当前位置: 仪器信息网 > 行业主题 > >

真空玻璃真空绝热板

仪器信息网真空玻璃真空绝热板专题为您整合真空玻璃真空绝热板相关的最新文章,在真空玻璃真空绝热板专题,您不仅可以免费浏览真空玻璃真空绝热板的资讯, 同时您还可以浏览真空玻璃真空绝热板的相关资料、解决方案,参与社区真空玻璃真空绝热板话题讨论。

真空玻璃真空绝热板相关的论坛

  • 真空隔热材料:真空玻璃和真空绝热板(VIPs)传热系数在线检测技术

    真空隔热材料:真空玻璃和真空绝热板(VIPs)传热系数在线检测技术

    [b][color=#cc0000]摘要[/color][/b]:常用的真空隔热材料主要包括真空玻璃和真空绝热板(VIP),针对真空隔热材料热性能的在线检测技术,本文综述了国内外的研究现状,讨论了各种在线检测技术的特点和存在问题,并在国内外现有技术基础上提出了一种新型的动态热流法测试技术,介绍了一种便携式探头结构的快速在线检测技术方案。[color=#cc0000][b]关键词[/b][/color]:真空玻璃、真空绝热板、传热系数、导热系数、U值、在线检测[hr/][b][color=#cc0000]1. 引言[/color][/b] 隔热材料(或保温材料)的热传递主要有对流换热、接触导热和辐射传热三种途径,前两种途径都需要传热介质。在真空环境下,由于气压的降低,气体密度随之降低,气体分子平均自由程将增大,气体分子间和气体分子与真空容器壁的碰撞频率和强度相对减弱,从而使得真空环境阻止了对流和接触这两种传热形式的发生,由此达到隔热效果。如果在真空环境的内壁上涂覆低辐射系数涂层,还可以阻止辐射传热实现绝热效果。 在传统隔热材料中,热辐射占热传递中的20~30%,接触材料占热传递中的5~10%,而隔热材料中气体的对流换热则占剩余的约65~75%。因而,隔热材料中减少这些热传递途径中最重要的一环就是空气传递热量,即通过将隔热系统抽成真空来减少热量传递,目前这种真空型隔热材料比较成熟的产品主要有真空玻璃和真空绝热板两类: (1)真空玻璃(Vacuum Glazing)是一种玻璃深加工产品,是基于保温瓶原理制作而成。真空玻璃的结构与中空玻璃相似,其不同之处在于真空玻璃空腔内的气体非常稀薄,几乎接近0.1 Pa的真空。真空玻璃是将两片平板玻璃四周密闭起来,将其间隙抽成真空并密封排气孔,两片玻璃之间的间隙为0.1~0.2 mm,真空玻璃的两片一般至少有一片是涂覆低辐射系数涂层的低辐射玻璃(Low-E玻璃),由此可将通过真空玻璃的导热、对流和辐射方式散失的热量降到最低。 (2)真空绝热板(Vacuum Insulation Panel——VIP)是由轻质芯材与专用复合阻气膜通过抽真空封装技术复合制成,其内部真空度约为10 Pa能有效地避免气体对流引起的热传递,可大幅度提高绝热效果。 真空隔热材料可广泛应用于建筑节能墙体和门窗、冷链冷藏设备、温室、太阳能和空调型运输工具等领域。在业内评价真空隔热材料一般采用两个技术参数,一个是传热系数(Wm-2K-1),另一个是导热系数(Wm-1K-1),业内也会将传热系数用K值或U值来定义。通常对于真空玻璃采用传热系数K值来评估,对于真空绝热板采用导热系数进行评估。 传热系数和导热系数测试技术是真空隔热材料的关键技术之一,相应的测试技术至少要实现两个功能,第一是需要检测证明真空隔热材料确实含有隔热功能的真空,第二是因为真空空间内存在支撑物和残留气体的导热传热以及辐射传热,有必要检测验证真空隔热材料的传热理论模型,并了解这些不同传热形式之间的相互作用方式。目前常规测试技术一般为成熟的稳态技术,主要包括保护热板法、保护热流计法和保护热箱法。尽管这三种常规方法可以从计量和质量层面可以对真空隔热材料进行准确的测试评价,但它们存在的明显劣势则是要求制作标准尺寸样品和测试周期漫长,无法用于大批量制造生产过程中逐件产品质量的在线检测,因此需要解决真空隔热材料的在线检测技术。 在线检测技术的目的是在真空隔热材料的生产制造过程中,实时验证每个真空隔热材料产品的质量都在规定范围内。在在线检测过程中,因为可以与标准合格产品或样品进行比较,在线检测并不一定需要绝对准确,重要的是生产过程中能保证检测工序可以快速进行,并且检测仪器具有很好的测量重复性。在线检测技术的另外一个目的是可以证明真空绝热材料产品在实际安装过程和使用条件下还能长期保持相应的真空度,即对处于生命周期内的真空隔热材料产品进行实时检测或监测。 针对真空隔热材料热性能的在线检测技术,本文综述了国内外的研究现状,讨论了各种在线检测技术的特点和存在问题,并在国内外现有技术基础上介绍了一种便携式快速的新型在线检测技术方案。[b][color=#cc0000]2. 在线检测真空隔热材料热性能的技术挑战[/color][/b] 真空隔热材料的最大特点就是具有超低的传热系数和导热系数,如果再考虑实现在线检测,这就给测量真空隔热材料热性能带来了以下几方面的严峻挑战: (1)所谓在线检测,就是要求采用很小面积尺寸的探头对板状真空隔热材料进行实时检测,同时又因为真空隔热材料的传热系数和导热系数极低,致使只有很少热流能够流经隔热材料。这就意味着在线检测只能检测很小面积的真空隔热材料,而且检测探头还需具有非常高的探测分辨率才能检测到此小面积上的热流变化(毫瓦量级)。 (2)真空隔热材料并非是均质材料,真空隔热部分一般被外部高导热材料(如玻璃或复合铝膜等)夹持在中间,真空隔热部分和外部高导热材料的导热系数相差五个数量级以上,因此在检测过程中非常容易产生沿隔热材料板材表面流动的寄生热损,在检测表面上形成面内温度梯度,这就对小面积在线监测提出了非常高的技术要求。 (3)既然是在线检测,就要求在线检测作为一道流水作业工序,能在真空隔热材料生产线上对每件产品进行实时快速检测,单件产品检测时间小于1分钟,最好能实现10~30秒这样的快速检测能力。 由此可见,真空隔热材料热性能测试对在线检测提出了两个层面的要求,一个层面是具备快速在线检测和判断产品质量是否合格的能力,这就要求在线检测仪器既要具有高分辨率和快速检测能力,还需具备很好的测量重复性。另一个层面是要实现高准确度的测量,准确测量出产品的传热系数和导热系数,与防护热箱法等标准方法测试结果相比要在允许偏差范围内。[b][color=#cc0000]3. 国内外测试方法研究[/color][/b] 面对上述真空隔热材料热性能在线检测的技术挑战,国内外开展了大量研究和探索。下面将对国内外的研究报道进行汇总,并对各种检测方法的优缺点进行讨论。[color=#cc0000]3.1. 稳态法:小面积保护热板法3.1.1. 澳大利亚Collins团队的研究工作[/color] 保护热板法是一种经典的板式样品材料热阻和导热系数稳态测试方法,对被测样品有严格的尺寸要求,样品尺寸一般都大于300×300 mm2的测试面积,而且测试周期至少4个小时以上,同时隔热性能越好则测试时间越长。但由于保护热板法是一种绝对测量方法,测试准确度高,因此常被用来作为标准测试仪器和计量溯源测试仪器,计量机构和检测认证机构通常都会配备这种保护热板法仪器以及相同原理的更大样品尺寸的保护热箱法设备来对真空玻璃和真空绝热板进行质量评估。 澳大利亚Collins团队基于经典的保护热板法开发了一种小面积尺寸的保护热板法用于真空玻璃热性能的测试和研究,其测量原理如图3-1所示。一个小的热导体,这里称为测量块,被放置在被测样品一侧并具有良好的热接触,测量块的所有其它侧面被一个保持恒定温度的等温防护装置包围,该热防护装置也与被测样品保持良好的热接触,由此使测量块上的热量只能在样品方向上传递而周围的热损近乎为零。被测样品的另一侧保持在恒定的低温下,热流从热防护装置流经样品到对面的冷板,热量也从热防护装置流到测量块,测量块热流通过样品流到冷板。 [align=center][img=,600,369]http://ng1.17img.cn/bbsfiles/images/2018/05/201805191121404416_7563_3384_3.png!w600x369.jpg[/img] [/align][align=center][color=#cc0000]图3-1 小面积防护热板法测量装置结构示意图[/color][/align] 测量块与热保护装置之间的温差由嵌在这些元件中的温度传感器进行检测。测量块中的热量由内部电加热器产生并同时升高测量块温度,当测量块温度正好等于热保护装置温度时,这两个部件之间不会发生热流,在这个零温差条件下测量块中所产生的所有能量都流经样品形成所谓的一维热流。按照稳态一维热流傅立叶传热定律,利用测量块的已知面积,最终可以得到样品传热系数的绝对测量值。 澳大利亚Collins团队专门开发了小面积形式的保护热板法测试仪器用于测量真空玻璃中不同的热流传递过程,这些仪器可用来识别真空空间中由于辐射和气体传导而对热传递的单独贡献,其中就包括通过支撑柱进行的热传导。为了做到这一点,测量块所选择的尺寸很小,测量块截面积约为1 cm2,周围保护装置的面积约为100 cm2。由于测量是小面积和真空绝热样品,此仪器必须能够检测非常小的热量变化。 与保护热板法测量装置一样,小面积保护热板法测试仪器研制过程中的关键技术是最大限度减少测量块热损到可忽略的水平,并证明这种热损确实被有效消除。为了验证此测试仪器的热损确实被有效消除,需要测量的微小热量需要检测测量块和热保护装置之间极小温差。分别采用了两种真空玻璃进行了测量,一种是由两片没有内部涂层的浮法玻璃板(float glass)制成(FL-FL),另一种是由一片内表面热分解沉积低发射率涂层玻璃片和一个未涂覆的浮法玻璃片制成(FL-LE),图3-2显示了小面积保护热板法测试仪器所获得的典型实验数据。[align=center][img=,600,514]http://ng1.17img.cn/bbsfiles/images/2018/05/201805191124054860_7131_3384_3.png!w600x514.jpg[/img][/align][color=#cc0000][/color][align=center][color=#cc0000]图3-2 小型保护热板法测试仪器获得的典型数据[/color][/align] 为了进行精确的绝对测量,必须使用已知传热系数的样品来校准测量块的有效面积。两片未涂覆玻璃片之间的真空空间为这种校准测量提供了非常方便的样品,因为这种玻璃表面之间的辐射传热速率可以从这种玻璃已知的红外光学中计算得到非常高的准确度。 有限元模型分析可以用于确定玻璃薄板等温外表面上每个支撑柱所引起的热流横向扩散程度,这些数据可用于确定与单个支撑柱相关联的热流比例,这时的测量块的中心线与支撑柱轴线距离不远,而且支撑柱与测量块的圆形区域相交。如果要忽略掉流经支撑柱热流的影响,从这些结果可以计算出与测量块相交的支撑柱需要远离测量块的距离。对于正常尺寸的支撑柱阵列(支撑柱间距约20~30 mm),如果测量块位于支撑柱阵列单元的中心位置,那么支撑柱对热流的测量仍然有一个很小但明显的贡献。为了使得测量忽略掉支撑柱热流的影响,悉尼大学在真空玻璃研究项目中采用了一些缺少一个支撑柱或无支撑柱区域直径约50 mm的真空玻璃样品,用这些样品做的测量为通过真空玻璃的辐射和气体热传递提供了非常准确的信息。 流经单个支撑柱的热流扩散建模分析结果也可以用来计算当测量块直接位于支撑柱上方时此热流在测量值中所占比例,通过减少辐射和气体传导引起的已知热流,可以确定流经支撑柱本身的热流速率,这些测量都已经被用来验证流经单个支撑柱的热流理论模型。在某些情况下在真空玻璃中使用了粗糙表面的支撑柱,这时的测量也可以用来提供关于这些支撑柱热流减少的定量信息,因为支撑柱表面和玻璃板之间的热接触不完整。 综上所述,澳大利亚Collins团队详细研究了在采用保护热板法仪器测量流经真空玻璃热流量,并对小面积保护热板法仪器操作和标定有影响的几个小效应进行了深入研究,由此证明小面积保护热板法装置是一个非常强大的工具来验证通过真空玻璃的热辐射和通过支撑柱热传导的理论模型,该仪器也被用来证明这两个热流过程之间的相互作用足够小而可以被忽略。同时,这种小面积尺寸的保护热板法也可以用于研究真空玻璃内部真空的稳定性及对真空玻璃寿命周期内的性能进行评价。 然而,因为这种小面积保护热板法通常需要大约1小时来进行一次完整测量,此外由于有必要保持热保护装置的温度在一个非常精确的恒定值,并且在室温或室温附近只能使用这个装置来测量样品,这种保护热板法测试仪器的使用实际上仅限于实验室研究用,无法应用于真空玻璃的在线监测。[color=#cc0000]3.1.2. 北京新立基公司研究工作[/color] 北京新立基公司的唐健正老师曾是澳大利亚Collins团队的成员之一,回国后针对真空玻璃的传热系数测试开展了大量研究,基于上述小面积尺寸保护热板法原理研制了精密热导仪和快速热导仪两种热导仪,建立了建材行业“真空玻璃”的传热系数测试标准方法。其中精密热导仪的量程为0~10 Wm-2K-1,标称精度高达0.1 Wm-2K-1,测量时间为30 min,体积小,重量小于15 Kg。快速热导仪量程为0~25 Wm-2K-1,标称精度为0.2 Wm-2K-1,测量时间小于5 min,同样具有体积小、重量轻的特点。与精密热导仪不同的是,其测量精度略低,但测量时间短。 精密热导仪的特点是精度高,能够鉴别出真空度是否达标,但必须有足够的热测量时间。而快速热导测量仪则放宽了精度要求,把测量时间缩短6 倍。这样,在线监测时,后者先把关,把真空度肯定达标的和肯定不达标的筛选出来,把剩下少量的难以判断的由前者作精密判断,这样构成在线热导检测线。 通过对北京新立基公司相关报道的研究,北京新立基公司所研制的热导仪还存在以下不足: (1)随着科学的发展,真空玻璃的传热系数已经小到0.3 Wm-2K-1,如此小的数值就需要精度更高的热导仪才能够测量,这就需要进一步提高热导仪的精度。 (2)热导仪能够测量真空玻璃整体的热导,是支撑物热导、辐射热导和内部真空度共同作用的结果,目前新立基公司研制的热导仪还不能够将这三种热导分别测量。如果能够分别测量出支撑物热导、辐射热导和内部真空度,就可以有目的的改善支撑物材质、改善玻璃表面辐射率或者提高内部真空度。 [color=#cc0000]3.2. 非稳态法3.2.1. 瞬态法[/color] 为了提高真空玻璃在线测试能力,澳大利亚Collins团队提出了一种瞬态测试方法,其测量原理如图3-3所示。温度传感器附着在真空玻璃样品的一侧,通常位于支撑柱阵列单元的中心位置,在真空玻璃板的另一侧放置一个与玻璃板热接触良好内部镶有电加热器和温度传感器的小面积(约10 cm2)导热板。[align=center] [img=,600,287]http://ng1.17img.cn/bbsfiles/images/2018/05/201805191124330000_7261_3384_3.png!w600x287.jpg[/img][/align][align=center][color=#cc0000]图3-3[/color][color=#cc0000] 真空玻璃瞬态法测试原理图[/color][/align] 整个样品的初始温度恒定和均匀,并且记录几分钟温度传感器的输出以证实温度确实恒定。然后将已知数量的电功率加载到电加热器上,使电加热器快速升温,升温幅度通常为20~30℃。玻璃板的内表面产生的温差导致热量流经真空夹层,与电加热器相对的样品一侧温度会缓慢增加,该温度的初始速率测量结合真空玻璃热容(由玻璃厚度、比热和密度的乘积给出)和台阶温度升高的幅度,可以得出温度传感器周围区域样品的传热系数。 同样采用了两种真空玻璃进行了瞬态法测量,一种是由两片没有内部涂层的浮法玻璃板(float glass)制成(FL-FL),另一种是由一片内表面热分解沉积低发射率涂层玻璃片和一个未涂覆的浮法玻璃片制成(FL-LE),所有玻璃片厚度都为3 mm,图3-4显示了用瞬态技术获得的典型实验数据。[align=center][img=,600,499]http://ng1.17img.cn/bbsfiles/images/2018/05/201805191124513950_3062_3384_3.png!w600x499.jpg[/img] [/align][align=center][color=#cc0000]图3-4[/color][color=#cc0000] 用瞬态技术获得的典型数据[/color][/align] 如果真空玻璃样品冷面上的温度传感器位于支撑柱阵列单元的中心点,则在台阶式升温后的最初几分钟内,几乎所测的温度缓慢变化都是由于真空夹层内的热辐射和气体传导所造成,流经附近支撑柱上的热量需要很长时间才能到达温度传感器,因为它必须沿试样的冷面横向扩散到玻璃片上。这就使得这项技术可以用来测量玻璃的辐射和气体传热系数,并认为热流通过支撑柱的贡献微不足道,即使是标准支撑柱阵列(支撑柱间距约20~30 mm)的真空玻璃也是如此。 瞬态技术也可用于测量高温下真空玻璃样品的传热系数,因此这种技术在真空玻璃长期存储在室温以上时可能导致真空降解的机制研究方面被证明非常有用,该技术已被用来检测真空玻璃在高温老化过程中会释放出大量气体,而当冷却到室温后玻璃表面会发生气体再吸收现象。质谱仪实验表明,在这样的条件下释放出来的气体几乎完全是水蒸气。已证明在制造过程的抽真空阶段充分烘烤真空玻璃可以消除这些真空玻璃数十年使用寿命中的任何显著热释气现象。 瞬态技术不是真空玻璃传热系数的绝对测量方法,所获得的数据必须与样品冷面上的玻璃片热容以及步进温度的增加幅度相结合才能给出热流流经真空玻璃的传热系数。理想情况下,在这个计算中应使用随时间变化的有限元模型分析过程,因为导热板热量需要大量时间通过玻璃板热面来扩散,这就会使得冷面温度的上升初期具有相应的延迟。当采用有限元分析瞬态法时,测量玻璃板冷面温度随时间变化给出了与其他方法吻合很好的传热系数数据。这样,通过测量已知传热系数的相同几何尺寸样品来对瞬态法进行校准就非常简单,即在瞬态法测试过程中,在经历指定时间后(如2分钟)可将被测玻璃冷面温度的总变化与已知样品中获得的相似数据进行比较。 用瞬态法所检测得到的数据具有很好的重复性,此外该技术易于使用、可自动化和可校准,实际测量时间相当短——一般为几分钟。因此,该方法非常适合于真空玻璃批生产中的质量保证测试。瞬态法的缺点是样品温度在测量开始之前必须非常稳定,因此有必要在测量前将样品储存在稳定环境条件下一段时间。[color=#cc0000]3.2.2. 动态冷却法[/color] 为了进一步提高真空玻璃在线测试能力,澳大利亚Collins团队还提出了一种高温动态冷却测试方法,其测量原理如图3-5所示。在冷却法中被测真空玻璃整个样品最初处于高温,然后在被测样品的一侧放置并接触第二块已知传热系数的真空玻璃标准样品形成绝热边界条件,这个标准样品的起始温度可能是高温或是室温,将直径约0.1 mm的细丝热电偶放置在这两个真空玻璃样品的接触面之间。该组件中两块真空玻璃接触面之间的小间隙确保它们有良好的热接触,从而使她们的温度相当迅速的趋于均衡,室温空气在此组件中的两块真空玻璃外表面吹过。与这种强制对流所对应的传热系数相当高,因此两个样品的外玻璃片温度很快就会相对接近室温。从真空玻璃内部玻璃板流出的热量会以两个独立的流动方向分别流经两个样品的绝热真空空间到外部玻璃片,然后再经外部玻璃片流到空气中,因此内玻璃片温度会随着被试样品和标准样品的传热系数以相应速度而缓慢降低。[align=center][img=,600,322]http://ng1.17img.cn/bbsfiles/images/2018/05/201805191125181660_9521_3384_3.png!w600x322.jpg[/img] [/align][align=center][color=#cc0000]图3-5[/color][color=#cc0000] 瞬态法测试中所采用的仪器示意图[/color][/align] 由于标准样品的传热系数已知,因此可以计算被测样品的传热系数。对于由3 mm厚玻璃片制成真空玻璃被测样品和标准样品,图3-6显示了用冷却法获得的真空玻璃中心处的测试结果。对于这些数据,两个样品在测量开始之前都处于高温。外玻璃片温度的初始降低速率可用于确定与这些玻璃板材外表面传热有关的传热系数与流动空气的关系,接触内玻璃板的热量损失率受此外部传热系数的影响,但相对于样品本身的玻璃-玻璃传热系数这个影响程度较小,在较长时间内两个外玻璃板之间的温差与流经各样品的不同热流速率有关。