当前位置: 仪器信息网 > 行业主题 > >

正电子偶素

仪器信息网正电子偶素专题为您整合正电子偶素相关的最新文章,在正电子偶素专题,您不仅可以免费浏览正电子偶素的资讯, 同时您还可以浏览正电子偶素的相关资料、解决方案,参与社区正电子偶素话题讨论。

正电子偶素相关的论坛

  • 【原创】正电子核素生产

    [size=3][font=宋体]与[/font][font=Times New Roman]MRI[/font][font=宋体],[/font][font=Times New Roman]CT[/font][font=宋体]等其他影像设备不同,[/font][font=Times New Roman]PET[/font][font=宋体]是一种高级的医学影像设备,它利用组织中分布的正电子标记的放射性药物所产生的光子信息来获得病变组织的影像及其定量指标。这些放射性药物在体内的转运、代谢、分布和动力学状态通过正电子核素示踪而显示,反映相应组织的生理生化特性,它可使疾病在开始出现症状之前,进行评价和诊断,观察其发展过程,为治疗方案的制定提供客观的依据。[/font][/size][size=3][font=Times New Roman] [/font][font=宋体]正电子放射性药物是实施[/font][font=Times New Roman]PET[/font][font=宋体]显像的先决条件之一,为了满足[/font][font=Times New Roman]PET[/font][font=宋体]的常规临床应用必须选择有效的放射性药物。现在,在许多的临床[/font][font=Times New Roman]PET[/font][font=宋体]中心已开发了许多有价值的正电子示踪剂,并广泛的应用于基础和临床研究。这些正电子示踪剂大多使用[/font][font=Times New Roman][sup]11[/sup]C[/font][font=宋体],[/font][font=Times New Roman][sup]13[/sup]N[/font][font=宋体],[/font][font=Times New Roman][sup]15[/sup]O[/font][font=宋体]和[/font][font=Times New Roman][sup]18[/sup]F[/font][font=宋体]等正电子核素进行标记,由于它们的半衰期很短,因此这些核素必须用小型的回旋加速器适时生产,并在较短的时间内标记合成出适宜的正电子示踪剂进行[/font][font=Times New Roman]PET[/font][font=宋体]显像。[/font][/size][size=3][font=宋体]目前,在全世界的很多[/font][font=Times New Roman]PET[/font][font=宋体]中心已开发了多种正电子示踪剂,并应用于探查血流、氧代谢、葡萄糖代谢、蛋白质合成和神经递质活动等。这些放射性药物必须具备如下的标准:①器官的摄取性,即反映重要的和可鉴定的生理生化过程;②摄取程度,即对疾病、药物、或刺激等所引起的生理或生化改变是敏感的;③进行定量,即能够测量感兴趣区([/font][font=Times New Roman]ROI[/font][font=宋体])的放射性浓度,并与通常使用的示踪剂动力模式一致;④有效性,即安全可靠的合成或由其他[/font][font=Times New Roman]PET[/font][font=宋体]中心供给。[/font][/size][font=宋体]小型医用回旋加速器是[/font][font='Times New Roman']PET[/font][font=宋体]中心的基本配置,它普遍使用质子和氘核两种加速粒子轰击特定的靶物质,生产出以适当化学形式存在的正电子核素。[/font]

  • 【求助】关于正电子湮灭谱和Na-22

    关于正电子湮灭谱和Na-22我们新进了一台正电子湮灭谱,根据设备需要我们要使用Na-22作为放射源,此前没有类似设备,没有相关经验,因为涉及放射源所以单位比较谨慎,特来请教!1 Na-22的形态、使用、保存、处理?在正电子湮灭谱中Na-22属于固定使用的放射源还是属于需要在中短期不定期更换的耗材? 如果是耗材,平时Na-22该如何保存,替换下来的Na-22该如何处理?2 在正电子湮灭谱的使用过程中,仪器放置的环境有什么特别要求,,需要如何隔离?希望有正电子湮灭谱使用经验的老师指点一下!谢谢我的QQ 57536786电话 E-mail:57536786@qq.com

  • 丁肇中团队公布AMS成果 正电子可能来自暗物质

    阿尔法磁谱仪项目发布首个实验结果正电子可能来自人们一直寻找的暗物质2013年04月04日 来源: 中国科技网 作者: 魏东 李宁 中国科技网讯 日内瓦时间4月3日下午5时,在欧洲核子中心,由诺贝尔物理奖获得者丁肇中主持的阿尔法磁谱仪(AMS)项目发布了第一个实验结果,已发现40多万个正电子,这些正电子有可能来自脉冲星或人们一直寻找的暗物质。 据介绍,由AMS探测的40多万个正电子,是目前太空中直接观测、分析到的最多的高能量反物质粒子。每一个收集的讯号参数都需要仔细的重建、分类与存档,由数个AMS物理学家小组进行独立的分析,以确保结果精确。 暗物质是源于暗物质粒子的碰撞还是银河系中脉冲星?对此,丁肇中表示,答案在不久将见分晓。他认为,AMS有能力探索新物理,它将在国际空间站长期观测,预计每年记录160亿个宇宙射线信号,并传回地面。 作为安装于太空中的精密粒子探测装置,AMS从2011年5月19日至今,已观测超过311亿个宇宙射线,其能量高达数万亿电子伏特。其中,前18个月的太空实际探测运转中,AMS分析了250亿个初级宇宙射线;确认了680万个电子及其反粒子——正电子的事例。 AMS实验表明,正电子与电子的比率没有显示出空间的各向异性,即高能的正电子不是来自于空间某个特定的方向,此举为新物理现象找到了论据。 AMS项目耗资21亿美元,是上世纪和本世纪初世界上最大的科学计划之一,也是目前唯一被永久安放在国际空间站上具有开创性的大型科学实验。实验过程可能持续15—20年,目的是探测外层空间反物质与暗物质。有16个国家和地区的600余名科学家参与其中。2011年5月16日,AMS由美国“奋进号”航天飞机送入太空。山东大学程林教授带领团队设计完成了在国际空间站上运行的粒子探测装置——阿尔法磁谱仪的热系统,这是由中国制造的唯一大型组件,解决了太空粒子探测的关键工程问题。(记者 魏东 通讯员 李宁) 《科技日报》(2013-4-4 一版)

  • 【原创】正电子放射性药物比活度计算

    [size=3][font=Times New Roman] [/font][font=宋体]组织细胞内的受体浓度一般很低,约在[/font][font=Times New Roman]10[sup]4[/sup]-10[sup]5[/sup][/font][font=宋体]个[/font][font=Times New Roman]/[/font][font=宋体]细胞。如果细胞受体结合位点为[/font][font=Times New Roman]10[sup]4[/sup]-10[sup]5[/sup][/font][font=宋体]个[/font][font=Times New Roman]/[/font][font=宋体]细胞,标记的正电子放射性药物比活度为([/font][font=Times New Roman]3.7-7.4)X10[sup]11[/sup]Bq(10-20Ci)/mmol[/font][font=宋体],他的最大结合容量大约每[/font][font=Times New Roman]10[sup]6[/sup][/font][font=宋体]个细胞也只有几百个[/font][font=Times New Roman]cpm[/font][font=宋体],故一般要求放射性药物的比活度至少[/font][font=Times New Roman]3.7X10[sup]11[/sup]Bq(10Ci)/mmol[/font][font=宋体]。对于受体显像研究中,获得正电子放射性药物的比活度是非常重要。以下是计算正电子药物比活度的方法,仅供参考:[/font][/size][size=3][font=Times New Roman] 1[/font][font=宋体]、采用正电子放射性药物的标准品在[/font][font=Times New Roman]HPLC[/font][font=宋体]中确定[/font][font=Times New Roman]UV[/font][font=宋体]分布的位置;[/font][/size][size=3][font=Times New Roman] 2[/font][font=宋体]、将自己标记获得正电子放射性药物与标准品相同条件下在[/font][font=Times New Roman]HPLC[/font][font=宋体]中获得[/font][font=Times New Roman]UV[/font][font=宋体]、放射性分布的图形,获得产物化学量,并转化成[/font][font=Times New Roman]mmol,[/font][font=宋体]获得产物的放射性计数;[/font][/size][size=3][font=Times New Roman] 3[/font][font=宋体]、计算比活度:放射性计数([/font][font=Times New Roman]Bq)/mmol[/font][font=宋体];[/font][/size]

  • 【转帖】正电子的发现

    193O年,美国物理学家安德森在他年仅25岁时已获得哲学博十学位,但安德森选择的主要研究工作是探索宇宙射线。无空的大气层会吸收和削弱宇宙射线,为了从宇宙射线中找到新射线,安德森多次乘坐气球升入高空,进行观测实验。安德森坚信从中可以找到新的粒于,在一次研究宇宙微粒的运动状态时,安德森选用了威尔逊云室,并使云宝置入一个强磁场之中,通过公室,他拍了1000多张宇宙微粒运动的轨迹图片,然后,他又一张一张地仔细分析,就像间谍专家分析情报一样,唯恐漏掉一个细节。结果,他真的发现了宇宙透露的有价值的情报。他发现了一种与众不同的照片,一个好像是电子的微粒被磁场引向左边,但如果是电于的话,它应该向右偏。经过反复研究,安德森发现这正是狄拉克四年前所预言的“正电于”。1932年,美国的一份科普杂志用一个很不显眼的版面报道了安德森的发现。这篇具有划时代意义的文章最初受到了委屈,但它并没有被埋没,它不仅证明了狄拉克的光辉预言,使一个精美的量于理论昂起头来,而且打开了反物质世界的大问。因此,他于1936年荣获诺贝尔物理学奖。当安德森赴斯德哥尔摩领奖时,接待员对他很不客气地说:“先生,请回去告诉你的父亲,得奖的人从来没有打发儿子来代领奖金的,基金会宁愿由银行汇给他本人,也不愿讣他的儿于经手。”“先生,是谁告诉您说,得奖的是我父亲而不是我呢,显然,接待员不相信这样年轻的人会获得诺贝尔奖,当时这位获奖者只有31岁。

