当前位置: 仪器信息网 > 行业主题 > >

真空玻璃

仪器信息网真空玻璃专题为您整合真空玻璃相关的最新文章,在真空玻璃专题,您不仅可以免费浏览真空玻璃的资讯, 同时您还可以浏览真空玻璃的相关资料、解决方案,参与社区真空玻璃话题讨论。

真空玻璃相关的资讯

  • Science Bulletin:超高真空机械剥离和堆垛技术取得进展
    近年来,二维材料及其异质结构由于在电子、光电及自旋器件领域展现出巨大的应用潜力而得到了人们的广泛关注。然而,制备表面高度洁净的二维材料以及界面原子级平整干净的二维异质结仍然十分困难,尤其对于表面敏感的二维材料而言更是如此。制备二维材料的方法主要分为两大类:以分子束外延(MBE)和化学气相沉积为代表的“自下而上”法和以机械剥离为代表的“自上而下”法。其中,“自下而上”法由于受到生长动力学的制约,仅能在特定衬底上制备特定的二维材料,并且制备出的二维材料通常具有确定的取向,因此极大地限制了可获得的二维异质结的种类。相比于“自下而上”的材料合成策略,以机械剥离为代表的“自上而下”方法具有操作简单、灵活性强的特点,对于范德瓦尔斯材料而言可以很容易地制备传统生长方法难以实现的少层样品和转角结构。然而,传统的机械剥离方法是在大气或手套箱中进行,仍然存在很多问题:(1)环境的污染将引入大量的杂质或缺陷。即使对于稳定的二维材料(比如石墨烯),这种方法制备的样品,如未经退火处理,传入真空后,由于表面吸附了大量的杂质,难以利用ARPES、STM等表面敏感的技术进行测量,而高温退火可能引入更多的杂质或缺陷。(2)很多单晶表面在空气中甚至低真空环境下不能稳定存在,比如Si(111)-7×7、Cu(111)、Fe(100)等,这些材料的表面必然会被氧化并吸附大量的杂质。因此,传统的机械剥离方法无法制备二维材料与这类衬底构筑的异质界面。最近,中国科学院物理研究所/北京凝聚态物理国家研究中心SF9组的冯宝杰特聘研究员、陈岚研究员、吴克辉研究员与SC7组周兴江研究员、北京理工大学的黄元教授合作,指导博士生孙振宇、韩旭等,自主设计并搭建了一套超高真空环境下的二维材料机械剥离-堆垛系统。他们将机械剥离技术与超高真空MBE技术结合到一起,在本底真空10-10 mbar量级的环境中,利用MBE技术制备了多种原子级平整、洁净的表面,并利用机械剥离技术在这些衬底上成功剥离了多种单层和少层二维材料。设备的工作原理图如1所示,所有操作均在超高真空中完成。首先,他们利用高温退火、离子溅射、等离子体刻蚀、MBE生长等多种表面处理技术获得原子级平整、洁净的表面。表面的质量可以通过原位的扫描隧道显微镜、低能电子衍射、角分辨光电子能谱等超高真空表面分析手段进行确认。然后,他们在超高真空中将二维材料进行解理,获得新鲜的表面,并轻压到衬底表面上。最后,他们将系统加热并分离,获得了多种单层和少层二维材料。利用该方法,他们不仅重复了大气下的金辅助剥离技术,而且成功获得了多种以前未报道过的二维异质结,包括Bi-2212/Al2O3、Bi-2212/Si(111)、MoS2/Si(111)、MoS2/Fe、MoS2/Cr以及FeSe/SrTiO3(任意角度)等。图1 超高真空中机械剥离二维材料图2 在单晶衬底上获得的超薄二维材料为进一步展示该系统的能力,他们选择了两个体系作为示例。(1)利用金辅助剥离技术,他们在超高真空中制备出了毫米级的单层黑磷样品,并利用原位的低能电子衍射、角分辨光电子能谱对样品进行了表征,观察到了清晰的衍射斑点和沿高对称方向的空穴型能带(图3)。这是国际上首次对单层黑磷进行的相关测量。(2)为了揭示不同金属衬底对二维材料物性的影响,他们研究了单层MoS2和WSe2在不同金属表面的光学性质(图4)。通过测量不同金属上单层WSe2的荧光光谱,他们意外地发现,除了Au衬底以外,剩下的Ag、Fe、Cr等表面均不淬灭WSe2的特征A激子发射,且峰位略有偏移。通过拉曼光谱,他们发现在Au和Ag表面上的MoS2,其特征拉曼峰E2g和A1g除频率移动外,展现出了奇特的劈裂行为。图3 大面积单层黑磷的真空原位LEED和ARPES表征图4 不同金属表面单层WSe2和MoS2的光学响应本工作为进一步制备高质量的二维材料及异质结样品、研究材料的本征物性以及界面演生现象提供了一种全新的方法。相关成果以“Exfoliation of 2D van der Waals crystals in ultrahigh vacuum for interface engineering”为题发表在Science Bulletin上(doi.org/10.1016/j.scib.2022.05.017)。该工作得到了国家自然科学基金委、科技部、北京市自然科学基金、中科院国际合作项目以及中科院先导B等项目的资助。
  • 中科科仪参加2017年全国玻璃科学技术年会
    作为我国玻璃界科技工作者学术交流的年度盛会,2017年全国玻璃科学技术年会于2017年8月27~29日在秦皇岛市首旅京伦酒店举办。北京中科科仪股份有限公司作为国内扫描电镜、分子泵、真空检漏行业的领军品牌,紧抓会议主题“引领玻璃行业集成创新,促进产学研用协同发展”,对扫描电镜、光发射电子显微镜、真空泵、检漏仪等产品在玻璃行业中的应用进行了推广。在会议过程中应用工程师孙雪做了学术报告“扫描电镜在镀膜玻璃中的应用”,报告介绍了中科科仪的发展历程,举例分析了扫描电镜在玻璃行业中的应用,与各参会代表进行了技术交流。报告后还与燕山大学刘世民教授进行了更深入的沟通。在会议过程中还发放了企业产品样本,受到了大量客户的关注,彰显了企业的品牌力量。
  • 上海书俊:ChemGlass玻璃夹套反应釜使用注意事项
    随着经济的不断发展,玻璃夹套反应釜凭借其转速恒定,无电刷、无火花,安全稳定等优势,已广泛应用于精细化工、化学、生物制药新材料合成等实验室仪器试验、中试及生产中。虽然其应用很广泛,但是很多使用者却没有真正的了解其操作流程注意事项及常见的故障。当出现故障的时候还是会请专门的技术人员来整修。你想自己来解决在使用过程中出现的故障吗?你想成为专业的技术人员吗?那就随着小编一起来认真学习吧!操作流程注意事项1、玻璃夹套反应釜的操作及维修人员在进行操作或维修时应将手表、戒指等硬物摘下,以免对玻璃件造成破损,特别是钻石戒指对玻璃配件轻微挂碰都会造成致命的伤害。2、严格遵守产品使用说明书中关于添料,卸料等方面的规定,做好设备的维护和保养 3、其电气控制仪表应由专人操作,并按规定设置过载保护设施。4、所有阀门使用时,应缓慢转动阀杆,压紧密封面,达到密封效果。关闭时不易用力过猛,以免损坏密封面 5、使用时应严格按产品铭牌上标定的工作压力和工作温度操作使用,以免造成危险。Chemglass玻璃反应釜只能做常压和真空反应,不能做高压反应。反应釜耐受温度范围为-60~230℃。常见故障:1、 真空软管老化:请更换真空软管。2、 开启电源开关,指示灯不亮:外接电源未通或接触不良请专业电工检查电源,插座 3、电源指示灯亮,但不旋转:旋转轴生锈,停止使用,与供应商联系。4、有真空,但真空度达不到最大值:密封圈磨损,连接真空开关泄漏请更换密封圈、开关 5、真空突然消失:玻璃有裂痕,开关有破损检查玻璃部件,调换开关 6、保险管短路:将电源开关置于OFF位置,再换置保险管 上海书俊仪器设备有限公司代理美国Chemglass反应釜系列产品,了解更多反应釜及相关产品的应用及注意事项。
  • 【旋蒸小知识】如何清洗旋转蒸发仪玻璃组件?
    “一日之计在于晨”。想象一下:当我们一早起来规划好当天的实验计划,兴致勃勃的来到实验室,却看到满是狼藉的实验环境,尤其那富含“矿物质”的旋转蒸发仪水浴锅以及那脏到连你都感到恍惚的:是不是冷媒就是这“黑乎乎”的颜色?还是冷凝器脏到一定地步了?这是否会影响到你做实验的热情?亦或者也会让你担心自己辛辛苦苦分离拿到的产物会不会因为最后浓缩过程造成污染?今天“小步”同学教您如何正确且定期的清洗旋转蒸发仪的玻璃组件。首先,在做任何清理之前,都需要进行整体玻璃组件的检查。这将涉及到两点:第一,注意任何污垢的积聚;其次,或有可能的玻璃件的损坏及裂缝(这也是导致旋蒸密封性较差的因素一)。您需要格外注意的部件是冷凝器与主机之间相连的法兰接口。请记住,如果有损坏的玻璃件一定要及时更换!那么多久清洗一次玻璃组件是最好的呢?事实上,这完全取决于您的应用及使用频率。理想状态下,您应该在每次浓缩蒸馏后立即清洁玻璃组件,特别是如果您有用到腐蚀性溶剂的时候。让我们开始清理您的旋转蒸发仪吧!如何清洗旋转蒸发仪外部的玻璃组件:您可以用蘸有水或乙醇的纸巾或湿布擦拭所有外部玻璃器皿部件,注意不要使用可能划伤玻璃器皿的硬刷子。对于更加顽固的污垢,请阅读制造商的说明,了解哪些刷子(如果有的话)可以安全地与玻璃一起使用。请注意,请勿使用浸泡的布或纸巾,以免溶剂或水进入系统并导致任何电气故障。如何清洗旋转蒸发仪内部的玻璃组件:内部的玻璃组件往往是最难清洗且最容易造成样品交叉污染的。如果您在每次实验后没有进行清洁,且在下次实验前发现系统部件中存在任何沉积物、粉末或溶剂聚集。请放下手上的样品,跟着我按照“七步原则”进行清洗工作。步骤如下:取下冷凝器顶部的螺旋盖。根据上次使用情况,选择最合适的溶剂或水冲洗冷凝器内部。清空接收瓶,重新连接并合上冷凝器螺旋盖。使用进料旋塞阀将水、乙醇或其他相关溶剂填充蒸发瓶,或手动取下蒸发瓶并进行填充。进行蒸馏以彻底清洁整个系统。清空接收瓶,重新连接,让系统以连续模式运行约 5 分钟。到这一步,您的玻璃系统组件应该已经处于干净干燥状。除此之外,您需要仔细检查冷凝器与主机相连地方,尤其是真空密封所在的下部。往往此处会因为旋蒸爆沸导致样品过冲到冷凝器部分而造成样品的沉积,这不仅会造成样品交叉污染以及影响密封性,更重要的是,造成样品的损失。而关于此问题,步琦有非常成熟的解决方案。所以,从长远来看,适当的系统维护可以为您节省大量时间。泡沫传感器工作视频演示:好啦,今天“小布”同学关于旋转蒸发仪玻璃件清洗的分享就到这里,希望各位小伙伴们能够在一日之计在于晨的基础上,保持“晨心”,充满动力的完成一天的实验!我们下期再见!
  • 玻璃瓶密封测试仪在食品、药品行业中的应用有哪些限制?