[align=center][img=,600,526]http://ng1.17img.cn/bbsfiles/images/2018/05/201805191126140880_4604_3384_3.png!w600x526.jpg[/img] [/align][align=center][color=#cc0000]图3-6[/color][color=#cc0000] 动态冷却法测试得到的典型数据[/color][/align] 与瞬态法一样,冷却法不是测量通过真空玻璃热流值的绝对方法,然而该方法的校准可以使用瞬态法中所用到的任何一种技术——通过依赖时间的有限元模型分析,或者更简单地通过对具有已知传热系数的相同几何尺寸标准样品进行测量。由于两块真空玻璃组件中与内部玻璃板指数冷却形式相关的时间常数可能相当大,通常约为60分钟,这种相对缓慢的冷却速率可确保通过支撑柱的热流足够来沿着玻璃板进行扩散,而内部玻璃板的温度横向变化则是相当小。因此,冷却法能形成真空玻璃总传热系数(辐射+气体+支撑柱)的测量。 由此可见,冷却法可能会用于真空玻璃生产线上,特别是刚刚完成了抽真空过程,在那里它们经受高温下的脱气处理,此时的真空玻璃制品通常处于高温状态。与采用其他在线测试技术相比,将冷却法监测集成到真空玻璃生产线的末端可节省大量的时间和劳动力。[color=#cc0000]3.3. 国内外相关在线测试仪器3.3.1. 德国耐驰公司便携式复合玻璃 Ug 值测量仪[/color] 德国耐驰公司基于改进的动态热源法开发了一种瞬态在线测试技术和相应的便携式复合玻璃传热系数测试仪Uglass,如图3-7所示。此测试仪器通过两个带加热功能的温度传感器,根据一维传热差分模型和软件来测量真空玻璃的传热系数。这种测试技术是一种相对比较法,配备了中空玻璃标准样品。由于测试技术的探测器相对较小,可用于实验室检测,也可用于现场评估,对于普通真空玻璃整个测试过程约为10~15分钟,每次测量之间的时间间隔约 10 分钟。 [align=center][img=,600,643]http://ng1.17img.cn/bbsfiles/images/2018/05/201805191126433070_5719_3384_3.jpg!w600x643.jpg[/img][/align][align=center][color=#cc0000]图3-7 耐驰公司便携式复合玻璃传热系数测量仪[/color][/align] 如图3-8所示,测试过程中通过抽气泵将探测器真空吸附在被测玻璃两侧。安装完成后,将其中的一侧探测器加热到高于另一侧探测器温度7~8℃范围,并同时检测另一侧探测器温度的变化ΔT。[align=center][img=,600,263]http://ng1.17img.cn/bbsfiles/images/2018/05/201805191127021708_286_3384_3.jpg!w600x263.jpg[/img] [/align][align=center][color=#cc0000]图3-8[/color][color=#cc0000] 传热系测量仪安装布置和测量示意图[/color][/align] 通过分析短暂的不同温度变化过程,可测定真空玻璃的传热系数,其中传热系数测量范围为0.5~40 Wm-2K-1,操作温度范围为-10~60℃,探测器加热温度范围为室温~150℃。 采用Uglass测量仪Kim等人在常温常压下对内部不同间隔的中空玻璃进行了测量,如图3-9所示,分别得到了中空玻璃内部和外部的传热系数随间距的变化结果。[align=center][img=,600,357]http://ng1.17img.cn/bbsfiles/images/2018/05/201805191127235359_4034_3384_3.jpg!w600x357.jpg[/img] [/align][align=center][color=#cc0000]图3-9 中空玻璃内部和外部传热系数随中空间距的变化测量结果[/color][/align] 从图3-9所示的测试结果可以看出,随着间隔宽度的增加,内部和外部的双层中空玻璃板的传热系数呈线性减小而无视真空玻璃的内部还是外部。由此可见,双层中空玻璃的传热系数不受周围环境的影响,也就是说,没有边框的双层中空玻璃绝热性能,即使在不同环境下也可以解释为具有相同的绝热性能。 除了普通中空玻璃之外,Kim等人还对中空玻璃内部表面涂覆Low-E涂层对绝热性能的影响进行了对比测量,测量结果如图3-10所示。[align=center] [img=,600,386]http://ng1.17img.cn/bbsfiles/images/2018/05/201805191127453461_8401_3384_3.jpg!w600x386.jpg[/img][/align][align=center][color=#cc0000]图3-10 带Low-E涂层和无Low-E涂层中空玻璃传热系数随中空间距的变化对比[/color][/align] 从图3-10所示的测试结果可以看出,随着间隔宽度的增加,涂覆了Low-E涂层的中空玻璃传热系数随间距增大而更加快速的减小,随间距减小的斜率为-150.4 ×103 Wm-3K-1,要比无Low-E涂层时随间距减小的斜率-68.8 ×103 Wm-3K-1快了将近2倍多,当中空玻璃内部间距为15 mm左右时,增加Low-E涂层后的传热系数减小了将近一半,由此证明Low-E涂层在中空玻璃和真空玻璃中所起的重要作用。 从耐驰公司的相关报道可以看出,耐驰公式这款传热系数测试仪器整体尺寸偏大,测量覆盖面积将近400×400 mm2,可以满足中空玻璃的传热系数测试。尽管仪器测量精度标称可以达到±0.1 Wm-2K-1,但并没有看到对小于1 Wm-2K-1的真空玻璃传热系数的测试报道,也没有看到对真空绝热材料(VIP)的导热系数测量结果报道。同时十几分钟的测试时间,以及被测样品两侧夹持测试方法根本无法满足真空绝热材料生产过程中的在线质量监测要求。[color=#cc0000]3.3.2. 日本EKO公司导热仪[/color] 为了真正实现真空隔热材料的在线监测,日本EKO公司开发了HC-10快速导热系数测试仪,如图3-11所示。考虑到在线测试,测试仪采用了单端探头这种最佳的探测模式,只需将探测头放在各种被测材料上,可在1分钟内得到导热系数测量结果。[align=center][img=,600,450]http://ng1.17img.cn/bbsfiles/images/2018/05/201805191128042740_1715_3384_3.jpg!w600x450.jpg[/img] [/align][align=center][color=#cc0000]图3-11 日本EKO公司HC-10型快速导热系数测试仪[/color][/align] 这种快速导热系数测试仪的测量原理如图3-12所示,首先将探头加热到高于室温的一恒定温度,同时使被测样品处于室温条件下并达到热平衡。然后将探头放置在被测样品表面,如果样品导热系数低,探头上的热量Q将会缓慢的流经样品而散失,相应的探头表面温度快速上升;如果样品导热系数较高,探头上的热量Q将会快速流经样品而散失,相应的探头表面温度缓慢上升。[align=center][color=#cc0000] [img=,600,484]http://ng1.17img.cn/bbsfiles/images/2018/05/201805191128201186_3226_3384_3.png!w600x484.jpg[/img][/color][/align][align=center][color=#cc0000]图3-12 HC-10型快速导热系数测试仪基本原理[/color][/align] 由此可见,这种快速导热系数测试仪中探头加热器的热损失大小与样品的导热系数有关,如果使用已知导热系数的标准样品进行校准,则可以实现样品导热系数的自动测量。日本EKO公司开发的HC-10快速导热系数测试仪已用于各种材料的导热系数测量,其中包括真空绝热板(VIP)的导热系数测量,测试仪的主要技术指标为: (1)导热系数测量范围:1~5000 mW/mK (2)测量精度:+/- 5 % (3)样品尺寸:边长150 ~760 mm,厚度5~50 mm (4)测试时间:60秒 专门针对真空绝热板(VIP),基于HC-10快速导热系数测试仪日本EKO公司还开发了多探头形式的在线HC-121 VIP监测仪,如图3-13所示。 HC-121 VIP监测仪主要用于在线监测真空绝热板质量是否合格,即在1分钟内实时检测真空绝热板(VIP)导热系数是否小于规定数值,通过一个主机可以同时连接最多5个探头进行在线监测。[align=center][color=#cc0000] [img=,600,199]http://ng1.17img.cn/bbsfiles/images/2018/05/201805191128367430_3462_3384_3.jpg!w600x199.jpg[/img][/color][/align][color=#cc0000][/color][align=center][color=#cc0000]图3-13 日本EKO公司HC-121 VIP监测仪[/color][/align] 与HC-10快速导热系数测试仪不同,HC-121 VIP监测仪只能进行相对测量,探测头需要用户自己进行单独校准,用户需要根据VIP材料生产的实际特征来进行使用。HC-121 VIP监测仪的技术指标与HC-10快速导热系数测试仪基本相同,只是导热系数测试范围基本只针对真空绝热板材料,为1~15 mW/mK。 有关日本EKO公司开发的这两种在线监测仪器,我们并没有看到实际应用方面的报道和测试数据,更没有看到在真空玻璃上的测试应用。从测试原理上来看,这两种仪器完全适合均质材料的超低导热系数测试,但对于真空隔热材料这类非均质复合结构材料而言,可能存在以下问题: (1)真空绝热板(VIP)表面一般都包裹一层高导热金属保护热,测试过程的初期探头上的热量会通过表面金属膜快速散失,所得到的温度变化曲线并不一定能完全代表真实的低导热材料测试过程中的温度变化。类似的情况也会发生在使用了真空绝热板的冰箱生产线上的在线质量监测,因为冰箱的隔热结构也是金属材料包裹真空绝热板。 (2)同样,对于真空玻璃而言,也是高导热系数玻璃板与真空绝热层的复合结构,玻璃的导热系数接近1 W/mK,也是远大于真空隔热层的导热系数,测试过程中也会发生类似的问题。[color=#cc0000]3.3.3. 内部真空度测试仪器[/color] 真空隔热材料的一种重要特点就是材料内部是真空,因此在线测试技术中实时监测真空度的变化也是一种在线监测技术手段。 从目前的各种真空隔热材料内部真空度检测技术的发展来看,大多数是谐振式真空传感器,即将事先标定好的MEMS结构的LC微型传感器植入真空隔热材料中,通过外部探测仪器对谐振传感器进行外部激励得到谐振频率与内部真空度的关系数据。 内部真空度测试技术的最大优势是可以在几秒钟内实现对真空隔热材料内部真空度的检测,但最大的问题是要将标定好的传感器植入产品中。[b][color=#cc0000]4. 现有技术总结[/color][/b] 目前国内外常用于表征真空型隔热材料的标准方法,如保护热箱法和大面积保护热板法,主要是用来测量通过真空型隔热材料的热流速率,这两种测试技术都提供了有关真空型隔热材料的整体热流过程的信息。然而它们在测试过程中相对较慢,同时无法对真空隔热材料中不同传热机理而引起的热流分量进行单独评估。 为了对真空型隔热材料局部热流进行测量,以及适应工业生产和工程应用的需要,目前国内外提出了几种特别设计的测试方法: (1)小面积保护热板法测试装置提供了非常精确的流经真空玻璃的局部热流测量,该装置可用于验证由于辐射、气体热传导和通过支撑柱热传导而引起的不同热流过程的理论模型,也证明了该小面积保护热板法测试装置在考核真空玻璃内部长时间真空稳定性方面非常有用,同样这种方法也可以应用于真空绝热板的热性能测试和评估。小面积保护热板法是目前测试精度最高的方法,但这种方法是一种被测样品双面探测结构,测试时间最快也要好几分钟,比较适合实验室研究使用,但还是不能很好的满足在线测试需求。 (2)瞬态法提供了一种测量真空绝热材料传热系数和导热系数的快速方法,该方法可通过测量已知传热系数和导热系数的标准样品对测试装置进行标定。该方法快捷、易于使用并具有很高的测量重复性,并可在较高温度条件下对真空玻璃的气释过程研究中的作用非常明显。目前国外相关测试仪器基本都是基于这种方法,可见这种方法得到了基本认可。尽管采用这种方法有德国耐驰公司的中空玻璃双面测试结构的便携式测试仪器,也有日本EKO公司的真空绝热板单面探头结构的便携式测试仪器,但目的都是为了满足真空绝热材料传热系数和导热系数的在线测试需求,而我们认为单面探头结构更适用于在线测试,这将是今后这方面测试仪器的一个发展方向。 (3)冷却法提供了真空玻璃整体传热系数的测量。虽然这种方法在实践中不一定实用,但在将来可能将其集成到真空玻璃生产过程中,与其他方法相比,冷却法的成本和时间可能会有很大节省。[color=#cc0000][b]5. 上海依阳公司在线快速检测技术[/b][/color] 上海依阳实业有限公司基于瞬态法,提出了一种新型快速测试方法——动态热流法。动态热流法与日本EKO公司导热仪的测量原理类似,也是采用单面探头结构形式,但不同于日本EKO公司导热仪是测量加热器表面的温度变化,新型测试方法测量的是比温度变化更灵敏的热流密度变化,如图5-1所示为分别测量正常和非正常真空绝热板时的热流密度随时间变化曲线对比。 在动态热流法测量的初期,单面测量探头处于以恒定温度,探头未接触被测样品(真空玻璃或真空绝热板)之前,热流密度测量值较低。但将探头与被测样品表面接触后,探头上的热量经真空绝热材料表面(玻璃或金属保护膜)而迅速散失,材料表面的高导热材料表面的作用而产生较大的热流密度,即使得测量的初期热流密度测量值迅速升高。[align=center][color=#cc0000] [img=,600,433]http://ng1.17img.cn/bbsfiles/images/2018/05/201805191128571173_5310_3384_3.png!w600x433.jpg[/img][/color][/align][color=#cc0000][/color][align=center][color=#cc0000]图5-1 正常和非正常真空绝热材料热流密度随时间变化测量曲线[/color][/align] 随着探头与样品表面接触时间的增大,流经表面材料的热流受到内部绝热层的阻隔,测量的热流密度会逐渐降低,从而反映出绝热层的低导热特性。由此可知,热流密度曲线降低的速率可以作为衡量样品绝热性能的测量指标,即如果被测样品处于正常真空绝热状态,热流密度下降变化曲线就如图5-1中的“正常绝热状态”那样,向较低的热流密度值进行收敛;如果被测样品处于非正常真空绝热状态,热流密度下降变化曲线就如图5-1中的“非正常绝热状态”那样,向较高的热流密度值进行收敛。 通过上述热流密度变化曲线可以看出,这种动态热流法可以很好的解决真空绝热材料表面高导热层对测试所带来的影响,解决了日本EKO公司在线监测仪器所存在的不足,绝热材料表面的高导热层只会使得初期的热流密度升到很大幅度,并不真正影响热流密度下降速率随内部绝热性能的变化。 动态热流法的整个测试时间主要取决于绝热材料表面的材质和厚度而定,对于普通真空绝热板的测试,测试时间一般为10~15秒;对于普通真空玻璃测试,测试时间一般为20~30秒,这样的测试速度已经完全可以满足在线测试需求。 动态热流法测试得到的热流密度并不能直接用来得到被测样品的导热系数,但因为导热系数与热流密度是线性关系,可以通过测量多个已知导热系数的标准样品来建立导热系数与热流密度的校准曲线,如图5-2所示。此校准曲线存储在测试仪器内,由此根据这种关系曲线通过热流密度测量值可以得到相应的导热系数和传热系数。[align=center][color=#cc0000] [img=,600,363]http://ng1.17img.cn/bbsfiles/images/2018/05/201805191129342020_253_3384_3.png!w600x363.jpg[/img][/color][/align][color=#cc0000][/color][align=center][color=#cc0000]图5-2 校准测试曲线[/color][/align] 校准用标准样品的制作基于真空绝热材料内部真空度与传热系数和导热系数的关系,标准样品可以是固定厚度的真空绝热材料,通过精确控制材料内部真空度并采用保护热板法或保护热箱法等仪器进行测量,得到标准样品不同真空度下所对应的传热系数和导热系数关系曲线,这样在采用标准样品进行动态热流法探头校准时,只要调节真空度就可以得到不同的传热系数和导热系数。 动态热流法作为一种高灵敏测试方法,可以用来快速的在线检测和判断真空绝热材料是否具有正常范围内的传热系数和导热系数,可以在30秒时间内检查真空绝热材料是否正常工作。另外,由于动态热流法测量装置是小型单面探头结构,实际测量操作时只需将探头与被测绝热材料表面接触,测试完毕后探头脱离绝热材料,通过机械结构很容易实现自动化测试,完全可以应用到真空绝热材料生产流水线上进行自动化实时监测。同时,动态热流法的检测探头非常小巧,可以实现一台主机配备多个探头对多个绝热材料的同时监测,而且还可以实现不同方向和位置上的测量,如探头放置在冰箱的顶部和侧面监测冰箱内部不同部位真空绝热板是否工作正常,监测窗体上已直立安装的真空玻璃是否工作正常。由于标准绝热材料样品由真空度的精确控制来确定,从而保证了动态热流法探头可以非常方便的进行定期校准。[b][color=#cc0000]6. 参考文献[/color][/b](1)Collins R E,Davis C A,Dey C J,et al. Measurement of local heat flow in flat evacuated glazing. International Journal of Heat & Mass Transfer,1993, 36(10):2553-2563.(2)Simko T M, Elmahdy A H, Collins R E. Determination of the overall heat transmission coefficient (U value) of vacuum glazing. Ashrae Transactions, 1999.(3)张金维, 王立国. 真空玻璃在线测量技术// 2013全国玻璃科学技术年会论文集. 2013.(4)唐健正. 真空玻璃传热系数的计算// 2006中国玻璃行业年会暨技术研讨会. 2006.(5)唐健正, 朱亚勇, 卫正纯. 真空玻璃传热系数相关参数的测量// 2007'中国玻璃行业年会暨技术研讨会(6)中华人民共和国建材行业标准,JC/T 1079-2008,真空玻璃(7) Turner G M, Collins R E. Measurement of heat flow through vacuum glazing at elevated temperature. International Journal of Heat & Mass Transfer, 1997, 40(6):1437-1446.(8) Ng N, Collins R E, So L. Thermal conductance measurement on vacuum glazing. International Journal of Heat and Mass Transfer 49 (2006) 4877-4885.(9) Kim I, Frenzl A, Kim T, et al. Determination of Thermal Transmittance of Insulated Double Low-E Glazing Panel Using Portable Uglass, Measuring Technique. International Journal of Thermophysics, 2018, 39(1):19.