  • 提前发现更小肿瘤意味着什么 首台数字化正电子发射断层成像仪问世

    2012年12月15日 来源: 中国科技网 作者: 周前进 刘志伟 最新发现与创新 中国科技网讯 不留意看去,这个仪器有点形似一个厚实的马桶,约有1.3×0.8×1.6立方米。就是它,已完成了13例肺癌、肝癌、卵巢癌等癌症鼠,16例阿尔茨海默病鼠,30例正常鼠模型的研究。通过这些研究,对仪器性能进行了全面验证,特别是证实了在空间分辨率上有重大突破。 该仪器就是华中科技大学谢庆国团队研发出的世界首台数字PET(正电子发射断层成像仪),它能追踪到商用PET能够发现的最小肿瘤的1/20的肿瘤。这意味着可以更早、更灵敏地发现肿瘤、诊断癌症。 商用PET上世纪70年代诞生,以无创可视化人体生理活动而开启了医学影像学的一个全新时代。商用PET研制因为涉及核物理、电子、材料、机械、医学等诸多学科,技术门槛高,所以至今仅有西方3家跨国公司能独立研制生产PET设备。全世界现有PET 5000多台,我国有PET约160台,全部为进口。 据介绍,当前全球使用的PET均为模拟或者模数混合设备。随着数字化浪潮席卷全球,超声、计算机断层扫描(CT)以及核磁共振(MRI)等医学影像设备均早已实现了数据采集源头的数字化。但由于PET要测量的“信号”频率太高、显现的时间太短,现有“规则时间采样方法”一直难以捕获、采集到足够的信息,难以完整、精确地还原待测“信号”,成为PET数字化的绊脚石。 2001年以来,谢庆国教授带领的团队,经过11年努力,发明了“多电压阈值采样方法”,完成了从数字PET理论发现,到关键探测器工业化生产,到商业机装配与动物成像试验的整个研发过程。专家认为,数字PET的研制成功,可望为人类癌症等疾病的预防及早期诊疗带来突破。(通讯员周前进 记者刘志伟) 《科技日报》(2012-12-15 一版)

  • 美探索用反物质制造伽马射线激光器 探测微小空间

    美探索用反物质造伽马射线激光器 可对非常微小的空间进行探测 科技日报讯 传统激光器的操作光波可从红外线到X射线一网打尽,而伽马射线激光器则依靠比X射线更短的光波来运行,这就使其能产生波长仅为X射线千分之一的光波,从而能对非常微小的空间进行探测,并在医学成像领域大展拳脚。不过,长期以来,建造伽马激光器一直是个难题。现在,美国科学家让一类名为“电子偶素(positronium)”的物质—反物质混合物作为增益介质,将普通光变成了激光束。 据美国趣味科学网站5月8日报道,在最新一期的《物理评论·原子分子物理》杂志上,马里兰大学联合量子研究所的王逸新(音译)、布兰登·安德森以及查尔斯·克拉克撰文表示,他们发现,当向电子偶素提供特定能量,它将产生在其他能量下无法制造出的激光;而且,要制造出激光束,这种电子偶素必须处于玻色—爱因斯坦凝聚态下。 克拉克解释道,这种奇怪的效应与电子偶素的“性格”有关。每个电子偶素“原子”实际上是一个普通的电子和一个正电子(电子的反物质)。正电子和电子分别带正负电荷。当它们相遇时,会相互湮灭并释放出两个高能光子,这两个光子位于伽马射线范围内,反向移动。 有时,电子和正电子会围绕对方旋转,就像电子围绕着质子旋转组成原子一样。然而,正电子比质子轻,因此电子偶素并不稳定,在不到十亿分之一秒内,电子和正电子会相互碰撞并发生湮灭。 为了制造出伽马射线激光器,科学家们需要使电子偶素的温度非常低,接近绝对零度(零下273摄氏度)。这一冷却过程会让电子偶素进入波色—爱因斯坦凝聚态,这种状态下物质内的所有原子,也就是电子—正电子对,进入同样的量子状态,一举一动整齐划一。 量子状态的一个方面是自旋。电子偶素的自旋数要么为1,要么为0。一束远红外线光脉冲能让电子偶素的自旋数为0。自旋为零的电子偶素会湮灭并产生双方向相干的伽马射线束—激光束。研究人员表示,能做到这一点是因为所有电子偶素“原子”拥有同样的自旋数。如果是自旋为0和自旋为1的电子偶素随机组合,那么,光会朝各个方向散射。 研究人员也计算出,为了让一台伽马射线工作,每立方厘米大约需要1018个电子偶素原子,听起来有点多,但与空气的密度相比还是少很多,同样体积的空气大约有2.5×1019个原子。 在1994年首次提出伽马射线激光器这一概念的贝尔实验室的艾伦·米尔斯表示,研究人员可以借用数学方法,让制造这种激光器所需要的环境更加精确。(刘霞)来源:中国科技网-科技日报 2014年05月10日

  • 【求助】(已应助)再次求助(我思)大俠

    1.短半衰期正电子发射放射性药物合成方法学及进展 Synthetic methodology of short half-life radiopharmaceuticals for PET [核技术 Nuclear Techniques] 唐刚华 2.PET放射性药物的质量保证和质量控制 Quality Assurance and Quality Control of PET-radiopharmaceuticals [同位素 Journal of Isotopes] 夏振民 , 党淑琴 3.正电子放射性核素的制备及其在药学领域中的应用 Preparation of positron-emitting radionuclide and its application to pharmaceutical fields [中国药物化学杂志 Chinese Journal of Medicinal Chemistry] 唐刚华 4.正电子放射性药物的现状与进展 [西南军医 Journal of Military Surgeon in Southwest China] 周克 , 杨勤 , 向燕 5.注意正电子放射性药物的研究和发展动态 Pay attention to recent development in PET radiopharmaceuticals [中华核医学杂志 Chinese Journal of Nuclear Medicine] 王学斌 , WANG Xue-bin 6.放射性正电子药物在肿瘤中的应用研究 [实用肿瘤杂志 Journal of Practical Oncology] 王荣福 7.正电子放射性药物的临床应用与进展 Study on techniques of PET/CT imaging in detecting cancer [诊断学理论与实践 Journal of Diagnostics Concepts & Practice] 李彪 , 朱承谟 , ZHAO Jun , LIN Xiang-tong 8.正电子发射计算机断层仪器PET及在心肌活检方面的应用 The positron emission computed tomography and its in the myocardial active check-up [中国医学装备 China Medical Equipment] 尉茜 , 冯念伦 , 唐世尧 9.肿瘤PET药物的现状和展望 Prospect and Status of PET Radiopharmaceuticals in Oncology [核化学与放射化学 Journal of Nuclear and Radiochemistry] 王荣福 , WANG Rong-fu 10.正电子发射断层显像及其在医药学研究中的应用 Posiron emission tomography and its application in medical research [中国药科大学学报 Journal of China Pharmaceutical University] 唐刚华 11.PET分子影像学研究进展 Advance of molecular imaging with positron emission tomography [核技术 Nuclear Techniques] 唐刚华 12.核医学显像在肿瘤诊断中的现状与进展 [医学临床研究 Journal of Clinical Research] 蒋宁一 13.医用回旋加速器原理 [医疗卫生装备 Chinese Medical Equipment Journal] 陈泽龙 14.正电子放射性药物进展 [中华核医学杂志 Chinese Journal of Nuclear Medicine] 张锦明 15.医用回旋加速器及正电子药物合成系统的安全与防护 [医疗卫生装备 Chinese Medical Equipment Journal] 陈泽龙

  • 【原创】PET工作原理

    [font=宋体][size=3]正电子的衰变与湮灭[/size][/font][size=3][font=宋体] PET[/font][font=宋体]所用示踪剂是由发射正电子的放射性核素标记的。这些核素因富含质子而不稳定,通过正电子衰变(β[sup]+[/sup]衰变)达到稳定状态。β[sup]+[/sup]衰变的过程为:原子核中一个质子转变为一个中子、一个中微子和一个正电子。该中微子和正电子从衰变过程中获得能量而飞出核外。[/font][/size][font=宋体][size=3]例如F-18的衰变表达式为:[/size][/font][align=center][size=3][font=Times New Roman][sup]18[/sup][sub]9[/sub]F[/font][font=宋体]→[/font][font=Times New Roman][sup]18[/sup][sub]8[/sub]O+[/font][font=宋体]β[/font][font=Times New Roman][sup]+[/sup]+[/font][font=宋体]ν[/font][/size][/align][font=宋体][size=3]衰变能主要表现为正电子和中微子的动能,而每次衰变,正电子的动能及中微子的动能占衰变能的比例是随机的,因此,正电子衰变发射出的正电子没有固定的能量。[/size][/font][font=宋体][size=3] 正电子是电子的反物质。具有与电子完全相同的物理性质,唯一的区别是所带电荷的极性不同,正电子带的是正电荷,而电子带的是负电荷。中微子很轻,几乎没有质量,它不与周围介质发生任何作用,径直穿透物质飞向宇宙。[/size][/font][font=宋体]正电子寿命很短,从核内发射出来后,在周围介质(如人体组织)中不断被散射而减慢速度。一旦它静止下来就和介质中的一个电子结合形成电子偶,并在毫微秒内发生质能转换,正、负电子消失,它们的质量转变为两个能量相等([/font][font='Times New Roman']511keV[/font][font=宋体])、方向相反的光子,这一过程称为电子对湮灭([/font][font='Times New Roman']annihilation[/font][font=宋体]),也称正电子湮灭、湮灭辐射、质湮辐射。[/font][font='Times New Roman']PET[/font][font=宋体]扫描仪所探测的就是这两个方向相反的γ光子。[/font][align=center][img]http://ng1.17img.cn/bbsfiles/images/2010/06/201006130957_224221_1623423_3.gif[/img][/align]