    随着食品、药品行业对产品质量和安全的日益重视,玻璃瓶密封测试仪作为检测包装完整性和密封性的重要工具,被广泛应用于这两个行业中。然而,尽管其应用广泛,但在实际使用过程中,仍面临着一系列限制和挑战。一、测试原理的局限性玻璃瓶密封测试仪主要通过抽真空或正压充气体的方法来检测玻璃瓶的密封性能。然而,这种测试原理在某些情况下存在局限性。例如,对于某些特殊材料制成的瓶盖或瓶身,其密封性能可能受到材料本身特性的影响,而测试仪可能无法准确检测出来。此外,对于一些具有特殊结构的包装,如带有复杂螺纹或密封垫的瓶盖,测试仪可能无法完全模拟实际使用条件,导致测试结果不准确。二、测试参数的标准化问题玻璃瓶密封测试仪的测试参数,如真空度、充气压力、保压时间等,对于测试结果具有重要影响。然而,目前这些参数的设定缺乏统一的标准,不同厂家或不同型号的测试仪可能采用不同的测试参数。这导致在跨品牌或跨型号的设备之间进行测试结果对比时存在困难,也限制了测试仪在行业内的广泛认可和应用。三、测试环境的控制玻璃瓶密封测试仪在测试过程中需要控制测试环境,如温度、湿度等。然而,在实际应用中,测试环境的控制往往受到一定限制。例如,在生产线上的快速检测中,可能无法提供恒定的温度和湿度条件,导致测试结果受到环境因素的影响。此外,不同地区的气候和环境条件差异也可能导致测试结果的差异。四、特殊需求的挑战在食品、药品行业中,一些特殊的产品可能对包装密封性有更高的要求。例如,一些易挥发或易氧化的药品需要更高的密封性能来保证产品的稳定性和有效性。然而,目前的玻璃瓶密封测试仪可能无法完全满足这些特殊需求。此外,一些特殊类型的包装,如带有易拉环或特殊开盖结构的包装,也可能对测试仪的适用性提出挑战。五、人为操作的影响玻璃瓶密封测试仪的使用需要操作人员具备一定的专业知识和技能。然而,在实际应用中,操作人员的技术水平和操作经验可能对测试结果产生重要影响。例如,在测试过程中,操作人员需要正确设置测试参数、正确放置试样等,任何操作不当都可能导致测试结果的偏差。此外,测试结果的解读也需要一定的专业知识和经验,不同的操作人员可能对同一测试结果产生不同的解读。六、测试成本的考虑玻璃瓶密封测试仪作为一种专业的检测设备,其购置成本和维护成本相对较高。对于一些中小型企业来说,购买和使用测试仪可能面临较大的经济压力。此外,测试仪的使用也需要一定的时间和人力投入,这也增加了企业的运营成本。因此,在考虑是否使用测试仪时,企业需要综合考虑测试成本和产品质量之间的关系。综上所述,玻璃瓶密封测试仪在食品、药品行业中的应用虽然广泛,但仍面临着一系列限制和挑战。为了克服这些限制和挑战,我们需要不断推动测试仪技术的创新和发展,提高测试精度和可靠性;同时,加强行业内的交流和合作,制定统一的测试标准和规范;此外,还需要加强操作人员的技术培训和管理,提高测试结果的准确性和可靠性。只有这样,才能更好地保障食品、药品行业的产品质量和安全。
  • 岛津多机种蓄势待发,玻璃检测方案乘“新”而来
    中国是玻璃生产大国,产量大、品种多。改革开放后,我国玻璃企业通过技术自主研发,拉开了行业快速发展的序幕,逐步打破国外垄断,不但取代进口,而且开始走出国门。目前,中国玻璃制品业已发展成产品较为齐全的工业部门,尤其是中国浮法技术的推广应用和不断发展提高,使我国平板玻璃工业的面貌为之一新。浮法技术所形成的先进生产力已经成为当代中国玻璃工业的主体,同时也迎来了中国玻璃大企业崛起的时代,产能、产量、出口量、从业人员等多项指标不断刷新纪录。玻璃行业检测的春天已来临,岛津多机种在玻璃检测中蓄势待发。在平板玻璃(如家具玻璃)、日用玻璃(如钠钙硅玻璃容器)、医用玻璃(如药用玻璃瓶)、光学玻璃(如手机触屏)、化工玻璃(如化学试剂瓶)、建筑玻璃(如家居玻璃)、光伏玻璃(如光伏盖板玻璃)、工艺玻璃(如玻璃球)、工程玻璃(如工程玻璃纤维)等领域,从玻璃原料及玻璃制品的主次成分分析,到玻璃制品的光学性能及力学性能分析;从玻璃中的重金属及有害元素分析,到玻璃工业污染物排放及大气污染物排放的分析,岛津都给出了多机种搭配的整体解决应用方案。 法规解读从玻璃原料成分分析及微量元素分析的方法标准,到制成品的化学性能、力学性能、光学性能的检测方法标准,从玻璃中的重金属及有害元素的限制标准,到对玻璃工业污染物及大气污染物的排放规范化标准,无一不促进玻璃工业的技术进步及可持续发展。 玻璃中重金属及大气污染物排放主要标准 应对方案内容丰富多彩检测方法新颖独特玻璃检测涉及EDX、XRF/MXF、ICP、AAS、EPMA、UV、IR、AGX、HMV、GCMS、HIC等十几个机种,每个机种个性独特,在玻璃检测领域搭配默契又各显神通。 针对玻璃原材料成分、制品成分及其重金属有害元素、玻璃制品的光学及力学性能、玻璃行业有害元素及大气污染物排放等,岛津分析中心特编写了《玻璃检测整体解决方案》。 1、玻璃原材料主次成分及杂质元素含量检测• X射线光谱法测定硅石中的杂质元素• X射线荧光光谱法测定石灰石中主次成分的含量• X射线荧光光谱法测定镁质耐火材料• X射线荧光光谱法分析铝质耐火材料• X射线荧光光谱法分析硅质耐火材料• EDX-8000真空条件分析高铝耐火材料中各元素含量• ICP-AES法测定石英砂岩中的常微量元素含量• ICPE-9820测定玻璃、釉料及其原料中氧化物的含量• ICP-AES法测定灰岩矿石中的氧化钙及其它常微量元素含量• 偏硼酸锂碱熔-ICP-AES法测定石灰岩中硅酸盐相的主成分• 空气-乙炔火焰发射法测定玻璃粉末中钡的含量 2、玻璃制品主次成分及杂质元素含量检测• X射线荧光光谱分析钠钙硅玻璃中的多元素含量• X荧光在玻璃行业的分析应用• X荧光光谱法测定液晶玻璃基板中元素含量• 波长色散X射线荧光光谱仪在法庭科学玻璃物证中的分析应用• 多层CIGS太阳能玻璃镀膜的XRF分析• 能量色散型X射线荧光分析玻璃的成分• 硅酸盐玻璃的岛津电子探针定量分析• 红外光谱法测定石英灯管中的羟基含量• 玻璃条纹缺陷的SPM-EPMA分析• SPM & EPMA技术用于玻璃表面气泡分析 3、玻璃制品光学性能及力学性能检测• 分光光度法测定医用护目镜透射比• 玻璃表面强度评价• 手机外屏玻璃四点弯曲试验• 医用硼硅玻璃安瓿瓶折断力试验• 中空玻璃球压缩试验• 玻璃纤维增强塑料的三点弯曲试验• 玻璃纤维PCB基板的拉伸试验 4、玻璃中重金属检测及大气污染物排放检测• 包装材料中有害元素的X射线荧光筛选分析• ICPMS-2030测定玻璃药包材中浸出金属元素含量• ICP-AES法测定空气细颗粒物中的有害元素• 大气悬浮颗粒物(PM)中无机元素的 X 射线荧光分析方法• GC-MS/MS法测定PM2.5大气颗粒物中16种邻苯二甲酸酯含量• 离子色谱法测定环境空气中氯化氢的含量• 离子色谱法检测空气细颗粒物中六种阴离子• 挥发性有机物在线检测系统 特色应用抢先看方案一 X射线荧光光谱分析钠钙硅玻璃中的多元素含量 精度试验表1 钠钙硅玻璃粉样方法精度试验结果(%)说明:参考值为按照GB/T 1347-2008《钠钙硅玻璃化学分析方法》测试结果。 方案二 玻璃表面强度评价 试验加载过程试验加载过程 由于使用了透明胶带粘在负载环上,当玻璃爆裂的一瞬间裂纹的形成被清楚地观察到。可以发现,在环弯曲加载的过程中断裂是开始与玻璃中间位置,并向外部延伸。 试验结果曲线载荷-行程曲线 岛津公司AGS-X配套的TRAPEZIUMX软件编辑公式并计算出相应的环弯曲强度。其平均环弯曲强度为144MPa。 方案三 ICPMS-2030测定玻璃药包材中浸出金属元素含量 部分元素质量轮廓图 “诊断助手”可根据各元素的质量灵敏度、等效背景浓度、干扰情况等因素综合判断,对结果做出正确判断,并给出相应的诊断依据,大大提高分析效率及分析结果的准确性。 样品分析结果及检出限 表2 玻璃药包材料可迁移元素分析结果注:N.D. 表示未检出。 参考YBB00172005-2015《药用玻璃砷、锑、铅、镉浸出量限度》,使用岛津ICPMS-2030测定药用玻璃中7种可迁移元素含量。分析速度快,操作简单,灵敏度高,检出限低,精密度好,加标回收率高。 撰稿人:唐国轩 *本文内容非商业广告,仅供专业人士参考。
  • WHEATON硼硅33玻璃 —实验室玻璃器皿的理想选择
    玻璃器皿是是实验室必备是常规用品。日常工作中,常用的实验室玻璃器皿有试剂瓶,量筒、滴定管、容量瓶、温度计、试管、烧瓶、烧杯、锥形瓶、漏斗、滴管、玻璃棒等。 实验室对常规用玻璃的要求:耐热 、耐低温、干燥、储存、可重复使用等。随着各种实验技术的发展,实验室对玻璃的使用提出了越来越严格的要求。硼硅33玻璃的出现,满足了绝大部份实验室对玻璃的苛刻要求。在这里我们就硼硅33玻璃的属性进行介绍:1) 化学属性 * 耐水性 Class 1 (as per ISO 720) * 耐酸性 Class 1 (as per DIN 12116) * 耐碱性 Class 2 (as per ISO 695) 2)物理属性 * 硼硅33玻璃 耐热性 * 最高使用温度 500°C * 525°C 软化温度 * 最低使用温度 -70°C 3)耐热冲击 * 膨胀的线性相关系数 硼硅33玻璃 α = 3.3×10-6/ K 普通钠钙玻璃 α = 9.1×10-6/ K * 硼硅33玻璃内没有应力=高耐热冲击性4)硼硅33透明玻璃的光学性质 * 光谱范围内的光可以全透(没有吸收)* 在紫外线范围内不穿透,在红外线范围内穿透 5)硼硅33棕色玻璃的光学性质 * 500nm以上的光线不穿透 * 用于储存和保护光敏感物 上述说明了硼硅33玻璃的特点。硼硅33玻璃和钠钙玻璃(普通玻璃)究竟有什么不同? 硼硅33玻璃和钠钙玻璃之间的成分差异硼硅33玻璃 普通玻璃(钠钙玻璃)二氧化硅81 % 69% 氧化硼 13% 1% 氧化钠、氧化钾 4% 13%/3% 氧化铝2% 4% 氧化钙-5% 氧化镁-3% 氧化钡-2%硼硅33玻璃和钠钙玻璃之间的耐受性差异 硼硅33玻璃钠钙玻璃耐水解等级13(USP/EP) 1级Yesno热冲击100 or 160K30K最高使用温度500°C100°C硼硅33玻璃和钠钙玻璃(普通玻璃)在成分上和耐受性上的差异,直接体现在实验室在玻璃的使用上。1,普通玻璃在存储液体方面的限制因为普通玻璃含有的钠13%,钠离子容易和水发生反应 ,存储溶液 PH值容易转成碱性 ,PH值变化容易影响产品的稳定性。硼硅33玻璃 4% 这意味着硼硅33玻璃的PH值变化更小。2,普通玻璃在热冲击方面的限制钠钙玻璃的安全热变化是30K 。硼硅33玻璃最高耐热变化是160K。最高使用温度方面,普通玻璃是100°C,硼硅33玻璃500°C。实验室在涉及高温使用玻璃和热变化较大情况下使用的玻璃,需要高硼硅玻璃。3,生物耐受性限制因为硼硅33璃的整体性能要高于钠钙玻璃。生物培养需要较高的培养条件,玻璃器皿往往要经过高压蒸汽灭菌或干热灭菌。因此在做生物培养,尤其是细胞培养相关操作时,需要使用高硼硅玻璃。北京桑翌实验仪器研究所,有大量美国WHEATON和德国DURAN玻璃产品的现货库存,为广大客户提供最优质的玻璃产品。
  • 玻璃化转变的测定
    p style=" text-align: center " strong 原创: 范玲婷【梅特勒】 江苏热分析 /strong /p p style=" text-align: center " strong img title=" 图1.jpg" alt=" 图1.jpg" src=" https://img1.17img.cn/17img/images/201812/uepic/bd9a8a9f-030c-43bb-96a2-52950e49181a.jpg" / /strong /p p   玻璃化转变是所有玻璃态的非晶材料和半结晶材料可能发生的现象。处于玻璃态的物质是分子结构处于无序状态的无定型物质。在热力学上,玻璃态物质被看做是冻结的过冷液体。玻璃化转变温度通常取决于材料的分子结构以及材料的成分,因此测量材料的玻璃化转变温度能够为我们提供材料结构以及成分的信息。 /p p strong · 玻璃化转变温度 /strong /p p   要讨论玻璃化转变温度,首先就要从玻璃说起。正如我们所知,玻璃是一种非晶态的固体材料,主要成分是二氧化硅,是由熔融的二氧化硅快速冷却下来所形成的材料,同其他固体相比,玻璃具有一些特殊的特性,比如说透光度好,容易加工成各种形状等,这些特性都来自于玻璃特殊的结构,我们把这种结构称之为玻璃态结构。 /p p style=" text-align: center " img title=" 图2.jpg" alt=" 图2.jpg" src=" https://img1.17img.cn/17img/images/201812/uepic/7cbfe5ea-4708-4229-8d22-9f3d8caee326.jpg" / /p p   对于所有类型的材料来说,玻璃态结构都是普遍存在的现象。除了像玻璃之类的无机材料外,我们常见的高分子聚合物材料,有机化合物,甚至是小分子有机物以及金属合金,都具有玻璃态结构。 /p p   如果从分子结构的角度来观察,我们会发现玻璃态结构的材料并不像常规结晶态结构那样是长程有序的,而是像液体一样的无定形结构。