当前位置: 仪器信息网 > 行业主题 > >

真菌分生孢子

仪器信息网真菌分生孢子专题为您整合真菌分生孢子相关的最新文章,在真菌分生孢子专题,您不仅可以免费浏览真菌分生孢子的资讯, 同时您还可以浏览真菌分生孢子的相关资料、解决方案,参与社区真菌分生孢子话题讨论。

真菌分生孢子相关的资讯

  • 共聚焦成像如何助力水稻病菌稻热病研究?
    稻热病是最严重的水稻病害。稻热病菌透过分生孢子散播,其分生孢子在植株上萌发后,可形成特化的构造附着器以穿透植物组织,菌丝可经原生质丝在组织间生长蔓延,并再度产生分生孢子,在空气中以气流传播。子囊菌真菌稻热病菌被称为引起稻瘟病的半营养型病原体。稻热病菌感染水稻的叶子、茎和穗,并导致产量严重下降。为了建立对这种疾病的新的控制方法和开发抗性水稻品种,研究稻热病菌与水稻之间基因间和蛋白质间相互作用的细节。本文中,我们将介绍一个使用CFI Apo Lambda S 40XC 水镜拍摄稻热病菌微分干涉成像(DIC)和共聚焦扫描成像的应用实例,东京农业大学Hiromasa Saitoh 教授研究使用植物病原真菌中差异基因表达鉴定新病原基因。实验概述通过对接种水稻子叶的稻瘟病菌分生孢子悬液的进行 RNA-Seq 分析,发现假设的多个效应蛋白基因表达增加,并在接种12 至 24 小时后 (hours post-inoculation , hpi) 达到峰值(随着渗透和扩散逐渐增长),但在36 或 48 hpi 出现下调。在这些效应蛋白基因中,研究人员选择了7 个高表达基因,并制备了相应的稻瘟病菌干扰突变体。其中一个基因突变的菌株表现出低的致病性,该基因被命名为 MoSVP。为了调查MoSVP 在真菌中表达的时间和位点,稻瘟病菌转染报告质粒(MoSVP::mCherry),在该质粒中mCherry (红色荧光蛋白) 的基因被插入到MoSVP启动子的下游。作为实验对照组,另一个报告质粒(Rp27p::mCherry),插入在稻瘟病菌核糖体蛋白27基因的下游。每一个转化株的孢子悬浊液在盖玻片上孵育或接种在水稻叶鞘内测的上皮,使用DIC 和共聚焦扫描显微镜对感染相关的形态和mCherry荧光的表达进行观察。Figure1. 水稻叶鞘接种和样本准备。Figure2. 表达有MoSVPp::mCherry的水稻瘟病菌的mCherry(红色)和DIC。分生孢子在胚管顶端萌发并发育出附着胞,然后渗透到宿主细胞中并形成侵入性菌丝。通过使用CFI Apo Lambda S 40XC 水镜进行DIC 和荧光观察,发现mCherry 荧光蛋白在玻片孵育18小时后可开始表达,同时接种在水稻叶鞘细胞上的菌丝在接种24小时后可以被观察到。Figure3. 在MoSVPp::mCherry突变菌株中, mCherry荧光的表达在18或24 hpi后在附着胞有明显的增强,然后表达下降。在Rp27p::mCherry 转化菌株中,mCherry荧光的在观察的时间点内表达量稳定。另外, mCherry 荧光在附着胞、分生孢子和胚芽管(12,18,24 hpi)和入侵的菌丝内(30 hpi)内均表达明显. 因此,该文揭示MoSVP 启动子在稻瘟病菌早期渗透到宿主细胞时被激活,表达在附着胞内。实验小结本文制备了一个由 MoSVP 启动子控制的表达mCherry 的稻瘟病菌株,并使用CFI Apo Lambda S 40XC 水镜对其感染相关的形态学进行DIC 和共聚焦观察。 结果证实,MoSVP 表达在稻瘟病菌感染后的早期阶段的附着胞内。这些结果显示,结合高精度的物镜和共聚焦扫描系统可以清晰的对植物致病真菌的荧光信号的定位和表达时间窗进行可视化。参考文献RNA-Seq of in planta-expressed Magnaporthe oryzae genes identifies MoSVP as a highly expressed gene required for pathogenicity at the initial stage of infection. Molecular Plant Pathology (2019) 20 (12), 1682-1695.
  • 涉及质谱法,侵袭性霉菌感染实验室诊断临床应用专家共识发布
    共识中提到:侵袭性霉菌感染实验室诊断方法及路径基本一致,包括直接镜检、培养、血清学检测(G试验、GM试验、曲霉IgG抗体测定等)、分子生物学检测(PCR、mNGS),再通过形态学、质谱、分子生物学鉴定具体菌种,进一步进行体外药敏试验并提出治疗建议。  根据共识文件中的数据显示:质谱对曲霉菌属、毛霉属、淡紫紫孢霉和宛氏拟青霉等均有较高鉴定准确率,有的甚至能达到100%。  摘要  侵袭性真菌病发病率在世界范围内逐渐增加,世界卫生组织和美国疾病预防控制中心相继发布了重要文件,呼吁提高对侵袭性真菌病的重视程度和认知水平,以应对侵袭性真菌病对全球造成的威胁。霉菌是侵袭性真菌病的重要病原菌之一,且发病率高、死亡率高,临床诊断和治疗面临极大挑战。中国初级卫生保健基金会检验医学研究与转化专业委员会、中国医院协会临床微生物实验室专业委员会和全国真菌病监测网侵袭性霉菌感染监测项目组组织专家制定该文件,对曲霉菌属、毛霉菌目、镰刀菌属、赛多孢菌属、节荚孢霉属、拟青霉属、暗色霉菌、双相真菌(马尔尼菲篮状菌和荚膜组织胞浆菌)共8种临床重要侵袭性霉菌的实验室诊断方法及要点形成共识,并对实验室诊断及与临床沟通过程中遇到的六大常见问题形成专家共识,旨在为提升侵袭性霉菌感染的实验室诊断能力提供借鉴和指导。  全球每年真菌感染患者超过3亿,因侵袭性真菌病(invasive fungal disease,IFD)死亡的患者超过150万[1,2] ,而我国每年有超过500万人受到IFD的威胁,其中侵袭性霉菌是重要病原菌之一,但临床对侵袭性霉菌感染诊断困难,患者预后较差。国内外IFD相关指南均明确指出,病原微生物的实验室检测在诊断标准中极为重要 [ 3 , 4 ] 。IFD相关实验室检测,除传统的涂片镜检和培养外,血清学检测如真菌1,3-β-D葡聚糖试验(G试验)、半乳甘露聚糖(galactomannan,GM)试验和曲霉IgG抗体测定等,质谱技术以及分子生物学检测如聚合酶链反应(polymerase chain reaction,PCR)和宏基因组二代测序(metagenomics next-generation sequencing,mNGS)等在临床中的应用价值逐渐得到肯定。但目前我国真菌实验室发展非常不均衡,特别是针对霉菌的实验室检测,不管是临床医生对于检测项目的认知,还是霉菌实验室的检出能力均需进一步提高 同时,不同检测方法的送检时机、检测性能以及结果的正确解读仍面临很多问题。鉴于此,由中国初级卫生保健基金会检验医学研究与转化专业委员会、中国医院协会临床微生物实验室专业委员会和全国真菌病监测网侵袭性霉菌感染监测项目组组织我国真菌感染领域内的多学科专家和学者,参考国内外相关指南和最新研究数据,结合多学科专家临床经验共同制定本共识,旨在更好地指导临床医生合理送检真菌相关的实验室检测,提升真菌实验室的检测能力,助力临床IFD的诊断和治疗。  该共识通过参考世界卫生组织“真菌重点病原体清单”以及全国真菌病监测网最新数据 [ 5 ] ,共筛选出8种临床常见的侵袭性霉菌,即曲霉菌属、毛霉菌目、镰刀菌属、赛多孢菌属、节荚孢霉属、拟青霉属、暗色霉菌、双相真菌(马尔尼菲篮状菌和荚膜组织胞浆菌)。共识第一部分围绕不同霉菌感染建议送检标本类型,实验室检测方法(直接镜检、培养、鉴定、血清学检测、分子生物学检测)及性能评价,体外药敏试验及治疗建议等要点形成推荐意见 共识第二部分,通过前期问卷调查,筛选出6个霉菌实验室检测最常见问题,并形成专家推荐意见。  本共识适合从事真菌感染相关领域的临床医护人员、实验室技术人员、感染控制人员、科研学者等阅读,也希望通过这种方式与广大同仁交流意见。  一、侵袭性霉菌感染实验室诊断方法及要点  侵袭性霉菌感染实验室诊断方法及路径基本一致,包括直接镜检、培养、血清学检测(G试验、GM试验、曲霉IgG抗体测定等)、分子生物学检测(PCR、mNGS),再通过形态学、质谱、分子生物学鉴定具体菌种,进一步进行体外药敏试验并提出治疗建议( 图1 )。因检测不同霉菌适用的样本类型,以及每种检测方法针对不同霉菌的检测性能及要点有很大差别,故本共识针对8种霉菌感染,建议送检的标本类型以及不同检测方法的操作要点及性能评价分别形成推荐意见。  (一)曲霉菌属  曲霉菌在自然环境中广泛存在,临床最常见的感染类型是侵袭性曲霉病(invasive aspergillosis,IA)和慢性肺曲霉病(chronic pulmonary aspergillosis,CPA),其中IA临床表现和进展速度与患者的免疫状态密切相关 [ 6 , 7 ] 。血液恶性肿瘤、慢性肺病、移植(包括实体器官移植和造血干细胞移植)、糖皮质激素治疗、中性粒细胞减少症和慢性肝病均是IA的危险因素。肺外脏器和组织的曲霉菌感染可为原发感染,也可播散至邻近脏器感染而造成继发感染。除肺部外,鼻窦旁、中枢神经系统、骨骼、皮肤、心脏、眼部及消化系统等部位也可发生曲霉菌感染。临床最常见的曲霉菌为烟曲霉,其次是黄曲霉、黑曲霉、土曲霉和构巢曲霉。值得注意的是,近年来唑类耐药曲霉菌感染病例持续增加。曲霉菌属感染诊断可选择的样本类型包括血液、痰液、支气管肺泡灌洗液(bronchoalveolar lavage fluid,BALF)、活检组织、分泌物等,怀疑曲霉菌属引起的侵袭性真菌感染的诊断方法及要点见 表1 。  (二)毛霉菌目  毛霉菌目由55个属250多个种组成。引起人类发病最常见的是根霉属、毛霉属和横梗霉属,其次是根毛霉属和小克银汉霉属等。毛霉菌目可引起皮肤、软组织、肺部、鼻-眶-脑、胃肠部位感染,病死率达40%~80% [ 20 ] 。不同种属可能会导致不同感染部位的复发,如横梗霉属易引起皮肤毛霉病复发,而小克银汉霉属常见于肺部或播散性感染患者。