  • 【分享】欧洲科学家利用对撞机 首次长时间捕捉到反物质

    【分享】欧洲科学家利用对撞机 首次长时间捕捉到反物质

    http://ng1.17img.cn/bbsfiles/images/2010/12/201012192115_268287_2193245_3.jpg反氢原子示意图  欧洲核子研究中心(CERN)是一个庞大的科研机构,除了LHC的相关实验之外,还有上百个实验在同时进行,而大部分的实验,最终的目的都是一个:解开宇宙起源之谜。我们知道建造LHC的最主要目的是为了寻找闻名却未见的希格斯子,但CERN还有很多其他的事情要做。比如说按照现行理论,宇宙大爆炸时同时出现了物质和反物质,但是两者却无法共存,但为什么今天的宇宙只有物质但没有反物质呢?反物质到底是什么东西?随着技术的进步,这也成了物理界越来越引人注意的话题。  11月底,CERN发布的一个突破性消息引起了人们的广泛关注。反氢激光物理设备(ALPHA)坐落于CERN的主楼群,仅有40位科学家为此工作。正是他们首次长时间捕捉到了反物质。尽管这个发现借用了LHC的成果,但其实验和LHC的思想完全相反,不是加速,而是“减速”。  对称定律解释世界  和其它物理界的发现一样,反物质首先也是“思想实验”。早在79年前,英国物理学家狄拉克就试图把量子理论和狭义相对论结合在一起。这是两个互不兼容的基本物理理论。狄拉克发现,反物质必定存在。1932年,人们在实验中寻找到了狄拉克设想的正电子,其质量、带电量与电子完全相同,只不过它带的是正电(电子带负电荷)。  随后,人们逐渐发现了各种基本粒子对应的反物质。“反物质就像是物质在镜子中的像。它和对应基本粒子的质量完全一样,却具有相反的其他量子性质。”ALPHA实验发言人杰弗瑞(Jeffrey Hangst)在接受本报记者采访时说,“质子带正电,反质子带负电;电子带负电,正电子带正电……”  按照目前解释微观世界最好的理论模型,宇宙大爆炸时,同时产生了物质和反物质。今天,NASA的天文学家们也观察到,在遥远的宇宙区域———也就是我们所能看到的早期的宇宙,似乎存在物质和反物质碰撞后产生的伽玛射线踪迹。不过今天的宇宙却是由物质而非反物质组成的。“自然选择了物质,反物质似乎消失了。没有人知道为什么。”  宏观世界中,很多东西都是对称的。微观世界也是这样。在“标准模型”中,有着一个对称定律,认为量子场论方程所有允许的解,都依据这个对称定律,物质所遵循的物理法则,反物质也同样遵循。这个对称定律由三个字母组成:C、P、T,它们意味着三方面的对称:电荷共轭变换、宇称(左右)、时间反演。在随后的岁月中,不少物理学家们靠研究对称性问题拿下了诺贝尔奖。其中很多人研究的是“对称破坏”,即在一些物理过程中,一些对称性(特别是C和P的对称)被破坏了。  “CP对称破坏”是描述今天宇宙中物质数量超过反物质的重要解释之一。目前,有很多科学实验都在对这个现象进行验证,希望通过反物质研究了解到对称性定律及标准模型的有效性。  最冷的反物质  LHC的四大探测器之一LHCb研究的主要就是反物质和对称性问题。但ALPHA实验却和LHC几乎没关系,和LHCb的实验目的和方法也截然不同。在这里科学家们同样选择了氢,氢原子和反氢原子都只有一个质子和一个电子,结构非常简单。  两个反氢原子的原料分别是这么制作的,将定向质子束射向一小片铱,高能碰撞会生成反质子,再加以分阶段冷却。由放射性钠衰变产生正电子也加以冷却。“我们借用了对撞机中产生的反氢质子,所以我们还是依附于CERN的实验。但设备和实验都是我们自己设计。”杰弗瑞告诉本报记者。  在ALPHA并不大的实验室里,层层的管道连到磁场上方的探测器。在这里工作的科学家设计了一个改变速度的设备。它并不是另一个加速器,而是一个减速器。科学家将已有的反质子和正电子放在一起,令其生成反氢原子,然后让它逐渐减速,以便在一个像浴缸一样的磁场中将其“捕获”。  反物质无法与物质共存,因为两者一旦接触,便会同时消失并转化为能量,转化的能量形式如光子,这个过程用术语叫做“湮灭”。该过程产生的能量十分巨大。  ALPHA的实验结果却跨过了这个门槛。首先,实验必须在真空中进行,科学家设计了一个真空管道,排除了绝大部分的空气物质。反氢原子是中性的,没法通过电荷来捕获,怎么逮住它呢?杰弗瑞介绍,尽管电中性,反氢原子还是带有微弱的磁场,可以对磁场做出反应。  在热力学上,温度体现的是物质粒子的动能。理论上说,如果物质粒子达到绝对零度时,它应该完全静止。所以,温度越低,粒子的速度越慢。科学家们让来自LHC的高能反氢质子减速冷却,最后让-70℃左右的反质子束和更冷的正电子束进行对撞,一些反质子和正电子结合形成了反氢原子。如果说LHC的目的是令粒子更快、更热、更重,那这个实验中,原子则变得更冷更慢,其中速度最慢的反原子,温度仅有-272.5℃。  这些超级冷的反原子,最后“陷”入了一个超导磁铁构成的“磁场缸”里。“磁场越强,抓住的反原子也越多。”杰弗瑞说。他们共运行了335次实验,由1000万个反质子和7亿个正电子结合。产生的反氢原子中,有38个被捕获。  要观察被“囚”的反物质的存在,唯一的方法就是“释放”它。0.17秒后,科学家们关闭了磁场,反氢原子迅即与氢原子碰撞,湮灭无踪。探测装置及时地记录下了这38次能量爆炸。这些爆炸都发生在反氢原子和产生磁场的缸状容器壁上。反物质和物质湮灭后形成了新的粒子。实验中,新产生的粒子是名为π介子的亚原子粒子。  杰弗瑞说,这是科学家第一次长时间“逮住”反物质。LHCb这样的高能粒子实验是没法捕捉反物质的,因为高能量的反粒子会迅速与实验设备相撞而消失,唯一能困住的,是低能、寒冷、运动缓慢的反粒子。

  • 【求助】(已应助)求助幾篇文獻謝謝

    1.正电子放射性核素的制备及其在药学领域中的应用Preparation of positron-emitting radionuclide and its application to pharmaceutical fields2003年01期唐刚华2. HSV1-tk基因在肿瘤报告基因显像与治疗中的研究进展 Advance in HSV1-tk gene for tumor report gene imaging and gene therapy 李洁清 宋现让 杨国仁 于金明 中华肿瘤防治杂志 Chinese Journal of Cancer Prevention and Treatment 2007年,第14期3.放射性正电子药物在肿瘤中的应用研究 [实用肿瘤杂志 Journal of Practical Oncology] 王荣福 4.正电子发射断层显像在药物研究和开发中的应用 The applications of positron emission tomography(PET)in drug research and development [中国新药杂志 Chinese Journal of New Drugs] XIA Zhen-min 5.放射性示踪剂在脑功能PET显像中的应用 Positron-emitting tracers in brain functional PET [国际放射医学核医学杂志 International Journal of Radiation Medicine and Nuclear Medicine] 王明芳 , WANG Ming-fang 6.正电子显像剂18F-FDG的制备与质量控制 Preparation and quality control of 18F-FDG as a positron emission tomography imaging agent [南方医科大学学报 Journal of First Military Medical University] 黄祖汉 , 李志 , 吴湖炳 , 王明芳 , 唐刚华 , 高晓 7.正电子断层显像与新药研究 POSITRON EMISSION TOMOGRAPHY IMAGING AND DRUG DEVELOPMENT [药学学报 Acta Pharmaceutica Sinica] 唐刚华

  • 欧核中心首次成功制造出反氢原子束

    欧核中心首次成功制造出反氢原子束向超精细反氢原子光谱研究迈出重要一步 科技日报讯 (记者华凌)据物理学家组织网1月22日(北京时间)报道,欧洲核子研究中心(CERN)的ASACUSA(低速反质子原子光谱和碰撞)实验首次成功制造出反氢原子束,并在产生反氢原子地方向下2.7米的范围内,即远离强磁场的区域,检测到80个反氢原子。这个结果意味着朝向精确的超精细反氢原子光谱研究迈出重要一步。该研究结果刊登在1月21日的《自然·通讯》杂志上。 为什么宇宙是由正物质而非反物质构成?当前有关亚原子世界的最优理论——粒子物理标准模型也无法给出答案。但科学家认为,物质和反物质属性之间的微小差异可能就是答案所在,而这种差异体现在违反CPT对称定理上。CPT对称指把粒子用反粒子替换,右手坐标系换成左手坐标系,以及所有粒子速度反向,物理定律不变。而反氢原子由一个反质子和一个正电子构成,这样简单的结构是测试CPT对称的最佳模型。 迄今,在宇宙中从未观测到原始的反物质,CERN在实验中通过将反电子(正电子)和由反质子减速器产生的低能量反质子混合,产生大量反氢原子。氢和反氢原子的光谱预测是完全相同的,所以在它们之间的任何微小差异会给新的物理学打开一扇窗口,并可能在解决反物质之谜方面有所助力。凭借其单一质子只伴随有一个电子,氢是最简单存在的原子,在现代物理学中是最精确研究并极好理解的一种体系。因此,比较氢和反氢原子构成是执行物质/反物质对称性高精度测试的最佳途径之一。 当物质和反物质相遇,它们会立刻消减,因此除了创建反氢原子,保持反原子(由反粒子组成的原子)远离普通物质更是关键挑战。要做到此点,实验需利用反氢原子的磁特性(类似于氢气的),并使用非常强的非均匀磁场诱捕反原子足够长的时间来研究。然而,强磁场的场梯度会降低(反)原子的光谱性质。 在ASACUSA实验中,研究人员开发出一个创新的粒子陷阱装置——“卡斯波”陷阱,可利用多个磁场的综合作用将反质子和正电子集合到一起,形成反氢原子。然后这些反氢原子转移到远离强磁场的区域,导入真空管状通道中呈现飞行状态,由此测量反氢原子由基态开始的超精微跃迁。 ASACUSA协作团队领导者、日本理化学研究所山崎说:“由于反氢原子没有电荷,这给将其从陷阱中运送出来造成一大挑战。这项研究结果对超精细反氢原子研究非常有前景,特别是光谱特性。在反氢原子中其测量将允许对物质/反物质对称性最敏感的测试,我们期待今年夏天将这个装置重新启动改进。”ASACUSA实验下一步将优化反氢原子束的强度和动能,以更好地了解其量子状态。 总编辑圈点 绘制精确的超精细反氢原子光谱,进而比较氢和反氢原子构成,将提供探索宇宙起源和检验宇宙大爆炸理论的基础数据,把它比作物理学的一座“圣杯”并不为过。无论最后结果如何,都能使人类在微观和宏观两个层次上的认识尺度有跨越式提升。现在,欧核中心向伟大成功又迈了一大步,从十几年前首次制造出微量反氢原子,到2011年使数百个反氢原子停留近16分钟,再到制造出反氢原子束,他们已经踩在诺贝尔奖的节奏上。来源:中国科技网-科技日报 2014年01月23日

  • 【原创】何谓PET?

