国科学院生态环境研究中心 江桂斌院士成组毒理学是以生物效应为导向,自上而下筛选和鉴别真实环境中具有环境和健康风险的化学物质。其整合了毒理学、分子生物学、分析化学和机器学习等领域的研究思路和方法。而暴露组学的目标是找到相关健康结局的生物标志物,并得到其与暴露因素之间的相关性,进而确定暴露源。报告介绍了成组毒理学与暴露组学相结合的研究最新进展,发现成组毒理学对潜在健康风险的发掘可能为暴露组学病例组中其他健康结局的早期标志物提供方向。报告题目:多靶标解析助力精准诊疗:从“硅基运算”到“分子运算”报告人:中国科学院肿瘤与基础医学研究所、湖南大学、上海交通大学分子医学研究院 谭蔚泓院士生命科学由点及面,有海量的数据,同时人类的疾病复杂性、多样性,要实现高效疾病诊疗,必须基于海量数据和多参数的表征。谭蔚泓院士提出,要利用高通量测量技术,结合多个识别疾病标志物的分子探针,对病人样本进行疾病标志物分子特征的甄别和定量测定。此外还需利用人工智能和大数据科学进行解析,从而为疾病诊断提供精准图谱,判断各种亚型特征。报告以核酸适体为例,其被称为“科学家的抗体”,由15-60个碱基组成,能识别靶标的单链DNA/RNA、具有高亲和力,高特异性、靶标范围广等特点,是精准药物治疗和临床诊断的新工具。基于此,谭院士团队开展了主要使用以活细胞为筛选靶标的核酸适体细胞筛选新方法(Cell-SELEX),这种方法可在标志物未知条件下为靶细胞的分子识别提供全新的化学途径。报告题目:从小分子看健康:代谢组学和暴露组学为人民健康保驾护航报告人:中国科学院大连化学物理研究所许国旺研究员代谢组学是测量所有分子量小于1500的内源性代谢物,通过数据采集和数据分析进行生物解释。而2005年暴露组学的概念被首次提出,其关注个体一生中所有暴露的测量及这些暴露如何与疾病建立联系。当前研究多采用高分辨质谱技术与分析组织或体液中有害物质(暴露组)的含量及代谢组的改变,揭示这些物质与疾病发生发展的关系。许国旺介绍到,代谢组学和暴露组学中涉及的内源性和外源性化合物至少50万种,其化学性质各异,浓度差别也巨大。在体外,外源性化合物比内源性代谢物的浓度要低1-2个数量级,因此,暴露组学研究的关键是在更大的浓度范围内实现“全”覆盖检测。不仅如此,未知化学物质结构鉴定、分析仪器和方法的灵敏度、重复性等都对研究提出了挑战。基于此,报告进一步介绍了许国旺团队开发了从单细胞、动物到大规模人群样品中小分子研究的一系列新方法。其团队先后建立了基于多维色谱-质谱联用的新方法,实现代谢组和暴露组的高覆盖检出等。报告还介绍了其团队将建立的方法用于肝癌、糖尿病、高尿酸血症等重大慢病研究,试图揭示与疾病相关的风险因子、预警标志物几代谢水平上的分子机制的相关研究进展。现场情况墙报展示报告题目:基于微纳探针的单细胞测量与分析策略报告人:南京大学 徐静娟教授报告题目:质谱成像技术在环境毒理学研究领域的应用进展报告人:香港浸会大学 蔡宗苇教授报告题目:A Pharmaco-genomic Landscape in Human Liver Cancers-From cell lines to patients报告人:中国科学院上海生命科学研究院生物信息中心 李亦学研究员报告题目:代谢组学研究中痕量代谢物发现及精细结构鉴定新技术报告人:SCIEX中国 郭立海博士报告题目:Lipidome in non-alcoholic fatty liver disease:impacts of environmental exposures,pathways,and biomarkers报告人:图尔库大学 Matej Oresic教授报告题目:农药污染与生物分析报告人:江南大学 吴晓玲教授报告题目:血中化学残留物与慢病的关联研究报告人:中国科学院大连化学物理研究所 刘心昱副研究员报告题目:人体内暴露组学中的分析方法新挑战报告人:中国科学院生态环境研究中心 刘倩研究员大会第二天,13位来自分析化学以及生物和医学领域的专家带来代谢组学与暴露组学相关研究的精彩报告分享。报告题目:单细胞代谢物的高通量质谱分析报告人:清华大学 张新荣教授报告题目:纳米材料辅助亚细胞代谢组学研究报告人:中国科学院大连化学物理研究所 石先哲副研究员报告题目:Analysis of chromatography-mass spectrometry data based on achine learning 报告人:中南大学 卢红梅教授报告题目:基于代谢网络分析的标志物确定算法及应用报告人:大连理工大学 林晓惠教授报告题目:从30天到30分钟:代谢组学数据的实时、融合、智能分析研究与应用报告人:大连大学 曾仲大教授报告题目:多维度有机质谱流式细胞分析——单细胞中蛋白质和代谢物的同时分析报告人:北京大学 白玉副教授报告题目:质谱成像空间代谢组学方法及其应用研究进展报告人:中国医学科学院北京协和医学院药物研究所 贺玖明研究员报告题目:基于离子淌度质谱的多维代谢组学技术报告人:中国科学院生物与化学交叉研究中心 朱正江研究员报告题目:基于高分辨质谱的代谢组规模化定性新技术研究报告人:中国科学院大连化学物理研究所 路鑫研究员报告题目:情绪、代谢,与肿瘤——当情绪遇到了身体报告人:大连医科大学 刘强教授报告题目:从肝炎到肝癌的暴露组学研究与对肿瘤精准治疗的思考报告人:重庆医科大学 廖勇教授报告题目:食品污染物暴露组解析和总膳食研究 报告人:国家食品安全风险评估中心 吴永宁研究员报告题目:环境小分子调控表观遗传与毒理效应报告人:中国科学院生态环境研究中心 汪海林研究员优秀墙报获得者合影本次会议还得到了上海爱博才思分析仪器贸易有限公司(SCIEX公司)、艾杰尔飞诺美、赛默飞世尔科技(中国)有限公司、大连达硕信息技术有限公司、上海析维医疗科技有限公司、沈阳汇佰生物科技有限公司、大连绿竹科技有限公司等企业的倾情支持。与会代表合影会务组合影
  • 上海生科院发布首个全球人群基因组多样性和祖源信息数据库