  • 真空隔热材料:真空绝热板和真空玻璃稳态法导热系数准确测量的难度和解决方案

    真空隔热材料:真空绝热板和真空玻璃稳态法导热系数准确测量的难度和解决方案

    [size=16px][color=#cc0000]摘要:本文详细分析了目前稳态法(防护热板法和热流计法)测量真空绝热材料(真空绝热板和真空玻璃)导热系数中存在的技术难度,介绍了国外在提高测量精度方面所做的有意尝试和研究,结合热流计高精度校准技术的突破,展示了高精度准确测量真空绝热材料的实施途径,简单介绍了真正能在绝热材料产品生产和品控中灵活应用的导热系数测量装置。[/color][/size][align=center][size=16px]~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~[/size][/align][size=18px][color=#cc0000]1. 稳态法导热系数准确测量难度分析[/color][/size][font=宋体][size=16px] 真空玻璃和真空绝热板是目前市场上普遍使用的隔热性能最佳的两类材料,它们的隔热性能表征一般采用导热系数这一物理性能参数,而导热系数的准确测量则普遍采用精度最高的绝对测量方法——稳态保护热板法。下面将针对真空玻璃和真空绝热板这些超低导热系数材料来分析稳态保护热板法的测量难度,也就是说,通过分析来说明准确测量超低导热系数对稳态测试方法中存在那些具体难度。[/size][/font][font=宋体][size=16px] 根据傅里叶传热定律,在稳态且一维热流条件下,被测板材样品厚度方向上的导热系数[/size][/font][font=宋体][size=16px]定义为:[/size][/font][size=16px][img=,690,65]https://ng1.17img.cn/bbsfiles/images/2020/12/202012112005539612_2783_3384_3.png!w690x65.jpg[/img][/size][font=宋体][size=16px][font=宋体] [/font]式中:[/size][/font][size=16px]Q[/size][font=宋体][size=16px]表示流经样品厚度方向上的热量,单位[/size][/font][size=16px]W[/size][font=宋体][size=16px];[/size][/font][size=16px]d[/size][font=宋体][size=16px]表示被测板材样品的厚度,单位[/size][/font][size=16px]m[/size][font=宋体][size=16px];[/size][/font][size=16px]A[/size][font=宋体][size=16px]表示热流流经被测样品的横截面积,单位㎡;Δ[/size][/font][size=16px]T[/size][font=宋体][size=16px]表示被测板材样品两个表面之间的温度差,单位℃或[/size][/font][size=16px]K[/size][font=宋体][size=16px]。[/size][/font][font=宋体][size=16px][font=宋体] [/font]对于常用的真空绝热板,其厚度一般都在[/size][/font][size=16px]10~20mm[/size][font=宋体][size=16px]。在稳态法测试过程中,样品两面的温差一般控制在[/size][/font][size=16px]15[/size][font=宋体][size=16px]℃[/size][/font][size=16px]~25[/size][font=宋体][size=16px]℃范围内,而真空绝热板的导热系数一般为[/size][/font][size=16px]3~4mW/mK [/size][font=宋体][size=16px]。[/size][/font][font=宋体][size=16px][font=宋体] [/font]为了便于分析,假设稳态护热板测试过程中,样品厚度为[/size][/font][size=16px]10mm[/size][font=宋体][size=16px],温差控制在[/size][/font][size=16px]20[/size][font=宋体][size=16px]℃,样品横截面积为[/size][/font][size=16px]300mm[/size][font=宋体][size=16px]×[/size][/font][size=16px]300mm[/size][font=宋体][size=16px],导热系数为[/size][/font][size=16px]4mW/mK[/size][font=宋体][size=16px]。那么在测试过程中,流经样品厚度方向上的热量按照傅里叶定律计算为:[/size][/font][size=16px][img=,690,78]https://ng1.17img.cn/bbsfiles/images/2020/12/202012112006318020_5772_3384_3.png!w690x78.jpg[/img][/size][font=宋体][size=16px][font=宋体] [/font]由此可见,在稳态法测试真空绝热板样品过程中,流经样品的热流量非常小。这意味着如果采用传统的保护热板法测试仪器测量超低导热系数的真空绝热板会带来极大的误差,例如,采用目前国际上计量级别的稳态法测试仪器测量导热系数为[/size][/font][size=16px]0.04W/mK[/size][font=宋体][size=16px]的隔热材料,测量精度最高可达到±[/size][/font][size=16px]1%[/size][font=宋体][size=16px],而如果用来测量导热系数为[/size][/font][size=16px]0.004W/mK[/size][font=宋体][size=16px]的真空绝热板,则误差则会扩大到±[/size][/font][size=16px]10%[/size][font=宋体][size=16px],而普通的稳态法测量仪器此时的测量误差很容易扩大到±[/size][/font][size=16px]50%[/size][font=宋体][size=16px]以上。由此,显而易见,经典的保护热板法导热仪基本上无法准确测量真空绝热板和真空玻璃的导热系数,[/size][/font][size=16px]Wessling[/size][font=宋体][size=16px]等人[/size][/font][size=16px][1][/size][font=宋体][size=16px]的研究也同样得出此结论。[/size][/font][font=宋体][size=16px][font=宋体] [/font]从上述傅里叶传热定律可以看出,真空绝热板导热系数的测量准确性,完全取决于热量、样品冷热面温差和样品厚度测量的准确性。[/size][/font][font=宋体][size=16px][font=宋体] [/font]有关样品冷热面温差和样品厚度测量准确性的影响因素以及保证措施,在等人[/size][/font][size=16px][2][/size][font=宋体][size=16px]的研究中进行了描述。针对具体导热系数测试仪器,温差测量和厚度测量都可以通过一系列具体措施来保证测量精度,如采用测温精度更高的热电阻温度传感器等。[/size][/font][font=宋体][size=16px][font=宋体] [/font]真空绝热板和真空玻璃导热系数准确测量的最大难度集中在测量流经样品的微小热量,与之相关的测试难点主要体现在以下几个方面:[/size][/font][font=宋体][size=16px][font=宋体] [/font]([/size][/font][size=16px]1[/size][font=宋体][size=16px])稳态法测试中的保护热板法,要求主加热器的热量以尽可能小的热损失传递给被测样品,但在实际测试仪器中还是会存在一定程度的热损失,也就是测量得到的热量[/size][/font][size=16px]Q[/size][font=宋体][size=16px]一般会比实际热量偏低,按照傅里叶传热定律,由此得到的被测样品导热系数一般会比实际导热系数数值要低。如果采用保护热板法测量真空绝热板和真空玻璃的超低导热系数,则主加热器上的热量则会更低,如果还要求热损失在总热量中所占比重保持不变,则对热防护措施提出更高的要求,要实现热损失小一个数量级的热防护,这对于稳态护热板法测试仪器几乎是无法实现的技术难度。[/size][/font][font=宋体][size=16px][font=宋体] [/font]([/size][/font][size=16px]2[/size][font=宋体][size=16px])稳态法测试中的热流计法,要求样品两面温度均匀,采用热流计来测量流经样品厚度方向上的热流密度。热流计法的优点是测量样品中心区域的热流密度而不用太考虑侧向热损失,但带来的问题是这里的热流计要采用稳态防护热板法仪器进行校准,如果要测量流经真空绝热板和真空玻璃的微小热量,同样需要稳态防护热板法仪器能准确提供如此小热量的准确热流来进行热流计校准。由此可见,热流计法测量真空绝热材料的测试难题同样归结到了上述稳态护热板法无法实现的技术难题上。[/size][/font][font=宋体][size=16px][font=宋体] [/font]([/size][/font][size=16px]3[/size][font=宋体][size=16px])为了实现稳态法微小热量下导热系数的准确测量,[/size][/font][size=16px]Wessling[/size][font=宋体][size=16px]等人[/size][/font][size=16px][1][/size][font=宋体][size=16px]采用了[/size][/font][size=16px]ASTM C 1114[/size][font=宋体][size=16px]“薄加热装置稳态热传导特性的试验方法”对真空绝热板进行了测试研究,如图[/size][/font][size=16px]1[/size][font=宋体][size=16px]所示。[/size][/font][size=16px]ASTM C 1114[/size][font=宋体][size=16px]方法实际上一种防护热板法的变化形式,是将双样品防护热板法装置中的主加热器和护热加热器用一个薄加热器代替,两个尺寸和性能完全相同的被测样品板把此薄加热器加持在中间,这样可以有效的降低侧向热损,并认为施加在薄加热器中的电能完成转换为热量传递给样品。[/size][/font][size=16px]Wessling[/size][font=宋体][size=16px]等人的工作证明了薄加热器装置测量真空绝热板导热系数的有效性,但这种测试方法和装置只能适用于双样品测试,而且样品尺寸会因为真空腔体和薄加热器等因素的限制而有固定限制,不太适合作为适合各种不同规格尺寸真空绝热板和真空玻璃导热系数测试的通用型仪器设备。[/size][/font][align=center][size=16px][img=,438,500]https://ng1.17img.cn/bbsfiles/images/2020/12/202012112007008163_2840_3384_3.jpg!w690x786.jpg[/img][/size][/align][align=center][size=16px][color=#cc0000][font=宋体]图[/font]1 ASTM C 1114[font=宋体]薄加热器真空绝热板导热系数测试系统[/font][/color][/size][/align][font=宋体][size=16px][font=宋体] [/font]([/size][/font][size=16px]4[/size][font=宋体][size=16px])尽管上述薄加热器改善了稳态法测试中的热损,但热损失还是实际真空绝热板和真空玻璃导热系数测量中的主要误差源,这是因为大多数真空绝热板外表面耐磨损的金属或塑料薄膜,而这些薄膜是侧向热损的主要热通道,而真空玻璃的外部玻璃也是热损的主要通道。这些热通道对于普通隔热材料而言所造成的热损可以忽略不计,但对于真空绝热板和真空玻璃测试中的微小热流,则这些热通道所带来的热损失则显着十分突出。[/size][/font][font=宋体][size=16px][font=宋体] [/font]([/size][/font][size=16px]5[/size][font=宋体][size=16px])目前稳态法测试中的一个突出难题是测试仪器很难覆盖各种规格尺寸真空绝热板和真空玻璃的导热系数测试评价,一般是采用庞大的测试设备来进行覆盖,使得测试仪器的造价十分昂贵。[/size][/font][size=18px][color=#cc0000]2.[font=宋体]解决方案[/font][/color][/size][font=宋体][size=16px][font=宋体] [/font]为了解决上述真空绝热材料导热系数测试中存在的难度,上海依阳实业有限公司采用最新独创性技术,提出了以下具体解决方案以及具体分析。[/size][/font][font=宋体][size=16px][font=宋体] [/font]([/size][/font][size=16px]1[/size][font=宋体][size=16px])测试方法还是基于稳态法,但采用的稳态热流计法,这样就无需考虑热损给准确测量带来的影响,同时还可以实现测试仪器的较低造价和灵巧尺寸。[/size][/font][font=宋体][size=16px][font=宋体] [/font]([/size][/font][size=16px]2[/size][font=宋体][size=16px])为了保证测量的准确性和快捷性,方案中所用的稳态热流计法是一种改进型方法,即护热式稳态热流计法,即在被测样品的两个表面都进行了高精度的护热,以在被测样品两个表面上形成一定面积的高精度均温区,避免被测样品表面导热对测量结果带来的影响。[/size][/font][font=宋体][size=16px][font=宋体] [/font]([/size][/font][size=16px]3[/size][font=宋体][size=16px])热流计法高精度测量绝热材料超低导热系数的核心技术是对热流计进行高精度的校准。上海依阳实业有限公司在热流计校准技术方面最近取得了突破,采用高精度量热技术,可以在测量仪器上通过量热模块以自校准方式快速和高精度的校准测量用热流计,校准精度远大于经典防护热板法测量仪器的校准精度。再结合使用高灵敏度热流计,可以实现对流经真空绝热板和真空玻璃微小热流的高精度测量。[/size][/font][font=宋体][size=16px][font=宋体] [/font]([/size][/font][size=16px]4[/size][font=宋体][size=16px])按照傅里叶稳态传热公式[/size][/font][size=16px](0.0.1)[/size][font=宋体][size=16px],在被测样品性能(导热系数和厚度)固定的条件下,如果要准确测量超低导热系数,可以设法增大热量和增大温差,即在测试过程中适当的增大被测样品冷热面的温差,从而在仪器的固定测量精度下能明显提高导热系数测量精度。[/size][/font][font=宋体][size=16px][font=宋体] [/font]([/size][/font][size=16px]5[/size][font=宋体][size=16px])由于真空绝热板和真空玻璃的厚度普遍较小,测试面积(如正方形边长[/size][/font][size=16px]100mm[/size][font=宋体][size=16px])完成能够满足稳态法测量实现一维热流过程中对测试面积的要求。因此,测量装置将采用正方形结构(边长[/size][/font][size=16px]100mm[/size][font=宋体][size=16px])或圆形结构(直径[/size][/font][size=16px]100mm[/size][font=宋体][size=16px]),可以大幅度降低测试仪器尺寸和相应造价。[/size][/font][font=宋体][size=16px][font=宋体] [/font]([/size][/font][size=16px]6[/size][font=宋体][size=16px])真空绝热板和真空玻璃导热系数测量装置将采用便携式分体结构,如图[/size][/font][size=16px]2[/size][font=宋体][size=16px]所示。整个测量装置主要包含加热装置和热流测量装置两部分,它们的尺寸边长在[/size][/font][size=16px]200mm[/size][font=宋体][size=16px]左右。在测试过程中,分别将它们紧贴在被测绝热材料板两侧。由此可以看出,这种结构和尺寸的导热系数测量装置,基本可以覆盖所有真空绝热板和真空玻璃产品的导热系数测量,并十分具有灵活性,通过放置在产品的不同部位可测量产品的导热系数分布。[/size][/font][align=center][size=16px][img=,500,185]https://ng1.17img.cn/bbsfiles/images/2020/12/202012112007573283_8484_3384_3.jpg!w690x256.jpg[/img][/size][/align][font=宋体][size=16px][/size][/font][align=center][size=16px][color=#cc0000][font=宋体]图[/font][font=&]2 [/font][font=宋体]真空绝热材料导热系数稳态热流计法测量装置测量布局图[/font][/color][/size][/align][font=宋体][size=16px][font=宋体] [/font]([/size][/font][size=16px]7[/size][font=宋体][size=16px])由于具有超高的测量精度以及样品尺寸的兼顾性,此方案的导热系数测量装置自然可以测量常温常压下普通隔热材料的导热系数。[/size][/font][size=18px][color=#cc0000]3.[font=宋体]参考文献[/font][/color][/size][font=宋体][size=16px]([/size][/font][size=16px]1[/size][font=宋体][size=16px])[/size][/font][size=16px]Wessling, Francis C., et al. [/size][font=宋体][size=16px]“[/size][/font][size=16px]Subtle Issues in theMeasurement of the Thermal Conductivity of Vacuum Insulation Panels.” Journalof Heat Transfer-Transactions of The Asme, vol. 126, no. 2, 2004, pp. 155–160..[/size][font=宋体][size=16px]([/size][/font][size=16px]2[/size][font=宋体][size=16px])[/size][/font][size=16px]Cucchi, Chiara, et al. [/size][font=宋体][size=16px]“[/size][/font][size=16px]Standard-BasedAnalysis of Measurement Uncertainty for the Determination of Thermal Conductivityof Super Insulating Materials”. 2020, pp. 171–184.[/size][align=center][size=16px]=======================================================================[/size][/align]

  • 对VIP板(真空绝热板)热性能实现在线快速检测

    [color=red]VIP板热性能快速检测系统[/color]用途:该系统用于对VIP板(真空绝热板)热性能实现在线快速检测。技术指标及功能一.结构组成:1)传感器,测量单元通过加热VIP板,检测热流。2)控制单元,控制传感器,进行数据的读取和输出。3)显示单元,显示仪器的状态和启动。4)电脑和软件(或选用嵌入式系统,带触模屏显示)显示检测过程和数据打印,报告输出等。5)条形码阅读器(用户可选配),用于对VIP检测,序列号读取。二,主要技术参数要求:1)环境要求:1.室内环境保持在23℃以下,,2.温度在40%RH以下,3.空气清洁,无振动,无电磁干扰,2) 待测样品板的要求:1.每个通道测试宽度:150-760mm与标准板差距在±50mm以内;2.厚度:5-50mm与标准板差距在±5mm以内;3.测量范围:1—9 mw/m.k标准板导热系数值在±5%以内;4.测试样板可根据用户要求定设计方案,2000*2000*503) 标准板:用户准备,其导热系数误差在0.5mw/m.k,三块标准板之间导热系数的差值应设定在2±0.5mw/m.k。4) 输入电压:精度: ±0.025mv。 1.输入方式:电压输入,热电偶输入; 2. 热功率:实现恒功率控制; 3. 传感器连接个数:1-5个; 4. 检测通道个数:1-5个; 5. 具声音报警输出,标准计算机接口连接;6.供电:AC120-240V,50/60HZ。3A;5)传感器:1.加热器:10W/85Ω;2.绝热体:导热系数43.8 w/m.k,热阻在1.148m[sup]2[/sup]k/w,密度0.1304g/cm[sup]3[/sup],重量43g,或选用其它已知参数的村料;3.热电偶:铜-康铜热电偶;4.规格:直径52mm,高117mm;6) 显示单元:1.工作指示显示;2.具体快速冷却系统;3.具环境温度显示;4.检测状态批示;7)条码阅读器:用户可选配条码阅读器,接条码阅读器标准配置;8)软件:1.标准自动完成的校准软件;2.全自动测试软件,全中文界面;3.显示测量过程,存储,报表输出;9)电脑显示系统或嵌入试系统:1.具有条码信息显示;2.测量状态显示;3.测量结果输出;4.评价结果输出;5.测量条件设定;6.报表打印输出等;10)单个样品测试时间:在3分钟完成测量结果,指示制定在120秒一个数据;

  • 真空玻璃干燥器是用来干燥哪类产品的?

    公司要买烘箱和干燥器检测干燥失重,无意中搜到真空玻璃干燥器。请问这种是用来干燥哪类产品的,为什么不用真空烘箱干燥,而用玻璃干燥器呢?这个是用来检测干燥失重含量的呢还是实验中仅仅用来干燥使用。如果使用,需要配套哪些仪器使用呢?求解答,谢谢。

  • 双层玻璃反应釜真空压力(正负压)准确控制解决方案

    双层玻璃反应釜真空压力(正负压)准确控制解决方案

    [color=#ff0000]摘要:针对双层玻璃反应釜中存在的无法进行真空压力自动和准确控制等问题,本文提出了完整和成熟的解决方案,即采用卫生级电动调节阀和高精度双通道PID控制器,结合不同量程的真空计,与反应器、真空泵和正压气源构成闭环控制回路。通过上下游(进气和排气)同时控制的双向模式,可实现真空度全量程和微正压的自动程序控制,可达到很高的控制精度,并可与上位机通讯实现中央控制。[/color][align=center][img=玻璃反应器高精度真空度控制系统,690,368]https://ng1.17img.cn/bbsfiles/images/2022/12/202212082226547967_8886_3221506_3.jpg!w690x368.jpg[/img][/align][align=center]~~~~~~~~~~~~~~[/align][b][size=18px][color=#ff0000]1. 问题的提出[/color][/size][/b] 双层玻璃反应釜为双层玻璃设计,内层放入反应溶媒可做搅拌反应,夹层可通以不同的冷热源(冷冻液,热水或热油)做循环加热或冷却反应。在设定恒温条件下的密闭玻璃反应器内,可根据使用要求在真空至微正压条件下进行搅拌反应,并能做反应溶液的回流与蒸馏,是现代精细化工厂、生物制药和新材料合成的理想中试、生产设备。 双层玻璃反应釜与其他反应器一样,真空压力是反应过程中的一个重要控制变量,不同反应过程往往需要不同的真空度(负压)或压力(正压)值。但在目前绝大多数玻璃搅拌釜反应器中,真空压力的准确控制还存在严重不足,主要体现在以下几个方面: (1)无自动化控制手段,很多还仅靠真空泵的抽取加人工干预,仅能提高简单的真空环境但无法实现控制。 (2)有些真空压力控制器还采用开关式进气控制方式,真空压力波动非常大,往往很多也无法实现程序控制。 (3)控制方式单一,无法进行全量程的(1Pa~0.1MPa)真空度控制,只能在某一区间进行控制。另外,绝大多数玻璃搅拌釜反应器都不具备微正压供给和控制能力。 (4)许多反应器对抽气速率控制采用蝶阀或球阀控制,对于较小尺寸的玻璃反应器而言,蝶阀和球阀的响应速度太慢,无法实现真空压力的准确控制,特别是在温度变化的反应过程中这种现象尤为明显。 (5)同样,也有采用可调转速的真空泵来进行反应器的真空度控制,但同样存在响应速度慢导致真空压力波动大的问题。另外,仅调节抽气速率也只能控制接近一个大气压的低真空(高压)范围,对较高真空(低压)区间的控制则无能为力。 (6)很多反应器对接气(或接液)部件有严格要求,要求卫生级(或食品级)阀门,而目前大多数电动调节阀都无法满足这种特殊要求。 为解决双层玻璃反应釜存在的上述问题,本文将提出完整和成熟的解决方案,即采用卫生级电动调节阀和高精度双通道PID控制器,结合不同量程的真空计,与反应器、真空泵和正压气源构成闭环控制回路。通过上下游(进气和排气)同时控制的双向模式,可实现真空度全量程和微正压的自动编程控制,可达到很高的控制精度,并可与上位机通讯实现中央控制。[b][size=18px][color=#ff0000]2. 真空压力(正负压、高低气压)控制方法[/color][/size][/b] 一般我们以一个标准大气压(绝对压力为1Bar 或 750 Torr)为参考点,规定小于标准大气压为负压或真空环境,大于标准大气压为正压(压力)环境。那么,搅拌式反应器的气压工作环境的控制就是一个典型的真空压力(正负压或高低气压)控制问题。 正负压控制的典型方法是动态平衡法,其原理如图1所示。[align=center][b][color=#ff0000][img=真空压力动态平衡法控制原理框图,600,262]https://ng1.17img.cn/bbsfiles/images/2022/12/202212082224430816_252_3221506_3.jpg!w690x302.jpg[/img][/color][/b][/align][align=center][b][color=#ff0000]图1 真空压力动态平衡法控制原理框图[/color][/b][/align] 动态平衡法的核心原理是被控压力容器内的进气和出气达到某种设定平衡。图1中的黑色箭头线代表气体流动方向,红色箭头线代表电信号的传递和方向。 其中高压气源作为正压源,真空泵进行抽气提供负压源,过程调节器采集传感器信号经过与设定值比较后同时调节进气和出气阀门的开度,使得进气和出气流量达到设定的平衡状态。 在真空压力控制中采用动态平衡法主要有两个优势: (1)控制区间非常宽泛,可以实现从真空到正压全量程的连续控制。 (2)在全量程具有很高的控制精度。在高真空(低压)区间控制时,固定抽气阀开度,调节进气阀开度大小。在低真空或微正压区间控制时,固定进气阀开度,调节抽气阀开度。[b][size=18px][color=#ff0000]3. 解决方案[/color][/size][/b] 依据上述真空压力动态平衡法控制原理,针对双层玻璃反应釜的真空压力控制,解决方案提出的控制装置结构如图2所示。[align=center][b][color=#ff0000][img=双层玻璃反应釜真空压力控制装置结构示意图,690,360]https://ng1.17img.cn/bbsfiles/images/2022/12/202212082225130500_9388_3221506_3.jpg!w690x360.jpg[/img][/color][/b][/align][align=center][b][color=#ff0000]图2 反应器真空压力控制装置结构图[/color][/b][/align] 从图2可以看出,真空压力控制装置主要由高压气源、电动阀门、真空压力传感器、PID过程调节器和真空泵几部分组成。以下是对前四部分内容的介绍。 [color=#ff0000](1)高压气源[/color] 高压气源一般为微正压控制过程提供大于设定压力的高压气体。气源一般为高压气瓶,高压气瓶经减压阀输出固定压力的气体,此固定压力需略大于所需控制的微正压。若反应器只需在真空(负压)范围内控制,则无需高压气源,直接采用大气即可。 [color=#ff0000](2)电动阀门[/color] 解决方案中的电动阀门是一种快速响应的电子调节阀,包括电动针阀和电动球阀。电动针阀适用于小流量进气调节,电动球阀用于大流量排气调节。对于小容积的双层玻璃反应器,进气和出气调节阀可以直接用电控针阀;而对于大容积反应器,则进气阀选择电子针阀,排气阀选择电控球阀。电子针阀的全程开启时间为0.8s,电子球阀的全程开启时间有1s和7s两种规格,快速响应时间是保证控制精度的重要因素之一。另外,无论是针型阀还是球阀,都有卫生级、食品级和耐酸腐蚀的对应型号。 [color=#ff0000] (3)真空压力传感器[/color] 传感器是整个反应过程中真空压力测量的关键,其测量精度也决定了反应器温度和真空压力控制精度以及工艺的有效性。一般推荐采用精度较高的电容真空计,在整个真空压力范围内,通过两种规格的电容真空计(10Torr和1000Torr)基本可以覆盖整个低压(真空)至微正压(高压)区间,而且还可以保证在任意真空压力下的精度为测量值×0.25%。电容真空计对应测量范围的信号输出一般为0~10V直流电压,此输出电压与真空度测量值呈线性关系。 有些反应器采用的是皮拉尼计进行真空范围内的测量,但皮拉尼计的测量误差较大,同时相应的输出电压信号与真空度呈非线性关系,所以一般采用皮拉尼计进行对控制精度要求不高的反应器真空压力控制。在使用中需要特别注意的是,电容真空计的正压测量能力非常有限,皮拉尼计无法测量正压,如果要进行正压控制,则还需要配备相应精度的正压压力传感器。 [color=#ff0000] (4)PID过程调节器[/color] 过程调节器是实现真空压力控制的关键,其采集精度和调节精度决定了真空压力的最终控制精度。本解决方案采用的是超高精度的双通道PID过程调节器,其中有两个独立通道分别用来调节进气阀和出气阀。每个通道配置的都是24位AD、16位DA和双精度浮点运算,可实现0.01%的最小输出百分比,这是目前国内外工业用PID调节器最高级别的配置,结合电容真空计和快速调电子调节阀,可轻松实现优于±1%的真空压力控制精度。 超高精度双通道PID过程调节器具有强大的功能,PID参数可以自整定,可存储多组PID参数以满足不同反应工艺需要,并具有MODBUS标准通讯协议,通过上位机可实现多台调节器的中央控制。随机配备的计算机软件可对PID调节器进行远程设置、数据采集、显示和存储,极大方便了真空压力控制系统的调试。[b][size=18px][color=#ff0000]4. 总结[/color][/size][/b] 综上所述,本文所提出的真空压力准确控制解决方案,除了可满足双层玻璃反应器真空压力(正负压)准确控制需要之外,也可以用于其他各种反应器和旋转蒸馏器中的真空压力控制。 本文解决方案描述的是一种分立结构形式的真空压力控制系统,也可以按照需要和具体反应器设计对控制系统进行集成,将电控阀门和PID调节器集成为仪器,更便于反应器的整体布局设计和配套。[align=center]~~~~~~~~~~~~~~~[/align]