    [size=3][font=宋体]PET全称为“正电子发射计算机断层成像(positron emission tomography)”。与传统核医学成像技术一样,PET也是利用示踪原理来显示体内的生物代谢活动。但是PET有两个不同于传统核医学成像技术的重要特点:一是它所用的放射性示踪剂是用发射正电子的核素所标记的;二是它的探测采用的是不用准直器的符合探测技术。[/font][/size][size=3][font=宋体] 正是这两个特点使PET具有两个重要优点: ① PET常用的正电子核素[sup]18[/sup]F、[sup]11[/sup]C、[sup]15[/sup]O、和[sup]13[/sup]N等是组成人体固有元素的同位素;由这些核素置换生物分子中的同位素所形成的示踪剂不会改变原有的生物学特性和功能,因而能更客观准确地显示体内的生物代谢信息。② 符合探测技术替代准直器定位射线,使原本相互制约的灵敏度和空间分辨率都得到较大提高。[/font][/size]PET扫描仪的基本原理很简单:选择一种参与体内某一生理代谢过程的物质(如deoxyglucose,DG),并标记上一种发射正电子的核素(如[sup]18[/sup]F),由此形成示踪剂([[sup]18[/sup]F]fluoro-2-deoxy-glucose, [sup]18[/sup]F-FDG)。将示踪剂静脉注入人体后,它首先在体内的血管系统扩散,并通过毛细血管壁进入组织。然后,或直接参与体内代谢过程,或被限制在某些特定的组织区域。最后,体内的示踪剂通过各种排泄途径而消失。由于示踪剂在体内的分布与代谢过程是动态的,所以体内各组织部位的示踪剂浓度是不断变化的,仅有少数几种示踪剂,比如[sup]18[/sup]F-FDG,经过一定时间后,在体内的浓度分布是相对稳定的。在示踪剂注入体内后的整个过程中,都可使用PET扫描仪在体外探测示踪剂发出的正电子湮灭辐射信号,从而确定示踪剂在体内的位置,由此得到示踪剂在体内的代谢过程与分布图像。[font='Times New Roman']PET[/font][font=宋体]于上世纪[/font][font='Times New Roman']70[/font][font=宋体]年代问世,由于其价格昂贵,[/font][font='Times New Roman']90[/font][font=宋体]年代前,[/font][font='Times New Roman']PET[/font][font=宋体]主要用于科学研究目的安装在一些大学或研究机构。[/font][font='Times New Roman']90[/font][font=宋体]年代后,随分子生物学和分子医学的进步,正电子类示踪剂的独特生物学优势逐渐显露,[/font][font='Times New Roman']PET[/font][font=宋体]开始从研究室、实验室走进医院,服务于临床。[/font][font='Times New Roman']PET[/font][font=宋体]的性能不断提高,装机量也逐年上升,到上世纪[/font][font='Times New Roman']90[/font][font=宋体]年代末,美国及欧洲一些国家政府和保险公司已将多种[/font][font='Times New Roman']PET[/font][font=宋体]检查列入医疗保险范围。[/font]

  • 【原创】放射性同位素在医学上的应用

    【原创】放射性同位素在医学上的应用

    放射性同位素在医学上的应用――PET PET(Positron Emission Tomography)正电子发射断层成像,是目前国际上最尖端的医学影像诊断设备,也是目前在分子水平上进行人体功能显像的最先进的医学影像技术。PET的基本原理是利用加速器生产的超短半衰期同位素标志化合物(小分子),作为示踪剂注入人体,参与体内的生理生化代谢过程。将放射性同位素注射于生物体內。利用放射性同位素β+衰变放出的正电子与体内的负电子结合释放出两股互成180度的511KeV伽玛光子,被探头的晶体所探测,经过计算机对原始数据重建处理,得到高分辨率、高清晰度的活体断层图像,以显示人脑、心、全身其它器官及肿瘤组织的生理和病理的功能及代谢情况。常用同位素有11C(半衰期20.4分钟)、13N(半衰期9.96分钟)、15O(半衰期2分钟)、18F(半衰期110分钟)、124I(半衰期4.18天)等。[img]http://ng1.17img.cn/bbsfiles/images/2009/03/200903281531_141038_1626579_3.jpg[/img]作为一种无创伤检查手段,PET可以从体外对人体内的代谢物或药物的变化进行定量、动态检测,成为诊断和指导治疗各类肿瘤疾病、冠心病和脑部疾病的最佳方法。PET的发展及其成功的临床应用是当代高科技医疗诊断技术的主要标志之一。PET在临床医学的应用主要集中于神经系统、心血管系统、肿瘤三大领域。但PET价格昂贵,需配置小型医用回旋加速器,日常管理费用高,难以普遍推广。

  • 丁肇中:对新成果“保持冷静”

    新华社日内瓦4月3日电(记者吴陈 王昭)诺贝尔奖得主、美籍华人物理学家丁肇中3日公布了其主持的阿尔法磁谱仪项目(AMS)首批研究成果。他当天对新华社记者表示,尽管这一成果具有突破性,但仍应保持冷静。 暗物质和暗能量是现代天文学和物理学最大的谜团之一,它们是为了解决宇宙学观测与理论上的矛盾而提出来的。AMS项目的首要目的就是寻找宇宙中的暗物质及其起源。 丁肇中3日晚间在位于瑞、法边境的欧洲核子研究中心阿尔法磁谱仪项目办公室告诉记者,目前AMS收集到40万个正电子,远远超出人们的想象。此前包括美国费米望远镜等项目都曾观察到过量正电子现象,但数据误差很大,而AMS的误差只有1%,“相当于肉眼和精密显微镜的区别。” 刊登在新一期《物理评论快报》的研究成果显示,在5亿至100亿电子伏特区间内,正电子占正电子和电子总和的比例随能量的增加而减小;在100亿到2500亿电子伏特的区间内,比例递增;到2500亿电子伏特之后,比例曲线基本变平。正电子比例能谱没有随时间改变,同时高能正电子不是来自空间某个特定的方向。 丁肇中解释说,这些成果表明了:正电子比例随着能量增加继续上升;比例上升是很平衡的,没有出现峰值;正电子来源没有特定方向,“这三点都支持正电子来源于暗物质,可是没有完全的证据。” 他指出,要确认正电子是由暗物质粒子碰撞、湮灭产生的,还需观测到正电子比例上升到峰值后是否有骤降。如果观察到骤降,说明来自暗物质对撞;如缓慢下降,则可能来自脉冲星。 丁肇中说,作为AMS这样一个大型物理实验项目的负责人,必须保持冷静,因此对正电子的来源持开放态度,“最重要的是把数据准确地拿出来,不要有误差,”他说,“千万不能有偏见。” 丁肇中说,可能还要花一段时间才能最终确定这些正电子“到底是怎么来的”。他说,目前收集到的数据是AMS预期收集数据的10%左右,这个项目还是“刚刚开始”,还有很多未知等待科学家们去探测。 阿尔法磁谱仪探索暗物质问与答 新华社记者 钱铮 诺贝尔奖得主、美籍华人物理学家丁肇中及其团队3日公布了其主持的阿尔法磁谱仪项目的首批研究成果,实验观察到宇宙射线流中正电子存在的比率符合关于暗物质存在的理论预测。虽然目前尚没有充分证据排除其他可能性,但这批成果向最终找到暗物质存在的可靠证据又迈进了一步。 那么,究竟什么是暗物质,科学家们为何孜孜不倦地追寻暗物质的足迹,怎样才能捕捉到这种看不见的物质,阿尔法磁谱仪项目又是怎样的一个科学项目呢? 问题之一:什么是暗物质? 答:暗物质是宇宙中看不见的物质。现在我们看到的天体,要么发光,如太阳,要么反光,如月亮,但有迹象表明,宇宙中还存在大量人们看不见的物质。它们不发出可见光或其他电磁波,用天文望远镜观测不到。但它们能够产生万有引力,对可见的物质产生作用。 迄今的研究和分析表明,暗物质在宇宙中所占的份额远远超过目前人类可以看到的物质。宇宙中最重要的成分是暗物质和暗能量,暗物质占宇宙25%,暗能量占70%,我们通常所观测到的普通物质只占宇宙质量的5%。 问题之二:探测暗物质有何意义? 答:暗物质被认为是宇宙研究中最具挑战性的课题。目前,暗物质的存在已经被人们普遍接受。人们认为暗物质促成了宇宙结构的形成,如果没有暗物质就不会形成星系、恒星和行星,更谈不上今天的人类了。暗物质的存在是通过天文观测推测出来的,然而目前被广泛认可的粒子物理学标准模型预言的62种基本粒子中不包含能解释暗物质的基本粒子,因此,探测和研究暗物质很可能导致物理学界新的革命。 问题之三:如何探测暗物质? 答:暗物质的探测方法主要分为直接探测法和间接探测法。所谓直接探测法是指直接探测暗物质粒子和原子核碰撞所产生的光学、声学、电子学信号。由于发生碰撞的概率很小,产生的信号也很微弱,通常要把探测装置安装在地下深处。暗物质的间接探测法主要是观测暗物质粒子衰变或互相作用后产生的正电子、反质子、中微子等稳定粒子。由于地球大气的影响,在地面上无法精确测定粒子的能谱,这类实验必须要在空间进行。 阿尔法磁谱仪项目实际上是一个大型粒子物理实验,首要目的是寻找宇宙中的暗物质及其起源。暗物质碰撞会产生额外的正电子,这些正电子的特征会被阿尔法磁谱仪精确地测量到。 问题之四:阿尔法磁谱仪是如何制造的? 答:阿尔法磁谱仪主结构的主体是一个外径1.3米、内径1.15米、高0.8米的空心高强度铝制圆柱体。永磁体呈条状插入主结构,其磁场强度高达1400高斯。主结构由中国航天科技一院设计,磁体则由中科院电工所制造,采用的是新型高磁能积钕铁硼材料。 “阿尔法磁谱仪1”于1998年6月随美国“发现”号航天飞机升空开始科学探索,但最终没能发现反物质和暗物质。此后,科学家开始研制“阿尔法磁谱仪2”。他们曾尝试用超导磁体代替永磁体。尽管这种方法可以产生更强的磁场,但超导磁体需要液氦冷却,太空中无法补充液氦,这样磁谱仪寿命只有3年。而使用永磁体的磁谱仪的使用寿命长达18年至20年,所以专家们决定沿用永磁体。此外,“阿尔法磁谱仪2”在“阿尔法磁谱仪1”的基础上增加了若干新的子探测器。 问题之五:阿尔法磁谱仪是如何工作的? 答:阿尔法磁谱仪的主要本领是能够探测到太空中“流窜”的粒子。这一本领基于其强大而特殊的磁场。带电粒子进入磁场后轨迹会发生变化,不同带电粒子的轨迹变化也不同,而不带电的粒子的轨迹则不会发生变化,因而观测粒子进入这一磁场后轨迹是否变化,变化程度有什么不同,就可以推知这是何种粒子。与天文望远镜观测物质发出的可见光和电磁波不同,磁谱仪直接观测粒子本身。因而,磁谱仪能够发现天文望远镜无法发现的暗物质等。(新华社北京4月4日电)

