当前位置: 仪器信息网 > 行业主题 > >

整体免疫染色

仪器信息网整体免疫染色专题为您整合整体免疫染色相关的最新文章,在整体免疫染色专题,您不仅可以免费浏览整体免疫染色的资讯, 同时您还可以浏览整体免疫染色的相关资料、解决方案,参与社区整体免疫染色话题讨论。

整体免疫染色相关的论坛

  • 多重免疫荧光染色步骤和原理

    [font=宋体][font=宋体]多重荧光免疫组化技术[/font] [font=Calibri](Multiplex immunohistochemical[/font][font=宋体],[/font][font=Calibri]mIHC) [/font][font=宋体]也称作酪氨酸信号放大 [/font][font=Calibri](Tyramide dignal amplification[/font][font=宋体],[/font][font=Calibri]TSA) [/font][font=宋体]技术,是一类利用辣根过氧化酶 [/font][font=Calibri](Horseradish Peroxidase, HRP) [/font][font=宋体]对靶蛋白或核酸进行高密度原位标记的酶学检测方法。[/font][/font][font=宋体] [/font][font=宋体]这一技术基于酪胺信号的放大效应,实现对单个细胞或组织样本上多个目标靶点的同时检测。这为全面研究细胞组成、细胞功能以及细胞间的相互作用提供了强大的工具。通过多重荧光免疫组化技术,科学家们可以更深入地了解细胞的奥秘,揭示生命现象的复杂性。[/font][b][font=宋体] [/font][font=宋体][font=Calibri]mIHC [/font][font=宋体]实验原理及流程[/font][/font][/b][font=宋体] [/font][font=宋体][font=Calibri]TSA [/font][font=宋体]技术采用 [/font][font=Calibri]HRP [/font][font=宋体]标记的二抗,[/font][font=Calibri]HRP [/font][font=宋体]催化加入体系的 [/font][font=Calibri]TSA [/font][font=宋体]衍生荧光染料,生成活化荧光底物,活化底物可与抗原上的酪氨酸共价结合,将信号共价结合到抗原上。之后用热修复洗去非共价结合的抗体,再换下一种一抗来第二轮孵育,换另一种荧光素底物,如此往复就可实现多重标记。[/font][/font][font=宋体] [/font][font=宋体] [/font][b][font=宋体]原理:[/font][/b][font=宋体][font=宋体]带有染料标记的底物酪胺[/font] [font=Calibri](T) [/font][font=宋体]分子在过氧化氢氧化环境下,被抗体或探针固定的 [/font][font=Calibri]HRP [/font][font=宋体]转化为具有短暂活性的中间状态 [/font][font=Calibri](T*)[/font][font=宋体],然后被激活的中间态分子 [/font][font=Calibri](T*) [/font][font=宋体]迅速与相接蛋白分子的富含电子区域 [/font][font=Calibri]([/font][font=宋体]酪氨酸残基[/font][font=Calibri]) [/font][font=宋体]进行稳定的共价结合,未被标记的酪胺分子将被洗脱,借此实现对抗原的特异性染色。由于相接的蛋白 [/font][font=Calibri]([/font][font=宋体]包括 [/font][font=Calibri]HRP[/font][font=宋体],抗体,目标抗原[/font][font=Calibri]) [/font][font=宋体]都含有大量的酪氨酸结合位点,所以目标抗原处会富集大量标记分子,使信号被有效放大 。[/font][/font][font=宋体] [/font][b][font=宋体]多重免疫荧光染色的步骤包括样品制备、抗原诱导、抗原解露等。[/font][/b][font=宋体]具体如下:[/font][font=宋体] [/font][font=宋体]①样品制备:根据细胞或组织的不同,选择不同的处理方式。对于细胞样品,需要固定和渗透化处理以保持其形状和蛋白质结构。对于组织样品,需要切片并进行染色前的去脂处理。[/font][font=宋体]②抗原诱导:如果目标标记物是蛋白质,那么需要选择适当的抗体来识别目标蛋白质。抗体可以人工合成或从动物体内提取。[/font][font=宋体]③抗原解露:对于细胞样品,可以利用活液解离细胞,并将细胞固定在载玻片上。[/font][font=宋体] [/font][font=宋体] [/font][b][font=宋体][font=Calibri]IHC [/font][font=宋体]与 [/font][font=Calibri]mIHC[/font][font=宋体]区别与联系[/font][/font][/b][font=宋体] [/font][font=宋体][url=https://cn.sinobiological.com/services/stable-cell-line-development-service][b]免疫组化[/b][/url],是应用抗原与抗体特异性结合的原理,通过化学反应使标记抗体的显色剂显色来确定组织细胞内抗原,对其进行定位、定性的研究。[/font][font=宋体] [/font][font=宋体][font=宋体]简单来说,[/font][font=Calibri]mIHC [/font][font=宋体]属于 [/font][font=Calibri]IHC [/font][font=宋体]的升级版本![/font][/font][font=宋体] [/font][font=宋体][font=Calibri]Tips[/font][font=宋体]:[/font][/font][font=宋体] [/font][font=宋体]相同点:[/font][font=宋体] [/font][font=宋体]能够完整显现组织原位形态信息。[/font][font=宋体] [/font][font=宋体]不同点:[/font][font=宋体] [/font][font=宋体][font=Calibri]1. [/font][font=宋体]常规免疫组化的分析属于定性分析,其判断大多依赖于经验,其分析结果会有差异。而多重荧光免疫组化属于定量分析,其利用软件可对组织中的细胞进行精准的结果分析。[/font][/font][font=宋体] [/font][font=宋体][font=Calibri]2. [/font][font=宋体]常规免疫组化受传统染色成像的限制,靶标少于 [/font][font=Calibri]3 [/font][font=宋体]个,无法完整分析组分信息。而多重荧光免疫组化可实现多因子共定位,可以获取更多的生物信息,且样本需求量较少。[/font][/font][font=宋体] [/font][font=宋体][font=宋体]义翘神州提供的[/font][font=Calibri][url=https://cn.sinobiological.com/services/fluorescent-multiplex-ihc-services][b]TSA[/b][/url][/font][font=宋体][url=https://cn.sinobiological.com/services/fluorescent-multiplex-ihc-services][b]法多重荧光免疫组化服务[/b][/url],有一系列屏蔽自发荧光干扰的手段,配合激光共聚焦显微镜的拍摄条件,提供更优质的图像质量,收获更特异的染色结果。[/font][font=Calibri]https://cn.sinobiological.com/services/fluorescent-multiplex-ihc-services[/font][/font][font=宋体] [/font][b][font=宋体][font=宋体]义翘神州:蛋白与抗体的专业引领者,欢迎通过百度搜索[/font][font=宋体]“义翘神州”与我们取得联系。[/font][/font][/b][font=Calibri] [/font]

  • 染色质共沉淀VS免疫共沉淀!区别大揭秘!

    [font=宋体]染色质免疫共沉淀[/font][font=宋体][font=宋体]染色质免疫共沉淀([/font][font=Calibri]Chromatin Immunoprecipitation Assay, ChIP[/font][font=宋体]):[/font][font=Calibri]ChIP[/font][font=宋体]是一项比较流行的研究转录因([/font][font=Calibri]transcriptionfactor,TF[/font][font=宋体])与启动子([/font][font=Calibri]promoter[/font][font=宋体])相互结合的实验技术。它的基本原理是在活细胞状态下固定蛋白质-[/font][font=Calibri]DNA[/font][font=宋体]复合物,并通过超声或酶处理将其随机切断为一定长度范围内的染色质小片段,然后通过抗原抗体的特异性识别反应沉淀此复合体,特异性地富集目的蛋白结合的[/font][font=Calibri]DNA[/font][font=宋体]片段,通过对目的片断的纯化与检测,从而获得蛋白质与[/font][font=Calibri]DNA[/font][font=宋体]相互作用的信息。它能真实、完整地反映结合在[/font][font=Calibri]DNA[/font][font=宋体]序列上的调控蛋白,是目前确定与特定蛋白结合的基因组区域或确定与特定基因组区域结合的蛋白质的一种很好的方法。 [/font][/font][font=宋体] [/font][font=宋体][font=宋体]染色质免疫共沉淀([/font][font=Calibri]ChIP[/font][font=宋体])实验的优点[/font][/font][font=宋体] [/font][font=宋体][font=宋体]与传统的研究转录因子和[/font][font=Calibri]DNA[/font][font=宋体]相互作用的方法相比,染色质免疫共沉淀([/font][font=Calibri]ChIP[/font][font=宋体])技术是一种在体内研究[/font][font=Calibri]DNA[/font][font=宋体]与蛋白质相互作用的理想方法。染色质免疫共沉淀([/font][font=Calibri]ChIP[/font][font=宋体])的优点在于能够在体内捕获转录因子和靶基因的相互作用,能同时快速地提供一种或者多种基因的调控机制,因此有着非常重要的应用价值。[/font][/font][font=宋体] [/font][font=宋体][font=宋体]染色质免疫共沉淀([/font][font=Calibri]ChIP[/font][font=宋体])实验的局限性[/font][/font][font=宋体] [/font][font=宋体][font=宋体]染色质免疫共沉淀([/font][font=Calibri]ChIP[/font][font=宋体])技术也有一定的局限性:[/font][/font][font=宋体] [/font][font=宋体]第一,该技术需要抗目的蛋白或者特殊修饰标签的高度特异性抗体。[/font][font=宋体] [/font][font=宋体]第二,假阴性信号可能源于无效的抗体结合或者在交联过程中抗原受到干扰。[/font][font=宋体] [/font][font=宋体]第三,甲醛固定可能是暂时的,甚至是非特异的,可能导致相邻的蛋白形成假阳性信号。[/font][font=宋体] [/font][font=宋体]第四,难以同时得到多个蛋白质对同一序列结合的信息等。[/font][font=宋体] [/font][font=宋体]免疫共沉淀[/font][font=宋体] [/font][font=宋体][font=宋体]免疫共沉淀[/font][font=Calibri](Co-IP)[/font][font=宋体]是免疫沉淀的延伸[/font][font=Calibri],[/font][font=宋体]主要用于蛋白[/font][font=Calibri]-[/font][font=宋体]蛋白相互作用检测。如果样品溶液中存在与靶蛋白相互作用的目的蛋白[/font][font=Calibri],[/font][font=宋体]也会被一同捕获及纯化得到[/font][font=Calibri],[/font][font=宋体]通过[/font][font=Calibri]SDS-PAGE[/font][font=宋体]、[/font][font=Calibri]Western[/font][font=宋体]和质谱等方法鉴定与靶蛋白结合的蛋白。其原理是如果两个蛋白在体外体系能够发生特异性相互作用的话,那么当用一种蛋白的抗体进行免疫沉淀时,另一个蛋白也会被同时沉淀下来。其基本流程如下[/font][font=Calibri]:[/font][/font][font=宋体] [/font][font=宋体] [/font][font=宋体] [/font][font=宋体][font=宋体]义翘神州提供免疫共沉淀([/font][font=Calibri]Co-IP[/font][font=宋体]) [/font][font=Calibri]/ [/font][font=宋体]免疫沉淀([/font][font=Calibri]IP[/font][font=宋体])技术服务,推荐理由:[/font][/font][font=宋体][font=宋体]①一站服务[/font][font=Calibri], [/font][font=宋体]方便快捷[/font][/font][font=宋体][font=宋体]您只需提供细胞或组织裂解液,义翘神州助您完成免疫沉淀[/font] [font=Calibri](IP) [/font][font=宋体]和免疫共沉淀 [/font][font=Calibri](Co-IP) [/font][font=宋体]实验。[/font][/font][font=宋体] [/font][font=宋体]②经验丰富[/font][font=宋体][font=宋体]长期从事[/font][font=Calibri]IP[/font][font=宋体]相关检测的技术团队,具有丰富的实践经验。[/font][/font][font=宋体] [/font][font=宋体]③价格实惠[/font][font=宋体][font=宋体]使用义翘神州优质的[/font][font=Calibri]IP[/font][font=宋体]抗体和磁珠[/font][font=Calibri]/[/font][font=宋体]胶珠,享受优惠价格。[/font][/font][font=宋体] [/font][font=宋体][font=宋体]更多详情可以关注:[/font][font=Calibri]https://cn.sinobiological.com/services/ip-co-ip-service[/font][/font]