  • 低温用绝热材料超低导热系数和漏热率测试方法介绍

    低温用绝热材料超低导热系数和漏热率测试方法介绍

    [color=#990000]摘要:本文针对低温用绝热材料/系统的热性能测试,基于ASTM C1774标准指南,综合目前国际上基于低温稳态护热技术的文献报道和测试设备,介绍了各种低温绝热材料热性能的测试方法和相应测试设备,为今后国内相应低温绝热材料热性能测试方法和测试设备的建立和改进提供参考。[/color][align=center]~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~[/align][size=18px][color=#990000]一、概述[/color][/size] 低温用绝热材料/系统的热性能测试,要比其他材料的热性能测试复杂的多,这主要是由以下几方面的因素引起: (1)材料形式多样:低温用绝热材料/系统的一般形式为散装颗粒和粉末、毯子、分层、面板、以及多层复合系统。材料的例子包括泡沫(闭孔或开孔)、纤维绝热产品、气凝胶(毯子或散装或包装)、多层绝热系统、多孔玻璃泡沫复合板、聚合物复合材料或量散装料,如珍珠岩粉和玻璃泡。 (2)热导率变化范围大:低温用绝热材料/系统的使用环境通常是从真空到常压,在此真空压力范围内,低温绝热材料的热性能可以有四个数量级的变化,有效热导率范围为0.010mW/mK至100mW/mK。绝热材料和系统热性能的主要控制因素是使用和测试环境的真空压力,高真空的有效热导率通常在0.010mW/mK到2mW/mK范围内,非真空时通常在10mW/mK到30mW/mK范围内,软真空时通常介于这两个极端之间。 (3)环境压力范围大:对于低温用绝热材料的真空压力范围,按照ASTM标准指南分为三个区间:高真空(HV,即小于1mTorr)、软真空(SV,即约100mTorr)和无真空(NV,即1个大气压或约760Torr)。 (4)大温差:低温绝热材料/系统的主要功能是提供高水平的绝热性能并保持较大温差,如对于液氦、液氢和液氮制冷剂,低温绝热材料的冷面就会是4K、20K和77K,而热面则为293K的室温,由此形成200K以上的大温差。 综上所述,为了评价低温绝热材料/系统的热性能,关键是需要在有代表性和可重复的条件下进行测试,需模拟出材料实际组合和使用方式,在被测样品上建立大温差和特定残余气体的真空压力环境,并使用灵敏的技术手段检测出透过绝热材料的微小热流。除此之外,还需面对包括材料冷收缩后的厚度测量和表面接触热阻等因素的挑战。 由于低温用绝热材料的热导率普遍较低,且在材料内存在巨大温差,目前的绝热材料低温热导率测试只能基于传统的稳态法。另外,由于在使用和测试过程中的穿过低温用绝热材料的热流密度极小,通常在1W/㎡以下,这已远超现有热流传感器的探测能力,因此传统的大温差稳态热流计法无法使用,绝热材料低温热导率测试方法完全基于稳态护热技术。 本文针对低温用绝热材料/系统的热性能测试,基于ASTM C1774标准指南,综合目前国际上基于稳态护热技术的文献报道和测试设备,介绍低温绝热材料热性能的测试方法,为今后国内相应低温绝热材料热性能测试设备的建立和改进提供参考。[size=18px][color=#990000]二、低温绝热材料热性能测试方法分类[/color][/size] 低温绝热材料热性能测试的核心是要在大温差和特定真空压力环境下检测出流经被测样品厚度方向上一维热流。为了减少侧向热损,低温绝热材料热性能的各种测试方法基本都基于稳态护热技术,被测样品有圆筒状和平板状两种。对于圆筒状样品,测试方法借鉴了ASTM C335“管状绝热材料稳态传热性能测量的标准试验方法 ”;对于平板状样品,借鉴了ASTM C177“采用防护热板装置进行稳态热流密度和传热性能测量的标准试验方法”。 为了实现被测样品冷热面的大温差,各种测试方法或采用低温制冷剂(典型有液氦、液氢和液氮),或采用低温冷却器,给样品冷面提供制冷。 一维热流测量有采用高灵敏的蒸发量热技术,也有采用传统稳态护热法中的电功率测量技术,蒸发量热技术可以检测的漏热热流密度为0.1~500W/㎡,电功率测量技术可以检测的漏热热流密度为1~1000W/㎡,蒸发量热技术对于微小热流具有更强大的检测能力。 按照ASTM C1774“低温绝热系统热性能测试的标准指南”的规定,上述两种测试技术都可以设计制造为绝对法装置和比较法装置两类,但按照传统的测试方法分类,这两类测试技术都属于绝对法。这里的绝对法是通过测试设备和测试方法的集成设计基本消除了寄生漏热,测试腔室的寄生漏热接近于零。这里的比较法,是通过简单的部分防护,寄生热泄漏降低到可接受水平,还存在一定漏热,但整个测量装置变得比绝对法装置简单,相对简化的比较法仪器可用于大量样品、相似样品、质量控制测试和比较测试。[size=18px][color=#990000]三、蒸发量热法[/color][/size] 在蒸发量热法测试绝热材料热性能时,穿过被测样品的外界热量加热测试腔室内处于饱和状态下的低温液态制冷剂,测量制冷剂受热蒸发出的气体流量可以获得热泄露的热量,依此获得等效热导率和漏热热流密度。 [color=#990000](1)圆柱型蒸发量热计测量装置(绝对法)[/color] 典型的圆柱型蒸发量热计热性能测量装置如图1所示,测量装置中装有低温制冷剂的测试腔桶典型尺寸是外径为167mm、长度为900mm,可为厚度50mm的样品进行测试。测试室由同样装有低温制冷剂的上室和下室进行主动热保护,使测试腔桶上下两个方向的热泄露最小。外侧的电加热器组件为样品的热面温度恒定进行控制。[align=center][color=#990000][img=蒸发量热法热导率测试,690,310]https://ng1.17img.cn/bbsfiles/images/2022/01/202201211417021305_4912_3384_3.jpg!w690x310.jpg[/img][/color][/align][align=center][color=#990000]图1 圆柱型蒸发量热计测量装置(绝对法):左图为总体结构示意图,右图为简化示意图[/color][/align] 被测试样一般为柔性材料,如毯式、散装式、多层绝热材料。对于散装材料可以用薄铝制的黑色圆柱型套筒允许测试散装材料。 [color=#990000](2)圆柱型蒸发量热计绝热材料热性能测量装置(比较法)[/color] 典型的圆柱型蒸发量热计热性能测量装置(比较法)如图2所示,用于测量绝热试样的比较热性能。装有低温介质的测量腔筒典型尺寸是132mm外径×500mm长,可测试厚度达50mm的试样。 与绝对法不同的是,为了简化测量装置,比较法中的测量腔桶上下两个方向采用的是被动防护方式并装配为一体式结构的测量组件,通过使用气凝胶材料和辐射屏组合件使得测量腔桶两个端部处的热泄露尽可能小,但护热效果显然不如绝对法中的主动护热。同样,外侧电加热器组件为样品的热面温度恒定进行控制。[align=center][color=#990000][img=蒸发量热法热导率测试,400,543]https://ng1.17img.cn/bbsfiles/images/2022/01/202201211417369317_1628_3384_3.jpg!w588x799.jpg[/img][/color][/align][align=center][color=#990000]图2 圆柱型蒸发量热计测量装置(比较法)[/color][/align] 这种简化后的比较法测量装置,可以拆卸整体结构的测量组件来进行被测样品的安装和拆卸,非常便于各种被测材料的拆装。 [color=#990000](3)平板型蒸发量热计绝热材料热性能测量装置(绝对法)[/color] 平板型蒸发量热仪(绝对法)是一种用于测量绝热材料的绝对热性能的平底测试设备。典型结构如图3所示。允许接受直径200mm、厚达30mm的被测平板样品。除边界温度外,温度传感器位于设备侧面。装有制冷剂的测试腔室由同样装有制冷剂的护热腔室进行主动热防护,可将侧向热泄露降到最低。系统绝热材料为各种环境条件下的测试提供了额外的热稳定性。被测样品可以为刚性或柔性,带或不带压缩载荷。[align=center][color=#990000][img=蒸发量热法热导率测试,450,512]https://ng1.17img.cn/bbsfiles/images/2022/01/202201211417546189_165_3384_3.jpg!w690x786.jpg[/img][/color][/align][align=center][color=#990000]图3 平板型蒸发量热计测量装置(绝对法)[/color][/align][align=left][/align][align=left] 实际上,这种平板型蒸发量热计热性能测试设备完全照搬了ASTM C177防护热板法的基本原理,只是采用了低温制冷剂的蒸发原理替换了电功率测量,也是最早用于低温绝热材料热性能测试的测试方法和设备。由于这种方法和设备的完备性,使此方法被ASTM定为标准试验方法,即ASTM C745“使用保护平板蒸发量热计测量穿过真空绝热材料热流量的标准测试方法”。[/align] 需要注意的是,由于这种方法和设备太过复杂,需要保障的边界条件太多,其复杂性和局限性削弱了其广泛使用,目前C745方法已经废除,替代标准是ASTM C1774,并极大扩展了测试中对不同几何形状、环境、材料和方法的适用性,但C1774还存在许多不可控因素,多年来迭代改进也不多,使得C1774一直未形成标准试验方法,而仅仅是标准指南。 [color=#990000] (4)平板型蒸发量热计绝热材料热性能测量装置(比较法)[/color] 平板型蒸发量热计(比较法)是一种平板状样品测试设备,用于测量绝热材料的低温热性能,如图4所示。它可以接受直径200mm、厚达30mm的试样。测试中需要在设备上定位温度传感器,两组辐射屏蔽环与散装气凝胶一起为冷质测试腔体侧面和顶部提供被动热防护。该量热计可用于各种材料和测试条件,可对刚性和柔性材料进行测试,带或不带压缩载荷。[align=center][img=蒸发量热法热导率测试,690,325]https://ng1.17img.cn/bbsfiles/images/2022/01/202201211418172543_2537_3384_3.jpg!w690x325.jpg[/img][/align][align=center][color=#990000]图4 平板型蒸发量热计测量装置(比较法):左图为总体结构示意图,右图为简化示意图[/color][/align][size=18px][color=#990000]四、电功率测量法[/color][/size] 采用电功率测量法的测试设备主要有以下两种。[color=#990000] (1)低温恒温器电功率测试设备(基于制冷剂)[/color] 基于低温制冷剂的低温恒温器电功率测试设备,如图5所示,包括一个由OFHC铜板(典型值为6mm厚)制成的等温样品盒。圆柱型外壳和底板全部用螺栓固定在一起,在样品周围形成一个等温箱。顶板放在样品顶部,柔性铜带将顶板连接到盒子以确保热平衡。热板通常配备两个温度传感器(例如电阻温度传感器和硅二极管)和一个电加热器。这三个部件都安装在一个小仪器盘内,该盘完全安装在热板内。样品盒配有硅胶二极管温度计(或其他合适的温度传感器)和电加热器。热板加热器用于为热导率测量施加热量,样品箱加热器有助于提高整体温度。该盒子热连接到一个等温(OFHC铜)真空密闭室,它被悬挂在其中。该腔室进一步放置在真空罐内,并配备有加热器和合适的温度传感器。[align=center][color=#990000][img=蒸发量热法热导率测试,550,302]https://ng1.17img.cn/bbsfiles/images/2022/01/202201211418267227_2939_3384_3.jpg!w690x380.jpg[/img][/color][/align][align=center][color=#990000]图5 低温恒温器电功率测试设备[/color][/align][align=center][/align][align=left] 如果需要,这种布置允许样品室及其内部温度变化远高于真空罐(液氮或液氦)周围的制冷剂的温度。已经建造了两个圆柱型盒子(通常直径为150和200mm)加上两个方形盒子,每个盒子都有一个相应的热板。为了将仪器从热板连接到外部端子,使用了四根铜线和十六根锰铜线。这些电线通常长0.8m,直径0.13mm,以螺旋状穿过样品,从加热板到达盒子外面的端子。[/align][align=left] 对每个样品一面的中心进行加工,为放置在两块样品之间的等温铜热板腾出空间,从而确保所有热量都通过样品,除了沿着加热线传导的热量泄露到制冷剂中。典型尺寸包括样品直径为152或203mm,高度为50mm,圆形热板的直径为140mm,厚度为9mm。圆形等温铜盒的内部接触样品夹层的外表面。[/align][color=#990000] (2)电功率低温恒温器设备(基于低温制冷机)[/color] 基于低温制冷机的电功率恒温器测量法基本借鉴了经典防护热板法,不同之处在于采用了被动护热方式,在被测样品厚度方向上形成大温差,并在低温和真空压力环境下进行测量。 测试设备包括一个与适当的低温制冷系统热连接的测试腔室。用于测试204mm直径圆盘型样品的这种系统的一个示例如图6所示。该设计采用将平板样品夹在一对电加热板之间,底部电加热板接受已知加热功率控制样品热面温度,顶部加热板控制样品冷面温度,顶部加热板与制冷机连接。[align=center][img=蒸发量热法热导率测试,690,302]https://ng1.17img.cn/bbsfiles/images/2022/01/202201211418414558_9407_3384_3.jpg!w690x302.jpg[/img][/align][align=center][color=#990000]图6 电功率低温恒温器测试设备(基于低温制冷机):左图为总体结构示意图,右图为测试腔室示意图[/color][/align][size=18px][color=#990000]五、总结[/color][/size] 综上所述,上述测试方法基本覆盖了低温用各种绝热材料热性能测试要求,对各种材料的几何形状、测试环境和材料类型等方面都有很好的适用性。美国NASA多年来已经采用蒸发量热计测试设备(包括绝对法和比较法)对各种柔性和刚性低温绝热材料进行了大范围的测试,并得到了大量材料的低温热性能测试结果。 从目前在用的低温绝热材料热性能测试标准ASTM C1774可以看出,此标准还处于标准指南阶段,说明上述测试方法还存在很多问题需要解决,特别是主动护热温度的精确控制、样品冷收缩后的厚度变化在线测量和修正,以及接触热阻和加载压力的影响等,这些都是今后工作需要面临的严峻挑战。[align=center]~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~[/align]