  • 【原创】常用的商品化回旋加速器的类型

    【原创】常用的商品化回旋加速器的类型

    [center]常用的商品化回旋加速器的类型[/center] 回旋加速器已成为现代分子核医学研究和应用的重要工具。分布在全世界PET中心的医用回旋加速器,根据加速粒子种类分为正离子回旋加速器、负离子回旋加速器;根据加速粒子种类的多少分为单粒子加速器(Single-particle accelerator)和多粒子加速器(Multi-particle accelerator);根据提供束流加速平面与地平面是平行还是垂直而分为水平加速平面回旋加速器(卧式加速器)(horizontal-cyclotron)和垂直加速平面回旋加速器(立式加速器)(vertical-cyclotron)。 正离子回旋加速器生产正电子核素的许多核反应是由正离子介入来完成的,因此可用正离子回旋加速器直接加速正离子来轰击(Bombardment)靶核生产正电子核素。但加速正离子后得到的高能粒子束需要由金属电极偏转板形成的偏转电场来完成束流的引出,在引出过程中,高能粒子束与金属电极板以及屏蔽材料之间发生碰撞会引起附加的辐射。 负离子回旋加速器则利用碳剥离膜(stripping foil)(简称碳膜)来完成高能粒子束的引出。碳膜被驱动装置定位在回旋加速器内粒子旋转轨道半径上,当粒子束流的能量达到所需的最大能量时,所有出现在提取碳膜区域的负离子束必须穿过碳膜,在穿过碳膜期间,两个约束松弛的外层电子被剥离,负离子失去电子,转变为正离子。由于轴向磁场恒定不变,改变了电极性的粒子束受到与原来相反方向的磁场力的作用而改变了在磁场中运动方向,从而被引出而进入靶室。提取膜的位置直接确定束流的能量,并能够调整引出的束流引导进入任意的同位素生产靶。 单粒子加速器仅加速单一的离子,如EBCO TR19和GE MINItrace回旋加速器以质子(p)为加速粒子,进行经p介入核反应来完成正电子核素的生产,如利用16O(p, α)13N和18O(p, n)18F核反应分别生产13N和18F正电子核素。多粒子加速器可以加速两种以上的带电粒子,以多种核反应谱来完成正电子核素的生产,如PETtrace回旋加速器可加速质子和氘核,利用不同的靶材料按特定的核反应谱来生产11C,13N,15O和18F正电子核素;SCANDITRONIX公司生产的MC32回旋加速器则是多能量、多粒子的回旋加速器,除生产用于PET研究的正电子核素外,还用于生产其他同位素。该加速器除可加速氢核和氘核的正负离子外,还可加速氦核-3和α粒子。 立式加速器有较好的场地和维修服务优势,其场地优势包括着地点(footprint)小和所需要的空间高度低;虽然立式加速器的机体比卧式加速器高,它的磁轭门(Yoke)可以单向水平打开,而卧式加速器需要较高的空间限度以保证Yoke向上提升,因此需要昂贵的液压起重系统。立式加速器的维修服务优势是容易对中心区域的装置进行顺畅地维修和更换。再者,立式加速器的靶位往往局域化,这样因靶位而产生的放射性局限在一个区域,而卧式加速器的靶位常常在回旋加速器的周边,因此,回旋加速器的四周都分布有放射性。图1所示国内常用的几种医用回旋加速器。[center][img]http://ng1.17img.cn/bbsfiles/images/2017/10/2009112112145_01_1623423_3.jpg[/img][img]http://ng1.17img.cn/bbsfiles/images/2017/10/200911211220_01_1623423_3.jpg[/img][img]http://ng1.17img.cn/bbsfiles/images/2017/10/2009112112214_01_1623423_3.jpg[/img][/center]

  • 电子显微镜的现状与展望(ZT)

    摘要: 本文扼要介绍了电子显微镜的现状与展望。透射电子显微镜方面主要有:高分辨电子显微学及原子像的观察,像差校正电子显微镜,原子尺度电子全息学,表面的高分辨电子显微正面成像,超高压电子显微镜,中等电压电镜,120kV,100kV分析电镜,场发射枪扫描透射电镜及能量选择电镜等,透射电镜将又一次面临新的重大突破;扫描电子显微镜方面主要有:分析扫描电镜和X射线能谱仪、X射线波谱仪和电子探针仪、场发射枪扫描电镜和低压扫描电镜、超大试样室扫描电镜、环境扫描电镜、扫描电声显微镜、测长/缺陷检测扫描电镜、晶体学取向成像扫描电子显微术和计算机控制扫描电镜等。扫描电镜的分辨本领可望达到0.2—0.3nm并观察到原子像。 关键词 透射电子显微镜 扫描电子显微镜 仪器制造与发展 中图法分类号 TN16 O766.1 Q336    电子显微镜(简称电镜,EM)经过五十多年的发展已成为现代科学技术中不可缺少的重要工具。我国的电子显微学也有了长足的进展[1]。电子显微镜的创制者鲁斯卡(E.Ruska)教授因而获得了1986年诺贝尔奖的物理奖[2]。   电子与物质相互作用会产生透射电子,弹性散射电子,能量损失电子,二次电子,背反射电子,吸收电子,X射线,俄歇电子,阴极发光和电动力等等。电子显微镜就是利用这些信息来对试样进行形貌观察、成分分析和结构测定的。电子显微镜有很多类型,主要有透射电子显微镜(简称透射电镜,TEM)和扫描电子显微镜(简称扫描电镜,SEM)两大类。扫描透射电子显微镜(简称扫描透射电镜,STEM)则兼有两者的性能。为了进一步表征仪器的特点,有以加速电压区分的,如:超高压(1MV)和中等电压(200—500kV)透射电镜、低电压(~1kV)扫描电镜;有以电子枪类型区分的,如场发射枪电镜;有以用途区分的,如高分辨电镜,分析电镜、能量选择电镜、生物电镜、环境电镜、原位电镜、测长CD-扫描电镜;有以激发的信息命名的,如电子探针X射线微区分析仪(简称电子探针,EPMA)等。 半个多世纪以来电子显微学的奋斗目标主要是力求观察更微小的物体结构、更细小的实体、甚至单个原子,并获得有关试样的更多的信息,如标征非晶和微晶,成分分布,晶粒形状和尺寸,晶体的相、晶体的取向、晶界和晶体缺陷等特征,以便对材料的显微结构进行综合分析及标征研究[3]。近来,电子显微镜(电子显微学),包括扫描隧道显微镜等,又有了长足的发展。本文仅讨论使用广泛的透射电镜和扫描电镜,并就上列几个方面作一简要介绍。部分透射电镜和扫描电镜的主要性能可参阅文献[1]。 透射电子显微镜 1、高分辨电子显微学及原子像的观察 材料的宏观性能往往与其本身的成分、结构以及晶体缺陷中原子的位置等密切相关。观察试样中单个原子像是科学界长期追求的目标。一个原子的直径约为1千万分之2—3mm。因此,要分辨出每个原子的位置需要0.1nm左右的分辨本领,并把它放大约1千万倍。70年代初形成的高分辨电子显微学(HREM)是在原子尺度上直接观察分析物质微观结构的学科。计算机图像处理的引入使其进一步向超高分辨率和定量化方向发展,同时也开辟了一些崭新的应用领域。例如,英国医学研究委员会分子生物实验室的A.Klug博士等发展了一套重构物体三维结构的高分辨图像处理技术,为分子生物学开拓了一个崭新的领域。因而获得了1982年诺贝尔奖的化学奖,以表彰他在发展晶体电子显微学及核酸—蛋白质复合体的晶体学结构方面的卓越贡献[4]。 用HREM使单个原子成像的一个严重困难是信号/噪声比太小。电子经过试样后,对成像有贡献的弹性散射电子(不损失能量、只改变运动方向)所占的百分比太低,而非弹性散射电子(既损失能量又改变运动方向)不相干,对成像无贡献且形成亮的背底(亮场),因而非周期结构试样中的单个原子像的反差极小。在档去了未散射的直透电子的暗场像中,由于提高了反差,才能观察到其中的重原子,例如铀和钍—BTCA中的铀(Z=92)和钍(Z=90)原子[5]。对于晶体试样,原子阵列会加强成像信息。采用超高压电子显微镜和中等加速电压的高亮度、高相干度的场发射电子枪透射电镜在特定的离焦条件(Scherzer欠焦)下拍摄的薄晶体高分辨像可以获得直接与晶体原子结构相对应的结构像。再用图像处理技术,例如电子晶体学处理方法,已能从一张200kV的JEM-2010F场发射电镜(点分辨本领0.194nm)拍摄的分辨率约0.2nm的照片上获取超高分辨率结构信息,成功地测定出分辨率约0.1nm的晶体结构[6]。 2.像差校正电子显微镜 电子显微镜的分辨本领由于受到电子透镜球差的限制,人们力图像光学透镜那样来减少或消除球差。但是,早在1936年Scherzer就指出,对于常用的无空间电荷且不随时间变化的旋转对称电子透镜,球差恒为正值。在40年代由于兼顾电子物镜的衍射和球差,电子显微镜的理论分辨本领约为0.5nm。校正电子透镜的主要像差是人们长期追求的目标。经过50多年的努力,1990年Rose提出用六极校正器校正透镜像差得到无像差电子光学系统的方法。最近在CM200ST场发射枪200kV透射电镜上增加了这种六极校正器,研制成世界上第一台像差校正电子显微镜。电镜的高度仅提高了24cm,而并不影响其它性能。分辨本领由0.24nm提高到0.14nm[7]。在这台像差校正电子显微镜上球差系数减少至0.05mm(50μm)时拍摄到了GaAs〈110〉取向的哑铃状结构像,点间距为0.14nm[8]。 3、原子尺度电子全息学 Gabor在1948年当时难以校正电子透镜球差的情况下提出了电子全息的基本原理和方法。论证了如果用电子束制作全息图,记录电子波的振幅和位相,然后用光波进行重现,只要光线光学的像差精确地与电子光学的像差相匹配,就能得到无像差的、分辨率更高的像。由于那时没有相干性很好的电子源,电子全息术的发展相当缓慢。后来,这种光波全息思想应用到激光领域,获得了极大的成功。Gabor也因此而获得了诺贝尔物理奖。随着Mollenstedt静电双棱镜的发明以及点状灯丝,特别是场发射电子枪的发展,电子全息的理论和实验研究也有了很大的进展,在电磁场测量和高分辨电子显微像的重构等方面取得了丰硕的成果[9]。Lichte等用电子全息术在CM30 FEG/ST型电子显微镜(球差系数Cs=1.2mm)上以1k×1k的慢扫描CCD相机,获得了0.13nm的分辨本领。目前,使用刚刚安装好的CM30 FEG/UT型电子显微镜(球差系数Cs=0.65mm)和2k×2k的CCD相机,已达到0.1nm的信息极限分辨本领[10,11]。