    style type=" text/css" .TRS_Editor P{margin-top:0px margin-bottom:12px line-height:1.8 font-family:宋体 font-size:10.5pt }.TRS_Editor DIV{margin-top:0px margin-bottom:12px line-height:1.8 font-family:宋体 font-size:10.5pt }.TRS_Editor TD{margin-top:0px margin-bottom:12px line-height:1.8 font-family:宋体 font-size:10.5pt }.TRS_Editor TH{margin-top:0px margin-bottom:12px line-height:1.8 font-family:宋体 font-size:10.5pt }.TRS_Editor SPAN{margin-top:0px margin-bottom:12px line-height:1.8 font-family:宋体 font-size:10.5pt }.TRS_Editor FONT{margin-top:0px margin-bottom:12px line-height:1.8 font-family:宋体 font-size:10.5pt }.TRS_Editor UL{margin-top:0px margin-bottom:12px line-height:1.8 font-family:宋体 font-size:10.5pt }.TRS_Editor LI{margin-top:0px margin-bottom:12px line-height:1.8 font-family:宋体 font-size:10.5pt }.TRS_Editor A{margin-top:0px margin-bottom:12px line-height:1.8 font-family:宋体 font-size:10.5pt } /style p   11月3日,中国科学院上海生命科学研究院(人口健康领域)计算生物学研究所徐书华课题组的研究成果,以 em PGG.Population: a database for understanding genomic diversity and genetic ancestry of human populations /em 为题,在线发表在《核酸研究》上。该研究分析了涵盖全球范围107个国家的356个人类族群的基因组多样性和祖源信息,并发布了开放获取的专门数据库—— a href=" https://www.pggpopulation.org/" target=" _blank" PGG.Population /a (群体基因组学· 族群)。PGG.Population是迄今唯一在基因组水平专门解析人类族群遗传关系和祖源信息的公开数据库,也是目前收集族群数量最大的群体基因组数据库,为研究人员、临床医生及学生和公众理解不同人群的遗传背景提供查询和分析平台。 /p p   人类族群多样性的形成是迁移、隔离、分化、再接触和交流的复杂演化过程。同时,长期对特定环境的适应或能影响特定的性状以及基因组局部区域的多样性变化。相对来讲,人群的基因组多样性在很大程度上决定了其表型多样性——这也是族群特异性的表型可以世代传承的原因。因此,要真正理解人类不同族群在肤色、体质以及疾病等性状上的差异,最终需要回到基因组、追溯人群的演化历程。众多大型国际计划(比如人类单倍体型图计划和千人基因组计划)以及我国此前完成的各类全基因组关联研究(GWAS)集中关注常见主体人群,而对各地少数族群(大多是土著人群)的研究较为缺乏。部分研究人员逐渐意识到,在一个人群研究中的困惑,往往在另一个人群的研究中找到答案,例如科研人员对比青藏高原人群的基因组,了解到为何平原人群无法像藏族人那样舒适地生活在高原上。专家认为,这就是多样性的魅力,也是进化留给我们的财富。 /p p   PGG.Population正是在这样的大背景下建立起来。研究人员通过测序或收集众多人类群体基因组研究数据,对每个族群的基因组重新整合与分析(包括人群的地理语言归属等基本信息、Y染色体与线粒体谱系、群体间亲缘关系、群体遗传结构、遗传混合以及自然选择印记等),并建立数据库,以开放获取的方式向公众展示每个族群的基因组多样性与祖源信息。目前,该数据库包括7122个个体的基因组数据,覆盖107个国家的356个族群,每个族群都有自己的“故事”。该数据库以理解每个人群的基因组多样性与遗传背景为主,对其他研究领域也具有重要的学术意义和应用价值,人类群体基因组数据库建设任重道远。全世界有2000多个族群,而该数据库目前只包括世界族群的1/6强。课题组正在收集或产生更多的来自不同族群基因组数据,以覆盖更多的族群,以期用于全面探索亚洲人群尤其是东亚、东南亚族群的演化历史和自然选择等遗传和演化问题。同时,数据库可供遗传学、语言学、体质人类学、医学等行业参考和使用,应用于生物医学等多个领域的研究。此外,科研人员希望公众通过访问和查询该数据库,对人类基因组多样性和人群祖源等方面的知识和信息有更广泛和深入的理解。 /p p   研究工作得到了中科院战略性先导科技专项(B类)、国家自然科学基金委重大研究计划及国家杰出青年科学基金、中科院青年促进会、上海市科委等的资助,并得到国家遗传与发育协同创新中心支持。 /p p br/ /p p style=" text-align:center " img alt=" " oldsrc=" W020171110380069934902.jpg" src=" http://img1.17img.cn/17img/images/201711/uepic/db472810-1287-4118-a73b-a13ece4720ca.jpg" style=" border-left-width: 0px border-right-width: 0px border-bottom-width: 0px border-top-width: 0px" uploadpic=" W020171110380069934902.jpg" / /p p style=" text-align: center " PGG.Population数据库网站主界面 /p
  • 税光厚:为什么要做脂质组学研究?