毛霉菌目感染诊断可选择的样本类型包括血液、痰液、BALF、脓液、分泌物、痂皮或活检组织等,怀疑毛霉菌目引起的侵袭性真菌感染诊断方法及要点见 表2 。  (三)镰刀菌属  镰刀菌属是一类全球性分布的土壤腐生菌,也是植物病原菌,能引起感染和中毒。镰刀菌属可广泛感染人类,包括浅表感染(如角膜炎和甲真菌病等)、局部侵袭性和播散性感染。局部侵袭性和播散性感染主要发生于免疫功能低下患者,特别是长期重度中性粒细胞减少或严重T细胞免疫缺陷患者。引起人类感染的镰刀菌种多为茄病镰刀菌复合群、尖孢镰刀菌复合群。此外,摄入镰刀菌毒素污染的食物后可引起中毒。镰刀菌属感染诊断可选择的样本类型包括角膜刮片、眼内容物、指(趾)甲、皮肤组织、呼吸道标本(痰液、BALF、刷取物、肺穿组织)、关节液、胸腹水、脓液、血液等,怀疑镰刀菌属引起的侵袭性真菌感染诊断方法及要点见 表3 。  (四)赛多孢菌属  赛多孢菌属呈全球性分布,广泛存在于土壤、污水、腐物等环境中,可定植于囊性纤维化患者呼吸道,是一种重要的条件致病真菌。未经有效治疗,6个月病死率达55% [ 3 ] 。感染类型以创伤后局部感染为主,其次为溺水后感染、免疫功能明显受损后感染及呼吸道内定植感染等 [ 36 ] 。临床主要致病菌种为尖端赛多孢和波氏赛多孢。赛多孢菌属感染诊断可选择的样本类型包括痰液、BALF、脓液、分泌物、痂皮、血液或活检组织等,怀疑赛多孢菌属引起的侵袭性真菌感染诊断方法及要点见 表4 。  (五)暗色霉菌  暗色霉菌是一大类可产生黑色素的真菌群体,可分离于多种临床感染标本,根据临床表现及其在组织中的分布特征,暗色霉菌所致常见感染性疾病包括着色芽生菌病、暗色丝孢霉病、孢子丝菌病和足菌肿。暗色霉菌感染常因环境中暗色霉菌经创伤性植入皮肤或皮下组织所致,但肺部感染或播散性感染常为吸入分生孢子所致。虽然暗色霉菌具有相似的生长特征及形态学特征,但部分菌属仍具有明显特征。临床上分离率较高的菌属包括弯孢霉属、离蠕孢属、着色霉属、链格孢霉属、枝孢霉属等。暗色霉菌感染诊断可选择的样本类型包括组织、脑脊液、脓液、关节腔液、腹水、人工瓣膜、BALF、痰液、骨髓、血液等,怀疑暗色霉菌引起的侵袭性真菌感染诊断方法及要点见 表5 。  (六)节荚孢霉属  节荚孢霉属包括多育节荚孢霉(原称多育赛多孢)和 L.valparaisensis 2个菌种,其中仅多育节荚孢霉有感染人类的报道。多育节荚孢霉是一种常见的土壤腐生菌,多分布于干旱气候地区。目前,关于多育节荚孢霉的报道以病例报道和小规模队列研究为主,缺乏流行病学数据。感染类型主要是肺部感染、血流感染、中枢神经系统感染、皮肤软组织感染等。虽然多育节荚孢霉感染罕见,但其易发生播散性感染,并且其固有多重耐药表型的播散性感染致死率高达77% [ 44 ] 。节荚孢霉感染诊断可选择的样本类型包括血液、痰液、BALF、脓液、分泌物或活检组织等,怀疑节荚孢霉引起的侵袭性真菌感染诊断方法及要点见 表6 。  (七)拟青霉属  拟青霉属中临床常见的菌种包括宛氏拟青霉和淡紫紫孢霉(淡紫拟青霉)。宛氏拟青霉常见感染类型包括肺炎、皮肤和软组织感染、骨髓炎、腹膜炎、真菌血症和中枢神经系统感染,常见症状为发热、呼吸困难和咳嗽,其侵袭性感染致死率为16.9% [ 48 ] 。淡紫紫孢霉常引发角膜炎、眼内炎、皮肤感染、肺部感染和真菌血症,疼痛和发热为最常见症状,其引发的感染致死率为45.5% [ 49 ] 。拟青霉属感染诊断可选择的样本类型包括角膜组织、眼拭子、血液、痰液、BALF、甲屑、鼻窦组织、脓液和皮肤组织等,怀疑拟青霉属引起的侵袭性真菌感染诊断方法及要点见 表7 。  (八)双相型真菌(马尔尼菲篮状菌和荚膜组织胞浆菌)  马尔尼菲篮状菌,原名马尔尼菲青霉菌,是一种温度依赖性双相型真菌,在我国广西、广东等地,以及东南亚等地流行。目前在世界34个国家、我国21个省/直辖市均有报道。马尔尼菲篮状菌感染好发于免疫低下人群,尤其是CD4+T细胞小于100个/μl的艾滋病患者 在亚洲的艾滋病患者中,马尔尼菲篮状菌病总发病率为3.6%。马尔尼菲篮状菌可侵犯全身各器官,导致播散性感染。但临床表现无特异性,常被误诊为肺结核、肿瘤,误诊导致的病死率超过85%。  荚膜组织胞浆菌也是双相型真菌,可引起组织胞浆菌病。该菌常见于被蝙蝠粪和鸟粪污染的土壤中,在建筑、洞穴挖掘和接触鸟类处理等活动中吸入分生孢子可致感染。荚膜组织胞浆菌有3个变种,分别为荚膜变种、杜波变种和鼻疽变种。其中荚膜变种分布最广,主要在美国密西西比河流域和拉丁美洲 杜波变种主要分布在乌干达和尼日利亚等非洲国家 鼻疽变种主要引起马和狗的感染,但也有少数人类感染病例报道。我国引起发病的主要为荚膜变种,呈地区性分布,多雨潮湿的中南、华南和西南地区感染率较高,而干旱的新疆地区感染率低。马尔尼菲篮状菌和荚膜组织胞浆菌感染诊断可选择的样本类型包括血液、骨髓、体液、痰液、BALF、支刷物、脓液、分泌物、穿刺液(肝、脾、淋巴结)或活检组织等,怀疑马尔尼菲篮状菌和荚膜组织胞浆菌引起的侵袭性真菌感染诊断方法及要点见 表8 。  二、侵袭性霉菌感染实验室诊断常见问题及推荐意见  为更好地提升我国侵袭性霉菌感染实验室诊断能力,解决实验室工作中最常见、最困惑以及与临床交流最多的问题,通过问卷调查收集到来自全国76位临床和检验医师的共207个问题。经过归纳分类后,整理出6大类最常见问题,并由专家组形成推荐意见。  (一)霉菌检测阳性,如何判断是污染菌、定植菌还是致病菌  1.直接镜检霉菌阳性,如何判断是污染菌、定植菌还是致病菌?  建议1 直接镜检阳性时,应首先区分标本来自无菌部位还是非无菌部位。无菌部位标本(血液标本除外)直接镜检有特征性菌丝和孢子且与组织病理结果、真菌培养结果相符,可确诊为致病霉菌 非无菌部位标本直接镜检到霉菌,要结合培养结果、血清学检测结果、患者流行病学史和临床感染表现等综合分析。  2.培养霉菌阳性时,如何判断是污染菌、定植菌还是致病菌?  建议2 培养霉菌阳性时,重点关注送检标本类型,直接镜检、组织病理检查与霉菌阳性培养的一致性,以及霉菌致病性、感染部位等。无菌标本如血培养为曲霉菌属或毛霉菌目,污染菌的可能性大 如为镰刀菌属、赛多孢菌属和马尔尼菲篮状菌,可能为致病菌。非无菌标本,视情况而定:2个试管有单一形态真菌生长,真菌镜检同时阳性者提示有临床意义 仅1管生长真菌,生长部位为非接种部位,菌落为霉菌样则可能是污染 培养出的真菌与直接镜检和组织病理学检查表现相符,连续培养阳性,且真菌具备36~37 ℃生长的能力提示有临床意义。  (二)不同检测结果不一致问题  1.临床怀疑真菌感染,实验室相关检测阴性,可从哪些方面与临床沟通?  建议3 分析前应评估标本留取是否规范并适于特定检验项目 分析过程应评估镜检和/或培养方法检测敏感性是否充分、培养条件是否适宜、所选检测项目是否适于检测疑似真菌类型(如G试验不能检测隐球菌和毛霉菌目) 分析后过程应结合组织病理学或影像学结果,参考其他感染指标结果(如C反应蛋白、降钙素原),分析是否存在导致血清学结果假阴性的因素等。  2.如何解释镜检和/或培养结果与血清学检测(G试验、GM试验)结果不一致?  建议4 鉴于真菌体内增殖及血清标志物出现时间不同,不同感染期血清学与镜检和/或培养结果常不一致。血清学检测方法敏感性常高于传统镜检、培养方法,而单纯培养结果常难区分感染、定植或污染。此外,应考量是否存在导致血清学结果假阳性或假阴性的因素以及宿主免疫功能。  (三)血清学检测相关问题  1.血清学检测常见干扰因素有哪些?  建议5 血清学检测假阳性因素包括药物因素(血液制品如静脉输注免疫球蛋白等)、医疗因素(纤维素膜血液透析)、宿主因素(细菌菌血症)、样本因素(如采血管污染或过度操作)、方法学因素(传统鲎试剂法干扰因素多) [ 65 , 66 ] 等 假阴性因素包括使用抗真菌药物、脂血或黄疸样本 [ 65 , 66 ] 等。实际应用过程中应尽量排除干扰因素的存在,并谨慎评估对结果的干扰影响。  2.如何解释血清G试验与GM试验结果不一致?  建议6 G试验与GM试验检测标志物不同,G试验是泛真菌检测,而GM试验为曲霉菌特异性抗原检测 另外,2种标志物的释放时间和释放量的不同也可能导致二者结果不一致,例如1,3-β-D葡聚糖只有被吞噬细胞吞噬处理后才被释放出来,而GM是表达在曲霉菌细胞壁表面的一种多糖成分,在曲霉菌繁殖生长时由菌丝释放出来。因此,在感染早期,曲霉菌的生长分泌强于死亡消化裂解,可出现GM试验阳性,而G试验未达到阳性水平 粒细胞缺乏患者,不能将1,3-β-D葡聚糖从真菌中释放出来,也可导致二者检测结果不一致。  3.如何解释血清与BALF的GM试验结果不一致?  建议7 二者检测的敏感性、特异性不同,可能会导致检测结果的不一致。GM试验对免疫抑制患者IA检测敏感性高,BALF样本敏感性优于血清样本 [ 9 ] 。另外BALF样本采样和处理的标准化问题(灌洗量、回收量、血性、痰性、灌洗技术等)对GM试验结果的影响很大。  (四)mNGS检测相关问题  1.mNGS检测霉菌相比于传统检测方法的优势有哪些?  mNGS检测敏感性高,更适合混合感染病例的病原学检测,多项侵袭性真菌感染的研究表明mNGS检测阳性率高于传统检测,且对免疫缺陷患者和混合感染时较传统检测更具优势 [ 67 , 68 , 69 ] 。外周血可作为深部组织器官真菌感染的mNGS检测样本:侵袭性真菌感染可累及多种组织和器官。当感染部位样本获取困难时,外周血可作为替代样本进行检测。mNGS可作为少见真菌或培养困难真菌的平行检测手段,如毛霉菌目、组织胞浆菌、拟青霉等。  建议8 对免疫功能低下、疑似混合感染、传统检测阴性或疑似少见真菌感染患者,在进行传统微生物学检测的同时留取样本进行mNGS检测。外周血样本检测敏感性低于感染部位样本,因此在不能获得感染部位样本时可进行替代检测,检出真菌应结合临床谨慎评估。  2.mNGS检测有哪些局限性?  真菌的细胞壁相对较厚,mNGS可因破壁效率低而影响核酸提取效率,且检测性能可因真菌类型、临床样本种类及实验流程差异而有所不同。