当前位置: 仪器信息网 > 行业主题 > >

脂檐毒配基

仪器信息网脂檐毒配基专题为您整合脂檐毒配基相关的最新文章,在脂檐毒配基专题,您不仅可以免费浏览脂檐毒配基的资讯, 同时您还可以浏览脂檐毒配基的相关资料、解决方案,参与社区脂檐毒配基话题讨论。

脂檐毒配基相关的资讯

  • 科技成果转化难是一个伪命题 需建立成熟利益分配机制
    &ldquo 第一个,科技成果不行,创新性、独创性、实用性、成熟度都不行,出发点是为了写论文,而不是为了走市场 第二个,过分考虑成果属于谁,就像鸭子还没弄到手,就考虑怎么烤着吃。&rdquo   中科院院士、青海大学校长王光谦委员,常会遇到来高校求项目却空手而归的企业。在遗憾的同时,他也坦陈:&ldquo 我们高校诞生了太多无用的成果。&rdquo   在研究了一个个成果转化的失败案例后,他得出结论,&ldquo 科技成果转化难,我认为这是一个伪命题!&rdquo   &ldquo 我们现在对科技成果的认定就是错误的。什么叫科技成果?就是除了面向未来的基础研究成果,就是市场决定的应用性成果。这种成果,市场觉得你有用,那才叫科技成果 为了评职称、写论文,那就不是,它对市场没用。&rdquo 在王光谦眼中,真正的科研成果应该是能够转化的,也就是符合市场需求的创新成果。   实践中,他发现这样的成果太少了,&ldquo 我看,只有百分之几的量,个位数。&rdquo   &ldquo 科技成果转化不是简单地买卖,企业期望成果像洗衣粉配方一样,他一手交钱,我一手交配方就是了。但大部分成果不那么简单,双方应面向市场培育一个新的想法,在实验中慢慢放大,最后才有实用的产品。&rdquo   在&ldquo 伪命题&rdquo 之外,王光谦还有个&ldquo 真困惑&rdquo 。他谈到了美国科技成果转化的例子。&ldquo 一般专利收益2/3分配给发明人,超过30万美元的按1/3比例归发明人所有。&rdquo 这是美国夏威夷大学关于《知识产权的管理条例》的规定,它代表了部分国外科研机构对成果转化的态度&mdash &mdash 给予发明人丰厚的物质报酬,激发科研人员积极性。   在他看来,国外重视成果转化,有一套成熟的利益分配机制,&ldquo 我们的成果转化过分强调成果为单位所有,科技人员不能拿去赚钱 其实,单位占有还是个人占有并不重要,重要的是转出去,然后获利。说清楚这个钱怎么赚,而不是大家扯皮。课题组内部的扯皮分配不均,单位分配不均,这样的话就不好转化了。&rdquo
  • “制造基础技术与关键部件”重点专项2021年度拟立项清单公布
    11月30日,工业和信息化部产业发展促进中心发布关于国家重点研发计划“制造基础技术与关键部件”重点专项2021年拟立项项目安排公示的通知。根据通知,“制造基础技术与关键部件”重点专项2021年度拟立项项目信息公示时间为2021年11月30日至2021年12月5日。对于公示内容有异议者,可于公示期内以传真、电子邮件等方式提交书面材料。个人提交的材料需署明真实姓名和联系方式,单位提交的材料需加盖所在单位公章。专项联系人和联系方式如下:国家重点研发计划“制造基础技术与关键部件”重点专项2021年度拟立项项目公示清单序号项目编号项目名称项目牵头承担单位实施周期12021YFB2011000滚动轴承基础物理参数检测技术西安交通大学3年22021YFB2011100滚动轴承装配基础与智能装配方法瓦房店轴承集团有限责任公司3年32021YFB2011200高功率密度轴向柱塞泵/马达摩擦副寿命预测与延寿设计北京理工大学3年42021YFB2011300高性能液压阀性能在线监测与智能控制南京理工大学3年52021YFB2011400齿轮传动系统多维信息感知及智能运维重庆大学3年62021YFB2011500基于二维材料的柔性应变传感器阵列西安交通大学3年72021YFB2011600高灵敏磁电阻传感器中国科学院空天信息创新研究院3年82021YFB2011700高灵敏MEMS三维电场传感器中国科学院空天信息创新研究院3年92021YFB2011800硅基厚金属膜制造工艺基础清华大学3年102021YFB2011900挖掘机分布式独立电液控制系统关键技术研究三一重机有限公司3年112021YFB2012000工业测控高精度硅基压力传感器关键技术重庆川仪自动化股份有限公司3年122021YFB2012100工业机器人减速器状态监测传感器关键技术中南大学3年132021YFB2012200开放式数控系统安全可信技术华中科技大学3年142021YFB2012300智能网联工业控制安全一体化增强技术研究与应用浙江中控技术股份有限公司3年152021YFB2012400典型流程工业信息安全防护关键技术杭州和利时自动化有限公司3年162021YFB2012500动力电池组控制安全传感器开发及示范应用华东光电集成器件研究所3年172021YFB2012600医疗影像装备关键传感器开发及示范应用北京邮电大学3年
  • 去内毒素亲和填料的常见问题解答
    内毒素亲和填料 内毒素是一种常见的蛋白污染物,它的存在使得蛋白的活性研究变得十分复杂,并且内毒素是一种对人类有害的化学物质,它能引起发热、微循环障碍、内毒素休克及播散性血管内凝血等一系列不良症状,因此,检测和去除蛋白中的内毒素有着十分重要的意义。 月旭Endotoxin rem Tanrose 4FF 内毒素亲和填料以自制的琼脂糖凝胶为基质、多占菌素B为配基,用于去除生物源蛋白类产品(包括多肽、抗体、多糖等)中的内毒素,但多占菌素B只对部分内毒素有抑制作用,而不能抑制所有内毒素。 技术参数 常见问题解决方案 #01 内毒素去除效率低,应当怎么做? ①可能原因:样品pH值不在内毒素结合范围。解决方法:用0.1M NaOH或0.1M HCl调节pH至7-8。 ②可能原因:样品与填料接触时间短。解决方法:降低流速,增加样品接触时间。 ③可能原因:检测系统被内毒素污染。解决方法:确保所有试验用品均为无热源产品。 ④可能原因:内毒素与目的蛋白结合较强解决方法:优化样品pH,使样品能够与内毒素分离。 #02 样品被污染,应当怎么做? ①可能原因:该填料纯化过其他样品。解决方法:增加接触时间;不要用使用过的填料来去除不同样品的内毒素。 #03 样品回收率低,应当怎么做? ①可能原因:样品非特异性吸附在填料上。解决方法:增加样品和平衡液中的NaCl浓度。 ②可能原因:目的蛋白与内毒素结合一起被去除。解决方法:优化样品pH,使样品与内毒素分离。 订购信息
  • Protein A材质对生物分离传化的影响 ,微球精准制造技术应运而生
    早前,江必旺博士分享了《浅谈令人“爱恨交加”的Protein A亲和层析介质》、《盘点Protein A亲和填料质控必看的重要参数》,本期带大家了解Protein A 亲和层析介质的制备过程中需要考虑的那些影响因素以及纳微科技带来的创新成果,也欢迎大家在评论区留言讨论。纯化后的Protein A配基可以通过其分子上的氨基或末端的巯基与微球上的功能基团偶联制备成Protein A 层析介质。Protein A层析介质的性能与其本身的配基性能,基球材料组成,基球孔径大小,孔容积及表面功能化等都有关系。为了高效率把目标生物分子从复杂样品里分离出来,并保持其生物活性,用于分离纯化的层析介质材料必须满足苛刻的要求如介质材料组成、形貌、粒径大小、粒径分布、孔径大小和分布、功能基团、及表面亲水性能等。 Protein A材质的影响 目前Protein A 亲和层析介质基球主要由两大类材料组成:第一类是以琼脂糖,葡聚糖为代表的多糖层析介质;第二类是以聚丙烯酸酯和聚丙烯酰胺为代表的合成高分子层析介质。其中天然多糖高分子改性介质由于具有亲水强,生物兼容性好,能减少对生物分子的非特异性吸附等特点,因此在分离过程中容易保持生物分子的生物活性。另外交联天然多糖介质在溶胀状态下其多糖分子链可以舒展开来形成网状孔道结构,因此多糖介质表面积大,容易做成高载量的介质。软胶是生物大分子分离纯化应用历史最悠久,最广泛的亲和层析介质。但天然多糖改性高分子介质因其基质柔软而被称为软胶,其主要缺陷是机械强度差、压缩比大、柱床不稳定、操作困难、流速慢、生产效率低等,另外软胶在干燥状态下脱水容易导致孔道结构塌陷从而失去分离性能,因此,软胶填充的层析柱床一般不能脱水。相反,合成多孔高分子层析介质微球具有机械强度高,化学稳定性好等特点,因此可以耐受更大的压力、更快的流速,从而提高分离效率,虽然其在市场应用的晚但其市场增速最快。另外合成高分子微球粒径大小,粒径均匀性更容易控制,使得合成高分子介质更容易装柱,柱效和分辨率也更高。同时聚合物介质孔道结构是通过无数高度交联的纳米粒子堆积而成。这些纳米粒子不溶胀,分子进不去,因此其表面积比琼脂糖基质的小,但孔径通透性更好,因此分子传质速度快,在高流速下载量可以保持的更好。但合成高分子层析介质的缺点是其疏水往往比软胶大,导致非特异性吸附大,容易使生物分子失去活性。因此聚合物微球表面需要进行亲水化改性以降低其非特异性吸附才能满足层析分离的需求。无论是以交联琼脂糖为基质的离子交换介质还是以表面亲水化改性的聚合物为基质的离子交换介质都有各自的优缺点,但它们的目标都是一致的,都是往高载量、高机械强度,高分辨率、高回收率方向发展。因此为了生产更理想的层析介质,交联琼脂糖层析介质要解决的问题是在保持它亲水性优势下如何提高其机械强度,而聚合物介质问题是在保持其机械强度优势条件下如何解决亲水化问题并降低非特异性吸附。 介质孔径大小及孔隙率对生物分离的影响 除了粒径大小和分布会影响层析介质分离性能外,孔径大小、比表面积及孔隙率也是生物分离纯化介质最重要参数之一。层析分离模式主要是分子与介质表面功能基团作用的结果,层析介质可及比表面积是影响其吸附载量的主要因素之一,可及比表面积是分子可到达的内孔表面积加上介质外表面积。由于内孔表面积占据整个比表面积的90%以上,而内孔表面积主要由孔径大小,孔隙率来决定。孔径越小比表面积越大,但如果孔径太小,目标生物分子进不去,这样的小孔及其表面积对分离是没有作用的。孔径太大,比表面积也会降低,因此对于不同分子量大小的生物分子,有个最优的孔径大小,其可及表面积最大,分离效果最好。比如说用于抗生素这类分子量小的生物分子,孔径一般选择小于30纳米以下,而对于抗体蛋白分离纯化的介质一般选择孔径在100纳米左右,而对于病毒这种大尺寸的生物,需要400纳米以上超大孔的介质。另外孔隙率越大,比表面积越大,载量也会越大,同时机械强度越差,因此选择孔隙率也需要平衡机械强度和载量的要求 Protein A 配基的影响 Protein A 亲和层析分离是基于Protein A 配基与抗体的特异性结合。天然Protein A 来源于金黄色葡萄球菌的一个株系,它含有5个可以和抗体IgG 分子Fc 段特异性结合的结构域。由于天然的Protein A 配基耐碱性差,为了提高Protein A 耐碱性,延长其使用寿命,因此现在市场上使用的Protein A都是经过天然Protein A序列改造过的重组蛋白。每家重组蛋白A的序列不同,亲和力不同,洗脱pH 条件不同,耐碱性能不同。Protein A 配基对抗体纯度,回收率等有重要影响。 粒径大小和粒径均匀性的影响 粒径大小和均匀性不仅影响柱效,分离效率,对Protein A 载量影响也很大。粒径越小,分子传递路径越短,Protein A 与抗体结合的效率越高,载量就越大,比如说以琼脂糖为基质的Protein A 介质,如果粒径是90微米,载量只有50毫克/毫升,如果粒径减小到50微米,载量可高达90毫克/毫升,因此粒径与载量成反比,但粒径越小,反压越大,因此选择粒径大小需要考虑压力和载量。另外粒径越均一,其洗脱越集中。粒径分布均匀,形貌规整的球形填料填充柱床的紧密程度一致性好,流动相在柱床中的流速均匀,流动相经过柱床的路径长短一致,从而有效降低涡流扩散系数,使色谱峰宽变窄,理论塔板数升高。纳微十多年坚持不懈的研究开发出世界领先的微球精准制造技术,该技术可以对微球的材料组成、粒径大小、粒径均匀性、孔径大小及表面性能达到前所未有的精准控制。纳微利用这一技术平台开发出新一代单分散多孔聚丙烯酸酯为基质的Protein A 亲和层析介质克服了传统Protein A 软胶的缺点。纳微Protein A 介质创新点主要有以下几点:首先,纳微Protein A 介质具有精准的粒径大小和高度的粒径均一性,使其具有流速均匀、洗脱集中、流动相用量少而且装柱容易、柱效高、柱床稳定、压力低、柱与柱重复性好等优点;图4 纳微单分散Protein A介质与传统软胶基质微观结构对比图5 传统多分散Protein A亲和软胶与UniMab液流路径对比示意图第二,纳微Protein A 基球经过优化筛选专门设计的大孔结构,其孔径远大于GE Protein A 产品。因此该介质具有蛋白传质速度快,使得介质在高流速下具有高载量。从实验测试数据可以看到,纳微UniMab与GE MabSelectSuRe在驻留时间大于4分钟时,载量都差不多,当驻留时间小于2分钟时UniMab的载量高于MabSelectSuRe载量50%以上, 而且速度越快UniMab载量优势越明显。抗体生产效率是由载量和流速共同决定,但流速越快载量越低,因此对于每个亲和层析来说有个最优的流速。实验证明对于批次亲和层析,驻留时间是2分钟时生产效率达到最高,对于连续层析驻留时间是1分钟时生产效率最高;图6 UniMab与MabSelectSuRe产品不同驻留时间动态载量对比图7 不同Protein A 层析介质驻留时间与抗体生产效率与关系对比从抗体流穿曲线对比图也可以看出具有大孔结构及高度粒径均匀性的单分散Protein A亲和层析介质与进口软胶相比具有更陡的穿透曲线,说明纳微单分散层析介质具有更畅通的孔道结构,分子在介质里扩散速度快。抗体流穿少,回收率高。图8 抗体流穿曲线对比图第三,纳微Protein A 基球是高度交联的聚丙烯酸酯组成,与市场上软胶或低交联度聚丙烯酸酯为基质的Protein A 介质相比具有溶胀系数小,压缩比例低,而且具有优异机械性能,可以承受更高流速条件产生的压力,并装更高的柱床,有利于增加抗体批处理量,提高抗体生产效率,减少设备投资。UniMab在2公斤压缩比例只有5%,而市场上Protein A 介质压缩比例往往超过15%。图9 UniMab与软胶与压力流速曲线对比第四,纳微用于Protein A 介质的基球是通过多步表面亲水化改性,因此表面亲水性能好,非特异性吸附低,在抗体分离过程中,HCP去除效果好。一般来说聚合物基质的Protein A 因为亲水性问题,HCP 去除效果往往比软胶差,但UniMab可以达到软胶Protein A 的同等水平。图10 纳微UniMab与对照填料的HCP去除效果第五,除了创新基球外,纳微又经过多年的努力通过优化组合不同片段的Protein A 设计出有自主知识产权的耐碱性Protein A 配基,并实现大规模生产。最后通过优化偶联工艺成功地生产出世界首个单分散Protein A 亲和介质产品,不仅实现该产品的国产化,而且克服了现有市场上Protein A 介质的主要缺陷。纳微单分散Protein A 介质不仅可以提高抗体的生产效率,降低抗体的生产成本,更是下一代连续层析理想的介质。亲和层析分离条件影响ProteinA亲和条件相对简单,无需繁琐参数优化。平衡阶段,盐浓度及pH是两个重要参数。由于ProteinA与抗体分子核心区域主要作用力依靠组氨酸疏水性介导,所以增加平衡盐浓度一般可增加3-5mg载量。pH则通常控制在6-7.5,若低于5.0以下,可能会降低动态结合载量,从而降低了回收率。上样后清洗是去除结合于填料的宿主蛋白(HCP)及核酸(DNA)等杂质的主要过程。清洗pH较为关键,在抗体分子未清洗掉的前提下,选择尽可能低的pH作为清洗条件,以去除更多的HCP等杂质。若常规pH条件无法奏效,可以加入高盐(1M氯化钠)或添加剂如精氨酸、吐温80、尿素及异丙醇等。pH是洗脱过程中最关键工艺参数,在确保回收率的前提下,尽可能选择更高的pH进行洗脱。较低pH会导致洗脱的抗体浓度过高,产生更多的聚集体。另外,洗脱buffer类型也会对洗脱浓度及杂质含量有影响,如相同pH的柠檬酸洗脱强度高于醋酸。表4 不同Buffer洗脱液效果比较缓冲液洗脱体积(ml)洗脱浓度(mg/ml)收率(%)HCP(ppm)洗脱液20mM HAc pH3.546.591.5129洗脱液20mM Gly pH3.563.880.3167洗脱液20mM Citric pH3.53.77.395.186另外,洗脱液加入精氨酸、氯化钠、聚乙二醇、尿素、组氨酸、咪唑等皆有助于减缓低pH的破坏作用,提高洗脱液纯度。下图是UniMab50纯化过程中在淋洗及洗脱步骤加入了1%聚乙二醇PEG3350,SEC纯度提示PEG可显著降低聚集体含量。
  • 逾2000万/项 2012年度重大科学仪器专项资助-教育部
    各有关直属高校:   根据《关于做好2012年度国家重大科学仪器设备开发专项项目组织工作的函》(国科财函[2012]1号)的要求,今年国家重大科学仪器设备开发专项(以下简称专项)项目的组织工作已经启动。现就有关事项通知如下:   一、该专项的具体支持范围和立项要求请参考国科财函[2012]1号文(附件1)。   二、该专项作为较长时期的科技计划,各高校在遴选推荐时应高度重视、统筹规划,合理分配基金委重大科研仪器设备研制专项和科技部重大科学仪器设备开发专项项目的推荐名额,不得重复推荐。   三、该专项强调面向市场、面向应用、面向产业化,重点支持具有市场推广前景的重大科学仪器设备开发。申报项目要突出重大的特点,集成度高,投入较大,经费原则上不低于2000万。重大科技基础设施、生产性设备、重大研究和中试平台的升级改造、大型仪器共享平台等不在支持范围。   四、该专项以项目方式分年度实施,项目周期一般不超过五年。十二五期间,我司将采取开放原则,随时接受学校项目推荐,原则上每校每年1-2项。条件成熟的可在当年推荐,尚不成熟的作为项目备选,我司将会同高校共同进行培育和完善。   五、2012年度专项项目申报要求。   (一)采取限项推荐,每校限报不超过2项。请各高校认真组织,严格把关,推荐具有明显竞争力的项目。我司将组织评审论证后择优推荐至科技部。   (二)项目推荐材料包括学校推荐公函、项目实施方案(格式见附件2)一式6份,项目建议书(附件3)一式6份,并于2月22日前报送我司基础处。不接受邮寄,逾期不予受理。   联系人:邹晖 明炬   电 话:010-66096301,66096519   地 址:北京西单大木仓胡同37号教育部南楼413房间   附件:1、2、3(点此下载)   1. 关于做好2012年度国家重大科学仪器设备开发专项项目组织工作的函(国科财函〔2012〕1号)   2. 国家重大科学仪器设备开发专项项目实施方案(格式)   3. 国家重大科学仪器设备开发专项项目建议书   教育部科技司   2012年1月18日   相关新闻:2012年度国家重大科学仪器设备开发专项项目启动
  • 逾2000万/项 2011年度重大科学仪器专项资助
    各有关直属高校:   近日,科技部、财政部启动国家重大科学仪器设备开发专项(以下简称专项),具体申报要求和支持范围见科技部主页通知(http://www.most.gov.cn/)。按照《关于做好2011年度国家重大科学仪器设备开发专项项目组织工作的函》(国科财函[2011]23号)要求,现将有关事项通知如下:   一、该专项强调面向市场、面向应用、面向产业化,重点支持具有市场推广前景的重大科学仪器设备开发。面向科学研究本身的单台(几台)套仪器研发不在此次支持范围,由基金委组织的重大科研仪器设备研制专项负责。   二、申报项目要突出重大的特点,集成度高,投入较大,经费原则上不低于2000万。重大科技基础设施、生产性设备、重大研究和中试平台的升级改造、大型仪器共享平台等不在支持范围。   三、该专项以项目方式、分年度实施,项目周期一般不超过五年。十二五期间,我司将采取开放原则,随时接受学校项目推荐,原则上每校每年1-2项。条件成熟的可在当年推荐,尚不成熟的作为项目备选,我司将会同高校共同进行培育和完善。   四、该专项将作为较长时期的科技计划,各有关高校应高度重视、统筹规划,合理分配基金委重大科研仪器设备研制专项和科技部重大科学仪器设备开发专项项目,不得重复推荐。   五、2011年度专项项目申报要求。   (一)采取限项推荐,每校限报1项。请各高校统筹协调、严格把关,推荐具有明显竞争力的项目建议。我司将在各高校推荐的基础上经评审论证后择优推荐至科技部。   (二)申报方式   项目推荐材料采取网上提交和纸质材料报送相结合的方式,具体程序如下:   1.项目牵头单位进入国家科技计划项目申报中心网站(http://program.most.gov.cn/)注册后登陆申报系统,按要求填写项目实施方案(格式见附件1)并提交。(涉密项目不得上网申报,须根据项目推荐书格式离线填写)   2.请将在线生成的项目实施方案(一式12份,其中1份正本,11份副本)以及项目建议书(见附件2)6份加盖公章后,于8月18日前一并函报我司基础处。不接受邮寄,逾期不予受理。   3.请申报单位在编制项目实施方案的同时,初步编制项目预算申报书(见附件3),具体报送时间和报送方式另行通知。   联 系 人:赵倩 邹晖   联系电话:010-66096301   地 址:北京西单大木仓胡同37号教育部南楼413房间   附件:1、2、3(教技司便[2011]198号 附件.zip)   1.国家重大科学仪器设备开发专项项目实施方案(格式)   2.国家重大科学仪器设备开发专项项目建议书   3.国家重大科学仪器设备开发专项项目预算申报书   教育部科技司   2011年8月1日 相关新闻:2011年度国家重大科学仪器设备开发专项项目启动    基金委启动国家重大科研仪器设备研制专项试点工作
  • 评论:公平公正取决于制度 科研经费该怎使用?