    “精准分析”我们的成功故事系列写在前面的话“精准分析,量化释能”——我们的成功故事系列栏目,是SCIEX帮助科学家们分享有意义的科学发现和研究成果的科普平台。我们期待让更多的人感受到科学和“质谱”的力量,“让质谱改变每个人的生活”始终是SCIEX最美好的愿景。SCIEX非常荣幸能够参与到这一系列有趣的科学发现过程中,客户成功就是SCIEX的成功,所以,您读到的是 “我们(SCIEX和客户)的成功故事”。本期科学家税光厚,我们一起谈谈这些年迅猛发展的脂质组学(Lipidomics)。税光厚 研究员个人简介中科院遗传发育所分子发育生物学国家重点实验室研究员,博导,入选中科院"百人计划”;现任中科院遗传发育所所级公共技术中心主任; European J Lipid Sci Technol杂志编委;中国细胞生物学学会细胞代谢分会副会长,中国生物物理协会代谢生物学分会理事,中国病理生理学会内分泌与代谢专业委员会理事,中国抗癌协会肿瘤代谢专业委员会委员 作为大会主席已成功举办四届Lipidall脂质代谢国际会议。长期从事前沿组学技术开发、功能性分子结构鉴定研发、代谢机制相关的研究工作。近年来在Science, Nature, Nature Med., Immunity, EMBO Mol Med, PNAS, Nature Comm,J Clin Invest, J Cell Biol, Redox Biol, Neurobiol Aging, Biochim Biophys Acta, J Biol. Chem, J Lipid Res等期刊发表120余篇关于代谢的论文,发表SCI论文总影响因子约800,被引用6600余次,H-index 45;目前的工作方向包括开发各类生物样品的高通量、超高覆盖率、超高灵敏度脂质组学、前沿代谢组学及代谢流技术,研究代谢调控机制、代谢异常和重大疾病的内在联系等。 什么是脂质组学,脂质组学和代谢组学有什么区别?这个问题的答案来自税光厚老师在科学网blog:gshui的个人博客的置顶博文《脂质组学 vs 代谢组学》。推荐大家关注税老师的blog,通过科学家的视角了解更多关于脂质组学、代谢组学研究的新发现新进展。我们知道,代谢是生物体内各种化学反应的总称,是动植物最为重要的生命活动之一;个体通过各种代谢调节来适应内外环境的变化,是生命活动的基本特征之一。 “代谢组”是生物样本中所有代谢物的集合。代谢物种类繁多(可能超过百万种)、结构多样, 在生物体内不同组织及体液中分布及浓度差异大。主要种类包括:脂类、氨基酸、有机酸、碳水化合物、核酸等。“代谢组学”是系统研究代谢组的一门独立学科,它提供了所有细胞过程的独特生化指纹,可用于鉴定代谢生物标志物,从而阐明潜在的疾病机制,或预测对环境变化或外部干预的反应。“脂质组学” 是系统研究脂质组的一门独立学科, 作为大规模定性和定量研究脂类化合物并了解它们在不同生理、病理条件下的功能和变化的方法学, 能准确全面地提供生物样品在不同生理条件下的全脂信息谱图。从以上定义可以看出,“脂质组学”实际上是“代谢组学”的一个分支。但是,由于脂类代谢(如血浆中约70%的代谢物是脂类) 是动植物的代谢中第一大类,是动植物代谢研究中最为关注的热点,参与能量运输、细胞间的信息通讯与网络调控等生长发育过程中的必需事件。作为细胞膜和脂滴的主要组成成分,各种结构的脂类在广泛的生物学过程,如信号传导、运输作用以及具有不同生化性质的生物大分子分选过程中,扮演着重要角色。 随着近年来脂质组学迅猛发展, 科学家们就逐渐将脂质组的研究即“脂质组学”从“代谢组学”中单独划分出来,现在我们所指的“代谢组学”一般就不再包括系统的脂质组分析了。通过脂质组学研究,阐释脂质代谢相关疾病的发病机理“脂质是细胞膜和脂滴的主要组成成分,在广泛的生物学过程,如信号传导、运输作用以及生物大分子分选过程中扮演着重要角色。对脂质的全面分析, 即脂质组学是了解细胞变化过程中脂质细微的动态变化以及致病机理的先决条件。脂质代谢紊乱和生殖发育缺陷及多种重大疾病如糖尿病、心血管疾病、脂肪肝、肥胖、癌症、老年痴呆等重大疾病密切相关。脂质组成分的变化可直接反映生物体的生理和病理状态,分析组织器官生长发育过程中脂质谱纹的变化及解析相关代谢调控网络机制具有重要的生物学意义和临床价值。税光厚老师领衔首创开发了基于MATLAB脂质组学领域的非靶向数据分析方法与软件(FASEB J, 2006 J Lipid Res, 2007),带动和促进了非靶向脂质组学的发展。 非靶向脂质组学对于挖掘究生物样品的质谱分析中低丰度离子的显著变化、尤其是发现未知代谢物中具有不可或缺的作用,但在定性准确性及效率与定量方面仍面对巨大挑战,并不适用于临床大规模应用或系统生物学大样本分析。税光厚老师团队运用SCIEX QTRAP质谱开发了一系列适用于生物样本的多种物种的高覆盖脂质组的快速靶向定量分析模式(EMBO Mol Med, 2012 PNAS, 2013 J lipid Res, 2014 Neurobiol Aging, 2014 Redox Biol, 2017, Anal Chim Acta,2018),可对全面的脂质库进行准确、可靠的定量分析, 并成功应用于一系列生物医学的基础和临床的重要研究中(PNAS, 2009, 2012, 2018, 2019;JCI, 2011 Nature, 2014 Nature Medicine, 2012 Molecular Cell, 2012 2014 Immunity, 2013 Cell Res, 2016 Development Cell, 2017 Science, 2018 EMBO J, 2018 Nature Comm., 2018);近10年来已经发表100余篇SCI论文,总影响因子超过800。基于LC-MS/MS建立定量脂质组分析方法的一般工作流程(Lam SM, Tian H, Shui G*. BBA-Mol Cell Biol L 2017脂质组学专刊封面文章)掀起脂质的“神秘面纱”近几年,越来越多研究者认识到除了蛋白质,脂质分子在生命体中也发挥重要作用。脂质,是一类自然界存在的疏水或两性的有机物小分子。由“脂质代谢途径研究计划”(Lipid Metabolites and Pathways Strategy,LIPID MAPS)资助的国际脂质分类与命名委员会提出的脂质分类系统,脂质大体分为八大类:常见主要大类脂质的代表结构式(Lam SM, Shui G*. J Genet Genomics 2013. 脂质代谢专刊封面文章)在剔除双键位置异构体,立体结构异构体和sn-构型异构体情况下,根据常见脂质分子组成模块预测真核细胞内部至少有180,000种脂质类化合物。脂质结构的多样性赋予了其多种重要的物理和生物功能:作为细胞膜的重要组成部分,不仅维持细胞膜结构稳定,并且参与调节包括物质运输、能量转换、信息识别与传递、细胞发育和分化以及细胞增殖与凋亡在内的诸多生命活动过程。