有研究显示IA患者的BALF样本其mNGS检测敏感性低于GM检测 [ 15 ] 。公共数据库中真菌信息的准确性和完整度低于细菌及病毒,已有的核酸序列质量参差不一,可导致结果假阴性或真菌鉴定准确率降低。对于检出的非常见真菌类型,应进行其他方法的验证,如一代测序或靶向PCR检测。mNGS假阳性较常见,主要原因为湿试验过程引入微生物核酸及生信分析错配,前者更常见。湿试验所致假阳性原因包括样本采集环节、实验室环境背景菌以及样本间污染 [ 70 ] 。  建议9 mNGS假阳性率高于传统微生物学检测,仅mNGS检出真菌不应作为真菌感染的诊断依据,应对检出真菌进行其他方法验证,并需结合临床谨慎评估。与此同时,因真菌结构特点及数据库原因,mNGS可存在假阴性结果,mNGS阴性不应作为排除真菌感染的标准。  3.当临床考虑IFD时,如何解释镜检、培养、血清学检测与mNGS检测结果不一致?  不同方法学的诊断性能存在较大差异。(1)传统微生物学未检出真菌,而mNGS检出:与培养、镜检方法相比,mNGS的敏感性较高,需结合临床考虑检出真菌是否为致病菌,同时应考虑送检其他真菌相关检测以验证mNGS结果。(2)传统微生物学检出真菌,而mNGS未检出:无菌样本培养和/或镜检检出霉菌,应充分考虑致病菌可能,mNGS可因真菌细胞壁较厚、人源背景高等原因造成漏检。  建议10 当临床考虑IFD时,应充分考虑阳性结果检出,结合未检出的检测方法性能特征考虑漏检可能,有条件情况下进行重复检测或重新采集样本检测。  (五)霉菌体外药敏试验相关问题  1.霉菌是否均需常规开展体外药敏试验?  建议11 微生物实验室在条件适宜的情况下,尽量开展重要病原真菌的体外药敏试验,为临床用药提供指导,具体用药原则建议由临床相关科室、微生物实验室、药剂科、感控部门共同讨论决定。特别是下列情况,实验室应该开展体外药敏试验:(1)建立致病性霉菌抗菌谱和耐药性监测。(2)使用标准剂量的抗霉菌药物治疗失败的患者。(3)临床上已有临床耐药菌株报道。(4)曾接触过抗真菌类药物或正在接受长期抗真菌治疗的患者。  接受抗真菌治疗的患者发生深度感染、治疗失败的情况下,若无菌部位分离出霉菌菌种为罕见或新出现的菌种,或怀疑特定菌种可能对所使用的抗真菌药物耐药的情况下,应优化患者个体化治疗,根据流行病学调查等情况,建议进行体外药敏试验。  2.对无判定折点的药敏结果,如何向临床发送报告?  建议12 如分离出高度疑似或确诊为病原体的霉菌,应尽量向临床提供体外药敏试验结果。药敏试验暂无判定折点的霉菌也需提供体外药敏试验的最低抑菌浓度(minimum inhibitory concentration,MIC)值。  由于诸多因素,目前美国临床实验室标准研究所(Clinical and Laboratory Standards Institute,CLSI)、欧洲抗微生物药物敏感试验委员会(European Committee on Antimicrobial Susceptibility Testing,EUCAST)以及我国对多数霉菌缺乏临床药敏试验判读折点。对已有规范化体外药敏试验方法的霉菌(如曲霉、毛霉、镰刀菌、赛多孢、孢子丝菌、皮肤癣菌等),可按照抗丝状真菌药物敏感性试验肉汤稀释法标准(WS/T411-2024) [ 71 ] 向临床提供体外药敏试验MIC值,临床可结合抗真菌药物的血药谷浓度和峰浓度值,选择相应的药物种类和剂量。对于尚无规范化体外药敏试验方法的霉菌(如暗色真菌等),可参考类似菌体外药敏试验方法测定其MIC值,报告临床,并注明体外药敏试验非标准化方法操作,此结果仅供参考。  (六)如何保证侵袭性霉菌实验室检测的生物安全,避免实验室污染?  建议13 霉菌实验室不应与细菌、结核实验室共用,应单独设置 霉菌检测需在Ⅱ级生物安全柜内进行,特别是可疑高致病性病原真菌 紫外线仍然是必备的空气消毒设备 定期使用高锰酸钾或甲醛熏蒸24 h,对空气进行消杀 每天实验完成后用0.5%过氧乙酸或含氯消毒剂(500 mg/L)消毒。如遇操作台被真菌或标本污染,应立即覆盖纸巾,并用含氯消毒液(500 mg/L)消毒20 min。一旦实验室环境或培养箱发生污染,应立即停止实验操作,对实验室或培养箱进行彻底消毒,可用含氯消毒液(500 mg/L)进行表面消毒擦拭,然后进行过氧乙酸或甲醛熏蒸,熏蒸后再进行表面消毒,连续3 d监测实验室或培养箱空气质量和表面染菌量,确认无污染后方可重新启用。  执笔人(按姓氏拼音排序):曹存巍(广西医科大学第一附属医院皮肤性病科),杜君洋(侵袭性真菌病机制研究与精准诊断北京市重点实验室),范欣(首都医科大学附属北京朝阳医院感染和临床微生物科),辜依海(三二〇一医院微生物免疫科),黄晶晶(南京医科大学附属淮安第一医院检验科),刘亚丽(中国医学科学院北京协和医院检验科),王贺(侵袭性真菌病机制研究与精准诊断北京市重点实验室),王俊瑞(内蒙古医科大学附属医院检验科),徐春晖(中国医学科学院血液病医院临床检测中心),徐和平(厦门大学附属第一医院检验科)  专家组成员(按姓氏拼音排序):曹存巍(广西医科大学第一附属医院皮肤性病科),曹俊敏(浙江省中医院检验科),褚云卓(中国医科大学附属第一医院检验科),杜君洋(侵袭性真菌病机制研究与精准诊断北京市重点实验室),范欣(首都医科大学附属北京朝阳医院感染和临床微生物科),辜依海(三二〇一医院微生物免疫科),郭大文(哈尔滨医科大学附属第一医院检验科),韩崇旭(苏北人民医院医学检验科),胡付品(复旦大学附属华山医院抗生素研究所临床微生物室),黄晶晶(南京医科大学附属淮安第一医院检验科),贾伟(宁夏医科大学总医院医学实验中心),金炎(山东省立医院检验科),康梅(四川大学华西医院实验医学科),李轶(河南省人民医院检验科),梁伟(宁波大学附属第一医院检验科),林宁(南京医科大学附属淮安第一医院检验科),刘亚丽(中国医学科学院北京协和医院检验科),罗燕萍(国家卫生健康委员会合理用药专家委员会办公室),马筱玲(中国科学技术大学附属第一医院检验科),逄崇杰(天津医科大学总医院感染科),王贺(侵袭性真菌病机制研究与精准诊断北京市重点实验室),王俊瑞(内蒙古医科大学附属医院检验科),王瑶(中国医学科学院北京协和医院检验科),魏莲花(甘肃省人民医院检验科),肖盟(中国医学科学院北京协和医院检验科),徐春晖(中国医学科学院血液病医院临床检测中心),徐和平(厦门大学附属第一医院检验科),许建成(吉林大学白求恩第一医院检验科),徐雪松(吉林大学中日联谊医院检验科),徐英春(中国医学科学院北京协和医院检验科),喻华(四川省人民医院检验科),张丽(中国医学科学院北京协和医院检验科),张利侠(陕西省人民医院检验科),张义(山东大学齐鲁医院检验医学中心),朱镭(山西省儿童医院临床检验中心)
  • 中国科学家在垃圾堆中发现吃塑料的真菌
    p   塑料是工业文明的产物,塑料的合成大大提高了我们的生活质量。我们人类正在生产着大量的塑料,其中大部分最终成为垃圾。塑料废弃物通过阻塞水路和污染土壤,释放有害物质,甚至对动物造成威胁,这些动物会把塑料碎片误认为食物。中国科学院昆明植物研究所的科学家们最近发现并鉴定出一种真菌,其可以通过使用酶快速分解塑料,从而帮助解决我们环境中的塑料污染问题。 /p p   在人类工业化合成塑料之前,塑料聚合物在自然界并不存在,因此塑料不容易被细菌、真菌和其它生物所降解。塑料的生物降解是全球环境污染研究的热点和难点。全球科学家在上个世纪九十年代就开始研究塑料的生物降解,先后发现了几十种具有降解塑料的真菌,但是由于其降解效率低、降解不彻底而作罢。这次昆明植物所许建初研究团队首次发现了能够高效降解聚氨酯(PU)塑料的新菌种,是近几年来科学家在塑料生物降解领域的重大突破。 /p p   中科院昆明植物研究所许建初研究团队从垃圾堆中发现吃塑料的真菌——一种了不起眼的土壤小型真菌。该真菌首先是来自巴基斯坦的Sehroon Khan博士从伊斯兰堡一处垃圾处理场土壤中分离出来的。研究团队在实验室发现它可以在塑料表面生长,并通过生长过程中产生的酶和塑料发生生物反应,破坏塑料分子间或聚合物间的化学键。研究团队中来自斯里兰卡的Samantha Karunarathna博士把该真菌鉴定命名为塔宾曲霉菌(Aspergillus tubingensis)。 /p p   研究团队发现在自然环境中的难以降解的塑料,在塔宾曲霉菌作用下两周就可以明显看到生物降解过程,两个月后其培养基上的塑料聚合物基本消失。 /p p    /p p style=" text-align: center" img src=" http://img1.17img.cn/17img/images/201704/insimg/e35c7ffc-efe8-475e-95d1-bfab01f76830.jpg" title=" 1.jpg" style=" width: 561px height: 261px " vspace=" 0" hspace=" 0" height=" 261" border=" 0" width=" 561" / /p p style=" text-align: center " strong span style=" color: rgb(0, 176, 240) " 塔宾曲霉菌对聚氨基甲酸酯的降解过程 /span /strong /p p   曲霉真菌和人类合成的塑料聚合物相生相克的关系也为土壤污染处理和生态修复提供了新的线索。该研究为处理塑料垃圾开辟了新途径,例如在垃圾填埋场喷洒生物降解的真菌剂可以大大加速垃圾中塑料聚合物的降解速度和效率。据科学家估计,全世界为人类认识并科学描述的真菌不到其总数的10%,这意味着仍有大量潜在有用的真菌可被发现。可惜的是自然界中包括热带雨林中许多物种在没有被科学描述之前就消失了。我们可能会越来越依赖在人造环境里寻找那些物种,更多的科学家可能会尴尬地发现是在人类自己产生的垃圾场进行研究,而不是在热带雨林之中。 /p p style=" text-align: center" img src=" http://img1.17img.cn/17img/images/201704/insimg/3cacf9c4-a9bd-4787-8058-c5564da84faa.jpg" title=" 2.jpg" style=" width: 541px height: 404px " vspace=" 0" hspace=" 0" height=" 404" border=" 0" width=" 541" / /p p style=" text-align: center " span style=" color: rgb(0, 176, 240) " strong 多 /strong strong 个塔宾曲霉菌孢子 /strong /span /p p style=" text-align: center" img src=" http://img1.17img.cn/17img/images/201704/insimg/b34a72ab-68c2-4597-b513-c5144616fc0a.jpg" title=" 3.jpg" style=" width: 535px height: 405px " vspace=" 0" hspace=" 0" height=" 405" border=" 0" width=" 535" / /p p style=" text-align: center " strong span style=" color: rgb(0, 176, 240) " 塔宾曲霉菌孢子. Sehroon Khan /span /strong /p p style=" text-align: center" img src=" http://img1.17img.cn/17img/images/201704/insimg/efbea33a-7002-417f-94f3-785ac730640d.jpg" title=" 4.jpg" style=" width: 537px height: 404px " vspace=" 0" hspace=" 0" height=" 404" border=" 0" width=" 537" / /p p style=" text-align: center " strong span style=" color: rgb(0, 176, 240) " 塑料的电子显微镜照片,显示了由于真菌生长而引发的裂纹. Sehroon Khan /span /strong /p p style=" text-align: center" img src=" http://img1.17img.cn/17img/images/201704/insimg/a8730318-39a4-4a3c-b7ec-a4a956de2099.jpg" title=" 5.jpg" style=" width: 538px height: 405px " vspace=" 0" hspace=" 0" height=" 405" border=" 0" width=" 538" / /p p style=" text-align: center " strong span style=" color: rgb(0, 176, 240) " 废塑料通常最终会被堆放在垃圾填埋场里. Alan Levine_flickr /span /strong /p p style=" text-align: center" img src=" http://img1.17img.cn/17img/images/201704/insimg/5a9df19d-9348-4ed2-b8b6-39dde0ce1d47.jpg" title=" 6.jpg" style=" width: 537px height: 356px " vspace=" 0" hspace=" 0" height=" 356" border=" 0" width=" 537" / /p p style=" text-align: center " strong span style=" color: rgb(0, 176, 240) " 废塑料通常最终会被堆放在垃圾填埋场里. Justin Ritchie_flickr /span /strong /p p style=" text-align: center" img src=" http://img1.17img.cn/17img/images/201704/insimg/a112dd4e-1da2-436f-b648-368992666902.jpg" title=" 7.jpg" style=" width: 538px height: 376px " vspace=" 0" hspace=" 0" height=" 376" border=" 0" width=" 538" / /p p style=" text-align: center " span style=" color: rgb(0, 176, 240) " strong 洋流可将塑料带到远离其起源地的海岸线. Bo Eide_flickr /strong /span /p p style=" text-align: center" img src=" http://img1.17img.cn/17img/images/201704/insimg/bae8cc2d-1931-4173-bec7-47a2985036e6.jpg" title=" 8.jpg" style=" width: 538px height: 405px " vspace=" 0" hspace=" 0" height=" 405" border=" 0" width=" 538" / /p p style=" text-align: center " span style=" color: rgb(0, 176, 240) " strong 一块塑料,显示了其被黑色真菌生长而吞噬出的孔洞. Sehroon Khan /strong /span /p
  • TESCAN电镜在生物领域的综合解决方案—2017全国农林医电镜学术交流会
    TESCAN的全系列电镜产品,不是一个单一应用的微观分析工具,而是一个性能强大的综合性微观分析平台,拥有“All In One”的强大拓展分析功能,可以提供给用户一个全面的综合解决方案。TESCAN冷冻传输系统Cryo-SEM除了常规应用之外,结合能谱分析技术、FIB技术以及TESCAN独家Raman、TOF-SEM集成一体化技术,将相关应用拓展到了更全面、更深入、更严谨的综合研究上。为了促进生物电子显微镜技术的发展,交流生物样品制备和电镜在生物、医学、农林应用方面的技术经验,2017年11月23-27日,第十二届“全国农林电镜学术交流会”暨第六届“生物医学电镜学术交流会”在云南省昆明市世博花园酒店举行。会议由中国电子显微镜学会农林电镜专业委员会和医学电镜专业委员会主办,云南省农业科学院生物技术与种质资源研究所承办,吸引了相关领域专家教授和电镜学者共200余人参会。2017全国农林医电镜学术交流会现场会议由云南省农业科学院生物技术与种质资源所张仲凯研究员主持,中国电镜学会副理事长林金星教授、云南省农业科学院党委副书记汪占毅教授分别致辞。特邀北京大学医学部尹长城教授、福建农林大学魏太云教授、北京生命科学研究所何万中教授、清华大学俞立教授等多位知名专家分别带来《冷冻电镜的过去、今天和未来》、《电镜视野下水稻病毒侵染媒介昆虫的过程》、《可克隆电镜标记技术开发与细胞原位单分子水平功能定位实现》、《利用电镜发现新的细胞结构》等的精彩报告。中国电镜学会副理事长林金星教授为会议致辞TESCAN应用专家张芳女士也带来了《TESCAN电镜在生物领域的综合解决方案》精彩报告,向与会专家介绍了TESCAN最新技术创新和在生物领域应用方面做的相关研究。扫描电镜作为一种分析手段用于生物领域的研究已经很成熟了,但是由于传统样品制备的缺陷以及扫描电镜薄弱的分析性能,现在还存在许多亟待解决的问题。比如传统的样品制备方法由于用到许多化学试剂,使样品存在表面皱缩(特别是脆嫩组织如瘀伤组织),以及感兴趣离子丢失的问题。而针对这些问题,TESCAN提出了相关解决方案。张芳女士介绍到,TESCAN在电镜的综合分析能力以及原位扩展能力上做出了很多创新,并专门推出了适用于生物领域应用的冷冻传输系统Cryo-SEM。Cryo-SEM是在扫描电镜的基础上加载了冷冻传输系统,生物样品从固定到处理到观察都是在-140度~-180度的冷冻条件下进行,从制样到扫描电镜观察仅仅需要5分钟,并且不使用化学试剂。这样的设计使得Cryo-SEM具备独特的应用优势,比如样品的快速制备,并能够保持样品的原始状态,保留样品中的一些细微结构、离子等而不受化学试剂的影响。Cryo-SEM可以在高真空下观察样品,从而大大提高分辨率;它特别适用于液体、半液体状态的样品观察,如果与FIB联用还可以实现定点观察样品截面以及3D重构等特殊功能。TESCAN应用专家张芳女士带来精彩报告应用案例(Cryo-SEM—金线莲)客户想观察叶片的气孔状态及表面吸附的粒子的组成,所以不能用化学试剂处理,左图是客户用自己的方法处理后的结果,表面皱缩现象很严重,右图是Cryo-SEM冷冻传输系统的做样结果,叶片表面组织非常饱满,也保留了客户想要分析的颗粒,而且整个制样过程只需要5分钟。应用案例(Cryo-SEM—黑曲霉菌)落在菌丝上的孢子及长在头部的孢子,可以看到分生孢子与次生小梗相连的情况。应用案例(Cryo-SEM—冰淇淋)Cryo-SEM冷冻传输系统还特别适合于做一些只能在低温下才能稳定的样品,如冰淇淋,冻土等样品,下图是冰淇淋的断面图像,低倍下可以看到一些气孔,研究冰激凌的专业人员可以根据气孔的大小以及分布情况可以判断冰激凌的口感。