    9月3日出版的美国《科学》杂志以社论形式发表了施一公和饶毅联合撰写的社论,讨论目前中国的科研经费分配体制及科研文化问题。文章重点讨论了目前存在的体制现象和文化问题,没有从管理的角度分析问题的成因,并给出可行建议。   笔者认为可以从投入产出的视角分析中国科研经费管理存在的弊端,并提出具体整治方案。科技活动是两维问题,一个是组织维的投入产出结构,一个是时间维的投入产出过程。从组织维度来看,企业和政府来源R&D经费是国家R&D经费支出的主体。虽然“中国政府投入的研究经费以每年超过20%的比例增加”,但是2008年中国政府R&D经费占全社会R&D经费支出的比例仅为23.58%,并没有显著提升,且低于发达国家的平均水平。政府R&D经费支出的效应不仅是支持科研活动,还要考虑对企业科研经费支出的杠杆效应。从时间维度来看,R&D经费分配仅仅是投入产出过程的一个环节,经费如何使用和管理、绩效如何考核、产出滞后因素如何考虑等等都需要考虑。如果仅仅从项目的分配机制角度考虑科研经费的管理问题,那是治标不治本。   针对中国的科研经费管理存在的诸多弊端,2006年科技部和财政部出台了《关于改进和加强中央财政科技经费管理的若干意见》,进一步明确了中央财政科技经费投入的决策机制和结构。在此基础上,国家科技计划项目、各级政府科技管理部门、科研机构和高等院校均出台了相关科技经费管理办法。当然,有些学者认为管理办法并没有改变当前科研经费分配中存在的问题,这些制度设计并不能够改变人自身的问题。实际情况并非如此,同样存在于中国学术环境下的国家自然科学基金,就是制度设计保证公平、公正的典范。   基于上述分析,面向“组织—过程”管理问题,以提高政府科研经费管理绩效为目标,以制度设计和管理机制变革为手段,提出如下政策建议。   首先,整合建立国家科学基金委员会。国家科学基金委员会的建立可分步实施:第一步,将国家自然科学基金委员会和国家“863”计划、“973”计划、国家科技支撑、科技基础条件平台建设计划和重大专项等科技计划项目合并成立国家科学基金委员会,统筹管理中央科技计划项目和自然科学基金项目经费 第二步,将国务院其他部委管理的研究开发经费通过设立专项的形式,统一并入国家科学基金委员会,建立中央统一的科学基金管理体系。国家科学基金委员会是社会公益中介机构,主要负责国家财政科技项目的立项、评审和效果评价。   国家科学基金委员会采取自由选题和命题招标相结合的资助方式。中央政府给科学基金委员会提出公共科技需求的项目建议,委托科学基金委员会进行项目招标,然后项目申报单位进行投标 项目申报人也可以自由选题,申请基金项目。中央政府科技部门主要负责提出公共科技需求和科学基金委员会评审和管理过程的监管,没有财政科技资金立项和参与基金申请的权利。项目立项评审全部采取匿名同行评议方法,做到公平、公正、公开。   其次,建立执行过程多元监管体系。政府科研经费执行监管是提高绩效的一个重点工作。多元化的执行监管体系应该包括科学基金委员会内部监管、政府审计部门监管、中介机构监管和利益相关者参与监管,不同主体的监管重点和层次不同。   国家科学基金委员会主要采取事前监管,监管的过程包括初审、同行专家评议(一般采取通讯评议方式)、专家评审组或专业委员会评审(一般采取会议评审方式),重点评估申报单位的经费预算、财务监管体系 政府科技和审计部门主要是采取事后监管,每年国家科技和审计主管部门联合对国家财政科技经费执行单位实施审计,项目审计报告提交科学基金委员会,作为项目验收材料 现行基金管理中项目依托单位对本单位项目负有监督、管理和保证的责任,但是委托单位为了本单位的利益,会出现监督管理不力的情况。建议科学基金委员会委托中介机构对科研项目进行全程监管。   监管体系的设立在考虑有效性的同时,更要注意监管成本的约束,在监管过程中引入金融机构、行业协会和社区组织等相关利益主体参与,是节约成本、加强监管职能的有效手段。   最后,建立结果管理追踪问效机制。政府科技经费投入结果评价是项目管理的薄弱环节,存在诸多体制和机制上的不足。   建议明确界定政府科技计划和应用型科技项目的绩效目标,建立面向结果的追踪问效机制。面向结果追踪问效机制包括3个方面:追踪评价机制、目标责任机制和学术信用机制。   追踪评价机制包括项目目标设定、申请立项时的决策评价、项目阶段性成果评价、项目结题验收、成果应用效果评价、效果与目标比对等6个环节。目前财政科技投入对于项目立项决策评价比较严格,而其他环节比较薄弱。政府科技计划和应用型科技项目在申请立项之时,要有明确可测的绩效目标,对于没有明确目标的项目不予资助,绩效目标是项目验收的关键点。项目绩效考核目标和项目负责人建立直接的责任联系,没有达到预期目标的项目,负责人将要根据相关规定进行责任赔偿。学术信用机制是要对于参与国家科学基金申报的负责人建立学术信用档案,学术信用档案是个人学术水平、学术道德的社会记录,也是进一步申报基金的重要依据。项目的追踪评价结果和目标责任实施情况都将记入项目负责人的学术信用档案。
  • 博格隆重磅推出抗体纯化高效之选AT Protein A Diamond Ultra
    背景介绍近年来,肿瘤发病率逐年上升,推动了相关疗法药品的研发。从全球销售排名前列的药物来看,抗体药物在市场中占据重要份额,其在肿瘤治疗市场的需求日益上涨。同时,抗体偶联药物(ADC)因其在精准癌症治疗方面的巨大潜力,备受关注。Protein A亲和层析作为抗体药物纯化的核心工艺步骤,在抗体药物生产中扮演着至关重要的角色。随着生物制药上游工艺的优化,表达量不断提升,对下游纯化工艺提出了更高的要求。传统的Protein A亲和层析填料虽然性能稳定,但在处理高表达量的抗体类纯化时,效率和经济性方面仍存在不足。为了更好地满足行业发展的需求,并助力生产工艺的降本增效,博格隆推出了新一代重组耐碱Protein A亲和层析介质——AT Protein A Diamond Ultra。新品介绍AT Protein A Diamond Ultra亲和层析介质是将重组耐碱的Protein A配基偶联到高刚性琼脂糖基架上的新一代Protein A亲和层析介质,适用于单抗、双抗、多抗和Fc融合蛋白类生物大分子的分离纯化。与前一代AT Protein A Diamond Plus相比,AT Protein A Diamond Ultra具有高动态结合载量(≥75mg 人IgG/mL介质)。AT Protein A Diamond Ultra亲和层析介质能够满足从实验室到工业化大规模生产的各种需求。Table 1.AT Protein A Diamond Ultra 与AT Protein A Diamond Plus技术参数对比+颗粒大小呈正态分布,D50值对应的粒度代表小于此粒度的颗粒体积之和与大于此粒度的颗粒体积之和相同。++动态结合载量为3mg/mL的静脉注射用人IgG在PBS缓冲液中,接触时间为6min时的10%动态结合载量。AT Protein A Diamond Ultra的优势载量高,耐碱性好:有效减少介质的使用量,延长介质寿命,降低生产成本。反压低,流速快:优越的压力流速表现,有效提高生产效率,更适合工业化大规模生产。批间一致性稳定: 稳健的工艺流程,确保产品质量稳定和生产稳步进行。载量高、耐碱性好AT Protein A Diamond Ultra亲和层析介质采用优化后的Protein A配基密度,使其具有高动态结合载量;经过重组耐碱改造的Protein A配基,也赋予了层析介质良好的耐碱性,可耐受0.1~0.5M NaOH。以人IgG抗体为例,使用0.1M NaOH浸泡温度23℃进行浸泡处理,每间隔20h进行一次10%DBC测试,共累积浸泡160h。结果显示(见Fig. 1),AT Protein A Diamond Ultra亲和层析介质的起始10%DBC高达75mg/mL,在0.1M NaOH浸泡140h后,动态结合载量仍保持80%以上的初始载量水平。AT Protein A Diamond Ultra亲和层析介质的高载量和良好的耐碱性,可以有效减少生产中的介质使用量并提高介质使用次数,从而有效地降低生产成本,提高生产效率。Fig. 1 0.1M NaOH碱处理的介质10%DBC数据层析柱:EzScreen 4.6mL;样品:人IgG;保留时间:6min层析柱柱效:泡碱测试前As1.09/7106;泡碱160h后As1.15/7041反压低、流速快AT Protein A Diamond Ultra亲和层析介质采用高刚性的琼脂糖基架,具有优异的机械性能,在宽泛的线性流速范围内可以保持良好的压力流速性能,具有反压低、流速快的特点。如Fig. 2所示,在600mm*26cm装柱规格下,使用1M NaCl作为流动相进行测试,当线性流速为360cm/h时,柱前压仅为2.183bar。AT Protein A Diamond Ultra亲和层析介质优越的压力流速性能和柱床稳定性,有利于亲和层析的工业化放大生产,提高抗体和Fc融合蛋白的生产纯化效率,减少设备投入和工艺耗时,降低生产成本。Fig. 2 AT Protein A Diamond Ultra层析介质压力流速曲线(流动相1M NaCl)层析柱直径:600mm;柱床高度:26cm批间一致性稳定通过10%DBC测试和抗体纯化重复实验对AT Protein A Diamond Ultra亲和层析介质的批间一致性进行检测。Fig. 3 介质批间一致性测试(10%DBC)样品:人IgG;保留时间:6minFig. 4 不同批次介质纯化结果比较层析柱规格:EzScreen 4.6mL;样品:mAb IgG2;保留时间:6min;上样载量:58mg/mL结果显示,AT Protein A Diamond Ultra亲和层析介质具有稳定的批间一致性,为生产工艺的稳健保驾护航。总结AT Protein A Diamond Ultra具有载量高、耐碱性好,反压低、流速快,批间一致性稳定等综合优势,其问世将进一步提升抗体药物纯化的效率,助力制药企业提升生产效率。订购及试用申请更多产品信息请联系当地技术支持或客户经理。
  • 亲和层析之蛋白A
    球菌的细胞壁,与IgG的Fc片段具有非常强的特异性,分子量约为42×103,如图所示。一般在蛋白 A亲和层析中,配基在中性pH条件下结合抗体,在酸性pH条件下与蛋白解离。‍蛋白A与抗体IgG的Fc片段结合模式基于蛋白 A 亲和层析的抗体捕获工艺较为稳定,但也存在一些不足,主要包括:(1)介质成本高。(2)配基易脱落。(3)洗脱条件苛刻。(4)Protein A介质的再生比较困难。针对以上问题,部分商业化蛋白A亲和层析介质中使用的基本为改造的蛋白A配基,改善了天然蛋白A的缺点,提高了耐碱能力和洗脱 pH。月旭科技推出的耐碱抗体亲和介质-耐碱Protein A Solid/耐碱Protein A 4FF, 由大肠杆菌表达,经层析纯化获得,纯化过程不适用抗体柱亲和层析,避免了产品中掺入无关IgG的可能,改配基pH耐受0.5M NaOH和0.5M HCl处理,不降解,抗体结合能力不变。该介质适合从大批培养液捕获单克隆抗体或Fc融合蛋白,也适合与从腹水或者血浆中捕获多克隆抗体。技术参数‍应用实例订货信息
  • Nat. Protoc. 南京大学刘震教授团队实现单个活细胞内低拷贝数蛋白质的分析 | 前沿用户报道
    供稿:温艳蓉成果简介2021年6月,南京大学刘震教授团队在Nature子刊Nature Protocols上发表了题为 “Probing low-copy-number proteins in single living cells using single-cell plasmonic immunosandwich assays”的论文,创新性地发展了单细胞等离激元免疫夹心法,成功实现了单个活细胞及活体动物内多种低拷贝数蛋白质的分析。背景介绍细胞是生物体结构和生命活动的基本单位,基于细胞的研究是生命科学的基础。其中,基于单细胞分析的生命科学研究能够从更深的层次上揭示生命活动的本质和规律,为探究重大疾病的起因、发展和治疗提供更可靠的科学依据。蛋白质是生物学功能的直接执行分子,在单个细胞内分子数目少于1000个拷贝数的蛋白质被称为低拷贝数蛋白质。虽然低拷贝数蛋白质的丰度极低,但它们在多种重要的生物学过程中起着关键的调控作用。纵观整个单细胞分析技术领域,蛋白质的分析手段远远滞后于基因组和转录组的分析方法,其最根本的原因是蛋白质的研究缺少类似于PCR的扩增工具,导致很多低丰度的蛋白质十分难以检测。因此,发展适用于单细胞内低拷贝数蛋白质的检测技术具有重要的科学意义和应用价值。刘震教授团队将免疫识别与等离激元拉曼检测技术相结合,创新性地发展了一种等离激元免疫夹心法(Plasmonic immunosandwich assays, PISA),成功实现了单个活细胞及活体动物内多种低拷贝数蛋白质的分析(Angewandte Chemie International Edition, 2016, 55, 13215)。此后,该方法还扩展到单个活细胞中的microRNA的分析(Chemical Science, 2018, 9, 7241)以及基于生理样品中的蛋白质和microRNA标志物的疾病诊断分析(Analytical Chemistry, 2016, 88, 12363;Analytical Chemistry, 2019, 2019, 91, 4831;Analytical Chemistry, 2019, 91, 9993;Biosensors and Bioelectronics, 2019, 145, 111729)。同时,该技术还被成功应用于单细胞信号通路研究和抗癌药物活性评价(Analytical Chemistry, 2020, 92, 12498)等应用。图文导读单细胞等离激元免疫夹心法(scPISA)的工作流程示意图如图1所示。包括三个主要步骤:细胞内萃取、标记和检测。1.将固定有亲和配基的金基微萃取探针在显微操作系统的控制下,准确地插入单个活细胞内特定部位进行目标蛋白的富集。2.萃取一定的时间后将微萃取探针从细胞内拔出,经过适当的清洗步骤降低微萃取探针表面的非特异性吸附,再用亲和配基功能化的银基纳米拉曼标签对富集到的目标蛋白质进行标记,从而在微萃取探针表面形成类似三明治夹心结构的微萃取探针-目标蛋白质-纳米拉曼标签免疫复合物。图1. 单细胞等离激元免疫夹心法的工作示意图3.将共聚焦拉曼光谱仪和细胞显微操作平台耦合(图2 c),使用拉曼光谱仪的DuoScan功能对悬挂在细胞显微操作臂上的微探针进行分析(图2 d),从拉曼的强度信息中得出细胞内低拷贝数蛋白的丰度,细胞内分布等信息(图2 f)。HORIBA共聚焦拉曼光谱仪的DuoScan功能可以对微萃取探针的各个区域进行原位分析,所得到的信号强度变化反应细胞内蛋白的相应变化,能够实现“所见即所得”。当激光照射在该免疫复合物的表面,金基微萃取探针和银基纳米拉曼标签之间纳米级间隙内由于等离激元耦合作用产生“热点”,显著地增强纳米标签的表面增强拉曼散射(SERS)信号,灵敏度达单分子水平,从而能够实现低拷贝数生物分子的检测。图2. 拉曼光谱采集与分析HORIBA XploRA INV多功能拉曼成像光谱仪集成研究级倒置显微镜,专为生命科学研究而设计。不仅具备通常的拉曼光谱测量功能,而且可以实现超快速拉曼光谱成像、荧光成像、超快速PL光谱成像等。HORIBA Scientific 创新的DuoScan™ 技术,将拉曼仪器的成像能力从亚微米级扩展到宏观尺度,从深紫外到红外,扫描共焦图像变得更快、更容易、更灵活。HORIBA XploRA INV多功能拉曼成像光谱仪如果您对上述产品感兴趣,欢迎扫描二维码留言,我们的工程师将会及时为您答疑解惑。文献信息Probing low-copy-number proteins in single living cells using single-cell plasmonic immunosandwich assays文章署名作者:JiaLiu, Hui He, Dan Xie, Yanrong Wen, Zhen Liu文章链接:https://doi.org/10.1038/s41596-021-00547-9刘震教授简介南京大学特聘教授,博士生导师,国家杰出青年基金获得者。英国皇家化学会会士、中国化学会高级会员、美国化学会会员,兼任国际分子印迹学会理事会理事、中国质谱学会常务理事、中国化学会质谱专业委员会委员、中国生物化学与分子生物学会蛋白质组学专业委员会委员、《Analytica Methods》副主编、《Electrophoresis》、《Separation Science Plus》等杂志编委。主要从事分子识别、亲和分离、疾病诊断、单细胞分析和癌症纳米治疗等研究,主持国家重大科研仪器项目和基金委重点项目等国家级科研项目10余项,已在Chemical Society Review,Accounts of Chemical Research,Angewandte Chemie International Edition,Nature Protocols,Chemical Science等期刊上发表论文150余篇,目前h因子49(谷歌学术),主编及合著著作2部,出版专章7章,获授权专利15项。
  • 推进高校薪酬制度改革!国家六部委联合发文
    日前,教育部等六部委联合印发了《关于加强新时代高校教师队伍建设改革的指导意见》。  《意见》提到,切实保障高校教师待遇,吸引稳定一流人才从教。  推进高校薪酬制度改革。落实以增加知识价值为导向的收入分配政策,扩大高校工资分配自主权,探索建立符合高校特点的薪酬制度。探索建立高校薪酬水平调查比较制度,健全完善高校工资水平决定和正常增长机制,在保障基本工资水平正常调整的基础上,合理确定高校教师工资收入水平,并向高层次人才密集、承担教学科研任务较重的高校加大倾斜力度。高校教师依法取得的职务科技成果转化现金奖励计入当年本单位绩效工资总量,但不受总量限制,不纳入总量基数。落实高层次人才工资收入分配激励、兼职兼薪和离岗创业等政策规定。鼓励高校设立由第三方出资的讲席教授岗位。  完善高校内部收入分配激励机制。落实高校内部分配自主权,高校要结合实际健全内部收入分配机制,完善绩效考核办法,向扎根教学一线、业绩突出的教师倾斜,向承担急难险重任务、作出突出贡献的教师倾斜,向从事基础前沿研究、国防科技等领域的教师倾斜。把参与教研活动,编写教材案例,承担命题监考任务,指导学生毕业设计、就业、创新创业、社会实践、学生社团、竞赛展演等情况计入工作量。激励优秀教师承担继续教育的教学工作,将相关工作量纳入绩效考核体系。不将论文数、专利数、项目数、课题经费等科研量化指标与绩效工资分配、奖励直接挂钩,切实发挥收入分配政策的激励导向作用。教育部等六部门关于加强新时代高校教师队伍建设改革的指导意见教师〔2020〕10号各省、自治区、直辖市教育厅(教委)、党委组织部、党委宣传部、财政厅(局)、人力资源社会保障厅(局)、住房和城乡建设厅(委、管委),新疆生产建设兵团教育局、党委组织部、党委宣传部、财政局、人力资源社会保障局、住房和城乡建设局,有关部门(单位)教育司(局),部属各高等学校、部省合建各高等学校:  为全面贯彻习近平总书记关于教育的重要论述和全国教育大会精神,深入落实中共中央、国务院印发的《关于全面深化新时代教师队伍建设改革的意见》和《深化新时代教育评价改革总体方案》,加强新时代高校教师队伍建设改革,现提出如下指导意见。  一、准确把握高校教师队伍建设改革的时代要求,落实立德树人根本任务  1.指导思想。以习近平新时代中国特色社会主义思想为指导,落实立德树人根本任务,聚焦高校内涵式发展,以强化高校教师思想政治素质和师德师风建设为首要任务,以提高教师专业素质能力为关键,以推进人事制度改革为突破口,遵循教育规律和教师成长发展规律,为提高人才培养质量、增强科研创新能力、服务国家经济社会发展提供坚强的师资保障。  2.目标任务。通过一系列改革举措,高校教师发展支持体系更加健全,管理评价制度更加科学,待遇保障机制更加完善,教师队伍治理体系和治理能力实现现代化。高校教师职业吸引力明显增强,教师思想政治素质、业务能力、育人水平、创新能力得到显著提升,建设一支政治素质过硬、业务能力精湛、育人水平高超的高素质专业化创新型高校教师队伍。  二、全面加强党的领导,不断提升教师思想政治素质和师德素养  3.加强思想政治引领。引导广大教师坚持“四个相统一”,争做“四有”好老师,当好“四个引路人”,增强“四个意识”、坚定“四个自信”、做到“两个维护”。强化党对高校的政治领导,增强高校党组织政治功能,加强党员教育管理监督,发挥基层党组织和党员教师作用。