  • 莆田市第一医院罗氏全自动免疫组化染色试剂采购项目

    [quote][b]项目概况[/b]莆田市第一医院罗氏全自动免疫组化染色试剂采购项目(重新招标) 招标项目的潜在投标人应在莆田市公共资源交易中心网获取招标文件,并于2022年12月27日 10点20分(北京时间)前递交投标文件。[/quote][font=inherit]一、项目基本情况[/font]项目编号:PTXH2022009-2项目名称:莆田市第一医院罗氏全自动免疫组化染色试剂采购项目(重新招标)预算金额:200.0000000 万元(人民币)最高限价(如有):200.0000000 万元(人民币)采购需求:[table][tr][td][align=center]合同包[/align][/td][td][align=center]品目号[/align][/td][td][align=center]货物(服务)名称[/align][/td][td][align=center]主要技术规格[/align][/td][td][align=center]数量[/align][/td][td][align=center]最高限价[/align][align=center](人民币:万元)[/align][/td][td][align=center]投标保证金(人民币:元)[/align][/td][td][align=center]是否办理进口产品审批手续[/align][/td][td][align=center]备注(是否核心产品)[/align][/td][/tr][tr][td][align=center]1[/align][/td][td][align=center]1-1[/align][/td][td][align=center]罗氏全自动免疫组化染色试剂[/align][/td][td][align=center]详见招标文件第五章招标内容及要求[/align][/td][td][align=center]1批[/align][/td][td][align=center]200[/align][/td][td][align=center]20000[/align][/td][td][align=center]是[/align][/td][td][align=center]是[/align][/td][/tr][/table]合同履行期限:详见招标文件本项目( 不接受 )联合体投标。

  • GS-Smart小型自动凝胶染色仪与台式水平脱色摇床在CBB染色法中的应用对比

    GS-Smart小型自动凝胶染色仪与台式水平脱色摇床在CBB染色法中的应用对比台式水平脱色摇床是生物学实验室常见的仪器设备,常用于普通凝胶电泳条带固定、考马斯亮蓝(CBB)染色脱色、硝酸银染色、蛋白质免疫印迹(Western Blot)、细胞培养和放射自显影等实验中。一般的台式水平脱色摇床主要是通过调节定幅载具的摆动频率,从而控制样品在溶液中的摆动快慢,这既是该仪器的基本工作原理,也是她在以上实验中主要发挥的作用。在普通考马斯亮蓝染色、脱色实验中,台式水平脱色摇床就是科研工作者们经常会用到的设备。一般是设定工作池的摇摆频率后,先后加入CBB染色液、脱色液,使摇床工作池持续摇摆,再置入蛋白凝胶使其在摇摆的液体中充分浸润洗涤,从而实现染色脱色。但一般的台式水平脱色摇床除了工作池的摆动频率可调外,没有其他参数能设置,虽然某些型号摇床还增加了定时功能,但也无法设置自动完成复杂的步骤。因此,前期进液、换液和排液都需要实验人员手动操作,另外,染色、脱色时间也只能靠实验人员自己把握。再者,台式水平脱色摇床的工作池一般裸露在外,摇摆过程中,有可能溅出溢出CBB染色液、脱色液,还有可能挥发出有毒化合物。这样不仅容易造成污染,甚至可能产生安全隐患,进而危害实验人员的健康。相比之下,鼎昊源GS-Smart小型自动凝胶染色仪无论在功能上、设计上还是外观上均领先台式水平脱色摇床,例如:1.智能编程功能:GS-Smart内置3种标准的染色程序,可编程存储47个自定义程序,可以轻松实现进液、换液、出液、定时摇动和废液回收等步骤,无人值守,让实验全程自动完成,这将为那些还在使用传统台式水平脱色摇床做CBB染色脱色实验的科研工作者们节省大量时间精力。2.可封闭可定制的染色池:GS-Smart染色池可封闭,既能防止液体溅出溢出、阻隔挥发物质,还可选择并定制各种尺寸。有些科研工作者为实现“快速”CBB染色脱色,习惯将CBB染色液或脱色液加热至沸腾然后进行染色脱色处理,而高温状态的液体会加速挥发甲醇乙酸等化合物,如果此时使用台式水平脱色摇床,无疑具有一定的安全隐患。3.机身与储液瓶一体化设计:该设计属于国际首创,与市场同类产品相比,减少了分散在外的瓶瓶罐罐,从而整机占地面积与普通台式水平脱色摇床相当。不仅节省了实验室空间,同时也美化了整体外观。综上,在CBB染色脱色实验应用方面,鼎昊源GS-Smart小型自动凝胶染色仪无论在功能上、设计上还是外观上均全面领先于台式水平脱色摇床。事实上,GS-Smart从2013年春季发布之初,就定位成了一款为考马斯亮蓝染色脱色实验而生的仪器,她的最终使命是全面取代CBB染色脱色实验中的台式水平脱色摇床,从而让所有CBB染色脱色自动进行!本文关键词:摇床,脱色摇床,水平脱色摇床

  • 我理解的所谓“整体免疫”

    [font=Arial, &][color=#333333]看到美国多艘航空母舰被迫进入实质性的整体免疫阶段,非常感叹。[/color][/font][font=Arial, &][color=#333333]今天说一下我理解的所谓“整体免疫”。[/color][/font][font=Arial, &][color=#333333]作为军队来说,军人是可以进行整体免疫的。因为军人作为国家暴力机器,国家需要他们去流血牺牲的时候,他们有义务进行流血牺牲,所以面对新冠不救不治,进行实质性的整体免疫,哪怕面对一定的死亡率,也是军人的一个责任(更何况年轻人的重症率和死亡率本来就偏低)。。因为从军事角度来说,你先感染一遍,你以后面对别人作战时就有了一定的先机。[/color][/font][font=Arial, &][color=#333333]甚至从国家和资本的角度来说,对整个国家进行整体免疫,也是一个比较好的选择。因为整体经济上的代价比较小。因为如果面对传染病,直接放弃防御的话,就省下了很多救助资金,而且死去的多数是老年人,是社会经济负担 ,让这些中老年人去死,对于资本的角度来说是个相当不错的打算。[/color][/font][font=Arial, &][color=#333333]就算我们不再谈论这种做法是否反人类,我们不再讨论所谓发展文明的意义。仅仅从个体角度来说,特别是像我们这种普通的底层群众,我们是一定要争取生活在一个“有意愿、也有能力为基层普通群众生死负责”的国家。[/color][/font][font=Arial, &][color=#333333]“我们想活着,我们不想成为资本挣钱让路的代价”,就是这么简单。[/color][/font][font=Arial, &][color=#333333]整体免疫的是一个非常被动的路线,它实际上就是选择不抵抗,让病毒去杀人,等病毒什么时候杀累了也就结束了。最大问题是结果也不可控,运气好的时候,可能就死部分中老年人,运气不好的时候,例如当年印第安人面对天花的这种被迫的整体免疫,可是差不多死了九成的人口,很多部落被实质性灭族。[/color][/font][font=Arial, &][color=#333333]所以,整体免疫不是一个治疗方案,而是为了节省金钱而被动接受的结果。不知道鼓吹的人是否真的认为自己肯定不会成为代价,所谓死道友不死贫道,是一个精巧的算盘,你盘算的是很好,但是病毒可没有答应。。。[/color][/font][font=Arial, &][color=#333333]人类精神世界的灯塔,是拯救大兵雷恩,是要抢回战友的尸体,是不抛弃,不放弃,而不是啥整体免疫。[/color][/font]

  • 冰冻切片的免疫组化染色

    1. 新鲜组织立即在恒冷冰冻切片机内切片( 也可- 80℃保存),厚度为 5~6μm。2. 载玻片可不打底,裱片后,立即用电吹风吹干。3. 如不马上染色,可密封后- 20℃保存。4. 染色前用冷丙酮在 4℃固定 10-20 分钟。5. PBS 洗 2 次,每次 5 分钟,( 必要时应用 0.1%柠檬酸钠+0.1%triton打孔)6. 3% H2 O2灭活内源性过氧化物酶,20 分钟,避光;7. 用 PBS 洗 2 次,每次 5 分钟;8. 正常血清封闭:从染片缸中取出切片,擦净切片背面水分及切片正面组织周围的水分 (保持组织呈湿润状态,)滴加正常山羊或兔血清 (与第二抗 体 同源动物血清)处理,37℃,15 分钟。附:正常血清配制 ( 或按试剂盒规定的浓度配制):按 1:20比例,用 PBS 配制,每张切片需要量按 50μ+5μl (10%抛洒量) 计算。9.滴加第一抗体:用滤纸吸去血清,不洗,直接滴加第一抗体,37℃ 2 小时(也可置于 4℃冰箱过夜) 。10.PBS:5 分钟,2 次(置于摇床) 。11.滴加生物素化的二抗,37℃,40 分钟。12.PBS:5 分钟,2 次(置于摇床) 。13.滴加三抗 (SAB 复合物) ,37℃,40 分钟。14.PBS:5 分钟,2 次(置于摇床) 。15.DAB 显色,镜下观察,适时终止(自来水冲终止) 。附:DAB 的配制① 储备液(DAB 25mg/ml)的配制:DAB 250mg + PBS 10ml,待完全溶解后分装成 1ml,100μl,50μl ,20μ l 等,-20℃,冻存。② 工作液:DAB 储备液 20μl + PBS 1000μl + 3% H2O2 5μl16.自来水(细水)充分冲洗。17.苏木素复染,室温,30 秒,自来水冲洗。18.自来水冲洗返蓝,15 分钟。19.梯度酒精脱水:80%,2 分钟 95%,2 分钟 100%,2 次,5 分钟。20.二甲苯透明:I ,II (二甲苯)各 5 分钟21.封片:加拿大树胶(或中性树胶)封片。

  • 特殊染色技术的应用

    现代病理学中免疫组织化学技术、电子显微镜技术以及其它细胞及分子生物学技术应用日益广泛, 这些技术要求一定的实验条件和试剂,如市面上使用广泛的徕卡染色机及其配套的徕卡透明试剂。相对而言,组织化学技术则具有无需复杂的实验条件和试剂、操作又比较简单的优势,在临床病理学诊断中具有重要的应用价值。 组织化学染色的方法很多,这里仅介绍几种常用的组织化学染色在病理诊断中的应用。一、胶原纤维的染色凡是间叶组织细胞都可产生网织纤维,也可产生胶原纤维,纤维母细胞是产生胶原纤维的主要细胞。胶原纤维是结缔组织中的主要纤维,是结缔组织中起支持作用的重要部分,具有一定的韧性和坚固性,能抵抗一定的牵[fo

