当前位置: 仪器信息网 > 行业主题 > >

正极材料包覆碳结构

仪器信息网正极材料包覆碳结构专题为您整合正极材料包覆碳结构相关的最新文章,在正极材料包覆碳结构专题,您不仅可以免费浏览正极材料包覆碳结构的资讯, 同时您还可以浏览正极材料包覆碳结构的相关资料、解决方案,参与社区正极材料包覆碳结构话题讨论。

正极材料包覆碳结构相关的论坛

  • 喷雾干燥-碳热还原法制备的正极材料提高电池的综合性能

    [size=14px][font=微软雅黑]采用喷雾干燥-碳热还原法制备的LiFePO4/C粉体材料具有独特的微观形貌,是喷雾干燥前驱体由分散均匀的、粒径10微米左右的皱纹状前驱体颗粒组成。[/font][/size][size=14px][font=微软雅黑]在喷雾干燥过程中,雾化的液滴进入干燥室后,随着溶剂的蒸发,当液滴表面溶质的浓度达到其临界饱和浓度时,通过成核生长形成外壳,同时壳内溶液的迅速蒸发,形成空心球形颗粒。然后,随着干燥塔内温度降低,颗粒内部气压减小,同时由于碳黑的存在,导致壳的强度降低而塌陷,形成皱纹状颗粒。在碳热还原阶段,随着前驱体颗粒温度的上升,碳黑颗粒包覆在LiFePO[/font][sub][font=微软雅黑]4[/font][/sub][font=微软雅黑]表面形成200~700nm的初颗粒,使球壳上产生孔隙。而形成的初级颗粒在范德华力和静电作用下,保持了原有的球形结构,它们之间的堆积孔隙则形成微孔。[/font][/size][size=14px][font=微软雅黑]这种独特的微观结构,使材料具有更大的比表面积,能够让正极材料与电解液充分接触,有利于扩大Li离子的扩散面积,增大Li离子的脱嵌速率,解决了LiFePO[/font][sub][font=微软雅黑]4[/font][/sub][font=微软雅黑]扩散系数小的问题。在后期电池制备过程中,这种球形结构呈现出优异的流动性和分散性,表面易涂覆等特点,没有明显的掉粉现象,具有良好的操作性。说明采用喷雾干燥-碳热还原法制备的多孔隙球形LiFePO4/C正极材料,不仅以3价Fe为原料降低了生产成本,碳热还原提供的还原气氛有利于保持二价Fe的稳定,提高产物纯度,而且多余的还原剂碳作为成核剂阻碍了晶粒的聚集长大,控制了产物的形貌,有利于电解液的渗透和Li离子的脱嵌,提高材料的综合性能。[/font][/size]