美国等发达国家都在国家层面部署了规模性项目脂质组学计划,分别已建立联合型的脂质组学研究机构,其中影响力最大的是上文提到的美国的LIPID MAPS项目,获得美国NIH的多期支持的研究项目,取得了非常有影响的成果。我国尚未开始开展类似的注重于联合型的规模性的研究,但近年来众多科研院校都意识到脂质组学的重要性,纷纷组建了各具特色的脂质组学平台,促进了我国脂质组学的发展。脂质组学的一般研究流程脂质组学分析流程主要包括生物样本中脂质的提取、分离分析以及相应的数据分析等。脂质组分析流程(Lam SM, Shui G*. J Genet Genomics 2013. 脂质代谢专刊封面文章) 质谱分析技术助力脂质组学研究应对挑战,奋勇向前探索未知质谱技术的进步极大地推动了脂质组学的快速发展,朝着准确定性、定量的最终目标迈进,这是脂质组学作为一门新兴组学技术分支不断增长和扩展的关键决定因素。脂质组学出现及发展推动了脂质分析平台的研发,特别是在质谱技术进步,已经使众多脂质分子分析成为了可能,但在未来脂质组发展依然有如下挑战需要面对:◆ 如何在缩短分析时间的同时,最大限度地提高脂质覆盖率和定量准确度;◆ 如何实现复杂脂质同分异构体(包括复杂脂质脂肪酸链的双键精确位置)的准确定性与定量; ◆ 如何通过以下途径,从脂质组生成的大数据中获得有生物学意义的模式:以代谢通路为导向的分析方法涵盖连接脂质和非脂质代谢物关键代谢分支定制的生物信息学方法,实现直接和快速代谢通路波动数据可视化等。脂质组定量准确度的转变(Lam SM, Tian H, Shui G*. BBA-Mol Cell Biol L 2017脂质组学专刊封面文章)税光厚课题组火热招聘中——研究人员和博士后如果您对于生命科学有兴趣,热爱科学研究,充满责任感使命感;有代谢组学、脂质组学、液质、气质等方面的研究经验;拥有良好的中英文科学论文写作能力;又刚刚好拥有相关专业博士学位(基本条件)。需要您协助课题组长申请并参与课题研究,并且能够独立申请并开展课题研究任务(基本职责)。
  • BIOTREE 第一届2016组学数据分析美图秀
    p    /p p style=" text-align: center " img title=" 大.jpg" src=" http://img1.17img.cn/17img/images/201612/insimg/6cc189f5-ba74-4d01-b40a-5e5b7b07d18d.jpg" / /p p   无论是基因组学、转录组学、蛋白质组学、代谢组学或是脂质组学,组学的数据收集是科研人员面临的一个问题,但肯定不是最大问题。大多数人都同意,更大的问题是弄清楚组学数据集到底意味着什么。一年辛苦耕耘,在此2016年末之际,尽管组学数据分析仍存在巨大的瓶颈,但正所谓“高手在民间”,BIOTREE特此举办“ span style=" color: rgb(255, 0, 0) " strong 第一届2016组学数据分析美图秀 /strong /span ”的活动,望各位生物达人热烈参与,相互切磋,共同进步! /p p   What& #39 s Your New图?不要默默发光,快快加入秀出来! /p p    strong 活动对象: /strong 组学科研人员(基因组学、转录组学、蛋白质组学、代谢组学、脂质组学等)。限80名,注:为保证活动公平性,所有组学服务商业机构不得参加! /p p    strong 作品要求: /strong 不管您是用什么软件做出的组学数据分析图形,只要您觉得美,都可以提供给我们进行参赛,每人仅限提供1张参赛作品。作品范围不限,例如PCA / OPLS-DA / O2PLS得分图、载荷图、Permutation检验图,火山图,层次聚类热力图,GO分析图,代谢通路图,网络图等等。 /p p    strong 活动报名方法: /strong /p p   1、邮箱报名: a href=" mailto:marketing@biotree.cn;zhangyanfang@biotree.cn" marketing@biotree.cn span style=" color: rgb(0, 0, 0) " ; /span zhangyanfang@biotree.cn /a /p p   2、BIOTREE微信公众号报名(请参考上图) /p p   3、电话报名:021-61531195 /p p    strong 报名提交内容: /strong /p p   A、报名者信息(姓名+单位+研究方向+联系电话+联系邮箱+邮寄地址) /p p   B、参赛作品简短介绍(研究意义,意境等,50字以内) /p p   C、1张参赛作品(矢量图或分辨率大于600dpi的图),主办方将压缩图片并加上水印(图作者和作品号)上传至投票平台 /p p   D、请诚信参与本次活动,使用原创作品,禁止盗用他人图片 /p p   E、后期将给参赛者提供作品集 /p p    strong 活动时间: /strong /p p   作品征集:2016年12月5日-12月31日 /p p   作品评比(投票):2017年1月1日至1月16日(每人每天可投一票) /p p   投票截止日期:2017年1月16日24:00 /p p   名单公布& amp 礼品发送:2017年1月17日-1月20日 /p p    strong 四大奖项: /strong /p p   BIOTREE将根据实际投票结果,评选出2016年度最佳New图,并赠予以下奖项 /p p    span style=" color: rgb(255, 0, 0) " strong 一等奖: /strong /span iPhone 7(1名) /p p    span style=" color: rgb(255, 0, 0) " strong 二等奖: /strong /span iPad Mini 4(1名) /p p    strong span style=" color: rgb(255, 0, 0) " 三等奖 /span /strong span style=" color: rgb(255, 0, 0) " span style=" color: rgb(0, 0, 0) " ( /span /span Top 10):BIOTREE 2000元以内的培训班(2017年培训班)任选一个,可转赠(10名) /p p    strong span style=" color: rgb(255, 0, 0) " 参与奖 /span /strong span style=" color: rgb(255, 0, 0) " span style=" color: rgb(0, 0, 0) " ( /span /span Top 20):BIOTREE定制U型枕 (前20名报名参赛者) /p p   获奖名单将于2017年1月17日于BIOTREE微信公众号公布;请获该奖项人员主动联系告知地址,方可安排快递奖品,有效期30天; strong 联系热线 /strong :021-61531195 /p p   媒体赞助: /p p style=" text-align: center " img title=" p1.jpg" src=" http://img1.17img.cn/17img/images/201612/insimg/329ebf59-4caf-45f3-a8be-da33d090ecce.jpg" / /p p style=" text-align: center " img title=" p2.jpg" src=" http://img1.17img.cn/17img/images/201612/insimg/89ba19e6-bc8f-431b-ba11-0dc2925d114a.jpg" / /p p br/ /p