  • 低温绝热材料导热系数和热流密度测试方法介绍

    低温绝热材料导热系数和热流密度测试方法介绍

    [color=#990000]摘要:本文针对低温用绝热材料/系统的热性能测试,基于ASTM C1774标准指南,综合目前国际上基于低温稳态护热技术的文献报道和测试设备,介绍了各种低温绝热材料热性能的测试方法和相应测试设备,为今后国内相应低温绝热材料热性能测试方法和测试设备的建立和改进提供参考。[/color][align=center]~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~[/align][size=18px][color=#990000][/color][/size]一、概述 低温用绝热材料/系统的热性能测试,要比其他材料的热性能测试复杂的多,这主要是由以下几方面的因素引起: (1)材料形式多样:低温用绝热材料/系统的一般形式为散装颗粒和粉末、毯子、分层、面板、以及多层复合系统。材料的例子包括泡沫(闭孔或开孔)、纤维绝热产品、气凝胶(毯子或散装或包装)、多层绝热系统、多孔玻璃泡沫复合板、聚合物复合材料或量散装料,如珍珠岩粉和玻璃泡。 (2)热导率变化范围大:低温用绝热材料/系统的使用环境通常是从真空到常压,在此真空压力范围内,低温绝热材料的热性能可以有四个数量级的变化,有效热导率范围为0.010mW/mK至100mW/mK。绝热材料和系统热性能的主要控制因素是使用和测试环境的真空压力,高真空的有效热导率通常在0.010mW/mK到2mW/mK范围内,非真空时通常在10mW/mK到30mW/mK范围内,软真空时通常介于这两个极端之间。 (3)环境压力范围大:对于低温用绝热材料的真空压力范围,按照ASTM标准指南分为三个区间:高真空(HV,即小于1mTorr)、软真空(SV,即约100mTorr)和无真空(NV,即1个大气压或约760Torr)。 (4)大温差:低温绝热材料/系统的主要功能是提供高水平的绝热性能并保持较大温差,如对于液氦、液氢和液氮制冷剂,低温绝热材料的冷面就会是4K、20K和77K,而热面则为293K的室温,由此形成200K以上的大温差。 综上所述,为了评价低温绝热材料/系统的热性能,关键是需要在有代表性和可重复的条件下进行测试,需模拟出材料实际组合和使用方式,在被测样品上建立大温差和特定残余气体的真空压力环境,并使用灵敏的技术手段检测出透过绝热材料的微小热流。除此之外,还需面对包括材料冷收缩后的厚度测量和表面接触热阻等因素的挑战。由于低温用绝热材料的热导率普遍较低,且在材料内存在巨大温差,目前的绝热材料低温热导率测试只能基于传统的稳态法。另外,由于在使用和测试过程中的穿过低温用绝热材料的热流密度极小,通常在1W/㎡以下,这已远超现有热流传感器的探测能力,因此传统的大温差稳态热流计法无法使用,绝热材料低温热导率测试方法完全基于稳态护热技术。 本文针对低温用绝热材料/系统的热性能测试,基于ASTM C1774标准指南,综合目前国际上基于稳态护热技术的文献报道和测试设备,介绍低温绝热材料热性能的测试方法,为今后国内相应低温绝热材料热性能测试设备的建立和改进提供参考。[size=18px][color=#990000][/color][/size]二、低温绝热材料热性能测试方法分类 低温绝热材料热性能测试的核心是要在大温差和特定真空压力环境下检测出流经被测样品厚度方向上一维热流。为了减少侧向热损,低温绝热材料热性能的各种测试方法基本都基于稳态护热技术,被测样品有圆筒状和平板状两种。对于圆筒状样品,测试方法借鉴了ASTM C335“管状绝热材料稳态传热性能测量的标准试验方法 ”;对于平板状样品,借鉴了ASTM C177“采用防护热板装置进行稳态热流密度和传热性能测量的标准试验方法”。 为了实现被测样品冷热面的大温差,各种测试方法或采用低温制冷剂(典型有液氦、液氢和液氮),或采用低温冷却器,给样品冷面提供制冷。 一维热流测量有采用高灵敏的蒸发量热技术,也有采用传统稳态护热法中的电功率测量技术,蒸发量热技术可以检测的漏热热流密度为0.1~500W/㎡,电功率测量技术可以检测的漏热热流密度为1~1000W/㎡,蒸发量热技术对于微小热流具有更强大的检测能力。 按照ASTM C1774“低温绝热系统热性能测试的标准指南”的规定,上述两种测试技术都可以设计制造为绝对法装置和比较法装置两类,但按照传统的测试方法分类,这两类测试技术都属于绝对法。这里的绝对法是通过测试设备和测试方法的集成设计基本消除了寄生漏热,测试腔室的寄生漏热接近于零。这里的比较法,是通过简单的部分防护,寄生热泄漏降低到可接受水平,还存在一定漏热,但整个测量装置变得比绝对法装置简单,相对简化的比较法仪器可用于大量样品、相似样品、质量控制测试和比较测试。[size=18px][color=#990000][/color][/size]三、蒸发量热法 在蒸发量热法测试绝热材料热性能时,穿过被测样品的外界热量加热测试腔室内处于饱和状态下的低温液态制冷剂,测量制冷剂受热蒸发出的气体流量可以获得热泄露的热量,依此获得等效热导率和漏热热流密度。 (1)圆柱型蒸发量热计测量装置(绝对法) 典型的圆柱型蒸发量热计热性能测量装置如图1所示,测量装置中装有低温制冷剂的测试腔桶典型尺寸是外径为167mm、长度为900mm,可为厚度50mm的样品进行测试。测试室由同样装有低温制冷剂的上室和下室进行主动热保护,使测试腔桶上下两个方向的热泄露最小。外侧的电加热器组件为样品的热面温度恒定进行控制。[align=center][color=#990000][img=低温导热系数,690,310]https://ng1.17img.cn/bbsfiles/images/2022/01/202201200837122480_3409_3384_3.jpg!w690x310.jpg[/img][/color][/align][align=center][color=#990000]图1 圆柱型蒸发量热计测量装置(绝对法):左图为总体结构示意图,右图为简化示意图[/color][/align] 被测试样一般为柔性材料,如毯式、散装式、多层绝热材料。对于散装材料可以用薄铝制的黑色圆柱型套筒允许测试散装材料。 (2)圆柱型蒸发量热计绝热材料热性能测量装置(比较法) 典型的圆柱型蒸发量热计热性能测量装置(比较法)如图2所示,用于测量绝热试样的比较热性能。装有低温介质的测量腔筒典型尺寸是132mm外径×500mm长,可测试厚度达50mm的试样。 与绝对法不同的是,为了简化测量装置,比较法中的测量腔桶上下两个方向采用的是被动防护方式并装配为一体式结构的测量组件,通过使用气凝胶材料和辐射屏组合件使得测量腔桶两个端部处的热泄露尽可能小,但护热效果显然不如绝对法中的主动护热。同样,外侧电加热器组件为样品的热面温度恒定进行控制。[align=center][color=#990000][img=低温导热系数,588,799]https://ng1.17img.cn/bbsfiles/images/2022/01/202201200837478651_2276_3384_3.jpg!w588x799.jpg[/img][/color][/align][align=center][color=#990000]图2 圆柱型蒸发量热计测量装置(比较法)[/color][/align] 这种简化后的比较法测量装置,可以拆卸整体结构的测量组件来进行被测样品的安装和拆卸,非常便于各种被测材料的拆装。 (3)平板型蒸发量热计绝热材料热性能测量装置(绝对法) 平板型蒸发量热仪(绝对法)是一种用于测量绝热材料的绝对热性能的平底测试设备。典型结构如图3所示。允许接受直径200mm、厚达30mm的被测平板样品。除边界温度外,温度传感器位于设备侧面。装有制冷剂的测试腔室由同样装有制冷剂的护热腔室进行主动热防护,可将侧向热泄露降到最低。系统绝热材料为各种环境条件下的测试提供了额外的热稳定性。被测样品可以为刚性或柔性,带或不带压缩载荷。[align=center][color=#990000][img=低温导热系数,690,786]https://ng1.17img.cn/bbsfiles/images/2022/01/202201200838020464_1315_3384_3.jpg!w690x786.jpg[/img][/color][/align][align=center][color=#990000]图3 平板型蒸发量热计测量装置(绝对法)[/color][/align] 实际上,这种平板型蒸发量热计热性能测试设备完全照搬了ASTM C177防护热板法的基本原理,只是采用了低温制冷剂的蒸发原理替换了电功率测量,也是最早用于低温绝热材料热性能测试的测试方法和设备。由于这种方法和设备的完备性,使此方法被ASTM定为标准试验方法,即ASTM C745“使用保护平板蒸发量热计测量穿过真空绝热材料热流量的标准测试方法”。 需要注意的是,由于这种方法和设备太过复杂,需要保障的边界条件太多,其复杂性和局限性削弱了其广泛使用,目前C745方法已经废除,替代标准是ASTM C1774,并极大扩展了测试中对不同几何形状、环境、材料和方法的适用性,但C1774还存在许多不可控因素,多年来迭代改进也不多,使得C1774一直未形成标准试验方法,而仅仅是标准指南。 (4)平板型蒸发量热计绝热材料热性能测量装置(比较法) 平板型蒸发量热计(比较法)是一种平板状样品测试设备,用于测量绝热材料的低温热性能,如图4所示。它可以接受直径200mm、厚达30mm的试样。测试中需要在设备上定位温度传感器,两组辐射屏蔽环与散装气凝胶一起为冷质测试腔体侧面和顶部提供被动热防护。该量热计可用于各种材料和测试条件,可对刚性和柔性材料进行测试,带或不带压缩载荷。[align=center][color=#990000][img=低温导热系数,690,325]https://ng1.17img.cn/bbsfiles/images/2022/01/202201200838140994_170_3384_3.jpg!w690x325.jpg[/img][/color][/align][align=center][color=#990000]图4 平板型蒸发量热计测量装置(比较法):左图为总体结构示意图,右图为简化示意图[/color][/align][size=18px][color=#990000][/color][/size]四、电功率测量法 采用电功率测量法的测试设备主要有以下两种。 (1)低温恒温器电功率测试设备(基于制冷剂) 基于低温制冷剂的低温恒温器电功率测试设备,如图5所示,包括一个由OFHC铜板(典型值为6mm厚)制成的等温样品盒。圆柱型外壳和底板全部用螺栓固定在一起,在样品周围形成一个等温箱。顶板放在样品顶部,柔性铜带将顶板连接到盒子以确保热平衡。热板通常配备两个温度传感器(例如电阻温度传感器和硅二极管)和一个电加热器。这三个部件都安装在一个小仪器盘内,该盘完全安装在热板内。样品盒配有硅胶二极管温度计(或其他合适的温度传感器)和电加热器。热板加热器用于为热导率测量施加热量,样品箱加热器有助于提高整体温度。该盒子热连接到一个等温(OFHC铜)真空密闭室,它被悬挂在其中。该腔室进一步放置在真空罐内,并配备有加热器和合适的温度传感器。[align=center][color=#990000][img=低温导热系数,690,380]https://ng1.17img.cn/bbsfiles/images/2022/01/202201200838262563_7022_3384_3.jpg!w690x380.jpg[/img][/color][/align][align=center][color=#990000]图5 低温恒温器电功率测试设备[/color][/align] 如果需要,这种布置允许样品室及其内部温度变化远高于真空罐(液氮或液氦)周围的制冷剂的温度。已经建造了两个圆柱型盒子(通常直径为150和200mm)加上两个方形盒子,每个盒子都有一个相应的热板。为了将仪器从热板连接到外部端子,使用了四根铜线和十六根锰铜线。这些电线通常长0.8m,直径0.13mm,以螺旋状穿过样品,从加热板到达盒子外面的端子。 对每个样品一面的中心进行加工,为放置在两块样品之间的等温铜热板腾出空间,从而确保所有热量都通过样品,除了沿着加热线传导的热量泄露到制冷剂中。典型尺寸包括样品直径为152或203mm,高度为50mm,圆形热板的直径为140mm,厚度为9mm。圆形等温铜盒的内部接触样品夹层的外表面。 (2)电功率低温恒温器设备(基于低温制冷机) 基于低温制冷机的电功率恒温器测量法基本借鉴了经典防护热板法,不同之处在于采用了被动护热方式,在被测样品厚度方向上形成大温差,并在低温和真空压力环境下进行测量。 测试设备包括一个与适当的低温制冷系统热连接的测试腔室。用于测试204mm直径圆盘型样品的这种系统的一个示例如图6所示。该设计采用将平板样品夹在一对电加热板之间,底部电加热板接受已知加热功率控制样品热面温度,顶部加热板控制样品冷面温度,顶部加热板与制冷机连接。[align=center][color=#990000][img=低温导热系数,690,302]https://ng1.17img.cn/bbsfiles/images/2022/01/202201200838382717_1558_3384_3.jpg!w690x302.jpg[/img][/color][/align][align=center][color=#990000]图6 电功率低温恒温器测试设备(基于低温制冷机):左图为总体结构示意图,右图为测试腔室示意图[/color][/align][size=18px][color=#990000][/color][/size]五、总结 综上所述,上述测试方法基本覆盖了低温用各种绝热材料热性能测试要求,对各种材料的几何形状、测试环境和材料类型等方面都有很好的适用性。美国NASA多年来已经采用蒸发量热计测试设备(包括绝对法和比较法)对各种柔性和刚性低温绝热材料进行了大范围的测试,并得到了大量材料的低温热性能测试结果。 从目前在用的低温绝热材料热性能测试标准ASTM C1774可以看出,此标准还处于标准指南阶段,说明上述测试方法还存在很多问题需要解决,特别是主动护热温度的精确控制、样品冷收缩后的厚度变化在线测量和修正,以及接触热阻和加载压力的影响等,这些都是今后工作需要面临的严峻挑战。[align=center]~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~[/align]

  • 真空干燥箱的仪表读数与真空室里的玻棒温度计读数产生差异的原因

    一般的电热真空干燥箱都采用先加热真空室壁面、再由壁面向工件进行辐射加热的方式。在这种方式下,控温仪表的温度传感器可以布置在真空室外壁。传感器可以同时接受对流、传导、和辐射热。而处于真空室里的玻璃棒温度计只能接受辐射热,更由于玻璃棒温度不可能达到1°,相当一部分辐射热被折射了,因此玻璃棒温度计反映的温度值就肯定低于仪表的温度读数。一般讲,200℃工况时仪表的温度读数与玻璃棒温度计的读数两者相差30℃以内是正常的。如果控温仪表的温度传感器布置在真空室内,玻璃棒温度计的温度值与仪表的温度读数之间的差异可以适当缩小,但不可能消除,而真空室的密封可靠性增加了一个可能不可靠环节。如果从操作实用角度考虑不希望看到这个差异,可以采用控温仪表特有的显示修正功能解决。

  • 【原创】电热真空干燥箱的仪表读数与真空室里的玻棒温度计读数差异很大,这是为什么?

    由于不同用户的各种不同被烘物体黑度不同,作为制造厂试图用一种统一模式的辐射热计量方式来覆盖,不仅仅是技术上有一定的难度,更主要的是其它被烘物体实际温度的代表性太差。因此,以用户可以接受的价格为出发点,一般的电热真空干燥箱都采用先加热真空室壁面、再由壁面向工件进行辐射加热的方式。在这种方式下,控温仪表的温度传感器可以布置在真空室外壁。传感器可以同时接受对流、传导、和辐射热。而处于真空室里的玻璃棒温度计只能接受辐射热,更由于玻璃棒黑度不可能达到1,相当一部分辐射热被折射了,因此玻璃棒温度计反映的温度值就肯定低于仪表的温度读数。一般讲,200℃工况时仪表的温度读数与玻璃棒温度计的读数两者相差30℃以内是正常的。  如果控温仪表的温度传感器布置在真空室内,玻璃棒温度计的温度值与仪表的温度读数之间的差异可以适当缩小,但不可能消除,而真空室的密封可靠性增加了一个可能不可靠环节。  如果从操作实用角度考虑不希望看到这个差异,可以采用控温仪表特有的显示修正功能解决。

  • 我准备微波消解玻璃纤维滤筒和电热板法对比一下结果

    我准备用以下两种方法对比一下结果1、微波消解玻璃纤维滤筒测铅 三个滤筒消解,三个滤筒加标,看回收率加硝酸和氢氟酸2、电热板法消解玻璃纤维滤筒 三个滤筒消解,三个滤筒加标,看回收率加硝酸和双氧水有没有前辈做过类似的实验,如果有的话请指教一下一共需要消解12个滤筒