正是由于这种特殊的结构,玻璃态材料才具备了许多独特的性质。材料从玻璃态结构转变为液态或者橡胶态结构的过程就是我们常说的玻璃化转变过程,转变的特征温度也就是我们常说的玻璃化转变温度,Tg。 /p p   玻璃化转变能够为我们提供材料的分子运动能力的信息,这决定了材料的实际使用温度范围,对于塑料来说,玻璃化转变温度通常是材料使用的上限温度,而对于橡胶来说通常是使用的下限温度。玻璃化转变温度通常取决于材料的分子结构以及材料的成分,因此测量材料的玻璃化转变温度能够为我们提供材料结构以及成分的信息。玻璃化转变还能够指导我们如何优化加工条件以及产品质量,除此之外,玻璃化转变还可以对材料进行鉴别和对比分析,这对于原材料以及产品的质量控制尤为重要。 /p p strong · 玻璃态的形成 /strong /p p   在热力学上,玻璃态物质被看做是冻结的过冷液体。当无法结晶的熔体经历过冷时,就可以观察到热力学玻璃化转变过程。我们通过下方的图示来说明过冷态熔体,结晶态固体以及玻璃态固体的形成过程。 /p p style=" text-align: center " img title=" 图3.jpg" alt=" 图3.jpg" src=" https://img1.17img.cn/17img/images/201812/uepic/b10dd50a-8a0a-4294-8705-fe52f400189a.jpg" / /p p   上图中绿色横条表示结晶态固体,它在熔融温度Tf处熔融。如果继续加热的话会形成稳定的熔体,以蓝色横条表示。如果对熔体进行冷却,通常会在低于熔融温度以后结晶形成结晶态固体。我们称之为过冷现象。当熔体温度低于熔融温度以后,它已经不再是热动力学意义上的稳定熔体了,通常被称为过冷态熔体,当过冷态熔体被快速冷却时,结晶过程会受到抑制,在玻璃化转变温度Tg处转变为玻璃态固体,以浅蓝色横条表示,当玻璃态固体被加热时,会在玻璃化转变温度处转变为过冷态熔体,如果继续加热的话过冷态熔体会在熔融温度之前结晶成结晶态固体。我们就称之为冷结晶现象。与结晶温度和熔融温度之间的过冷现象不同,无论是玻璃态固体转变为过冷态熔体,还是过冷态熔体转变为玻璃态固体,玻璃化转变过程总是发生在同样的温度。从玻璃态固体到结晶态固体之间的直接转变事实上是不会发生的。 /p p   玻璃态的形成发生在冷却速率足够高的时候。下面这张示意图也说明了这个现象,横坐标是温度,玻璃化转变温度Tg和熔融温度Tf由图中的虚线表示,纵坐标是以对数形式表示的时间,蓝色曲线表示的是典型的结晶时间,温度越接近熔点Tf,结晶形成的晶体越容易熔融,因此结晶速率越慢,结晶时间就越长,然而温度越接近玻璃化转变温度Tg,分子链段的运动能力越低,也需要更长的结晶时间,结晶速率在熔融温度与玻璃化转变温度之间达到最大值。蓝色曲线上方的绿色区域表示结晶区域。红色的曲线是两条典型的冷却时间曲线,虚线的冷却速率较慢,虚线经过了结晶区域,材料出现了结晶,而实线的冷却速率较快,还没有到达结晶区域就已经冷却到玻璃化转变温度Tg了,因此形成了玻璃态固体。 /p p style=" text-align: center " img title=" 图4.jpg" alt=" 图4.jpg" src=" https://img1.17img.cn/17img/images/201812/uepic/948f8124-9232-46f3-8b91-ca890480323a.jpg" / /p p   对于不同的材料来说,形成玻璃态结构所需的最小降温速率也是不同的。对于PET,也就是我们常见的可乐瓶的材料来说,100K/min的降温速率已经足以形成玻璃态结构了。然而对于聚丙烯来说,即使在1200K/min的降温速率下依然会形成结晶态结构,当以30000K/min的降温速率对聚丙烯进行冷却时,聚丙烯的结晶过程被完全抑制,在DSC曲线上没有观察结晶峰,并在-20度左右观察到明显的玻璃化转变过程。(这些曲线是用FlashDSC 1测试得到的,这款仪器允许我们以最快240万度每分钟的升温速率或者24万度每分钟的降温速率对材料进行测试。) /p p style=" text-align: center " img title=" 图5.jpg" alt=" 图5.jpg" src=" https://img1.17img.cn/17img/images/201812/uepic/fae31791-282b-4dae-bfe2-f1a94675fecf.jpg" / /p p strong · 玻璃态VS结晶态 /strong /p p   无定形的熔体在结晶过程中形成了具有规则排列结构的结晶态固体。这个过程需要相对较大的分子运动能力。然而玻璃态的形成则完全不同,随着过冷程度的增加,密度逐渐提高,分子的协同重排速率逐渐降低,在玻璃化转变过程中,分子的协同重排速率非常缓慢以至于分子链段被冻结,再也不能发生大范围的分子链段运动,因此在没有显著的结构变化的情况下材料变成了固体,这时材料就像液体一样不具备长程有序的结构,处于无定形状态。与结晶态相比,玻璃态具有以下的特点,比如说当材料处于玻璃态时,分子链段是处于无规则排列的,具有更高的溶解性,较低的模量和脆性,较低的密度,较低的热稳定性,并且没有晶界。玻璃态结构是不稳定的,这是由于在玻璃态下,分子链段的协同重排速率虽然非常缓慢,但并不是不可能的,因此会出现结构松弛的现象,也就是我们常说的焓松弛现象,尤其是当储存温度接近材料的玻璃化转变温度时,这种现象尤为明显。 /p p   让我们来对比下熔融过程和玻璃化转变过程。在熔融过程中,规则排列的晶体转变为液体,材料需要吸收热量来破坏晶体结构,热力学上把由于结构改变而导致的热量变化称之为潜热,这在DSC曲线上体现为一个吸热峰。 /p p style=" text-align: center " img title=" 图7.jpg" alt=" 图7.jpg" src=" https://img1.17img.cn/17img/images/201812/uepic/8114d281-a397-4f38-acf7-2727d5b733b0.jpg" / /p p   而在玻璃化转变过程中,主要是改变了分子链段的运动能力,在玻璃化转变温度之上,分子链段能够发生协同重排运动,这就是为什么在玻璃化转变过程中,材料的比热容发生了突变,这在DSC曲线上体现为一个台阶状变化。 /p p style=" text-align: center " img title=" 图8.jpg" alt=" 图8.jpg" src=" https://img1.17img.cn/17img/images/201812/uepic/9100b89d-8730-4d2e-a6b6-8d5c705be842.jpg" / /p p   与纯物质总是在特定的温度熔融有所不同,玻璃化转变过程总是发生在一个相对较宽的温度范围内,玻璃化转变温度会受到热历史,测试条件以及测试环境的影响。 /p p & nbsp /p p br/ /p p a href=" https://www.instrument.com.cn/zt/TAT" target=" _blank" 更多热分析相关知识请见专题:《热分析方法与仪器原理剖析》 /a /p
  • 2022年:安东帕的玻璃之年
    目前,有16名员工在Anton Paar GmbH的玻璃生产部门工作,其中一名是学徒。总而言之,他们每年生产约14000个高精度玻璃测量单元。但情况并非总是如此。大约20年前,Anton Paar从外部供应商那里购买了用于测量仪器的玻璃片。在供应商涨价后,独立的想法更加强烈,因此第一家玻璃鼓风机于2002年在Anton Paar启动,并开始在该公司进行玻璃生产。Gerhard Murer表示:“我们最重要的产品线的核心,即密度测量仪器中的振荡U形管,是由玻璃制成的。因此,我们希望摆脱对外部供应商的依赖。”Gerhard Muler的产品领域是玻璃生产成立时所附属的。这种所谓的振荡“U形管”是由玻璃制成的弯管,用于数字密度计,通过振荡测量样品液体的密度。Thomas Hillebrand是玻璃生产的首批员工之一,他于2005年开始工作,目前仍在从事玻璃生产。他是负责玻璃鼓风机和玻璃仪器制造,习惯于工业化生产玻璃。尽管如此,最初对他来说,制造U形管是一个挑战。Thomas Hillebrand在谈到他在Anton Paar最初时表示:“我花了几个月的时间才制造出第一个功能性振荡U型管。我们正在讨论的玻璃壁,仅有0.2毫米厚。”当时,首要任务是为保证批量生产中的稳定性,并改进许多生产机器和设备。从个人挑战到批量生产经过几年的实践,玻璃生产进入了常规化:清晰的结构和工艺是成功的秘诀之一,人员是另一个关键。Christian Krispel表示:“过去,员工必须专注于产品的某些工作步骤,这一点非常重要,因为我们几乎在完成玻璃生产的每一个生产步骤,从原材料的储存和切割到玻璃加工、玻璃涂层和质量测试。”自2007年以来,他一直担任玻璃生产经理。多年来,玻璃产量不断增长,任务也不断扩大:虽然过去只生产了少数产品系列,但现在有了更多种类的振荡U形管,也生产了其他产品领域的各种玻璃组件。最困难的部分?Thomas Hillebrand说:“DMA 5001密度计的U形管非常突出,因为它的生产需要35个步骤。”这种特殊U形管的生产大约需要三个星期。最高精度随着Christian Krispel的加入,玻璃生产也开始了学徒培训:自2007年以来,玻璃仪器制造人员一直在那里接受培训。Christian Krispel表示:“劳动力市场上几乎没有来自这一领域的熟练工人,这就是为什么我们决定依靠内部未来专家,并自己培训他们。”如今,学徒职业非常罕见,而且只有奥地利的几家公司对其进行培训。如果说有一件事让玻璃生产的员工与众不同,那就是他们的精确工作方式。Thomas Hillebrand说:“玻璃容错率不那么高,所以如果你想在玻璃生产中工作,你需要高度的质量意识、熟练的操作、高度的专注力和在压力下工作的能力。”目前,正在寻找玻璃生产的员工。Anton Paar不仅生产玻璃零件,还参与玻璃的表征。这些Anton Paar仪器用于此目的:MCR和CTD 1000通过流变仪(MCR系列)和对流加热室(CTD 1000)的相互作用,可将玻璃加热至1000°C。这可以实现熔体的流变特性。具有较高熔化温度的玻璃样品可以通过所谓的固态动态力学分析进行分析,该分析可以用于确定玻璃的耐腐蚀性,或者玻璃如何软化以及在什么温度下软化。FRS公司使用Anton Paar的高温流变仪(熔炉流变仪系统),可以在高达1730°C的温度下对玻璃进行液态表征。可以确定诸如熔融玻璃的粘度的流变参数。这对玻璃生产有影响。如果玻璃熔体在加工过程中粘度过高(坚韧),则无法去除气体夹杂物,成品将含有气泡。
  • 显示玻璃:打开世界的“多彩视窗”
    0.12毫米,一张A4纸的厚度,这是玻璃吗?  1000多项技术瓶颈,逐一突破!2018年,这个厚度创造了世界最薄触控玻璃的纪录!  当这块玻璃被轻轻地弯曲成一道彩虹状时,中国工程院院士、中国建材集团总工程师彭寿的演示,让周围人惊叹不已!  可别小看随处可见的玻璃,它已有6000多年历史。过去数百年中,玻璃支撑了显微镜、望远镜、试管的诞生,掀起世界光学和生物技术革命,推动人类科技进步。  进入21世纪,随着玻璃组分、制备工艺等的不断创新,玻璃成为广泛应用于信息显示、新能源、生物医药、航空航天、深海探测等新兴领域的关键功能材料。  今天,显示玻璃,更是我们每个人都离不开的“神器”。当指尖在手机触摸屏上自由滑动,世界和远方,便在你眼前;这触碰,仿佛打开一扇“多彩视窗”。  触摸屏越薄,用户体验越炫酷。“这是我们运用浮法玻璃生产工艺,也就是熔融的玻璃液自由流淌到锡液上进行展薄、拉伸的成形方法。”彭寿介绍,在突破原料提纯、玻璃组分及配方、新型熔化、超薄成形等系列技术瓶颈后,我国拥有了这一技术的自主知识产权,创造了浮法技术工业化生产的世界最薄玻璃纪录。  既然超薄玻璃能卷曲,那么能否像A4纸一样近乎折叠呢?彭寿在思考、探索。  2020年,彭寿和他的团队在国内率先开发出30微米柔性可折叠玻璃,再创一项中国第一、世界领先的成果,形成了全国产化超薄柔性玻璃产业链。  30微米,也就是0.03毫米,这是目前工业化最薄的可折叠玻璃!日夜不休的弯折测试,折叠100万次后没有一丝裂纹!  “这一成果解决了关键原材料领域的‘卡脖子’技术难题,保障了信息显示供应链和产业链安全。”彭寿说,柔性可折叠玻璃,因其极薄、柔韧性强、耐用性高和出色的折痕控制等特点,成为折叠屏手机盖板玻璃的首选。还有液晶电脑、液晶电视、车载显示屏,玻璃同样在“大显身手”。  其实,每块显示屏背后,都有3种显示玻璃作为支撑并发挥不同作用——由上往下分别为高强盖板玻璃、超薄触控玻璃以及显示玻璃基板。其中,第三层显示玻璃基板是新型显示产业的核心材料,也是显示终端屏幕的重要组成部分,被誉为玻璃领域“皇冠上的明珠”。  “下一步,我们要把显示玻璃向大尺寸化、复合化、功能化方向发展,我们希望研发出10微米的极薄玻璃,作为半导体、柔性太阳能电池等领域的新型基底材料,其应用前景会更加广阔。”彭寿团队开始攻克下一个目标。