  • Illumina收购法国基因组数据压缩公司Enancio
    p    strong 仪器信息网讯 /strong Illumina周二表示已收购了一家法国创业公司Enancio,该公司生产基因组特定的压缩软件。该交易的条款没有披露。 /p p   Enancio是一家位于法国Cesson-Sé vigné 的商业前公司,已开发出无损压缩技术,该技术可将Illumina音序器的输出从50 GB压缩到10 GB,从而以类似的比例降低数据存储成本。 Illumina表示,该系统通过将读段映射到参考基因组来压缩DNA序列,使用紧凑的二进制格式将读段编码为位置和差异列表。 /p p   Illumina表示,其测序系统在全球范围内产生的数据量在2019年增长了50%以上,达到150 petapases。据该公司称,这相当于500年高清视频的数据量。 /p p   Illumina计划将Enancio技术集成到Dragen中,该平台使用现场可编程门阵列技术与专有软件算法相结合,以减少数据占用空间并实现更快的速度。 Illumina在2018年收购Edico Genome时将Dragen纳入其投资组合。 /p p   测序巨头还将把Enancio技术集成到其云存储系统中。 /p p   Enancio首席执行官Jennifer Del Giudice表示:“这场信息海啸的影响既深远又复杂,但数据中蕴藏着巨大的科学进步潜力,而我们将与Dragen一起,使用户能够更便捷地存储和传输数据。”在一份声明中说。 Del Guidice和其他Enancio员工都加入了Illumina。 /p p   “ Illumina现在在Dragen中拥有业界最先进的和差异化的二次分析工具,它具有Illumina Analytics Platform(IAP)和BlueBee技术可扩展性的云数据交换功能,并共同促进了经济高效,快速且简单的工作流程,最终方便我们的客户”,Illumina产品开发高级副总裁Susan Tousi补充说。 /p p   Illumina在收购荷兰生物信息学公司BlueBee以增强其基于云的基因组分析功能之后一个月,就收购了Enancio。 BlueBee提供了一个平台来简化对数据的访问,并帮助降低存储,共享和管理来自定序器的大量基因组数据的成本。 /p
  • 不同加工方式对榛子油脂质组成的影响:一项脂质组学分析
    榛子是世界四大干果之一。榛子油是一种营养丰富、保健作用广泛、具有独特坚果风味的高级食用油。榛子油中的脂肪酸主要为油酸、亚油酸、棕榈酸和硬脂酸,不饱和脂肪酸的含量高达90%。其他生物活性成分和抗氧化活性物质也赋予了它抗氧化,抗衰老,提高免疫力,预防动脉粥样硬化,及促进胆固醇降解和代谢的作用。 脂质在生命活动中承担着关键的作用,具有多种重要的生理功能。脂质可分为八大类:脂肪酰(FAs)、甘油脂(GLs)、甘油磷脂(GPs)、鞘脂(SPs)、固醇脂(STs)、孕烯醇酮脂(PRs)、糖脂(SLs)和聚酮(PKs)。脂质组学(lipidomics)作为代谢组学的一个分支,利用现代质谱技术分析脂质的内在化学性质。高分辨率脂质组学平台的出现,包括鸟枪法脂质组学、液相色谱质谱联用(LC-MS)、基质辅助激光解吸电离串联飞行时间质谱仪(MALDI-TOF-MS)和成像脂质组学等都成为了分析脂质的工具。脂质组学的研究涉及脂质的定性定量分析、结构和功能特性分析以及在生理和病理阶段的动态变化分析等等。其在食品科学领域的研究主要围绕在食品营养和食品安全控制方面。高分辨率质谱已广泛用于研究食品成分、产地溯源、质量鉴定和真伪鉴别。 为探究加工方式对榛子油脂质组成的影响,鉴定不同榛子油样品的特征脂质。在本实验中,沈阳农业大学的孙嘉阳、吕春茂教授等将脂质组学应用于榛子油的研究。使用冷压法、超声波辅助有机溶剂浸提法和水酶法提取分别得到不同的榛子油样品(CPO、UHO和EAO)。利用超高效液相色谱串联四级杆飞行时间质谱(UPLC-QTOF-MS)和多元统计分析方法对榛子油中的脂质进行全面表征与分析。探讨了不同加工方法对榛子油脂质组成和油脂品质的影响。这些数据为榛子油的加工利用提供了新的见解,并将有助于榛子产品的开发与应用。榛子油脂质的定性利用UPLC-QTOF-MS在正负离子模式下对3种不同的榛子油样品进行扫描,利用二级质谱数据库进行光谱匹配,实现脂质的定性。在榛子油中共鉴定出98种脂质,包括负离子模式下的63种脂质和正离子模式下的35种脂质(图1A)。这些脂质分为3个大类(GL、GP和SP)和10个亚类。GLs包含2个亚类(二酰甘油(DG)和三酰甘油(TG)),GPs包含7个亚类(甘油磷脂酸(PA)、甘油磷脂酰胆碱(PC)、甘油磷脂酰乙醇胺(PE)、甘油磷脂酰甘油(PG)、甘油磷脂酰肌醇(PI),和其他GPs(PEtOH、PMeOH)),SP包含的1个亚类(神经酰胺(Cer))(图1B)。(A)正负离子模式下鉴定的脂质数量;(B)脂质亚类数量的百分比。图1 榛子油中脂质的定性分析榛子油脂质的定量CPO、UHO和EAO中的总脂质含量分别为1248646.6325、1056993.7416和1027794.9027 nmol/g。图2A~C显示了各亚类脂质含量所占百分比情况。CPO、UHO和EAO中TGs所占比例最大,分别为98.49848%、98.32412%和98.42983%,其次是DGs、PAs和PEs。图2D进一步比较了3种不同榛子油中同一亚类脂质含量的差异。CPO组中GLs(TGs和DGs)含量最高,这可能是由于机械挤压导致的较高脂质浓度所致。UHO组中GPs含量最高,PCs、PIs和PEs含量显著高于其他两组,UHO组中PAs的含量是EAO的117倍。GPs是生物膜的主要成分,在加工时榛子被浸泡在有机溶剂中,溶剂会破坏细胞膜,从而增加GPs的释放,产生这一结果。而EAO组中Cer含量更高,主要是Cer-NS。