放大后可以观察到一些添加剂在其中的分布。应用案例(Xe iFIB-SEM—大麦根三维重构)随着研究的深入,二维图像的观察并不能满足研究的需要,很多客户希望从三维上去观察样品。而生物样品比较特殊,客户感兴趣的区域通常都比较大,需要大体积的三维重构,怎么办呢?TESCAN的Xe等离子双束电镜可以解决生物样品大体积三维重构的难题,Xe等离子双束电镜相对于Ga离子双束电镜,其最大束流可高达2uA,是Ga离子(100nA)的200倍,Xe等离子的切割速度更快,是Ga离子的50倍以上,最重要的是它对样品的损伤更小。下图是用Xe等离子体对视野大于240um*240um的大麦根样品的3D重构的结果。【视频:大麦根三维重构】请关注“TESCAN公司”微信公众号获取应用案例(+ TOF-SIMS—硅藻样品)TESCAN独有的TOF-SIMS特别适用于生物样品中轻元素及微量元素的分析,并可以将取得的TOF数据进行三维重构,观察感兴趣的元素在样品中空间上的分布。【视频:硅藻样品三维元素分析】请关注“TESCAN公司”微信公众号获取应用案例(+ Raman—药物研究,观察不同物质在其中的分布情况)RISE拉曼一体化电镜是TESCAN首次在全球推出的产品,它可以探测物质的分子结构信息,如下图是用RISE研究药物中不同物质的分布情况。TESCAN的全系列电镜产品,不是一个单一应用的微观分析工具,而是一个性能强大的综合性微观分析平台,拥有“All In One”的强大拓展分析功能,可以提供给用户一个全面的综合解决方案。TESCAN冷冻传输系统Cryo-SEM除了常规应用之外,结合能谱分析技术、FIB技术以及TESCAN独家Raman、TOF-SEM集成一体化技术,将相关应用拓展到了更全面、更深入、更严谨的综合研究上。关于TESCANTESCAN发源于全球最大的电镜制造基地-捷克Brno,是电子显微镜及聚焦离子束系统领域全球知名的跨国公司,有超过60年的电子显微镜研发和制造历史,是扫描电子显微镜与拉曼光谱仪联用技术、聚焦离子束与飞行时间质谱仪联用技术以及氙等离子聚焦离子束技术的开拓者,也是行业领域的技术领导者。
  • 全国真菌毒素及产毒真菌污染数据库将建立
    p   食品安全是近年来广受公众关注的问题。国家真菌毒素科技创新联盟日前在北京成立。我国将通过该联盟建立实时的全国真菌毒素及产毒真菌污染数据库,搭建联盟信息共享机制,建立和完善真菌毒素科技创新联合实验室、产品研发试验基地等。 /p p   国家真菌毒素科技创新联盟理事长、中国农业科学院农产品加工研究所所长戴小枫指出,真菌毒素是真菌产生的次生代谢产物,主要包括黄曲霉毒素、镰刀菌毒素等,具有强毒性和致癌性。真菌毒素污染广泛,尤其对大宗农产品污染,严重威胁人们的饮食健康。目前,中国、美国、日本和欧盟等100多个国家或地区都有针对真菌毒素的限量标准和法规。 /p p   据了解,国家真菌毒素科技创新联盟将聚焦真菌毒素防控难点,开展协同攻关,建立产学研结合的真菌毒素防控产业合作体系,为国家食品安全战略起基础性支撑作用。联盟由9家副理事长单位、15家常务理事单位、33家成员单位和 44位个人成员共同组成,几乎囊括了国内相关领域的技术精英。联盟将致力于建立实时的全国真菌毒素及产毒真菌污染数据库,搭建联盟信息共享机制,建立完善的真菌毒素科技创新联合实验室、产品研发试验基地,整合联盟成员单位资源优势,共同致力于真菌毒素防控事业。 /p
  • 真菌毒素测定液相方法
    2020版药典第四部通则2351真菌毒素测定法真菌毒素是真菌在食品或饲料里生长所产生的代谢产物,对人类和动物都有害。由于中药材从种植、生产、流通的全过程周期较长,控制不当易受真菌毒素危害,再加上真菌毒素的产生与宿主基质特性密切相关,不同类型中药材会产生种类和性质各异的真菌毒素,不经控制而被消费者使用后会产生严重的不良反应。2020版药典加强了中药材外源性污染控制方法的制定,在真菌毒素方面,通则名称由2015版2351黄曲霉毒素测定法变化为2020年版2351真菌毒素测定法;并增加了赭曲霉毒素A测定法、玉米赤霉烯酮类测定法、呕吐毒素测定法、展青霉素测定法,以及多种真菌毒素测定法。有关多种真菌毒素测定法的检测技术(LCMSMS法)请点击上一篇:速领!十大真菌毒素,一包应对同时,本版药典全面制定了易霉变中药材、饮片的真菌毒素限量标准。对黄曲霉毒素有限量要求的具体品种包括:九香虫、土鳖虫、大枣、马钱子、水蛭、地龙、肉豆蔻、延胡索、全蝎、决明子、麦芽、远志、陈皮、使君子、柏子仁、胖大海、莲子、桃仁、蜈蚣、蜂房、螳螂、酸枣仁、僵蚕、薏苡仁。▲对玉米赤霉烯酮作出限量要求的品种是薏苡仁。岛津实验器材作为专业的色谱耗材服务厂商,全面致力于为各行业客户提供有关色谱消耗品及周边设备等专业的解决方案,先推出一系列中药中真菌毒素测定方法包,助您应对2020版药典中药真菌毒素的分析。岛津 / 多种真菌毒素 / 测定方法包01今天就为大家介绍,如何利用岛津黄曲霉毒素定量方法包对薏苡仁中黄曲霉毒素进行定量分析。黄曲霉毒素定量方法包,包括岛津SHIMSEN黄曲霉毒素免疫亲和柱产品对样品进行提取净化,Shim-pack GIST C18色谱柱进行分离,SHIMSEN黄曲霉毒素混标溶液作为标准品对中药中的黄曲霉毒素进行分析,根据方法说明书进行操作,回收率高,重复性好,满足《中国药典》要求,此方法包可应对于黄曲霉毒素的测定。▲点击查看大图02●样品前处理●利用SHIMSEN IAC系列免疫亲和柱(黄曲霉毒素小柱 货号:380-00910)进行前处理,不需要缓冲盐溶液洗脱,仍能保证回收率与提取效果。详细流程如下:▲点击查看详情03●参考2020年版中国药典●▲色谱柱:Shim-pack GIST C18(250mm×4.6 mm,5μm;P/N:227-30017-08)▲薏苡仁加标样品液相色谱图进样量:20 μL加标浓度:黄曲霉毒素B1/G1为1 ng/g;黄曲霉毒素B2/G2为0.3 ng/g将薏苡仁样品进行加标(添加浓度分别为:黄曲霉毒素B1和G1 为1 ng/g;黄曲霉毒素B2和G2为0.3 ng/g),按照上述前处理方法处理后上机,平行3份样品考察回收率和RSD,具体结果如下:04如果您对此方法包和应用感兴趣,欢迎扫码留下您的需求,我们将为你提供更多资料与服务。
  • 真菌毒素检测如何采样?
    真菌毒素的检测误差一直是粮油、饲料等领域令技术人员非常头疼的问题,有时甚至会达到百分之几百的偏差,误差的来源和影响因素非常之多,如检测产品本身、操作流程和细节掌握程度、实验环境和条件、不同种类样品的基质效应等。前边跟大家分享了“同一车粮食,为什么真菌毒素的测值不一样?”,反响很好,笔者在这里就跟大家聊一聊,影响检测结果的最大因素——采样。  同其他检测项目一样,真菌毒素的检测也包括采样、制样、分析检测等步骤。那么,这些步骤中哪个对真菌毒素的检测结果影响较大呢?  根据相关文献(Whitaker & Dicken,1974)报道,在真菌毒素分析检测过程中,误差产生的概率情况如下图1所示。 从上图我们可以看出:第一步的采样是最为关键的,其错误概率高达88%,二次取样错误概率为10%,而分析方法的错误概率仅为2%,由此可见取样及二次取样的关键性。  取样的关键性  造成采样及二次取样步骤容易出现误差主要是两方面的原因:  1、真菌毒素在样品中的分布是不均一的 上图以蛋白质和真菌毒素在样品中的分布情况,向我们说明真菌毒素分布的不均匀性。  2、真菌毒素检测的精度在ppb(ng/g)级别  真菌毒素的检测精度都在ppb级别,尤其对于毒性超强的黄曲霉毒素。ppb(ng/g)即10亿分之一,这是一个非常微量的单位,如果没有足够大的采样量,会造成很大的误差。  下表为美国农业部提供的信息,在一卡车玉米中加标20ppb的黄曲霉毒素污染的测值情况。   从上表可以得知,如果只取0.45公斤的玉米,检测得到的污染数值范围为0-46.9ppb;而若取样量为4.5公斤,其检测范围为11.6-28.4ppb,由此可见因为取样量的不同,引起的误差范围会相去甚远。  采样注意事项  1、采样的原则  由于真菌毒素分布的随机性,采样的时候要做到多点、随机、均匀,使得每个部位都有相同的概率被取到。  2、采样的数量  FAO和WTO建议每200公斤物料采样一次,如果所采样品是混合比较均匀的粉状物料,可以适当的减少采样点数。  在实际工作中由于人力、物力有限,所以在实际操作中采样点数应根据企业实际情况以及物料情况来确定采样点数。  3、采样量  原料送检样品采样成品可在500g,原料样品在1000g,这样可以保证检测的最低检测量和检测样品的霉菌毒素的分布均一性。GB 5009.22规定,固体样本采样量要大于1kg。  具体采样方法  1、流动物料采样  采样方式:采用适当的采样设备,并控制物料流的速度,使得采样器能从整个物料流截面采样而不会溢出。  适用范围:适用于运输卡车、火车、轮船散装物料卸料时;筒仓物料存储采样口采样;饲料企业打包出料口采样。  2、散装物料采样  采样方式:采用探针式采样器。 探针采样器的长度应该能够刺到容器底部。  适用范围:适用于驳船、漏斗车、厢式货车、卡车、火车厢、槽车运输的散装物料。  3、袋装物料采样  选择适当长度采样器,将探针采样器从包装袋一角斜插到对角。  采样器长度必须和包装袋对角线长度接近。  4、圆桶仓存储物料采样  对于料仓存储的物料,只有在出料口采样流动物料采样方案才可能获得具有代表性的样品。  若料仓中物料储量不多时,也可以分散取多点采样以获得比较有代表性的样本。  5、饲料生产过程采样  在出料扣安装自动采样设备或者采用鹈鹕嘴取样器采样。  对已经进入仓库的饲料,按照袋装物料的采样程序进行采样。  6、仓储饲料采样  对已经进入仓库的饲料,按照袋装物料的采样程序进行取样。  7、养殖场饲料及原料采样  饲料样品从料槽中中采样,每个料槽采样量可在500g,料槽应该随机性选择原料样品应该从存储袋中按照多个采样点采样,每次采样可1000g。