  • 染色体芯片技术大幅提高试管婴儿成功率

    目前,我国试管婴儿技术的成功率平均仅为50%多,最大瓶颈就在于产前染色体异常的筛查。记者昨日获悉,今年3月成立的染色体芯片产前诊断联合实验室(CMA),利用针对中国人群定制的染色体芯片,能够检测出在常规染色体检测中显微镜下无法识别的基因缺陷,可筛查出200多种已知的染色体微缺失或微重复引起的疾病。这一技术不仅可通过产前诊断达到优生目的、降低流产率,而且将会使试管婴儿的成功率整体提高两成达70%,尤其是将会使高龄女性做试管婴儿的成功率提高五成。http://www.ibioo.com/data/attachment/portal/201308/25/094237zntmsn8tmz7tzmit.jpg技术:染色体芯片技术可查缺陷基因据广州医科大学附属第三医院广东省产科重大疾病重点实验室主任、广州妇产科研究所副所长孙筱放教授介绍,随着强制婚检的取消,近年来新生儿出生缺陷率明显升高。目前已知的出生时严重出生缺陷婴儿染色体异常的比率只有10%。而国外学者通过高通量、高分辨率的染色体芯片技术研究发现,大量以前无法确定遗传改变的出生缺陷,实际上都是由常规染色体检查显微镜下无法识别的基因组微缺失和微重复引起的。“正是这个原因,我们与香港中文大学成立了染色体芯片产前诊断联合实验室。”她说,“我们现在已经可以检测出200多种已知的染色体微缺失或微重复引起的各种疾病。我们还可以结合DNA测序技术对已知各种单基因疾病进行诊断。这项技术在全国范围内都属于领先的。”故事1:十次试管婴儿都失败来自湖北的阿丹和阿强(均为化名)结婚十年来一直没有怀上孩子,两人为此焦虑不已。近年来,求子心切的他们居然连续做了十次试管婴儿,但都以失败而告终。每次将胚胎植入之后,他们都满怀希望地等待,但无一例外,没有一次能够怀到“瓜熟蒂落”。漫长的求子之路,让他们身心俱疲。尤其是阿丹,经历了十次“煎熬”之后,精神“几近崩溃”,身体也经受了太多的损伤。他们为什么总不成功?他们还有希望吗?他们抱着最后一线希望来到广医三院。专家解读:植入前做检测 妊娠率可达80%“对于做试管婴儿的夫妻来说,压力之大非外人所能想象,尤其是做了几次不成功的夫妻。”广州医科大学附属第三医院生殖医学中心主任刘见桥教授介绍,“在传统的技术中,胚胎植入前遗传学诊断只能检测少数几条染色体是否异常。但事实上,每一条染色体都有可能发现异常,只是以前很多其他的染色体异常没有筛查出来,所以即使不健康的胚胎也会被植入。”刘见桥说,目前,该院与美国休斯敦生殖医学中心合作,率先开展了利用染色体芯片技术对植入前胚胎筛查,可以检测全部染色体组的异常数目。“通过这种筛选的胚胎,妊娠率可提高到80%。”“目前我们可以做到的是,在胚胎植入前就可以对全部染色体组进行检测,然后进行筛查,再把健康的胚胎植入体内。”刘见桥说,无论是什么年龄阶段的女性,最后的成功率都可达70%,这就大大减少对女性身心的伤害,也为患者免去了许多不必要的经济损失,尤其是对于高龄女性而言,成功率更提高了五成。故事2:孕妈担心再生先心娃今年30岁的周洁(化名)怀孕20周了,然而,新生命并未给她带来多少喜悦,相反,更多的是忐忑和纠结。原因就是她曾经生育过一个患有一种先天性心脏畸形而且面部发育也不正常的女儿。第二个孩子会不会也出现畸形呢?这个胎儿究竟是去还是留呢?周洁来到广医三院的生殖医学中心,医生抽了她患病的女儿外周血和腹中胎儿的羊水分别进行染色体芯片检查。结果发现她女儿的3号染色体有一段较长的微重复,正是这一重复区域,导致了她的先天性疾病。而她腹中胎儿的染色体芯片结果并没有跟她女儿相同的变异区域,说明胎儿再患这种先天性心脏畸形的概率较低。目前,她腹中的胎儿的确也发育良好,未见明显畸形。她终于可以放心地把孩子怀下去了。专家解读:可对比染色体差异并作去留判断“在常规的染色体检测中,一般只是显微镜下识别基因缺陷,有很多缺陷是无法识别的。”广医三院妇产科研究所实验部副主任、CMA实验室负责人范勇介绍,而使用该院正在使用的染色体芯片,不仅能够检测和比较患儿和胎儿的染色体差异,更重要的是,通过结果分析,可能对胎儿的去留作出准确的判断,消除了妊娠者及其家属的顾虑。“染色体芯片技术与传统染色体分析技术相比,具有集高通量和高分辨率的优势,目前已被加拿大遗传学会、欧洲遗传学会和美国遗传学会推荐作为遗传学诊断的首选手段。”范勇说,染色体芯片分析还可以进一步地检测患者双亲,以明确某一类的先天性缺陷的致病变异来源。“这对于指导患者再次怀孕具有很重大的临床意义。”范勇说,实验室成立三个月以来,已为230多名孕妇进行了该项技术检查,确诊十余例染色体结构异常胎儿。

  • 【求助】检测小鼠囊胚中热休克蛋白70的免疫电镜操作方法

    大家好: 我想利用免疫电镜检测热应激前后小鼠囊胚中热休克蛋白70的定位情况,有两种方案:1.包埋前免疫电镜:胚胎经多聚甲醛-戊二醛混合液固定后,然后清洗,渗透,封闭,分别与一抗和二抗反应,然后再用锇酸固定,脱水,812包埋。2.包埋后的免疫电镜:胚胎经多聚甲醛-戊二醛混合液固定后,脱水,体温包埋剂渗透,包埋,聚合,超薄切片,最后进行免疫染色。 第一种方案:不知道热休克蛋白70的抗原性保存如何?另外,不知道免疫标记效果如何就进行包埋,是不是有点盲目? 第二种方案 超微结构和抗原性都保存较好,试验重复性好。但是包埋剂比较贵,而且本试验室没有聚合用的低温冰箱和紫外灯。 请各位大虾帮帮我!

  • 新研究发现X染色体可以影响男性性别形成

    俗话说,每一个伟大的男人背后,都有一个伟大的女人。每一个精子的背后,也有一个X染色体在起作用。在人体中,Y染色体决定人的性别为男性,因此许多研究人员认为:男性发育过程中负责决定性别的相关基因都位于Y染色体上。但是现在有一个科研团队发现,X染色体(“女性染色体”)也可以在此过程中发挥重要的作用。X染色体包含了决定成为精子形成的大量的基因。这一发现改变了我们对性别形成的固有想法,至少在某种程度上X染色体在进化过程中扮演一个令人意外的角色。哺乳动物有一对性染色体。女性的X染色体有两个拷贝,男性有一个拷贝,与Y染色体形成对。而人体只需要X染色体一个拷贝发挥作用,所以在女性体内,第二个拷贝是被“关闭”的。约50年前,遗传学家Susumu Ohno提出,这样的关闭作用减缓了X染色体的进化进程,所以大多数哺乳动物中的X染色体都非常相似。剑桥大学怀特海德生物医学研究所的遗传学家David Page研究了经过80亿年的进化后,上述说法是否在老鼠和人类之间成立,Page和同事得到的研究结果发表在近日的 Nature Genetics杂志上。虽然这两个物种的基因组已经被解码,但这些DNA序列还存在一些缺陷和错误,特别是X染色体的缺陷和错误首先需要被填充和修复。Page的研究团队使用一个特殊的测序技术确定了缺口处的DNA碱基序列,这里包含很多的重复的DNA区域,而此前用现有的技术通过一次测序很难破译这些重复区域。然后,研究人员比较了小鼠和人类的X染色体基因。这两个物种的X染色体共同拥有800个左右的基因,这些共享基因,通常是是男性和女性相对稳定的基因,并且它们以单拷贝的形式存在。这些基因上发生的突变,能引发X-连锁隐性遗传病,例如血友病和杜氏肌营养不良症。与此同时,研究团队也发现了相较前人研究该染色体与众不同的、令人迷惑的一面。人类有144个X染色体基因是小鼠所没有的,而有197个基因是个小鼠基因是特有的。人类的144个基因中,有107个存在于X染色体重复序列中,这些基因的变化较为迅速。基于这样的证据,Page得出结论,在人类和老鼠祖先产生分离的时候,这些基因分化就出现了。“对于人类X染色体和老鼠X染色体上存在如此大量的非共享基因,我感到非常惊讶,” 密歇根大学的进化遗传学家Jianzhi Zhang说。这一发现表明,X染色体上基因可能随时都在变化。基因改变时,就会影响进化,Page认为X染色体基因效用可能是特别强劲的。例如,一些先前发现的X染色体基因,似乎已经在小鼠的形态发育上发挥了作用。他和他的同事调查了八个人类男性和女性的身体组织来观察X染色体基因如何发挥作用。“在许多情况下,这些非共享的基因在女性体内甚至没有表达,” Page说。相反,它们在决定精子形成的睾丸却表现得非常活跃。“我们认为X染色体过着双重的生活,” 其一,它是稳定的,像前人研究描述的一样;其二,它在不停变化并影响男性特征。Page表示,在其它基因上,重复区域在治疗癌症和其他疾病中已经具有了巨大的生物医学意义,他希望其他研究人员能进一步探索X染色体的重复区域是否同样重要,特别是在男性的繁衍和睾丸癌治疗方面。但目前,我们必须先知道这些基因的功能,了解它们对健康和形态的影响。但有一件事是肯定的,人们将开始关注X染色体的进化。http://www.ibioo.com/data/attachment/portal/201307/23/202226bu6vaasv3g6lwfs0.jpg参考文献http://www.ibioo.com/data/attachment/portal/201307/23/202226i11s7d9xysyswvvy.gifIndependent specialization of the human and mouse X chromosomes for the male germ line作者:Jacob L Mueller et al. We compared the human and mouse X chromosomes to systematically test Ohno's law, which states that the gene content of X chromosomes is conserved across placental mammals1. First, we improved the accuracy of the human X-chromosome reference sequence through single-haplotype sequencing of ampliconic regions. The new sequence closed gaps in the reference sequence, corrected previously misassembled regions and identified new palindromic amplicons. Our subsequent analysis led us to conclude that the evolution of human and mouse X chromosomes was bimodal. In accord with Ohno's law, 94–95% of X-linked single-copy genes are shared by humans and mice; most are expressed in both sexes. Notably, most X-ampliconic genes are exceptions to Ohno's law: only 31% of human and 22% of mouse X-ampliconic genes had orthologs in the other species. X-ampliconic genes are expressed predominantly in testicular germ cells, and many were independently acquired since divergence from the common ancestor of humans and mice, specializing portions of their X chromosomes for sperm production.