  • 锂离子电池正极材料研究中取得新进展 TEM测试

    [img=锂离子电池正极材料研究中取得新进展]https://pic1.zhimg.com/v2-ffb0043fe845fdca7f099b81839d828b_720w.jpg?source=3af55fa1[/img]钴酸锂 (LiCoO2)是商业化最早和应用最成功的锂离子电池正极材料,由于其制备方法简单、稳定性好和体积比能量密度大在消费电子市场有着不可撼动的地位。方兴未艾的5G时代对电子产品提出了轻薄化和长续航的更高要求,迫切需要进一步提升锂离子电池的能量密度。钴酸锂拥有274mAh/g的超高理论比容量,但实际使用中最多只有50%的锂能可逆稳定释放出来(对应截止电压4.2V)。一般可以通过表面包覆和掺杂等方法拓宽充电截止电压,提高钴酸锂的比容量。目前商业化的钴酸锂最高充电截止电压为4.45V,对应比容量约为175 mAh/g,离其理论值仍然有巨大差距。因此,超高压钴酸锂(4.6V)是发展高能锂离子电池的风口浪尖。然而随着充电电压的提高,钴酸锂会发生一系列不良反应,例如从O3相到H1-3相不可逆相变的发生、正极界面的恶化、钴元素的溶解以及晶格氧的释放,引起电池电阻升高和电池性能快速衰减,极大限制了其实际应用。通常研究人员采用掺杂和包覆相结合的策略对钴酸锂进行改性,以提升其在高电压充放电过程中的稳定性,然而大多数的改性方法存在成本较高、产业化困难的问题,迫切需要寻找一种成本低廉、工艺简单和适合大规模生产的技术方案。南方科技大学材料科学与工程系教授卢周广课题组在超高比能量高压钴酸锂正极材料研究中取得新进展,相关成果在能源材料领域顶尖期刊Advanced Energy Materials在线发表,论文题目为“Dextran sulfate lithium as versatile binder to stabilize high-voltage LiCoO2 to 4.6 V”。研究团队设计了一种新型耐高压水性粘结剂硫酸葡聚糖锂(Dextran sulfate lithium, DSL)替代工业广泛应用的聚偏氟乙烯(Polyvinylidene fluoride, PVDF),极大提高了钴酸锂材料在4.6V高电压充放电过程中的结构和界面稳定性,如图1所示。由于DSL粘结剂与钴酸锂表面强相互作用,在钴酸锂表面原位形成均匀的包覆层。均匀的DSL包覆层不但可以有效抑制钴酸锂在高压条件下从O3相到H1-3相的不可逆相变发生,而且极大保护材料表面不被电解液侵蚀,减少钴元素的分解,大大提升4.6V超高压钴酸锂的长循环循环性,可逆稳定容量超过200mAh/g。该研究通过使用原位XRD测试分析钴酸锂在充放电过程中的相变过程差异。如图3所示,可以明显看到使用DSL粘结剂的钴酸锂电极,在大于4.55V的高压不良相变(O3相H1-3相)得到了有效的抑制。此外,分析循环后钴酸锂颗粒截面,我们可以清晰看到相较于PVDF组截面,DSL组的截面存在较少的微裂纹。与原位XRD测试结果一致,这是由于DSL粘结剂对钴酸锂高压相变的抑制,缓解了钴酸锂由于内应力诱发裂纹生成的问题。[img=,994,]https://pic3.zhimg.com/80/v2-d19c990dec2f4f467dfea98962d4bb64_720w.jpg?source=3af55fa1[/img]图3.(a) PVDF-LCO和DSL-LCO在(003)衍射峰处的首圈原位X射线衍射图;(b) PVDF-LCO和DSL-LCO的高压结构示意图;(c) PVDF-LCO和DSL-LCO在0.1 mV/s的扫速下的循环伏安曲线图;(d)PVDF-LCO和DSL-LCO循环50次后的聚焦离子束扫描电子显微镜图像。TEM测试方法能够直观地展现出钴酸锂在长循环后的不可逆相变的积累差异。图4(a)中我们可以清晰看到PVDF-LCO颗粒表面结构严重退化,大部分已经从初生的层状相向尖晶石相甚至岩盐相不可逆转变,会逐渐损害了钴酸锂正极的循环性能。图4(b) 中的DSL-LCO颗粒表面有均匀的的DSL包覆,仅有较轻微的不可逆的相变积累,这与DSL粘结剂对钴酸锂高压充放电的结构退化的抑制作用紧密相关。[img=,1000,]https://pic1.zhimg.com/80/v2-266e7be988b8ac4f57eed14144cb1631_720w.jpg?source=3af55fa1[/img]图4.(a) PVDF-LCO在50圈循环后的透射电镜图像;(b) DSL-LCO在50圈循环后的透射电镜图像。来源:南方科技大学论文链接:[url=http://link.zhihu.com/?target=https%3A//doi.org/10.1002/aenm.202101864][font=a][size=0px][color=transparent]https://[/color][/size][/font]doi.org/10.1002/aenm.20[font=a][size=0px][color=transparent]2101864[/color][/size][/font][/url]欢迎转发,让更多的朋友看到,欢迎评论、分享![img=,962,]https://pic3.zhimg.com/80/v2-4db6f072c550bf23f2daa2c361f8cc52_720w.jpg?source=3af55fa1[/img][img=,3979,]https://pic2.zhimg.com/80/v2-0c7ec3df0907e4e977bbe5150701a675_720w.jpg?source=3af55fa1[/img]

  • 征集材料分析方案,谢啦

    我手头有批材料要做分析,是电池正极的解剖样品,不知其中成分,而且是混合物了,想知道其中的成分和活性物质的结构,希望大侠们指点一下呀

  • 【分享】【锂电池专栏】正极材料磷酸铁锂

    1997年美国德克萨斯州立大学John. B. Goodenough等研究群,也接着报导了LiFePO4的可逆性地迁入脱出锂的特性,美国与日本不约而同地发表橄榄石结构(LiMPO4), 使得该材料受到了极大的重视,并引起广泛的研究和迅速的发展。与传统的锂离子二次电池正极材料,尖晶石结构的LiMn2O4和层状结构的LiCoO2相比,LiMPO4 的原物料来源更广泛、价格更低廉且无环境污染。