  • 采用MapleSim软件进行缩短防护热板法导热系数测试时间的温度控制方法仿真模拟计算研究

    采用MapleSim软件进行缩短防护热板法导热系数测试时间的温度控制方法仿真模拟计算研究

    [color=#cc0000]摘要:防护热板法是低导热材料导热系数测试的经典方法,尽管防护热板法测量精度高,但相应的测试时间长,被测样品的热面温度很难准确控制在设定点温度上,不利于材料导热系数重复性测量结果在相同温差下进行对比,更无法满足大批量隔热材料快速测量的需求。为解决这些问题,上海依阳实业有限公司对防护热板法计量加热器的自动化控制技术进行了研究。本文主要介绍了研究的技术路线,采用MapleSim软件模块化的动态数值模拟计算验证了技术路线的可行性,通过动态模拟计算结果可以直观的看到测试时间大幅度的缩短,同时本文还通过模拟计算结果介绍了在大热阻材料防护热板法测试中较低的加热功率会使得漏热现象更加明显,需要大幅度提高温差探测的灵敏度。  关键词:缩短时间,防护热板法,导热系数,加热方式,数值模拟,MapleSim[/color][hr/][b][color=#cc0000]1.引言[/color][/b]  防护热板法作为一种经典的稳态方法,多用于防隔热材料和组件的热阻和导热系数测试中。防护热板法的测试模型就是通过周边防护手段使得计量热板中的热量只向被测样品方向进行一维传递,并最终达到稳定状态。因此在防护热板法测试中,计量热板中加热器的加载电功率控制及其测量是整个测试的核心内容之一,其技术要求主要体现在以下三个方面:  (1)加载的电功率要非常稳定,特别是达到一维热流稳态后,加载的电功率要求是稳定值,电功率的波动会对测量结果带来直接误差。  (2)对于任何被测样品,加载的电功率最好能将样品热面温度控制在一个整数值左右。结合同样受控的样品冷面温度,由此可以保证样品厚度方向上冷热面之间的温差基本都是固定值,从而提供可重复且一致的样品温差,有利于样品的重复测试结果对比,这对于非均质和各向异性隔热材料尤为重要。  (3)防护热板法作为一种稳态法,原理上就存在测试时间较长的特点,样品的热阻越大或导热系数越小,达到稳态所需的时间就越长。为此希望采用更新的技术手段缩短达到稳定的时间,提高测试效率,这点在真空隔热板和大厚度隔热材料测试中的需求十分迫切。  目前国内外防护热板法导热系数测量装置中大多数还是采用直流恒流加热方式,以期首先能保证测量的准确性,要同时满足上述三方面的要求还十分困难。尽管自动化控制技术已经发展多年并已得到广泛应用,但在防护热板装置中计量加热器的温度控制和功率测量方面还未采用自动控制技术,因为对计量加热器采用PID控制往往会使得加载功率波动较大而造成很大的测量误差。国内外现有防护热板法装置大多采用上述折中方法,即根据经验找出热面温度设定点与加热功率的经验关系,在测试过程中选择合适的恒定电流直接加载到计量加热器上。这种加热控制方式尽管可以保证计量加热器上加热功率的稳定和准确,但随之带来以下几方面的问题:  (1)样品热面温度无法准确恒定在设定温度点上,总是与设定温度点(一般为整数)存在较大偏差,每次测量的热面温度都不一样。这非常不利于对样品的重复性测试考核,特别是对低导热样品的测试评价尤为明显。  (2)这种恒定功率加热方式往往伴随着漫长的热场稳定时间,对低导热大热阻材料的测试耗时往往以天为单位计算。  为了同时满足加热功率稳定准确和热面温度准确控制在设定温度上,并大幅度降低热场稳定时间,满足用户大批量样品的测试需求,上海依阳实业有限公司对防护热板法计量加热器的自动化控制以及测量技术进行了研究。本文主要介绍了研究的技术路线,采用MapleSim软件模块化的动态数值模拟计算验证了技术路线的可行性,通过动态模拟计算结果可以直观的看到测试时间大幅度的缩短。2.防护热板法导热系数测试中的加热方式  依据以下一维稳态传热的傅立叶公式,要实现样品导热系数的测量,只有两个可用来进行控制的变化参数,一个是热量Q,另一个是温差ΔT。[align=center] λ=(Q×d)/(A×ΔT)[/align]  由此,防护热板法导热系数测试中建立一维稳态的加热方式基本可分为恒功率加热方式和恒温加热方式两种。  (1)恒功率加热方式是指样品冷面保持恒定温度,样品的热面则采用一恒定的电功率进行加热,对于固定的样品尺寸而言就是采用恒定的热流密度进行加热,即使得Q/A为恒定值。这种加热方式所带来的结果是就是样品热面温度并不受控,即样品冷热面温差ΔT并不会控制在指定值上。  (2)恒温加热方式是指样品冷面保持恒定温度,样品的热面也通过加热保持一恒定温度,也就是将样品冷热面温差ΔT控制在指定值上。但这种控温方式带来的问题就是相应的热流密度Q/A存在波动而很难准确测量。  上述这两种加热方式适用于防护热板法测量装置中的所有加热部件,需说明的是,为了便于对研制或定型中的测量装置进行考核评价,希望装置中所有加热部件的加热功率在达到稳态时都可以精确测定。[b][color=#cc0000]3.典型材料测试模型和数值模拟计算软件3.1.典型材料[/color][/b]  在防护热板法加热方式数值模拟计算中,选择了三种典型材料以期覆盖绝大多数被测材料类型,以下分别为三种材料在室温下的热物理性能参数。  (1)NIST 1450d标准参考材料  NIST 1450d标准参考材料参数如表3-1所示。[align=center][color=#cc0000]表 3-1 标准参考材料热物理性能参数[/color][/align][align=center][img=,690,119]https://ng1.17img.cn/bbsfiles/images/2018/11/201811051929560486_6248_3384_3.png!w690x119.jpg[/img][/align]  (2)真空隔热板(VIPs)  真空隔热板的参数如表3-2所示。[align=center][color=#cc0000]表 3-2 真空隔热板热物理性能参数[/color][/align][align=center][img=,690,108]https://ng1.17img.cn/bbsfiles/images/2018/11/201811051930567848_7200_3384_3.png!w690x108.jpg[/img][/align]  (3)大厚度高热阻复合隔热材料  大厚度高热阻复合隔热材料是一种"蒙皮+隔热材料+空气隙+树脂板"形式的多芯夹层结构,如图3-1所示,其作用是起到隔热和隔声功能。[align=center][img=大厚度高热阻复合隔热材料分层结构,690,240]https://ng1.17img.cn/bbsfiles/images/2018/11/201811051934368816_4277_3384_3.png!w690x240.jpg[/img][/align][align=center][color=#cc0000]图3-1 大厚度高热阻复合隔热材料分层结构[/color][/align]  大厚度高热阻复合隔热材料的整体最大厚度为130 mm,其中蒙皮和树脂板厚度保持不变,而隔热材料和空气隙会根据不同材料及其组合而发生变化。其中蒙皮为碳纤维树脂基复合材料,内饰板为树脂基复合材料,隔热材料为玻璃纤维类低密度隔热材料。这里我们选择了最大热阻结构设计以计算最大热阻时的加热稳定时间,即空气层设计为10 mm厚,使得低导热隔热材料的厚度尽量大以实现最好的隔热隔声效果。高热阻复合隔热材料中各分层材料室温下的热物理性能参数如表3-3所示。[align=center][color=#cc0000]表3-3 大厚度高热阻复合隔热材料热物理性能参数[/color][/align][align=center][img=,690,268]https://ng1.17img.cn/bbsfiles/images/2018/11/201811051931455126_6783_3384_3.png!w690x268.jpg[/img][/align][b][color=#cc0000]3.2. 防护热板法测试模型[/color][/b]  为了计算分析方便,防护热板法测试模型为正方形单样品形式,如图3-2所示。整体护热板面积尺寸设计为500 mm×500 mm,计量热板尺寸设计为250 mm×250 mm,材质都为纯铝。室温和冷板温度都设为25℃,并且假设上述三种样品材料和冷热板材料的热物理性能在室温附近不发生变化。[align=center][img=防护热板法测试模型,690,315]https://ng1.17img.cn/bbsfiles/images/2018/11/201811051933320326_368_3384_3.png!w690x315.jpg[/img][/align][align=center][color=#cc0000]图3-2 防护热板法单样品测试模型[/color][/align][b][color=#333399]3.3. 模拟计算分析软件[/color][/b]  在传热学中可以使用很多软件进行数值模拟计算,一般常用的多为有限元分析软件,如ANSYS、COMSOL、SOLIDWORKS等。但对于本研究中涉及的物理量随时间变化的动态模拟计算分析,有限元法则显着笨重和繁琐,一个物理量动态变化全过程的计算分析往往需要大量的计算时间。为此,我们选择采用基于语言的MapleSim软件进行模拟计算分析,这种模型化的软件因为是基于物理基本模型和解析解,所以更适合动态模拟计算,十几秒钟就可以完成一个物理量动态变化全过程的计算分析。  有关数值模拟计算软件在材料热物理性能测量方法和测试技术中的应用,我们将撰文进行专门介绍。[b][color=#cc0000]4.模拟计算结果[/color][/b]  采用MapleSim软件分别对上述三种典型材料进行数值模拟计算,计算中设置的初始温度为25℃,样品冷面温度也设置为25℃,冷热面温差控制在20℃。[b][color=#cc0000]4.1. 标准参考材料1450d两种加热方式计算结果[/color][/b]  (1)恒功率加热方式计算结果  为将样品冷热面温差控制在20℃整数上,模仿实际测试中选择的加热功率1.375 W,对于纯样品的模拟计算结果如图4-1所示,对于带10mm厚铝质冷热板的模拟计算结果如图4-2所示。图中红线为恒功率加热过程中样品热面温度随时间的变化曲线,蓝线为样品内部温度变化速率随时间的变化曲线。[align=center][img=,690,378]https://ng1.17img.cn/bbsfiles/images/2018/11/201811051955066033_5181_3384_3.png!w690x378.jpg[/img][/align][align=center][color=#cc0000]图 4-1 单纯参考材料1450d样品恒功率加热方式模拟计算结果[/color][/align][align=center][color=#333399][img=,690,395]https://ng1.17img.cn/bbsfiles/images/2018/11/201811051956342530_4622_3384_3.png!w690x395.jpg[/img][/color][/align][align=center][color=#cc0000]图 4-2 带铝质冷热板和参考材料1450d样品恒功率加热方式模拟计算结果[/color][/align]  从这些曲线可以看出,对于纯样品的恒功率测试,从第3个小时开始进入稳态;而对于带10mm厚铝质冷热板和样品,则要从第40小时才能开始进入热面温度为45℃的稳定状态。由此给出非常具有实际意义的结果就是,采用恒功率加热方式,需要花费大量时间在金属冷热板的热稳定上,而花费在被测样品上建立稳态所需要的时间并不长。  (2)恒温加热方式计算结果  恒温加热方式是直接将样品冷热面温差控制在20℃整数上,即使得热面温度为45℃。对于纯样品和带铝质冷热板时的模拟计算结果没有差别,如图4-3所示。图中红线为恒问加热过程中样品内部热流量随时间的变化曲线,蓝线为样品内部温度变化速率随时间的变化曲线。从这些曲线可以看出,基本在40分钟后样品就开始进入热流为1.375 W的稳定状态,这显然要比恒功率加热方式能让样品更快的进入稳定状态,另外很重要的一点是稳定时间不受金属冷热板的影响,这在工程实现中也有重要意义。[align=center][img=,690,388]https://ng1.17img.cn/bbsfiles/images/2018/11/201811051957020259_343_3384_3.png!w690x388.jpg[/img][/align][align=center][color=#cc0000]图4-3 参考材料1450d样品恒温加热方式模拟计算结果[/color][/align]  从上图可以很清楚的看出,恒温加热方式中样品内部的温度变化速率要明显快于恒功率加热方式,这主要因为热量传递是以温差为动力的,而恒温加热时样品是在设定温差下进行热量传递和累积,同要实现相同温差传递的恒功率加热方式相比,恒功率加热则首先必须消耗很多时间来使得金属冷热板达到冷热面温度,并建立样品冷热面之间同样的温差,这也是恒功率加热时内部温度变化速率缓慢的原因。  (3)恒温加热方式中不同温度时的计算结果  由于恒温加热方式是采用温差为动力使得样品内部热流和温度变化速度加快,会使得样品可以很快达到热平衡。这等同于电学中的欧姆定律,电压等同于温差,电流等同于热流,电压越大相应的电流也就越大。  为了验证这种现象,在恒温加热方式中在样品热面加载不同的温度45、245、445和645℃,每个温度点恒温加热时间都为2小时,模拟计算结果如图4-4所示。为便于观察,图中将纵坐标放大后进行了显示。从图中的结果可以看出,随着热面温度的不断增大,样品达到稳定的时间并没有缩短,而是略有延长。这种与实际试验中的结果并不相同,这可能是样品内导热系数随温度的变化而引起。[align=center][img=,690,396]https://ng1.17img.cn/bbsfiles/images/2018/11/201811051957200767_4264_3384_3.png!w690x396.jpg[/img][/align][color=#333399][/color][align=center][color=#cc0000]图4-4 不同恒温温度加热时的样品内部温度变化速率对比[/color][/align]  恒温加热方式目前常用在稳态热流计法导热系数测试过程中,这主要是由于其中的热流测量采用了独立的热流传感器,而无需精确测量加载在电加热器上的电功率并换算成热流量。大量测量试验证明恒温加热方式的稳态热流法导热系数测试的时间要大大小于稳态防护热板法,如上海依阳实业有限公司出品的高温热流计法导热系数测试系统基本可以在不到48小时内完成室温-1000℃范围内10个整百度温度设定点下导热系数的连续测量,试验耗时基本与上述理论计算值接近。[b][color=#cc0000]4.2. 真空隔热板两种加热方式计算结果[/color][/b]  真空隔热板(VIPs)是目前隔热材料中导热系数最低的材料,很薄真空隔热板可以具有很大的热阻。我们选择真空隔热板进行模拟计算就是为了观察防护热板法测试这类大热阻样品时的消耗时间。  (1)恒功率加热方式计算结果  为了将样品冷热面温差控制在20℃整数上,模仿实际测试中选择合适的加热功率0.15375 W,然后分别对纯真空绝热板样品和加上两块10mm厚冷热板后的测试模型进行模拟计算,结果如图4-5和图4-6所示。图中红线为恒功率加热过程中样品热面温度随时间的变化曲线,蓝线为样品内部温度变化速率随时间的变化曲线。从这些曲线可以看出,对于纯粹的真空绝热板样品,约在30个小时后样品进入稳定状态,而增加了铝质冷热板后,则样品则会从第350小时(将近15天)后开始才进入热面温度为45℃的稳定状态,这基本上是无法接受的测试时间。[align=center][img=,690,395]https://ng1.17img.cn/bbsfiles/images/2018/11/201811051957513448_487_3384_3.png!w690x395.jpg[/img][/align][align=center][color=#cc0000]图4-5 单纯真空绝热板样品恒功率加热方式模拟计算结果[/color][/align][align=center][color=#333399][img=,690,396]https://ng1.17img.cn/bbsfiles/images/2018/11/201811051958139761_1197_3384_3.png!w690x396.jpg[/img][/color][/align][align=center][color=#cc0000]图4-6 带铝质冷热板和真空绝热板(30mm厚)样品恒功率加热方式模拟计算结果[/color][/align]  上述模拟计算结果也再次证明了恒功率加热过程中大量加热时间消耗在了金属冷热板的稳定上,对于真空绝热板这种超低导热系数和大热阻材料而言,采用经典的防护热板法需要漫长的测试时间,这也是极少看到有机构采用防护热板法进行真空绝热板测试的主要原因。  (2)恒温加热方式计算结果  恒温加热方式是直接将样品冷热面温差控制在20℃整数上,即使得热面温度为45℃。对于纯真空绝热板样品和带铝质冷热板时的模拟计算结果没有差别,如图4-7所示。图中红线为恒问加热过程中样品内部热流量随时间的变化曲线,蓝线为样品内部温度变化速率随时间的变化曲线。从这些曲线可以看出,从第7小时开始样品进入内部热流为0.15375 W的稳定状态,显然要比恒功率加热方式能让样品更快的进入稳定状态而具有实际意义。同样,另外重要的一点是稳定时间不受金属冷热板的影响。[align=center][color=#333399][img=,690,393]https://ng1.17img.cn/bbsfiles/images/2018/11/201811051958395005_4648_3384_3.png!w690x393.jpg[/img][/color][/align][align=center][color=#cc0000]图4-7 真空绝热板(30mm厚)样品恒温加热方式模拟计算结果[/color][/align]  由上述针对真空绝热板防护热板法导热系数测试所进行的两种加热方式模拟仿真计算结果可以看出,针对大热阻样品的测试,只有恒温加热方式在实际应用中可以接受,但存在的问题则是很难准确测量加热稳态时的加热功率。为了规避这个难题,目前业界普遍采用的是稳态热流计法,即采用独立的热流计来测量流经样品的热流密度,但代价是降低测量精度。这是因为热流计精度较差,还需要采用防护热板法装置进行校准,但这样的好处是可以有效提高测试效率。[b][color=#cc0000]4.3. 大厚度高热阻复合隔热材料两种加热方式计算结果[/color][/b]  为了说明问题,将复合结构隔热材料简化为单一固体材料构成的大厚度高热阻样品,其总厚度为130mm,导热系数为0.02W/mK,总热阻为6.5m^2K/W。  (1)恒功率加热方式计算结果  为了将样品冷热面温差控制在20℃整数上,模仿实际测试中选择合适的加热功率0.1923 W。经过模拟计算后分别到纯样品和带金属冷热板样品的结果如图4-8和图4-9所示。[align=center][img=,690,393]https://ng1.17img.cn/bbsfiles/images/2018/11/201811051958567443_1378_3384_3.png!w690x393.jpg[/img][/align][align=center][color=#cc0000]图4-8 单纯复合材料样品恒功率加热方式模拟计算结果[/color][/align][align=center][color=#333399][img=,690,394]https://ng1.17img.cn/bbsfiles/images/2018/11/201811051959113998_3826_3384_3.png!w690x394.jpg[/img][/color][/align][color=#333399][/color][align=center][color=#cc0000]图4-9 带铝质冷热板和复合隔热材料(130mm厚)样品恒功率加热方式模拟计算结果[/color][/align]  图中红线为恒功率加热过程中样品热面温度随时间的变化曲线,蓝线为样品内部温度变化速率随时间的变化曲线。从这些曲线可以看出,对于纯粹的复合材料样品,约在150个小时后样品进入稳定状态,而增加了铝质冷热板后,则样品则会从第400小时后开始才进入热面温度为45℃的稳定状态,这些显然要比真空绝热板稳定时间还要长很多。  (2)恒温加热方式计算结果  恒温加热方式是直接将样品冷热面温差控制在20℃整数上,即使得热面温度为45℃,模拟计算结果如图4-10所示,其中有无金属冷热板对模拟计算结果的影响可以忽略不计。[align=center][img=,690,392]https://ng1.17img.cn/bbsfiles/images/2018/11/201811051959396346_372_3384_3.png!w690x392.jpg[/img][/align][color=#333399][/color][align=center][color=#cc0000]图4-10 大厚度高热阻复合隔热材料(130mm厚)样品恒温加热方式模拟计算结果[/color][/align]  图4-10中红线为恒温加热过程中样品内部热流量随时间的变化曲线,蓝线为样品内部温度变化速率随时间的变化曲线。从这些曲线可以看出,从第30小时开始样品进入内部热流为0.1923 W的稳定状态,显然要比恒功率加热方式能让样品更快的进入稳定状态而具有实际意义,可见对于大厚度高热阻复合材料的测试,每个温度点导热系数测试耗时基本也要在1~2天左右。[b][color=#cc0000]5.分析和结论[/color][/b]  针对三种不同热阻范围的典型隔热材料,利用MapleSim软件对恒功率和恒温两种加热方法的模拟分析可以发现:  (1)恒功率加热时材料内部的温度场变化比较缓慢,热量在材料内部传递是一个由加热面逐渐扩散到内部的缓慢的过程。但恒功率加热方法简单,并且由于功率值恒定,而稳态时加热功率和温度波动较小,所以精度比较高。加上这种加热方式工程上易于实现,使得恒功率加热是目前国内外防护热板法导热仪中最常用的加热方法。  (2)恒温加热时材料内部温度场变化比较快,热量可以快速的由加热面传递到材料的内部并达到稳定,稳定时间要远小于恒功率加热法,而且样品热面温度可以准确控制在设定点温度上以保证样品厚度方向上的温差为规定常数,这些在低导热材料防护热板法测试中非常具有现实意义。一般恒温加热方法普遍采用PID控制技术实现,但PID控制热面温度稳定时,加热功率并不是连续恒定不变,而且还存在波动,实现准确测量对控制系统硬件的技术要求非常高。  (3)目前国内外大多数防护热板法导热仪基本都采用的是恒功率加热方式,主要是由于没有很好解决PID恒温加热方式中的加热功率准确控制和测量这两方面的问题。特别是对于高热阻(大厚度和超低导热系数)材料的测试,样品热面温度控制过程中的过冲超调,温度过冲后回调非常缓慢,因此对PID算法的要求也非常高以避免过冲超调,否则体现不出恒温加热方式的优越性。  (4)由于恒功率和恒温加热方式各具特点,在实际应用中存在着相应的技术难题。为了扬长避短,对于高热阻(如真空绝热板)材料导热系数测试,有些导热系数测试仪器采用了达到稳态时间更短的恒温加热方法以满足工业生产质量品控需要。但为了规避热流测量中遇到的技术难题,则采取了牺牲精度保速度的策略,即采用热流计法在一维传热回路中介入独立的热流计来测量热流密度。这种热流计法充分发挥了恒温加热方式的特长,但存在热流计测量误差较大的问题。另外,热流计需要采用防护热板法进行校准,特别是对于高热阻导热系数测试中的低热流密度的测量误差较大,这种方法仅适用于工业生产中的粗放式检测。  (5)从上述三种典型隔热材料模拟计算中可以看出,对于高热阻材料的导热系数测试,达到稳态时的热量非常小。这也就是说由于材料的隔热性能太优异,使得只要加载很小的热量就能达到设定的冷热面温差,而这种小热量则对防护热板法护热装置提出了更高要求。由于计量热板所需热量小,热板防护装置引起的温度不平衡会使得漏热效应显著提高,同时也对温差探测器提出更高灵敏度要求。如在上述标准参考材料测试中稳态时的热量为1.375 W,对于这种热量下的可接受的漏热百分比所对应的护热能力,如果应用在上述真空绝热板和高热阻复合材料测试中稳态时的热量中(0.15375 W和0.1923 W),那么相同的护热能力所带来的漏热误差将由于热量降低10倍而使得误差增大10倍。另外,高热阻小热量防护热板法中的漏热问题在单样品测试中特别显著,对于大尺寸样品更为突出,这是因为单样品测量中护热面积为整个样品的横截面加四周侧面,具有巨大的护热面积和漏热通道,而这在双样品测试中则只存在较小面积的四周侧面护热,这也是高精度防护热板法装置普遍采用双样品模式进行测量的原因。因此,为了减小单样品高热阻材料防护热板法测试中大面积漏热问题,必须进一步提高温差探测器的灵敏度,并尽可能减少温差探测器引线数量避免带来相应的引线漏热问题。[align=center]~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~[/align]

  • 近场热辐射表征中的保护热板法测试技术

    近场热辐射表征中的保护热板法测试技术

    [color=#990000]摘要:本文介绍了近场热辐射基本概念,并针对两平板之间的近场热辐射测试,介绍了经典导热系数保护热板测试方法在近场热辐射表征中的应用。[/color][size=18px][color=#990000]一、近场热辐射现象[/color][/size]如果两个相邻物体的温度不同,则它们之间则存在热辐射传递,可以用众所周知的普朗克黑体辐射理论来准确估计此辐射热流,条件是两物体之间的距离要远大于辐射的平均波长。目前已经确定的是,当物体间距小于辐射波长时,普朗克理论会失效,而这种距离则称之为近场,近场热辐射是指与物体间距小于特征波长区域的辐射, 热辐射强度随着与辐射体间距的减小而呈指数规律快速增大,如图1所示。[align=center][img=近场辐射测量,600,496]https://ng1.17img.cn/bbsfiles/images/2021/12/202112311018508887_5199_3384_3.jpg!w690x571.jpg[/img][/align][align=center][color=#990000]图1 辐射热流密度随距离的变化[/color][/align][size=18px][color=#990000]二、近场辐射热流测量[/color][/size]为了对近场热辐射进行表征,一般是在真空中测试两个微小间距的平行板。随着平板间距减小,辐射热流逐渐受到干涉波和消散波的影响,辐射热流会随之增强。近场辐射热流密度测量装置是基于保护热板法(GHP),该方法通常用于测量隔热材料的导热系数,如图2所示,图中的样品1在近场辐射测量中则是真空间距。[align=center][color=#990000][img=近场辐射测量,690,296]https://ng1.17img.cn/bbsfiles/images/2021/12/202112311019195377_8070_3384_3.jpg!w690x296.jpg[/img][/color][/align][align=center][color=#990000]图2 经典防护热板法测量原理[/color][/align]选择保护热板法的依据是这种方法是一种绝对测量方法,可以精确控制热损失,这对热辐射测量至关重要。辐射热流测量装置中,图2所示的辅助绝热板将由一个热电堆温差传感器代替,由此可以更精确地控制热损失。两板之间的平行度和距离控制是测量装置的关键条件,我们采用三个独立控制的压电致动器以纳米量级来变化板之间距离,并用电容传感器监测两板之间三个位置点的绝对间隙值。该装置的研制将能够精确测量近场热辐射的热流密度。[align=center]~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~[/align]