重视做好在优秀青年教师、留学归国教师中发展党员工作。完善教师思想政治工作组织管理体系,充分发挥高校党委教师工作部在教师思想政治工作和师德师风建设中的统筹作用。健全教师理论学习制度,全面提升教师思想政治素质和育德育人能力。加强民办高校思想政治建设,配齐建强民办高校思想政治工作队伍。  4.培育弘扬高尚师德。常态化推进师德培育涵养,将各类师德规范纳入新教师岗前培训和在职教师全员培训必修内容。创新师德教育方式,通过榜样引领、情景体验、实践教育、师生互动等形式,激发教师涵养师德的内生动力。强化高校教师“四史”教育,规范学时要求,在一定周期内做到全员全覆盖。建好师德基地,构建师德教育课程体系。加大教师表彰力度,健全教师荣誉制度,高校可举办教师入职、荣休仪式,设立以教书育人为导向的奖励,激励教师潜心育人。鼓励社会组织和个人出资奖励教师。支持地方和高校建立优秀教师库,挖掘典型,强化宣传感召。持续推出主题鲜明、展现教师时代风貌的影视文学作品。  5.强化师德考评落实。将师德师风作为教师招聘引进、职称评审、岗位聘用、导师遴选、评优奖励、聘期考核、项目申报等的首要要求和第一标准,严格师德考核,注重运用师德考核结果。高校新入职教师岗前须接受师德师风专题培训,达到一定学时、考核合格方可取得高等学校教师资格并上岗任教。切实落实主体责任,将师德师风建设情况作为高校领导班子年度考核的重要内容。落实《新时代高校教师职业行为十项准则》,依法依规严肃查处师德失范问题。建立健全师德违规通报曝光机制,起到警示震慑作用。依托政法机关建立的全国性侵违法犯罪信息库等,建立教育行业从业限制制度。  三、建设高校教师发展平台,着力提升教师专业素质能力  6.健全高校教师发展制度。高校要健全教师发展体系,完善教师发展培训制度、保障制度、激励制度和督导制度,营造有利于教师可持续发展的良性环境。积极应对新科技对人才培养的挑战,提升教师运用信息技术改进教学的能力。鼓励支持高校教师进行国内外访学研修,参与国际交流合作。继续实施高校青年教师示范性培训项目、高职教师教学创新团队建设项目。探索教师培训学分管理,将培训学分纳入教师考核内容。  7.夯实高校教师发展支持服务体系。统筹教师研修、职业发展咨询、教育教学指导、学术发展、学习资源服务等职责,建实建强教师发展中心等平台,健全教师发展组织体系。高校要加强教师发展工作和人员专业化建设,加大教师发展的人员、资金、场地等资源投入,推动建设各级示范性教师发展中心。鼓励高校与大中型企事业单位共建教师培养培训基地,支持高校专业教师与行业企业人才队伍交流融合,提升教师实践能力和创新能力。发挥教学名师和教学成果奖的示范带动作用。  四、完善现代高校教师管理制度,激发教师队伍创新活力  8.完善高校教师聘用机制。充分落实高校用人自主权,政府各有关部门不统一组织高校人员聘用考试,简化进人程序。高校根据国家有关规定和办学实际需要,自主制定教师聘用条件,自主公开招聘教师。不得将毕业院校、出国(境)学习经历、学习方式和论文、专利等作为限制性条件。严把高校教师选拔聘用入口关,将思想政治素质和业务能力双重考察落到实处。建立新教师岗前培训与高校教师资格相衔接的制度。拓宽选人用人渠道,加大从国内外行业企业、专业组织等吸引优秀人才力度。按要求配齐配优建强高校思政课教师队伍和辅导员队伍。探索将行业企业从业经历、社会实践经历作为聘用职业院校专业课教师的重要条件。研究出台外籍教师聘任和管理办法,规范外籍教师管理。  9.加快高校教师编制岗位管理改革。积极探索实行高校人员总量管理。高校依法采取多元化聘用方式自主灵活用人,统筹用好编制资源,优先保障教学科研需求,向重点学科、特色学科和重要管理岗位倾斜。合理设置教职员岗位结构比例,加强职员队伍建设。深入推进岗位聘用改革,实施岗位聘期制管理,进一步探索准聘与长聘相结合等管理方式,落实和完善能上能下、能进能出的聘用机制。  10.强化高校教师教育教学管理。完善教学质量评价制度,多维度考评教学规范、教学运行、课堂教学效果、教学改革与研究、教学获奖等教学工作实绩。强化教学业绩和教书育人实效在绩效分配、职务职称评聘、岗位晋级考核中的比重,把承担一定量的本(专)科教学工作作为教师职称晋升的必要条件。将教授为本专科生上课作为基本制度,高校应明确教授承担本专科生教学最低课时要求,对未达到要求的给予年度或聘期考核不合格处理。  11.推进高校教师职称制度改革。研究出台高校教师职称制度改革的指导意见,将职称评审权直接下放至高校,由高校自主评审、按岗聘任。完善教师职称评审标准,根据不同学科、不同岗位特点,分类设置评价指标,确定评审办法。不把出国(境)学习经历、专利数量和对论文的索引、收录、引用等指标要求作为限制性条件。完善同行专家评价机制,推行代表性成果评价。对承担国防和关键核心技术攻关任务的教师,探索引入贡献评价机制。完善职称评审程序,持续做好高校教师职称评审监管。  12.深化高校教师考核评价制度改革。突出质量导向,注重凭能力、实绩和贡献评价教师,坚决扭转轻教学、轻育人等倾向,克服唯论文、唯帽子、唯职称、唯学历、唯奖项等弊病。规范高等学校SCI等论文相关指标使用,避免SCI、SSCI、A&HCI、CSSCI等引文数据使用中的绝对化,坚决摒弃“以刊评文”,破除论文“SCI至上”。合理设置考核评价周期,探索长周期评价。注重个体评价与团队评价相结合。建立考核评价结果分级反馈机制。建立院校评估、本科教学评估、学科评估和教师评价政策联动机制,优化、调整制约和影响教师考核评价政策落实的评价指标。  13.建立健全教师兼职和兼职教师管理制度。高校教师在履行校内岗位职责、不影响本职工作的前提下,经学校同意,可在校外兼职从事与本人学科密切相关、并能发挥其专业能力的工作。地方和高校应建立健全教师兼职管理制度,规范教师合理兼职,坚决惩治教师兼职乱象。鼓励高校聘请校外专家学者等担任兼职教师,完善兼职教师管理办法,规范遴选聘用程序,明确兼职教师的标准、责任、权利和工作要求,确保兼职教师具有较高的师德素养、业务能力和育人水平。  五、切实保障高校教师待遇,吸引稳定一流人才从教  14.推进高校薪酬制度改革。落实以增加知识价值为导向的收入分配政策,扩大高校工资分配自主权,探索建立符合高校特点的薪酬制度。探索建立高校薪酬水平调查比较制度,健全完善高校工资水平决定和正常增长机制,在保障基本工资水平正常调整的基础上,合理确定高校教师工资收入水平,并向高层次人才密集、承担教学科研任务较重的高校加大倾斜力度。高校教师依法取得的职务科技成果转化现金奖励计入当年本单位绩效工资总量,但不受总量限制,不纳入总量基数。落实高层次人才工资收入分配激励、兼职兼薪和离岗创业等政策规定。鼓励高校设立由第三方出资的讲席教授岗位。  15.完善高校内部收入分配激励机制。落实高校内部分配自主权,高校要结合实际健全内部收入分配机制,完善绩效考核办法,向扎根教学一线、业绩突出的教师倾斜,向承担急难险重任务、作出突出贡献的教师倾斜,向从事基础前沿研究、国防科技等领域的教师倾斜。把参与教研活动,编写教材案例,承担命题监考任务,指导学生毕业设计、就业、创新创业、社会实践、学生社团、竞赛展演等情况计入工作量。激励优秀教师承担继续教育的教学工作,将相关工作量纳入绩效考核体系。不将论文数、专利数、项目数、课题经费等科研量化指标与绩效工资分配、奖励直接挂钩,切实发挥收入分配政策的激励导向作用。  六、优化完善人才管理服务体系,培养造就一批高层次创新人才  16.优化人才引育体系。强化服务国家战略导向,加强人才体系顶层设计,发挥好国家重大人才工程的引领作用,着力打造高水平创新团队,培养一批具有国际影响力的科学家、学科领军人才和青年学术英才。规范人才引进,严把政治关、师德关,做到“凡引必审”。加强高校哲学社会科学人才和高端智库建设,汇聚培养一批哲学社会科学名师。坚持正确的人才流动导向,鼓励高校建立行业自律机制和人才流动协商沟通机制,发挥高校人才工作联盟作用。坚决杜绝违规引进人才,未经人才计划主管部门同意,在支持周期内离开相关单位和岗位的,取消人才称号及相应支持。  17.科学合理使用人才。充分发挥好人才战略资源作用,坚持正确的人才使用导向,分类推进人才评价机制改革,推动各类人才“帽子”、人才称号回归荣誉、回归学术的本质,避免同类人才计划重复支持,以岗择人、按岗定酬,不把人才称号作为承担科研项目、职称评聘、评优评奖、学位点申报的限制性条件。营造鼓励创新、宽容失败的学术环境,为人才开展研究留出足够的探索时间和试错空间。严格人才聘后管理,强化对合同履行和作用发挥情况的考核。加强对人才的关怀和服务,切实解决他们工作生活中的实际困难。  七、全力支持青年教师成长,培育高等教育事业生力军  18.强化青年教师培养支持。鼓励高校扩大博士后招收培养数量,将博士后人员作为补充师资的重要来源。建立青年教师多元补充机制,大力吸引出国留学人员和外籍优秀青年人才。鼓励青年教师到企事业单位挂职锻炼和到国内外高水平大学、科研院所访学。鼓励高校对优秀青年人才破格晋升、大胆使用。根据学科特点确定青年教师评价考核周期,鼓励大胆创新、持续研究。高校青年教师晋升高一级职称,至少须有一年担任辅导员、班主任等学生工作经历,或支教、扶贫、参加孔子学院及国际组织援外交流等工作经历。  19.解决青年教师后顾之忧。地方和高校要加强统筹协调,对符合公租房保障条件的,按政策规定予以保障,同时,通过发展租赁住房、盘活挖掘校内存量资源、发放补助等多种方式,切实解决青年教师的住房困难。鼓励采取多种办法提高青年教师待遇,确保青年教师将精力放在教学科研上。鼓励高校与社会力量、政府合作举办幼儿园和中小学,解决青年教师子女入托入学问题。重视青年教师身心健康,关心关爱青年教师。  八、强化工作保障,确保各项政策举措落地见效  20.健全组织保障体系。将建设高素质教师队伍作为高校建设的基础性工作,强化学校主体责任,健全党委统一领导、统筹协调,教师工作、组织、宣传、人事、教务、科研等部门各负其责、协同配合的工作机制。建立领导干部联系教师制度,定期听取教师意见和建议。落实教职工代表大会制度,依法保障教师知情权、参与权、表达权和监督权。加强民办高校教师队伍建设,依法保障民办高校教师与公办高校教师同等法律地位和同等权利。强化督导考核,把加强教师队伍建设工作纳入高校巡视、“双一流”建设、教学科研评估范围,作为各级党组织和党员干部工作考核的重要内容。加强优秀教师和工作典型宣传,维护教师合法权益,营造关心支持教师发展的社会环境,形成全社会尊师重教的良好氛围。教育部 中央组织部 中央宣传部财政部 人力资源社会保障部 住房和城乡建设部2020年12月24日
  • 做色谱柱领域的“ACE”,助力中国生物制药创新——访艾万拓中国总经理王慕阳
    自2020年初新冠疫情爆发以来,mRNA疫苗技术得到迅猛发展,成为应对新冠疫情的关键生物技术。然而mRNA疫苗稳定性差,不利于全球运输和长期储存,识别出可能影响mRNA疫苗稳定性和疗效的杂质对于mRNA疫苗的长期使用至关重要。国际mRNA三巨头之一Moderna于2021年11月在Nature Communications发表了一篇关于脂质纳米颗粒给药系统(LNPs)中mRNA活性丧失新机制的文章,鉴于传统的mRNA纯度分析技术无法精确检测到脂质-mRNA反应形成的杂质,研究者采用反相离子对高效液相色谱(RP-IP HPLC)对此类杂质进行鉴定,识别出使mRNA无法翻译而导致蛋白质表达失败的原因。对于脂质和LNP的表征,文章中巧妙地使用RP-UPLC-CAD检测方法,色谱柱则采用Avantor® ACE® Excel 2 Super C18 2.1*150mm。它是一款基于超惰性碱性去活硅胶颗粒的C18色谱柱,相较于杂化颗粒,其显著优势在于拥有更高的柱效和具有更广泛的pH耐受范围。众所周知,液相色谱检测方法开发过程中,改变pH是优化选择性和鉴定样品杂质的常用手段。上述ACE Super C18系列色谱柱的pH耐受范围为1.5-11.5,满足用户在低、中和高pH条件下探索最佳检测条件的需求。为了进一步了解艾万拓色谱柱的产品特点和发展历史,近日,仪器信息网编辑专访了艾万拓中国总经理王慕阳女士,同时,也借此机会对艾万拓的中国市场战略进行了深入了解。王慕阳 艾万拓中国总经理ACE色谱柱的“前世今生”王慕阳首先向我们介绍了ACE系列色谱柱的发展历史,ACE系列色谱柱原属于英国老牌色谱分析产品制造商Advanced Chromatography Technologies Ltd.,简称ACT公司。2015年,ACT公司被VWR集团收购成为其旗下子公司。2017年,艾万拓为了扩大公司规模、拓展公司业务和优化全球经销网络,成功将VWR收购成为其全资子公司。至此,ACE系列色谱柱成为艾万拓产品家族的一部分。作为美国《财富》500强企业之一,艾万拓(Avantor)是一家为生物制药、医疗保健、教育和政府机构、先进技术和应用材料行业的用户提供关键任务产品和服务的全球先进供应商。王慕阳介绍说:“艾万拓能够给用户提供多样而全面的完整解决方案,包括分析化学、生物制药、食品安全检测等研究领域的解决方案。艾万拓生产的一系列领先UHPLC和HPLC色谱产品,其质量符合ISO 9001/ISO 14001英国认证生产标准,在全球多个国家畅销,备受好评。”艾万拓的色谱柱产品聚焦中高端市场,具有超高性价比,涵盖了最小的毛细管柱、分析柱、制备柱、定制化柱等,不仅满足用户的研发需求,同时帮助用户降低成本,而且独有新型固定相技术能帮助用户完成难度极高的方法开发。通过严格的质控,艾万拓色谱柱具备高稳定性和高重现性,保证用户方法在实验室之间的转移与重现。Avantor ACE系列是艾万拓色谱柱产品系列中的王牌,其采用的独特键合相能够达到其他色谱柱无法实现的分离效果。产品系列包括基于超惰性硅胶新型及常规固定相的多种色谱柱,为用户提供7种粒径、4种孔径和13种标准柱内径等多种选择,并且分析方法可放大至制备级,因此,能够满足用户多样化需求。Avantor ACE色谱柱产品线Avantor ACE色谱柱封装键合技术(EBT™ )示意图Avantor ACE色谱柱能帮助用户缩短研发周期,提高工作效率,节约成本,在越来越多行业里得到用户的认可。国内大型药企如恒瑞、正大天晴、华海,CRO企业如药明康德、科文斯、方达医药等用户都对艾万拓的色谱柱产品十分青睐。除了制药领域,Avantor ACE色谱柱同时也在环境、食品、化工、诊断等诸多领域,拥有广泛的用户群体。王慕阳表示:“艾万拓坚持延续ACE品牌的优秀设计和制造标准,源源不断地为用户带来高品质、性能卓越的Avantor ACE色谱柱,帮助用户解决研发生产中遇到的各式各样难题。”优异的生物药纯化性能——PROchievA™ 重组Protein A树脂随着全球人口老龄化加剧、慢性病患病率持续走高,医疗保健的需求正在迅速增长。单克隆抗体药物以其独特的作用机制及高效性,正在引领第二次生物医药产品浪潮。全球制药企业为提高效率、降低成本不断寻求优化单克隆抗体生产流程的工具。艾万拓新开发的BAKERBOND PROchievA™ 重组Protein A 亲和色谱树脂有效地解决了上述难题,其采用新型专有protein A配基,可为单克隆抗体、Fc融合蛋白和IgG抗体类型分子提供优异的纯化性能。新型J.T.Baker BAKERBOND PROchievA™ 重组Protein A树脂具体性能特点包括:具有出色的mAb动态结合载量和更高的蛋白质纯化能力,在实验室工艺开发和大规模生产方面,它比常用的protein A树脂具有更加出色的性能;采用精心设计的专有配基,能够在碱性条件保持稳定;可在多个纯化循环中保持其高动态结合载量,为多次纯化提供了经济高效的方案;采用安全且不易燃的缓冲液储存、运输,消除了繁琐的操作。王慕阳补充说:“PROchievA™ 重组Protein A树脂能够与J.T.Baker层析缓冲液和添加剂一起使用,为生物制药亲和层析提供更高的效率和纯度。”据悉,J.T.Baker品牌有140多年的历史,其高品质产品,优化的应用方案和功能性检测可以满足用户的高端应用需求,并确保高精度和高重现性的结果。持续加码中国市场,推动中国生物制药创新2010年,艾万拓将其全球专业技术引入中国市场,为中国市场提供驻场服务、采购服务、仪器设备管理服务、临床服务及数字化解决方案。凭借出色的产品和优异的服务体验,艾万拓在中国拥有一众忠实的用户和粉丝。艾万拓2021年全球净销售额为73.9亿美元,较2020年增长约15.5%。与此同时,中国区的业绩增长令人振奋,增长速率高达22%。王慕阳表示:“艾万拓十分看好中国市场。未来,中国市场将继续成为艾万拓全球战略投资和业务拓展重心。着眼于潜力无穷的中国市场,艾万拓将扩大在华制造工厂的建设,引入独特的解决方案,加强供应链安全性和提高区域产能,更好地服务于快速增长的中国市场。”中国已将生物技术列入“中国制造2025”的十大战略增长领域,明确了在创新、出口市场和进口替代产品等方面的具体目标,并通过诸如“健康中国2030”、“十四五”生物经济发展规划等方案,优先部署医疗健康产业,大力发展生物经济,使中国的生物制药行业处于前所未有的高速扩张中。王慕阳表示:“艾万拓未来在华投资战略布局中,将目光聚焦于具备高水平制造能力的生物制药企业,推动创新以满足生命科学市场日益增长的需求。艾万拓整合自身能力与优势,优化全球系统和业务流程,为中国生物产业领域的用户提供世界级的解决方案,包括单克隆抗体、细胞和基因疗法、mRNA以及COVID-19疫苗的生产等。”艾万拓提供的产品和服务包括J.T.Baker高精度耗材、Masterflex蠕动泵和一次性使用系统等,在研发、工艺开发和商业化生产中发挥了至关重要的作用。从新冠患者检测到疫苗开发和生产,再到疗法供应链,艾万拓在抗击新冠肺炎疫情的各个阶段为生物制药企业提供全方位支持,艾万拓的技术和质量标准也帮助中国新冠疫苗和制药公司走向全球。截止目前,艾万拓在全球设有12个创新中心,艾万拓上海创新与用户支持中心是在中国首个支持生物制药创新及用户服务的实验室和应用中心,旨在助力生物制药发展,为行业提供更多突破性的解决方案,提升艾万拓为在华用户提供专业服务的能力。王慕阳说:“上海创新及用户支持中心的落成印证了我们对中国成长为全球生物制药行业的创新枢纽充满信心,艾万拓将继续为中国企业带来优化的解决方案和先进的原料产品。”
  • “制造基础技术与关键部件”重点专项2021年度项目申报指南发布