  • 西安交通大学科研人员在钠离子电池正极材料领域取得重要进展

    [color=#000000]近年来钠离子电池作为一种新型电化学储能技术,由于钠资源储量丰富、成本低廉等优势受到越来越多的关注。O3型层状正极材料因其合成工艺简单、理论容量较高、初始钠含量充足而有着巨大的商业化前景。然而,其在电化学过程中,复杂的相变伴随着缓慢的Na[sup]+[/sup]扩散动力学依然制约了O3型正极的性能发挥,由此引发的电压滞后现象更是导致材料电压衰减和能量密度降低的重要原因。[/color][align=center][img]https://img1.17img.cn/17img/images/202404/uepic/de0a20bf-b220-4983-8d5f-c551d76424a4.jpg[/img][/align][color=#000000]针对上述问题,西安交通大学[b]电气学院王鹏飞教授[/b]与[b]材料学院高志斌副教授[/b]合作,通过“理论模型设计+第一性计算+实验测量与表征”的方法提高过渡金属层的构型熵调控电子结构,缩短了过渡金属层间距,扩展了钠离子的八面体?四面体?八面体传输通道,研制出一种新型钠离子电池高熵正极材料。该正极材料表现出极小的电压滞后(0.09V),在大电流密度下的倍率性能优异(10C可逆容量为98.6mA hg[sup]?1[/sup]),同时具备出色的快充慢放能力。电化学测试结合分子动力学模拟,证实了这种高熵材料有着较低的迁移能垒(0.17eV),从而提高了Na[sup]+[/sup]扩散系数(~10[sup]?10[/sup]cm[sup]2[/sup]s[sup]?1[/sup])。这项工作强调了对过渡金属进行高熵结构设计的重要性,对于开发高能量密度、高功率的O3型层状氧化物正极材料提供了重要参考。[/color][align=center][img]https://img1.17img.cn/17img/images/202404/uepic/bdd0a42d-869a-49a1-967a-17bedf7afded.jpg[/img][/align][color=#000000]近日,该研究成果以[b]《利用高熵策略提升层状正极Na+动力学并抑制电压滞后》(Fast Na+Kinetics and Suppressed Voltage Hysteresis Enabled by a High-Entropy Strategy for Sodium Oxide Cathodes)[/b]为题,发表在国际顶尖材料学期刊[i]《先进材料》(Advanced Materials)[/i]上。西安交通大学硕士生王贤佐、左钰婷和秦元斌博士为本文的共同第一作者,西安交通大学王鹏飞教授、成永红教授、高志斌副教授和中科院化学所郭玉国研究员为本文的共同通讯作者。论文第一单位为西安交通大学电工材料电气绝缘全国重点实验室新型储能与能量转换纳米材料研究中心。[/color][color=#000000]该研究工作得到国家自然科学基金、西安交通大学青年拔尖人才计划、电工材料电气绝缘全国重点实验室、陕西省“高层次人才引进计划”、江苏聚烽新能源科技有限公司、西安交通大学思源学者、上海市特殊人工微结构材料与技术重点实验室开放项目、中央高校基础研究经费等资助。表征及测试工作得到西安交通大学分析测试共享中心和上海同步辐射光源的支持,理论模拟计算获得西安交通大学高性能计算平台的支持。[/color][color=#000000]文章链接:[/color][url=https://onlinelibrary.wiley.com/doi/10.1002/adma.202312300][b]https://onlinelibrary.wiley.com/doi/10.1002/adma.202312300[/b][/url][来源:交大新闻网][align=right][/align]

  • 【讨论】讨论下材料试验机的伺服技术(有奖征集)

    【讨论】讨论下材料试验机的伺服技术(有奖征集)

    http://ng1.17img.cn/bbsfiles/images/2010/10/201010181033_252019_2108479_3.jpg上海**试验仪器有限公司已推出了电机油源伺服技术,并成功运用与微机控制压力试验机(双工位机型),大家讨论下新的技术对材料试验机的重要性。该厂家的宣传资料如下:YAW-300/5微机控制压力试验机(双工位机型)用于水泥、胶砂的抗压、抗折试验。该机采用国内首家研制成功的伺服油源加载技术,加载控制平稳、精确。伺服系统选用Panasonic成套伺服驱动器和电机,整机运行噪音大大降低至50dB以下,甚至优于噪音较低的电子万能试验机。该技术实现了在非试验状态下伺服系统不消耗功率,比传统恒压工作的油源系统功率节省65-75%,不仅降低了能耗消费,也适合低碳经济时代的发展要求.这项技术的成功将会彻底抛弃传统的液压油源,液压试验机不再拖着一个笨重的油源,而是由一个精密的伺服电机直接驱动油缸的运动。**仪器以技术研发为前导,将不断为国内用户带来革命性的产品及全新的设备体验。