  • 液氢储运中的几种绝热材料及其热性能

    液氢储运中的几种绝热材料及其热性能

    摘要:随着氢能源汽车的快速发展,液氢储运将大规模出现在商业应用中,被动防热中的绝热材料和系统是决定液氢储运经济性和安全性的重要因素。本文介绍了目前液氢储运中候选的几类绝热材料/系统,介绍了它们各自的特点及其热性能。[align=center]~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~[/align][size=18px][color=#333399]一、液氢的蒸发和损失[/color][/size] 由于氢气的正常沸点极低(20.4K),在储运过程,当外部温度接近环境温度(~300K)时,内部储罐的温度必须保持在20K或更低,从而导致约有280K的温差。由于这种显著温差,即使隔热良好,漏热热流也会非常显著。例如位于NASA肯尼迪航天中心的最大储罐LC-39B,3200m3容量(约224吨),如图1所示,每天会导致0.03~0.05%的蒸发损失[1]。[align=center][color=#000099][img=低温绝热材料热性能,600,382]https://ng1.17img.cn/bbsfiles/images/2022/01/202201151909474272_5271_3384_3.jpg!w690x440.jpg[/img][/color][/align][align=center][color=#000099]图1 肯尼迪航天中心LC-39B液氢储罐[/color][/align] 如图2所示,以相对蒸发率BOR(单位:每天%)为指标评价液氢的相对损失(相对于储罐尺寸),储罐越小损失越大,较大储罐损失可能较小,因为从周围环境热量进入到储罐的热传递的单位体积表面积较小。尽管随着储罐尺寸的增大(容量约为20000 或更高),相对蒸发损失可降至0.01%以下,但对于较大储罐,液氢损失的绝对量非常可观。这不仅会导致有效储量(和生产能力)降低,还会带来其他安全威胁,因为汽化的氢气呈气态,如果暴露在环境中,会迅速升温。这些威胁包括但不限于易燃性和其他问题,例如焊接/阀门材料的脆化,以及通风管道/部件中环境空气的液化。 [align=center][color=#000099][img=低温绝热材料热性能,600,393]https://ng1.17img.cn/bbsfiles/images/2022/01/202201151910230789_9197_3384_3.jpg!w690x452.jpg[/img][/color][/align][align=center][color=#000099]图2 绝热厚度(或漏热热流)固定时的每日蒸发率与罐体尺寸关系[/color][/align] 目前,低温介质的零蒸发存储技术(Zero Boil Off,ZBO)被用于控制蒸发损失,即利用低温制冷机主动冷却液氢储罐使其内部温度保持在20K以下,或者将沸腾的气态氢转化为[url=https://insevent.instrument.com.cn/t/5p][color=#3333ff]液相[/color][/url]。 尽管主动冷却技术可有效减少净蒸发,然而对于实际的液氢储运,这种方法需要进一步评估,以确定这种方法在经济上是否可行,因为成本显著增加且有些储罐尺寸较大。总之,在任何情况下,无论有无采用主动冷却技术,被动防热技术中更有效的绝热材料以及绝热系统设计对于液氢储运都至关重要。[size=18px][color=#000099]二、六种候选绝热材料/系统[/color][/size] 在液氢储运方面,商业上存在多种绝热材料可供选择,材料性能差异很大,包括体积密度、复合结构、制造形式、老化、环境暴露和层密度等各种因素的具体变化,因此选择最佳绝热材料以最大限度减少热量进入储箱则是液氢储运中的一项重要内容。 (1)气凝胶材料 目前的气凝胶材料有多种形式,如颗粒(散装)、复合毯、无纺材料中的粉末或颗粒、片状和块状的聚酰亚胺交联气凝胶等。气凝胶复合毯可以提供非常低的热导率,同样,选择散装填充和复合毯型气凝胶材料可以提供额外的能力,因为它们具有纳米多孔结构的强度和超疏水性的化学成分。气凝胶材料的一个重要优点是它们可以吸附气体形式的单个氮分子,因为它冷却到稳态温度并避免形成液体。根据文献[2]中描述的测试及其结果,气凝胶有可能减轻非真空系统的低温泵浦效应。然而,这些实验是基于液氮的测试,还需在相关条件(液氢和非真空)下进行更多测试,以了解气凝胶材料对抗低温泵浦的性能和液氢储存的绝热效率。气凝胶材料相对较高的成本可能会限制其商业应用,但其安装成本可能低于传统泡沫材料,这意味着安装时的总成本以及生命周期考虑是关键指标。 (2)闭孔泡沫 闭孔泡沫材料主要有闭孔硬质泡沫板(RFP)和硬质喷涂泡沫绝热材料(SOFI),它们在限制传质方面表现良好,但有很大比例的开孔含量(至少5%),气态分子仍然可以通过这些开孔含量到达冷侧[3]。虽然闭孔泡沫刚性面板不存在此类问题,但随着时间的推移,它们可能会导致其他问题,例如所有接头、接缝和界面的完整性。由机械损坏(最初或随着时间的推移,或由热循环效应)产生的一系列小裂缝或间隙可能导致对抗低温泵浦或隔热效果的普遍退化。 (3)多层绝热(MLI)系统 虽然MLI在液氢储存方面的表现非常好,但它们可能不适合大规模装置,因为考虑到精致的物理结构,它们对真空的要求很高,而且在大规模工业使用中安装不切实际[4]。然而,已经开发成功的层状复合材料可以将MLI系统的反射特性与气凝胶的高机械强度、低导热性相结合,其中包括用于软真空到中等真空环境的分层复合绝热材料(LCI)[5]。LCI系统结合了气凝胶复合毯材料层,也已被证明具有机械强度[6]。 (4)分层复合绝热系统(LCX) 分层复合系统LCI的另一种变体是LCX,它用于非真空或室外环境[7]。组件包括第一层气凝胶复合毯与连续成对的气凝胶毯和可压缩阻隔层相结合。LCX系统也已成功用于7600升液氮储罐[8]和许多液氢输送管道和组件系统多年[9]。 (5)珍珠岩粉 用于真空夹层绝热系统的散装填充材料包括珍珠岩粉和中空玻璃微球(玻璃泡)。珍珠岩粉可以在施工现场通过裂解火山岩生产,成本相对较低。珍珠岩已广泛用于LNG绝热系统[10],也被NASA用在两个LH2球形罐的绝热系统[11]。 (6)3M玻璃泡 由硼硅酸盐玻璃制成的空心玻璃微球已被NASA广泛用于液氢储罐的应用测试,以替代珍珠岩[12,13]。玻璃泡在所有真空度下都比珍珠岩具有更好的热性能,并显示出更好的物理性能,即气泡不会因振动或热循环而破裂和压实变形。总体而言,玻璃泡表现出更强大的性能,并被证明是用于抽空液氢和其他低温介质储罐应用的优质散装绝热材料。[size=18px][color=#000099]三、绝热材料/系统热性能[/color][/size] 对于上述几种绝热材料或系统的热性能评价,采用了ASTM C1774“低温绝热系统热性能测试的标准指南”中推荐的测试方法。基于此方法测试获得的实验数据[14]对上述不同厚度绝热材料/系统在不同真空度下的等效热导率和漏热热流密度进行了汇总,如图3和图4所示。[align=center][color=#000099][img=低温绝热材料热性能,690,516]https://ng1.17img.cn/bbsfiles/images/2022/01/202201151912153362_1201_3384_3.jpg!w690x516.jpg[/img][/color][/align][align=center][color=#000099]图3 各种不同厚度低温绝热材料/系统在不同真空度下的等效导热系数测试结果[/color][/align][align=center][color=#000099][/color][/align][align=center][color=#000099][img=低温绝热材料热性能,690,515]https://ng1.17img.cn/bbsfiles/images/2022/01/202201151912292998_9572_3384_3.jpg!w690x515.jpg[/img][/color][/align][align=center][color=#000099]图4 各种不同厚度低温绝热材料/系统在不同真空度下的漏热热流密度测试结果[/color][/align] 决定热性能的一个主要因素是整个隔热系统在稳态操作条件下的真空度范围,即ASTM C1774中定义的冷真空压力(CVP)。因此,测试结果中的有效导热系数数据根据给定材料/系统分为三类CVP:高真空(HV,即小于1mTorr)、软真空(SV,即约100mTorr)和无真空(NV,即1个大气压或约760Torr)。另外所有测试中所设定的冷热面边界温度分别为78K和293K,残余气体为氮气。 基于实验数据[14]对上述绝热材料/系统的初步评估见表1,以进行一阶比较。[align=center][color=#000099]表1 各种低温绝热材料/系统及其性能[/color][/align][align=center][img=低温绝热材料热性能,690,319]https://ng1.17img.cn/bbsfiles/images/2022/01/202201151912524819_2938_3384_3.png!w690x319.jpg[/img][/align][size=18px][color=#000099]四、总结[/color][/size] 通过上述几类候选绝热材料和系统的介绍,以及它们的各自特点和热性能,可以得出以下几方面的结论: (1)软真空SV范围和高真空HV范围之间的最大区别是根据系统的尺寸和几何形状,在大约50mTorr下发生向自由分子气体热传导的转换,即在软真空范围内绝热材料或系统的有效导热系数和进入的热流密度会发生数量级上的急剧变化。因此在现有绝热材料或系统中,无真空范围内的热泄露会非常严重,但可以希望通过相对简单的真空抽气设备和工艺可实现约100mTorr的软真空抽取能力,而实现1mTorr在技术上更难实现,尤其是对于大型系统。 (2)迄今为止,NASA已对700多种材料和系统中的大约50%进行了测试分析,测试筛选的结果如图3和图4所示。图中的阴影区域代表“中等低温蒸汽压力”区域,该区域在集成绝热系统中具有最大的应用潜力,使用较低总压力下运行的系统将需要较少的造价和维护。 (3)多年来NASA已经在全球建立起了唯一完备和系统的低温绝热材料/系统的热性能测试评价平台,并倡导建立了测试方法ASTM C1774。然而,这些实验的绝大多数是基于液氮的测试,对于用于液氢储运的绝热材料还需在相关条件(液氢和非真空)下进行更多测试,以了解绝热效率和其他物理性能。 (4)对于超低导热系数的绝热材料/系统的测试,ASTM C1774确实是一种非常有效的测试方法,此标准从2013年颁布以来经过多次修订,但目前还是一种ASTM的“标准指南-Standard Guide”。由于还存在许多技术难题(如低温下绝热材料样品收缩后的厚度在线测量修正和蒸发量热计侧向精确护热等)、无法进行不确定度考核评定、各种边界和环境等条件需要精确控制以及测试系统整体造价昂贵等问题,造成此方法一直无法升级为一种标准测试方法(Standard Test Method)或标准实施规程(Standard Practice)。总之,针对大规模液氢储运中的绝热材料和系统的导热系数测试,需建立有效和经济的新型测试方法,需提高测量精度和重复性精度。[size=18px][color=#000099]五、参考文献[/color][/size][1] Peschka W. Liquid hydrogen: fuel of the future. Springer Science & Business Media 2012 Dec 6.[2] Fesmire JE, Sass JP. Aerogel insulation applications for liquid hydrogen launch vehicle tanks. Cryogenics 2008 May 1 48(5e6):223-31.[3] Fesmire JE, Coffman BE, Meneghelli BJ, HeckleKW. Spray-on foam insulations for launch vehicle cryogenic tanks. Cryogenics 2012 Apr 1 52(4-6):251-61.[4] Fesmire J, Augustynowicz S, Darve C. Performance characterization of perforated multilayer insulation blankets. Proc Nineteenth Int Cryogenic 2002:843-6.[5] Fesmire JE, Augustynowicz SD, Scholtens BE. Robust multilayer insulation for cryogenic systems. In: AIP conference proceedings. vol. 985. American Institute of Physics 2008 Mar 16. p. 1359e66. 1.[6] Johnson WL, Demko JA, Fesmire JE. Analysis and testing of multilayer and aerogel insulation configurations. In: AIP conference proceedings. vol. 1218. American Institute of Physics 2010 Apr 9. p. 780-7. 1.[7] Fesmire JE. Layered composite thermal insulation system for nonvacuum cryogenic applications. Cryogenics 2016 Mar 1 74:154-65.[8] Fesmire JE. Layered thermal insulation systems for industrial and commercial applications. NASA report 2015. 2015 (report/patent#:KSC-E-DAA-TN26226).[9] Fesmire JE. Aerogel-based insulation materials for cryogenic applications. In: IOP conference series: materials science and engineering. vol. 502. IOP Publishing 2019 Apr, 012188. 1.[10] Bahadori A. Thermal insulation handbook for the oil, gas, and petrochemical industries. Gulf Professional Publishing 2014 Mar 14.[11] Krenn AG. Diagnosis of a poorly performing liquid hydrogen bulk storage sphere. In: AIP conference proceedings. vol. 1434. American Institute of Physics 2012 Jun 12. p. 376-83. 1.[12] Fesmire JE, Augustynowicz SD, Nagy ZF, Sojourner SJ, Morris DL. Vibration and thermal cycling effects on bulk-fill insulation materials for cryogenic tanks. In: AIP conference proceedings. vol. 823. American Institute of Physics 2006 Apr 27. p. 1359-66. 1.[13] Sass JP, Fesmire JE, Nagy ZF, Sojourner SJ, Morris DL, Augustynowicz SD. Thermal performance comparison of glass microsphere and perlite insulation systems for liquid hydrogen storage tanks. In: AIP conference proceedings. vol. 985. American Institute of Physics 2008 Mar 16. p. 1375-82. 1.[14] Fesmire JE, Swanger AM. Advanced cryogenic insulation systems. International Congress of Refrigeration. Montreal, Quebec, Canada: Intl Institute of Refrigeration Aug 2019.[align=center]~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~[/align]

  • 防护热板法导热仪间隙温度不平衡传感器的指标设计

    防护热板法导热仪间隙温度不平衡传感器的指标设计

    [color=#cc0000]  摘要:本文主要针对超低导热系数和大热阻样品材料,如各种真空绝热板、多层防辐射屏隔热材料和大厚度多层复合隔热材料等,同时考虑单样品和双样品两种测量模式,设计计算了防护热板法装置对温度不平衡传感器的灵敏度要求,并最终给出设计指标和相应的技术改进。[/color][color=#cc0000]  关键词:防护热板法,温度不平衡,传感器,灵敏度[/color][align=center]~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~[/align][b][color=#cc0000] 1. 概述[/color][/b]  针对不同被测材料类型,防护热板法导热仪一般分为单样品和双样品两种测量模式,如图1-1所示。[align=center][img=,690,255]https://ng1.17img.cn/bbsfiles/images/2018/11/201811232126417209_8902_3384_3.png!w690x255.jpg[/img][/align][color=#cc0000][/color][align=center]图1-1 防护热板法导热仪样品结构形式。(a)双样品模式;(b)单样品模式[/align][align=center][/align]  防护热板法的测量原理就是采用护热手段保证计量板发出的热量全部通过被测样品而达到一维稳定状态,因此护热手段是保证防护热板法导热系数测量准确的核心。防护热板法中的护热基本上采用的都是等温绝热原理,即各种护热板的温度要与计量板温度一致,从而减少计量板上的热量以各种传热方式进行散失。  温度不平衡传感器是检测计量板与各个护热板之间温度差的探测装置,传感器探测到的温差传递给控制器,控制器控制护热板温度变化使得温度不平衡传感器的输出值最小,从而构成闭环控制回路形成有效的护热控制。温度不平衡传感器的输出值越小,说明护热板与计量板之间的温差越小,护热效果就越好。  由此可见,温度不平衡传感器的灵敏度是防护热板法装置护热效果好坏的重要评判依据。由于诸如安装和可靠性等诸多因素的影响,植入在计量板和护热板之间的温度不平衡传感器不可能无限制提升灵敏度,灵敏度需要根据防护热板法导热系数测量范围和测量精度要求、所用控制器和数据采集器的分辨率以及测试温度范围等因素进行优化和设计,以选择合适的温度不平衡传感器灵敏度。  本文主要针对超低导热系数和大热阻样品材料,如各种真空绝热板、多层防辐射屏隔热材料和大厚度多层复合隔热材料等,来设计计算防护热板法测试中温度不平衡传感器的灵敏度要求,并同时考虑单样品和双样品测量模式下防护热板法装置对温度不平衡传感器的要求,最终给出设计指标和相应的技术改进。[b][color=#cc0000]2. 建模[/color][/b]  针对图1-1所示的防护热板法导热系数测试结构,首先进行了建模。无论是单样品还是双样品模式,防护热板法装置都是圆形或正方形的轴对称结构,所以建模只考虑了正方形结构。另外为了便于更直观的进行分析和说明问题,本文只描述了上海依阳实业有限公司的部分建模分析内容,即仅介绍了基于导热传热的建模分析,在实际建模分析中还需要针对对流和辐射传热进行建模,分析模型如图2-1所示。  在图2-1所示的护热分析模型中,同时兼顾了单样品和双样品测量模式。当隔热材料更换成样品,底部护热板温度控制在冷板温度时,则是双样品测量模式。  在图2-1所示的护热分析模型中,只考虑了侧向护热和底部护热所引起的漏热问题,而温差探测器的指标设计也只要依据这两方面的考虑,并未考虑狭缝处样品内的传热漏热影响。在双样品测量模式中,只考虑侧向护热时狭缝中温度不平衡传感器技术指标。而在单样品测量模式中,还需另外考虑底部护热板与计量板之间的温度不平衡传感器技术指标。[align=center][img=,690,975]https://ng1.17img.cn/bbsfiles/images/2018/11/201811232132159957_5150_3384_3.png!w690x975.jpg[/img][/align][align=center][img=,690,975]https://ng1.17img.cn/bbsfiles/images/2018/11/201811232132165728_1784_3384_3.png!w690x975.jpg[/img][/align][align=center][img=,690,975]https://ng1.17img.cn/bbsfiles/images/2018/11/201811232132168894_1769_3384_3.png!w690x975.jpg[/img][/align][align=center][img=,690,975]https://ng1.17img.cn/bbsfiles/images/2018/11/201811232132173004_918_3384_3.png!w690x975.jpg[/img][/align][align=center][img=,690,975]https://ng1.17img.cn/bbsfiles/images/2018/11/201811232132177185_3520_3384_3.png!w690x975.jpg[/img][/align][align=center][img=,690,975]https://ng1.17img.cn/bbsfiles/images/2018/11/201811232132182949_3584_3384_3.png!w690x975.jpg[/img][/align][align=center][img=,690,975]https://ng1.17img.cn/bbsfiles/images/2018/11/201811232132187076_4077_3384_3.png!w690x975.jpg[/img][/align][align=center][img=,690,975]https://ng1.17img.cn/bbsfiles/images/2018/11/201811232132191686_5352_3384_3.png!w690x975.jpg[/img][/align][align=center][img=,690,975]https://ng1.17img.cn/bbsfiles/images/2018/11/201811232132196851_8619_3384_3.png!w690x975.jpg[/img][/align]  (5)在无法提高仪表测量和控制分辨率时,可以设法增大热电堆中的热电偶数量,如将8对热电偶增多到16对热电偶构成8对的温差热电堆,温度不平衡精度可以提高到0.5℃,但这种改进效果十分有限,同时也带来其他严重问题。目前上海依阳实业有限公司已经开发出新型的温度不平衡传感器,可以将现有传感器的灵敏度提升到40~50的水平,比现有热电偶式热电堆的灵敏度搞出2个量级,由此可以用五位半控制器很轻易的实现0.01℃和更高水平的温度不平衡精确控制。  (6)另外一个提高和保证测量精度的途径,就是降低侧向护热的热交换面积,采用薄加热器形式。这种思路经美国橡树岭国家实验室针对多层辐射隔热材料和真空绝热板进行的测试验证了可行性,由此相继建立了A-S-T-M C1044和A-S-T-M C1114标准等。但由于薄加热器很难制作应用到高温,薄加热器形式的防护热板法设备主要应用于温度不高的导热系数测试。  (7)需要特别指出的是,目前国内绝大多数大热阻和超低导热系数的测试,很多都是采用稳态热流计法这种相对法,而热流计法导热仪中的热流计在超低导热系数测试中的低热流测量时误差巨大,而且还无法对热流计进行校准以及采用超低导热系数的标准材料进行校准,而真正的热流计校准则是采用防护热板法设备,由防护热板法提供精确的可控热量。[b][color=#cc0000]5. 参考文献[/color][/b]  (1) Zarr R R, Flynn D R, Hettenhouser J W, et al. Fabrication of a guarded-hot-plate apparatus for use over an extended temperature range and in a controlled gas atmosphere. Thermal Conductivity, 2006, 28: 235.  (2) Zarr R R. Assessment of uncertainties for the NIST 1016 mm guarded-hot-plate apparatus: extended analysis for low-density fibrous-glass thermal insulation. Journal of research of the national institute of standards and technology, 2010, 115(1): 23.[align=center]~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~[/align]

  • 真空烘箱的使用技巧

    1.真空烘箱在我们日常生活的应用中越来越广泛,但是由于相关人员的疏忽和对于其不了解,因此在使用过程中出现了一系列的问题,下面就真空干燥箱经常性出席那的问题和大家一起探讨分析。 2.真空烘箱如果按先升温加热再抽真空的程序操作,加热的空气被真空泵抽出去的时候,热量必然会被带到真空泵上去,从而导致真空泵温升过高,有可能使真空泵效率下降。3.正确的使用方法应该先抽真空再升温加热。待达到了额定温度后如发现真空度有所下降时再适当加抽一下。这样做对于延长设备的使用寿命是有利的。4.一般的电热真空干燥箱都采用先加热真空室壁面、再由壁面向工件进行辐射加热的方式。在这种方式下,控温仪表的温度传感器可以布置在真空室外壁。传感器可以同时接受对流、传导、和辐射热。而处于真空室里的玻璃棒温度计只能接受辐射热,更由于玻璃棒黑度不可能达到1,相当一部分辐射热被折射了,因此玻璃棒温度计反映的温度值就肯定低于仪表的温度读数。5.一般讲,200℃工况时仪表的温度读数与玻璃棒温度计的读数两者相差30℃以内是正常的。如果控温仪表的温度传感器布置在真空室内,玻璃棒温度计的温度值与仪表的温度读数之间的差异可以适当缩小,但不可能消除,而真空室的密封可靠性增加了一个可能不可靠环节。如果从操作实用角度考虑不希望看到这个差异,可以采用控温仪表特有的显示修正功能解决。6.真空烘箱从本质上来说是为人们更方便更好的生活服务的,但是如果因操作不当出现问题,还会给我们的工作和生活带来负面影响,因此,在平常的基本操作过程中,我们应该谨遵真空烘箱使用规则,小心安全的使用,尽量让其更长时间地为我们的生活服务。

  • 实验室真空烘箱的使用技巧

    1.真空烘箱在我们日常生活的应用中越来越广泛,但是由于相关人员的疏忽和对于其不了解,因此在使用过程中出现了一系列的问题,下面就真空干燥箱经常性出席那的问题和大家一起探讨分析。2.真空烘箱如果按先升温加热再抽真空的程序操作,加热的空气被真空泵抽出去的时候,热量必然会被带到真空泵上去,从而导致真空泵温升过高,有可能使真空泵效率下降。3.正确的使用方法应该先抽真空再升温加热。待达到了额定温度后如发现真空度有所下降时再适当加抽一下。这样做对于延长设备的使用寿命是有利的。4.一般的电热真空干燥箱都采用先加热真空室壁面、再由壁面向工件进行辐射加热的方式。在这种方式下,控温仪表的温度传感器可以布置在真空室外壁。传感器可以同时接受对流、传导、和辐射热。而处于真空室里的玻璃棒温度计只能接受辐射热,更由于玻璃棒黑度不可能达到1,相当一部分辐射热被折射了,因此玻璃棒温度计反映的温度值就肯定低于仪表的温度读数。5.一般讲,200℃工况时仪表的温度读数与玻璃棒温度计的读数两者相差30℃以内是正常的。如果控温仪表的温度传感器布置在真空室内,玻璃棒温度计的温度值与仪表的温度读数之间的差异可以适当缩小,但不可能消除,而真空室的密封可靠性增加了一个可能不可靠环节。如果从操作实用角度考虑不希望看到这个差异,可以采用控温仪表特有的显示修正功能解决。6.真空烘箱从本质上来说是为人们更方便更好的生活服务的,但是如果因操作不当出现问题,还会给我们的工作和生活带来负面影响,因此,在平常的基本操作过程中,我们应该谨遵真空烘箱使用规则,小心安全的使用,尽量让其更长时间地为我们的生活服务。

  • 【分享】电热真空干燥箱的三大问题分析

    1、电热真空干燥箱为什么不设温度均匀度参数  一般的电热(鼓风)干燥箱均设有温度均匀度参数:自然对流式的干燥箱为工作温度上限乘3%,强制对流式的干燥箱为工作温度上限乘2.5%。惟独电热真空干燥箱不设温度均匀度参数,这是为什么?真空干燥箱内依靠气体分子运动使工作室温度达到均匀的可能性几乎已经没有了。因此,从概念上我们就不能再把通常电热(鼓风)干燥箱所规定的温度均匀度定义用到真空干燥箱上来。在真空状态下设这个指标也是没有意义的。热辐射的量与距离的平方成反比。同一个物体,距离加热壁20cm处所接受的辐射热只是距离加热壁10cm处的1/4。差异很大。这种现象与冬天晒太阳时,晒到太阳的一面很暖和,晒不到太阳的一面比较冷是一个道理。由于真空干燥箱在结构上很难做到使工作室三维空间内的各点(园球面)辐射热的均匀一致,同时也缺乏权威的评估方法,这有可能是电热真空干燥箱标准中不设温度均匀度参数的原因。  2、电热真空干燥箱的仪表读数与真空室里的玻棒温度计读数为什么产生差异?  一般的电热真空干燥箱都采用先加热真空室壁面、再由壁面向工件进行辐射加热的方式。在这种方式下,控温仪表的温度传感器可以布置在真空室外壁。传感器可以同时接受对流、传导、和辐射热。而处于真空室里的玻璃棒温度计只能接受辐射热,更由于玻璃棒黑度不可能达到1,相当一部分辐射热被折射了,因此玻璃棒温度计反映的温度值就肯定低于仪表的温度读数。一般讲,200℃工况时仪表的温度读数与玻璃棒温度计的读数两者相差30℃以内是正常的。如果控温仪表的温度传感器布置在真空室内,玻璃棒温度计的温度值与仪表的温度读数之间的差异可以适当缩小,但不可能消除,而真空室的密封可靠性增加了一个可能不可靠环节。如果从操作实用角度考虑不希望看到这个差异,可以采用控温仪表特有的显示修正功能解决。  3、电热真空干燥箱先抽真空再升温加热的原因  电热真空干燥箱正确的使用方法:先抽真空再升温加热,待达到了额定温度后如发现真空度有所下降时再适当加抽一下。这样做对于延长设备的使用寿命是有利的。具体原因如下:  1)工件放入真空箱里抽真空是为了抽去工件材质中可以抽去的气体成分。如果先加热工件,气体遇热就会膨胀。由于真空箱的密封性非常好,膨胀气体所产生的巨大压力有可能使观察窗钢化玻璃爆裂。这是一个潜在的危险。按先抽真空再升温加热的程序操作,就可以避免这种危险。  2)如果按先升温加热再抽真空的程序操作,加热的空气被真空泵抽出去的时候,热量必然会被带到真空泵上去,从而导致真空泵温升过高,有可能使真空泵效率下降。  3)加热后的气体被导向真空压力表,真空压力表就会产生温升。如果温升超过了真空压力表规定的使用温度范围,就可能使真空压力表产生示值误差。

  • 真空烘箱相关知识详细解析

    真空烘箱在我们日常生活的应用中越来越广泛,但是由于相关人员的疏忽和对于其不了解,因此在使用过程中出现了一系列的问题,下面就真空干燥箱经常性出席那的问题和大家一起探讨分析。 真空烘箱如果按先升温加热再抽真空的程序操作,加热的空气被真空泵抽出去的时候,热量必然会被带到真空泵上去,从而导致真空泵温升过高,有可能使真空泵效率下降。正确的使用方法应该先抽真空再升温加热。待达到了额定温度后如发现真空度有所下降时再适当加抽一下。这样做对于延长设备的使用寿命是有利的。一般的电热真空干燥箱都采用先加热真空室壁面、再由壁面向工件进行辐射加热的方式。在这种方式下,控温仪表的温度传感器可以布置在真空室外壁。传感器可以同时接受对流、传导、和辐射热。而处于真空室里的玻璃棒温度计只能接受辐射热,更由于玻璃棒黑度不可能达到1,相当一部分辐射热被折射了,因此玻璃棒温度计反映的温度值就肯定低于仪表的温度读数。一般讲,200℃工况时仪表的温度读数与玻璃棒温度计的读数两者相差30℃以内是正常的。如果控温仪表的温度传感器布置在真空室内,玻璃棒温度计的温度值与仪表的温度读数之间的差异可以适当缩小,但不可能消除,而真空室的密封可靠性增加了一个可能不可靠环节。如果从操作实用角度考虑不希望看到这个差异,可以采用控温仪表特有的显示修正功能解决。 真空烘箱从本质上来说是为人们更方便更好的生活服务的,但是如果因操作不当出现问题,还会给我们的工作和生活带来负面影响,因此,在平常的基本操作过程中,我们应该谨遵真空烘箱使用规则,小心安全的使用,尽量让其更长时间地为我们的生活服务。

  • DSQ气质联用仪的前级真空压力下不来

    DSQ气质联用仪的前级真空压力下不来

    热电的DSQ,比较老的仪器了,前几天准备开机用一下,结果看到前级真空压力显示100000mtorr,而且抽了很长时间都没反应,后来打400电话,他们说可能是机械泵没油了,一看,确实是油不多,加了油,开机还是一样,又问他们,他们说开机前先按着真空腔上的玻璃板,或者拆下玻璃板用甲醇擦洗一下。于是照做,开机前先按着玻璃板。发现问题还是一样的。但是可以发现机械泵确实是在抽真空,因为我发现玻璃和真空腔之间的密封黑胶条压的越来越紧了。http://ng1.17img.cn/bbsfiles/images/2015/01/201501141649_532306_1623748_3.jpg请问哪位高人指点一下,问题出在什么地方?