    3月12日,科学技术部发布国家重点研发计划 “制造基础技术与关键部件”重点专项2021年度项目申报指南。“制造基础技术与关键部件”重点专项2021年度项目申报指南中明确提到,本重点专项按照产业链部署创新链的要求,从基础前沿技术、共性关键技术、示范应用三个层面,围绕关键基础件、基础制造工艺、先进传感器、高端仪器仪表和基础技术保障五个方向部署实施。按照共性关键技术类和示范应用类,拟启动18个项目,安排国拨经费总概算约1.8亿元(其中,方向1.1~1.9为青年科学家项目,国拨总经费不超过4500万元)。为充分调动社会资源投入制造基础技术与关键部件的技术创新,在配套经费方面,共性关键技术类项目(非青年科学家项目),配套经费与国拨经费比例不低于1:1;示范应用类项目,配套经费与国拨经费比例不低于2:1。鼓励产学研团队联合申报。拟启动项目研究方向如下:1. 共性关键技术1.1 滚动轴承基础物理参数检测技术(青年科学家项目)研究内容:研究滚动轴承润滑性能检测原理与技术;研究滚动轴承旋转组件温度检测原理与技术;研究滚动轴承内部游隙及受力状态检测原理与技术;开展滚动轴承基础物理参数检测技术验证。考核指标:研制出真实工况条件下轴承的油膜厚度与分布、旋转组件温度、轴承内部游隙及受力状态的检测装置;油膜厚度测量范围0.1~300μm,分辨率优于0.1μm;运转条件下轴承内外套圈、保持架的温度测量范围 RT~180℃,精度优于±0.5℃,测量转速不低于30000r/min;运行状态下力测量范围不小于轴承额定动载荷的30%,精度优于±1%FS;申请发明专利≥3项。1.2 滚动轴承装配基础与智能装配方法(青年科学家项目)研究内容:研究滚动轴承组件装配工艺对服役性能影响机理,滚动轴承装调工艺对转子系统服役性能影响机理;研究滚动轴承组件/转子系统装配工艺参数优化方法与软件系统;研制针对滚动轴承组件/转子系统装调过程,具备精准检测、自动调整、自适应压装的智能装配原理验证系统,提高轴承合套成功率。考核指标:考虑滚动轴承装调工艺参数的轴承服役性能仿真预测准确率70%;装配工艺参数优化软件可实现轴承组件最优选配、装调载荷、装调相位、连接载荷等参数精准计算;滚动轴承智能装配工艺装置装配过程力载荷检测与控制精度优于±0.5%FS; 位移测量与调控分辨率优于0.2μm;申请发明专利≥3项。1.3 高功率密度液压元件摩擦副寿命预测与延寿设计(青年科学家项目) 研究内容:研究液压元件摩擦副的多尺度多自由度动力学特性、固—液—热多场耦合建模理论;研究摩擦副间隙油膜关键参数原位测试原理;研究高速重载摩擦副性能退化规律和典型损伤机理,建立界面累积损伤和元件性能动态劣化评估模型;研究新型摩擦副调控延寿设计方法,并开展相关试验验证。考核指标:2种以上液压元件的摩擦副油膜性能分析与动态演化仿真软件各1套,仿真精度≥90%;液压元件摩擦副油膜参数分布式测试装备1套,具备油膜厚度场、温度场、压力场等至少3种在线测试功能;针对航天航空等领域,液压元件功率密度提高20%以上;申请发明专利≥2项。1.4 高性能液压阀性能在线监测与智能控制(青年科学家项目)研究内容:研究液压阀口的冲蚀磨损及阀芯卡滞机理与演化规律;建立多维融合感知的液压阀性能衰退与预测模型;研究电液控制阀服役过程的实时补偿技术,开发具有性能监测和故障诊断功能的可编程集成控制器;开展相关试验验证。考核指标:高可靠智能型电液控制阀样机2种以上;控制精度0.1%,典型故障检测类型≥5类,识别率≥80%;具备IO-link总线通讯接口的位置轴控精度不低于1%FS;申请发明专利≥3项。1.5 齿轮传动系统多维信息感知及智能运维(青年科学家项目)研究内容:研究传动/感知/控制等深度融合的智能化齿轮传动系统,探索传动系统全生命周期内轮齿损伤(如点蚀、磨损、胶合、断齿)、应力、温度、振动等多维信息监测新方法;研究齿轮传动系统多维信息的故障自诊断及自适应调控等智能运维机制;研究齿轮传动系统服役性能及残余寿命的智能预测方法。考核指标:齿轮传动系统智能感知及智能运维验证系统1台/套;具备传动系统内部应力、温度、振动及轮齿损伤等监测功能,监测精度优于5%;具备智能运维功能,故障自诊断正确率不低于80%;申请发明专利≥3项。1.6 基于二维材料的柔性应变传感器阵列(青年科学家项目)研究内容:研究基于二维材料的柔性应变传感器敏感材料的性能调控方法和微观机理;研究与微纳加工、印刷工艺兼容的应变敏感材料、传感器结构、可靠性及封装技术,以及柔性应变传感器阵列的加工方法;在工业或人体表皮进行长期连续监测验证。考核指标:传感器应变系数≥500,拉伸性≥50%,最低检测限≤0.08%,循环稳定性≥50000次@5%应变,响应时间≤50ms; 阵列性能离散性≤5%;研制应变传感可穿戴集成系统原型,申请发明专利≥3项,制定技术规范或标准≥1项。1.7 高灵敏磁电阻传感器(青年科学家项目) 研究内容:研究高灵敏磁电阻传感器敏感材料、原理和结构;研究低噪声磁性多层膜结构材料;研究磁电阻—微机电和磁电阻—超导一体化调制效应的影响机理;研究高灵敏磁传感器芯片制造工艺;研究传感器的噪声抑制、磁通汇聚、三维集成、封装等关键技术;研究传感器ASIC芯片设计;研制原型器件,并在工业现场试验验证。考核指标:磁传感器灵敏度优于200mV/V/Oe,量程≤±100μT,功耗≤100mW,本底噪声≤1pT/Hz@1Hz;申请发明专利≥3项。1.8 高灵敏MEMS三维电场传感器(青年科学家项目) 研究内容:研究高灵敏MEMS三维电场传感器的敏感机理和结构;研究三分量电场耦合干扰抑制方法及高精度测量方法;研究传感器制备工艺、抗表面电荷积聚封装等关键技术;研究传感器弱信号检测方法,研制出传感器原型,并在工业现场试验验证。考核指标:传感器测量范围0~100kV/m;单分量电场分辨力优于1V/m;轴间耦合度5%;准确度优于5%;传感器敏感结构尺寸≤12mm×12mm;申请发明专利≥3项,制定技术规范或标准≥1项。1.9 硅基厚金属膜制造工艺基础(青年科学家项目)研究内容:研究圆片级硅基MEMS厚金属膜工艺兼容性技术;研究高质量厚金属膜材料力学性能匹配方法、工艺和原位测试技术;研究硅基厚金属膜微结构释放技术,开发基于硅基MEMS厚金属膜工艺能力验证评价技术,开展工艺可用性验证。 考核指标:建立硅基厚金属膜制造基础工艺体系,圆片直径≥150mm,金属膜厚度≥5μm,厚度误差≤±3%;工艺验证器件数量≥2种;申请发明专利≥3项。1.10 分布式独立电液控制系统关键技术研究内容:研究典型非道路移动机器的电液控制系统构型原 理与参数优选方案;研制集成化一体化的电液控制执行机构;开发硬件在环仿真和试验测试系统,研究全局功率匹配和高效能量管理方法;研究分布电液控制系统的高动态泵阀复合控制技术,并开展相关试验验证。考核指标:分布式电液控制执行机构1套,应用至非道路移动 机器整机并较原有机型降低燃油消耗40%;分布式电液控制系统能效分析与优化设计软件1套;总线型数字式综合控制器1套,流量控制误差≤2%;模拟测试系统平台1套;申请发明专利≥2项。1.11 工业测控高精度硅基压力传感器关键技术研究内容:研究差压、表压和绝压高精度压力传感器芯片设计制造关键技术;研究硅基MEMS加工应力控制方法与传感器高可靠封/组装技术;研究宽温区温度补偿校准方法,实现基于自主开发压力敏感芯片的系列化压力传感器在流程工业、装备工业等重点领域应用验证。考核指标:差压传感器量程0.015MPa,非线性误差0.3%FS,迟滞0.05%FS,工作温度-40~85℃;表压传感器量程0.5MPa,非 线性误差0.2%FS,迟滞0.05%FS,工作温度-40~85℃;绝压传感器量程3MPa,准确度 0.02%FS,工作温度-40~85℃;高温压力传感器量程2MPa,准确度0.25%FS,工作温度-55~250℃,响应频率≥400kHz;压力变送器准确度0.05%FS;申请发明专利≥5项。1.12 工业机器人减速器状态监测传感器关键技术研究内容:研究薄膜应变传感器在机器人减速器部件表面上的原位集成工艺、设计制造及可靠性技术;研究适应减速器内部环境的无线应变传感器设计制造及测量技术;研究MEMS薄膜声发射传感器设计制造及可靠性技术;研制的传感器在谐波减速器和RV(旋转矢量)减速器应用验证。考核指标:谐波减速器应变传感器灵敏度因子≥1.5,TCR(电阻温度系数)≤110ppm,线宽≤10μm@曲率半径62.5μm基底;RV减速器无线应变传感器测试范围0~1000με,误差≤±1%;声发射传感器工作频率范围 40~400kHz,灵敏度优于60dB;申请发明专利≥3项。1.13 开放式数控系统安全可信技术研究内容:研究开放式数控系统协议安全、密码资源管理、数据安全等应用技术;研究数控系统密码应用、身份管理及管理平台等关键技术;开发与数控系统融合的可信密码控制模块;构建可信度量、可信验证、信任链传递方法等数控系统安全可信体系结构及标准规范;在航空航天、装备制造等领域开展安全可信数控系统的应用验证。考核指标:可信密码模块符合GMT 0028-2014《密码模块安全技术要求》,加/解密时延1ms;基于可信密码模块的安全数控系统对程序、数据和功能具有不少于8个级别的存取权限;数据传输加解密吞吐率≥100MB/S;可信互操作协议支持数控装备互联互通等协议≥3种;制定标准规范≥3项。1.14 智能网联工业控制安全一体化增强技术研究内容:研究智能网联工业控制安全一体化风险多重耦合机理、失效判定方法及入侵/故障检测技术;研究实时状态分析、动态风险预测和智能决策支持技术;研究设备安全增强的信息模型和数据接入方式;研制工业控制安全一体化增强装置,在重大装置、流程工业等开展应用验证。考核指标:增强装置2套,支持工业协议≥6种,具备关键安全指标在线分析、动态适配和协同性验证功能;知识库和算法库≥5类;具备功能安全完整性SIL3、信息安全SL2的仪表和控制设备≥3种;制定标准规范≥2项。1.15 典型流程工业信息安全防护关键技术研究内容:研究工业互联网架构下典型生产过程和装置的攻击脆弱性机理及响应机制;研究内嵌工业特征的信息安全防护关键技术;开发智能型安全防护原型系统;搭建测试验证平台,并在石油、化工、建材等典型流程工业开展应用验证。考核指标:可配置、可移植的智能型信息安全防护原型系统2套,支持工业协议≥6种;功能安全完整性等级 SIL2,信息安全等级SL2;申请发明专利≥5项,制定标准规范≥2项。2. 示范应用2.1 动力系统关键传感器开发及示范应用研究内容:研究集成式多路电压传感器设计、高低压可靠隔离、高压切换开关及高精度模数转换技术;研究宽量程电流传感器芯片设计及可靠性技术;研究高精度电机位置传感器薄膜材料工艺、设计及制造技术,开发信号调理电路;开发传感器及模块应用技术,在电动汽车等领域示范应用。考核指标:多路电压传感器最高检测电压≥1000V,电压检测精度优于0.5%,采样率≥1MHz,分辨率≥12 Bit;电流传感器直流量程±1000A,精度优于0.1%;电机位置传感器转速范围0~30000r/min,分辨率≥16 Bit(360度角度范围),系统延时≤2μs; 检测高压母线电流,功能安全等级ASIL B;传感器可靠性水平满足不同电动汽车用户单位要求。2.2 动力电池组控制安全传感器开发及示范应用研究内容:研究动力电池组单体电压与温度检测方法,高速高精度模数转换及多芯片扩展技术;研究电池热失控的压力、VOC(挥发性有机化合物)、气溶胶等传感器设计制造技术;开发传感器及模块应用技术,在电动汽车等领域示范应用。考核指标:单体直流电压监测范围±5V,测量精度优于±2.5mV;热失控监测传感器压力测量范围50~250kPa,误差≤±1.5kPa,响应速度≥100ms;VOC传感器检测气体成分包括:CO、CO2、C2H4、CH2O 有机挥发物,测量范围0~5000ppm,误差≤±15%;气溶胶传感器测量范围200~5000μg/m3,误差≤±15%; 整机安全:防止乘客仓起火ASIL D,防止人员触电ASIL D;传感器可靠性水平满足不同用户单位要求。2.3 医疗影像装备关键传感器开发及示范应用研究内容:研究SiPM(硅基光电倍增管)辐射传感器设计制造;研究磁栅位置传感器设计制造及抗辐照技术;研究强磁场背景下高分辨磁场传感器设计制造技术;研究传感器敏感元件与相关抗辐照调理电路设计;研制的传感器在CT(断层扫描仪)、PET(正电子发射断层成像)、RT(影像引导放疗)或MR(磁共 振)等医疗影像装备示范应用。考核指标:辐射传感器光子探测效率≥50%,增益≥2.5×106, 单光子时间分辨率100ps;磁栅位置传感器分辨力≤1μm,抗辐 照能力≥100000cGy;磁场传感器分辨率≤10μT@1.5T,灵敏度优于30nT/Hz1/2;上述传感器至少在2类医疗影像装备上示范应用;传感器可靠性水平满足不同用户单位要求。附件:“制造基础技术与关键部件”重点专项2021年度项目申报指南.pdf
  • 一滴污水锁定毒踪|质谱技术之污水验毒
    污水验毒作为一种重要的禁毒科技手段,能够精准推算出特定区域内滥用毒品的种类、吸毒人员规模等数据。目前,实验室污水毒品检测的定量限已低于1ng/L浓度,相当于往西湖里倒1克毒品都能被检测出来,对于开展制毒窝点排查、涉毒违法犯罪打击和毒情预警等工作,具有重要意义。  近年来,各地公安禁毒部门深入开展污水监测,提升科学采样、数据分析、精准发现案件线索的能力,为禁毒工作提供有力的技术支撑,探索高质高效毒品治理路径。  仪器信息网特别建立“质谱在毒品分析领域的技术应用进展”专题,聚焦质谱技术在毒品检测领域的最新应用,以增强业界质谱专家和技术人员、司法公安相关机构工作者之间的信息交流,同时向仪器用户提供毒品分析领域更丰富的质谱产品、技术解决方案。  毒品吸食后经人体代谢,其代谢物和原型物会随着尿液和粪便会被排入生活污水,通过测定未经处理的生活污水中毒品的浓度并推出毒品的消耗量。这种技术来源于污水流行病学,是了解区域毒情的新兴的重要技术手段。通过准确测定未经处理生活污水中的毒品及其代谢产物的浓度,并应用相应数学模型计算,可将测得的毒品浓度(ng/L)推算为该区域内吸毒人员服用的某种类型的毒品数量(单位:g/1000人/天)。  2005年,意大利首次采用污水分析技术对国内的可卡因消耗情况进行了评估。此后,有更多的实验室和毒品监测机构将污水分析技术应用于不同国家、城市的毒情评估中,监测的毒品种类有海洛因、苯丙胺类毒品、氯胺酮、可卡因、大麻等。污水分析技术已受到联合国毒品与犯罪办公室(UNODC)和欧盟EMCDDA、美国环保署(EPA)等机构的重视与支持。我国不仅利用该技术大规模监测大中城市的毒品滥用情况,全面评估城市毒品滥用情况,更成功利用该技术精确打击制毒、吸毒的违法行为。  污水毒品检测主要面临两大技术难点:  1. 目标分析物浓度极低。毒品及其代谢物经人体代谢排入生活污水管网,随着水体的流动而扩散、稀释,另外化合物的代谢率,以及化合物在污水管网中存在吸附和降解,因此毒品及其代谢物在生活污水样品中的浓度极低,一般在ng/L水平。  2. 基质复杂。生活污水所含的污染物主要是有机物和大量微生物,其中有机物中的表面活性剂、治疗药物及微生物的代谢物均会干扰质谱检测,影响目标分析物的灵敏度。  精准指引破案  人在吸食毒品后,毒品原体及其代谢物会随着人体排泄物进入到地下污水管网,并最终汇集到污水处理厂。因此,工作人员只要定期在污水处理厂采集污水样本,通过检测,就能够获得污水中毒品及其代谢物的准确浓度数据,并据此推断出污水厂覆盖区域内的毒品滥用量和滥用规模。  今年9月,央视社会与法频道《一线》栏目报道了一起通过污水验毒溯源破获的涉毒案件。时间回溯到2021年8月,山西省吕梁市孝义市在开展城市生活污水监测中,发现甲卡西酮指标异常。  孝义警方高度重视,随即在全市范围内开展走访排查。警方掌握的线索显示,孝义当地某处有人吸毒。民警立即进行调查,并据此线索成功抓获了3名吸毒人员。  “根据3人的供述,他们吸食的是甲卡西酮。”民警经讯问了解到,本案中吸食甲卡西酮的人员不止他们3人,其中还包括参与贩卖的上线。至此,一个贩卖吸食甲卡西酮的团伙逐渐浮出水面。  孝义警方循线追踪,铁拳出击,最终成功侦破一起跨省毒品案,缴毒达10余千克。2023年5月,孝义市人民法院对本案进行了公开宣判,几名主要被告人因犯贩卖毒品罪分别被判处13年至15年不等的有期徒刑,并被处没收个人财产。其他涉案人员也受到了相应的惩罚。  吕梁市公安局禁毒支队负责人介绍,近年来,省禁毒委在全省推广污水毒品成分监测,每个县每个月或每个季度都要对污水进行采样和化验分析,根据检测中含有毒品成分的比例,来换算出某一地区毒品滥用情况。  近年来,各地公安禁毒部门在打击毒品违法犯罪中,运用了很多新技术,污水验毒技术已成为打防毒品违法犯罪的新利器。据相关人员介绍,从污水处理厂或下水管道获取到的污水,经冷链运输等环节到达实验室,再经过一系列过滤、萃取等前处理程序,最后浓缩为一滴待检样品进行检测。污水验毒具有较高的灵敏度和准确度,具有客观可靠、便于执行、适用性强等优势。根据污水监测结果,公安禁毒部门有针对性地组织专门力量,对毒情异常突出的重点区域展开调查摸排,为开展精准打击制贩毒行为指明方向。  还原涉毒轨迹  根据污水监测数据信息指引,公安禁毒部门可更精准地对毒品案件进行层层溯源。如某个污水厂的监测指数出现异常,民警便可以通过污水管网缩小范围,圈出毒源,从而辅助涉毒定位。  据《法治日报》报道,因为在城市污水的日常监测中发现了毒品成分,四川省南充市和嘉陵区两级公安禁毒部门顺藤摸瓜,精准溯源,成功打掉了一个27人的涉毒团伙,查获毒品冰毒、氯胺酮、“神仙水”共133克。  该案还得从2022年7月说起,当时国家毒品实验室四川分中心工作人员在日常污水监测中发现,南充市顺庆区、嘉陵区两处污水样本含有氯胺酮、“神仙水”成分。  随后,南充市公安局禁毒支队迅速行动,邀请四川省毒品实验室专家,运用四川毒情监测综合应用系统,确定了涉毒人员的基本区域位置。办案民警介绍,通过分析比对发现,居住在某小区的36岁吸毒男子皮某活动轨迹与污水检测溯源轨迹高度吻合。民警进一步工作发现,皮某在2022年10月初氯胺酮检测结果呈阳性,且多次深夜频繁出现在污水监测指标异常区域,有重大涉毒嫌疑。  南充市公安局禁毒支队以此为突破口开展侦查,一个长期盘踞在南充市顺庆区、嘉陵区、蓬安县的涉毒团伙浮出水面。团伙主要成员皮某、李某从家住成都市的上家晏某处购得毒品后回南充市贩卖,肖某则负责提供吸食窝点。民警经过蹲守锁定了该吸食窝点位于顺庆区某村肖某的自建别墅内,别墅一楼被肖某打造成了KTV,他不时组织朋友以唱歌、喝酒为幌子,暗地吸毒。  根据获取的线索,民警于2022年11月14日晚开始收网,抓获全部涉毒人员。南充警方通过一瓶污水检验出毒品,采用溯源的方式辅助涉毒定位,锁定犯罪嫌疑人和吸毒窝点,是本案侦破的关键。四川省公安厅禁毒缉毒总队毒品实验室高级工程师、四川警察学院特聘研究员徐布一告诉记者,即使是极其微量的毒品和经人体排泄后的代谢物也可以通过污水验毒检测到,目前实验室污水毒品检测的定量限已低于1ng/L浓度,可检测出包括毒品、新精神活性物质或其代谢物等,相当于往西湖里倒1克毒品都能被检测出来。当污水中毒品数值突然增加,就提示污水管网覆盖范围可能有吸贩毒行为,工作人员可以根据相关数值综合判断涉毒类型。  立体预警毒情  随着科技水平的不断发展,污水监测技术和水平也在不断进步,一些地方公安禁毒部门以构建全方位毒情监测体系为总目标,强化毒品滥用趋势多点监测、多维研判布局,深入开展污水毒品监测体系建设,不断创新优化城市生活污水毒品含量监测手段,夯实风险立体防控、综合治理格局。  今年以来,宁夏回族自治区吴忠市禁毒办强化毒情监测基础数据采集,积极谋划建立污水监测长效机制。2022年年底,在利通区16条街道、24个小区开展了污水毒情监测试点,锁定4个存在滥用冰毒情况的小区,开启了污水毒情数据收集、分析研判、溯源追查的有益探索。2023年以来,市禁毒办又研发了“全市毒情监测系统”,采购35台多领域水质自动采样器,选取60个污水采样点,全面铺开污水检测工作。在此基础上,吴忠市将污水毒情监测工作融入城市管理和社会治理创新范畴,市禁毒办联合财政局、住建局、环保局、卫健委、公安局,印发了城市生活污水采样监测毒情工作实施方案,明确市政部门提供地下管网分布情况并科学选点、卫健部门提供检测区域内临床使用麻精药品情况并分析检测结果、禁毒部门负责涉毒线索发现、环保部门监测环境污染并提供相关信息的职责分工。  宁夏回族自治区同心县禁毒办工作人员对污水进行采集和封存。李正龙 摄  2023年5月10日,贵州省市场监督管理局批准发布贵州省地方标准《生活污水毒情监测采样规范》,明确了生活污水毒情监测采样的技术要求,对采样安全、质量控制和污水样品的存储、运输、交接和现场记录等作出详细规定。省禁毒办负责人表示,该规范的正式发布实施将对全省污水验毒工作发挥重要支撑和引导作用,进一步推动污水验毒工作提质增效。(点击了解》》污水验毒技术应用进展)评估治毒成效  污水验毒不仅可以为禁毒工作实战提供指引,为毒情预警提供支撑,还可用于评估毒品问题治理成效,为禁毒重点整治、示范城市创建等工作提供强有力的支持。  据介绍,哈尔滨市、县两级禁毒部门定期专项开展污水验毒工作,严格规范采集、编号、储存、检测等环节,全程录像,确保结果客观准确。目前,全市污水验毒已覆盖900余万人口,禁毒部门多次向住建部门搜集污水处理厂覆盖人口、日均处理量等数据,为科学准确地评估辖区毒情提供可靠依据。同时,对指标异常的区县和乡镇进行复检和持续监测,摸清全市所有区县及镇街毒情变化,从而科学评估毒品问题治理质效。  2022年6月,哈尔滨市五常市被省禁毒委列为重点整治地区,市公安局禁毒大队通过污水溯源整治该市毒品问题。禁毒大队建立全市毒情监测体系,采取动态模式对市内生活污水进行监测,按季度客观分析毒情形势,通过监测动态数据,及时开展污水溯源工作。自2023年以来,禁毒大队通过污水溯源共计破获3起贩毒案件,抓获犯罪嫌疑人10名,查处吸毒人员21名。  根据污水监测数值显示,自2022年第一季度至2023年第三季度,五常市生活污水中毒品含量呈直线下降趋势,监测数值的变化,反映该市毒情形势持续好转。  在动态掌握毒情的基础上,禁毒大队还采取宣传和打击相结合的模式,对污水值较高的地区,强化禁毒宣传教育力度,通过更多元的宣传渠道,更创新的宣传方式让禁毒知识深入人心。通过污水验毒实时研判出区域内涉毒违法犯罪情况,为辖区毒情形势监测、禁毒工作成效评估以及打防涉毒活动提供支持,有力震慑着各类毒品违法犯罪,为社会治安秩序持续安全稳定奠定了良好基础。
  • 浅谈令人“爱恨交加”的Protein A亲和层析介质(上)