  • 【分享】锂离子电池的负极材料分类介绍

    [font=&]锂离子电池的负极材料主要有碳素材料和非碳材料两大类,已实际用于锂离子电池的负极材料基本上都是碳素材料,如人工石墨、天然石墨、中间相碳微球(MCMB)、石油焦、碳纤维、热解树脂碳等,此外,人们也在积极研究开发非碳负极材料。[/font][font=&]1、碳素负极材料[/font][font=&]碳材料根据其结构特性可分成两类:易石墨化碳及难石墨化碳,也就是通常所说的软碳和硬碳材料。通常硬碳的晶粒较小,晶粒取向不规则,密度较小,表面多孔,晶面间距(d002)较大,一般在0.35~0.40nm,而软碳则为0.35nm左右。[/font][font=&]软碳主要有碳纤维、碳微球、石油焦等。软碳主要有碳纤维、碳微球、石油焦等。其中,普通石油焦的比容量较低,约为160 mAhg-1,循环性能较差,对石油焦(国产)等通过改性处理,可使比容量提高到250 mAhg-1,并且具有较好的循环性能。硬碳中主要有树脂碳,有机聚合物(PVA、PVC、PVDF、PAN等)热解碳以及碳黑(如乙炔黑)等。[/font][font=&]与非石墨化碳材料相比,石墨导电性好,结晶度较高,具有良好的层状结构,更适合Li离子的脱/嵌,形成LiC6锂-石墨层间插入化合物Li-GIC。[/font][font=&]石墨材料主要包括人造石墨和天然石墨两大类。人造石墨是将易石墨化碳(软碳)经高温石墨化处理制得。作为锂离子电池负极材料的人造石墨类材料主要有石墨化中间相碳微球、石墨纤维及其他各种石墨化碳等。[/font][font=&]2、非碳负极材料[/font][font=&]含锂过渡金属氮化物是在氮化锂Li3N高离子导体材料(电导率为102cm-1)的研究基础上发展起来的,可分为反CaF2型和Li3N型两种,代表性的材料分别为Li3-xCoxN和Li7MnN4。Li3-xCoxN属于Li3N型结构锂过渡金属氮化物(其通式为Li3-xMxN,M为Co、Ni、Cu等),该材料比容量高,可达到900 mAhg-1,没有不可逆容量,充放电平均电压为0.6V左右,同时也能够与不能提供锂源的正极材料匹配组成电池。[/font][font=&]Li7MnN4属于反CaF2型结构锂过渡金属氮化物(其通式为Li2n-1MNn,M代表过渡金属),比容量较低,约为200 mAhg-1,但循环性能良好,充放电电压平坦,没有不可逆容量,特别是这种材料作为锂离子电池负极时,还可以采用不能提供锂源的正极材料与其匹配组成电池。[/font][font=&]TiS2、MoS2等硫化物也可作锂离子电池的负极材料,可与LiCoO2、LiNiO2、LiMn2O4等4V级正极材料匹配组成电池。这类电池电压较低,如以TiS2为负极,LiCoO2为正极组成电池,电压为2V左右,其循环性能较好,可达到500次。[/font]

  • 【原创】锂离子电池正极材料磷酸铁锂发展分析

    电动汽车行业发展可为风起云涌,而车用动力电池作为其中的重要组成部分,已经引起学术界、投资界和产业界的高度关注。目前,已经在各种车辆上实现应用的电池种类主要有铅酸电池、镍氢电池与锂离子电池3种,由于铅酸电池污染大、克容量小,其成本优势不足以抵消其劣势,故在车辆动力方面至今仅在小型电动自行车等领域得以应用;镍氢电池现为混合动力汽车领域应用的主要产品,其制造工艺成熟,购置和使用成本较低,故而在短期内仍将是混合动力汽车的首选,但其自放电率高、比能量较小,记忆效应和充电发热等方面的问题直接影响到该电池的使用,这些缺点的存在使镍氢电池可能只是作为过度产品存在;锂离子电池是90年代发展起来的高容量可充电电池,能够比镍氢电池存储更多的能量,比能量大、循环寿命长、自放电率小、无记忆效应,能够满足对体积、寿命、功率等要求较高的乘用车方面的需求,已成为今后纯电动汽车应用的理想产品。锂离子电池的正极材料种类较多,主要品种有钴酸锂、锰酸锂、镍锰钴三元材料及磷酸铁锂等,其中钴酸锂是现有正极材料中工业化程度最高、技术最成熟、产量最大的品种,主要用于手机、数码产品等小型电池领域,但由于原材料钴和镍金属的价格高昂,污染较重,且电池在大型化后,会有过热着火或爆炸的危险。故相对而言,正极材料为锰酸钾、三元材料和磷酸铁锂的锂离子电池安全性能更好,成本更为低廉,所以目前产业的投入主要集中于这几种材料之上。其中,磷酸铁锂由于具有另外两种材料所不具备的循环寿命和材料成本方面的潜在优势,而被业界普遍看好,代表着动力电池正极材料的未来发展方向。国际上主要的磷酸铁锂电池材料生产厂商有加拿大Phostech、美国Valencn、美国A123、台湾地区的台塑长圆能源科技、立凯等,其中,前3家企业掌握着较为成熟的量产技术。2008年全球磷酸铁锂出货量为1500吨左右,其中美国A123公司供应750吨,几乎占了一半的份额,国内厂商供应量只有几百吨,2009年全球磷酸铁锂出货量约为1600吨,2010年全球磷酸铁锂出货量为1370吨左右。据悉,目前国内磷酸铁锂正极材料厂商超过60家,实现批量生产的企业接近20家,呈现“诸侯混战”的局面。从公开资料统计来看,全国磷酸铁锂总产能约6400吨/年,但实际产量远低于产能(不足产能的1/10)。总体来说,我国磷酸铁锂的产业化发展与国际基本同步,目前国内部分产品的成本比国外同类产品要低,在性能、单位产能方面的差异并非遥不可及,但也该冷静的看到,国内目前尚未诞生真正的领军企业,行业缺乏原始创新技术,低端跟风模仿风气较盛,整体来看,磷酸铁锂材料行业处于产业化临界点之下。未来随着磷酸铁锂生产技术的不断完善,其市场前景依然为产业界所看好,除电动汽车、自行车、代步车和电动工具市场外,磷酸铁锂电池在风电、太阳能发电储能装置,矿灯电源和植入性医疗器械领域也有着广泛的应用前景。通过静态测算可以得出结论,磷酸铁锂电池在未来5-7年内,若根据10%-20%的产品渗透率计算,国内仅仅在电动汽车、电动工具、电动自行车和电动代步车这4个领域就拥有大约150亿元的市场规模,其中磷酸铁锂材料本身占到电池成本的30%左右,对应约45亿元的市场规模,年需求量可望达到3万吨。