图2 (A)CPO中脂质亚类的百分比;(B)UHO中脂质亚类的百分比;(C)EAO中脂质亚类的百分比;(D)CPO、UHO和EAO中同一亚类脂质含量的比较在榛子油样品中共鉴定了15种脂肪酸(表1)。除C12:0月桂酸、C14:0肉豆蔻酸、C17:0十七烷酸和C18:3亚麻酸外,CPO组的其他脂肪酸含量均显著高于其他两组。在计算每种脂肪酸的百分比后,发现CPO、UHO和EAO中不饱和脂肪酸的百分比分别为93.39%、93.30%和93.55%。表1 CPO、UHO和EAO中的脂肪酸组成(%)多元统计分析首先对不同加工方式的榛子油样品进行主成分(PCA)分析,可以初步了解不同处理组之间的自然聚类趋势。在图3A的PCA得分图中可以观察到3种榛子油样品分离明显。图3B的PCA的载荷图显示出TG类脂质是区分榛子油的最重要变量。利用偏最小二乘判别分析(PLS-DA)筛选显著差异脂质。图3C得分图显示,PLS-DA模型可以有效区分三种不同的榛子油样品。为了进一步验证模型,我们进行了200次交叉验证,以评估其稳定性和预测能力。R2和Q2值分别为0.8687和0.7769(图3D)。这表明建立的PLS-DA模型具有较高的可靠性和预测能力,且不存在过拟合现象。(A)PCA得分图;(B)PCA载荷图;(C)PLS-DA得分图;(D)PLS-DA交叉验证图。图3 无监督和有监督模式的多元统计分析EAO、CPO和UHO间的显著差异脂质基于构建的PLS-DA模型,将VIP 1且P 0.05作为筛选条件。图4A显示了鉴定出的12种显著差异脂质情况,包括6个TAGs,3个DAGs、1个PC、1个PA和1个PE。这12种脂质在不同加工方式榛子油中具有显著差异。与UHO组相比,CPO组中9种脂质显示上调,3种下调,其中PC(PC 36:2|PC 18:1_18:1)变化最大(图4B)。与EAO组相比,CPO组有11种脂质显示上调,1种下调,PE(PE 36:3|PE 18:1_18:2)变化最大(图4C)。与EAO组相比,UHO组中有10种显著差异脂质显示上调,2种下调,其中PC(PC 36:2|PC 18:1_18:1)变化最大(图4D)。我们发现在不同加工方式榛子油中GP类脂质差异最大。这些脂质含量的变化可能直接影响油脂的质量和功能。因此,未来对特定亚类脂质进行靶向研究十分重要。这12种显著差异脂质也可以作为潜在的生物标志物对这三个不同加工方式的油脂进行质量控制。图4 (A)PLS-DA VIP得分图,右侧热图表示相应脂质的含量;(B)CPO和UHO之间的差异倍数图;(C)CPO和EAO之间的差异倍数图;(D)UHO和EAO之间的差异倍数图在本研究中,使用UPLC-QTOF-MS对榛子油进行了非靶向脂质组学分析。对CPO、UHO和EAO的脂质组成进行了定性和定量分析,鉴定出10个亚类的98种脂质。通过有监督和无监督的多元统计分析,确定了12种显著差异脂质。这些脂质可以作为潜在的生物标志物来区分三种加工方式的榛子油以及其他掺假检测和质量鉴别。本研究明确了榛子油的脂质成分,并证实了不同加工方式对植物油脂质的影响。这项研究的结果有助于我们理解油脂加工的机理,为今后特定脂质的研究提供有用的信息,并促进榛子油的开发和应用。作者孙嘉阳,女,中共党员,沈阳农业大学硕士研究生(在读),2019年辽宁省优秀毕业生,2020年沈阳农业大学优秀团干部。主要研究方向为榛子油加工及贮藏氧化机制。参与国家自然基金及辽宁省重点研发项目的相关研究工作 。以第一作者在Food Science and Human Wellness发表一篇SCI论文1篇,申请国家发明专利2项。吕春茂,男,博士,沈阳农业大学食品学院三级副教授,硕士生导师,沈阳市高层次“拔尖人才”,沈阳农业大学服务乡村振兴团队首席专家。主要从事果蔬精深加工、食品生物技术和食品质量与安全方面的教学与科研工作。近年来一直针对北方特色果蔬农产品的高值化利用和加工关键技术开展科学研究,包括东北特色经济林作物榛子的食品加工、加工过程中主要营养成分的变化与关联机制、深加工产品及其功能性评价、加工副产品的综合利用;寒富苹果精深加工产品研制及功能性评价、果渣等加工废弃物的综合利用;越橘精深加工产品研制与功能性评价等。共发表论文50多篇,SCI收录5篇,完成专著2部,参与编著教材2部。申请发明专利5项。目前主持辽宁省重点研发计划项目“东北榛子深加工综合利用关键技术研究与示范”等科研课题5项,参加国家重点研发计划“特色经济林采后果实与副产物增值加工关键技术”和国家自然科学基金项目“富含油脂的食品热加工过程中晚期糖基化终产物(AGEs)形成机理研究”的部分研究工作。获得省部级二等奖3项,三等奖2项。学术兼职:中国经济林协会榛子专业委员会理事;中国食品科学技术学会休闲食品加工技术分会理事;中国经济林协会加工利用分会理事;中国经济林协会板栗分会常务理事;辽宁省食品质量与安全学会理事;辽宁省农科院专业学位评审专家等。
  • 北京基因组研究所生命与健康大数据中心正式成立
    3月1日,中国科学院北京基因组研究所生命与健康大数据中心成立大会召开,研究所相关负责人、管理部门负责人及大数据中心全体人员出席会议。  生命与健康大数据中心(BIG Data Center 简称BIGD)是研究所科研、支撑体系的一部分,其发展目标为面向我国人口健康和社会可持续发展的重大战略需求,围绕国家精准医学和重要战略生物资源的组学数据,建立海量生物组学大数据储存、整合与挖掘分析研究体系,发展组学大数据系统构建、挖掘与分析的新技术、新方法,建设组学大数据汇交、应用与共享平台,力争建成支撑我国生命科学发展、国际知名的生命与健康大数据中心。  生命与健康大数据中心目前拥有30余人的工作团队,具备5000个以上CPU计算核心及总容量超过8PB数据存储资源,已经开发形成一系列的多组学数据库系统,近期工作主要围绕三大方向:第一,面向中国人群普惠健康的精准医学组学信息资源,建立中国人群的参比基因组、遗传变异图谱,形成中国人群组学信息库 第二,基于高通量测序的海量原始组学数据资源,建立符合国际标准的原始组学数据归档库,形成中国原始组学数据的共享平台 第三,围绕国家重要战略生物资源,建立海量组学数据的整合、挖掘与应用体系,形成综合性的多组学数据库系统。
  • 智能数据采集FLASHIda应用于自上而下蛋白质组学分析