    下游工艺先进性决定了药品的质量抗体药物生产是个非常复杂的过程,大致分为上游的发酵及下游的分离纯化:上游工艺主要包括细胞复苏、传代、发酵生产。而下游工艺主要包括膜过滤及多步层析分离纯化。过去十多年来,基因工程获得突飞猛进的进步,细胞培养的表达量从原来的不到0.5 g/L 到现在普遍达到5g/L,有的甚至超过10g/L。这些进步是由细胞表达载体的开发,克隆筛选以及细胞培养基优化等技术创新所驱动的。由于发酵产率的大幅度提升,使得上游细胞培养成本大幅度降低,下表是抗体生产成本与表达量的关系。表1.表达量与抗体生产成本关系Titer(g/L)Annualproduction(1000kg)DisposableMaterial物料成本($/g)Cell Culture PurificationFacilitiesc厂房/设备/人工FormulationCost($/Vial)Total Cost($/Vial)100 mg 1 g0.51204100422 134244425413 435102410412 26与上游十多倍生产效率提升相比,下游分离纯化技术进步明显滞后,导致下游工序成为生产瓶颈,抗体主要生产成本也转移到下游。下游工艺在整个生物制药生产中占据60%以上生产成本,也被认为是最需要改进的技术领域。下游工艺先进性决定了药品的质量,及药品生产效率和成本,也成为生物制药企业的核心竞争力所在。由于生物分子由于结构复杂,对外部条件敏感,稳定性差,杂质多,浓度低等特点,且监管部门对生物药的纯度和质量要求越来越高。因此下游的分离纯化成为生物制药的瓶颈,也是生物制药成本最大的一块。层析技术由于具有分离纯化效率高,条件温和且容易保持目标分子的生物活性,因此层析是生物制药分离纯化最主要方法。层析介质的“皇冠之珠”——令人爱恨交加的Protein A生物大分子的层析方法主要分为亲和,离子交换,疏水作用及体积排阻。亲和层析是利用介质上的配基与目标蛋白分子有特异性结合,而对其它的蛋白质及杂质不吸附,因此杂质从层析柱中流出,被吸附的目标生物分子通过改变洗脱液的条件使被分离物质与配基解吸附,即可达到分离纯化的目的。亲和层析无疑是最理想的层析分离方法,其与其它分离方法如离子交换、疏水、体积排阻等最大的不同是由于亲和层析只与目标生物分子发生专一性吸附,其它杂质都不吸附,因此亲和层析分离纯化的工艺条件与杂质的组成及含量多少关系不大,从而大大简化亲和分离工艺开发方法,而其它分离方法如离子交换、疏水、体积排阻等都是基于目标分子跟杂质分子之间的大小,电荷及疏水强度的差异来分离的,因此即使分离纯化同样的目标分子,但不同样品的杂质组分不同,含量不同,纯化工艺方法就需要重新调整。Protein A填料由于与大多数抗体有特异性吸附,因此被广泛地用于抗体药物生产过程中,极大地提高了抗体的分离纯化效率,毫无疑问Protein A 亲和介质是层析介质的皇冠上的明珠,其价格也是普通层析介质的十几倍。Protein A 亲和层析介质之所以会成为层析介质的贵族与它对抗体有特异性吸附有关。Protein A 亲和层析是利用Protein A 配基与目标抗体具有专一亲和吸附作用从而达到分离纯化抗体的目的。因为配基与目标抗体的作用的专一性,其分离纯化与目标样品抗体纯度无关,也与样品杂质含量和种类多少无关,使用Protein A 填料一步纯化目标抗体就可以达到95%纯度以上,回收率达到90%以上。Protein A 层析介质的出现,让抗体的分离纯化步骤及方法大大简化,使得抗体的分离纯化比其结构简单多的生物分子都要简单。抗体分离纯化基本都是标准化的三步曲,第一步用Protein A进行抗体捕获,第二步用阳离子去除多聚体,第三步用阴离子精纯去除剩余少量杂质。Protein A亲和层析已经成为平台化技术,被广泛应用在抗体类分子捕获阶段。Protein A与抗体分子之间可特异性结合,特别对IgG1、IgG2、IgG4有较强亲和作用,使得抗体分子与发酵液中不具FC端结构的杂质如宿主蛋白与核酸等有效分离,进而达到纯化目的。亲和特异性赋予了Protein A填料捕获时可接受更宽泛的样品条件,如pH及电导率等。因此,发酵液通过离心、深层过滤后即可直接进行亲和捕获。另外与离子交换、疏水层析等方法相比,Protein A亲和层析纯化抗体料液可以获得更大的纯度,一步就可以获得抗体纯度大于98%,而且在回收率上也有明显优势,亲和捕获回收率可达95%。抗体工作者对Protein A 是爱恨交加,爱的是Protein A 亲和层析的出现大大简化抗体的分离纯化工艺开发,并大幅度提高抗体纯化效率和纯度,而且几乎适用于所有抗体的分离纯化。恨的是Protein A 亲和介质价格贵,寿命短,占据下游分离纯化成主要本。虽然很多科学家曾经致力于研究新的价廉抗体亲和配基以取代昂贵的Protein A亲和配基,但都没有成功找到一个可以取代Protein A 配基的分子。Protein A亲和层析因其高度特异性及同时具有浓缩的效果成为过去近30年里抗体纯化捕获的金标准。Protein A亲和层析介质贵的主要原因有两方面,一方面是Protein A 蛋白配基成本远比传统的小分子配基昂贵,另一方面,Protein A亲和填料寿命较短也是其成本过高的主要因素。一般离子交换填料使用寿命可高达1000次,而亲和填料寿命通常在100-200次。还有Protein A 介质贵与其一直处于高度垄断的局面也有关系,因此Protein A 亲和层析介质国产化以降低抗体的生产成本是必然的发展趋势。ProteinA结构及作用机制ProteinA蛋白是金黄色葡萄球菌细胞壁锚钉蛋白,其C端为细胞壁结合区域,抗体结合区域包括五个同源区域(E、D、A、B、C,N端顺序)。五个domain的序列同源率65-90%(图1)。图1 重组与天然ProteinA基本性质三维空间上,抗体FC端CH2-CH3区域与ProteinA蛋白B结构域上两条反相平行的α螺旋结构相互结合。抗体与ProteinA结合时,主要依靠的是疏水作用力,其次是氢键和双盐桥作用力。疏水作用主要来自于核心区域组氨酸残基。抗体上高度保守的组氨酸残基与ProteinA上的组氨酸残基发生相互作用。碱性或中性条件下,组氨酸残基不带电荷,其咪唑环的疏水效应的增强促进了FC端与ProteinA的结合。当pH降低至4.5以下时,组氨酸带上正电荷,于是两者产生静电排斥力,抗体从ProteinA上解离。除FC端恒定区域外,可变区VH3也参与了ProteinA结合及洗脱,影响洗脱pH(图2)。图2单抗分子结构 图3 抗体分子与ProteinA作用Protein A来源于金黄色葡萄球菌的一个株系,它含有5个可以和抗体IgG分子Fc段特异性结合的结构域,当其作为亲和配基被偶联到填料基质上后,可特异性地与样品中的抗体分子结合,使其他杂蛋白流穿,借助高效亲和层析仅需一步就可使目标抗体纯度超过95%,此外Protein A也可结合另一些免疫球蛋白,如可用于某些种属IgA、IgM的纯化。由于Protein A亲和层析基于天然存在的生物大分子之间特异性结合为分离机理,这种得天独厚的势使得Protein A亲和层析成为重组蛋白\抗体等分离纯化中的绝佳选择(图3)。下一期,江必旺博士将继续分享Protein A亲和填料的关键考核要素有哪些,敬请持续关注。
  • 液质联用污水验毒,助力毒品溯源
    p style=" text-align: justify text-indent: 2em margin-bottom: 10px " 在追查毒品过程中,毒品溯源一直是困扰警方的难题。毒品经过人体代谢后,仍会有相当比例的残留物被排进生活污水,通过测定污水中毒品残留物的浓度,再结合进水流量、人口数量等,就可估算该地区人群消费滥用药物和毒品等情况,从而调查该区域吸毒信息。 /p p style=" text-align: justify text-indent: 2em margin-bottom: 10px " 6月26日是国际禁毒日,齐鲁晚报报道:自2018年5月份起,山东省禁毒办通过政府购买服务的方式,与中国海洋大学联合成立了山东省“污水验毒”项目组,对山东省16个市、170余个县(市、区)内139个污水处理厂的污水样本进行抽样。通过处理后,采用“固相萃取— a href=" https://www.instrument.com.cn/zc/51.html" target=" _blank" style=" color: rgb(84, 141, 212) text-decoration: underline " strong span style=" color: rgb(84, 141, 212) " 液相色谱—质谱联用技术”(点击进入液质联用(LC-MS)专场) /span /strong /a 对污水进行分析,结合水参数及周边环境让毒品无处遁形,即使“1克冰毒投入大明湖也能检测出来”。 /p p style=" text-align: center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/201906/uepic/0ca4cf69-209e-4f80-a9d7-ff0bf62cbdf1.jpg" title=" 550px-Liquid_Chromatography_Mass_Spectrometer.png" alt=" 550px-Liquid_Chromatography_Mass_Spectrometer.png" / /p p style=" text-align: justify text-indent: 2em margin-bottom: 10px " 据介绍,检测污水中毒品的第一步是采样,样品来自污水厂进水口,进水口下有一个很大的储水池,可以保留一段时间的污水信息。第二步是运输,样品通过冷链运送到实验室,并加入一系列试剂保存。 /p p style=" text-align: justify text-indent: 2em margin-bottom: 10px " 第三部是前处理,通过固相萃取柱萃取目标物,经过洗脱后,将毒品洗脱下来,再用高纯氮气低温吹干,将50ml的水样浓缩成0.2ml的样品。第四步是检测,通过高效液相色谱—多级质谱联用技术进行目标毒品的检测分析。最后再结合当地的生活习惯和周边环境差异,对检验的数据进行校正,得到各地区污水毒品含量的数据。 /p p style=" text-align: justify text-indent: 2em margin-bottom: 10px " 从检验结果上看,山东各地的污水中的毒品冰毒占比达95%以上,其余大部分是海洛因,非常个别检测出氯胺酮,可以忽略不计。 /p p style=" text-align: justify text-indent: 2em margin-bottom: 10px " 据了解,今年年初,山东警方已经通过此方法,成功破获了一起制毒贩毒的案件,抓获制贩毒嫌疑人6名、吸毒人员8名,缴获冰毒80克、冰毒半成品15公斤以及其他制毒原料40公斤。 /p p br/ /p
  • Picarro+LI-2100 | 双同位素+功能基因-研究无土栽培系统中N2O的生产和消耗过程
    中国是最大的温室蔬菜生产国,约占世界生产面积的83%。由于全年生产和大量施肥,温室蔬菜产量高,但也导致了土壤质量的恶化和严重的环境问题。近来,无土栽培系统(SCS)在温室蔬菜生产中逐渐发展起来,它可以减少甚至消除传统栽培方式的许多问题,。在SCS中,无土栽培基质,也称为无土栽培生长介质,可代替土壤固定根系系统,为植物提供水分和养分,为根区提供充足的通风。然而,由于N肥的大量输入,N2O排放较高。N2O是一种温室气体,具有温室效应,加剧全球变暖,在大气中存留时间长,可输送到平流层,导致臭氧层破坏,引起臭氧空洞。无土栽培基质已成为SCS中N2O排放的主要载体,但尚不清楚其产生和消耗的相关途径,因此亟待研究SCS无土栽培基质的N2O排放源。且无土栽培基质与土壤理化和生物性质高度不同,其具有更准确的水和养分分布,因此也有必要确定管理措施对SCS中N2O排放的影响。基于此,在本文中,来自中国农业科学研究院的一组研究团队基于稳定同位素技术结合qPCR分析在两种灌溉模式下(滴灌和潮汐灌溉)对成都市农林科学院((103°86′E,30°71′N)温室里两种无土栽培基质(60%泥炭+20%珍珠岩+20%蛭石+少量植物纤维/商用椰壳纤维基质)进行了相关研究,共设置4种处理:滴灌+泥炭基质(PD),滴灌+椰壳基质(CD),潮汐灌溉+泥炭基质(PT)以及潮汐灌溉+椰壳基质(CT)。旨在:(1)研究两种灌溉模式下典型无土栽培基质的N2O排放,(2)评估N2O排放及其驱动因子之间的关系以及(3)理解N2O生产和消耗的微生物机制。作者于2020年3月12日在育种室进行西红柿播种,4月9日转移至温室中。施肥后的不同时间里收集气体样品,计算NH3和N2O通量,并测量N2O同位素值。同时,收集了无土栽培基质样品,去除可见根系,过筛,测定质量含水量(ω),计算充水孔隙度(WFPS)。然后测定无土栽培基质的NH4+-N、NO3--N、pH、导电率(EC)、有机质(OM)。提取基质中的总DNA,进行qPCR分析。此外,利用全自动真空冷凝抽提系统(LI-2100,北京理加联合科技有限公司)提取基质样品中的水分,利用Picarro L115-I同位素分析仪测定水的δ18O值。通过δ18O和δ15NSP关系图来区分N2O生产和消耗途径。【结果】四种处理下(A)总含水量(B)NH4+-N(C)N2O通量(D)充水孔隙度(E)NO3--N以及(F)NH3通量的时间变化。基于pearson相关方法的不同参数之间的相关性热图。δ18O和δ15NSP关系图(A)以及N2O生产和消耗的微生物过程的贡献(B)。BN:细菌硝化作用;AN:古细菌硝化作用;ND:硝化细菌反硝化作用;BD:细菌反硝化作用。Ni:BN + AN;De:BD + ND。【结论】N2O排放由微生物组而非矿物N含量决定,由基因丰度而非基因拷贝数决定。在N2O产生途径上,泥炭基质以反硝化为主,椰壳基质以硝化为主。在无土栽培系统中,N2O还原(还原-混合)的情况可能更接近现实。反硝化和N2O还原受基质类型而非灌溉方式的影响显著,且在泥炭基质中贡献较大。综上所述,N2O排放及其微生物过程是由基质类型决定的,而非灌溉模式。更重要的是,N2O同位素值和功能基因相结合可阐明N2O产生和消耗的微生物过程。
  • 如何突破抗体生产瓶颈
    导读 在全球和中国医药市场上,抗体药物已连续多年占据销售榜单前几位。当前,随着国家医改政策的改革和完善,国际、国内市场打通,抗体市场也开始进入“你方唱罢我登场”群雄逐鹿的竞争阶段,生产企业如何在确保产品质量的基础上,通过改进工艺,来降低成本、提高生产效率和市场竞争力?江博士文章给读者提供了一条切实可行的思路和方法,请看“如何突破抗体生产瓶颈”。抗体药物市场及发展趋势 全球生物制药产业发展迅猛,根据frost&sullivan市场调研,2018年全球生物制药市场规模约为2642亿美元。单抗类药物由于特异性好,靶向性高,副作用小,疗效显著成为发展最快的一类生物药。单抗药物在全球生物药中所占市场份额超过50%,达到1353亿美金。 中国巨大的市场潜力,国际重磅抗体药专利到期,大量的海归人才回流及中国日益强大的资本助力,都为中国抗体制药发展提供了前所未有的历史机遇。但是中国抗体制药企业也面临巨大的挑战。首先中国药企无论是技术、规模、经验,人才还是资金,跟国际生物制药巨头相比,都有着较大的差距。其次中国加入ich和国际药监管体系接轨,降低药品进口关税,对进口抗癌药物实施零关税等系列政策,降低了国外原研药进入中国市场的门槛,给中国生物药企业带来了巨大压力和挑战。另外,越来越多的制药企业进入抗体药的开发领域,每个重磅抗体药物基本上都有几十家企业在仿制研发申报,因此国内抗体药企不仅要面临国外原研药巨头的打压,还要面对国内众多同行及印度廉价药企业激烈的竞争。最后带量采购新政允许通过一致性评价的仿制药与原研药可以一起同台竞标,低价中标,消除了销售渠道的壁垒使得国内外生物药企的竞争回归到技术创新,产品质量和成本的竞争。 因此国内生物药企是否能在激烈的竞争中取得优势取决于其生产工艺的先进性,因为制药工艺水平决定了产品的质量和成本。抗体药物的生产工艺进展 抗体药物生产是个非常复杂的过程,大致分为上游的发酵及下游的分离纯化:上游工艺主要包括细胞复苏、传代、发酵生产。而下游工艺主要包括膜过滤及多步层析分离纯化。过去十多年来,基因工程获得突飞猛进的进步,细胞培养的表达量从原来的不到0.5 g/l 到现在普遍达到5g/l,有的甚至超过10g/l。这些进步是由细胞表达载体的开发,克隆筛选以及细胞培养基优化等技术创新所驱动的。由于发酵产率的大幅度提升,使得上游细胞培养成本大幅度降低(表1)。表1 表达量与抗体生产成本关系与上游十多倍生产效率提升相比,下游分离纯化技术进步明显滞后,导致下游工序成为生产瓶颈,抗体主要生产成本也转移到下游。下游工艺在整个生物制药生产中占据60%以上生产成本,也被认为是最需要改进的技术领域。下游工艺先进性决定了药品的质量,及药品生产效率和成本,也成为生物制药企业的核心竞争力所在。生物制药下游生产工艺目的就是把目标药物分子从复杂发酵液体系中分离出来以满足药品纯度及质量的需求。一方面监管部门对生物药的纯度和质量要求越来越高,另一方面生物分子具有结构复杂,且对外部条件敏感,稳定性差,杂质多,浓度低等特点,使得生物药分离纯化的挑战更大。比如说治疗用抗体不仅对含量有严格的要求,还必须去除各种潜在的杂质如宿主hcp, dna,endotoxin, 抗体聚集体及降解片段等(表2)。表2 抗体药物对各种杂质的要求 层析技术具有分离纯化效率高,条件温和且容易保持目标分子的生物活性,因此成为生物制药分离纯化最主要工具。但下游层析分离纯化技术牵涉到材料、生物、化学及设备等交叉技术领域。因此研究下游分离纯化技术的人才较少,另外上游基因工程技术几乎在所有高校都有专业研究团队,而且培养了大量的人才,而下游分离纯化技术却很少在高校有专门研究,也缺乏相关的专业课程来培养分离纯化的人才。过去10多年上游基因工程的迅猛发展虽然带来上游发酵成本的大幅度下降,但下游分离纯化技术进步缓慢使其成本居高不下。因此要降低抗体生产成本关键就是要解决下游分离纯化的瓶颈问题。 抗体的层析分离步骤基本都可以采用标准化的三步曲:第一步用protein a介质进行抗体捕获和浓缩;第二步用离子交换进行中间纯化以去除多聚体,宿主蛋白等杂质;第三步是精纯去除剩余dna,endotoxin,protein a 等微量杂质。在这三步抗体的分离纯化过程中,第一步的protein a亲和捕获占据分离纯化成本80%以上,也是下游分离纯化的瓶颈所在。亲和层析之所以成本高的主要原因:首先是protein a 价格昂贵,其价格是普通层析介质十几倍;第二,protein a使用寿命短,一般离子交换填料使用寿命多达1000次,而亲和填料寿命通常在100-200次;第三,protein a 用于抗体的捕获和浓缩,需要处理大体积的发酵液,而亲和步骤载量往往又低于阴阳离子交换层析,使得亲和层析介质使用量比中间纯化或精纯的要多得多。因此,要降低抗体的生产成本,解决抗体的生产瓶颈关键在于改进第一步protein a 亲和捕获。 下游分离纯化核心的工艺流程 protein a 亲和层析是利用protein a 配基与目标抗体具有专一亲和吸附作用从而达到分离纯化抗体的目的。野生型protein a蛋白是金黄色葡萄球菌细胞壁锚钉蛋白。三维空间上,抗体fc端ch2-ch3区域与protein a蛋白b结构域上两条反相平行的α螺旋结构相互结合。因此protein a与抗体分子特别是与igg1、igg2、igg4有特异性结合,使得抗体分子与发酵液中不具fc端结构的杂质如宿主蛋白与核酸等有效分离,进而达到纯化目的。protein a 亲和层析介质是通过把proteina 配基偶联到微球介质上制备而成的。因为protein a配基与目标抗体的作用的专一性,因此亲和层析的分离纯化工艺和方法与抗体样品杂质含量和种类多少影响不大,使用protein a 介质一步纯化目标抗体就可以达到95%以上纯度,回收率达到90%以上。亲和纯化效率也基本不受杂质多少影响,而其它分离模式如离子交换,疏水,分子筛等的分离工艺方法及效率大多取决于与目的蛋白同时存在的杂质种类和含量。因此,只要样品杂质不同,即使是纯化同样的目标生物分子,采用的分离工艺和方法就不同。以重组胰岛素分离纯化为例,不同厂家虽然生产的是同一目标胰岛素,但采用分离纯化方法完全不一样,主要原因就是每家生产的胰岛素杂质组成和含量不一样,因此需要不同的纯化工艺。而比胰岛素分子量更大,结构更复杂的抗体基本可以采用标准化的三步曲,主要原因就是protein a 亲和介质的出现大大简化抗体的分离纯化工艺,但protein a 价格昂贵让抗体生产厂家爱恨交加。 protein a 介质价格高的主要原因是其生产工艺复杂,proteina 配基是通过生物发酵生产的,经过纯化后偶联到介质上成为protein a 亲和介质,因此生产成本远高于传统的离子交换、疏水、分子筛等介质。