  • 【原创】真密度测试锂离子电池正极材料锰酸锂

    锰酸锂主要为尖晶石型锰酸锂 尖晶石型锰酸锂LiMn2O4是Hunter在1981年首先制得的具有三维锂离子通道的正极材料,锰酸锂主要包括尖晶石型锰酸锂和层状结构锰酸锂,其中尖晶石型锰酸锂结构稳定,易于实现工业化生产,尖晶石型锰酸锂属于立方晶系,Fd3m空间群,理论比容量为148mAh/g,由于具有三维隧道结构,锂离子可以可逆地从尖晶石晶格中脱嵌,不会引起结构的塌陷,因而具有优异的倍率性能和稳定性。表面修饰和掺杂能有效改性其电化学性能,表面修饰可有效地抑制锰的溶解和电解液分解。掺杂可有效抑制充放电过程中的Jahn-Teller效应。将表面修饰与掺杂结合无疑能进一步提高材料的电化学性能。真密度分析仪(TD-2200)使用步骤简介:1、按国标GB1427的规定对试样进行取样及称量;在此过程中可先开启真密度分析仪主机,利用准备时间进行预热;2、对取好样的样品进行烘干,烘干时严格设置温度及时间,防止发生危险;3、将样品仓取出,装入样品并采用去皮称重法,利用万位天平进行称量,记录样品净重;4、将装好样品的样品仓小心的放入实验仓,利用手柄及套筒关闭仓盖;5、在触摸屏上新建任务,输入参数。由于开仓放入样品会导致加热系统部分热量损失,此时可通过在面板上设置预热时间,或等待预热完毕后,再开始按下触摸屏上的开始键;6、测试完成后仪器主机发出提示音,此时可看到真密度数据结果,此结果可通过U盘导出。