  • 【原创】自己动手,DIY一款山寨版的真空控制器

    【原创】自己动手,DIY一款山寨版的真空控制器

    本人曾在本版请教过旋转蒸发有无必要配真空控制器,也按照建议没有配。谁知小日本的真空泵性能实在高于预期,每次浓缩样品时真空度迅速上升,然后爆沸那么一小下;虽然只是一小下,足以让人心惊胆战了:(怎么办?看来只有配真空控制器了。可是……可是……那玩意一万多呢,快赶上一台旋蒸了;而且一时半会到不了货,我可急着要用啊!怎么办?自己动手吧。要把真空度升上去我没招,要把真空度降下来还不简单啊?原料成本:核心部件:真空表一支(36元;也有28元的,小一号);铜制针阀(18元;也有不锈钢的,要二百多,成本太高,个人觉得没必要)。配件:缓冲瓶,橡胶塞,玻璃管,真空管若干,加起来大约50人民币。开工!OK!成品如图所示,虽然山寨了一点,但其实挺好用滴。[img]http://ng1.17img.cn/bbsfiles/images/2009/03/200903292119_141184_1697752_3.jpg[/img]看看背面的管道。胶塞上打了四个孔,分别接真空表,针阀,旋蒸和隔膜泵:[img]http://ng1.17img.cn/bbsfiles/images/2009/03/200903292120_141185_1697752_3.jpg[/img]使用时,先把针阀开到最大,然后缓慢关小使系统达到合适的真空度。个人经验,对于正己烷/丙酮溶液,真空度-0.05~-0.06MPa最合适了,一但超过了-0.07MPa肯定爆沸!真空控制器做好了,从此我的样品再也没有爆沸过了哈哈!不过钻了两个橡皮塞共八个孔(第一个塞子废了),胳膊疼了两天。看来该锻炼啦……

  • 玻璃防爆反应釜功能及特点

    [font=微软雅黑]玻璃防爆反应釜既可以提供做高温反应,也可以做低温反应,还可以抽成真空,从而做真空反应。在玻璃防爆反应釜中做不同介质的反应,应首先查清介质对主体材料有无腐蚀。对瞬间反应剧烈,产生大量气体或高温易燃易爆的化学反应,以及高压、高温或介质中含氯离子、氟离子等对不锈钢产生腐蚀严重的反应须特殊定货。除釜体和夹套为透明玻璃外,其它均为不锈钢或其它金属材料。[/font][font=微软雅黑]玻璃防爆反应釜功能及特点:[/font][font=微软雅黑]1反应釜釜体采用高硼硅玻璃,有优良的物理化学性能,瓶体透明、可见反应液料。[/font][font=微软雅黑]2主体采用不锈钢框架+铝合金材质,美观坚固耐腐蚀。[/font][font=微软雅黑]3不锈钢搅拌棒外包四氟,适用于多种溶剂搅拌,无污染耐腐蚀。[/font][font=微软雅黑]4防爆电机搅拌,运转平稳、力矩大、无火花、寿命长。[/font][font=微软雅黑]5聚四氟乙烯组件+机械密封、陶瓷轴承,专有技术、可保证良好的真空度且使用寿命长。[/font][font=微软雅黑]6本产品防爆变频调速器为转速、温度双数显(可显示釜内温度)。转速可通过调速旋扭设定,直观方便;另配有釜内温度测温探头(PT100)。[/font][font=微软雅黑]7整体结构紧凑合理,设有带刹车万向轮,可整体移动,操作方便。[/font][font=微软雅黑]8无死角玻璃斜放料阀门,可有效减少搅拌死角,放料方便。[/font][font=微软雅黑]9本产品设有真空显示功能,对高沸点物料可以选择合适的工作真空度。[/font]

  • 电热板加热消解玻璃纤维滤膜的问题

    电热板加热消解玻璃纤维滤膜的问题

    http://ng1.17img.cn/bbsfiles/images/2016/01/201601190814_582338_1611705_3.jpg无组织排放的铅,这个加热要沸腾10分钟烧杯里面是20ml 1%硝酸,我加热到120℃发现长时间加热仍然不沸腾,如何解决?最高温度可以加到多少?以前用的是老式的旋钮的电热板,无法得知温度,现在换了新的电热板以后发现需要磨合~

  • 真空干燥箱以科技为动力,以服务促发展

    真空干燥箱以科技为动力,以服务促发展

    在我们日常生活的应用中越来越广泛,但是由于相关人员的疏忽和对于其不了解,因此在使用过程中出现了一系列的问题,下面就[b]真空干燥箱[/b]经常性出席那的问题和大家一起探讨分析。[align=center][img=,452,452]https://ng1.17img.cn/bbsfiles/images/2021/05/202105271711466037_6078_1037_3.jpg!w452x452.jpg[/img][/align]  真空干燥箱如果按先升温加热再抽真空的程序操作,加热的空气被真空泵抽出去的时候,热量必然会被带到真空泵上去,从而导致真空泵温升过高,有可能使真空泵效率下降。正确的使用方法应该先抽真空再升温加热。待达到了额定温度后如发现真空度有所下降时再适当加抽一下。这样做对于延长设备的使用寿命是有利的。一般的电热真空干燥箱都采用先加热真空室壁面、再由壁面向工件进行辐射加热的方式。在这种方式下,控温仪表的温度传感器可以布置在真空室外壁。传感器可以同时接受对流、传导、和辐射热。而处于真空室里的玻璃棒温度计只能接受辐射热,更由于玻璃棒黑度不可能达到1,相当一部分辐射热被折射了,因此玻璃棒温度计反映的温度值就肯定低于仪表的温度读数。一般讲,200℃工况时仪表的温度读数与玻璃棒温度计的读数两者相差30℃以内是正常的。如果控温仪表的温度传感器布置在真空室内,玻璃棒温度计的温度值与仪表的温度读数之间的差异可以适当缩小,但不可能消除,而真空室的密封可靠性增加了一个可能不可靠环节。如果从操作实用角度考虑不希望看到这个差异,可以采用控温仪表特有的显示修正功能解决。  真空干燥箱从本质上来说是为人们更方便更好的生活服务的,但是如果因操作不当出现问题,还会给我们的工作和生活带来负面影响,因此,在平常的基本操作过程中,我们应该谨遵使用规则,小心安全的使用,尽量让其更长时间地为我们的生活服务。

  • 【原创】真空箱没有均匀度

    [align=left][size=4]真空箱里的温度计读数能代表真空箱空间的实际温度吗?[/size][/align][size=4]通常,我们看到的玻璃棒温度计反映的读数,可以说这是当时环境条件下的空气温度。那么,真空状态下,我们看到放在真空室里的玻璃棒温度计上也有读数,这是不是就可以说,这个温度就是真空室里的温度呢?这是不可以的。因为真空状态下,已经没有空气了,真空室里根本就不存在空气温度。玻璃棒温度计只是感受到由于吸收了热辐射而产生的温度。而这种热辐射被吸收的量,与玻璃棒温度计材质表面的粗糙程度及材质对红外线辐射的吸收、折射和透射能力等因数(热工学术语“黑度”)有密切联系。物体的黑度越接近1,吸收的辐射热就越多,物体的温度就越高。反之就低。而这时玻璃棒温度计的读数也仅仅只能代表玻璃棒温度计自身吸收红外线辐射热后的温度,决不能代表其它不同材质不同表面状态工件所吸收热辐射后的实际温度。[/size][size=4]因此,请用户在使用电热真空干燥箱(真空状态下)加热时,可以参考真空室里玻璃棒温度计的读数并尽量积累和总结操作经验,以达到最佳效果。[/size][size=4]电热真空干燥箱的仪表读数与真空室里的玻棒温度计读数差异很大,这是为什么?[/size][size=4]由于不同用户的各种不同被烘物体黑度不同,作为制造厂试图用一种统一模式的辐射热计量方式来覆盖,不仅仅是技术上有一定的难度,更主要的是其它被烘物体实际温度的代表性太差。因此,以用户可以接受的价格为出发点,一般的电热真空干燥箱都采用先加热真空室壁面、再由壁面向工件进行辐射加热的方式。在这种方式下,控温仪表的温度传感器可以布置在真空室外壁。传感器可以同时接受对流、传导、和辐射热。而处于真空室里的玻璃棒温度计只能接受辐射热,更由于玻璃棒黑度不可能达到1,相当一部分辐射热被折射了,因此玻璃棒温度计反映的温度值就肯定低于仪表的温度读数。一般讲,200℃工况时仪表的温度读数与玻璃棒温度计的读数两者相差30℃以内是正常的。  如果控温仪表的温度传感器布置在真空室内,玻璃棒温度计的温度值与仪表的温度读数之间的差异可以适当缩小,但不可能消除,而真空室的密封可靠性增加了一个可能不可靠环节。  如果从操作实用角度考虑不希望看到这个差异,可以采用控温仪表特有的显示修正功能解决。[/size][align=left][size=4] [/size][/align][align=left][size=4]电热真空干燥箱为什么不设温度均匀度参数?[/size][/align][align=left][size=4]一般的电热(鼓风)干燥箱均设有温度均匀度参数:自然对流式的干燥箱为工作温度上限乘3%,强制对流式的干燥箱为工作温度上限乘2.5%。惟独电热真空干燥箱不设温度均匀度参数,这是为什么?真空干燥箱内依靠气体分子运动使工作室温度达到均匀的可能性几乎已经没有了。因此,从概念上我们就不能再把通常电热(鼓风)干燥箱所规定的温度均匀度定义用到真空干燥箱上来。在真空状态下设这个指标也是没有意义的。热辐射的量与距离的平方成反比。同一个物体,距离加热壁20cm处所接受的辐射热只是距离加热壁10cm处的1/4。差异很大。这种现象与冬天晒太阳时,晒到太阳的一面很暖和,晒不到太阳的一面比较冷是一个道理。由于真空干燥箱在结构上很难做到使工作室三维空间内的各点(园球面)辐射热的均匀一致,同时也缺乏权威的评估方法,这有可能是电热真空干燥箱标准中不设温度均匀度参数的原因。[/size][/align][size=4] [/size]

  • 玻璃加工行业你了解多少?

    玻璃加工行业你了解多少?

    玻璃二次制品又叫深加工玻璃,它是利用一次成型的平板玻璃为基本原料,根据用户需求,采用加工工艺制成的具有特定功能的玻璃产品。与一次成型玻璃制品相比,主要有以下功能:  1.提高玻璃的强度,增强玻璃的安全性   近几年来,人们为了改变钢化玻璃炸裂时碎片过小的现象,研制出一种叫热增强玻璃(半钢化玻璃)的新型产品。由于该产品不易自爆,更适用于大型规格玻璃幕墙。  夹层玻璃:它是由两片或者两片以上的玻璃用合成树脂粘结在一起而制成的一种安全玻璃。当它破损时碎片不会飞散。夹层玻璃生产有干法和湿法两种形式,但干法生产是主流。中国的夹层玻璃产品最早由建材研究院开发成功。  夹层玻璃的种类很多,但主要有PVB胶片夹层玻璃、以固相水合硅酸钠膨胀层为防火中间层的防火玻璃、以EN胶片为中间层的真空一步法夹层玻璃。真空一步法夹层玻璃不仅可生产普通安全玻璃,而且可生产带饰物的装饰夹层玻璃。最近光改变色装饰夹层玻璃也已面世。  贴膜玻璃:贴膜玻璃是在平板玻璃表面贴上一种多层的聚酯膜,以改善玻璃的性能和强度,使其具有保温、隔热、防爆、防紫外线、美化外观、安全等功能。目前主要用于汽车和建筑门窗、隔断顶棚等。贴膜玻璃根据不同的膜材,可产生不同的效果。比如,不同颜色、光致变色、导电、加温等等。  2.改变平板玻璃的几何形状   众所周知,平板玻璃一般是平整光滑的,但在使用中,人们往往需要一些具有弧度或曲面的玻璃。这就需要改变平板玻璃的几何形状。目前主要产品有圆弧弯曲玻璃、玻璃果盘、玻璃锅盖等,但他们的成型机理大致相同。  圆弧弯曲玻璃:也称为热弯玻璃、弧弯玻璃,属于玻璃二次升温至接近软化温度时,按需用要求,经压弯变形而成。按弯曲程度又分为浅弯和深弯。浅弯多用于建筑装演、汽车、船舶挡风玻璃、玻璃家具装饰系列(如电视柜、酒柜、茶几)等;而深弯可广泛用于卧式冷柜、陈列柜台、观光电梯走廊、玻璃顶棚、观赏水族箱等。如果在热弯的同时进行钢化处理就是热弯钢化玻璃,玻璃锅盖属于此类。现在一些弧形玻璃幕墙为了保证其安全性,多采用热弯钢化玻璃。http://ng1.17img.cn/bbsfiles/images/2016/12/201612231428_01_3169645_3.jpg  3.玻璃表面处理   玻璃表面处理包括两个方面:一方面是丰富玻璃表面,即利用物理或化学方式在玻璃表面上制作出不同的花纹和图案;另一方面是对玻璃表面进行涂镀处理。  磨光玻璃:在浮法玻璃产生之前,一些玻璃需要磨光才能达到两个表面呈完全平行的目的。磨光玻璃就是用金刚砂、硅砂等磨料对普通平板玻璃或压延玻璃的两个表面进行研磨使之平坦以后,再用红粉、氧化锡及毛毡进行抛光。  1958年我国自行设计制造的第一台往复式磨光机在上海耀华玻璃厂建成,以适应钢化、夹层玻璃对玻璃表面平整度的要求。1970年洛阳玻璃厂从德国引进了一套与其压延生产线配套的单面连续磨光机组。  浮法玻璃的诞生取代了磨光玻璃。  彩绘玻璃:彩绘玻璃又称为绘画玻璃,是一种可为门窗提供色彩艺术的透光材料。一般是用特殊釉彩在玻璃上绘制图形后经过烤烧制作而成,或在玻璃上贴花烧制而成,制作方法有点象陶瓷。  喷砂玻璃和蚀刻玻璃:是用4-7kg/Cm2的高压空气将金刚砂等微粒喷吹到玻璃表面,使玻璃表面产生砂痕,它可以雕蚀出线条、文字以及各种图案,不需加工的部位用橡胶、纸等材料做为保护膜遮盖起来。如果在喷砂玻璃(全部喷砂)的基础上,再进行浸酸烧结,就会得到毛面蚀刻玻璃,也叫冰花玻璃。  彩色釉面玻璃:彩色釉面玻璃是在平板玻璃的一个侧面烧结上无机颜料,并经过热处理后制成的一种不透明的彩色玻璃。根据不同的颜料,可生产出不同色彩效果的釉面玻璃。单一色彩可用于门窗,多彩的彩釉玻璃(又叫花岗岩玻璃或大理石玻璃)可用于建筑内外墙或地面。  雕刻玻璃:人类很早就开始采用手工方法在玻璃上刻出美丽的图案,现已采用电脑数控技术自动刻花机加工各种场所用高档装饰玻璃。http://ng1.17img.cn/bbsfiles/images/2016/12/201612231427_01_3169645_3.jpg  以上是玻璃表面处理的第一方面,即利用物理或化学的方式改变表面的光泽或绘制图案。玻璃表面处理的第二方面就是:以平板玻璃为基板,在其表层施加一层或多层金属或非金属材料,被覆层使原来玻璃表面的性质改变的表面涂膜改性技术。  镀膜玻璃:自1835年出现手工镀银制镜方法之后,20世纪相继发明了各种物理的(真空喷涂、磁控溅射等)、化学的(水解沉积、热解沉积等)或物理——化学的镀膜方法,六七十年代已开始产业化,八九十年代迅速发展,现已可制造出数十种各具特色功能的加工制品。如镀银、镀铝、镀硅的镜面玻璃、热反射膜镀膜玻璃、低辐射镀膜玻璃。防紫外线镀膜玻璃、防电磁膜镀膜玻璃、防水镀膜玻璃、光致变电、电致变色调光玻璃、自动灭菌玻璃、自洁净玻璃等。我国目前拥有各类镀膜生产线300余条,形成年生产能力近亿平方米。其中镜面4500万平方米,建筑、车辆镀膜5000万平方米,显示器用ITO膜300万平方米。  4.增加隔热隔音功能   众所周知,建筑物的门窗是保温隔热、节能的薄弱环节,普通单层玻璃窗的传热系数为6.0W/M2·k,为了满足人们对窗玻璃的隔热、隔音的需求,中空玻璃应运而生。随后便发展出充气中空玻璃和真空玻璃。  中空玻璃:是由两块或多块玻璃板组成的,玻璃板之间有隔热、隔音的空隙。中空玻璃自50年代初形成机械化小批量生产以来,发展非常迅速,在经济发达的国家已得到广泛的应用,除用于建筑业外,还用于车船工业和电冰箱。中空玻璃的空隙最初是干燥的空气,目前多用热效率比空气低的其他气体制造中空玻璃。原片也从单一的普通平板玻璃发展为深加工玻璃,其隔框也从空腹薄铝型材发展为橡胶隔热条等。我国1964年开始用手工方法小批量生产。  真空玻璃:自1893年保温热水瓶问世以来,就一直有人研究能否将真空技术用在玻璃上,但直到1994年才由华裔学者唐健正教授与悉尼大学科林斯教授在制造和应用上取得突破。1995年底回板玻璃公司首先获得此项技术使用权,至今已有数众生产线。我国尚无生产此产品的企业。(来源:脉搏制造网)

  • 南京玻璃纤维研究设计院质检中心刚刚发布了绝热材料检验检测工程师职位,坐标南京市,敢不敢来试试?

    [b]职位名称:[/b]绝热材料检验检测工程师[b]职位描述/要求:[/b]1.依据各类技术标准对绝热材料的物理性能、力学性能、保温性能的检测和评价;2.能够进行数据计算、分析;3.具备工作细致、严谨,稳重、踏实的精神,具备较强的动手操作能力;4.擅长PPT制作。[b]公司介绍:[/b] 南京玻璃纤维研究设计院质检中心是南京玻璃纤维研究设计院有限公司的下属单位,是非法人的第三方检测机构。中心拥有国家玻璃纤维产品质量监督检验中心、国家建筑材料工业玻璃纤维矿物棉节能服务中心、江苏省产品质量监督玻璃纤维及绝热材料产品质量检验站等多个机构。中心成立于1988年,是第一批授权的国家质检中心,承担国家和省级产品质量监督抽查、质量仲裁检验、社会委托检验等,实验室建筑面积5000多平米,检...[url=https://www.instrument.com.cn/job/user/job/position/64548]查看全部[/url]

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制