    大家好,本周为大家分享一篇发表在Nature communications上的文章,FLASHIda enables intelligent data acquisition for top–down proteomics to boost proteoform identification counts [1],文章的通讯作者是德国图宾根大学的Oliver Kohlbacher教授。自上而下蛋白质组学(TDP)能够对完整的proteoform进行全面和深入的分析,目前已广泛应用于生物医学研究领域。proteoform在不同的生物系统中具有高度异质性,proteoform水平的信息可以为了解生物生化功能或疾病表型提供重要的信息。近年来,随着TDP样品处理方法、分离技术、碎裂技术和生物信息学方法的进步,proteoform变得更容易被检测和表征。在复杂样本的大规模研究,如微生物或人类细胞裂解液中,proteoform的鉴定数量已达到4000-6000(对应500-1000个蛋白质)。在单次TDP实验中,在大肠杆菌裂解液中可以鉴定出约800种proteoform,在人脑样本中可以鉴定出约1800种proteoform。由于proteoform的多样性和复杂性,完整蛋白质的DDA采集是非常重要的。然而目前的仪器软件在DDA采集中实施的碎裂技术优化主要针对自下而上蛋白质组学(BUP),而不是TDP。尽管这些方案在BUP研究中有效地捕获了各种高质量的肽段离子,但这些选择标准对于TDP中的proteoform离子选择并不是最优的。与BUP中的肽段离子相比,单个proteoform由于其高质量和高电荷会产生许多峰,Top-N采集往往会导致从一个丰度较高的proteoform中选择多个峰,而不是从多个不同的proteoform中进行选择,这会导致proteoform的覆盖率较低。此外,基于强度进行选择可能不会选到能产生多种独特片段的高质量前体。目前,大多数大规模TDP研究使用具有特定调优参数的DDA采集,例如,Top-N采用相对较低的N值(3-5)和相对较高的隔离窗口(1.2-15 Th,超宽隔离)。然而对所选前体离子的分析表明,对proteoform的选择依然不理想。因此,采用更智能的数据采集方式(Intelligent data acquisition,IDAs)是非常有必要的。本文中作者提出了一种用于TDP的基于机器学习的智能在线数据采集算法FLASHIda,该算法可以确保实时选择不同proteoform的高质量前体,最大化TDP中的proteoform覆盖。FLASHIda通过iAPI与tribrid Thermo Scientific质谱仪连接,允许对MS数据进行实时访问。在LC-MS运行期间,将实时去卷积算法和评估前体同位素质量的机器学习技术结合,非冗余选择高质量前体离子,从而提高蛋白质的覆盖率。FLASHIda流程如图1所示,该算法能在20毫秒内处理每个MS全扫描,并优化下一个采集周期,以最大限度地提高采集中的异型多样性。FLASHIda包括以下3个关键步骤,第一步是将输入的m/z-强度谱转换为mass-quality谱图,第二步是在转换谱图中选择前体离子,最大化唯一识别的proteoform离子数量,最后,动态确定每个选定质量的电荷态和隔离窗口大小,以尽量减少噪声或共洗脱的干扰。确定的隔离窗口m/z范围通过Thermo iAPI连接提供给仪器。  图1.FLASHIda总览  在对大肠杆菌裂解液的分析中,与标准DDA模式相比,FLASHIda在三分之一的仪器时间内将proteoform鉴定数量从800增加到1500,或产生几乎相同的鉴定数量。此外,FLASHIda能够灵敏地绘制翻译后修饰和检测化学加合物。作为仪器的软件扩展模块,FLASHIda可以方便地用于复杂样品的TDP研究,以提高proteoform的鉴定率。  图2. Proteoform分析  这项研究展示了IDA在TDP研究中的应用,目前作者依然在开发该算法的不同变体,用于靶向proteoform分析,深度表征,甚至从头测序。此外,由于FLASHIda能够选择无干扰的前体离子,因此它可以用于提高proteoform定量准确性。作者预计,未来在FLASHIda内开发的高级数据采集方法将有助于通过TDP探索proteoform的异质性。  撰稿:张颖编辑:李惠琳  原文:FLASHIda enables intelligent data acquisition for top–down proteomics to boost proteoform identification counts  李惠琳课题组网址www.x-mol.com/groups/li_huilin   参考文献  Jeong K, Babović M, Gorshkov V, Kim J, Jensen ON, Kohlbacher O. FLASHIda enables intelligent data acquisition for top-down proteomics to boost proteoform identification counts. Nat Commun. 2022 Jul 29 13(1):4407.
  • 北京基因组所发布癌症单细胞表达图谱数据库CancerSCEM
    近日,中国科学院北京基因组研究所(国家生物信息中心)国家基因组科学数据中心开发的癌症单细胞表达图谱数据库CancerSCEM上线。该研究成果以CancerSCEM: a database of single-cell expression map across various human cancers为题在国际学术期刊Nucleic Acid Research在线发表。  单细胞分辨率的全转录组测序技术(scRNA-seq)具有研究细胞异质性的显著优势,已成为研究肿瘤微环境、癌症发病机制、转移与侵袭以及各类癌症治疗与诊断不可或缺的手段。截至2021年11月,PubMed已有超过1300个癌症相关的单细胞转录组学研究,极大提升了人们对人类癌症发生发展的理解,推动了癌症临床诊断与治疗的进程。大规模癌症scRNA-seq数据在过去十年中呈现爆炸式增长,迫切需要对这些数据进行规范化整合与处理,对各类癌症的肿瘤微环境进行深入挖掘与比较分析。为应对这一需求,该研究团队开发了CancerSCEM数据库。  CancerSCEM 1.0版本整合分析了208个癌症scRNA-seq数据集,涵盖肺腺癌(LUAD)、结肠直肠癌(CRC)、恶性胶质瘤(GBM)等在内的20种人类癌症类型。通过标准化分析流程处理,获得了精确的细胞类型注释信息。在此基础上,团队还开展了一系列附加分析,包括不同细胞类型间基因差异表达分析(可为新型标志物筛选提供参考)、细胞表面受体-配体基因对表达谱、样本内细胞互作网络构建等,可为用户提供更加丰富的肿瘤微环境相关信息,并开展了基于TCGA表达数据与临床信息的生存分析。  数据库为用户提供浏览、多重检索、在线分析及下载等服务功能,用户可采用首页快速检索、词云及精确检索等途径查询感兴趣的癌症单细胞数据集或样本。如点击词云里的基因名“HLA-A”或通过搜索框输入,均可触发数据库查询功能,并实时获得目标基因的详细信息及其在单细胞层面与细胞群体(组织)层面的表达分布信息。为方便临床相关用户的使用,团队共审编获得36个常用免疫检查点分子(如PDCD1、CTLA4、LAG3、HMGB1),并提供专门的搜索列表,以帮助各类癌症的临床免疫治疗研究寻找更优的治疗靶点。  数据库还配备了一个交互式综合在线分析平台,共集成2个分析模块与7个分析功能。通过基因分析模块,用户可开展4个方面的实时分析及可视化展示:样本内目标基因的整体表达概况;样本内基因在不同细胞类型间的表达比较;基因表达相关性计算及筛选;208个样本中单细胞或bulk层面的基因表达比较。通过样本分析模块,用户可进行样本间细胞组成比较、样本内细胞互作网络构建以及基于TCGA的生存分析。该分析平台将为用户开展个性化的癌症scRNA-seq数据挖掘提供友好的增值服务。  该研究工作得到中科院战略性先导科技专项、国家自然科学基金、国家重点研发计划等项目资助。  论文链接