另一方面protein a产品主要由欧美几家供应商垄断,也是价格居高不下的原因之一。为了降低抗体生产成本,不少研究工作者在寻找可以取代protein a且价格低廉的新型层析介质来纯化抗体,虽然可能在一些个案中获得成功,但都无法撼动protein a 在整个抗体分离纯化的垄断地位。proteina 亲和层析成为过去近30年里抗体纯化捕获的金标准。因此要降低抗体亲和层析这一步的成本首要的方案是实现protein a 介质的国产化以降低产品价格;其次是通过采用创新的连续层析工艺技术或其它新工艺以提高protein a 介质的利用率并提高抗体生产效率。当然不断改进protein a 介质性能使其具有更高的载量和更长的使用寿命也可以降低抗体的生产成本。 protein a 介质国产化创新之路 目前市场上主流protein a产品是ge生产的以琼脂糖为基质的产品,也是最早商业化的产品。琼脂糖为基质的protein a 介质具有载量高,亲水性能好,非特异性吸附低等优点,但琼脂糖介质天然缺陷是机械强度差,因此也被称为软胶。由于该介质耐压性能差,生产中需要降低柱高、减小流速以防止压力过高造成柱床塌陷,限制了抗体批处理量及抗体生产效率。软胶protein a 另外一个缺陷是传质速度慢,主要原因是软胶孔径较小,排阻大。因此软胶protein a 都需要驻保留时间长,流速慢条件下,抗体吸附载量才会比较高,但在高流速下动态载量下降的非常快。因此一个理想的抗体纯化用protein a 介质需要具有高流速,高载量,高机械强度,及更长的使用寿命等特点。protein a 介质载量是由微球孔径,比表面积,配基密度来决定的;机械强度则是由proteina基球材料化学组成,交联度及孔隙率来决定的;protein a 配基脱落及使用寿命主要由配基,基球性能及偶联方式来决定。实现高性能protein a 亲和介质的国产化需要从底层创新开始。抗体结构示意图创新之一:单分散基球替代多分散基球 层析介质粒径大小和粒径分布是影响层析分离的重要参数。粒径分布越均匀,装柱越容易、柱床越稳定、柱效越高、流速越均匀、洗脱越集中、分离效率越高、流动相用量越少,柱与柱重复性也越好;protein a 介质被誉为层析介质皇冠上的明珠,价格昂贵,可是市场上protein a 介质都是采用粒径分布较宽的基球。主要原因是单分散微球制备技术难度极大,世界上可以规模生产的单分散多孔微球只有dynal公司一家,ge销售的source 系列单分散聚苯乙烯色谱填料就是dynal生产的。但source 产品的粒径最大只有30微米,不能满足protein a 介质对粒径一般要大于40微米的要求。纳微经过多年的努力开发出世界领先的微球精准制备技术,突破大单分散大粒径多孔微球的制备难题,成为全球第一家生产单分散protein a 亲和层析介质的公司。纳微单分散protein a介质与传统软胶基质微观结构对比传统多分散protein a亲和软胶与unimab液流路径对比示意图 创新之二:通透大孔径基球微替代小孔微球 protein a 基球孔径大小会影响生物分子在介质的传质速度和有效载量,孔径越大,分子传质速度越快,在高流速下具有高载量。基于软胶基质的ge protein a亲和介质孔径较小,比表面积高,其静态吸附载量高,但传质阻力大,在驻留时间短,流速快的条件下,动态载量下降的很快。纳微经过优化筛选,专门设计的大孔结构基球,其孔径达到ge protein a 介质的一倍左右。因此该介质传质速度快,使得介质在高流速下具有高载量。从实验测试数据可以看到,纳微unimab与ge mabselectsure在驻留时间大于4分钟时,载量都差不多,当驻留时间小于2分钟时unimab的载量比mabselectsure载量高50%以上, 而且速度越快unimab载量优势越明显。抗体生产效率是由动态载量和流速共同决定,流速越快载量越高,生产效率越高,成本越低,但亲和层析介质的动态载量与流速成反比,流速越快,载量越低,因此对于每个protein a亲和介质纯化抗体效率都会随着流速升高效率逐步提高,到了一个最优的流速后,如果继续增加流速,纯化效率反而降低。林东强教授实验证明对于批次亲和层析,驻留时间是2分钟时生产效率达到最高,而驻留时间在2分钟条件,unimab的动态载量比mabselectsure 高50%以上。对于连续层析驻留时间是1分钟时生产效率最高,而这个保留时间,unimab的动态载量更是mabselectsure一倍以上。另外从抗体流穿曲线对比图也可以看出具有大孔结构及高度粒径均匀性的单分散protein a亲和层析介质与多分散软胶porteina 介质相比具有更陡的穿透曲线,说明纳微单分散层析介质具有更畅通的孔道结构,分子扩散速度快,抗体流穿少,回收率高。因此利用纳微大孔结构微球不仅可以提高分子传质速度,提高抗体生产效率,降低成本,而且在连续层析中,具有更明显的优势。unimab与mabselectsure产品不同驻留时间动态载量对比不同protein a 层析介质驻留时间与抗体生产效率与关系对比抗体流穿曲线对比图 创新之三:高度交联聚丙烯酸酯基球替代软胶或低交联的聚丙烯酸酯基球 高机械强度介质不仅可以耐受更高流速、更高压力、更大粘度样品,还可以装更高的柱床,以增加抗体批处理量、提高抗体生产效率、减少设备投资、减少厂房占用面积。因此纳微protein a 介质是选择高度交联的聚丙烯酸酯基球,与市场上以琼脂糖或低交联度聚丙烯酸酯为基球生产的protein a 介质相比具有溶胀系数小、压缩比例低、而且机械性能强。实验证明 unimab在2公斤装柱压力下,其柱床压缩比例只有5%,而无论是ge 生产的以琼脂糖为基球还是tosoh 生产的低交联聚合物为基球的protein a 介质压缩比例往往超过15%。unimab与软胶与压力流速曲线对比 创新之四:表面亲水化改性微球替代亲水性微球 用于抗体或蛋白纯化分离的层析介质必须具有很好的表面亲水性,因此市场上主要的protein a 产品要么是基于亲水多糖类材料,或者是用亲水单体做的基球,这种基球虽然亲水性能好,非特异性吸附低但机械强度差。为了保持基球的机械强度并解决介质亲水性问题,纳微采用先合成高机械强度高交联的聚丙烯酸酯微球,然后通过多步表面亲水化改性,再进行protein a配件偶联。这种方法虽然工艺复杂,但生产的介质既有高机械强度,又有表面亲水性能好,非特异性吸附低等特性。因此unimab在抗体分离过程中,hcp去除效果好, 可以达到软胶protein a 的同等水平。纳微unimab与对照填料的hcp去除效果 创新之五:protein a 配基创新 除了基球之外,protein a 配基也是影响介质性能重要因素,尤其是介质的寿命。ge之所以垄断protein a 亲和层析介质市场,最主要的是ge拥有耐碱性protein a 专利技术,其核心专利技术是通过基因工程改变b domain 不耐碱的3个氨基酸以改善其耐碱性能。纳微通过优化组合不同片段设计出新序列的protein a 配基,不仅耐碱性好,而且具有自主知识产权,并能自主实现大规模生产。纳微独有的耐碱性配基加上具有卓越性能的基球,及优化偶联工艺开发出高性能的protein a 亲和介质。以下是某单抗项目上unimab介质载量随使用次数增加的衰减变化表。每个cycle采用0.1m氢氧化钠cip,接触时间1小时。连续200个cycle 后dbc10%依然在初始值的75%左右,充分体现了纳微proteina介质的良好耐碱性。纳微世界领先的微球精准制造技术,可以对微球的材料组成、粒径大小、粒径均匀性、孔径大小及表面性能达到前所未有的精准控制。纳微利用这一技术平台开发出新一代单分散多孔聚丙烯酸酯为基质的protein a 亲和层析介质克服了传统proteina 软胶的缺点,也为实现下一代连续层析技术产业化提供理想的介质。unimab载量随使用次数增加的衰减变化表 protein a介质创新和生产工艺创新实现抗体生产效率提升 单抗药物的市场竞争越来越激烈,降低抗体生产成本,高效、稳定的产出合格的产品是每个抗体生产厂家追求的目标。亲和层析作为单克隆抗体分离纯化的关键步骤,关系到下游的主要成本及生产效率,产品质量,也是目前下游生产的主要瓶颈。因此纳微通过底层技术创新不仅实现protein a 介质的国产化,而且克服了现有产品的缺陷,必将大幅度提供抗体生产效率,降低抗体生产成本,更重要的是纳微创新性单分散层析介质可以推动下游工艺技术的创新和进步。比如说高机械强度的protein a 介质就使得通过增加柱床提高批处理量成为可能。而高流速下的高载量及耐高压特性为最终实现抗体连续层析工艺打下基础。新型连续层析工艺(右)连续流层析分离过程示意图(来源于林东强教授课题组文章)
  • 一文读懂基于长读长技术的单细胞全长转录本测序
    单细胞全长转录本测序的价值单细胞测序技术为基础科研、临床诊断、药物研发等领域带来了诸多全新发现视角。现阶段主流的单细胞测序,大多是通过单细胞捕获设备获得cDNA文库后进行打断、扩增、建库,并用二代建库测序分析基因的整体定量。然而,基因在不同组织、不同细胞亚群中会使用mRNA的不同转录本,SNV、融合基因等结构变异也具有组织和细胞特异性,此外,科研界研究比较热门的lncRNA,在不同组织细胞亚群中也具有特异性的表达。这些基于全长序列方面的信息,是目前单细胞二代测序无法获取的。主要原因是目前基于二代测序的单细胞数据局限于3' 或5' 端的150-250bp,较难满足这类需求。而传统的Smart-seq虽然可以实现全长转录本覆盖,但需要经过拼接组装分析转录本结构,且通量较低,成本较高,研究单细胞可变剪切仍然较为困难。由于二代测序读长较短,三代测序如PacBio、Nanopore等技术以其长读长的优势解决了这一痛点,因此,如果能将二代测序与三代测序相结合,既能获得mRNA的全长序列,并通过Cell Barcode信息定位到细胞亚群,即可解决了这一单细胞研究领域的痛点。但是,在前期测试中发现,二代单细胞测序一般获得约3万个基因的表达矩阵,三代全长测序能获得超过10万个转录本的表达矩阵,两套数据的聚类图谱差异巨大,现有的分析流程并未很好地解决两套数据的一致性匹配问题。因此,如何能从庞大的二代+三代,也即基因+转录本的单细胞数据中,挖掘到有价值的特异性转录本,可以为单细胞临床转化、药物靶点发现带来更加细致的挖掘角度。及智医学团队出身单细胞科研服务行业,重点围绕单细胞富集与检测平台、单细胞测序技术平台和基于AI算法的单细胞数据分析算法平台,建立了单细胞转录组、空间转录组、单细胞联合Bulk多组学等多种独特的分析流程和方法,尤其擅长各类免疫细胞与基质细胞的分类、功能解析、细胞互作、药物靶点筛选等分析项目。最终通过积累的上百种单细胞分析方法与百万级别单细胞数据库,为单细胞临床转化类项目提供专业研发服务。及智医学团队生信专家通过高效的自动化分析脚本,并历时数月的二代+三代单细胞算法测试,目前已经解决了二代+三代单细胞聚类的诸多分析难点。伯豪生物基于十多年的单细胞组学服务经验,可提供从样品保存、运输、单细胞悬液制备,到单细胞分选、建库和数据分析的解决方案。及智医学与伯豪生物强强联合,正式推出单细胞全长转录本测序服务,即单细胞cDNA水平的转录、遗传变异研究,通过一次捕获,两种建库,同时获得单细胞聚类与转录本信息:目前,该技术方向为如下科研问题,提供了潜在的解决办法:发现携带特定突变的细胞,并与非携带突变细胞相比,挖掘基因表达规律挖掘功能基因,如膜蛋白、分泌蛋白、转录因子等的转录本使用情况,并发现全新功能转录本发现融合基因所在细胞亚群,研究它们与其他肿瘤细胞的拟时序分化关系发现亚群特异性全新IncRNA获得亚群特异性表达的转录本,能够辅助小核酸类药物开发企业,针对该特异性转录本设计siRNA干扰片段,提升小核酸干扰靶点的有效性。案例解析2021年11月11日,来自澳大利亚 沃尔特-伊丽莎霍尔医学研究所的Tian等人开发了一种基于Nanopore测序和10x Genomics的全长转录组单细胞测序方法,分析单细胞中的全长异构体、可变剪接和突变检测。研究成果发表在国际知名期刊Genome Biology(IF=13.6),论文题目为“Comprehensive characterization of single-cell full-length isoforms in human and mouse with long-read sequencing”。文章中,使用10x Genomics技术分选得到单细胞的全长cDNA后,将cDNA一分为二,一份进行打断建库用于二代测序,另一份进行全长扩增建库用于Nanopore三代测序。此时Nanopore的文库上也包含了细胞Barcode,后续可以通过分析流程将三代测序和二代测序结果通过细胞Barcode一一对应。通过这样的方式,即实现了获得全长转录本,分析亚群的特征性转录本使用,并同时拿到了突变所在细胞。文章数据分析显示其中40%-60%的Nanopore reads可以分配给预期的Barcode,并保留用于后续分析(图C)。在数据处理过程中,非全长且不能唯一分配给转录本的数据被丢弃。最终每个细胞的平均UMI为10,000至60,000个,并且与对应的短读数据情况相符(图D)。Nanopore和Illumina数据的基因水平的UMI计数也高度一致(图E)文章数据分析显示其中40%-60%的Nanopore reads可以分配给预期的Barcode,并保留用于后续分析(图C)。在数据处理过程中,非全长且不能唯一分配给转录本的数据被丢弃。最终每个细胞的平均UMI为10,000至60,000个,并且与对应的短读数据情况相符(图D)。Nanopore和Illumina数据的基因水平的UMI计数也高度一致(图E)通过聚类分析发现,CLL(慢性淋巴细胞白血病)细胞相比正常免疫细胞具有更高比例的新型转录本,特别是新型剪接的转录本。同样,相比激活的干细胞,静态肌肉干细胞也有更高比例的新型转录本(图 D)。分析发现,约80%的基因可以表达多种转录本(图E),但是大多数基因主要表达1到2种转录本类型(图F),约30%的基因含有多于一种的可变剪接事件,意味着2个最高表达的异构体可能涉及多个外显子的复杂剪接变化而产生不同。文章通过分析CLL数据,检测到CD45的多种亚型(图G),CD45的表达通过CITE-seq进行验证。CITE-seq可以同时检测RNA和细胞表面蛋白,这种方法结合三代测序,可以对细胞表面蛋白进行更深入的分析和探索。对CLL数据集进行分析,寻找只存在于癌细胞中的,且在不同的CLL转录簇中具有不同等位基因频率的SNVs,通过经典的曼哈顿图最终发现四个变异在不同的CLL聚类呈现显著差异(图C,D)。其中发现的Gly101Val突变,此突变已被证实通过降低BCL2对venetoclax的亲和力而使患者对venetoclax治疗产生耐药性,通过分析发现患者CLL2携带约25%的Gly101Val突变,并发现该突变不仅属于亚克隆,而且与特定的转录簇相关(图E)。样品选择与实验细节由于单细胞全长测序需要对mRNA反转录后的cDNA全长进行测序,核心是需要将完整的全长cDNA扩增至2ug的 Nanopore建库起始量,而常规单细胞是将一链cDNA做基础扩增后全部打断用来做建库测序,因此,这一验细节就意味着单细胞全长测序需要额外质控。本文也从如下四个方面给出一些基础建议:样品选择悬液质控文库质控单细胞测序剩余样品用于新的科研发现一:样品选择常规单细胞测序样品来源分为新鲜采集与液氮速冻两种类型,两种类型的样品需要两种处理方式,新鲜采集样品需要在48h内制备悬液并上机,液氮速冻样品需要将细胞膜破碎,丢弃细胞质,分离提取细胞核,用单个核来做单细胞测序。不过,由于细胞核里面的RNA大多为初始RNA,包含有较多内含子,而从初始RNA加工为成熟mRNA的过程大多发生在细胞质中,因此,抽核类的项目并不太适用于单细胞全长测序。虽然在2022年7月份一篇Nature Biotechnology的文章是对人脑抽核后的单细胞样品进行三代全长测序,不过由于拿不到成熟mRNA,文章是站在了特定基因在不同亚群的外显子保留这样的科研角度统计规律(如下图)。文章角度非常新颖,也是科研界首次用单细胞全长测序发现人脑中,某些基因在不同亚群中,使用不同的外显子组合,生成多种编码蛋白。不过,由于最终拿到的仍旧是细胞核内的RNA,后续还需要大量验证工作,因此抽核后做单细胞全长测序的临床转化价值较小。所以,单细胞全长测序的项目最适宜采集新鲜样品制备细胞悬液,捕获成熟mRNA开展后续验证工作。经三代单细胞全长测序发现CADM1基因在人脑神经元(兴奋性、抑制性)、星胶、小胶、少突细胞亚群中,会使用不同的外显子组合。原文也有用蛋白质谱技术对这些外显子的多肽产物进行验证的工作二:悬液质控在收集到新鲜样品之后,可以使用商品化的新鲜组织保护液将样品在24h-48h内从临床运输至实验室进行悬液解离,并通过显微镜、细胞计数仪检测悬液质量。由于全长单细胞对RNA质量要求较高,比较建议悬液活率在85%以上,同时用台盼蓝、AO/PI双染鉴定,并用显微镜仔细观察细胞真实活率、红细胞比例(红细胞在光镜下,可以观察到圆饼状的亮圈,中间有黑色小点,有经验的单细胞实验员可以通过肉眼观察判断出来,而不少品牌的细胞计数仪有可能会把红细胞计算为碎片,甚至检测不到)。另外,现阶段二代单细胞测序,单个样品的数据量大多为100G,可以容纳5000-8000左右的细胞捕获量;而三代测序成本较高,站在节省经费的角度,建议一方面准确的对细胞悬液的浓度进行测定(不可单纯依靠细胞计数仪),来控制上机细胞总数(建议上机不超过1万个细胞);同时也要结合不同品牌单细胞捕获设备的真实捕获率(这点最好找成熟单细胞科研服务公司来完成)来进行综合判定(建议捕获不超5000个细胞,如果超过5000需要增加三代测序数据量)。三:文库质控单细胞全长转录本测序,只需要一次捕获,拿到一链cDNA之后要立刻进行全长扩增,如下图:因此,就需要将已扩增好的cDNA全长进行质控:如上图,cDNA条带主峰在1-1.5kb左右,下一步可以联系三代测序工厂寄送样品,由他们进行建库测序。但是,也要测序工厂及时反馈三代文库的质检图片,要求文库主峰与cDNA条带主峰一致,方可进行正式的Nanopore上机测序实验。四:单细胞测序剩余样品用于新的科研发现由于现阶段三代全长测序的准确性不够高,考虑到后续验证工作,比较建议在单细胞上机之后,将剩余的细胞样品进行冻存,从DNA、RNA、蛋白三个层面开展后续验证实验:01DNA水平:在我们前期测试中发现,三代原始数据中基因单核苷酸结构变异SNV(RNA层面的SNP、Indel)较多,为了拿到准确的,与DNA层面一致的突变信息,就需要结合DNA层面的检测来共同筛选核心突变。有两种做法:第一:同时将肿瘤患者的外周血和单细胞实验剩下的肿瘤细胞做全外显子测序(两个样品的市场价合计不超5000元),通过 肿瘤组织测出来 的突变 扣掉 自身PBMC 的胚系突变,可以得到体细胞突变,将这些突变 基因位点作为核心突变,利用自动化脚本,提取 三代数据中的原始 reads,这些reads都带有的 Cell barcode信息可以定位到突变所在的细胞与亚群!即可通过拟时序算法分析突变细胞vs非突变细胞的发育分化轨迹。第二:做全基因组重测序(可以根据具体课题决定是否还需收集PBMC),发现拷贝数变异CNV,以及融合基因信息,将这些信息与三代全长进行联合分析。后续分析内容也极为丰富,可以展开多个科研角度的解释。02RNA水平:在三代全长拿到特征性转录本之后,还需要做后续验证,如果序列较少,可以通过5' RACE、3' RACE实验拉全长获得准确序列;如果候选转录本序列较多,也可以通过Pacbio直接做 Bulk 测序(可以混样测一份即可,目的是拿到序列),再结合单细胞全长转录本的特异性表达规律,可以快速、低成本获得这些序列的完整信息,下一步即可通过构建动物模型,开展功能验证工作。03蛋白层面:现阶段的单细胞测序大多是以基因作为靶点,但是从已经发表的上万篇单细胞数据中,也经常发现基因的表达特异性并不强,这个是现阶段单细胞测序需要升级改进的核心关键点。而在真实组织中,基因在不同亚群中使用不同的转录本编码多种蛋白产物。有了单细胞全长转录本技术,也就意味着可以将靶点发现从基因细化为转录本,挖掘转录本的蛋白编码产物。因此,临床转化最核心的一步:膜蛋白层面,可以依靠全长转录本获得一些全新的发现。现有的蛋白质质谱技术无法做到 针对单个细胞进行广泛的蛋白质检测,但是蛋白质的编码序列都是从RNA层面的转录本翻译过来,转录本序列的检测比蛋白质的检测要容易很多。所以,这个里面就依托一套简单的逻辑:从DNA到RNA到蛋白的中心法则,即可做到通过单细胞全长转录本测序,发现亚群特异性转录本,再将转录本序列预测的多肽产物与蛋白质谱打出来的多肽产物进行匹配,发现一条潜在的转录本+编码产物,即为一条新型潜在靶点。其实,在肿瘤新抗原发现领域,这套序列预测+质谱检测的策略已经非常成熟并且较为实用,因此,可以基于中心法则将这套成熟策略转用到单细胞全长转录本发现新型蛋白编码产物领域。总结综上所述,单细胞全长转录本更适合做新鲜样品,整体实验过程并不复杂,基本上现阶段单细胞科技服务类公司都能实现,只需要在几个细节上稍加注意即可。总结下来,单细胞全长测序的本质只是对转录本加了 细胞亚群 的标签,方便从数万条转录本快速筛选到特异性表达的少数转录本。这个并不是一套全新开发的技术,只能算是从DNA到RNA到蛋白的一整套符合中心法则的单细胞多组学的技术方案。在我们前期拜访前沿课题组的过程中,有不少研究员曾想过这样的方法,只是行业内缺乏前人尝试。我们深入思考过这些细节后,发现这套方案从样品的选择、测序实验、数据呈现,均比现阶段的单细胞二代测序更加实用,更加贴近临床转化。从另外一个角度,转录本是基因功能实现的最小细分单位,针对转录本研究的单细胞全长测序,算得上是转录组研究领域的终点站。