  • 中药原料检出有毒化学染色剂 染色问题屡禁不止

    中药原料检出有毒化学染色剂 染色问题屡禁不止

    导读:今年,随着屠呦呦获得诺贝尔奖让中国中药迅速成为全球关注的焦点。然而,我国中药行业发展还面临很多挑战,中药材的安全性也存在诸多隐患。http://ng1.17img.cn/bbsfiles/images/2015/11/201511101644_572992_3013923_3.png 近日,在国家食品药品监督管理总局的一次专项抽验中,以生产中成药为主的亚宝药业集团股份有限公司被检测出中药原料延胡索使用了化学染色剂金胺O。    我们普通消费者对中药名肯定不是很了解,对于这化学染色剂金胺O可能也感到陌生。金胺O为黄色均匀粉状物,易溶于热水呈亮黄色,溶于乙醇呈黄色,其水溶液加入浓硫酸稀释后呈淡黄色。主要用于麻、纸、皮革、草编织品、人造丝等的染色,也用于印染棉织品。碱性金胺O可用于油、脂肪、油漆等的着色。    金胺O对皮肤黏膜有轻度刺激,可引起结膜炎、皮炎和上呼吸道刺激症状,长期过量食用,将对人体肾脏、肝脏造成损害甚至致癌。早在2008年被卫生部列为非食用物质,在中药材、中药饮片和中成药中均不得检出。    但其仍然是中药染色剂中的常客。近年来,食药总局曾多次检出药材延胡索、蒲黄等中含金胺O。除食药总局之外,各省市食药监局所检测出的金胺O也不在少数。    那么,为什么要对这些药材进行染色呢?据悉,中药饮片染色主要有三种情况:伪品通过染色掺入正品中,这种情况较为多见,掺入量达50%左右;第二种情况则是正品通过染色以次充好,这种常见于人工培植的山参染色后便于高价卖出;第三种则是劣药通过染色,继续入药。    无论是哪种原因,都对中药饮片、成药的质量以及服用者的身体健康产生严重的影响。中药材的质量安全保障并不是某一个环节的问题,从种植、采摘、贮藏、加工、制剂,每一个环节都非常重要。要确保公众用药的安全,药企必须以产品安全为“红线”,坚持“质量重于生命”的理念,建立从源头、生产到售后的全程质量监控体系,切实负起质量安全的第一责任。    面对中药染色屡禁不止的现状,对中药的检测就显得十分重要。精密仪器的不断发展给中药质量标准提供了先进的方法手段,如用气相色谱法、高效液相色谱法、色谱-光谱-计算机联用技术薄层扫描法、核磁共振波谱法、超临界流体色谱法等先进技术和设备来研究分析中药质量。     在常规分析技术方面,采用导数光谱分析多种成分,也用比色法、薄层层析-紫外分光光度法等分析方法。     目前,我国的药品管理法不涉及原生中药材,对其质量监管处于一种比较尴尬的地位,监管力度不够,单纯依靠企业自检很难解决中药市场目前的问题。    要从源头上解决问题,首先就是从药材种植上做到规模化、产业化;其次,强有力的监督执法权也是规范市场必不可少的。虽然现在食药监局可能存在人员有限、现有的专业人员不足等情况,但随着2015年版《中国药典》的即将实施,及先进科学仪器的助力,我国中药质量和安全性将整体提高,保障公众用药安全有效。

  • GS-Smart小型自动凝胶染色摇床在考马斯亮蓝染色实验中的应用

    GS-Smart小型自动凝胶染色摇床在考马斯亮蓝染色实验中的应用考马斯亮蓝染色法(CBB染色法)是目前蛋白质染色实验中相当常用的方法,它既克服了氨基黑染色灵敏度不高的限制,号称目前灵敏度最高的蛋白质测定法之一,而又比硝酸银染色等其他方法更简便且更加容易操作,因而得到了广泛应用。考马斯亮蓝染色法的全实验过程有两个关键且耗时较长的步骤,分别是染色和脱色。通常,为了让蛋白凝胶能够充分的染色和脱色,一般会先后将CBB染色液、脱色液加入持续摇摆的脱色摇床工作池,再置入凝胶使其充分浸润洗涤,从而实现染色脱色。普通的脱色摇床除了工作池的摆动频率可以调节外,并没有其他参数可以设置,进液、换液和排液等步骤都必须由实验人员手动完成。而且启动后,由于工作池一般是持续不停的摆动,因而染色、脱色时间也只能靠实验人员自己把握。所以,普通考马斯亮蓝染色脱色实验一般都需要有实验人员值守。此外,为固定蛋白质和维持CBB在染色前的酸性环境,同时也为了去除前期电泳残留物质对染色的干扰,通常配置的CBB染色液或脱色液中有时会加入具有神经毒性的甲醇和强刺激性的乙酸,且配好的CBB染色液一般总体呈棕黑色(CBB R-250)。而普通脱色摇床的工作池完全敞开暴露,所以摆动过程中有可能溅出溢出CBB染色液、脱色液,还有可能挥发出有毒化合物。这样不仅容易造成污染,甚至可能产生安全隐患,进而危害实验人员的健康。鼎昊源GS-Smart小型自动凝胶染色摇床(又名自动凝胶染色仪)可以很好地解决以上普通考马斯亮蓝染色脱色实验所面临的问题,同时也能带来更多便利。首先,她的智能编程功能可以实现进液、换液、出液、定时摇动、废液回收的自动运行,全过程无需人员值守,从而真正全自动完成CBB染色脱色实验。其次,她配备了可封闭的染色池,能有效防止CBB染色液、脱色液溅出溢出,阻隔挥发物质,从而大大降低污染风险,保护实验人员的健康。染色池还有多款尺寸可选,甚至可以定制,从而尽可能多地满足不同科研工作者对考马斯亮蓝染色脱色实验的不同需求。第三,鼎昊源GS-Smart小型自动凝胶染色摇床操作起来也十分简单方便,只需“加入溶液、置入凝胶、设置管路程序、点击运行”四个简单的步骤,便可轻松搞定考马斯亮蓝染色、脱色的全过程,省时省力省心。另外,再值得一提的是,鼎昊源GS-Smart小型自动凝胶染色摇床还拥有国际外首创的机身与储液瓶一体化设计,与市场同类产品相比,减少了分散在外的瓶瓶罐罐,节省了实验室空间,同时也美化了整体外观。本文关键词:染色摇床,自动凝胶染色摇床,考马斯亮蓝染色,CBB染色

  • Y染色体数据分析研究取得进展

    中科院昆明动物所在张亚平院士带领下,该所彭旻晟、贺军栋、樊隆等人开发出针对DNA芯片数据中Y染色体单核苷酸多态性位点的分析策略。相关研究11月27日在线发表于《欧洲人类遗传学》。 随着全基因组关联分析广泛应用于人类遗传学工作之中,相关的DNA芯片(微阵列)也不断得到发展。许多Y染色体单核苷酸多态性位点(Y-SNPs)已被整合在DNA芯片中。然而,这些Y-SNPs数据在全基因组关联分析中都被弃之不顾,没有进行任何评估分析。  为此,研究人员运用开发的分析策略对来自114个缅甸人和3个尼日利亚人共117份男性样本DNA芯片数据中的2041个Y-SNPs进行了评估分析。基于数据过滤后提取出的369个Y-SNPs,研究人员构建了Y染色体单倍型类群树,解析出缅甸人群的父系遗传结构。  该结果得到基因分型实验和Y染色体重测序数据的支持,表明该策略切实可行。研究人员对分析中的数据格式转换、过滤和注释处理后发现,DNA芯片对Y-SNPs的检测灵敏度和准确性依旧有待提高,例如:芯片厂商可依据Y染色体重测序数据重新选择合适的Y-SNPs并设计相关探针。

  • 一组洋葱根尖染色体的照片。

    一组洋葱根尖染色体的照片。

    [img=,690,520]http://ng1.17img.cn/bbsfiles/images/2018/01/201801300826338324_3945_1633232_3.jpg!w690x520.jpg[/img][img=,690,511]http://ng1.17img.cn/bbsfiles/images/2018/01/201801300825152536_5967_1633232_3.jpg!w690x511.jpg[/img][img=,690,520]http://ng1.17img.cn/bbsfiles/images/2018/01/201801300825503312_9987_1633232_3.jpg!w690x520.jpg[/img]最近闲得无聊,制作了一套洋葱根尖染色体的压片,照了几张比较典型的染色体照片发上来大伙看看。固定液为卡诺,盐酸60度水解15min,改良本分品红染色5min,酒精盐酸分色,压片进行观察并照相,照相机为荣耀7[img]http://simg.instrument.com.cn/bbs/images/default/em09502.gif[/img]

  • 微生物染色技术

    染色方法  微生物染色方法一般分为单染色法和复染色法两种。前者用一种染料使微生物染色,但不能鉴别微生物。复染色法是用两种或两种以上染料,有协助鉴别微生物的作用。故亦称鉴别染色法。常用的复染色法有革兰氏染色法和抗酸性染色法,此外还有鉴别细胞各部分结构的(如芽胞、鞭毛、细胞核等)特殊染色法。食品微生物检验中常用的是单染色法和革兰氏染色法。1、单染色法  用一种染色剂对涂片进行染色,简便易行,适于进行微生物的形态观察。在一般情况下,细菌菌体多带负电荷,易于和带正电荷的碱性染料结合而被染色。因此,常用碱性染料进行单染色,如美兰、孔雀绿、碱性复红、结晶紫和中性红等。若使用酸性染料,多用刚果红、伊红、藻红和酸性品红等。使用酸性染料时,必须降低染液的PH值,使其呈现强酸性(低于细菌菌体等电点),让菌体带正电荷,才易于被酸性染料染色。  单染色一般要经过涂片、固定、染色、水洗和干燥五个步骤。  染色结果依染料不同而不同:  石碳酸复红染色液:着色快,时间短,菌体呈红色。    美兰染色液:着色慢,时间长,效果清晰,菌体呈兰色。  草酸铵结晶染色液:染色迅速,着色深,菌体呈紫色。2、革兰氏染色法  革兰氏染色法是细菌学中广泛使用的一种鉴别染色法,1884年由丹麦医师Gram创立。  细菌先经碱性染料结晶染色,而经碘液媒染后,用酒精脱色,在一定条件下有的细菌此色不被脱去,有的可被脱去,因此可把细菌分为两大类,前者叫做革兰氏阳性菌(G+),后者为革兰氏阴性菌(G—)。为观察方便,脱色后再用一种红色染料如碱性蕃红等进行复染。阳性菌仍带紫色,阴性菌则被染上红色。有芽胞的杆菌和绝大多数和球菌,以及所有的放线菌和真菌都呈革兰氏正反应;弧菌,螺旋体和大多数致病性的无芽胞杆菌都呈现负反应。  革兰氏阳性菌和革兰氏阴性菌在化学组成和生理性质上有很多差别,染色反应不一样。现在一般认为革兰氏阳性菌体内含有特殊的核蛋白质镁盐与多糖的复合物,它与碘和结晶紫的复合物结合很牢,不易脱色,阴性菌复合物结合程度底,吸附染料差,易脱色,这是染色反应的主要依据。  另外,阳性菌菌体等电点较阴性菌为低,在相同PH条件下进行染色,阳性菌吸附碱性染料很多,因此不易脱去,阴性菌则相反。所以染色时的条件要严格控制。例如,在强碱的条件下进行染色,两类菌吸附碱性染料都多,都可呈正反应;PH很低时,则可都呈负反应。此外,两类菌的细胞壁等对结晶紫—碘复合物的通透性也不一致,阳性菌透性小,故不易被脱色,阴性菌透性大,易脱色。所以脱色时间,脱色方法也应严格控制。本文来自检验地带网  革兰氏染色法一般包括初染、媒染、脱色、复染等四个步骤,具体操作方法是:  1)涂片固定。  2)草酸铵结晶紫染1分钟。  3)自来水冲洗。  4)加碘液覆盖涂面染1分钟。  5)水洗,用吸水纸吸去水分。  6)加95%酒精数滴,并轻轻摇动进行脱色,30秒后水洗,吸去水分。  7)蕃红梁色液(稀)染10秒钟后,自来水冲洗。干燥,镜检。  染色的结果,革兰氏正反应菌体都呈紫色,负反应菌体都呈红色。