  • 阿尔法磁谱仪有一颗强大的“中国心”

    中国科学家为寻找暗物质作出重要贡献2013年04月05日 来源: 科技日报 作者: 吴晶晶 http://www.stdaily.com/stdaily/pic/attachement/jpg/site2/20130405/011365093486593_change_wys3417_b.jpg 新华社北京4月4日电(记者吴晶晶)诺贝尔奖得主、美籍华人物理学家丁肇中3日晚公布了其主持的大型粒子物理实验——阿尔法磁谱仪(AMS)项目的首批研究成果,使人类对宇宙中暗物质的认识更进了一步。中国科学家参与了这项国际重大科学工程,并在其中作出了重要贡献。 AMS项目的首批科学家和主要成员之一、中科院高能物理研究所原所长陈和生院士介绍说,在宇宙的构成中,人类已知的物质仅占4%左右,而暗物质量几乎是已知物质的6倍,但科学家一直未找到它存在的证据。 2011年5月16日,美国“奋进”号航天飞机最后一次任务将“阿尔法磁谱仪2”送至国际空间站,其主要任务之一就是寻找宇宙中的暗物质。 “暗物质碰撞会产生额外的正电子,这些正电子的特征会被阿尔法磁谱仪测量到。根据丁肇中教授发布的成果,阿尔法磁谱仪已发现超过40万个正电子,这些正电子有可能来自人类一直寻找的暗物质,也可能来自银河系的脉冲星等天体。”陈和生说,“但无论如何我们向最终找到暗物质存在的可靠证据又迈进了一步。” 鲜为人知的是,阿尔法磁谱仪有一颗强大的“中国心”——一块中国制造的巨大永磁铁。它由中科院电工研究所、高能物理所和中国运载火箭技术研究院共同设计研制,用于区分粒子带正电还是负电,是磁谱仪的核心部件。 据介绍,要将一个大型磁铁放入太空是AMS项目的最大挑战之一。中国科学家选择新型高磁能积钕铁硼材料,采用独特的磁路设计,完全符合实验要求,可以使磁谱仪使用寿命长达18到20年,并顺利通过了美国国家航空航天局严格的安全审查,成为人类送入宇宙的第一块大型磁体。 同时,探测器关键部分的电磁量能器由中科院高能物理所、中国运载火箭技术研究院的科学家和意大利、法国同行合作研制。“它能精确测量电子和正电子的能量。”陈和生说。 中国科学家还参与了实验数据分析和物理研究工作。据介绍,AMS的数据分析由2个独立的团队进行,每个团队都包括了许多国家的科学家,互相“挑错”,最终达成一致,确保结果的正确。“中国科学家的数据分析对电荷测量、粒子识别、电子能量测量等发挥了十分重要的作用。”陈和生说。 陈和生表示,要获得暗物质存在的确切证据,还需要积累更多的数据。“中国科研人员一直在日内瓦欧洲核子研究组织的AMS运行中心参与值班,同时还将继续进行数据分析和物理研究。”他说,“最终结果的获得或许需要数年时间,但这一结果无疑对物理学的发展意义重大。” 上图 4月3日,在日内瓦附近的欧洲核子研究中心,丁肇中接受媒体采访。 新华社记者 王思维摄

  • 【原创】18F-FDG的质量要求

    [b][size=3][font=宋体]正电子显像剂的一般性质量要求[/font][/size][size=3][/size][/b][size=3][font=宋体] 正电子显像剂有其本身的特殊性,即必须在严格的时间限制内完成生产和就地就近使用,而且在生产与应用之间没有足够时间进行目前认可的所有质量控制([/font][font=Times New Roman]QC[/font][font=宋体])试验,不仅细菌学、内毒素检查是如此,某些化学质量检查也是如此。[/font][/size][font=宋体][size=3]正电子显像剂有两个特点,其一是因所用放射性核素的半衰期短,生产这些化合物时必须涉及高水平的放射性,以便最后能得到临床研究需要的有用数量,生产工序必须遥控。其二,所研究的化合物极其微量,生产的绝大多数正电子显像剂不加载体,通常相当于近纳摩尔量级。这在测定生理机能时具有不产生药效效应的优点。因此,使用于质量控制的分析方法必须具有更低的探测下限。[/size][/font][size=3][font=宋体]在正电子显像剂这种特殊情况下,最终产品的质量控制受到时间的限制,对质量保证来讲,过程控制成为主要因素。因此应建立单独而又严格的生产控制测量方法和程序。例如在生产过程中,采用放射性高效液相色谱([/font][font=Times New Roman]HPLC[/font][font=宋体])和放射性[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]([/font][font=Times New Roman]GC[/font][font=宋体])等方法,无疑可以保证产品质量。在线([/font][font=Times New Roman]Online[/font][font=宋体])生产控制更有效的方法是连续监测合成中放射性的变化,这有可能在很早阶段就发现生产过程中的大多数问题。生产工艺研究结束时以及随后工艺和物料来源的任何明显变化,都应通过对几批放射性显像剂的必要质量指标进行验证以进行全面的质量控制。[/font][/size][size=3][font=宋体]成分和原材料的质量管理是正电子显像剂质量保证的重要的过程控制。这些原材料包括生产器具以及药物制品等所有成分。每批原材料的一致性和质量必须得到保证并有证明文件。经过“入口控制”后,该批产品必须作出标记并登记批号,且应备有关生产控制方式的证明文件,并制订试验记录和分析方法细则说明。凡药典收载的成分,有详细的说明书就足够了。如果试验方法药典未载明,则必须对其确认并被证实符合质量要求。如果药典未载明而通常用作[/font][font=Times New Roman]PET[/font][font=宋体]显像剂合成前体的原材料,必须以专题报告形式作出说明,包括名称、鉴定方法、纯度试验说明、稳定性和物理、化学性质。[/font][/size][size=3][font=宋体]在[/font][font=Times New Roman][sup]18[/sup]F-FDG[/font][font=宋体]生产中,比较重要的原材料包括靶材料的纯度和丰度、三氟甘露糖的纯度、乙腈的纯度与含水量的高低以及其它化学试剂的质量,同时也包括靶室的清洁程度、反应器皿的清洁程度以及分离纯化材料的质量等,只有这些材料均合乎要求,才能生产出符号要求的[/font][font=Times New Roman][sup]18[/sup]F-FDG[sup] [/sup][/font][font=宋体]。[/font][/size][font=宋体][size=3] 任何满足短寿命放射性药物质量要求的体系,均取决于经过良好培训、具有经验的高素质人员,这就要求有一支在药物实践方面有经验的放射性药物化学专家或有经验的放射性药物专家,并要在短寿命放射性药物的专业化生产与分析方面进行培训。[/size][/font]

  • 【原创】常用的商品化回旋加速器的主要性能参数

    【原创】常用的商品化回旋加速器的主要性能参数

    [/center]常用的商品化回旋加速器的主要性能参数[/center] 不同的回旋加速器具有不同的性能参数,表1为国内目前常用的几种医用回旋加速器的几项主要性能参数。能量在8MeV到19MeV的加速器能够提供许多的PET同位素,而能量在30MeV以上的加速器同时可以提供SPECT同位素(TI-201,Ga-67,In-111等)。[img]http://ng1.17img.cn/bbsfiles/images/2017/10/200911211260_01_1623423_3.jpg[/img] 现代医用回旋加速器多数具有双束流(Double beam)轰击的功能,即利用同一粒子介入的相同和/或不同核反应谱来同时生产相同和/或不同的正电子核素。这样,一方面由于提高了粒子束流的利用率而大大提高了回旋加速器的工作效率,另一方面可以用双束流同时轰击两个靶体内的相同靶核生产同一正电子核素,既能够成倍的提高同位素的产量,也避免为获得高产量的核素进行较长时间的轰击而缩短靶体和/或整个系统的使用寿命。如GE的PETtrace回旋加速器具有双束流轰击的功能,利用质子除同时生产3~4Ci的18F外,还可同时生产18F和11C或11C和13N;用氘核可同时生产18F2和15O2。 回旋加速器集电子工程、机械控制、核物理、核化学、计算机等技术与一体,因此其结构和功能比一般的医疗设备要复杂的多。传统回旋加速器是通过操纵各种仪表来完成其运行的。由于计算机技术的发展,现代回旋加速器的运行是在计算机的控制下自动完成,操作时只需按动计算机操作控制界面中菜单按钮,即可自动启动回旋加速器,建立磁场、建立并调整射频(RF)系统、装载靶材料、调整束流并轰击靶材料、传输运送正电子核素以及完成正电子放射性药物的生产合成等过程均可全部在计算机的控制下自动完成。其自动化操作的优越性在于既保证了操作控制的稳定性、可靠性和安全性,使回旋加速器各系统有序而稳定的进行工作,也使放射性药物的生产过程易于规范和标准化,还可使操作人员减少不必要的辐射。

  • 抓住“反物质”