  • 玻璃恒温水浴
    76-1A玻璃恒温水浴   促销价:1800元 一:玻璃恒温水浴产品简介 玻璃恒温水浴主要用于实验室中蒸馏,干燥,浓缩,及温渍化学药品或生物制品,也可用于恒温加热和其它温度试验,是生物、遗传、病毒、水产、环保、医药、卫生、化验室、分析室、教育科研的必备工具。 其产要特点:(1)工作室用透明的玻璃制作有利于操作者观察内部试验情况。 (2)控温精度高、数字显示、自动控温。 (3)有电动搅拌功能,使水槽内部水温均匀、操作简便、使用安全。  二:玻璃恒温水浴技术参数 型  号 76-1(A) 型   式 圆柱型:直径300mm、高300mm 电  源 220V+10% 50HZ+2% 功  率 1000W 控 温 范 围 室温-100℃范围内任意调节 温度均匀性 &le 0.2℃ 温 度 波 动 &le 0.5℃ 升 温 速 度 由室温-100℃不超过1小时 熔 丝 电 流 3A 搅 拌 功 率 30W 搅 拌 速 度 起动-2500转/分 六:玻璃恒温水浴特别说明: 以前生产的型号: 76-1型玻璃恒温水浴、属于模拟控温,76-1A型玻璃恒温水浴、属于数字控温 现我公司所有的玻璃恒温水浴、全部采用数字控温、所以76-1和76-1A己是同一数字控温产品、原来的模拟控温仪器停止生产。 同类产品有: 序号 型 号 仪 器 名 称 技 术 参 数 价格 111 HH-S 数显恒温油浴 尺寸280× 280× 300室温-300℃ 3900 112 HH-QS 超级循环恒温油浴 2000W、室温-300℃、带循环 4800 113 HH-601 超级恒温水浴(槽) 尺寸350× 240× 180室温-100℃ 2500 114 76-1A 玻璃恒温水浴 Ø 300× 300,精度0.5℃室温-100℃ 2500 115 HH-601Q 高精度恒温水浴 尺寸400× 300× 180、精度0.1℃ 5800 邮编:213200 江苏金坛市亿通电子有限公司 地址:金坛市华城开发区华兴路180号 电话:0519-82616576 传真:0519-82613699 Http://www.eltong.com e-mail:crh3090@oub.cz.jsinfo.net
  • 蚌埠玻璃院荣获首届“师昌绪新材料技术奖” 树立中国玻璃行业创新典范
    p style=" text-indent: 2em " 12月20日,第一届“中国新材料产业发展大会”隆重召开,中建材蚌埠玻璃工业设计研究院有限公司(以下简称“蚌埠玻璃院”)荣获首届“师昌绪新材料技术奖”,成为全国首批获奖的3家单位之一。“师昌绪新材料技术奖”是为纪念我国著名材料科学家,中国科学院、中国工程院资深院士,国家最高科学技术奖获得者师昌绪先生诞辰100周年而首次设立的重大奖项。科技部副部长、中国工程院院士徐南平等领导出席大会,魏炳波院士、周廉院士、李元元院士等为蚌埠玻璃院颁奖,师昌绪夫人郭蕴仪先生在场见证。 /p p   蚌埠玻璃院成立于1953年,是国家级综合性甲级科研设计单位,国家火炬重点高新技术企业,隶属于世界500强央企中国建材集团有限公司,是中国玻璃硅基新材料技术和产业的领军企业。蚌埠玻璃院设有联合国开发计划署和中国政府合建的中国玻璃发展中心等7个行业性机构,拥有浮法玻璃新技术国家重点实验室、玻璃工业节能技术国家地方联合工程研究中心、国际科技合作基地等14个国家、省部级创新平台。累计承担国家重点研发计划、863、973、国家科技支撑计划等重大课题10项 荣获国家科技进步二等奖3项,省部级科技进步一等奖7项 获授权国际专利165件,主持制定国家标准12项。 /p p   为此,组委会在颁奖词中给予蚌埠玻璃院高度评价。“它是中国玻璃工业的一面旗帜,深耕玻璃行业65年,初心不改,厚积薄发,创造了民族玻璃发展史上的辉煌。它始终践行科技报国的情怀与使命担当,研发并量产0.12毫米超薄触控电子玻璃,研制铜铟镓硒薄膜太阳能电池组件和碲化镉弱光发电玻璃,获国家科技进步奖。它树立了中国玻璃行业创新转型的典范,从传统玻璃,逐步延伸到新玻璃、新材料、新能源等产业链上下游领域,16年间企业效益增长440倍。以担当的作为,让世界聚焦‘中国玻璃’ 以自信的步伐,挺起中华民族玻璃新材料的工业脊梁。” /p p /p
  • 国家标准《搪玻璃层试验方法 第10部分:生产和贮存食品的搪玻璃设备搪玻璃层中重金属离子溶出量的测定和限值》征求意见
    国家标准计划《搪玻璃层试验方法 第10部分:生产和贮存食品的搪玻璃设备搪玻璃层中重金属离子溶出量的测定和限值》由 TC72(全国搪玻璃设备标准化技术委员会)归口 ,主管部门为中国石油和化学工业联合会。主要起草单位 江苏扬阳化工设备制造有限公司 、天华化工机械及自动化研究设计院有限公司 、苏州市协力化工设备有限公司 、太仓新工搪玻璃有限公司 、北京华腾大搪设备有限公司 。征求意见稿编制说明
  • 胶带剥离强度测试仪180度剥离、90度剥离和T型剥离的区别是什么
    胶带剥离强度测试仪用于评估胶带产品的粘接性能,其中180度剥离、90度剥离和T型剥离是几种常见的剥离测试方法。这些方法各有特点,适用于不同的测试需求和条件。180度剥离测试:测试原理:180度剥离测试涉及将胶带的一端固定,另一端以180度的角度从被粘物表面剥离。应用:这种方法最常用,适用于评估胶带对硬质或厚的被粘物的粘接强度。特点:操作简单,结果分散性小,但基材对测试结果的影响较大。适用性:更适合薄型胶带,如棉质和PET基材的双面胶带。90度剥离测试:测试原理:90度剥离测试中,胶带的一端固定,另一端以90度的角度剥离。应用:由于需要特殊设计的夹具,这种测试的实际应用较少,主要用于理论研究和分析。特点:基材性质对测试结果的影响较小。适用性:更适用于较厚的胶带,如丙烯酸泡棉胶带。T型剥离测试:测试原理:T型剥离测试模拟胶带对软质或薄的被粘物的粘接性能,测试时需要特殊的夹具。应用:不常用,一般只在某些特殊胶带上使用这种测试。特点:用于检测压敏胶在基材上的粘接力(粘基力)强度。主要区别:剥离角度:180度剥离测试和90度剥离测试的主要区别在于剥离的角度,这影响了测试结果的准确性和适用性。测试设备要求:90度剥离测试对设备的要求更高,需要特殊设计的夹具来保持恒定的剥离角度。基材影响:180度剥离测试结果受基材影响较大,而90度剥离测试则较小。应用范围:180度剥离测试应用更广泛,而90度剥离测试多用于理论研究。测试标准:不同的国家和地区有不同的剥离强度测试标准,如GB/T 2792-1998《压敏胶粘带180°剥离强度试验方法》等。这些标准规定了测试的具体条件和方法,以确保测试结果的一致性和可比性。结论:选择哪种剥离测试方法取决于胶带的应用场景、基材特性以及所需的测试精度。通过这些测试,可以全面评估胶带产品的粘接性能,为胶带的选择和应用提供科学依据。
  • 科学家研制出最薄二维玻璃
    图片来源:pubs.acs.org    研究人员日前研制出世界上最薄的玻璃,但它看起来竟然非常的熟悉。这种玻璃由硅和氧制成,是科学家在覆盖着铜的石英上合成石墨烯——一个原子厚的碳片——时偶然得到的。   研究人员相信,是漏气导致铜与也是由硅和氧构成的石英发生了反应,进而形成了源自石墨烯的一个玻璃层。   这种玻璃仅仅有3个原子的厚度——这是硅玻璃的最小厚度,从而使其成为了二维玻璃。   尽管这是科学家首次开发出这么薄的独立式玻璃片(如图所示),然而在电子显微镜下,它却完全不是“新”的。   美国纽约州康奈尔大学的材料学家Pinshane Y. Huang和同事在即将出版的《纳米快报》上报告说,它与一位玻璃理论学家在1932年绘制的图表中试图阐释的结构(小图)竟然“极度类似”。   研究人员指出,除了展示石墨烯如何可能打造成之前难以想象的二维材料之外,这种超薄玻璃还能够用在半导体或石墨烯晶体管的研制中。
  • 玻璃行业中的透射与反射色彩质量测量—色差仪
    玻璃作为一种常见的材料,广泛应用于建筑、汽车、家具等领域。在玻璃行业中,透射和反射是两个重要的性质。透射涉及玻璃对可见光的透明程度和色彩表现,而反射关乎玻璃表面镀膜的效果。本文将介绍如何使用在线ERX55分光光度仪和ColorXRAG3色度分析仪来监控色彩质量和测量玻璃镀膜的反射率。透射是玻璃行业中最重要的光学性质之一,它决定了玻璃对可见光的透明程度和色彩表现。当光穿过玻璃时,会受到折射现象的影响。折射是光在从一种介质传播到另一种介质时改变方向的现象。这种折射现象使得玻璃能够将光有效地传播到玻璃的另一侧,使我们能够透过玻璃看到外面的世界。在玻璃行业中,透射率是一个重要的参数。透射率定义为通过玻璃的光强与入射光强的比值。透射率越高,玻璃对光的透明度就越好。而对于特定波长的光,其透过玻璃的能量与光谱分布有关,因此,不同类型的玻璃可能对不同波长的光具有不同的透射率。透射率的测量通常使用分光光度计来完成。在线ERX55分光光度仪是高精度的测量仪器,可以用于测量透明薄膜的色彩、可见光透射和雾度,持续监控色彩质量。通过持续监控透明薄膜的色彩质量,生产厂家可以确保产品的一致性和稳定性。反射是另一个在玻璃行业中需要关注的光学现象。反射率是一个指标,用于衡量光线在物体表面反射的程度。在玻璃制造过程中,常常会在玻璃表面进行涂层处理,这些涂层能够改变玻璃的反射性能。通过合理设计涂层,可以实现特定的反射率,使玻璃在特定波长范围内表现出所需的特殊光学效果,如防紫外线、隐私保护等。玻璃作为非散射性物体,在传统的直接照明测量设备中无法准确提供色彩数据。为解决这一问题,ColorXRAG3色度分析仪成为了一种重要工具。该设备具备宽波长范围(330nm到1,000nm)和高光学分辨率(1nm),可在实验室中安装在支架上,对放置在样品支架上的玻璃板进行测量。同时,它也可用于在线测量,安装在玻璃板上方的横梁用于测量低辐射玻璃,或安装在玻璃板下方用于测量遮阳镀膜。ColorXRAG3色度分析仪具有紧凑型设计,可从距离玻璃板10mm处捕获非散射性样品的光谱数据和色彩反射值,甚至能鉴定多银层镀膜。该仪器采用氙气闪光灯,同时采用+15°:-15°、+45°:-45°和+60°:-60°三种光学结构,每秒进行一次测量,以实现全方位的色彩数据获取。其中,±15°的测量值与传统实验室测量的积分球光学结构结果相同,而±45°和±60°的测量值则可以显示不同观察角度下的色彩变化。ColorXRAG3色度分析仪的应用为玻璃行业提供了一种高效、准确的色彩测量解决方案,使生产厂家能够更好地控制透射与反射性能,提高产品质量,并满足不同市场需求,推动玻璃行业的持续发展。透射和反射是玻璃行业中非常重要的光学现象。透射性能决定了玻璃的透明度和色彩表现,而反射率则与玻璃表面的涂层处理密切相关。使用在线ERX55分光光度仪和ColorXRAG3色度分析仪,可以对玻璃产品的透射性能和反射性能进行精确测量和监控,从而保证玻璃产品的质量和性能达到预期要求。“爱色丽彩通”是丹纳赫公司旗下的品牌,总部位于美国密歇根州,成立于1958年。作为全球领先的色彩趋势、科学和技术公司,爱色丽彩通提供服务和解决方案,帮助品牌、制造商和供应商管理从设计到最终产品的色彩。
  • 玻璃化转变温度:定义、影响因素及应用
    玻璃化转变温度是指无定形或部分无定形的非晶态材料在熔点以下温度发生结构变化时所经历的一种状态转变。这种转变会导致材料在某一温度范围内出现明显的热胀缩现象,并伴随着比热容、热导率等物理性质的变化。玻璃化转变温度对于材料的使用性能和使用范围具有重要影响,因此被广泛应用于材料科学和工程领域。上海和晟 HS-DSC-101A 玻璃化转变温度测试仪玻璃化转变温度的定义是指非晶态材料在加热过程中,从玻璃态转变为高弹态的温度。这个转变过程通常伴随着比热容的增大和热导率的降低。玻璃化转变温度的计算方法通常采用动态力学分析法,通过测量材料的储能模量和损耗模量的变化来确定。影响玻璃化转变温度的因素有很多,其中主要包括温度、应力、压力、光照等因素。温度对玻璃化转变温度的影响最为显著,通常情况下,随着温度的升高,玻璃化转变温度会降低。应力也会对玻璃化转变温度产生影响,例如,在应力的作用下,材料的玻璃化转变温度会发生变化。压力对玻璃化转变温度的影响与应力类似。此外,光照等因素也会对某些材料的玻璃化转变温度产生影响。玻璃化转变温度在材料科学和工程领域有着广泛的应用。例如,在汽车制造业中,通过对塑料制品的玻璃化转变温度进行控制,可以实现对材料使用性能和使用范围的有效管理。在建筑材料中,通过对玻璃化转变温度的测量和分析,可以实现对建筑材料的有效监控和管理。总之,玻璃化转变温度是材料科学和工程领域中一个重要的概念。通过对玻璃化转变温度的研究和控制,可以实现对材料性能的有效管理,从而推动材料科学和工程领域的发展。未来,随着材料科学和工程领域的不断发展,玻璃化转变温度的研究和应用将会得到更加深入的拓展和应用。
  • 红外测温仪该如何精准测量玻璃温度