  • 【原创大赛】人工染色体简介

    人工染色体指人工构建的含有天然染色体基本功能单位的载体系统。包括酵母人工染色体(YAC)、细菌人工染色体(BAC)以及后来的人类人工染色体(HAC)和植物人工染色体(PAC)等多种类型。人工染色体的出现,为基因组图谱制作,基因图位克隆,动物的基因治疗,植物的多基因转化提供了有用的工具。酵母人工染色体(Yeast artificial chromosome, YAC)1983年,Murray和Szostak1]在大肠杆菌质粒pBR322中插入酵母的着丝粒、自主复制序列、选择性标记及四膜虫核糖体RNA基因rDNA(Tr)末端序列,并转化酵母菌,构建成了酵母人工染色体。YAC载体一般能够容纳500 kb,甚至1 Mb大小的染色体片段[[url=http://bbs.instrument.com.cn/post.asp?forumid=487&threadid=&postid=&title=&action=&FTTID=1&hasReadRelease=yes#_ENREF_2]2, [url=http://bbs.instrument.com.cn/post.asp?forumid=487&threadid=&postid=&title=&action=&FTTID=1&hasReadRelease=yes#_ENREF_3]3]。目前,在多种高等生物中均构建了高质量的YAC文库。YAC可用于大规模基因组测序和物理图谱构建。例如,美国科学家利用YAC完成了人Y染色体及21q的物理图谱并进行了相应的测序工作[[url=http://bbs.instrument.com.cn/post.asp?forumid=487&threadid=&postid=&title=&action=&FTTID=1&hasReadRelease=yes#_ENREF_4]4]。然而,YAC具有一些缺陷,克隆外源基因易出现嵌合体;部分克隆不稳定,在传代培养中可能会发生缺失或重排;YAC与酵母染色体具有相似的结构,因此难与酵母染色体区分开[[url=http://bbs.instrument.com.cn/post.asp?forumid=487&threadid=&postid=&title=&action=&FTTID=1&hasReadRelease=yes#_ENREF_2]2, [url=http://bbs.instrument.com.cn/post.asp?forumid=487&threadid=&postid=&title=&action=&FTTID=1&hasReadRelease=yes#_ENREF_3]3]。细菌人工染色体(Bacterial artificial chromosome, BAC)[/si

  • 【转帖】染色技术

    染色技术由于微生物细胞含有大量水分(一般在80-90%以上),对光线的吸收和反射与水溶液的差别不大,与周围背景没有明显的明暗差。所以,除了观察活体微生物细胞的运动性和直接计算菌数外,绝大多数情况下都必须经过染色后,才能在显微镜下进行观察。但是,任何一项技术都不是完美无缺的。染色后的微生物标本是死的,在染色过程中微生物的形态与结构均会发生一些变化,不能完全代表其生活细胞的真实情况,染色观察时必须注意。  本节包括四部分:  一、染色的基本原理  二、染料的种类和选择  三、制片和染色的基本程序   四、染色方法

  • 有关染色的问题

    各位大虾们,请问高分子染色后是否会改变晶体的结构呢我做PEG染色时,染色之前可以得到衍射点,染色之后就得不到了,为什么呢

  • 【转帖】常用染色剂及配制

    常用染色剂及配制供组织学诊断用的优秀常规染色剂,不仅须使细胞核和细胞浆有选择性着染,也要使结缔组织着色。苏木素-伊红染色的切片适当分色,可使这些结构得以区分,胞核表现为蓝色,胞浆和结缔组织纤维呈各种色调的粉红,因此这是一种最常用的常规染色剂。 一、苏木素-伊红染色的基本原理 苏木素是最早用于生物学上的天然染色剂之一,百余年来,一直是生物学实验室最常用的组织学中细胞核的染料,它是从苏木树的树心中提炼出来的,为浅褐色结晶或淡黄褐色的粉末状物。易溶于乙醇、甘油,也可溶于热水。苏木素本身没有染色能力,它经过氧化后,能产生具有染色能力的苏木红,苏木红又称为氧化苏木素或苏木因。 苏木素变成苏木红的过程叫作“成熟”。成熟的方法一般有两种:一种是把配制好的苏木素液在开口瓶中放置两个月以上,让其在日光和空气中的氧的作用下使之氧化。故一般地盛苏木素的瓶子放在向阳处,时间愈长,染色的效果愈好。常配制一大瓶,备长期使用。另一种方法是在苏木素液中加入氧化剂,如磺酸钠,过锰酸钾,氧化汞,双氧水等。用这种方法成熟与用第一种方法者不同的是,它放置时间愈长,染色的效果愈低。这是因为苏木红被继续氧化可生成无色的化合物,故一次不宜配制过多,还应放置40C冰箱内避光保存以延长使用时间。它的优点是配制后即可使用。 成熟的苏木素对组织并无亲和力,须加入含金属离子的媒染剂,才能达到染色的目的。一般用于明矾苏木素的媒染剂为钾明矾或氨明矾。主要是利用明矾中的铝离子和苏木红结合形成的铝沉淀色素为紫蓝色,对染色质有很大的亲和力,水和酒精都不能使其褪色。用于铁苏木素的媒染剂是三价铁离子,苏木红的铁沉淀色素为黑蓝色,不溶于水,因此,故不能配制大量含媒染剂的混合液,一般用时现配,或在染色过程中,先用铁明矾媒染,然后再染苏木素,如磷钨酸苏木素染色即是。 常规苏木素染色的对比染色是用伊红,也有采用焰红,因为焰红比伊红色泽更鲜明,此外还有采用橘黄G,比布里希猩红,波尔多红等作为对比染色。 苏木素-伊红染色,在组织病理学中,是一种日常使用最为广泛的常规染色方法。一张优质的染色切片,可以清晰地观察到各种不同的组织结构以此作为病理诊断的确切依据。再根据此染色切片所见,分别进行不同的特殊染色。 二、染液的配制 在实验室内常用的苏木素染液有以下几种,不同的仅是染色时间以及比较每种染色方法彼此的优缺点,不过各有优劣。 (一)苏木素染液的配制方法如下 1.Harris氏苏木素液 甲液:苏木素 1g 无水酒精 10ml 乙液:硫酸铝钾 20g 蒸馏水 200ml 丙液:一氧化汞 0.5g 经典的配制方法是,先将甲液加热溶解后,密封待用,再将乙液加热溶解至沸,去火,待溶液仍处于小沸腾状态时再将甲液徐徐倾入其中,全部混合后,再使溶液在短时间内加热至沸腾,去火,最后,将氧化汞缓慢倾入溶液中(氧化汞一定要慢慢少量分次加入,切忌急躁。因氧化汞倒入后,溶液会迅速膨胀易沸出容器外而发生危险。)此时液体变为深紫色,待氧化汞全部放入后,再将溶液加温至沸腾片刻,立即将溶液放入流动的冷水中,并缓缓地连续摇晃至溶液完全冷却为止。隔夜后过滤,加入冰醋酸(按5%比例)混匀,再过滤后保存于冰箱内备用。 我们在实验工作中摸索了一种Harris氏苏木素的配制方法,染色效果很好,特介绍如下。 配方:(配制2000ml) 苏木素 9g 硫酸铝胺(铵明矾) 200g 氧化汞 7g(5—10g) 冰醋酸 100ml 蒸馏水 2000ml 器具: 3000毫升三角烧瓶 1个 200毫升量筒 1个 1000毫升量筒 1个 漏斗 1个(大) 滤纸 1大张 另备脱脂棉、电炉、湿抹布、大称量纸、流水槽等。 (器具要求达到化学洁净) 配法: 1.将苏木素溶于100毫升无水乙醇中,密封备用。 2.将200克铵明矾溶于2000毫升蒸馏水中,加热至沸。 3.去火。加入苏木素酒精搅拌,加热至沸。 4.去火。缓缓加入氧化汞。 5.微火煮至有金属膜产生。 6.去火。以湿抹布包住三角烧瓶的颈部。迅速放置于冷水浴中冷却,缓缓摇动烧瓶至液体完全冷却为止。 7.静置避光过夜。棉花过滤。滤液中加入冰醋酸(按5%的比例加入),混匀,滤纸过滤,备用。 注意事项: 1.配制好的苏木素液,未经使用的可长期置冰箱(冷藏)内保存。 2.盛液体的烧瓶要质优并且容积要大,防止忽速冷却对破裂和煮沸时液体溢出。 2.Hansen氏苏木素液 甲液:苏木素           1g    无水酒精          10ml 乙液:硫酸铝钾(钾明矾)     20g    蒸馏水           200ml 丙液:高锰酸钾          1g    蒸馏水           16ml   先将甲液加热溶解,然后将乙液加热溶解,将甲、乙两液混合。再将丙液溶解后缓缓滴入,待全部混合后,再次煮沸一分钟,冷却后过滤,即可使用。 3.Heidenhain氏铁苏木素液 甲液:硫酸铁铵(紫色结晶)    5g    蒸馏水           100ml 乙液:苏木素           0.5g    无水酒精          10ml    蒸馏水           90ml   此液要求硫酸铁铵只有紫色的透明结晶才能使用;苏木素是溶于洒精中然后加水。苏木素液需放置4-5周才能成熟。临用时将甲、乙两液等量混合后使用。(也可先将苏木素用无水酒精配成5%的贮备成熟,用时取10毫升加蒸馏水至100毫升使成乙液)   此苏木素液能染许多结构,但只能用于退行性染色法,需要熟练的分化,初学者宜用减半浓度的铁明矾分色,熟悉后再用原浓度分色。   此液与其它的苏木素染色技术有两个不同a.媒染剂与苏木素分开使用。b.所用的媒染剂亦用作为分色剂。 4.Ehrilich氏酸性苏木素液 主要应用一般染色和粘液,骨组织的染色 配方: 苏木素 2g 纯酒精 100ml 甘油 100ml 蒸馏水 100ml 冰醋酸 10ml 钾明矾 15g 将苏木素溶于纯酒精,再将钾明矾溶于蒸馏水中,溶解后将甘油倾人混合,然后加入苏木素酒精混合,最后加人冰醋酸,溶液全部混合后,应暴露在日光下使其自然成熟,时间约要三个月。(若加人300毫克碘酸钠,使苏木素迅速氧化则可立即使用。)此液贮存愈久染色力愈强。(可保持数年之久)染色时间5——20分钟,结果甚佳。 5.Delafreld氏苏木素液 主要应用于一般染色,弹力纤维的染色。 甲液: 苏木素 4g 纯酒精 25ml 乙液: 饱和铵明矾水溶液(约 10%)40毫升 丙液: 甘 油 100ml 甲 醇 100ml 先将苏木素溶于酒精,再将甲液混合在乙液中,置于白色瓶中并暴露在阳光下约一周,然后过滤,将丙液加人滤液中,待溶液呈暗灰色时再过滤,滤液密封保存。 6.Mayer氏明矾苏木素液 主要应用于一般染色,骨组织染色,及免疫组化染色。 配方: 苏木素 0.1g 钾明矾 5g 碘酸钠 0.02g 拘椽酸 0.1g 水合氯醛 5g 蒸馏水 100ml 先将苏木素及水煮沸溶解,加人钾明矾与碘酸钠,搅动直到全部溶解为止。再加人水合氯醛和拘椽酸,完全溶解后染液呈蓝紫色。加热煮沸五分钟,冷却后过滤即成。 此染液染切片5——15分钟,不需分化,充分水洗后,可使细胞核显蓝色并且非常细致清晰,通常用于对比染色。 7.Weigert氏铁苏木素液 甲液 苏木素 1g 无水酒精(或 95%酒精) 100ml 乙液 29%三氯化铁水溶液 4ml 蒸馏水 95ml 盐酸 1ml 临用时,取甲、乙液等量混合即可应用。混合时应将乙液加人甲液内,染液呈紫黑色。铁苏木素不能象明矾苏木素一样配制后可放置贮存备用,因铁与染色剂的色素根会化合生成不溶性沉淀,所以铁作媒染液时,必须与染液分别配制和分别保存,染片时临时混合应用。 由于这是一种铁苏木素,它将胞核染成黑色。能抵抗在对比染色液中所含分色剂的脱色作用,且不会被光线退色,因此比钾矾苏木素染色较为持久。 8.Mallory氏磷钨酸苏木素