  • 新西兰出口中国苹果现真菌
    据媒体报道,新西兰政府官员昨日称,新西兰已暂停对中国出口苹果,因在三批发往中国的水果中发现一种会导致水果腐烂的真菌。继新西兰&ldquo 毒奶粉&rdquo 事件之后,新西兰食品安全问题再次进入人们视野。   据了解,新西兰苹果是新西兰出口的主要产品之一,由于其优质品种和纯净的生产源头而广受欢迎,此次检测出真菌事件或对苹果出口效益有所影响。据悉,中国是新西兰的第二大出口市场,是新西兰农产品的重要市场。   新西兰初级产业部表示,由于今年苹果出口季节也到了尾声,新西兰方面已主动暂停了中国的苹果出口。   根据新西兰初级产业部的官方消息,在向中国出口的苹果中发现的这种真菌并不对食品安全构成威胁,目前仅限于在上述批次苹果中发现了真菌,并且已经追溯到几个种植和包装地点。然而由于前不久爆出新西兰奶粉检测出肉毒杆菌和双聚氢氨的事件,人们对新西兰进口食品的印象和信任度已经大打折扣。   实际上,由于国内食品安全问题频发,许多中国消费者更倾向于购买价格较为昂贵的进口食品,而在近期,不少国外食品安全问题也频繁出现。根据8月28日国家质检总局通报,今年1-7月份,全国共检出质量安全项目不合格的进口食品1201批。   而在8月3日,新西兰初级产业部宣布,恒天然集团旗下部分产品可能含有肉毒杆菌毒素,可能受污染的产品被用于婴儿配方奶粉和运动饮料的生产。在新西兰&ldquo 毒奶粉&rdquo 事件引起关注后,国外食品&ldquo 绝对安全&rdquo 神话被彻底打破
  • 相关厂商齐聚2014国际真菌毒素大会
    仪器信息网讯 2014年5月19-23日,由国际真菌毒素学会(ISM)、中国农业科学院农产品加工研究所主办的&ldquo 2014国际真菌毒素大会&rdquo 在北京友谊宾馆召开,来自全球各地32个国家的科学家约300人参加了此次会议。 会议现场   真菌毒素是真菌产生的次生代谢产物,主要包括黄曲霉毒素、镰刀菌毒素等,具有强毒性和致癌性,能够污染几乎所有种类的食用和饲用农产品。联合国粮食与农业组织的数据显示,全球25%的粮油作物受到真菌毒素的污染,为应对真菌毒素的严重危害,100多个国家或地区制定了相应的限量标准和法规。   本次会议,各国科学家就真菌毒素检测、监测和预警,真菌毒素合成的分子路径,种植、收货、储藏、运输和加工全产业链真菌毒素防控,食品和饲料中真菌毒素的去除与脱毒以及全球真菌毒素防控策略进行深入研讨,共商真菌毒素防控大计。 合影   笔者从会议上了解到,目前真菌毒素检测主要有ELISA和试纸条两种快速检测方法,及液相、液质及荧光光度计等仪器检测的确证方法。就真菌毒素检测的挑战而言,与会专家表示,采样及样品前处理是难点,如何在大宗样品中选取有代表性的样品是关乎整个检测成败的关键。   作为真菌毒素研究领域规模最大、影响最广、权威性最高的唯一国际学术论坛,会议吸引了众多相关仪器和耗材供应商参展,展示真菌毒素检测相关产品和技术,以下是相关厂商及产品: 华安麦科 华安麦科相关产品 Romer Labs:有最全的真菌毒素标准品,以及专利技术净化柱 AB SCIEX 博欧实德 沃特世旗下VICAM VICAM的免疫亲和柱及荧光光度计 TECNA 安捷伦 NEOGEN 纽勤 勤邦生物 (撰稿:杨娟)
  • 真菌毒素多重检测技术研究进展
    真菌毒素是真菌在适宜条件下产生的一类小分子次级代谢产物,目前已知的真菌毒素约有400多种。研究表明,大多数真菌毒素可抑制动物体内蛋白的合成,破坏细胞结构,进而影响动物体肝脏、肾脏、神经、造血等组织器官的正常运作,具有强烈的致癌、致畸、致突变作用,对人和动物的生命与健康造成重大威胁。由于农产品作物生长、收获、贮藏及运输中都易受到产毒真菌的侵染,且所产生的真菌毒素在加工处理过程中不易被清除,因此,真菌毒素污染被认为是不可避免的污染问题。更为重要的是,多重产毒真菌可能侵染同一农产品,同时侵染的产毒真菌往往可以同时产生多种真菌毒素,因此在农产品中多种真菌毒素的共存成为一种不可忽视的必然现象,这就需要建立真菌毒素的多重检测技术。军事科学院军事医学研究院环境医学与作业医学研究所的陈瑞鹏、周焕英*、高志贤*等人综述了近5 年真菌毒素多重检测技术的研究进展,主要包括高效液相色谱-串联质谱(HPLC-MS/MS)法、免疫层析法、化学比色法、电化学法、化学发光法、荧光法等,分析了这些方法在真菌毒素检测中的应用与亟待解决的问题,并对其未来的发展应用前景进行了展望。1、高效液相色谱-串联质谱法HPLC-MS/MS法集中了色谱的分离性能与质谱的分子确证优势,其在检测器阶段利用质量分析器对待测物进行二次选择,将离子丰度转换为可定量计算的峰,同时提供被测物的质量数与分子结构信息,具有稳定性好、灵敏度高、专一性强、再现性好等优点,已经成为分析检测多组分真菌毒素的主要方法。样品前处理是指对目标物进行提取、富集和净化的步骤,以减少杂质干扰,提高检测灵敏度。目前常采用的样品前处理方法有一步提取法和分散固相萃取QuEChERS(quick, easy, cheap, effective, rugged and safe)法。Zhao Hongxia等利用HPLC-MS/MS法同时检测植物油中的16 种真菌毒素,首先采用一步提取法对目标物进行提取:使样品经体积分数85%乙腈溶剂提取和C18吸附剂处理,随后将目标物在多反应检测模式下的保留时间和离子对信息进行定量分析,该方法对16 种真菌毒素的加标回收率为72.8%~105.8%,检出限为0.04~2.9 ng/mL。2、免疫层析法免疫层析法是指将识别元件(抗原)和采用胶体金、磁珠、荧光微球等标记的捕获元件(抗体)固定在硝酸纤维素膜上,标记物作为信号指示物的检测方法。在分析时,待测液溶解标记的抗体在毛细管作用下沿着试纸条迁移,结合区域产生颜色、荧光等信号变化定性或定量分析多组分真菌毒素。免疫层析法根据目标物的大小分为双抗夹心法和竞争法,其中真菌毒素是单一抗原表位的小分子物质,适用于竞争免疫分析法。3、化学比色法化学比色法是指利用待测物与化学试剂之间发生明显的化学显色反应,通过与标准品比较颜色或在一定波长处比较吸光度,从而对待测物进行定量检测的方法。化学比色法中的显色反应通常具有较高的灵敏度和选择性,反应生成的有色化合物性质稳定,颜色差异明显。具有成本低廉、操作简单、检测迅速、结果直观等优点,已经广泛应用于真菌毒素的多重快速检测中。在近5 年内,化学比色法基于金纳米粒子独特的光学性质开发的多重检测真菌毒素在选择性、灵敏度、快速性和便携性等方面有了显著改善,但还存在一些需要解决的问题:由于对待测物自身的化学性质依赖性较强,在检测过程中易受到外部环境的干扰,影响检测结果的准确性。该问题可以通过提高金纳米粒子的稳定性,基于其表面等离子体对应光谱偏移的颜色变化进行检测,增加检测方法准确性;使金纳米粒子信号可控放大,对真菌毒素进行更准确的定量分析。4、电化学法电化学法是根据电解质溶液中物质的电化学性质及其变化规律,建立在电学量(电流、电位、电阴或电量)与待测目标物之间的计量关系的基础上,对目标物进行定性或定量分析的方法。具有灵敏度高、选择性好、分析速度快、易于自动化、操作简便等优点,在真菌毒素的多重检测中有着广泛的应用。近5 年电化学法在多重检测真菌毒素的灵敏度和特异性方面得到了极大的提高。但是目前仍然存在一些急需解决的问题:1)样品前处理的过程比较费时费力,需要进一步简化样品的前处理流程;2)电化学传感器的分子识别元件的稳定性、使用寿命以及非特异性结合能力有待进一步提高;3)电化学信号指示剂的种类有限,需要研发更多的电化学信号指示剂。5、化学发光法化学发光是指由化学反应引起的发光现象。化学发光法是指利用化学发光反应,对化学发光物质由激发态跃迁回基态时发出的光信号进行检测分析的方法。该方法在检测过程中不需要外加光源,可以避免其他光源产生的干扰以及带来的其他误差,具有操作简便、易于实现自动化和分析速度快等分析检测的优点,已广泛运用于真菌毒素的多重检测分析中。目前在实际应用中化学发光法仍然存在几个问题:1)化学发光剂和增强剂种类较少,急需研发更多的化学发光剂和增强剂来拓展化学发光法的应用范围;2)发展化学发光法和传感技术、毛细管电泳技术等联用,扩大化学发光法在真菌毒素检测分析中的应用;3)研发化学发光法仪器设备的小型、便携式、自动化和一体化,有助于推进化学发光仪器的商业化。6、荧光法荧光法是利用待检测物经外加频率的紫外线照射后,激发出能够反映其特性的荧光,通过微孔板荧光仪、荧光显微镜、激光共聚焦显微镜和荧光分光光度计等仪器检测荧光强度,从而实现对待检测的定量分析。荧光分子可以在很短的时间内被大量反复的激发和监测,量子产率较高,具有灵敏度高、选择性强和定量精准等优点,已广泛应用于真菌毒素多重检测中。近5 年荧光法多重真菌毒素的检测时间缩短且灵敏度得到极大改善,但是大多数常用的荧光团的荧光寿命以秒为单位,并且需要特定的储存条件来稳定其荧光响应,目前荧光法还未应用于多重真菌毒素的现场检测分析中。目前荧光分析法主要呈现以下几个趋势:1)针对自身无荧光物质,研发反应活性高、量子产量大的荧光探针,从而拓宽检测的领域;2)针对不同基质及目标化合物,探索最佳提取方式以及净化手段,实现最佳回收率及特异性;3)将荧光分析技术与光学、电化学等多方面技术结合,构造成集成便携式的综合检测体系,实现实时同步获得检测和分析的信息。7、拉曼光谱法拉曼光谱是光穿过透明介质时由于分子的非弹性散射使光频率发生变化而产生的一种散射光谱。拉曼效应是光子与光学及声子相互作用的结果,拉曼散射光谱可以获取分子振动能级与转动能级跃迁的特征信息,具有强大的分子识别能力,是分子信息快速获取的理想手段。但常规拉曼散射强度比较弱,灵敏度不高。表面增强拉曼散射(SERS)极大地克服了常规拉曼光谱灵敏度不高的不足同时又保留了拉曼光谱的实时、快速的特点,已被广泛应用于真菌毒素多重检测中。8、其 他目前也有一些其他技术广泛应用于真菌毒素的多重检测中。已知传统真菌毒素检测方法与智能手机的结合是达到便携化的一个良好手段,因此,基于智能手机图像处理的平台,寻找一种配套检测与编码的载体,使其编码信号清晰、可变、容量高、检测信号灵敏具有重要的现实应用意义。结 语本文重点介绍了近5 年真菌毒素多重检测技术的研究进展,主要检测方法有HPLC-MS/MS法、免疫层析法、化学比色法、电化学法、化学发光法、荧光法等,分析比较了这些方法在真菌毒素多重检测中的优缺点。