    在玻璃生产过程中,温度测量和监控是确保产品质量、提高生产效率以及保障安全性的重要环节。对于处于高温熔化状态下的玻璃,准确的温度测量尤为关键,这不仅影响到最终产品的物理特性和结构,还直接关系到生产设备的运行状况和使用寿命。通过使用专业的红外测温仪,如IMPAC IN 140/5 IS 50系列,生产企业能够更好地控制各个生产阶段的温度,从而优化生产流程,降低能耗,并确保高质量的玻璃产品。 玻璃生产中温度测量的必要性1. 确保产品质量:玻璃生产中的温度控制对产品质量至关重要。通过精确的温度测量,生产过程中的熔化、成型和退火环节可以保持在最佳温度范围内,防止出现气泡、应力裂纹等质量问题。特别是在高温熔融状态下,准确测量玻璃表面的温度,可以确保产品的结构稳定性和光学性能。2. 提高生产效率: 精确的温度监控有助于优化能源使用,减少不必要的能源消耗。通过使用高效的温度测量设备,生产过程中的各个环节可以更加快速、准确地进行,从而提高整个生产线的效率。此外,温度的实时监控可以帮助减少生产周期,进一步提升生产能力。3. 延长设备寿命与提高安全性: 在玻璃生产中,过高的温度可能会对设备造成损害,缩短其使用寿命。通过监测温度变化,可以及时发现异常情况,避免设备因过热而损坏。同时,温度的有效监控可以防止意外事故的发生,如炉体破裂或玻璃意外冷却等,保障生产过程的安全性。高温熔化状态下玻璃的温度测量方法在测量高温熔化状态下的玻璃温度时,使用红外测温仪需要特别注意以下几点,以确保测量的准确性和安全性:1. 高温辐射率调整:熔融玻璃的辐射率一般在0.85左右,使用红外测温仪时,必须根据高温熔融玻璃的辐射率进行校准,以获得准确的温度读数。2. 避免反射干扰:熔融玻璃表面光滑且具有较高的反射性,因此,测量时要避免测温仪与玻璃表面成较大角度。尽量保持测温仪与玻璃表面垂直,减少环境光和其他热源的反射干扰。3. 选择合适的测温仪:在测量高温熔化玻璃时,确保使用的红外测温仪能够承受和精确测量高温。普通测温仪可能无法应对熔融玻璃的高温环境,需选择适合测量高温的工业级红外测温仪,如IMPAC IN 140/5系列。4. 防止表面蒸汽或杂质干扰:熔融玻璃表面可能会产生蒸汽或挥发物,这些可能影响测温仪的读数。因此,确保测量时视线清晰,没有干扰物遮挡。5. 保持一定的安全距离:高温熔融状态的玻璃温度极高,为了保护测量人员和设备,测温仪应保持适当的安全距离。IMPAC IN 140/5系列红外测温仪具备非接触测温的功能,可以在安全距离外进行温度测量。编辑搜图IMPAC IN 140/5系列红外测温仪的优势为了在玻璃生产中实现高效的温度测量,IMPAC IN 140/5系列红外测温仪提供了一系列专为玻璃行业设计的功能和技术,具有以下显著优势:- 宽广的测温范围:IMPAC IN 140/5系列的测温范围为250°C至2500°C,适用于玻璃和石英玻璃表面的非接触式温度测量,能够满足各种玻璃生产需求。- 更短的响应时间:这款测温仪的响应时间最短仅为10毫秒,适用于快速测量任务和高效的生产环境。- 高精度光斑尺寸:光斑尺寸最小可达0.9毫米,适用于小型测量物体的精确温度测量,确保每一测量点的准确性。- 多种调焦镜头与取景方式:IMPAC IN 140/5系列配备调焦镜头,适用于不同的测量距离和测量物体尺寸。此外,仪器还配备激光靶光或优化的目视取景器,使测量对准更加精准。- 数字化显示与接口:内置的数字显示屏可以实时显示当前测量温度,所有参数可通过仪器上的集成键盘进行调节。仪器还提供RS232/RS485接口,方便数据传输和远程监控。- 多功能与可靠性:IMPAC IN 140/5-H高速机型不仅适应高速测量需求,还具有极短的响应时间,能够胜任各种玻璃生产中的温度监控任务。通过使用如IMPAC IN 140/5系列的先进红外测温仪,玻璃生产企业能够更好地管理生产过程中的温度变化,确保产品的高质量、提高生产效率,并延长设备的使用寿命。
  • 从全国75%到全球25%:光学玻璃的“西南王国”
    “成都造”自主品牌在全球能够做到行业产销量第一的品牌无疑是凤毛麟角。成都光明光电公司的光学玻璃产销量却能居世界首位,以品牌为成都赢得了骄傲。随着成都现代化、国际化进程的加快,我们需要更多在国内以及国际上具有较高知名度的品牌企业群体,来充实和提升国际化成都的内在高品质。   市场份额从全国75%到全球25%   该公司始建于1956年,是“一五”期间156项重点工程之一,是国内光电信息材料研发、生产及出口的龙头企业。公司拥有国家级光学材料企业研发中心,能够及时配套地向中外客商提供包括镧系玻璃、环境友好光学玻璃、低熔点光学玻璃等在内的200多个品种、不同规格的光学玻璃、光电子玻璃、光学元件,还能为用户提供铂、铑等贵金属提纯及加工业务。企业光学玻璃产销量居世界首位,占领了国内高端光学玻璃75%的市场份额,还远销至欧洲、北美、东南亚的14个国家和地区,占全球光学玻璃销量的25%。凭借“为国际一流光电信息产品提供一流光学材料”的理念,目前企业产品已经大批量进入奥林巴斯、富士、美能达、柯达、佳能等国际光电知名品牌企业的数码相机、数码摄像机、液晶投影机、扫描仪读取头、办公一体化机等产品中。   填补国内空白 迅速走向全国   20世纪50年代,成都光明的前辈们发扬军工人艰苦奋斗、自力更生的优良传统,于1958年在茅草棚里通过土法熔炼出第一埚光学玻璃,由此填补了我国光学材料生产空白。   从20世纪70年代末开始,该公司以改革开放为契机,引进消化了日本先进技术,实现了光学玻璃生产的直接熔炼、直接成型、直接退火,使企业光学玻璃生产工艺实现了根本性的改变,生产效率大大提高。20世纪80年代,公司紧跟市场需求,大力加强新品开发,相继推出变色眼镜片毛坯、超声延迟线玻璃、医用铅玻璃、大块工艺品玻璃,实现了保军转民第二次创业。1982年,该公司成立了专门从事新产品研发的机构,1983年,企业第一件“冰山及图”商标核准注册,1986年,企业主持制定了光学玻璃国家标准,并成功申请了第一件专利。从此,凝结着几代光学材料制造行业专家和技术人员巨大心血的“冰山”商标以独特的商标表现形式、过硬的产品质量标准、强大的专利技术支持迅速走向全国。   进军国际市场 为人类带来光明   20世纪90年代是光电行业蓬勃发展的年代,光学玻璃应用对象也从传统照相机、望远镜向数码照相机、投影仪等新型光电产品转移。于是企业在消化吸收国外技术的同时,大力进行传统产品的优化升级和更新换代,将目光更多地投向了国际光电市场。该公司成功以高品质的新型光电材料抢占国际市场,研发出环境友好光学玻璃、镧系光学玻璃,在方兴未艾的光电子新技术浪潮中独步一时。   精彩源于专注 品牌铸就市场利器   进入21世纪,该公司已发展成为拥有15家控股公司的集团企业,年销售收入达到10亿元以上,主营业务拓展到了除光学玻璃以外的电子玻璃、照明玻璃、光学元件加工等产品领域,通过与成都周边的压型企业、冷加工企业合作带动了近10亿元的地方经济发展。   经过持之以恒的投入与发展,品牌已成为成都光明发展战略、经营决策的核心组成部分,能够有力地支持企业各项业务领域的发展,成为企业护航市场拓展的利器。
  • DSC、TMA、DMA等在玻璃化转变研究中的应用
    p strong 仪器信息网讯 /strong   中国化学会第七届全国热分析动力学与热动力学学术会议于4月20日在合肥召开,大会邀请到了多位从事热分析动力学和热动力学的知名学者和多家生产热分析仪器的知名厂商。大会期间,梅特勒-托利多中国区热分析部技术应用主管范玲婷女士作“玻璃化转变动力学研究”的报告。 /p p style=" text-align: center " img src=" https://img1.17img.cn/17img/images/201904/uepic/0991c677-3d78-47a9-9650-05b24a554dc7.jpg" title=" 范玲婷_副本3.jpg" alt=" 范玲婷_副本3.jpg" width=" 400" height=" 300" border=" 0" vspace=" 0" style=" width: 400px height: 300px " / /p p style=" text-align: center " 梅特勒-托利多热分析部技术应用主管范玲婷 /p p   结晶态固体加热到熔融温度处会发生熔融,如果继续加热会形成稳定的熔体。如果对熔体进行冷却,通常会在低于熔融温度以后结晶形成结晶态固体,一般称之为过冷现象。当熔体温度低于熔融温度就不再是热动力学意义上的稳定熔体了,通常把这种状态的熔体称为过冷态熔体。当过冷态熔体被快速冷却时,结晶过程会受到抑制,在玻璃化转变温度处转变为玻璃态固体。当玻璃态固体被加热时,会在玻璃化转变温度处转变为过冷态熔体,如果继续加热的话过冷态熔体会在熔融温度之前结晶成结晶态固体,称为冷结晶现象。与结晶温度和熔融温度之间的过冷现象不同,无论是玻璃态固体转变为过冷态熔体,还是过冷态熔体转变为玻璃态固体,玻璃化转变过程总是发生在同样的温度。 /p p   范玲婷认为,从热力学角度看,玻璃化转变是结构平衡态过冷熔体向非平衡的玻璃态转变的过程 从动力学角度看,玻璃化转变是过冷态熔体的松弛过程。温度越接近熔点,结晶形成的晶体越容易熔融,因此结晶速率越慢,结晶时间就越长,然而温度越接近玻璃化转变温度,分子链段的运动能力越低,也需要更长的结晶时间,结晶速率在熔融温度与玻璃化转变温度之间达到最大值。以相对较慢的降温速率将材料从熔融状态冷却下来,材料在较低温度处经历玻璃化转变,这时自由体积被冻结,分子链段无法进行协同重排。反之如果是相对较快的降温速率,自由体积在更短的时间内被冻结,材料在较高温度处就经历了玻璃化转变,因此随着降温速率的提高,玻璃化转变温度向高温方向发生迁移。迁移的量取决于材料的性质,通常来说降温速率提高一个数量级,玻璃化转变温度向高温方向迁移2到10℃。这说明了玻璃化转变对降温速率的依赖性。 /p p   范玲婷也谈到了玻璃化转变过程中的焓松弛现象:如果材料在低于玻璃化转变温度处经历退火处理,就会产生焓松弛现象。所谓退火处理就是指将材料缓慢加热到某一温度,保持一定的时间,然后以适宜的速率冷却下来的过程。如果部分松弛的样品被加热,在温度高于玻璃化转变温度以后,材料转变为过冷态熔体,在经历玻璃化转变温度时,焓值会有一个大幅的跃迁,这在DSC曲线上就体现为常见的焓松弛峰,通常会与玻璃化转变台阶重叠在一起。只要降温速率足够快,绝大多数材料都能形成玻璃态结构,玻璃态结构并不是一个热动力学稳定的结构,储存过程或者退火处理都会导致焓松弛现象的产生。退火的温度越接近玻璃化转变温度,焓松弛现象产生的就越快。 /p p   最后,范玲婷总结了差示扫描量热法(DSC)、温度调制差示扫描量热法 (TMDSC)、热机械分析(TMA)和动态热机械分析(DMA)在玻璃化转变方面的分析测试特性。玻璃化转变是玻璃态固体和过冷态熔体之间的转变,在转变过程中,材料的分子链段运动能力发生了显著改变。在DSC曲线上,玻璃化转变过程体现为一个台阶状变化,从中可以计算出玻璃化转变温度和玻璃化转变前后的比热容变化量大小,高温范围的玻璃化转变过程可以使用TGA/DSC同步热分析仪进行测试,Flash DSC可以对结晶速率很快的样品进行测试(如聚丙烯),极快的降温速率能够防止样品结晶,极快的升温速率能够防止样品发生结构重组现象 使用TMDSC技术能提高测试的灵敏度并且分离重叠的热效应,不仅可以通过测量材料的膨胀系数的变化来表征玻璃化转变温度,还可以用穿刺模式测量材料的软化点 对于玻璃化转变的测试来说,DMA拥有最高的灵敏度,因为在转变过程中材料的模量会产生几个数量级的变化,因此在DSC上很难观察到的玻璃化转变都可以在DMA上观察到,其宽广的频率范围还可以研究热效应的频率依赖性以及松弛时间与温度的关系。 /p p   范玲婷展示了梅特勒-托利多去年推出的超越系列闪速差示扫描量热仪Flash DSC 2+。Flash DSC 2+配备了两块晶片传感器,分别是标准UFS 1传感器和高温UFH 1传感器。标准UFS 1传感器装设了16根热电偶,具有高的灵敏度和出色的温度分辨率,温度范围为-95℃到520℃,升温速率可达0.1-20000K/s,降温速率可达0.1-4000 K/s。高温UFH 1传感器可以在更宽的温度范围内测量,温度范围-95℃到1000℃,升温速率可达0.1-60000K/s,降温速率可达0.1-40000K/s。这是由于UFH 1传感器有更小的样品测试面积,更薄的膜厚度,并使用了更高导电性的金金属作为导体。另外,可测试样品种类也大大增加了,这得益于Flash DSC 2+的密封测量槽设计,使得部分高温状态下和氧气发生反应的样品,能够在隔绝氧气的条件下进行测试。 /p p   由于报告时间有限,范玲婷推荐大家从梅特勒-托利多的网站获取更多有关玻璃化转变的信息,并对到场专家学者表示了感谢。 /p p br/ /p
  • 浮法玻璃新技术国家重点实验室开工