  • 石蜡切片染色注意事项

    一、染色注意事项 1.染色之前一定要了解清楚所用的染色液的配制方法,不同的染色液染色后的处理是不一样的。 2.染色过程中所用的时间要根据染色时的室内温度、染液的新鲜程度及实验室的实际情况等灵活掌握。在室温高、切片、染色液又是新配制的,染色时间就要短,反之时间就长。 3.伊红有水溶的和醇溶的,如果用的是水溶的,应该在脱水前进行染色,如果是醇溶的,应使用与溶解伊红等浓度的酒精开始脱水。 4.在二甲苯脱蜡之前可以先在60℃烤箱内0.5~1小时,这样可以使切片粘附更牢固不易脱片,也有利于脱蜡。 5.二甲苯在HE染色中有脱蜡、透明的作用。二甲苯脱蜡的好坏主要取决于切片在二甲苯内放置的时间和脱蜡时的温度以及二甲苯的使用次数。染好的切片必须经过透明,有利于显微镜观察,同时并为封片起到了桥梁作用。 6.用梯度酒精脱水时,在低浓度酒精中时间不宜过长,到高浓度时逐步延长脱水时间。以免脱水不彻底,影响二甲苯透明的效果。 7.在酸性分化液内停留的时间不要过长,分化不可过度,避免使细胞核内该染上色的结构脱色。不需分化处理的苏木精染色时要注意掌握染色时间,以防止组织切片染色背景过深或细胞核、胞质染色不足。

  • 【原创大赛】构建植物人工染色体的两种方法的比较

    21世纪以来,随着技术的发展,植物人工染色体技术迅速崛起,而目前最常用的两种构建人工染色体的方法就是“组装法”和“截短法”。“组装法”的研究起步较早,但是由于技术的限制,利用“组装法”构建植物人工染色体的进展一直不理想,到目前为止,也只有在玉米细胞中获得成功1]。然而这种人工构建的环状染色体与真核生物中正常存在的线形染色体相差甚远,因为不具有端粒结构,这种环状的人工染色体能否成为稳定的载体系统还有待进一步证实。与之相比,利用“截短法”构建植物人工染色体的的研究起步较晚,直至2006年才有关于利用“截短法”在玉米中构建植物人工染色体的报道[[url=http://bbs.instrument.com.cn/post.asp?forumid=487#_ENREF_2]2]。尽管如此,这种方法还是获得了很大成功,随后,科研人员相继在拟南芥[[url=http://bbs.instrument.com.cn/post.asp?forumid=487#_ENREF_3]3],大麦[[url=http://bbs.instrument.com.cn/post.asp?forumid=487#_ENREF_4]4],水稻[[url=http://bbs.instrument.com.cn/post.asp?forumid=487#_ENREF_5]5]中利用“截短法”构建了植物人工染色体,利用“截短法”构建植物人工染色体的研究获得了蓬勃的发展。然而,无论是“组装法”还是“截短法”都各自有其优缺点,笔者认为,“组装法”如果获得成功转化,并且能像常染色体一样稳定遗传,那么利用这种方法构建植物人工染色体周期短,后续应用方便。然而这一方法目前由于受到着丝粒在不同物种中的高度特异性,着丝粒区域的复杂性和难扩增性,以及遗传转化技术等多方面因素制约,使得其在植物中的研究和应用成功率极低,对于其相关的遗传稳定性也难以预料。“截短法”从目前的研究进展看,其可行性是毋庸置疑的,然而从众多的转基因事件中,筛选出转化受体生长发育等各方面性状不发生改变,同时在非常染色体上形成一对可稳定遗传的小染色体的过程也并非易事。不过笔者相信随着转化技术的进步,检测手段的简化和完善,利用“截短法”构建植物人工染色体用以改良作物必将获得长足进步和最终成功。[size=16px] [size=16px]

  • 特殊染色技术的原理及其在实践中的应用

    [font=宋体][font=Calibri][url=https://cn.sinobiological.com/services/special-staining-services][b]HE[/b][/url][/font][font=宋体][url=https://cn.sinobiological.com/services/special-staining-services][b]染色[/b][/url],全称为苏木精[/font][font=Calibri]-[/font][font=宋体]伊红染色法 [/font][font=Calibri](hematoxylin-eosin staining)[/font][font=宋体],是最基本的病理学染色技术,能够对正常组织和病理组织进行形态结构的观察。特殊染色是常规[/font][font=Calibri]HE[/font][font=宋体]染色的必要补充,能够有针对性地对组织成分进行染色,使组织病理学评价更加完善精确,在临床病理学诊断和病理组织学研究具有重要的应用价值。除常规的[/font][font=Calibri]HE[/font][font=宋体]染色外,义翘神州还提供[/font][font=Calibri]9[/font][font=宋体]种特殊染色服务,包括[/font][font=Calibri]masson[/font][font=宋体]三色染色、 [/font][font=Calibri]PAS[/font][font=宋体]染色、尼氏染色、[/font][font=Calibri]VG[/font][font=宋体]染色、苏丹黑染色、普鲁士蓝染色、油红[/font][font=Calibri]O[/font][font=宋体]染色和β[/font][font=Calibri]-[/font][font=宋体]半乳糖苷酶衰老染色等。[/font][/font][font=宋体] [/font][font=宋体][font=宋体]为了显示与确定组织或细胞中的正常结构或病理过程中出现的异常物质、病变及病原体等,需要分别选用相应的显示这些成分的染色方法进行染色。包括[/font][font=Calibri]: [/font][font=宋体]胶原纤维 染色[/font][font=Calibri](Masson[/font][font=宋体]等[/font][font=Calibri])[/font][font=宋体]、网状纤维染色、弹力纤维染色、肌肉组织染色[/font][font=Calibri]([/font][font=宋体]磷钨酸 苏木素 [/font][font=Calibri])[/font][font=宋体]、脂肪染色[/font][font=Calibri]([/font][font=宋体]苏丹[/font][font=Calibri]III)[/font][font=宋体]、糖原染色[/font][font=Calibri](PAS)[/font][font=宋体]、粘液染色[/font][font=Calibri](PAS)[/font][font=宋体]等。[/font][/font][font=宋体] [/font][font=宋体]特殊染色:[/font][font=宋体]病理组织切片染色技术作为病理实验室基本方法之一,具有较高的使用价值,也是目前临床外科病理最基本、最常见的形态学检验技术。[/font][font=宋体] [/font][font=宋体]实验原理:[/font][font=宋体][font=宋体]组织切片染色就是利用染料在组织切片上给予不同颜色,使其与组织或者细胞内的某种成分发生作用,经过透明后通过光谱吸收和折射,使其各种微细结构能显现不同颜色,这样在显微镜下就可显示出组织细胞的各种成分。最常见的组织染色是[/font][font=Calibri]HE[/font][font=宋体]染色,另外巴菲尔生物还可开展其他特殊染色项目,如[/font][font=Calibri]masson[/font][font=宋体]染色、[/font][font=Calibri]PAS[/font][font=宋体]染色、[/font][font=Calibri]AB-PAS[/font][font=宋体]染色、[/font][font=Calibri]EVG[/font][font=宋体]染色、[/font][font=Calibri]VG[/font][font=宋体]染色、维多利亚蓝染色、番红[/font][font=Calibri]-[/font][font=宋体]固绿染色、甲苯胺蓝染色、油红[/font][font=Calibri]O[/font][font=宋体]染色、阿利新蓝染色、碱性磷酸酶染色、瑞氏姬姆萨染色、普鲁士蓝染色、[/font][font=Calibri]TTC[/font][font=宋体]染色及髓鞘染色等。[/font][/font][font=宋体] [/font][font=宋体]特殊染色的应用价值[/font][font=宋体]现代病理学中免疫组织化学技术、电子显微镜技术以及其它细胞及分子生物学技术应用日益广泛,但由于这些技术要求一定的实验条件以及所需的试剂价格较为昂贵,对于一部分病人以及某一些基层医院是比较难以接受的。而组织化学技术则具有无需复杂的实验条件以及较为昂贵的试剂操作又比较简单的优势,在临床病理学诊断中具有重要的应用价值。[/font][font=宋体] [/font][font=宋体]比如,当细胞中出现色素,是黑色素还是含铁血黄素以及当组织中出现均一化学物质是否为淀粉样变性等,用组织化学技术区别起来很简单,所以组织化学技术,虽然已有几十年到几百年的历史,仍是一个很有实用价值的技术。[/font][font=宋体] [/font][font=宋体]常见的特殊染色方法及应用:[/font][font=宋体][font=Calibri]1[/font][font=宋体]、[/font][font=Calibri]Mallory[/font][font=宋体]磷钨酸苏木素染色[/font][/font][font=宋体]原理:成熟的苏木素通过钨的结合成蓝色色淀,这种色淀与所选择的组织成份能牢固地结合而呈蓝色,显示棕红色的成份是由于磷钨酸而着色。[/font][font=宋体]方法应用:[/font][font=宋体][font=宋体]临床上应用该方法对横纹肌肉瘤进行诊断,横纹肌肉瘤的组织学形态变化多样,与未分化的间胚叶肿瘤很难鉴别,采用磷钨酸苏木素染色,在瘤细胞质内发现蓝色横纹,则可以证明该肿瘤是呈横纹肌分化。该染色液也可以对炎症渗出的纤维素,[/font][font=Calibri]DIC[/font][font=宋体]的毛细血管中的纤维素、以及神经病理等方面进行染色[/font][/font][font=宋体] [/font][font=宋体][font=Calibri]2[/font][font=宋体]、[/font][font=Calibri]PAS[/font][font=宋体]染色 [/font][/font][font=宋体]原理:高碘酸是一种氧化剂,它能破坏多糖结构的碳键。组织切片首先用高碘酸溶液氧化,使存在于组织多糖分子的乙二醇基或氨羟基的碳键打开,生成醛基化合物。暴露出来的游离醛基与无色品红溶液作用,生成新的红至紫红色复合物而得到定位。[/font][font=宋体]应用:[/font][font=宋体][font=宋体]在组织学上,主要用来检测组织中的糖类。随着医学实验技术的发展,糖原染色应用的范围更加广泛,如用以证明与鉴别细胞内空泡状的性质,心肌病变及其他心血管疾病的诊断,糖原累积病诊断和研究[/font] [font=宋体],糖尿病的诊断和研究,用于某些肿瘤的诊断等。除用于糖原的鉴定和黏液的显示外,还可以观察肾小球基底膜、结肠杯状细胞中性黏液物质、阿米巴滋养体和霉菌的着色。为临床诊断、分类和治疗提供了重要的依据。[/font][/font][font=宋体] [/font][font=宋体][font=宋体]更多关于特殊染色服务详情可以参看:[/font][font=Calibri]https://cn.sinobiological.com/services/special-staining-services[/font][/font][font=Calibri] [/font]