  • 速领!十大真菌毒素,一包应对
    2020版药典第四部通则岛津推出中药10种真菌毒素筛查方法包真菌毒素是真菌在食品或饲料里生长所产生的代谢产物,对人类和动物都有害。由于中药材从种植、生产、流通的全过程周期较长,控制不当易受真菌毒素危害,再加上真菌毒素的产生与宿主基质特性密切相关,不同类型中药材会产生种类和性质各异的真菌毒素,不经控制而被消费者使用后会产生严重的不良反应。本版药典在“四个最严”背景下,全面制定了易霉变中药材、饮片真菌毒素的限量标准,具体品种增加至24个。在方法方面,增加了多种真菌毒素测定法。2020年版《中国药典》自2020年12月30日起正式实施以来,已经过去一段时间了,相信中药相关企业都在积极地完成应对工作,在四个最严的背景下,中药企业对真菌毒素的监控也成为了2020年版《中国药典》对应工作的重中之重。中药 / 10种真菌毒素 / 方法包01岛津实验器材作为专业的色谱耗材服务厂商,全面致力于为各行业客户提供有关色谱消耗品及周边设备等专业的解决方案。现推出中药中10种真菌毒素筛查测定方法包(PRC-KIT-040)助您应对2020药典中药真菌毒素的分析。利用岛津10种真菌毒素筛查测定方法包建立了10种真菌毒素的LC-MS/MS快速筛查方法,下文展现了采用岛津LCMS-8050超高效液相色谱三重四极杆质谱联用系统进行薏苡仁中10种真菌毒素的LC-MS/MS快速筛查方法的部分实验结果。 02●UHPLC条件●色谱柱:Shim-pack GISS-HP C18 [Metal free column](100×2.1 mm,1.9 μm;P/N:227-30922-02)流 速:0.3 mL/min 进样量:5 μL柱 温:50 ℃流动相:A:0.01%甲酸水溶液 B:乙腈-甲醇(1:1)梯度洗脱程序如下:●质谱条件●离子化模式:ESI,正负离子同时扫描 扫描模式:多反应监测(MRM)碰撞气:氩气 加热气:空气 3.0 L/min雾化气:氮气 2.5 L/min 干燥气:氮气 3.0 L/min接口温度:400℃ DL温度:150℃ 加热模块温度:500 ℃ 03●对照品溶液的制备●精密量取黄曲霉毒素 B1、黄曲霉毒素 B2、黄曲霉毒素G1、黄曲霉毒素 G2、赭曲霉毒素 A、玉米赤霉烯酮、呕吐毒素、伏马毒素 B1、伏马毒素 B2 及 T-2 毒素混合对照品溶液(SHIMSEN 10种真菌毒素混标溶液,货号:380-03538)适量,加50%乙腈溶液制成不同浓度的混标贮备溶液;再用 50%乙腈溶液稀释成不同浓度的系列混合对照品溶液。●样品前处理●取供试品粉末约5 g(过二号筛),精密称定,精密加入70%甲醇溶液50 mL,超声处理30分钟,离心,精密量取上清液10 mL,用水稀释至20 mL,摇匀。精密量取3 mL,待净化。3 mL甲醇、3 mL水活化,弃去流出液;3 mL上述待净化液上样,直至有适量空气通过,收集流出液;3 mL甲醇洗脱,收集流出液;合并两次洗脱液,于40℃氮气缓慢吹至近干,加50%乙腈溶液定容至1 mL,用微孔滤膜(0.22 μm)滤过,取续滤液,即得。▼净化流程▼10种真菌毒素混合对照品溶液的MRM色谱图04将0.2、0.4、1.0、2.0、4.0 ng/mL系列薏苡仁基质混合对照品溶液(以黄曲霉毒素B1计)进样分析,以浓度为横坐标,峰面积为纵坐标绘制校准曲线。薏苡仁基质中10种真菌毒素线性相关性良好,r均大于0.995,准确度在93.4%~108.9%之间。对薏苡仁空白样品进行高、中、低浓度(以黄曲霉毒素B1计,分别为0.4 ng/g、1.0 ng/g、2.0 ng/g)加标后,按照上述前处理方法处理后上机,各添加浓度平行3份样品考察回收率,结果显示,加标回收率为61.3%-97.4%。▲点击放大05
  • 当心!别让这些真菌毒素毁了你的餐桌美味
    我国南方大部分地区秋冬季节都是温暖潮湿的环境,此时也是霉菌生长的好时机。丰收的粮食由于储存条件不当很容易滋生霉菌,霉菌生长过程中会产生有害的代谢产物。据联合国粮农组织调查,全球每年约有25%的粮食会受到真菌污染,约2%的农作物因为污染严重而失去利用价值。从种植到存储、加工,任何一个环节都有可能产生真菌毒素,长期食用被污染的粮食会严重危害人体健康。 什么是真菌毒素? 真菌毒素(Mycotoxins) 一词源于希腊语“Mykes”和拉丁语“Toxicum”,它是由产毒的真菌在一定环境条件下产生的次级代谢产物,广泛污染农作物、食品及饲料等植物源性产品,可引起人类和动物急性或慢性中毒,部分已被证实具有致癌、致畸、致细胞突变的“三致”作用。目前已知的真菌毒素有200多种,按其主要产毒菌种可分为曲霉菌毒素(如黄曲霉毒素、赭曲霉毒素A等)、镰刀菌毒素(如T-2毒素、HT-2毒素、脱氧雪腐镰刀菌烯醇、玉米赤霉烯酮等)等几大类。(图片来源于网络) 目前,世界各国对粮食中各种毒素的限量和检测手段都趋于严格。2017年,我国颁布了《GB 2761-2017 食品安全国家标准 食品中真菌毒素限量》标准,规定了多种真菌毒素在粮食、水果、坚果及乳制品中的限量值。除了国家标准外,各行业也制定了相应标准用于市场监管,确保我们可以在餐桌上吃到安全放心的食物。 岛津解决方案 实验部分 检测仪器本实验使用岛津超高效液相色谱仪LC-40和三重四极杆质谱LCMS-8050联用系统。岛津超快速三重四极杆液质联用仪 前处理方式参考粮油系统粮食行业标准《LS/T 6133-2018 粮油检验 主要谷物中16种真菌毒素的测定 液相色谱-串联质谱法》中的要求,样品采用乙腈-水-乙酸溶液提取后,离心过滤,加入稳定同位素内标,通过液相色谱-串联质谱进行测定。 主要方法参数色谱柱:UHPLC C18 2.1 mmI.D.×100 mmL., 1.6 μm流动相:A相-水(含1%乙酸,5 mM乙酸铵);B相-甲醇洗脱方式:梯度洗脱离子源:ESI,正负离子同时 分析结果十六种真菌毒素及内标标准样品的MRM色谱图 标准曲线将配制的不同浓度的基质加标样品,按上述分析条件进行测定,采用内标法制作校准曲线,校准曲线如下图所示。 玉米基质匹配标曲中部分真菌毒素的校准曲线 回收率考察 选取小麦和玉米两种基质,分别添加低、中、高三个水平的真菌毒素进行回收率考察实验,16种真菌毒素在两种基质中的加标回收率在88.52~119.77%之间,回收率良好。 小 结 岛津公司长期以来都在关注食品安全问题,为了有效应对食品中有害物质的检测,推出了一系列产品以及解决方案,更好守护我们的餐桌安全。本实验使用岛津超高效液相色谱仪LC-40和三重四极杆质谱仪LCMS-8050联用,参考粮油系统《LS/T 6133-2018 粮油检验主要谷物中16种真菌毒素的测定 液相色谱-串联质谱法》行业标准中的要求,建立了一种简单净化-液相色谱串联质谱联用同时检测谷物中16种真菌毒素的方法。该方法前处理快速、操作简单、重复性好、灵敏度高,适合谷物中真菌毒素的高灵敏度检测。
  • 我国现行真菌毒素检测标准概述
    1 真菌毒素标准的发展  真菌毒素是产毒真菌在粮食(或果蔬)的种植、收获、运输、储存过程中侵染粮食(或果蔬),并在适宜的生长条件下产生的次生代谢产物。真菌毒素污染谷物、饲料、果蔬,通过食物链危害人类健康和畜禽生产安全。因此,世界卫生组织(World Health Organization,WHO)和联合国粮农组织(Food and Agriculture Organization,FAO)把真菌毒素列为食源性疾病的三大根源之首。我国是真菌毒素污染最严重的国家之一。  目前,人们发现的真菌毒素有400多种。我国重点关注黄曲霉毒素(主要是Aflatoxin B1,AFB1和Aflatoxin M1,AFM1)、脱氧雪腐镰刀菌烯醇(Deoxynivalenol,DON)、玉米赤霉烯酮(Zearalenone,ZEN)、赭曲霉毒素(Ochratoxin A,OTA)、展青毒素(Patulin,Pat)、T-2毒素(T-2 toxin,T2)和伏马毒素(Fumonisins,FBs)等,这些毒素具有强毒性和高污染频率等特点,每种毒素的化学结构、生物毒性及适宜生长的基质不同;有些毒素会在饲用动物体内发生结构转化,以结构类似物存在动物源性食品中,危害人类健康。包括我国在内的许多国家都制定了真菌毒素的限量标准,这些限量标准是非关税壁垒的重要组成部分,也是保障我国食品安全和畜牧业健康发展的需要。  黄曲霉毒素M1结构式  从“十五”到“十二五”,国家重点关注农、兽药等外源性有毒有害物质污染,对真菌毒素的重视较晚,相关检测技术的研究起步也晚。国家标准委员会曾提出在标准制定中采用国际标准和国外先进技术、积极与国际接轨的要求,促使我国真菌毒素检测标准的制修订得到了充分的发展。一些标准制定借鉴了国外先进的检测技术,这在一定程度上为我国国有品牌树立了标杆和发展方向。  经过十多年的发展,我国制定了一系列的真菌毒素相关标准,但还需要在检测技术、作用毒理、公共危害等领域得到加强的基础上逐步改进和丰富。研究人员曾对我国真菌毒素的检测标准进行探讨,但那些被讨论过的标准很多已被废止,侧面反映了近些年来我国真菌毒素标准制定的活跃和国家的重视。  真菌毒素标准包括限量标准和检测标准。按照检测方法,可分为大型仪器方法和快速检测方法;按照适用范围,可分为食品类、原粮类和饲料类。本文对我国现行真菌毒素检测标准进行了梳理、阐述和分析,根据笔者对真菌毒素检测技术的了解,对各类标准涉及的技术进行思考和探讨,并从应用和市场角度提出了一些建议和意见,希望能为我国真菌毒素标准的发展提供有益的参考。  