    3月28日上午,在中国玻璃新材料科技产业园内,中国建筑材料集团有限公司蚌埠玻璃工业设计研究院浮法玻璃新技术国家重点实验室开工建设,中航三鑫太阳能光伏玻璃生产线二期工程奠基,中建材国家级海外高层次人才创新创业蚌埠基地、蚌埠国家玻璃新材料高新技术产业化基地揭牌。副省长黄海嵩,中国建筑材料集团公司董事长、党委书记宋志平出席奠基揭牌典礼。   浮法玻璃新技术国家重点实验室是国家科技部正式批准蚌埠玻璃工业设计研究院建设的重大科技创新平台,建设投资约5000万元。实验室以浮法玻璃节能降耗与环保减排技术、浮法玻璃新技术、在线功能化玻璃镀膜技术、特种浮法玻璃等为方向,针对行业中的高新课题开展创新型、开放式的应用基础研究,组织重要技术标准的研究制定,为行业发展提供共性关键技术和前沿性技术原型。   中航三鑫太阳能光伏玻璃生产线二期工程,是继一期日产250吨超白太阳能光伏玻璃生产线顺利投产后,开工建设的又一重大项目,项目投资4亿元,建设一条500吨级太阳能光电玻璃生产线,预计2011年2月投产。中建材国家级海外高层次人才创新创业基地,是目前建材行业唯一的国家级海外高层次人才创新创业基地。
  • 我国玻璃行业首个国家重点实验室通过验收
    p   依托蚌埠玻璃工业设计研究院和中国洛阳浮法玻璃集团有限责任公司建设的浮法玻璃新技术国家重点实验室7月底通过了由国家科技部组织的建设验收。以中国工程院副院长徐德龙院士为组长的验收专家组一致认为,该实验室超额完成了建设计划任务,研究方向正确,重点突出,成果丰硕,特色鲜明,实现了建设目标。 /p p   “浮法玻璃新技术国家重点实验室是玻璃行业首个国家重点实验室,主要解决国家经济社会发展中所需的玻璃新技术领域的重大关键课题,引领玻璃行业科技发展方向。”验收专家组表示。 /p p   据介绍,实验室自国家科技部批准建设以来,蚌埠玻璃工业设计研究院等依托单位投入近亿元,新增设备77台套,新增实验室面积8000平方米,建立了相应的规章制度和运行机制,紧密围绕高品质浮法玻璃技术、节能减排技术、玻璃功能膜材料设计和镀制技术、玻璃新材料4个方向,开展了前沿、共性、重大关键技术研究,在电子信息显示用超薄玻璃、光伏玻璃、超白超薄玻璃、玻璃节能减排技术等方面取得一系列重大创新成果,居国际前沿水平,获国家科技进步二等奖2项,省部级科技类奖8项,发表论文44篇,授权发明专利45件,拥有研究人员84名,其中国家“千人计划”3名,博士11名,硕士27名。 /p p   验收专家组认真审阅了实验室的建设计划任务书和建设验收申请报告,出具了验收意见,并建议进一步凝炼研究方向,进一步加强用窑炉尾气预热原料技术的研发,提升实验室发展目标,原创性地开发出具有中国自主知识产权的新一代浮法玻璃技术,努力建成引领行业进步的国际一流实验室。 /p p   与会人员还实地考察了实验室,参观了以实验室研发的科研成果成功产业化的案例——电子信息显示超薄玻璃基板生产线。 /p p /p
  • 卡通玻璃杯含铅量超标1000倍
    11月23日,据英国《每日邮报》报道,中国产卡通玻璃杯含铅量超标1000倍,年幼的儿童摄入过量的铅元素,将直接导致智商下降。11月23日,重庆市质量技术监督局检测研究院表示,重庆市尚未接到消费者反映,市民如果购买了卡通玻璃杯,又担心玻璃杯含铅量超标,可到检测研究院检测。 一小女孩正用卡通图案的彩色玻璃杯喝饮料   家长担心孩子健康受影响   11月24日上午,重庆渝北区花园新村的黄女士给本报热线打来电话说,她在网上看到一条消息,卡通图案彩色玻璃杯大部分是用铅来着色,含铅量严重超标,她6岁的儿子就是用的这种杯子,且已经使用了半年,她十分担心。   和黄女士一样,重庆渝中区的林女士看到这则新闻后,也很着急:“我5岁的女儿特别喜欢喜羊羊的卡通图案玻璃杯,家里的卡通图案玻璃杯多达十多个,会不会有什么问题哟?”   商场没接到撤柜通知   11月24日下午,记者来到重庆朝天门小商品批发市场,发现商场内有很多彩色卡通玻璃杯:有老虎图案的,还有熊猫图案的……款式多达二三十种,价格从5元至30元不等。   “每天我大约可以批发100多只,都是市面上的小零售商来买。”批发玻璃杯的魏老板说。   随后,记者又来到重庆渝北区花园新村永辉超市、解放碑新世纪等多家超市、商场均发现有各种不同图案的卡通玻璃杯销售,价格从6元至32元不等,对于这些杯子是否铅超标,营业员都说不知道,厂家也没标注。永辉超市营业员称,当天有很多顾客都来问杯子是否铅超标,但他们确实不知道,也没接到撤柜通知。   质监部门将抽样检测   重庆市质量技术监督局检测研究院负责人说,目前,重庆市商场销售的卡通图案玻璃杯铅含量是否超标,他们还没有接到反映。不过,质量技术监督部门将联合工商部门对商场销售的卡通图案玻璃杯铅含量进行一次抽测,如果发现问题肯定会停止销售。如果有消费者担心卡通玻璃杯含铅量超标,可以带着玻璃杯到市质量技术监督局检测研究院轻工产品质检中心进行检测。   铅中毒会致智商下降   重庆市第六人民医院职业病科主任王永义表示,儿童很喜欢卡通图案,但如果这些图案是用铅着色,含铅量又超标,家长应该引起注意,因为儿童有可能用手去摸,或用舌头舔,会把铅摄入体内,造成铅中毒。铅中毒会引起智力下降,还会损伤神经系统,可导致小儿烦躁不安,易冲动,腹痛,食欲下降,注意力不集中,性格改变,反应迟钝,智力下降,记忆力下降等。   新闻背景   据英国《每日邮报》23日报道,美国罗德岛州玩具实验室经过检测发现,儿童广泛使用的卡通玻璃杯含铅量达到30%,比美国儿童产品的合法含铅量上限0.03%高出1000倍。医学专家指出,儿童摄入过量铅元素,将直接导致智商下降。报道称,绘有《超人》、《神奇女侠》等电影卡通形象的玻璃杯都由中国生产,在美国加州地区销售。
  • Nature Materials: 玻璃流变的普适标度律
    内容简介 众所周知,玻璃是又硬又脆的固体;然而它们的无序结构其实更像液体。与通过观察固体应力和应变之间的行为来理解其机械性质不同,对于液体力学性能的典型观点是粘度,即剪切应力和应变率之间的行为观察。由于玻璃材料的在流变学上需要关注非常宽的应变率范围,因此在实验上颇为困难;通常的做法是使用合适的测试设计来获得不同的应力分布。从这个视角出发,粘性液体和金属玻璃可以进行类似的测试。在本论文的研究中,作者使用HysitronTI980 TriboIndenter,通过巧妙的动态纳米力学实验设计,进行了大范围的微尺度应力松弛实验,包括纳米压痕测试和微悬臂测试,实现了9个数量级的超宽时间尺度表征金属玻璃在室温下的应力-应变速率响应。采集数据后,作者利用使用流体动力学的通用法则,提出金属玻璃包含温度、体积和应力对于应变率的行为轨迹。该工作 Universal scaling law of glass rheology于2022年4月发表于Nature Materials 上。 研究结果和讨论 文中详细提到如何通过三种类型的实验设计来实现将应变率范围跨到九个数量级的目标。首先对较高数量级应变率,作者进行保持峰值载荷200s的准静态压痕试验;热漂移是限制的主要因素。其次,使用中等强度的动态压痕进行参考蠕变式的保载量测, 实现了在无热漂移条件下长达2000 秒的位移量测。最后,采用不同的尺寸、加载距离和施力参数,在低应变率下进行了1000s的悬臂压痕试验。如图 1a 所示,作者测量了 Zr55Cu30Al10Ni5 金属玻璃在剪切应变速率为10-8 到 100 s-1 的动态剪切应力响应。在应力松弛实验中,根据不同松弛时间下的接触力和位移得出剪切应变率和名义剪切应力。在高速纳米压痕实验(图 1b)和低速悬臂实验(图 1c)中,剪切应力是剪切应变速率的函数。纳米压痕和悬臂实验所需的取样量较小,可有效避免高应力水平下离散剪切带和裂纹的干扰。在 ~10-6 到 10-5 s-1 的应变速率范围内,两种不同方法获得的实验数据点完美重合,并形成一条平滑的曲线(图 2a)。因此, 玻璃态材料的动态机械响应速率范围从 ~10-8 到 100 s-1 , 时间尺度跨越九个数量级。作者进一步分析了归一化粘度与应变速率的关系(图2b)。可以看出,所有数据的归一化粘度(η/ηN)与应变率之间的关系显示出相同的趋势,即从低应变速率下的牛顿流体到高应变速率下的剪切稀释。通过与其它实验结果比较发现,金属玻璃流变的动态响应与其它诸如无机玻璃、聚合物玻璃 、乳化剂、粒状材料、火蚁聚集体等无序体系在一个流体动力学框架内遵循同样的一个普适标度律(图2c)。作者进一步给出归一化粘度与无量纲参数ẏηNV/3kTg的函数关系(见图2d),其中 V 是平均摩尔体积,即 V=M/ρ。作者由此定义了液体行为(ẏηNV/3kTg1)的分界判据,揭示了热激活主导的牛顿流体向应力驱动的协同剪切塑性流变转变发生于(ẏηNV/3kTg=1)。这一无量纲普适标度律全面验证了玻璃态物质的动力学转变相图(图3)。通过此普适标度律推导出的玻璃动力学相图,可以将各种“玻璃”的动态行为统一到一个由温度、体积、应力组成的热力学变量参数评价规则下(图3)。 总结 作者基于动态纳米力学测量,得出金属玻璃与其它各种 "玻璃 "系统一起的宽频动态响应,都可以在经典流体动力学框架内用普适标度律加以统一。该普适标度律证明了无序系统的动态转变可以用平衡牛顿液体和非平衡弹塑性固体之间的转变来描述。这项研究揭示了玻璃的液态属性,并通过温度、体积、应力等热力学变量,对 "玻璃 "系统的动态转变进行了定量描述。
  • 应用 | 定向有机玻璃表面能与黏结强度研究
    摘要酸处理和等离子处理后定向有机玻璃表面粗糙度和表面极性增加,同时表面润湿性能得到改善,使黏结强度分别上升了14%和22%;而过渡层预处理提高了基材表面能,处理后定向有机玻璃表面极性与TPU相近,降低了界面张力,明显改善界面黏结性能,黏结强度由4.44kN/m上升至23.61kN/m。研究背景轻度交联和定向研磨赋予了定向有机玻璃(stretched acrylicsheet)更为优异的力学性能、抗裂纹扩展性能和光学性能,使其强度高、韧性优良,具有良好的耐热性和耐久性,因此成为航空透明件的主要材料。定向有机玻璃与热塑性聚氨酯(TPU)中间层作为航空有机层合结构透明件的关键材料,二者间界面的黏结强度是影响有机层合透明件在工程应用中可靠性的重要因素。实验部分接触角测试:采用德国KRÜ SS接触角测量仪测量液体在固体表面上的接触角。每次滴液2μL,在样品表面稳定30s后读取结果。取10个接触角平均值作为此液体在该表面的接触角。所有测量均在室温(25 ℃)下进行。测试液体使用去离子水、二碘甲烷和乙二醇,测试液体表面能参数如表1所示。 表面能计算:根据Van Oss理论,对表面能有贡献的除了色散力外还有极性作用力,并将极性部分视为电子给体与电子受体之间的相互作用。因此表面能分为Lifshitz-vander Waals分量γLW和Lewis酸碱分量γAB(分为Lewis酸分量γ+和Lewis碱分量γ-)。固体的表面能γS和液体的表面能 γL可分别表示为: 固液之间界面张力γSL与固体的表面能和液体的表面能的关系为: 根据杨氏方程,可得: 表面能作为衡量润湿性能的重要参数,固体表面能可以通过测量一系列测试液体在固体表面上的接触角,通过上述方程就可以计算。结果与讨论由于界面的形成、结构和稳定会受到多种物理、化学因素的影响,目前没有单一黏结理论可以解释所有的黏结现象。但不论是何种黏结机理,都要求黏结的二者具有良好的润湿性能。将结合在一起的两相分开所需力做的功称之为Wa,为: 式中:γ1, γ2分别为两相表面能;γ12为两相间界面张力。从粘附功公式可知,增大两相表面能或者降低两相之间界面张力都可以提高黏结强度。不同预处理方法处理的定向有机玻璃基材和TPU胶片表面接触角测试结果如表2所示。由红外结果可知,酸处理和等离子处理后与水接触角定向有机玻璃表面C=O极性基团含量增加,亲水性增加,酸处理和等离子处理后水接触角减小;且酸处理和等离子处理后表面粗糙度增加,有利于接触角的降低。而过渡层处理后,样品表面疏水基团-(CH₂ )-含量增加,表面粗糙度下降,故水接触角增加。 根据表2的接触角结果计算得到的各材料表面能,结果见表3。TPU表面能较处理前后定向有机玻璃都低,说明TPU作为中间层材料可以在定向有机玻璃表面铺展,且处理后样品表面能增加,更有利于TPU在表面的铺展和吸附。由表3中参数可知定向有机玻璃和TPU都属于极性聚合物,且呈现出明显的Lewis碱特性。定向有机玻璃的极性源于侧链上的酯基;而TPU的极性来自于主链上的氨基甲酸酯基、醚键等基团。材料γAB大小差异与极性基团在分子结构中所处位置有关。高聚物的极性大小可通过偶极矩来判断,极性基团活动性越好,高聚物极性越大。TPU的线性主链上氨基甲酸酯基和醚键酯键能形成分子内氢键,使得极性下降。由红外结果可知,经酸处理和等离子处理后,定向有机玻璃表面含氧基团数量增加,故表面能极性分量γAB增大。而过渡层界面相较于定向有机玻璃表面具有更多的-(CH₂ )-基团,柔性优于定向有机玻璃,有利于降低界面张力;同时过渡层界面的表面自由能极性分量与TPU胶片相近,由润湿理论所述当黏结剂与被黏体的极性相匹配时,界面张力最小;且处理后表面能增加,由粘附功公式可知,过渡层处理同时增加了表面能并降低了界面张力,有利于提高TPU与定向有机玻璃之间的黏附功。小结(1)酸处理和等离子处理在提高定向有机玻璃表面粗糙度的同时增大了基材的表面张力,增加了表面极性,提高了黏结界面处分子间相互作用力,从而改善了TPU在基材表面的黏结性能。但界面处物理吸附力对提高黏结强度效果有限,经酸处理和等离子处理后定向有机玻璃与TPU黏结强度分别提高了14%和22%。(2)过渡层处理大幅度改善了定向有机玻璃与TPU的黏结性能。这是由于形成了与定向有机玻璃和TPU具有一定化学相容性的柔性界面,同时与TPU极性匹配,增大表面能并降低了界面张力。过渡层处理后黏结强度由4.44 kN/m上升至23.61 kN/m。(3)比较三种预处理方法对定向有机玻璃表面性能的影响以及与TPU间黏结强度差异,相较于增加表面粗糙度和物理吸附作用,改善界面的极性匹配性和化学相容性对提高TPU与定向有机玻璃间的黏结性能更具优势。本文有删减,详细信息请参考原文。