  • 【原创大赛】CBS(DBS/ABS)探头在核壳结构材料上的应用

    【原创大赛】CBS(DBS/ABS)探头在核壳结构材料上的应用

    核壳结构颗粒近年来在生物医学和催化剂领域研究得比较深入,应用也非常广泛。一般而言,其外壳需要有亚微米级别的结构,以便于吸附或者是内核物质的向外释放;而内核如果需要有定向功能,则经常会使用四氧化三铁等磁性材料。因此,需要用二次电子探头配合低加速电压来观察外壳的结构,使用背散射探头配合高加速电压来确认是否有内核存在以及内核有多大,外壳有多厚。CBS(DBS/ABS)探头因为其既能在低加速电压下对样品表面结构有良好的反映,其本身又是半导体背散射电子探头这两大特性,同一探头在核壳结构颗粒的两个观察要点都有良好的表现。机型:FEI Nova NanoSEM 450探头:CBS样品:二氧化硅壳包被四氧化三铁核样品制备:酒精分散,滴加在砷化镓晶片上800V的着陆电压下,可见颗粒粒径分布均匀,表面也有相当细小的结构 ↓http://ng1.17img.cn/bbsfiles/images/2013/12/201312031630_480553_1602497_3.jpg但是单凭超低电压,要看清楚样品是否有核,得看运气,看是否正好有半个颗粒能够让铁核暴露出来 ↓http://ng1.17img.cn/bbsfiles/images/2013/12/201312031636_480555_1602497_3.jpg但是并不是每时每刻都有这么好的运气,于是高加速电压的背散射像开始体现出它的价值 ↓http://ng1.17img.cn/bbsfiles/images/2013/12/201312031640_480556_1602497_3.jpg可以清楚地看到,首先,样品表面有结构;其次,样品内部有高原子序数的核。这个颗粒的制备是成功的。作为对比的是 ↓http://ng1.17img.cn/bbsfiles/images/2013/12/201312031643_480559_1602497_3.jpg这一堆的颗粒虽然表面结构也不错,但一个个却都是二氧化硅的实心球,是一堆失败的成品。如果放大倍数适当缩小,效果会更明显 ↓http://ng1.17img.cn/bbsfiles/images/2013/12/201312031645_480565_1602497_3.jpg按照这组照片反映的情况,无核颗粒数量多于有核颗粒,这批样品可以判定为不合格。为了验证背散射的结果是否可信,使用能谱做Mapping ↓http://ng1.17img.cn/bbsfiles/images/2013/12/201312031654_480568_1602497_3.jpg从左至右依次为:氧(绿色),硅(紫色),铁(棕色),因为适用的砷化镓基底,扣除砷和镓就可以得到清晰的二氧化硅壳图像。可见与背散射图像匹配度相当高。当然,二次电子探头在高加速电压下有时候同样能够得到穿透的效果 ↓http://ng1.17img.cn/bbsfiles/images/2013/12/201312031657_480569_1602497_3.jpg但是是否核壳结构是背散射说了算,在这点上专用的半导体探头衬度优势比较明显。综上,评价一个样品需要用不同的参数条件才能得到比较完整的信息,并且尽可能使用与当前条件匹配的检测器。最好配合能谱等验证方法,才能在最大限度上避免片面性和人为干扰,还原出一个真实的围观世界。

  • 多材料三明治结构生物3D打印

    生物3D打印作为前沿科技的研究热点,近年来在生物医疗领域内产生了许多应用创新。多材料生物3D打印能够构建包含多种材料与细胞的异质结构,更好的模拟天然组织或器官,逐步成为生物3D打印的发展趋势,但相关实验却操

  • 【免费分享】功能与智能材料结构演化与结构分析-电子书

    一本非常不错的书,欢迎大家看完后讨论~~作者:王中林、康振川出版社:科学出版社出版日期:2002功能与智能材料结构演化与结构分析-内容简介本书从键合、分子轨道、配位出发,将原子尺度晶体结构基础与化学相结合,论述了氧化物功能材料中的一系列晶体结构系统,把结构演化与稀土和过渡金属元素的混合价相联系,总结和探讨了功能和智能材料的性能与结构的本质联系和演化规律,从而为开发新型材料提供了基础。又从理论与实际方法上论述了分析、研究、表征这些功能材料原子分辨结构、化学和价结构分析的现代电子衍射和电子显微学方法;本书可作为材料科学、物理学、材料现代测试分析技术等专业研究生、高年级学生和大学教师的教科书、教学参考书,也是从事相关工作的科研人员和工程技术人员的重要参考书。本书英文版已被美国、法国的多所高等院校选用作为研究生教材。【图书目录】 第一篇 结构与结构演化 1 结构 键合和性能   1.1 晶体结构   1.2 结构、键合和性能   1.3 配位数和配位多面体   1.4 同型性和多型性   1.5 结构和化学键   1.6 配位场理论   1.7 配位场稳定化能  1.8 过渡金属的配位多面体  1.9 分子轨道理论  1.10 能带理论  1.11 混合价化合物和功能材料  1.12 结构转变和稳定性  1.13 材料的性能   1.14 结构和性   1.15 功能材料   1.16 小结  2 氯化钠及金红石相关结构系统  2.1 岩盐结构  2.2 具有氯化钠结构的非化学计量化合物  2.3 金红石结构及其衍生结构  2.4 金红石结构的特性  2.5 金红石相关结构的演变  2.6 非化学计量化合物和结晶体学剪切面  2.7 小结 3 钙钛矿及相关结构关系 4 萤石型和相关结构系统 5 软化学:从结构单元通向材料工程之路第二篇 结构表征 6 结构分析用电子晶体学 7 功能材料的结构分析 8 功能材料的化学和价结构分析 附录A 物理学常数、电子波长与波数附录B1 晶体学结构系统附录B2 计量晶体学数据的FORTRAN程序附录C 几种晶体结构的电子衍射花样附录D 计算机TEM中单价损EELS谱的FORTRAN程序参考文献中英文主题词对照索引材料索引后记

  • 电池正极材料/动力电池相关

    哪种电池正极材料更有应用前景,个人觉得从安全性考虑,LiFePO4最具优势,但其能量密度需要提升。从作为动力电池来说,三元和钴酸锂更具优势。国内做电池负极材料的单位/课题组有哪些,请列举一二,欢迎交流