  • 徐涛院士团队研制出分子尺度分辨率干涉定位显微镜
    p style=" text-align: justify text-indent: 2em " Seeing is believing,光学显微镜自1590年由荷兰詹森父子创制伊始,即成为生命科学最重要的研究工具之一。进入21世纪,借助荧光分子,科学家将光学显微镜的分辨率提高了一个数量级,由约一半光波波长(250 nm)拓展至几十纳米,并兴起了超高分辨荧光成像技术,用于“看到”精细的亚细胞结构和生物大分子定位,相关工作荣膺2014年诺贝尔化学奖。 /p p style=" text-align: justify text-indent: 2em " 9月9日,Nature Methods杂志在线发表了中国科学院生物物理研究所徐涛院士研究组与科学研究平台纪伟正高级工程师研发团队合作研究论文,题为“Molecular resolution imaging by repetitive optical selective exposure”,为超高分辨光学显微镜家族再添新成员,使显微镜分辨率进一步被突破。该工作提出了一种基于激光干涉条纹定位成像的新技术,并据此研制出新型单分子干涉定位显微镜(Repetitive Optical Selective Exposure, ROSE),将荧光显微镜分辨率提升至3 nm以内的分子尺度,单分子定位精度接近1 nm,可以分辨点距为5 nm的DNA origami(DNA 折纸)结构。 /p p style=" text-align: center text-indent: 0em " img style=" max-width: 100% max-height: 100% width: 450px height: 226px " src=" https://img1.17img.cn/17img/images/201909/uepic/bcbdc347-2f8b-464e-9014-787a341c1e21.jpg" title=" 徐涛院士组与科学研究平台研发团队实现分子尺度分辨率光学成像.jpg" alt=" 徐涛院士组与科学研究平台研发团队实现分子尺度分辨率光学成像.jpg" width=" 450" height=" 226" border=" 0" vspace=" 0" / /p p style=" text-align: center text-indent: 0em " strong 图1 左侧,传统质心拟合定位方法,右侧,ROSE干涉定位方法 /strong /p p style=" text-align: justify text-indent: 2em " 所谓干涉定位,是指采用不同方向和相位的激光干涉条纹激发荧光分子,荧光分子的发光强度与其所处条纹的相位有关,该技术即是通过荧光分子强度与干涉条纹的相位关系,来确定荧光分子的精确位置。为降低单分子发光时的闪烁和漂白对亮度和定位精度产生的不良影响,研发团队对显微镜光路进行了创造性地设计,分别为:基于电光调制器的干涉条纹快速切换激发光路,基于谐振振镜扫描的6组共轭成像光路,两种光路的同步实现了高达8 kHz的分时成像,确保在相机的单次曝光时间里把每个单分子发光状态均匀分配给6个干涉条纹,有效避免了荧光分子发光能力波动对定位精度的干扰。 /p p style=" text-align: justify text-indent: 2em " 研发团队利用该技术对不同荧光位点间距的DNA origami阵列进行验证测试,证明干涉成像分辨率达到了3 nm的分子水平,可以解析5 nm的DNA origami阵列。后续的功能性实验结果显示,该技术在免疫标记的微管、CCP(clathrin coated pits,网格蛋白有被小窝)以及较致密的细胞骨架成像时展现出良好性能,该技术将为进一步解析精细亚细胞的组分和生物大分子的纳米结构提供有力工具。 /p p style=" text-align: center text-indent: 0em " img style=" max-width: 100% max-height: 100% width: 450px height: 311px " src=" https://img1.17img.cn/17img/images/201909/uepic/45780611-1a95-4748-a74e-d777d33bd780.jpg" title=" 分子尺度分辨率光学成像.jpg" alt=" 分子尺度分辨率光学成像.jpg" width=" 450" height=" 311" border=" 0" vspace=" 0" / /p p style=" text-align: center text-indent: 0em " strong 图2左侧,不同荧光位点间距的DNA origami成像,ROSE技术与传统的质心拟合方法进行对比验证。右侧,鬼笔环肽标记的微丝成像,ROSE技术与传统的质心拟合方法进行对比验证。 /strong /p p style=" text-align: justify text-indent: 2em " 徐涛院士领衔的仪器研发团队近年来致力于显微成像仪器设备和技术方法的研究和开发,先后研制出偏振单分子干涉成像、冷冻单分子定位成像以及超分辨光电融合成像系统,开发了新的超分辨显微成像算法、探针和技术,申请有多项发明专利,上述成果被广泛应用于细胞生物学相关研究,支撑团队与合作者在该领域取得了系统性成果产出。纪伟正高级工程师所在的生命科学仪器研发中心是根据研究所发展新技术新方法的迫切需求而设立,隶属于科学研究平台,在提供技术服务的同时,聚焦生物显微成像仪器设备的研发与应用推广。 /p p style=" text-align: justify text-indent: 2em " 徐涛院士和纪伟正高级工程师为该文章的共同通讯作者,谷陆生、李媛媛、张淑文为共同第一作者。李栋研究员、薛艳红、李尉兴参与了本课题。 /p p style=" text-align: justify text-indent: 2em " 该工作受到中国科学院科研仪器设备研制项目、国家重点研发计划、国家自然科学基金以及北京市科技计划等项目的资助。 /p
  • 北京市征集2019年度智能制造关键技术装备供应商
    p   为贯彻落实《北京市加快科技创新发展智能装备产业的指导意见》《“智造100”工程实施方案》,推动北京市智能制造装备产业发展,加快提升北京市智能制造关键技术装备供给能力,促进产需对接,市经济和信息化局决定组织开展2019年度北京市智能制造关键技术装备供应商征集工作。有关事项通知如下: /p p   strong  一、申报企业条件 /strong /p p   申报企业应同时符合以下条件: /p p   (一)在本市注册,具有独立法人资格,并取得营业执照,拥有固定的办公场所。 /p p   (二)正常运营3年以上,管理规范,具有良好的资信和公众形象,合法、诚信运营,财务状况良好,近3年内无重大安全、环保、卫生、劳动、纳税、信贷、质量、知识产权等不良记录。 /p p   (三)从事智能制造关键技术装备的研发和生产制造,且产品具有一定的技术先进性和市场占有率。智能制造关键技术装备详见《智能制造关键技术装备清单》(附件1)。 /p p   (四)拥有自主核心技术,装备产品的授权专利不少于6项(发明专利不少于3项)或与装备产品相关的软件著作权不少于10项,且近3年内未出现侵权行为。 /p p   (五)在所属行业领域有较强的影响力,具有良好的成长性 具有完善的售后服务体系和严格的管理制度 可以探索采用新的服务模式和机制,促进智能制造的规模化应用。 /p p    strong 二、申报程序 /strong /p p   (一)申报单位填写《2019年北京市智能制造关键技术装备供应商申报书》(见附件2),报送市经济和信息化局。 /p p   (二)市经济和信息化局负责组织专家开展评估工作。通过评估的单位将入选《北京市智能制造关键技术装备供应商推荐目录(2019年)》(以下简称《推荐目录》)并公开发布,有效期为三年。 /p p    strong 三、《推荐目录》的使用 /strong /p p   列入《推荐目录》的核心装备供应商,在同等条件下,可以优先: /p p   (一)优先推荐申报国家智能制造专项、北京市“智造100”工程、北京市高精尖产业发展资金项目。 /p p   (二)优先推荐与北京市有智能制造技改升级需求的企业对接。 /p p    strong 四、申报材料及要求 /strong /p p   申报单位请于2019年11月1日前将填写好的申报书(纸质版五份,电子版一份)报送至指定地点。纸质版申报书应按A4纸型胶装,封面、骑缝处加盖申报单位公章 电子版申报书应为PDF格式。 /p p   联系电话:010-63266510 010-55578393 010-63465518 /p p   申报材料报送地址:北京市西城区广安门外大街甲397号226室 /p p   span style=" font-family: 楷体, 楷体_GB2312, SimKai "  附件1 /span /p p style=" text-align: center " span style=" color: rgb(255, 0, 0) " strong 智能制造关键技术装备清单 /strong /span /p p    strong 一、高档数控机床与工业机器人。 /strong 数控双主轴车铣磨复合加工机床 高速高效精密五轴加工中心 复杂结构件机器人数控加工中心 螺旋内齿圈拉床 五轴数控刀具磨削加工中心 高效高精数控蜗杆砂轮磨齿机 蒙皮镜像铣数控装备 高效率、低重量、长期免维护的系列化减速器 高功率大力矩直驱及盘式中空电机 高性能多关节伺服控制器 6-500kg级系列化点焊、弧焊、激光及复合焊接机器人 关节型喷涂机器人 切割、打磨抛光、钻孔攻丝、铣削加工机器人 缝制机械、家电等行业专用机器人 精密及重载装配机器人 六轴关节型、平面关节(SCARA)型机器人 移动搬运机器人(AGV) 并联机器人 人机协作机器人 在线检测及质量监控机器人 洁净及防爆环境特种工业机器人 具备人机协调、自然交互、自主学习功能的新一代工业机器人。 /p p    strong 二、增材制造装备。 /strong 高功率光纤激光器、扫描振镜、动态聚焦镜及高品质电子枪/离子枪、光束整形、高速扫描、阵列式高精度喷嘴、喷头 激光/电子束/离子束高效选区熔化、大型整体构件激光及电子束送粉/送丝熔化沉积等金属增材制造装备 光固化成形、熔融沉积成形、激光选区烧结成形、无模铸型、喷射成形等非金属增材制造装备 生物及医疗个性化增材制造装备。 /p p    strong 三、智能传感与控制装备。 /strong 机器人用位置、力矩、触觉传感器 高性能光纤传感器、微机电系统(MEMS)传感器、多传感器元件芯片集成的MCO芯片、视觉传感器及智能测量仪表、电子标签、条码等采集系统装备 分散式控制系统(DCS)、可编程逻辑控制器(PLC)、数据采集系统(SCADA)、高性能高可靠嵌入式控制系统装备 高端调速装置、伺服系统、液压与气动系统等传动系统装备。 /p p    strong 四、智能检测与装配装备。 /strong 数字化接触/非接触精密测量、在线无损检测系统装备 在线及离线工业视觉检测设备 可视化柔性装配装备 智能检测分选及选配装备 激光跟踪测量、柔性可重构工装的对接与装配装备 智能化高效率强度及疲劳寿命测试与分析装备 设备全生命周期健康检测诊断装备 基于大数据的在线故障诊断与分析装备 新能源汽车动力电池专用工艺装备。 /p p    strong 五、智能物流与仓储装备。 /strong 轻型高速堆垛机 超高超重型堆垛机 高速智能分拣机 智能多层穿梭车 智能化高密度存储穿梭板 高速托盘输送机 高参数自动化立体仓库 高速大容量输送与分拣成套装备、车间物流智能化成套装备。 /p p    span style=" font-family: 楷体, 楷体_GB2312, SimKai " 附件2 /span /p p style=" line-height: 16px " span style=" color: rgb(0, 176, 240) "    /span a style=" font-size: 12px color: rgb(0, 176, 240) text-decoration: underline " href=" https://img1.17img.cn/17img/files/201910/attachment/ce7bb43a-64c6-4bb8-95ec-a4bee6626a74.docx" title=" 2019年北京市智能制造关键技术装备供应商申报书.docx" span style=" color: rgb(0, 176, 240) " 2019年北京市智能制造关键技术装备供应商申报书.docx /span /a /p
  • 盘点Protein A亲和填料质控必看的重要参数
    继上篇《浅谈令人“爱恨交加”的Protein A亲和层析介质》(点击回顾)后,江必旺博士本期带我们了解影响Protein A层析介质的多种参数,供广大用户学习,也欢迎大家在评论区留言讨论。Protein A亲和填料的关键考核要素Protein A是用于抗体第一步分离纯化,其性能影响抗体生产的效率,成本,纯度等等,因此抗体厂家对Protein A 介质的要求较高。其关键点在Protein A 介质的载量,机械强度,耐碱性,使用寿命,纯度和回收率,配基脱落及HCP的残留及产品的质量和稳定供应等等。介质载量:层析介质的载量是药厂选择的重要参数,载量越高,同样柱体积填料可以处理更多的抗体料液,生产效率也就越高。但Protein A 亲和填料载量与柱保留时间有关,一般情况是柱留时间越长,测试的载量越大,也就是说流动相速度越快载量越低,这主要是因为抗体在介质微球中的扩散速度受限造成的。抗体的纯化生产效率与流动相速度有关,速度越快生产效率越高,但速度越快载量越低,上样量越少,因此要平衡好载量和流速以达到最高生产效率。评估亲和介质载量要看,其载量是在什么样的流速下测试的,理想的介质是在高流速条件下具有较高的载量。这样有利于兼顾生产效率和产量;抗体回收率和纯度:一般来说Protein A亲和层析介质用于抗体分离纯化回收率都比较高(一般都高于90%以上),回收率越高,成本越低。另外纯化后抗体的纯度也是药厂重点考虑的因素,Protein A 亲和层析往往是用于第一步捕获,一步亲和层析就可以把纯度提高到95%以上,通过第一步纯化后抗体纯度越高,后续精细分离的压力越小。抗体回收率和纯度往往更Protein A配基种类有关系,不同厂家采用的配基不同,会影响收率和纯度。介质寿命及耐碱性:亲和层析介质比离子交换介质价格高很多,而且使用寿命又比离子交换介质短很多,使得亲和层析介质在抗体的纯化介质中占据80%成本。因此亲和层析介质的寿命是抗体厂家要考虑的另外一个重要参数。高效服役时间的长短会在一定程度上影响纯化的经济性,也能从某种程度上避免更换填料带来的潜在问题;另外药物生产过程中,氢氧化钠被广泛用于层析介质及系统的清洗、消毒及存储等过程。采用氢氧化钠再生可避免不同cycle间的蛋白及核酸的交叉污染,也可有效降低Bioburden。当浓度大于0.1M时,可有效灭活Murine Leukemia Virus等病毒,杀灭细菌及芽孢杆菌,降低内毒素水平。因此Protein A 亲和层析介质的耐碱性对其寿命及纯化抗体的质量具有重大意义。一般Protein A 亲和层析介质需要耐受0.5 M NaOH溶液清洗,且在经过100 Cycles清洗后,动态载量仍要维持在95%以上; 表1氢氧化钠对不同病毒灭活的效果统计HIVBVDCPVBHVPOLSV-40MLVADV0.1M NaOHSpike2.0×1069.5×1062.0×1096.9×1097.1×1081.7×1082.6×1052.2×10820min5.8×1021.5×1049.6×1024.5×1012.0×1044.7×1044.0×1016.3×10160min5.8×1022.7×1045.0×1034.5×1012.1×1032.0×1044.3×1012.9×101Inactivat(log10)3.52.55.68.25.53.93.86.90.5M NaOH Spike2.0×1069.5×1062.0×1096.9×1097.1×1081.7×1082.6×1052.2×10820min5.6×1021.7×1021.5×1035.9×1012.0×1048.4×1034.7×1012.0×10160min6.7×1022.7×1025.0×1035.9×1016.2×1031.0×1035.5×1012.2×101Inactivation(log10)3.54.76.18.15。16.23.77Note:病毒浓度检测采用组织细胞感染计量TCID50大量的微生物如酵母细菌可干扰层析过程,同时可以造成筛板堵塞等问题,更重要的是微生物产生的内毒素和蛋白酶严重污染纯化料液。氢氧化钠可有效抑制、杀灭酵母及细菌等微生物。数据见下表。表2 氢氧化钠对不同病毒灭活的效果统计OrganismConc.NaOH(M)Time(hrs)Temp.E.coli0.0124/22℃S.aureus0.114/22℃C.albicans0.514/22℃A.niger0.514/22℃B.subtilis spores14822℃P.aeruginosa1122℃Note:细菌低于检测限度(3Organisoms/ml)所需要的时间内毒素是革兰氏阴性菌细胞壁成分,主要是类脂多糖,也被称作热源。注射药物中含有纳克级含量即可使人体产生寒颤,高热甚至休克等不良反应。GMP生产的各环节严格控制热源,层析过程也是重点监控步骤。采用氢氧化钠对层析系统及填料进行SIP可确保把热源含量降至最小。下图是不同浓度氢氧化钠对于内毒素的灭活效果。机械强度:高机械强度的介质耐压性好,耐受更高的流速,从而提高生产效率,缩短纯化周期;另外高机械强度填料可装填更长柱子,从而提高批次处理量;高机械强度介质可以减少碎片避免筛板堵塞,降低压力;还有高机械强度的介质可以上高浓度,高粘度的样品;最后高机械强度有利于放大生产,越大的柱子,对介质机械强度要求越高,因此高机械强度的介质在大规模层析纯化过程中越不容易给压塌,可以确保生产的安全性。Protein A层析介质除了要考虑载量,机械强度,耐碱性及寿命外,还要考虑Protein A的 脱落及内毒素的控制及生产的批次稳定性等。下期,江必旺博士将为我们带来“Protein A 亲和层析介质的制备方法”干货文章,敬请期待。
  • 江西省下达2016年稀土矿钨矿开采总量控制指标