  • 【原创大赛】利用“截短法”构建人工染色体的问题及应对策略

    植物人工染色体技术具有广泛的应用前景,然而,目前植物人工染色体技术尚处于其发展初期,仍然存在很多问题。首先,植物人工染色体的构建仍然依赖于常规的转基因技术,或者是农杆菌介导的遗传转化,或者是基于基因枪的粒子轰击的遗传转化,这就不可避免的存在常规遗传转化所存在的问题:转化目的片段插入的随机性,这是一个影响人工染色体构建乃至将来应用的一个重要问题。例如起始载体pWY86系列都是随机插入到某一染色体的某一位置,如果染色体组既包含常染色体,也包含B染色体或者附加染色体,那么目的片段的插入可能位于常染色体,亦可能位于其它染色体,到目前为止,还没有办法控制其特异的插入到某一特定染色体上。同样的,目的片段插入到染色体上的位置也是随机的,尚无办法控制其插入到染色体的特定位置,这些都为后续应用造成了一定的问题:首先,如果目的片段插入到常染色体上,并在插入位置发生端粒介导的染色体切割,这样会造成常染色体部分片段的缺失,对于二倍体植物,这种缺失常常是不能忍受的,大多会造成植株的严重发育不良,或者败育。即便是对于多倍体植物,某条常染色体片段的缺失也有可能造成生长性状的改变。固然我们可以筛选那些发生了端粒介导的染色体切割形成了小染色体,同时遗传性状又没有明显改变的植株,但这需要很大的工作量,同时,即使没有可见或可检测的性状改变也并不能表明不存在隐形的对受体植株的不良影响。同时,常染色体通常很大,靠一次或者几次端粒介导的染色体切割很难形成理想的人工小染色体,即切割后形成的人工染色体可能依然很大,不能满足后续应用要求。如果受体材料染色体组存在B染色体,对于构建植物人工染色体无疑是一个好消息,尤其是如果这些B染色体可以稳定遗传。B染色体通常长度较短,不编码任何功能基因,对于植株的生长发育无影响。如果我们的目的片段插入了B染色体并且发生了端粒介导的染色体切割,并且如果发生了切割的B染色体可以在后面的减数分裂中不被湮没,可以稳定的遗传给子代,那么对于研究者来说是一个巨大的好消息。因为通常认为B染色体对于植株是可有可无的,那么即使发生了端粒介导的染色体切割形成了植物人工小染色体也不会对受体植株造成影响,同时,由于B染色体本身长度较小,无功能,其自身性质就决定了它是构建植物人工小染色体的优良载体。但是B染色体较常染色体而言,通常数量少,长度短,如果基于常规遗传转化的随机性而言,目的片段插入到B染色体,并发生端粒介导的染色体切割的概率就小。幸运的是,Yu W等将pWY86质粒成功的导入了玉米的B染色体,并成功观察到了端粒介导的染色体切割的发生1],这为未来利用B染色体组构建植物人工染色体的研究带来了福音。然而,并不是所有植物物种都含有B染色体,并且,通常B染色体会随着减数分裂的进行而随机丢失或者增加1],这些无疑都给利用B染色体组构建植物人工染色体带来了麻烦。利用附加染色体构建植物人工染色体是又一个理想的选择。在自然界,很多物种都有附加系的存在,这些附加系多附加一对外源染色体,这些附加的外源染色体通常不会对植株发育造成影响,一些附加系很容易发生丢失,如黑麦的附加系[[url=http://bbs.instrument.com.cn/post.asp?forumid=487&FTTID=1#_ENREF_2]2],然而有一些附加系具有很好的遗传稳定性,那么这些含有可以稳定遗传的附加系材料就可以成为构建人工染色体的优良载体。例如本研究的受体材料甘蓝型油菜就有很多附加系[[url=http://bbs.instrument.com.cn/post.asp?forumid=487&FTTID=1#_ENREF_3]3],其中一些附加系就具有很好的遗传稳定性[[url=http://bbs.instrument.com.cn/post.asp?forumid=487&FTTID=1#_ENREF_4]4]。如果以这些遗传稳定的附加系作为转化受体,在转基因后代中筛选目的片段定位于附加染色体并且发生了端粒介导的染色体切割的转化株系,就可以利用这些株系作为进一步的转化或者杂交受体,进行位点特异性重组,实现多基因的定点整合,并且不影响转基因植株的遗传稳定性和生长发育等性状。[size=10pt][1] Yu, W., Han, F., Gao, Z., Vega, J.M. and Birchler, J.A. (2007). Construction and behavior of engineered minichromosomes in maize. Proceedings of the National Academy of Sciences 104, 8924-8929.[size=10pt][2] 任正隆[size=10pt]. (1991). 黑麦种质导入小麦及在小麦育种的利用方式[size=10pt]. 中国农业科学 24, 18-25.[size=10pt][3] 戚存扣,[size=10pt], 浦惠明,[size=10pt] and 傅寿仲[size=10pt]. (1995). 甘蓝型油菜[size=10pt]-埃塞俄比亚芥二体附加系植株形态及细胞学鉴定[size=10pt]. 作物学报 21, 717-722.[size=10pt][4] 戚存扣,[size=10pt], 高冠军,[size=10pt], 浦惠明,[size=10pt], 傅寿仲,[size=10pt] and 仲裕泉[size=10pt]. (2000). [font=宋

  • 【转帖】染色剂染色的化学基础

    为一种生物染色剂,必须同时满足两个要求:具有鲜艳透明的颜色,而且能与组织细胞相结合。染色剂分子能够显示颜色的基因,称为发色团。主要的发色团有:亚硝基和偶氮基显示的颜色较强,在染色剂中有一个这样的发色团,就可染出颜色。其他的发色团则不是这样,必须有几个发色团,有醌的分子中就有四个发色团,(2个羰基2个烯基)。 大量的合成染料都是由煤焦油蒸馏得到的,它们都是苯的衍生物,所以苯环是合成染料的基础。苯本身是无色的,但其氢原子为某发色团取代后就带有了颜色。含有发色团的苯环化合物,称为色原。 苯+发色团=色原 色原还不能很好地与组织细胞相结合,即使着了色也很容易脱去。因此仅仅具有色原还不能成为染色剂,染色剂分子中还需具备促使染色剂与组织细胞相结合的基因,这样基国在称为助色团。如—NH2 —COOH —OH —SO3H 氨基 羧基 羟基 磺酸基 氨基在溶液中形成阳离子(+),为碱性;其它羟基,羧基和磺酸基皆带阴离子(-)故为酸性。如三硝基甲苯是个色原,它虽有发色团—硝基,但因缺乏助色团,所以没有染色作用,不能称为染料。假如三硝基苯分子中的一个氢原子被羟基置换,则所生成的化合物既具有发色团而又得到了助色团—羟基,这就成了常用的酸性染料苦味酸。 这就可以看出,助色团的作用在于使色原形成盐类,可以在溶液中电离成为带电的离子,这样才能与相应的组织细胞的成份相结合。