  • 日立教你做玻璃透过率测试
    日用玻璃器皿就是我们日常生活用的玻璃制品,包括输液瓶、储物罐、罐头瓶、啤酒瓶、白酒瓶、红酒瓶、保温瓶等瓶瓶罐罐,还有玻璃器皿、琉璃艺术品、玻璃工艺品、水晶玻璃首饰、玻璃装饰挂件等等,日用玻璃是人民生活必需品。也是现代科学技术的伴侣,日用玻璃不可或缺。本次实验通过2mm厚度的玻璃测试GB/T 5433-2008。UH4150 紫外-可见近红外分光光度计2mm透明玻璃的光学性能01测量透明玻璃的透射比测量条件测量结果紫外可见近红外分光光度计、UH4150、透射率、日常玻璃、 UV Vis NIR Spectrophotometer, UH4150,Transmittance,Daily glass.公司介绍:日立科学仪器(北京)有限公司是世界500强日立集团旗下日立高新技术有限公司在北京设立的全资子公司。本公司秉承日立集团的使命、价值观和愿景,始终追寻“简化客户的高科技工艺”的企业理念,通过与客户的协同创新,积极为教育、科研、工业等领域的客户需求提供专业和优质的解决方案。 我们的主要产品包括:各类电子显微镜、原子力显微镜等表面科学仪器和前处理设备,以及各类色谱、光谱、电化学等分析仪器。为了更好地服务于中国广大的日立客户,公司目前在北京、上海、广州、西安、成都、武汉、沈阳等十几个主要城市设立有分公司、办事处或联络处等分支机构,直接为客户提供快速便捷的、专业优质的各类相关技术咨询、应用支持和售后技术服务,从而协助我们的客户实现其目标,共创美好未来。
  • 药典玻璃容器内应力测定仪要求
    药典玻璃容器内应力测定仪要求2024年2月国家药典委发布了“4003 玻璃容器内应力测定法-第二次公示稿”。此标准最后会体现在2025版中国药典的药包材部分。此标准是在2015版YBB药包材标准上YBB00162003-2015内应力测定法修订而来,对《中国药典》2020年版四部4003玻璃内应力测定法进行修订。应该算是国内较为完善的药包材玻璃容器内应力测定方法。标准解释了玻璃瓶内应力的存在原因:内应力系指物件由于外因(受力或湿度、温度变化等)而变形时,在物件内各部分之间会产生相互作用的内力,以抵抗这种外因的作用,当外部载荷消除后,仍残存在物体内部的应力。它是由于材料内部宏观或微观的组织发生了不均匀的体积变化而产生的,如果玻璃容器中残存不均匀的内应力,将会降低玻璃的机械强度,在药品包装的生产、使用及储存中易出现破裂等问题。内应力的测定主要用于药用玻璃容器退火质量的控制。玻璃瓶内应力的二次退火能有效降低内应力的存在,但是仍有部分残余应力的存在。只不过控制在较低的应力范围即可保证产品质量,例如大部分药品保证玻璃容器要求的应力值低于40nm/mm。结果表示上:基于目前有些应力仪能直接读出双折射光程差,无需先记录角度再换算,因此在无色供试品的定量测定中将“记录此时的检偏镜旋转角度”修改为“记录此时的检偏镜旋转角度或双折射光程差”。其实在普通玻璃容器标准上还是看角度,YLY-03S偏光应力仪可以同时显示应力旋转角度和光程差,满足各种标准要求。作为专业从事药品包装玻璃容器检测仪器的行业领先者-济南三泉中石实验仪器有限公司,紧跟国家标准的要求,也参与部分国家药包材标准的制定工作。利用自身在药品包装检测领域多年的技术积累和行业应用经验,为标准的制定工作提供数据和理论的支持,为国家标准体系的建立添砖加瓦。
  • 韩企SKC美国工厂竣工,即将开始玻璃基板生产
    韩国SK集团旗下的半导体材料大厂SKC近日宣布,其美国子公司Absolics在佐治亚州投资约2.22亿美元建设的工厂已经竣工,开始批量生产玻璃基板原型产品。业界分析,这标志着全球玻璃基板市场进入关键时刻。目前全球玻璃基板生产企业包括英特尔、SKC、三星电机以及LG Innotek等。与传统树脂复合材料基板相比,玻璃基板不易形变、平整度高、互联密度更大、可提升能效,在高性能计算芯片面积加大的背景下,玻璃基板能够满足未来先进芯片的需求,因此被巨头看好。研究机构The Insight Partners预测,尽管玻璃基板技术尚处于起步阶段,但预计全球市场规模将从今年的2300万美元增长至2034年的42亿美元。SKC玻璃基板原型演示英特尔是最早宣布进军玻璃基板的厂商之一,此前曾表示计划于2026年推出方案,在2028年应用,并已经为此投资约10亿美元,在美国亚利桑那州工厂建立玻璃基板研发线和供应链。AMD也在加快该领域步伐,计划于2025~2026年推出玻璃基板,并与全球元件公司合作,保持领先地位。此外,三星电机将于2025年完成原型试产,并计划于2026年开始量产。与此同时,LG Innotek今年正在组建团队,为进军该市场作准备。
  • 节能建筑玻璃---居家冷暖黑科技
    建筑玻璃具有调光、保温、隔热的功能,随着玻璃技术的发展和人民生活水平的提高,功能性建筑玻璃已成为继水泥钢材之后的第三大建筑材料。门窗玻璃的设计在保证好的视觉效果和居住舒适度的同时还需要具有高的中远红外反射特性,这样冬季可保持室内热量,夏季防止热辐射能量进入,从而有效降低能耗。 GB/T 2680-2021 建筑玻璃可见光透射比、太阳光直接透射比、太阳能总透射比、紫外线透射比及有关窗玻璃参数的测定国家标准将于2021年10月1日正式实施。岛津作为参与制标的单位之一,可提供紫外-可见-近红外分光光度计、傅立叶红外光谱仪和相关计算软件的完整检测方案,针对超大或无法切割的玻璃亦可提供无损检测方案。 典型应用: 岛津相关仪器设备:
  • 2020药典 |药用玻璃的标准与检测
    p style=" text-align: justify text-indent: 2em " 药包材与药物之间的相容性是近年来研究的热点问题。随着我国药包材关联审评审批制度的实施,对药包材质自身质量评价和对制剂影响至关重要。因此,制药企业和药包材生产企业必须考察药品和包材之间的相容性,确保药品装在包装材料后不会发生迁移、渗透、腐蚀等情况,以保证药品有效性和稳定性。关于注射剂、口服液等使用 span style=" color: rgb(255, 0, 0) " strong 玻璃材料 /strong /span 的药品包装材料更是需要特别关注。 /p p style=" text-align: center margin-top: 10px " img style=" max-width: 100% max-height: 100% width: 440px height: 281px " src=" https://img1.17img.cn/17img/images/202009/uepic/bb332752-f697-4dda-868c-e178a58a2472.jpg" title=" 介绍分类.png" alt=" 介绍分类.png" width=" 440" height=" 281" / /p p style=" text-align: center " span style=" font-size: 14px color: rgb(89, 89, 89) " strong 2020年版《中国药典》4000药包材检测部分: /strong /span /p p style=" text-align: center " span style=" font-size: 14px color: rgb(89, 89, 89) " strong 其中红色的是关于药用玻璃检测的方法;黄色的是薄膜材料的检测方法。 /strong /span /p p style=" text-align: justify text-indent: 2em " span style=" font-size: 14px color: rgb(0, 112, 192) " strong span style=" font-size: 16px " 药用玻璃相关标准 /span /strong /span /p p style=" text-align: justify text-indent: 2em " span style=" font-size: 16px color: rgb(0, 0, 0) " 药包材里面的玻璃容器是指直接与药品接触的玻璃制品,包括无色玻璃和有色玻璃。无色玻璃在可见光谱中有较高的透过性;有色玻璃是通过加入少量吸收特定光谱的金属氧化物。 /span /p p style=" text-align: justify text-indent: 2em " span style=" font-size: 16px color: rgb(0, 0, 0) " 除前面介绍的4001颗粒耐水性测试以及4003玻璃内应力测试之外,16个新标准里面还有 span style=" font-size: 16px color: rgb(255, 0, 0) " strong 4006 span style=" font-size: 16px color: rgb(0, 0, 0) " /span /strong span style=" font-size: 16px color: rgb(0, 0, 0) " 内表面耐水性测定法和 /span strong 4009 /strong /span 三氧化二硼测定法是有关玻璃质量的标准。玻璃材料的药包材包括口服片剂/胶囊剂玻璃瓶、口服液玻璃瓶、注射剂(安瓿瓶)以及冻干粉用西林瓶等等。 /span /p p style=" text-align: justify text-indent: 2em margin-top: 10px " span style=" color: rgb(0, 112, 192) " strong span style=" font-size: 16px " 具体测试方法 /span /strong /span span style=" font-size: 16px color: rgb(0, 0, 0) " br/ /span /p p style=" text-align: justify text-indent: 2em " span style=" color: rgb(256, 76, 0) " strong span style=" font-size: 16px " 4006内表面耐水性测试 span style=" font-size: 16px color: rgb(0, 0, 0) " /span /span /strong span style=" font-size: 16px color: rgb(0, 0, 0) " 和121摄氏度玻璃颗耐水性测试原理相似,即利用盐酸滴定处理后的玻璃样品反应出玻璃受水侵蚀的程度。与4001不同的是,4006内表面测试检测的是直接与药品接触的玻璃表面。 /span /span /p p style=" text-align: justify text-indent: 2em " span style=" color: rgb(256, 76, 0) " span style=" font-size: 16px color: rgb(0, 0, 0) " /span /span /p table style=" border-collapse:collapse " align=" center" tbody tr class=" firstRow" td style=" border: 1px solid rgb(255, 255, 255) word-break: break-all " width=" 542" valign=" middle" align=" center" p style=" text-align: center" img style=" max-width: 100% max-height: 100% width: 456px height: 214px " src=" https://img1.17img.cn/17img/images/202009/uepic/4f08fd74-9829-42b1-a243-6ac4edcf4fc5.jpg" title=" 表一.png" alt=" 表一.png" width=" 456" vspace=" 0" height=" 214" border=" 0" / /p p span style=" color: rgb(89, 89, 89) font-size: 14px " strong 不同体积的玻璃样本需要的容器数量和浸提体积不同 /strong /span /p /td /tr tr td style=" border: 1px solid rgb(255, 255, 255) word-break: break-all " width=" 543" valign=" middle" align=" center" p style=" text-align: center" img style=" max-width: 100% max-height: 100% width: 456px height: 443px " src=" https://img1.17img.cn/17img/images/202009/uepic/4ca7ad6a-f489-4e55-a552-21216804dc10.jpg" title=" 表二.png" alt=" 表二.png" width=" 456" vspace=" 0" height=" 443" border=" 0" / /p span style=" color: rgb(89, 89, 89) font-size: 14px " strong 耐水性分级数据 /strong /span /td /tr /tbody /table p style=" text-align: justify text-indent: 2em " span style=" font-size: 16px color: rgb(255, 76, 0) " /span span style=" color: rgb(255, 76, 0) " strong 4009三氧化二硼测定法 span style=" color: rgb(0, 0, 0) " /span /strong span style=" color: rgb(0, 0, 0) " 是基于其为硼硅类药用玻璃的主要成分之一,可以使用相关方法定量测定玻璃含量。玻璃容器经碱熔---& gt 酸反应---& gt 碳酸钙处理(形成易溶于水的硼酸钙)---& gt 加甘露醇转化为醇硼酸---& gt NaOH滴定计算含量。 /span /span /p p style=" text-align: justify text-indent: 2em " span style=" color: rgb(255, 76, 0) " span style=" color: rgb(0, 0, 0) " 每1 mL的氢氧化钠滴定液(0.1 mol/L)相当于 span style=" color: rgb(0, 112, 192) " strong 3.481 mg B sub 2 /sub O sub 3 /sub /strong /span 。 /span /span /p p style=" text-align: center text-indent: 0em " span style=" color: rgb(63, 63, 63) font-size: 14px " strong 下表为几种药用玻璃的指标及含量 /strong /span span style=" color: rgb(0, 0, 0) " br/ /span /p p style=" text-align: justify text-indent: 2em " span style=" color: rgb(255, 76, 0) " span style=" color: rgb(0, 0, 0) " /span /span /p p style=" text-align: center" img style=" max-width: 100% max-height: 100% width: 589px height: 113px " src=" https://img1.17img.cn/17img/images/202009/uepic/a8cc5c47-17a1-4f97-9fa2-1f1ea659d83b.jpg" title=" 指标汇总.png" alt=" 指标汇总.png" width=" 589" height=" 113" / /p p style=" text-align: justify text-indent: 2em " span style=" color: rgb(0, 0, 0) " /span 滴定前需要在马弗炉内使用 span style=" color: rgb(255, 0, 0) " strong 铂坩埚 /strong /span 加热进行前处理。 /p p style=" text-align: center" a href=" https://www.instrument.com.cn/zc/477.html" target=" _blank" /a /p table style=" border-collapse:collapse " align=" center" tbody tr class=" firstRow" td style=" border: 1px solid rgb(255, 255, 255) word-break: break-all " valign=" top" p style=" text-align: center" a href=" https://www.instrument.com.cn/zc/477.html" target=" _blank" img style=" max-width: 100% max-height: 100% width: 167px height: 195px " src=" https://img1.17img.cn/17img/images/201602/pic/bd6c1d3b-de7c-4b0f-a978-2bef61a79e3b.jpg" width=" 167" height=" 195" / /a /p /td td style=" border: 1px solid rgb(255, 255, 255) word-break: break-all " valign=" top" width=" 233" p style=" text-align: center" a href=" https://www.instrument.com.cn/netshow/C242730.htm" target=" _blank" img style=" max-width: 100% max-height: 100% width: 128px height: 116px " src=" https://img1.17img.cn/17img/images/202009/uepic/06a5c4e9-8722-4824-9c03-31ad909badaa.jpg" title=" 铂坩埚.png" alt=" 铂坩埚.png" width=" 128" height=" 116" / /a /p p span style=" color: rgb(63, 63, 63) font-size: 14px " strong 左图为马弗炉(最高温度1300℃);右图为铂坩埚 /strong /span /p p span style=" color: rgb(63, 63, 63) font-size: 14px " strong 【点击图片进入专场】 /strong /span /p p br/ /p /td /tr /tbody /table p style=" text-align: justify text-indent: 2em " strong style=" color: rgb(0, 112, 192) text-align: justify text-indent: 2em " 关于药用玻璃的讨论 /strong br/ /p p style=" text-align: justify text-indent: 2em " 参考美国药典和欧洲药典,其中对于药用玻璃容器分类一致,并建议: /p p style=" text-align: justify text-indent: 2em " Ⅰ型玻璃适用于大多数药物制剂,不管是否为胃肠道给药; /p p style=" text-align: justify text-indent: 2em " Ⅱ型玻璃适用于大多数的酸性或中性液体制剂,不管是否为胃肠道给药; /p p style=" text-align: justify text-indent: 2em " Ⅲ型玻璃一般适用于胃肠道给药的非液体制剂、胃肠道给药的粉末(冻干制剂除外)和非胃肠道给药制剂。 /p p style=" text-align: justify text-indent: 2em " 胃肠道给药的液体制剂或粉末制剂的玻璃容器应该允许可以目视检查内容物。除了Ⅰ型玻璃外,不允许玻璃容器的重复利用。另外,对于血液制品不允许重复利用。 /p p style=" text-align: justify text-indent: 2em " 基于合格的玻璃容器仍然需要标准的制剂,避免玻璃容器释放出物质而影响药物稳定性或存在潜在毒性的风险。必须考虑到: /p p style=" text-align: justify text-indent: 2em " 1,可能腐蚀玻璃的缓冲剂如柠檬酸盐或磷酸盐; /p p style=" text-align: justify text-indent: 2em " 2,玻璃容器内表面化学处理工艺 /p p style=" text-align: justify text-indent: 2em " 3,灌装后再灭菌处理工艺。 /p p style=" text-align: justify text-indent: 2em " 关于玻璃脱片,是由药物与玻璃容器内表面之间相互作用而产生。药品运输过程中的振动或碰撞可能将玻璃薄片剥离至容器内部。也可能是复杂的玻璃腐蚀后加剧了脱片的速度。为了确保所用玻璃容器的适用性,需要根据产品的具体情况评估玻璃容器与药物的相容性。比如模拟运输过程评估玻璃可能脱片的风险,通过加速条件实验预估所选玻璃容器的正确性等。 /p p style=" text-align: justify text-indent: 2em " 选择药用玻璃容器应该结合具体药品的特性(如需要耐酸,耐碱,耐冷冻,耐吸附等),选用适合本产品的药用玻璃容器,以满足药物的安全性、有效性及稳定性。 /p p style=" text-align: justify text-indent: 2em " 2020药典中关于药用玻璃的部分是所有质量标准的基础。药品生产企业必须遵循上述规则,勤于把控质量关才能提高药物制剂的安全性和药品一致性评价的可靠性。 /p p style=" text-align:center" a href=" http://instument1999.mikecrm.com/lGWNMkR" target=" _blank" img style=" max-width: 100% max-height: 100% width: 550px height: 179px " src=" https://img1.17img.cn/ui/bimg/SH100000/special/w920h3002020ChP.jpg" title=" " alt=" " width=" 550" vspace=" 0" height=" 179" border=" 0" / /a /p p style=" text-align: justify text-indent: 2em margin-top: 10px " 仪器信息网将特别推出“ span style=" color: rgb(255, 0, 0) " strong 2020年版《中国药典》变化盘点 /strong /span ”专题,盘点通则增修、药典仪器以及相关资讯。敬请广大读者关注! span style=" color: rgb(0, 112, 192) " strong 【点击图片进入专题】 /strong /span /p p style=" text-align: center " a href=" https://www.instrument.com.cn/zt/2020ChP-changes" target=" _blank" img style=" max-width: 100% max-height: 100% width: 550px height: 94px " src=" https://img1.17img.cn/17img/images/202009/uepic/1a99183e-131f-46da-b578-e18bff0eb239.jpg" title=" w640h1102020ChP.jpg" alt=" w640h1102020ChP.jpg" width=" 550" vspace=" 0" height=" 94" border=" 0" / /a /p
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制