  • 骨架材料表面结构及性质

    骨架材料表面结构及性质在模拟分子筛表面结构时,一些重要的因素必须考虑:首先,分子筛中的硅元素分布具有不均匀性,也就是说分子筛晶胞中通过Si原子连接的方式是不同的;其次,由于存在T型位,其体相结构的对称性一般很差,材料含水量的变化也会对特殊骨架阳离子的位置产生重要的影响,也就是说在模拟其表面结构时还必须考虑一些特别端面;再次,每一与Miller平面平行的对称单元的结构对水的分压非常敏感且或多或少以解离的方式与水发生反应。因此,一个给定的晶面将表示为大量可能的终结结构。由于一种晶面的热力学稳定性依赖于它和水之间的反应性,故不能简单地对某一结构的优先性进行断定。

  • LiFePO4作为锂离子电池正极材料的优点及难点

    [size=14px][font=微软雅黑]LiFePO[/font][sub][font=微软雅黑]4[/font][/sub][font=微软雅黑]因其原料资源丰富、成本低廉、循环性好、安全性高、理论比容量高、相对于其它锂离子电池正极材料工作电压适中等优点,顺应了锂离子电池的发展要求,从众多的正极材料中脱颖而出,使得它在电动汽车、空间技术、国防工业等多方面显示出广阔的应用前景,被国际电化学界许多专家学者认为有可能替代LICoO[/font][sub][font=微软雅黑]2[/font][/sub][font=微软雅黑]等成为新一代锂离子电池正极材料,具有很大的发展潜力。[/font][/size][size=14px][font=微软雅黑]然而,较低的导电性和振实密度一直阻碍着LiFePO[/font][sub][font=微软雅黑]4[/font][/sub][font=微软雅黑]的实用化进程。目前zui常用的高温固相法制备的LiFePO[/font][sub][font=微软雅黑]4[/font][/sub][font=微软雅黑]粉体颗粒通常为无规则形状,粒子混合时有严重的团聚和粒子架桥现象,粒子间存在较大空隙,晶粒脱锂不彻底,充放电容量低,其振实密度相对其它电极材料小。[/font][/size][size=14px][font=微软雅黑]这样一方面会使材料的操作性能降低,另一方面还会使电池体积增大,限制了它的实际应用。[/font][/size]

  • icp测电池正极材料

    大家好!我是做icp正极材料检测的。需要检测元素有:常量元素Co,Ni,Li,Mn;微量元素:Cu,Fe,Zn,K,Al,Mg,Na, Ca, Ti,Cr,Pb,S,P,Si这些元素。请大家看看1.微量元素检测需要注意什么?2.微量元素怎么分组配制标液才合理,才能减少干扰?3.我在检测过程中有些元素检测值,去掉和不去掉左右峰差别很大,什么时候能去掉,什么时候该保留?RSD2%就可以算是相对准确吗?为什么RSD2%同一元素多少谱线的数值都不一样,我都看了谱线,没什么不正常的,谱图很完美,左右峰都几乎贴着底线的?

  • 锂离子电池充电和放电时正极材料还是同一化合物吗

    锂离子电池充电时正极材料脱去锂离子到负极材料,放电时锂离子嵌入正极材料。那我想问正极材料多一个Li和少一个Li时还是同一个化合物吗?比如LiCoO2(充电后)和Li2CoO2(放电后)是同一个化合物吗?XRD图会不一样吗?

  • 氧化物正极材料高分辨TEM样品表征

    请问大家有没有做过氧化物正极材料的啊?第一次接触高分辨TEM制样,缺乏经验,请问怎么才能制备出好的样品啊?请大家做过氧化物正极样品的给点儿建议呗?1.选择什么样的载网比较合适?(我的样品应该在2~3微米左右)2.什么样的制备方法拍摄出来的效果比较好?谢谢啦