    CERN科学家捕获反氢原子抓住“反物质”欧洲核子研究中心(CERN)是一个庞大的科研机构,除了LHC的相关实验之外,还有上百个实验在同时进行,而大部分的实验,最终的目的都是一个:解开宇宙起源之谜。我们知道建造LHC的最主要目的是为了寻找闻名却未见的希格斯子,但CERN还有很多其他的事情要做。比如说按照现行理论,宇宙大爆炸时同时出现了物质和反物质,但是两者却无法共存,但为什么今天的宇宙只有物质但没有反物质呢?反物质到底是什么东西?随着技术的进步,这也成了物理界越来越引人注意的话题。11月底,CERN发布的一个突破性消息引起了人们的广泛关注。反氢激光物理设备(ALPHA)坐落于CERN的主楼群,仅有40位科学家为此工作。正是他们首次长时间捕捉到了反物质。尽管这个发现借用了LHC的成果,但其实验和LHC的思想完全相反,不是加速,而是“减速”。对称定律解释世界和其它物理界的发现一样,反物质首先也是“思想实验”。早在79年前,英国物理学家狄拉克就试图把量子理论和狭义相对论结合在一起。这是两个互不兼容的基本物理理论。狄拉克发现,反物质必定存在。1932年,人们在实验中寻找到了狄拉克设想的正电子,其质量、带电量与电子完全相同,只不过它带的是正电(电子带负电荷)。随后,人们逐渐发现了各种基本粒子对应的反物质。“反物质就像是物质在镜子中的像。它和对应基本粒子的质量完全一样,却具有相反的其他量子性质。”ALPHA实验发言人杰弗瑞(Jeffrey Hangst)在接受本报记者采访时说,“质子带正电,反质子带负电;电子带负电,正电子带正电……”按照目前解释微观世界最好的理论模型,宇宙大爆炸时,同时产生了物质和反物质。今天,NASA的天文学家们也观察到,在遥远的宇宙区域———也就是我们所能看到的早期的宇宙,似乎存在物质和反物质碰撞后产生的伽玛射线踪迹。不过今天的宇宙却是由物质而非反物质组成的。“自然选择了物质,反物质似乎消失了。没有人知道为什么。”宏观世界中,很多东西都是对称的。微观世界也是这样。在“标准模型”中,有着一个对称定律,认为量子场论方程所有允许的解,都依据这个对称定律,物质所遵循的物理法则,反物质也同样遵循。这个对称定律由三个字母组成:C、P、T,它们意味着三方面的对称:电荷共轭变换、宇称(左右)、时间反演。在随后的岁月中,不少物理学家们靠研究对称性问题拿下了nbl奖。其中很多人研究的是“对称破坏”,即在一些物理过程中,一些对称性(特别是C和P的对称)被破坏了。“CP对称破坏”是描述今天宇宙中物质数量超过反物质的重要解释之一。目前,有很多科学实验都在对这个现象进行验证,希望通过反物质研究了解到对称性定律及标准模型的有效性。最冷的反物质LHC的四大探测器之一LHCb研究的主要就是反物质和对称性问题。但ALPHA实验却和LHC几乎没关系,和LHCb的实验目的和方法也截然不同。在这里科学家们同样选择了氢,氢原子和反氢原子都只有一个质子和一个电子,结构非常简单。两个反氢原子的原料分别是这么制作的,将定向质子束射向一小片铱,高能碰撞会生成反质子,再加以分阶段冷却。由放射性钠衰变产生正电子也加以冷却。“我们借用了对撞机中产生的反氢质子,所以我们还是依附于CERN的实验。但设备和实验都是我们自己设计。”杰弗瑞告诉本报记者。在ALPHA 并不大的实验室里,层层的管道连到磁场上方的探测器。在这里工作的科学家设计了一个改变速度的设备。它并不是另一个加速器,而是一个减速器。科学家将已有的反质子和正电子放在一起,令其生成反氢原子,然后让它逐渐减速,以便在一个像浴缸一样的磁场中将其“捕获”。反物质无法与物质共存,因为两者一旦接触,便会同时消失并转化为能量,转化的能量形式如光子,这个过程用术语叫做“湮灭”。该过程产生的能量十分巨大。ALPHA的实验结果却跨过了这个门槛。首先,实验必须在真空中进行,科学家设计了一个真空管道,排除了绝大部分的空气物质。反氢原子是中性的,没法通过电荷来捕获,怎么逮住它呢?杰弗瑞介绍,尽管电中性,反氢原子还是带有微弱的磁场,可以对磁场做出反应。在热力学上,温度体现的是物质粒子的动能。理论上说,如果物质粒子达到绝对零度时,它应该完全静止。所以,温度越低,粒子的速度越慢。科学家们让来自 LHC的高能反氢质子减速冷却,最后让-70℃左右的反质子束和更冷的正电子束进行对撞,一些反质子和正电子结合形成了反氢原子。如果说LHC的目的是令粒子更快、更热、更重,那这个实验中,原子则变得更冷更慢,其中速度最慢的反原子,温度仅有-272.5℃。这些超级冷的反原子,最后“陷”入了一个超导磁铁构成的“磁场缸”里。“磁场越强,抓住的反原子也越多。”杰弗瑞说。他们共运行了335次实验,由1000万个反质子和7亿个正电子结合。产生的反氢原子中,有38个被捕获。要观察被“囚”的反物质的存在,唯一的方法就是“释放”它。0.17秒后,科学家们关闭了磁场,反氢原子迅即与氢原子碰撞,湮灭无踪。探测装置及时地记录下了这38次能量爆炸。这些爆炸都发生在反氢原子和产生磁场的缸状容器壁上。反物质和物质湮灭后形成了新的粒子。实验中,新产生的粒子是名为π介子的亚原子粒子。杰弗瑞说,这是科学家第一次长时间“逮住”反物质。LHCb这样的高能粒子实验是没法捕捉反物质的,因为高能量的反粒子会迅速与实验设备相撞而消失,唯一能困住的,是低能、寒冷、运动缓慢的反粒子。反物质不会炸毁地球在高能物理的反物质实验如LHCb,主要的实验目的是寻找宇宙初期为何物质战胜了反物质而存在。另一些反物质实验,如CERN的另一实验ATHENA,主要研究反物质和引力的关系,而ALPHA的主要目的是研究标准模型是否能够同样作用于反物质。标准模型认为,反物质和物质遵循一样的物理原则,比如反粒子应该和对应的粒子一样能够吸收同样的光的颜色。因此,此次科学小组用激光照在反物质上,准备探究其是否和对应的物质一样吸收同样的光波。“到目前为止,在量子层面上,‘CPT对称定律’都表现得很好。但对于反物质,人们从来没有在原子核层面测量过其对称问题。”杰弗瑞说,“我们不知道为什么自然选择了物质而不是反物质,也不知道标准模型是否能够应用在反物质系统,或许标准模型能够在反物质中被证实,或许我们会寻找到惊喜,因为我们不知道物理会往哪儿走。”捕捉反物质的技术正在突飞猛进。杰弗瑞表示,明年年初,他们将能够捕获更多的反原子。CERN的另一个实验项目ASACUSA,最近也在他们实验的基础上,通过新技术,将反氢原子引导到一个真空管中研究飞行速度。这个实验的目的是制造足够多的反物质,研究其运动行为。即使这样,反物质的取得基本上还是只存在于实验室。79年前,狄拉克第一次提出了反物质的想法,这个名字就开始进入科幻小说。15年前,科学家制造出了反物质,但直到今天,人们才第一次较长时间捕捉到了反物质。虽然动用了大量昂贵的超导磁铁,科学家也只逮住38个反氢原子,技术之艰难可见一斑。因此,对于媒体与文艺作品描述的,将反物质作用于航空、军事等领域的设想,杰弗瑞表示这完全是天方夜谭,离科学现实还远得很。“要造出《星际迷航》或者《天使与魔鬼》中所描述的那么多反物质,我们所需要的时间甚至会超过宇宙的寿命。而且,为制造它们而消耗的能量要比它们最后产生的能量还要大。”他补充说,在小说《天使与魔鬼》中,就提到了ALPHA实验使用的低能反物质。在拍摄同名电影的时候,导演曾来CERN咨询相关科学细节,但最终还是为了保证良好的视觉效果,将故事嫁接在了LHC上———实际上,LHC是根本无法保留住反物质的。另一方面,反物质研究可以推动技术进步。今天,反物质已经在医学上的正子放射断层扫描仪(PET)中发挥作用。但真正研究反物质的目的,还在于科学追求真理的本质。“人类的好奇心永远无止境,我们想要知道宇宙爆炸时到底发生了什么。”杰弗瑞说。

  • 【原创】震动的微粒子的解说者——狄拉克

    1902年8月8日生于英国布里斯托尔城。他跳级读完中学,在中学自学了相当高深的数学。1918年毕业后考入布里斯托尔大学电机系。1921年大学毕业,获电气工程学士学位。1923年考入剑桥大学圣约翰学院当数学研究生。1923年成为剑桥大学圣约翰学院数学系的研究生。1925年开始研究由海森伯等人创立的量子力学,1926年发表题为《量子力学》的论文,获剑桥大学物理学博士学位,应邀任圣约翰学院研究员。1929年周游各国,作学术访问,先在美国逗留了五个月,后来和海森伯一起访问日本,再横贯西伯利亚,回到英格兰。1930年选为英国伦敦皇家学会会员。1932到1969年,狄拉克任剑桥大学卢卡斯数学教授(牛顿曾任此职务,现任为霍金),1969年退休。他还担任过美国威斯康星大学、密执安大学、普林斯顿大学、迈阿密大学等有名学府的访问教授。1933年狄拉克和薛定谔、海森伯一起分享当年度诺贝尔物理学奖金。1971年起任剑桥大学荣誉教授,兼任美国佛罗里达州立大学物理学教授。    狄拉克对物理学的主要贡献是发展了量子力学,提出了著名的狄拉克方程,并且从理论上预言了正电子的存在。狄拉克青年时代正好是原子物理学实验积累了大量材料、量子理论处于急剧变革的时代。由于深受以爱因斯坦为代表的20世纪物理学中理性论思潮的影响,加之个人的勤奋和思想方法的正确,狄拉克在量子力学的理论基础特别是普遍变换理论的建立方面,在相对论性电子理论的创立方面,以及在量子电动力学和量子场论的建立方面,都作出了重大的贡献。1926~1927年,研究出量子力学的数学工具变换理论与费米各自独立地提出具有半整数自旋粒子的统计公式(费米一狄拉克统计法)。1927年提出二次量子化方法。把量子论应用于电磁场,并得完第一个量子化场的模型,奠定了量子电动上学的基础。1928年与海森伯合作,发现交换相互作用,引入交换力。同年,建立了相对论性电子理论,提出描写电子运动并且满足相对论不变性的波动方程(相对论量子力学)。在这个理论中,把相对论、量子和自旋这些在此以前看来似乎无关的概念和谐地结合起来,并得出一个重要结论:电子可以有负能值。由此出发,于1930年提出“空穴”理论,预言了带正电的电子(即正电子)的存在。1931年预言了反粒子的存在,电子一正电子对的产生和湮没。1932年,安德森在宇宙射线中果然发现了正电子。不久,布莱克特在用云室观察宇宙线时又发现了电子一正电子对成对产生和湮没的现象。1931年提出关于“磁单极”存在的假设。论证了以磁单极为基础的对称量子电动力学存在的可能性。1932年与福克和波多利斯基共同提出多时理论。1933年提出反物质存在的假设。假定了真空极化效应的存在。1936年建立了主要是关于自由粒子的经典场的普遍理论。1937年提出了引力随时间变化的假设。1942年为消除电子固有能量的无限大值而引人不定度规的概念。1962年提出u子的理论,在这个理论中u子被描写为电子的振动状态。此后,主要研究引力理论的哈密顿表述形式问题,以进一步把引力场量子化。  狄拉克原来从事相对论动力学的研究,自从1925年海森伯访问剑桥大学以后,狄拉克深受影响,把精力转向量子力学的研究。1928年他把相对论引进了量子力学,建立了相对论形式的薛定谔方程,也就是著名的狄拉克方程。这一方程具有两个特点:一是满足相对论的所有要求,适用于运动速度无论多快电子;二是它能自动地导出电子有自旋的结论。这一方程的解很特别,既包括正能态,也包括负能态。狄拉克由此做出了存在正电子的预言,认为正电子是电子的一个镜像,它们具有严格相同的质量,但是电荷符号相反。狄拉克根据这个图象,还预料存在着一个电子和一个正电子互相湮灭放出光子的过程;相反,这个过程的逆过程,就是一个光子湮灭产生出一个电子和一个正电子的过程也是可能存在的。1932年,美国物理学家安德森(1923-)在研究宇宙射线簇射中高能电子径迹的时候,奇怪地发现强磁场中有一半电子向一个方向偏转,另一半向相反方向偏转,经过仔细辨认,这就是狄拉克预言的正电子。后来很快又发现了γ射线产生电子对,正、负电子碰撞“湮灭”成光子等现象,全面印证了狄拉克预言的正确性。狄拉克的工作,开创了反粒子和反物质的理论和实验研究。  狄拉克是量子辐射理论的创始人,曾经和费米各自独立发现了费米-狄拉克统计法。狄拉克还在美国佛罗里达州立大学发表过大量有关宇宙学方面的论文,推动宇宙学研究的发展。特别值得一提的是,狄拉克早在本世纪三十年代,就从理论上提出可能存在磁单极的预言。近年来有关磁单极的理论研究和实验探测取得了迅速发展。1982年国外已有报道,宣称有人发现了磁单极存在的证据。当然,假如真能从实验上证实磁单极存在,一定会引起物理理论的深刻变化。  狄拉克对物理学的发展充满信心,把自己毕生的精力、兴趣、热情全部投入追求科学真理的事业。他为当代物理学提供了丰富的物理思想,如正则量子化、变换理论、合时微扰、二次量子化、粒子沙表象、空穴理论和反粒子概念、电有共把对称性。路径积分、多时理论、重正化方法、用单极、弦模型、不定度规、引力场量子化等等。这些创造性的新思想为当代物理理论的发展开拓出新路。一大批获得诺贝尔奖金的杰出物理学家都是在狄拉克思想的引导下,或在狄拉克开辟的道路继续前进而取得丰硕成果的。他对物理学的杰出的贡献也为他带来了崇高的声誉,他因建立了量子力学而和薛定愕共获1933年度诺贝尔物理学奖,1939年获英国皇家奖章,1952年获英国皇家学会科普利奖章,1968年获奥海默奖章。他除了是英国皇家学会的成员以外,还是前苏联科学院通讯院士和美国普林斯顿高级研究院、罗马教皇科学院的成员。狄拉克曾应邀到德国、美国、日本等许多国家作访问讲学。1935年7月应我国清华大学的邀请,在清华大学作了关于正电子的演讲,并会见了我国的物理学界人士。1984年10月20日,狄拉克在美国佛罗里达逝世,为悼念这位伟大的理论物理学家,英国剑桥大学圣约翰学院举行了隆重的纪念报告会。  狄拉克一生著作甚丰。他的名著、《量子力学原理》(1930)以深刻而简洁的方式表述了量子力学,半个多世纪以来一直是这个领域的一本基本教科书。还著有《量子力学讲义》(1964)、《量子场论讲义》(1966)、《量子论的发展》(1971)、《希耳伯特空间中的旋量。(1974)、《广义相对论》(1975)、《物理学的方向》(1978)等。