  • Thermo与MSAID合作,创新方法重新定义蛋白质组学研究的数据分析
    日前,服务科学领域的全球领导者 Thermo Fisher Scientific 和蛋白质组学人工智能领域的领导者 MSAID 合作,为蛋白质组学研究人员提供先进的质谱软件,从而产生市场——通过使用人工智能 (AI) 和深度学习显着提高肽识别和定量能力,从获取的数据中获得领先的生物学洞察力。带有 CHIMERYS by MSAID 的 Thermo Scientific Proteome Discoverer 3.0 软件利用人工智能(AI)显着提高蛋白质组学数据中独特肽识别的识别率和数量。与通常假设串联质谱中的所有峰均来自单个肽的现有方法相比,CHIMERYS 确定了可以解释获得的串联质谱的最小肽集。与现有工具相比,这种创新方法使典型蛋白质组学数据集的独特肽识别数量增加了 1.8 倍,蛋白质识别数量增加了 1.5 倍。除了提高蛋白质覆盖率和定量能力外,Proteome Discoverer 3.0 软件与 CHIMERYS 搭配使用还有助于加快数据采集速度,从而提高样品通量。Thermo Fisher Scientific 和 MSAID 在宾夕法尼亚州费城宾夕法尼亚会议中心举行的第 69 届美国质谱学会(ASMS)质谱和相关主题会议上展示他们的新软件解决方案。「以前的技术无法完全解释使用质谱法生成的数据,因为质谱可能包含来自多个共同分离肽的片段,而这些片段无法使用当前算法进行识别。」 Thermo Fisher Scientific 的色谱和质谱研发副总裁 August Specht 说,「通过使用 Proteome Discoverer 3.0 软件和 CHIMERYS,科学家们现在可以利用人工智能对蛋白质组数据进行更深入的挖掘。这不仅提高了蛋白质组学的覆盖范围,而且还扩展了蛋白质组学科学家获取和应用数据的方式。」MSAID 首席执行官 Martin Frejno 说:「嵌合光谱是基于质谱的蛋白质组学中的一个长期存在的问题。通过 CHIMERYS,我们使用 AI 从头开始重新构想串联质谱的分析来解决它。」Proteome Discoverer 3.0 软件版本还包括更新的 INFERYS 预测模型,扩展了对串联质量标记(TMT)、碰撞诱导解离(CID)的支持,并为免疫肽组学提供了改进的结果。通过 Proteome Discoverer 3.0 软件和 CHIMERYS 的智能数据分析与 Thermo Scientific Vanquish Neo 超高效液相色谱(UHPLC)系统和 Thermo Scientific Orbitrap 质谱平台中的领先硬件技术配对,研究人员将有能力继续突破界限 蛋白质组学研究。有关 Thermo Scientific Proteome Discoverer 3.0 软件和 MSAID 的 CHIMERYS 的更多信息:www.thermofisher.com/proteomediscoverer关于 Thermo Fisher ScientificThermo Fisher Scientific 官网:www.thermofisher.comThermo Fisher Scientific 是科学服务领域的全球领导者,年收入约为 350 亿美元。「我们的使命是让我们的客户让世界更健康、更清洁、更安全。」 无论他们的客户是在加速生命科学研究、解决复杂的分析挑战、改进患者诊断和治疗还是提高实验室的生产力,Thermo 都会在这里为他们提供支持。他们由 90,000 多名员工组成的全球团队通过行业领先的品牌(包括 Thermo Scientific、Applied Biosystems、Invitrogen、Fisher Scientific、Unity Lab Services 和 Patheon)提供无与伦比的创新技术、购买便利和制药服务组合。关于 MSAIDMSAID 官网:https://msaid.de/MSAID GmbH [ m s e d] 改变了科学家分析蛋白质组学数据的方式。MSAID 是德国慕尼黑工业大学蛋白质组学和生物分析系主任的私人控股信息学分拆公司。该公司由一个跨学科的科学家团队创立,其愿景是为蛋白质组学领域提供更好的计算解决方案。该团队成员在蛋白质组学数据的获取、分析和解释方面拥有极其出色的业绩记录和长期的专业知识。作为蛋白质组学人工智能的领导者,他们用强大的、基于人工智能的解决方案取代当前的算法,并为更深入、更可靠的蛋白质组学数据查询方式铺平道路。相关报道:https://www.biospace.com/article/releases/innovative-approach-redefines-data-analysis-in-proteomics-research/?keywords=AI
  • 我国科学家建成并上线发表全球药典草药基因组数据库
    近期,中国中医科学院中药研究所团队建立了全球药典基因组数据库(GPGD)。该数据库是全球首个针对药典收载草药物种的大型基因组学数据库。相关研究成果发表在《Science China-Life Sciences》杂志,标题为“Global Pharmacopoeia Genome Database is an integrated and mineable genomic database for traditional medicines derived from eight international pharmacopoeias”。  该数据库目前已收录903个草药物种的34346条数据,包括867个物种的21872条DNA条形码数据,674个物种的2203个细胞器基因组以及49个物种的55个全基因组数据等,所收录数据涵盖全球八大药典草药物种(中国药典、美国草药典、日本药典、韩国药典、印度药典、埃及药典、欧洲药典以及巴西药典)。该数据库为草药物种鉴定、用药安全、中药资源保护和利用等方面研究提供了资源。数据库访问地址:http://www.gpgenome.com。   注:此研究成果摘自https://link.springer.com/article/10.1007/s11427-021-1968-7
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制