  • 【转帖】材料之王-----碳纤维

    材料之王-----碳纤维碳纤维--是由有机母体纤维(例如粘胶丝、聚丙烯腈或沥青)采用高温分解法在1000~3000度高温的惰性气体下制成的。其结果是除碳以外的所有元素都予以去除。碳纤维呈黑色,坚硬,具有强度高、重量轻等特点,是一种力学性能优异的新材料,它的比重不到钢的1/4,碳纤维树脂复合材料抗拉强度一般都在3500Mpa以上,是钢的7~9倍,抗拉弹性模量为23000~43000Mpa亦高于钢。因此CFRP的比强度即材料的强度与其密度之比可达到2000Mpa/(g/cm3)以上,而A3钢的比强度仅为59Mpa/(g/cm3)左右,其比模量也比钢高。材料的比强度愈高,则构件自重愈小,比模量愈高,则构件的刚度愈大,从这个意义上已预示了碳纤维在工程的广阔应用前景,综观多种新兴的复合材料(如高分子复合材料、金属基复合材料、陶瓷基复合材料)的优异性能, 不少人预料,人类在材料应用上正从钢铁时代进入到一个复合材料广泛应用的时代。  碳纤维的用途主要是利用其"轻而强"和"轻而硬"的力学特性,广泛应用于航空、航天、军工、体育休闲等结构材料;利用其尺寸稳定性,应用于宇宙机械、电波望远镜和各种成型品;利用其耐疲劳性,应用于直升飞机的叶片;利用其振动衰减性,应用于音响器材;利用其耐高温性,应用于飞机刹车片和绝热材料;利用其耐药品性,应用于密封填料和滤材;利用其电气特性,应用于电极材料、电磁波屏蔽材料、防静电材料;利用其生体适应性,应用于人工骨、韧带;利用其 X-光透过性,应用于 X-光床板等。   此外,还可以活化成活性碳纤维,应用于各种吸附领域。具体应用例如:①钓鱼杆现年产量约1200万只,年碳纤维用量1200t;②高尔夫球杆随着轻量化和长尺寸化的要求,现已占碳纤维体育用品用途的50%,年碳纤维用量为2000t;③网球拍的年市场规模约为450万只,年碳纤维用量约500t;④飞机方面,小型商务机和直升飞机的复合材料用量已占70%一80%,军用机30%一40%,大型客机15%一20%;⑥人造卫星结构体、太阳能电池板和天线要用高模碳纤维,先进的运载火箭和导弹壳体、发射筒等要用800H和 T300碳纤维等;⑥土木建筑领域,已用于补修加工用片材、建筑部件、代钢筋材料、屋顶构架材料等;⑦能源领域,已用于汽车的压缩天然气罐和风车叶片(长达30-40m)、海底油田管道、升降机等;⑧交通运输方面,已应用于赛车、汽车传动轴、大型卡车车体等;⑨电子电器领域,已应用于增强热塑性树脂的挤出成型品,如抗静电 IC盘、笔记本电脑的筐体,具有电磁波屏蔽效果;⑩其它,还有X-射线盒、医用床板、印刷、制膜、造纸等用的各种滚轴、空气或氧气呼吸用压力容器等等。 碳纤维产业是由原丝(PAN)生产再到预浸料再到具体的终端产家这么一个产业链。目前, 原丝的售价是40元~50元/公斤,碳纤维为200元/公斤,预浸料为500元/公斤,每一级的深加工都有高幅度的增值。  我国碳纤维的生产和使用尚处于起步阶段, 国内碳纤维生产能力仅占世界高性能碳纤维总产量的0.4%左右,国内用量的90%以上靠进口。而PAN 原丝质量一直是制约我国碳纤维工业规模化生产的瓶颈。另外,碳纤维长期以来被视为战略物资,发达国家一直对外实行封锁。因此,有关专家认为,强化基础研究是创新之本, 是发展国内碳纤维工业的根本出路。 美国联合碳化物公司(UCC)于1959年开始最早生产粘胶基碳纤维,五六十年代是粘胶基碳纤维的鼎盛时期,虽然时期已开始衰退,但是它作为耐烧蚀材料至今仍占有一席之地。1959年,日本研究人员发明了用聚丙烯腈(PAN)原丝制造碳纤维的新方法。在此基础上,英国皇家航空研究院研制出了制造高性能PAN基碳纤维的技术流程,使其发展驶入了快车道,PAN基碳纤维成为当前碳纤维工业的主流,产量占世界总产量的90%左右。1974年,美国联合碳化物公司开妈了高性能中间相沥青基碳纤维Thornel-35的研制,并取得成功。目前Thornel-P系列高性能沥青碳纤维仍是最好的产品,这样就形成了PAN基、沥青基和粘胶基碳纤维的三大原料体系。   世界碳纤维的主要生产商为日本的东丽、东邦人造丝、三菱人造丝三大集团和美国的卓尔泰克(ZOLTEK)、阿克苏(AKZO)、阿尔迪拉(ALDILI)和德车的SGL公司等。其中日本三大集团占世界生产能力的75%。世界CT型碳纤维总生产能力为22100吨/年,LT型碳纤维总生产能力为9550吨/年;实际生产量约为7000吨/年。   在20世纪90年代中期以前,军事工业、航天与航空工业与体育休闲业一直是CT型碳纤维的主要市场。自1996年美国成功地将LT型碳纤维工为化以后,CT型碳纤维与LT型碳纤维竞争十分激烈。   当前世界上PAN基炭纤维正处于迅速增长的发展期:产品性能趋向于高性能化,T700S加快取代T300作通用级炭纤维;产量增加较快,1996~2000增长48.1%;航天航空和体育用品用量增加稳定,民用工业用量增幅较大,已超过前两者,特别是随着大丝束炭纤维的大规模生产,价格的降低,民用工业需求增加迅猛。

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制