  • 贵气十足的球差校正电镜

    日本电子又推球差校正电镜新产品了——JEM-ARM 300F,说是JEM-ARM 200F的升级版,而JEM-ARM 200F在全球的装机量也达到了100台左右。不知道除了日本电子,现在还有哪些厂商能生产球差校正电镜?电镜本身的价格在科学仪器当中就很高了,而球差校正电镜据说一台就得好几千万,这么高大上的仪器在中国有多少,真正用的好的人有几人?

  • 【原创】碳-11加速器生产

    [size=3][font=宋体] 碳是组成生命有机体的主要元素之一。也是一切生物为了维持其生命活动所必须摄取的营养物的主要成份。它的四个价电子可按[/font][font=Times New Roman]SP[sup]3[/sup][/font][font=宋体]、[/font][font=Times New Roman]SP[sup]2[/sup][/font][font=宋体]和[/font][font=Times New Roman]SP[/font][font=宋体]的杂化轨道相互结合或与其它元素的原子结合而生成百万种以上的有机化合物。目前核医学上使用的含有碳的放射性核素药物,都是有机化合物。[/font][font=Times New Roman] [/font][font=宋体]在这众多的有机化合物中,碳原子均处于化合物的骨架位置上。所以用碳的放射性核素来标记有机物,不能采用同位素交换的方法,而只能用化学合成或生物合成的方法来实现。在碳的几个正电子发射体中,只有[/font][font=Times New Roman][sup]11[/sup]C[/font][font=宋体]的半衰期最长为[/font][font=Times New Roman]20.4min[/font][font=宋体]。目前[/font][font=Times New Roman][sup]11[/sup]C[/font][font=宋体]是唯一可用于[/font][font=Times New Roman]PET[/font][font=宋体]显像的碳的正电子核素,其最重要也是最常用的核反应为[/font][font=Times New Roman][sup]14[/sup]N[/font][font=宋体]([/font][font=Times New Roman]P[/font][font=宋体],[/font][font=Times New Roman]α[/font][font=宋体])[/font][font=Times New Roman][sup]11[/sup]C[/font][font=宋体]。利用上述化学活性很强的[/font][font=Times New Roman][sup]11[/sup]C[/font][font=宋体]标记试剂,经由适当的化学反应就可得到各种类型的[/font][font=Times New Roman][sup]11[/sup]C[/font][font=宋体]标记的放射性药物。[/font][/size]

  • 【转帖】欧洲核子研究中心科学家首次捕捉到反物质

    【转帖】欧洲核子研究中心科学家首次捕捉到反物质

    http://ng1.17img.cn/bbsfiles/images/2010/11/201011191300_260648_1610706_3.jpg北京时间11月18日消息,欧洲核子研究中心(CERN)科学家宣布,在最新实验中首次成功捕获反物质,取得了重大的物理学突破。他们在实验中创造了以反氢形式存在的反物质,证明捕获和释放反物质是有可能的。这项研究突破或许有助于科学家设计出相应的实验,以深入了解这种行踪诡异的物质。  在《星际迷航》系列电视和电影中,反物质被用于驱动科克船长乘坐的宇宙飞船进行太空之旅。如今,科学家表示他们首次捕获了存在于现实世界的反物质样本。一个由英国和其他国家物理学家组成的科研小组在一项惊人的科学突破中,在实验室中瞬间“捕捉”了38个反氢原子。  反物质有助揭开宇宙起源之谜  虽然这次实验不可能令科学家研制出曲速引擎飞行器(Warp Engine)、反物质驱动装置,或是找到比《星际迷航》光速旅行更快的旅行方式,但却有可能揭开宇宙起源之谜。反物质就是正常物质的镜像,正常原子由带正电荷的原子核构成,核外则是带负电荷的电子。但是,反物质的构成却完全相反,它们拥有带正电荷的电子和带负电荷的原子核。当物质和反物质相撞,它们会立即相互湮没,释放出能量。  自英国物理学家保罗·狄拉克(Paul Dirac)最早提出反物质存在理论以来,反物质就一直是科幻小说和电影的主题。在电视和电影系列《星际迷航》中,反物质反应堆驱动“企业”号进行太空之旅,而在丹·布朗畅销小说《达芬奇密码》姊妹篇《天使与魔鬼》改编而成的同名电影中,藏匿在罗马的反物质炸弹更是成为电影的主线。  从理论上讲,1磅(约合450克)反物质的破坏力超过当量最大的氢弹。不过,制造和保存微量反物质是一件非常困难和耗资巨大的事情,用于制造超级武器的前景更是距离现实非常遥远。  38个反氢原子存活六分之一秒  在刊登于最新一期《自然》杂志上的最新研究中,欧洲核子研究中心的科学家使用反氢激光物理仪器(简称ALPHA),冷却带负电荷的反质子(氢原子核的镜像),将其挤压至长20毫米、宽1.4毫米的火柴棍大小的云状物中,这些粒子云接着被导入类似的正电子(反物质电子)云中。两种粒子结合形成反氢原子,最终,磁场在六分之一秒内成功捕捉到反氢原子。  卡尔加里大学物理学与天文学系主任罗布·汤普森教授说:“这是一项重要发现,可能有助于实施一些实验,使我们对当前物理学的基本看法产生巨大变化,证实我们当前了解到的知识。我们捕捉了大约38个原子,数量相当少,连一杯咖啡都热不了,更别提驱动《星际迷航》中的星舰‘企业’号了。现在,我们可以启动下一步工作,使用工具去对这些原子进行研究。”  共有42位研究人员参与了ALPHA实验。这些实验或许有助于科学家揭开有关宇宙最难解的谜团之一。科学家认为,当宇宙在137亿年前诞生于大爆炸时,这个事件产生了相同数量的物质和反物质。然而,今天,宇宙完全被正常物质所占据。科学家长期以来就想弄清楚消失的反物质究竟去了哪里。  英国斯旺西大学教授麦克·查尔顿说:“氢原子是所有原子中结构最简单的,反氢是可以在实验室最容易制造的反物质类型。深入了解它将有助于揭开已知宇宙由物质而非反物质构成的几乎所有谜团。”英国理论物理学家保罗·狄拉克在20世纪50年代最早预测了反物质的存在。

  • 【转帖】物理知识小常识

    牛顿:牛顿三大定律 胡克:胡克定律 牛顿:万有引力定律,卡文迪许用纽秤实验证实,并测定了G 伽利略:“摆”的等时性 玻意尔、查理、盖吕萨克定律 库仑:库仑定律 密立根:油滴实验 法拉第:电场线模型 欧姆:欧姆定律、闭合电路欧姆定律 奥斯特:电流磁效应 楞次:楞次定律 法拉第:电磁感应,并发明了第一台发电机 麦克斯韦:电磁场理论,预言电磁波的存在。赫兹实验证明,并测出了电磁波的速度 牛顿:光的微粒说 惠更斯:光的波动说 托马斯杨:杨氏双份干涉 汤姆生:发现电子 卢瑟福:根据阿尔法粒子散射实验,提出了原子的核式结构 玻尔:玻尔理论,建立了原子的玻尔模型 贝克勒尔:发现了原子的天然放射现象,发现了放射性元素“铀”;居里夫妇发现了“钋”“镭” 卢瑟福:发现了质子 查德威克:发现了中子 约里奥居里和伊丽芙居里夫妇发现了放射性同位素“正电子” 爱因斯坦提出了“相对论”和质能方程:E=mc^2 [em09505]

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制