    各有关设区市国土资源局、赣州市矿管局,有关省直管县国土资源(矿管)局:为保护和合理利用优势矿产资源,促进我省稀土、钨矿资源有序开发、持续利用,按照国土资源部《关于下达2016年度稀土矿钨矿开采总量控制指标的通知》(国土资函〔2016〕316号)精神(含年初国土资发〔2016〕14号下达的第一批指标),现就我省2016年全年稀土矿和钨矿的开采总量控制指标(含第一批下达的指标)分配有关事项通知如下:一、严格执行稀土矿和钨矿矿山开采总量控制指标。稀土矿、钨矿的开采总量控制指标由省厅分配给相关设区市国土资源(矿管)局和有关省直管县国土资源(矿管)局,由各局根据去年控制指标下达情况和矿山执行开采控制指标、矿山采矿许可证核定的开采规模等相关情况分解下达到具体矿山。二、认真做好矿山企业开采总量控制指标的落实工作。各设区市、县国土资源主管部门要严格督促矿山企业按下达的总量控制指标组织生产。三、县级国土资源主管部门要督促矿山企业建立健全生产销售台帐和原始日报表等与开采总量控制和资源保护相配套的企业管理制度。四、建立统计报告制度。各县级国土资源主管部门要督促矿山企业建立联络员制度,指定专人负责统计报表等工作,加强信息沟通,确保矿山企业在每月 2 日前报送上月稀土矿和钨矿生产量、销售量、销售对象等情况。各设区市、县级国土资源主管部门要认真执行稀土月报和钨矿季报制度,及时、准确、规范开展网上直报。五、严格监督检查矿山企业矿产品销售情况。对向非指定的收购单位销售钨矿和稀土矿或收购无证开采的钨矿和稀土矿的,要坚决依法查处。各地在执行过程中发现其他相关问题,要及时报告省厅。中国稀有金属网
  • 一赌成瘾!名牌大学研究生偷卖实验室仪器筹赌资
    今年5月10日,警方接到上海某大学某研究生学院负责人报案,称院里某仪器被盗。调查后,警方将目标锁定在该院研究生武某身上。日前,杨浦区检察院以盗窃罪依法对武某提起公诉。  那么,武某是如何偷走仪器的?有着大好前程的他又为何要偷窃试验室里的仪器呢?  周密盘算 等待时机盗窃得手  2016年4月中旬,武某在自己的实验室做实验之际,看见隔壁实验室大门敞开,便进入隔壁实验室,趁同学们讨论问题不注意,顺手拿走了放在实验桌上的公共钥匙。随后几次进出,武某了解了实验室里的各种仪器,并将目光锁定在柜子中不常用的一台仪器上。记住了仪器的品牌和型号,武某在网上寻找买家,并通过聊天软件和对方谈妥了价格。“我在网上搜索过这台仪器的价格,从8000元至8万元不等,大多在1万元左右,所以我也摸不清具体的价格。”武某告诉笔者:“当时我通过聊天软件联系上买家,他一开口就报价3.7万。我吓了一跳,因为我不知道这仪器竟然能卖这么多钱。”除此之外,为了使自己不被认出,武某还提前在网上以及超市购买了一套黑色运动服、一双黑色运动鞋、一个深蓝色口罩和一顶棒球帽。  4月23日下午,武某从学校步行至附近的一家小旅馆开了间房。在房内换好了“较为遮蔽”的衣服后,武某打的直接前往学校实验室大楼,再从平时不怎么走人的备用楼梯前往隔壁的实验室。随后,武某拿出事前偷来的钥匙打开隔壁实验室的大门,匆匆将柜子中的仪器装入自己的双肩包中,然后锁上门,顺着原路返回旅馆。  当晚,武某将仪器留在旅馆后返回宿舍睡觉。次日清晨,武某返回旅馆退房,按照事前联系的买家,将仪器寄了出去,然后若无其事地返回学校。  一赌成瘾 为筹赌资动歪脑筋  那么,武某究竟将赃款花在何处了呢?原来,2016年3月底的一天,正在上网的武某因巧合加入了一个“足彩群”。本就爱看足球的武某没有立刻退群。几天“潜水”下来,武某发现群里都跟着几个大庄一起买足彩,赚了不少钱。快速的赚钱方式让武某跃跃欲试。第一次买足彩,武某下了400元的本,没几天竟赚回了1000余元。如此容易便收获了人生“第一桶金”,让武某吃惊之余更充满欣喜。此后,他几次下注又都赚了不少,慢慢地,武某越赌越大。“3月底到4月初的那两个星期,我几乎每天都在赌球。现在想起来,我当时已经完全意识不到自己在做什么了。”赢过几次后,武某常胜的局面便被打破,接踵而来的是一次次的输钱。不久,武某不仅输掉了自己的零花钱,连自己的生活费也输得精光。  没有生活来源的武某开始动起了歪脑筋。他首先想到了自己的父亲,便给父亲打电话详装自己要和同学创业需要资金,问父亲要了1.2万余元。拿到钱后,武某不顾吃喝随即将钱拿去“翻本”,不想很快又输光了,还欠了一屁股债。没有了赌资,武某便天天惆怅起来,盘算着如何“弄点钱”回本。“因为实验室管理松散,我便动起了偷仪器的想法。我在隔壁实验室里找到了一台不常用的仪器,想着先把它卖了周转一下,回了本赚了钱便再把仪器赎回来。”拿到卖仪器的钱后,武某也立刻拿去买了足彩,却将这些钱也一并输得精光。  寒窗苦读 一步错前程尽毁  据调查,武某来自于河北省一个较为偏僻的乡村,父母都是农民。即使是家中独子,小时候因家境窘困武某没钱读书,直到12岁才有了念书的条件。因为学校距离家里很远,从小学起武某就寄宿在学校里。父母文化程度不高、收入也不高,却坚信“读书才是唯一的出路”,努力在外打工赚钱,不曾让武某因为学费费过一分神,一路从小学供武某读到大学。  考上了河北数一数二的大学后,武某开始有了更清晰的目标。“因为南方经济发展好,文化氛围浓厚,我刚上大学的时候就励志要去南方读研。”有了这个目标以后,武某的大学生活充实了起来。他的孜孜不倦,让他在考研的道路上顺风顺水。2015年初,武某如愿考上了上海某大学的研究生,成了全村和父母的骄傲。  然而,研究生生活并没有武某想象的那么美好。开学后,武某才知晓自己选中的导师因为名额有限,使得他被分配给校外企业导师带教。这使得本就来自偏远山区的他更加地孤独和内向。“校外企导基本上不管我什么,学校课余之外又没有丰富的活动,让我常常觉得生活和前途都很迷惘,再也找不到大学时期的那种奋斗感。”武某告诉笔者:“我被分给校外企导,让我觉得我在班级里像个外人。从小在外读书,更是和父母没有什么内心的沟通。我的好朋友又都在河北。”迷惘自卑的情绪难以疏导,使得武某整日浑浑噩噩度日,没日没夜的上网,最终迷上了赌球,步上了偷窃的不归路。  “我完全不知道那些日子我是怎么度过的,现在想想都难以相信。”事发后,武某表示后悔:“我对不起的不仅仅是自己,首先更是含辛茹苦让我读书的父母。”  检察官说法  办案检察官认为,刑法规定的盗窃罪,即以秘密手段窃取公私财物,数额较大的行为。而本案中,武某窃得的仪器经鉴定,数额已经达到刑法认定的“数额巨大”的标准,按照刑法规定,应被判处有期徒刑三年以上十年以下,并处罚金。一个本能拥有美好人生的年轻人,因此葬送了自己的人生,实在令人扼腕。  纵观武某的犯罪道路,我们能清楚地看到赌博这一亘古不变的毒瘤对他的侵蚀,能清楚地看到缺乏法治理念、缺少守法意识对一个人走上邪路的推动。近年来,大学校园内学生参与网络赌博情况屡有发生,不劳而获,一夜暴富让这些涉世未深的年轻人蒙蔽了双眼,孰料十赌九输,赌到最后不仅是经济的输家,更有可能成为人身的败者。而武某身为名牌大学的在读研究生,考试为其所长,但在这一路求学的过程中,唯独缺少了系统的法制教育,缺少了对法律的敬畏,如果说之前他的积累是零的话,遵纪守法就是零之前的那个一,如果没有一,零就只能是零。
  • 梅特勒托利多2015年第1季度业绩回顾
    2015年第一季度梅特勒托利多全球业绩良好,取得了开门红。美洲市场的需求依旧强劲,并且我们在欧洲的发展势头良好。尽管中国的工业衡器业务状况比我们预想的更具挑战性,中国的其他业务和区域仍取得了不俗的业绩,因此亚洲/世界其他地区的增长比较稳定。总体上,在这一季度,集团的本币销量增长 5%,营业利润提高 7%。除了财务业绩外,今年的良好开端还体现在我们正顺利推行各项战略举措。例如:通过全球大客户管理实现稳步成长;销售区域优化确保将资源分配给发展潜力最大的区域;产品生命周期管理帮助提高市场份额与盈利能力;持续加大研发投入,不断推出满足市场需求的新产品。以下是2015年第二季度即将在中国地区上市的两款新产品:新一代经典系列MS分析和精密天平研发实验室以及质量控制和生产部门使用我们的新款MS-TS分析与精密天平执行多种日常操作与事务。这些天平注重简化日常称量事务并提高生产效率,获得专利的称量传感器与更多的警告功能可确保准确、完全可追溯的结果。这款仪器内置应用程序和称量向导,触摸屏操作简便、设计独特,比目前市场上任何触摸屏大将近一倍。这款新一代天平可帮助加强精益实验室与生产工艺,对客户而言非常重要。IND570全新中档称重终端 该称重终端配有尺寸更大,分辨率更高的显示屏以及功能更强的用户界面。凭借更强大的工作流程、连接能力和数据管理功能,它可帮助提高生产效率,在行业中首屈一指。这款称重终端还能够提供远程服务支持,即遵照 ISO 标准向加密的云计算服务器自动发送关键警报。它会在称重过程需要关注、发生诸如校准过期、未通过 GWP 检定测试等情形下向管理人员发出警示。这道工序最终向客户提供更多与称重性能有关的实时信息。 了解更多信息,请访问梅特勒托利多中国官网:cn.mt.com了解更多产品信息↓↓↓ 公司官网:www.mt.com官方客服热线:4008-878-788官方微博:http://weibo.com/mettlertoledo官方微信二维码:
  • New Select,Same BioProducts广州菲罗门美国康宁SBP全国招商
    2016年3月我司获得美国康宁(Corning)集团旗下生命科学仪器品牌Select BioProducts(简称SBP)的全国总代理,特诚邀全国各大优秀经销商共同合作。 国际品牌,品质保证当今生命科学在中国蓬勃发展,你是否已经在考虑自己的公司未来的发展前景?在市场同质化的今天,你还在考虑代理什么品牌比较好吗?SBP源自美国康宁(Corning),大牌保证,坚如磐石。 产线齐全,现货供应SBP专注中国中小生物实验设备领域,提供离心机、振荡混匀装置、PCR仪、电泳系统、恒温系统、移液器等囊括实验室常用设备。并且在未来,SBP产品线也会一直在扩充。强大的库存,迅捷的调配机制,大大缩短产品与客户之间的距离与时间。 附加值高,政策支持当今的生物仪器市场竞争日益白热化,“国际大牌”攻城拔寨,所向披靡,但经销商的利润呢?SBP坚守中高端阵营,有效保障合作伙伴的利润分成。对于优秀的代理商,SBP将给予更多的政策倾斜。 渠道为先,公平为主SBP针对产品的类别与区域对经销商进行授权。蓝海区域实行严格的报备制度,有效保证合作经销商的利益。 灵活合作,支持创新SBP是一个充满活力,创新的品牌。每一个SBP代理商都是品牌管理者,也是形象代言人。凡是对SBP品牌发展有促进作用的市场营销活动,都会得到SBP中国总代理相应的支持。 2016年是SBP深耕中国市场的关键一年。我们需要你。或者,你需要我们。如果,你看得见生命科学在中国的发展潜力;如果,你是一个懂得创造最大价值的人;那么,加入我们,一齐创造无限可能吧! SBP电子图册:http://share.weiyun.com/1924d1aa38958975a7f08a28bf2bb75b SBP产品介绍:http://share.weiyun.com/6f23537d51ab5572404dfdb198f2adb2 SBP代理商信息登记表:http://share.weiyun.com/f3fbcfb7d0cf1a869b1fdf55c5f1dc4d【注】1.附件:产品图册,产品介绍,以及代理商信息登记表。2.如有合作意愿,请填写附件代理商信息表发送至:sbp@gzflm.com。我们的工作人员会在第一时间查收或者回复您。3.所填信息我们将为代理商严格保密,仅作备案之用。4.想了解更多请访问SBP中国官网:www.sbpbio.com 或者拨打电话致电我们。
  • 美国反击中国制裁,决定从“废品”中回收镓
    据彭博社报道,在中国限制镓和锗出口后,美国国防部将在年底前向美国或加拿大公司签发首次镓回收合同。虽然五角大楼有锗储量,但它没有镓储量,它现在计划从“废品”中回收镓。镓用于五角大楼的各种应用,包括雷达、通信和电源芯片。对于国防部来说,拥有这种金属至关重要。发言人杰夫尤尔根森(Jeff Jurgensen)表示,五角大楼打算利用《国防生产法》(DPA)在年底前优先考虑合同授予,重点是从其他产品废物流中回收镓。出于国家安全原因,《达尔富尔和平协议》为关键的国内工业部门提供资金提供了便利。五角大楼表示,在美国随时获得此类材料的最快方法是通过回收而不是采矿,这是DPA以前没有资助的方法。镓可以在高温下处理高压,在海军用于空中和导弹防御的舰载雷达系统以及陆军和海军陆战队用于识别火箭、火炮、迫击炮、巡航导弹以及有人和无人驾驶空中无人机的陆基雷达系统中发挥着至关重要的作用。国防部没有透露将分配给合同多少资金,可能涉及的公司数量或想要回收的镓数量。适合回收的镓可以从半导体晶圆制造过程中产生的废物以及使用过的或有故障的设备中获取。彭博社援引战略与国际研究中心国防倡议小组分析师亚历山大霍尔德内斯(Alexander Holderness)的说法,回收过程将中级镓提炼成更高纯度的镓,然后用于制造各种微电子产品。“这是一个完全合理的策略,”霍尔德内斯说。中国最近实施了新的出口规则,要求当地公司获得出口许可证才能在国外销售镓和锗。中国目前控制着全球约94%的镓产量以及全球约60%的锗产量。尽管这些金属并不完全稀有,在某些情况下,镓和锗是作为其他材料采矿作业的副产品获得的,但它们的低成本一直由中国保持(中国设法使其精炼过程更便宜),使得在其他地方提取更加昂贵。虽然中国的限制措施最初可能会提高价格,甚至扰乱某些零部件的生产,但它可能会鼓励其他国家开采这些金属,随着时间的推移,可能会破坏中国的市场主导地位。
  • 印度将实施电子产品强制检验制度
    印度标准局近日发布公告称,印度将于2013年3月7日开始实施电子产品强制检验制度,所有印度生产和从国外进口的电子产品在销售前都必须得到印度标准局(BIS)的认证许可。这是印度首次针对全球产品出台类似规定。   根据规定,所有电子产品生产商都需将产品送交指定的机构进行检验,检验合格后由印度标准局签署合格证书并在产品上粘贴醒目的标识。从海外进口的电子产品在印度市场销售前,也需获得检验合格证书,检验可由产品原产地的当地机构来进行,但这些机构必须获得印度标准局的许可。   印度电子和信息技术部(DEITY)此前已经发布命令,公布了首批15种需要进行强制检验的电子产品目录,包括笔记本电脑、平板电脑、电视机(LCD和LED)、光盘播放机、微波炉、打印机、扫描仪、无线键盘、视频监控器、电话答录机、放大器、音响系统、电子表和机顶盒,移动电话等其他电子产品随后也将纳入检验目录。   根据印度电子工业协会(ELCINA)的数据,印度电子产品销售额2015年预计将达到1,580亿美元。印度大约30-40%的电子产品在地下市场交易,其中不乏质量低劣的产品。业内人士表示,印出台强制检验制度是为了遏制劣质电子产品在市场的泛滥。
  • 智能化时代的实验室设备,您体验了吗?
    身处智能时代,变革无处不在,今天我们的想象还幻化在虚无缥缈之中,明天就成为了现实的颠覆。在智能化手机、智能化电视、智能化手表颠覆了您的传统生活之后,您有没有将关于智能的想象带入实验室,想象一下智能化颠覆的实验仪器呢?   其实,关于实验室设备的智能化已经开始,颠覆大戏的序幕已经拉开,赛多利斯推出的Secura、Quintix、Practum智能化天平已经登上了历史舞台,而且它正在走入您的工作生活。   自从全球性的金融危机爆发以来,赛多利斯逆市加大了新产品研发的投入。大量新的技术产生,四角误差补偿,全自动水平调整,基于全新称重传感器技术的5位数上皿式称重结构,更高精度的称重模块。结合目前最新的电子技术发展,赛多利斯全新的个性化操作系统,可以直接联入系统的网络服务功能,Q-APP网上应用程序商店,触摸屏扫屏操作模式等等都搬到了由CUBIS系列和Secura,Quintix & Practum天平构成的全新的产品组合之中。正是基于这种强大的技术优势,赛多利斯结合用户的需求重新定义了产品的分类,把不同的技术按级别分别分配给对应的天平。因此赛多利斯新天平带来了两个飞跃。   第一是很多应用于高端天平的技术被运用到常规天平的功能中   比如时间温度触发的校准技术,在赛多利斯的新的天平系列里,只要是内校天平都有这一功能&mdash &mdash isoCAL。这样你会发现按价格分类的同档次天平,赛多利斯的技术是绝对领先的。   第二,触摸扫屏操控系统,这种在手机上普遍应用的操作模式被新上市天平全系列采用。也就是说赛多利斯最低档次的天平也将采用这种操作系统。这样做不是在说赛多利斯的技术储备有多丰厚,把看似本该放到高端天平上的功能的商业价值浪费掉,其实更深层次的原因在于赛多利斯意识到一个天平从简单称量到使用应用功能转变的时代已经到来,简单方便的操作系统不再是高端用户的专属工具,即使是一个面包房,一个饲料车间都给天平厂家提出更高的应用要求。赛多利斯应该顺应这种转变,积极的去推动它。这也许就是所谓的企业责任吧。   第三,赛多利斯在新系列的天平中集结了获得IF大奖、红点大奖的技术,特别是Secura,除了获得IF设计大奖的直观菜单外,还开创性的设计了风险控制功能,对于称量时未水平等常见问题进行了规避,由于这一功能不仅有效的保证了数据的准确性,还帮用户避免了常见错误的产生从而大大降低了工作压力,使称量体验更加轻松,称量结果更加准确。风险控制功能加上光洁、防滑表面、简洁轮廓及完全可拆卸的防风罩等易于清洁的设计也获帮Secura 获得了世界红点设计大奖。奖项固然重要,但奖项背后更多体现的是赛多利斯对用户使用体验的关注和对用户的关爱。而重视技术与用户需求或许就是赛多利斯能够一直引领天平发展的原因吧。   智能时代,关于智能的想象将会不断继续,技术的发展也为这些想象创造了无限的可能,而可能之外有一点是确定无疑的,那就是实验室仪器必将朝着更加智能、更好的用户体验的方向迈进,智能化时代的实验室设备,您体验了吗? 了解更多产品信息: Practum:称重的正确之选 Quintix:定义天平新标准 Secura:实现轻松、可靠的称量
  • 科技项目申报不得将职称论文等作为限制条件
    11月22日,市十六届人大常委会第六次会议对《北京国际科技创新中心建设条例(草案二次审议稿)》进行了审议。草案二次审议稿新增对科技服务业的支持、强化基础学科人才培养等内容,并持续完善创新生态环境建设,明确科技项目申报不得将职称、论文、奖项等作为限制性条件。支持企业设立内部科研机构草案一审稿突出体现了对各类创新主体的赋权激励。这一特点,在二审稿中得到进一步加强。市人大教科文卫委员会副主任委员孟繁华介绍,有意见提出要进一步强化对企业创新发展体制机制的改革创新,加大对各创新主体支持力度。吸纳意见,二审稿强化了企业创新主体地位,明确支持科技领军企业开展行业共性技术研发,带动产业创新能力提升;联合科研机构、高等学校及产业链上下游企业等组建创新联合体,开展关键核心技术、基础前沿技术等联合攻关。并提出,相关部门应支持企业设立内部科研机构,推动大企业向中小企业开放创新资源,落实研发费用税前加计扣除、研发费用资助、科技创新券等支持政策。对科技服务业的支持首次被写入草案中。二审稿明确市政府及其有关部门应当支持科技服务机构在科技成果筛选、市场化评估、融资服务、成果推介等方面发挥作用;促进科技服务新业态、新模式发展。推行代表性成果职称评审制度更好支持创新人才发展是本次修改的重点内容之一。孟繁华说,根据各方面意见,二审稿补充完善了基础学科人才培养、科技人员分类评价等内容。其中,新增了“高等学校应当加强基础学科人才培养”等。并提出,健全专业技术职称评审体系,推行代表性成果职称评审制度,明确全国重点实验室等单位可由主要负责人推荐技术专家破格申报相应层级职称。为了更好引才留才,二审稿还就进一步加大人才引进力度等内容作出重点研究,提出,根据北京国际科技创新中心建设需求,建立健全符合建设需要的人才引进、落户相关制度措施。此外,科研机构、高等学校、医疗卫生机构等事业单位可以根据工作需要,按照规定设置特设岗位,聘用急需紧缺科技创新人才,特设岗位不受岗位总量和结构比例限制。人才在薪酬激励方面的保障得到进一步完善。二审稿提出,建立完善体现知识、技术等创新要素价值的收益分配机制,明确对符合条件的高层次人才,可以实行年薪制、协议工资制、项目工资制,所需支出不受当年本单位绩效工资总量限制。扩大科研经费管理使用自主权科研经费管理使用问题一直备受科研人员关注。回应关切,二审稿重点对科技项目统筹管理进行完善,提出,推行经费包干制、预算加负面清单等方式,扩大科研经费管理使用自主权;完善科研经费跨境使用和管理机制。并明确,项目申报不得将职称、论文、奖项等作为限制性条件。有意见提出,北京作为国际科技创新中心和国际交往中心,有必要推动两个中心的联动建设。对此,二审稿在制度设计上更加突出国际化的制度供给,增加推进开放科学等内容,明确要推动国际科研学术资源开放共享,完善创新主体访问国际学术前沿网站的安全保障服务,支持在京创办国际科技期刊,鼓励创新主体与国际学术期刊出版机构开展合作。加大与国际科技组织开放合作,支持组织和个人在京发起设立国际科技组织或者与科技创新相关的国际产业与标准组织,建设国际科技组织总部集聚区。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制