  • 光片照明(SPIM)显微镜———淋巴管形成机制

    [b]小鼠胚胎初始淋巴管形成的多步机制[/b]Rene′ Ha¨ gerling1,7, Cathrin Pollmann1,7,Martin Andreas1, Christian Schmidt1,Harri Nurmi2, Ralf H Adams3, Kari Alitalo2,Volker Andresen4, Stefan Schulte-Merker5,6and Friedemann Kiefer1,* [i][b]The EMBO Journal[/b][/i] (2013), 1-16在哺乳动物发育过程中,主静脉血管中的一个内部细胞亚群开始表达淋巴管特异基因,进而发育出初级的淋巴结构,被共同命名为淋巴囊。淋巴内皮细胞的出芽,扩展,膨胀被认为是淋巴内皮细胞从主静脉中产生的基础,但是淋巴管形成的确切机制仍然不为人所了解。使用选择性光片照明显微镜Ultramicroscope来观察进行整体免疫染色的小鼠胚胎,我们观察到细胞分辨率的完整的发育中的血管系统。本文中,我们报道了可以被检测到的最早的淋巴内皮细胞松散的连接在主静脉和浅表的脉管丛。下一步的淋巴内皮细胞聚集导致了两个清晰的,未被预先确认的淋巴结构,背部外周纵向淋巴管和腹侧初级胸导管,它们在后期阶段形成了一个与主静脉的直接连接。我们发现血管内皮生长因子C和基质组分CCBE1对于淋巴内皮细胞出芽和迁移是必不可少的。总之,我们提供了一个明显更加细节化的视角和早期淋巴管发育的新颖模型。[img=,591,756]http://qd-china.com/bio%20application/Lavision%20Ultramicroscope/The%20EMBO%20Journal/The%20EMBO%20Journal1.jpg[/img]图1. 初始淋巴祖细胞从主静脉中产生。(A-D)受精后9.5/9.75(A,C)和10.5(B,D)天小鼠胚胎血管系统的整体染色。PECAM-1优先染动脉、静脉血管中的内源粘蛋白。Prox1识别的淋巴内皮细胞。(A)中框出了胸颈静脉区,淋巴内皮细胞。DA,背主动脉;ISA,节间动脉;PAAs,咽弓动脉。标尺100um。E 图示箭头穿越一对主静脉之一。静脉内皮细胞,蓝色;发育中的心脏,暗绿;浅表静脉丛的位置被标示出来。CCV,一般主静脉;SV,静脉窦;H,心脏;ISV,节间血管。(F)成对CCV和导流入心脏的SV的三维重构。移开一半对称主静脉后的ISVs和生肌刀(M)。蓝色箭头指示静脉血的流动。(G)胸颈静脉区的横切面。DA,ISA和动脉丛标记红色;CV,ISV和sVP标记蓝色。NT,神经管;DRG,背根神经节;iLECs,初始淋巴内皮细胞。(H-K)整体免疫染色胚胎的图片左侧标注的蛋白分布的光学切片的3维重建。E,受精后几天的发育阶段(H,I,K横切面;J矢状切面)。白色箭头,新出现的iLECs;点线,CV的背根。标尺100um。(L-O)在E10.0和E10.25期间出现的最早iLECs的图解。Prox1+细胞,绿色,黄色为细胞核。以绿色表面表明在CCV移开分支中的Prox1表达区。[img=,591,330]http://qd-china.com/bio%20application/Lavision%20Ultramicroscope/The%20EMBO%20Journal/The%20EMBO%20Journal2.jpg[/img]图2. 淋巴内皮细胞从CV的出芽伴随着细胞和核的形状改变,以及一个蛋白标记开关的表达。(A,B)整体免疫染色胚胎的CCV中左侧标注蛋白的矢状视图。受精后的发育阶段(E);iLECs初始淋巴内皮细胞;头盖处,左;尾部,右。标尺100um。CV的上出口,从鳞状到纺锤状的LEC形状改变(箭头指示CV根中的Prox1+ ECs)。白色箭头,iLECs间极薄的连接;红色箭头,照亮的静脉血管中频繁的发现红细胞(但iLECs中从没有)。(B)也可以看到相应的图解1O。(C)在E10.5阶段,出现的iLECs中的VEGFR-3及其联合受体Nrp2水平被上调,而CV和iLECs中的Lyve-1水平保持不变。***P0.001,NS,不显著。(D,E)随着iLECs的出现核的形状从圆形转变为椭圆形。通过核表面重构描述了CCV内部和外部的Prox1+细胞核以及对球率和椭球率做散点图(E)。标尺100um。(F-H)矢状(F)和横切面(G,H)视图中整体免疫染色小鼠胚胎的CCV内部和外部的Prox1+细胞核表面重构。(F,G)通过热成像赋以伪色标记的Prox1表达强度图,例如,最高强度的表达标记为红色,低强度表达标记为蓝色。(H)通过图像的叠加进行细胞的解剖学定位软件包:Imaris Vantage,标尺100um。[img=,591,785]http://qd-china.com//bio%20application/Lavision%20Ultramicroscope/The%20EMBO%20Journal/The%20EMBO%20Journal3.jpg[/img]图3. iLECs在节间血管主要分支的水平上浓缩来形成照亮的外周纵向淋巴管(PLLV)。(A-D)每张图所展示蛋白的整体免疫染色胚胎光学切片的矢状图重构。E,受精后的发育天数;头盖的,左;尾端的,右。(A)在iLECs出现的早期阶段,iLECs以扇形模式分布,从CCV向头部和尾部扩展。虚线,iLECs检测的边界。(A-D)iLECs在节间血管第一侧枝的水平上立即浓缩形成PLLV。长的阴影线指示了CCV和SV的位置;短的阴影线,iLECs浓缩和PLLV形成的区域。(E-H)图解iLECs的位置,在E10.5和E10.7阶段出现在CV的背部。CCV之外的Prox1+iLECs以淡绿色标记,CV内的Prox1+细胞和心肌以深绿色标记。在CCV移开的分支中的Prox1表达域(P1ED)以淡绿色表面显示。浅表静脉丛作为iLECs的一个可能的备选来源,其位置标注为蓝色(G,H)。sVP内的Prox1+内皮细胞被标注为红色。sVP,浅表静脉丛;标尺100um。 [img=,591,846]http://qd-china.com/bio%20application/Lavision%20Ultramicroscope/The%20EMBO%20Journal/The%20EMBO%20Journal4.jpg[/img]图4. CV和PLLV之间的LECs聚集并形成不断增长的更大的被照亮结构并最终形成原始的胸导管。来自整体免疫染色的小鼠胚胎光学切片的图中标注蛋白的(A-C)矢状图和(D)截面图。(A)箭头指示了位于CV和PLLV之间的LECs快速和不断进行的聚集,这导致了更大照明结构pTD的形成(B-D)。(C,D)浅表淋巴管sLECs开始从PLLV背侧和pTD旁边伸展。PLLV和pTD在pTD头盖端连接到一起。(F-H)图示了导致pTD成形的细胞聚集和浓缩事件。(I)在E11.5阶段,sLECs中的VEGFR-3和它的联合受体Nrp2水平上调,而Lyve-1水平与CV和iLECs相比强烈下调。***P0.001。发育阶段(E);头盖,左,尾端,右。ACV,前主静脉;CCV,一般主静脉;PCV,后主静脉;ISV,节间静脉;PLLV,外周纵向淋巴管;pTD,原始胸导管;sLECs,浅表淋巴结。标尺100um。[img=,591,734]http://qd-china.com/bio%20application/Lavision%20Ultramicroscope/The%20EMBO%20Journal/The%20EMBO%20Journal5.jpg[/img]图5. 通过最高水平表达的Prox1表征的pTD和CV间新形成的成对的接触点。(A-C)整体免疫染色胚胎的矢状图。新形成中的pTD快速巩固进一个巨大的照明结构,头颅部以U形连接到PLLV(左侧A,B)。CV和pTD间的两个连接表达最高水平的Prox1(箭头)。(B-E)一个总是位于pTD和CV连接间的作为锁骨下动脉的短暂存在的侧枝被星号标记出来。(C)红色箭头:pTD内堆积的红细胞。箭头标注pTD连接端对面的Prox1+细胞。(D,E)通过pTD和CV连接区域的单个平面(光学切片)。(F-H)图示pTD和CV间接触点的发育,接触点处高表达的Prox1+细胞标记为暗绿色和红色的细胞核。标尺100um。[img=,591,963]http://qd-china.com/bio%20application/Lavision%20Ultramicroscope/The%20EMBO%20Journal/The%20EMBO%20Journal6.jpg[/img]图6. 不同的淋巴内皮细胞群表达不同的标记蛋白组。(A-G)所示发育阶段的免疫染色胚胎的横向冷冻切片。可见的抗原被以每幅图上所标记的相应颜色标记。典型例证标记表达的面板在(I)中汇总。(A)在E10.0阶段的LECs细胞中没有粘蛋白的表达,在E11.0阶段首先被检测到并在E12.0的LECs中变得丰富。注意CV中的Prox1+细胞在所有阶段都是阴性。在E11.5阶段,Nrp2在CV和pTD内中等强度的表达,而CV外的iLECs强烈的表现为阳性。(C)内皮粘蛋白在iLECs中只有短暂的留存。(D)在CV和pTD的Prox1+ ECs中Lyve-1强烈表达,而在展示的sLECs中仅有残留的表达(箭头)。(E)在所有血管结构中,整合蛋白α6有中等程度的表达。(F)在E11.5阶段,神经生长因子Netrin-4在BECs中强烈表达,在CV中很弱的表达,在pTD内中等程度的表达,但在iLECs中(箭头)没有被检测到。(G,H)Unc5B在iLECs(G,箭头)和sLECs(H,箭头)中强烈表达,而在pTD中表达微弱。 (H)来自整体免疫染色的小鼠胚胎的Prox1 (绿) 和Unc5B (蓝)光学切片的矢状重构. (I)在妊娠中期,不同LEC群中标注蛋白的表达。数据来自免疫染色的冷冻切片或整体免疫染色。表示的结构和细胞群: CV, 主静脉 iLECs, 初始LECs (第一轮从CV中出现的纺锤状LE,松散连接的细胞) sLECS, 浅表LECs (从PLLV (背侧)中伸出的LECs) pTD, 初始胸导管. CV*, 对CV背侧Prox1+细胞的表达限制。标尺100um。 [img=,591,781]http://qd-china.com/bio%20application/Lavision%20Ultramicroscope/The%20EMBO%20Journal/The%20EMBO%20Journal7.jpg[/img]图7. CCBE1缺陷导致的Prox1+细胞从CV分离的失败,并导致初始淋巴结构的快速损失。 (A, B, F, G) 对标注蛋白进行整体免疫染色的野生型(A) 和Ccbe1_/_ (B, F, G)胚胎的3D重构。(A, B)E10.5阶段的矢状图. (B) 在CCBE1-缺陷胚胎中,在CV和初始PLLV中检测到丰富的Prox1+细胞,紧邻浅表静脉丛。与野生型胚胎(A)相比,CCV和PLLV间没有纺锤状的iLECs。 (B, F) Prox1+细胞描绘出CCV和SV的边界, 当非典型的,大的,照明的分支从CV(箭头)中出现。(G) 含大量VEGFR-3+的异形分支从CV(箭头)和ISVs(箭头)中伸展。(C-E)图示野生型(C)和CCBE1-缺陷型(D, E)胚胎中的Prox1+ cells。含大量VEGFR-3+的静脉内皮标注为深蓝色。sVP, 浅表静脉丛。标尺100um。[img=,295,591]http://qd-china.com/bio%20application/Lavision%20Ultramicroscope/The%20EMBO%20Journal/The%20EMBO%20Journal8.jpg[/img]Figure 8VEGF-C(血管内皮因子C)缺陷的小鼠胚胎中的Prox1+内皮细胞因为不能离开它们起源处的血管从而标记了LECs的静脉来源。E10.75阶段野生型(A, B)和Vegfc_/_型(C-F)胚胎的矢状图3D重构,对标注蛋白做了整体免疫染色。在VEGF-C缺陷胚胎中,Prox1+内皮细胞不能离开静脉血管导致没有出现发育中的淋巴结构。(E, F) 除了CV(箭)中的Prox1+ 细胞, 在腹侧sVP(箭头)处更大的静脉血管中捕获了第二群Prox1t淋巴初始组织 。(G, H) 图示了野生型 (G) 和VEGF-C缺陷型(H)胚胎中的Prox1+细胞。NE, 神经元的Prox1+表达条纹。sVP, 浅表静脉丛。标尺100 um。[img]http://qd-china.com/bio%20application/Lavision%20Ultramicroscope/The%20EMBO%20Journal/The%20EMBO%20Journal9.jpg[/img]Figure 9. 在iLECs外出和淋巴管形成过程中,CCBE1和VEGF-C协同的相互作用。对E10.5阶段所标注蛋白整体免疫染色的野生型(A-C), Vegfct/_ (D-F), Ccbe1t/_ (G-I) 和 Vegfct/_/Ccbe1t/_ (J-L) 胚胎矢状图的3维重构。CCV和ISVs的根部用虚线标注,Prox1+细胞用箭头标注。与野生型同窝小崽相比,Vegfct/_胚胎(A-C)表现出iLECs从CCV中迁出的下降(D, E)。与之相反,Ccbe1t/_胚胎中,受损的ISVs形成被检测到。而且,不典型的,照亮的分支出现在Prox1+和高水平VEGFR-3表达的主静脉根部(G-I). (J-L) 在复合的杂合胚胎中,这种表型非常夸张地表明了VEGF-C 和CCBE1在淋巴管形成过程中的协同作用。标尺100um。

  • 【转帖】染色的基本原理!

    【转帖】染色的基本原理!

    染色就是利用染料在组织切片上给与颜色,使其与组织或细胞内的某种成分发生作用,经过透明后通过光谱吸收和折射,使其各种微细结构能显现不同颜色,这样在显微镜下就可显示出组织细胞的各种成分。染色剂与组织细胞相结合而使组织细胞着色的过程与物理和化学作用两者都有关系。 一.染色的物理现象 1.溶解性: 这种染色最典型的例子就是脂肪染色,苏丹类染色剂为脂溶性染料,它可以被脂质溶解,使脂质着色,就是利用染色剂在脂质中的溶解度大于在酒精等溶剂中的溶解度这一特性。因此,当苏丹类的酒精溶液与组织细胞中的脂质接触时,染色剂就从溶液中“转移”到脂质中去,而使脂质着色。 2.吸附作用: 较大物体有从周围介质吸附小颗粒到自身的特性。有些染色则是染色剂分子通过渗透和毛细管作用而被吸收或沉淀到组织,细胞的小孔中去而着色的。例如活性炭吸附各种分子,甚至胶质和微生物等较大的颗粒一样。 二.染色的化学反应 酸性染料和碱性染料的染色作用常是对立的,而不是一致的。任何染料均可电离,离解出阳离子或阴离子。酸性染料中的酸性部分有染色作用的是阴离子;碱性染料中的碱性部分有染色作用的是阳离子,细胞内同时含有酸性和碱性物质,酸性物质与碱性染料中的阳离子相结合,如细胞核(含有核酸)黏液和软骨基质呈酸性部分被盐基性染料苏木素所染、反之碱性物质与酸性染料的阴离子相结合,如细胞浆及其内部的某些颗粒物质被酸性染料伊红所染。染料的颜色基不是在阳离子,就是在阴离子上,这些离子将因组织反应不同而发生化学结合,如显示含铁血黄素的普鲁士兰反应是最典型的例子。但是,大量染色的化学反应并不象铁反应那样明确,实际情况远为复杂。这是因为蛋白质分子是个分子量自几万至几百万的大分子,每个分子中含有很多阳离子和阴离子基因,在等电点时能形成游离的两性离子,如:[img]http://ng1.17img.cn/bbsfiles/images/2009/02/200902201138_134240_1643419_3.jpg[/img]P为蛋白质,是具有两性的胶体物质。它呈酸性或碱性与环境的PH值有关,如溶液的PH值小于该蛋白质的等电点则此溶液对该种蛋白质即为酸性,蛋白质就带正电,将被酸性染色剂所着色。反之,溶液的PH值大于蛋白质的等电点,则此溶液对该蛋白质来说即为碱性,蛋白质带负电,将被带有阳离子的染色剂所浸染。在日常工作中,长久固定于甲醛的组织切片,往往染色不良,尤其是核的着色欠佳。这是因为固定液甲醛氧化生成甲酸,组织亦随之变为酸性,所以不易被苏木素所着色,补救的办法是,先用流水冲洗组织块,然后用碱性溶液如稀氨酒精等处理使之中和,恢复正常PH值后再进行染色。大多数染色的原理至今仍未搞清楚。有些可能是物理的,有些可能是化学的,有些则可能两种机制都起作用,正因为人们对染色的原理还没有完全掌握,所以目前还不能很好地运用原理来控制它。在相当程度上要凭借工作经验。因此“染色”成为技术性很强的一项工作。在进行每一种染色方法时,必须注意不断地有意识地去积累经验,从成功与失败中去真正掌握该染色技术。

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制