2 我国现行的食品中真菌毒素的标准  现行的食品安全国家限量标准GB 2761-2017《食品中真菌毒素限量》,属国家强制执行的标准。GB 2761包括限定的毒素种类、限量、食品类型及检验方法的标准。最早的GB 2761是1981年颁布实施的,先后经过四次修订。1981年版只规定了AFB1的限量和食品种类;2005年版增加了AFM1、DON、Pat;2011版又增加了OTA、ZEN。2017版没有增加毒素种类,但对食品类型的划分更加细致。该标准没有做出受饲料行业监管、污染原粮的FBs、T-2的限定。GB 2761的修订,反映了国家对食品真菌毒素污染的重视。下边将对每种真菌毒素的现行检测标准逐一阐述和分析:  2.1 黄曲霉毒素(AF)  AF是产毒真菌黄曲霉和寄生曲霉产生的次级代谢产物,是毒性最强的化学致癌物质之一。目前分离鉴定出的AF包括AFB1、AFB2、AFG1、AFG2、AFM1和AFM2等18种。1993年国际癌症研究所将AF确定为一级人类致癌物。热带和亚热带地区农作物易遭受AF污染,居民肝癌发病率较高。  GB 276l-2017规定了食品中AFB1/M1的最大限量标准及其存在的食品类别:谷物及其制品、豆类及其制品、坚果及籽类、油脂及其制品、调味品、特殊膳食用食品等6大类18小类,限量范围为0.5~20 μg/kg,其中特殊膳食用食品的限量最低。AFM1限量的食品类别分为乳及乳制品、特殊膳食用食品等2大类8小类,统一限量0.5 μg/kg。GB 276l-2017的限量明显比GB 13078-2017《饲料卫生标准》严格,但低于欧盟食品的限量要求。  AF的检测标准(见表1)包括国家标准(GB)、粮油行业标准(LS)、农业行业标准(NY)、出入境检验检疫行业标准(SN)、地方标准(DB)及食药局快检标准(KJ)等,涵盖了真菌毒素检测的所有方法。涉及的检测方法有柱后光化学衍生高效液相色谱法、超高效液相色谱法、免疫亲和柱净化-高效液相色谱法、同位素内标-液相色谱-串联质谱法、高效液相色谱-柱前衍生法等仪器分析方法和胶体金定量/定性检测技术、酶联免疫吸附筛查法、时间分辩荧光定量检测技术、双流向酶联免疫法、薄层色谱法、免疫亲和层析净化荧光光度法等快检方法。  一种作物可能被多种真菌毒素污染,因此对多种真菌毒素同时检测的技术很有实际应用价值。刚刚实施的LS/T 6133-2018《主要谷物中16种真菌毒素的测定 液相色谱串联质谱法》采用稳定同位素内标液相色谱-串联质谱法,对谷物中多种毒素同时检测,该技术除了检测我国日常监管的毒素外,还可以检测其衍生物或结构类似物。  快检方法不仅仅是对实验室方法的有益补充,根据2015年颁布的《食品安全法》,国家认可的快检方法可以作为执法依据。农业部、国家粮食局和国家食药总局先后颁布了8个免疫检测技术的标准。粮食行业标准率先将胶体金定量检测技术纳入标准中,之前胶体金免疫层析技术只是作为定性筛查的手段。2017年国家食药局颁布了三个真菌毒素快检标准,其中两个是AF的标准。这些都为免疫层析技术在农业、粮油、食药行业的应用提供了技术保障和标准支撑,同时也有效保障了这些领域AF的监管和检测。唯1写入GB或GB/T的免疫方法是市场应用剧减的酶联免疫,目前应用广泛的免疫层析技术只出现在行业标准中。  全球有100多个国家和地区制订了食品和饲料中AF限量标准。我国对食品中AFB1和AFM1的最高允许量有严格规定,而美国、加拿大等国家主要对AF总量(B1+B2+G1+G2)做出限定。为了满足进出口的需求,SN标准是针对黄曲霉毒素总量的检测。  黄曲霉毒素的检测标准覆盖了AF污染的大多数食品,2020年《中国药典》2351真菌毒素测定法,更是增加了药材、饮片及中药制剂中真菌毒素的检测。但是,一些过时检测技术的行业标准依然有效:如NY/T 1664-2008《牛乳中黄曲霉毒素的快速检测 双流向酶联免疫法》,该技术操作繁琐,专业性要求高,且只能定性检测,市面上已很难买到相应的检测试剂。薄层色谱法是一种前处理复杂、当前应用很少的检测技术,依然作为第五法写入GB 5009.22-2016中。编者建议废止不能适应市场需要的一些标准。  2.2 脱氧雪腐镰刀菌烯醇(DON)  脱氧雪腐镰刀菌烯醇又称为呕吐毒素,广泛存在玉米、小麦、大麦等谷物中,是污染食物的主要真菌毒素。DON破坏人和动物免疫系统,具有一定的胚胎毒性和致畸性。世界各国都对食品中DON做出了限量要求。GB 276l-2017规定谷物及其制品中DON的限量是1000 μg/kg,与美国对小麦的限量标准一致。而欧盟标准规定的非常细致:未加工的硬质小麦、谷物和玉米中DON的限量为1750 μg/kg,未加工的谷物(除前述之外的谷物)的DON限量是1250 μg/kg,终端销售的谷物面粉、麸皮和胚芽的DON限量为750 μg/kg,谷物为原料的婴儿食品中DON限量不得超过200 μg/kg;日本规定小麦和小麦制品的DON限定量为1100 μg/kg。  DON的检测标准有9个(见表2),包括4个LS,1个KJ,3个GB和1个SN,其中GB 5009.111-2016《食品中脱氧雪腐镰刀菌烯醇及其乙酰化衍生物的测定》是GB 2761-2017指定的检验方法,可以检测谷物及其制品、酒类、酱油、醋中的DON及其乙酰化衍生物。与AF相比,DON检测标准的数量和方法明显减少,但DON作为粮食行业重点关注的毒素,LS占比非常大。DON的结构类似物雪腐镰刀菌烯醇(NIV)对我国中东部作物的污染较常见,但目前只有DB32/T 3205-2017《饲料中雪腐镰刀菌烯醇(NIV)的测定 免疫亲和柱净化-高效液相色谱法》提出了它的检测方法。
  • CFAS 2017真菌毒素检测技术专场
    p    strong 仪器信息网讯 /strong :2017年6月1日,由中国仪器仪表学会分析仪器分会和中国仪器仪表行业协会分析仪器分会共同主办的第六届中国食品与农产品安全检测技术与质量控制国际论坛(CFAS 2017)在北京国际会议中心开幕。500余位行业代表共聚一堂,为我国食品和农产品安全检测问题建言献策。 /p p span style=" COLOR: #00b0f0" strong 部分报告节选: /strong /span /p p style=" text-align: center " span style=" COLOR: #00b0f0" strong img src=" http://img1.17img.cn/17img/images/201706/insimg/61e77b40-4ce2-4836-bee9-3066d032f8e1.jpg" title=" 孔维军.jpg" / /strong /span /p p style=" text-align: center " strong   报告人: span style=" color: rgb(0, 176, 240) " 中国医学科学院药用植物研究所 孔维军 /span /strong /p p style=" text-align: center " strong   报告题目: span style=" color: rgb(0, 176, 240) " “药食同源”食品中真菌毒素快速检测研究 /span /strong /p p   孔维军从“药食同源”食品及真菌毒素简介、“药食同源”食品中真菌毒素检测实例、新型样品前处理技术和新型快速检测技术四方面对“药食同源”食品中真菌毒素快速检测研究做了阐述。孔维军谈到,真菌毒素是产毒真菌产生的有毒次级代谢产物。已发现的真菌毒素有400多种,其中毒性较强的主要包括黄曲霉毒素B1,、赫曲霉毒素A、玉米赤霉烯酮和伏马菌素等。“药食同源”食品在种植、采收、加工、运输和储藏过程中,由于操作不当极易污染真菌,进而产生各种真菌毒素。 /p p   接下来,孔维军介绍了IAC净化—在线柱后光化学衍生—HPLC—FLD法同时检测生姜及其制剂中5种真菌毒素和同位素内标—UHPLC—MS/MS法快速检测麦芽中11种真菌毒素。同时,孔维军还对新型样品前处理技术做了介绍,即包括:分子印迹技术和适配体亲和技术。此外,孔维军还讲到了流式微球技术新型快速检测方法。 /p p style=" text-align: center " img src=" http://img1.17img.cn/17img/images/201706/insimg/d8d382ca-c5a6-4203-b445-03c1665284a4.jpg" title=" 叶金.jpg" / /p p style=" text-align: center " strong   报告人: span style=" color: rgb(0, 176, 240) " 国家粮食局科学研究院 叶金 /span /strong /p p style=" text-align: center " strong   报告题目: span style=" color: rgb(0, 176, 240) " 《粮谷食品中多种真菌毒素检测和质控物质研究进展》 /span /strong /p p   叶金讲到,我国每年有3100万吨粮食在生产、储运、运输过程中被真菌污染,约占粮食年总产量的6.2%。2016年,全国有9个省份抽检发现食品真菌毒素污染问题,占不合格总数的1.5%。同时,针对于真菌毒素检测目前面临着很大的挑战,包括:样品检测量大 检测真菌毒素种类多 检测成本高 前处理耗时、耗力。接下来,叶金介绍了其课题组采用了快速前处理—稳定同位素稀释—LC—MS/MS同时测定粮食中的16种真菌毒素。该方法具有前处理简单、快速、成本低和基于稳定同位素稀释,消除基质干扰的影响,结果准确性高等优点。 /p p style=" text-align: center " img src=" http://img1.17img.cn/17img/images/201706/insimg/a0035847-1a60-43d4-8144-4c31a0a4d1a4.jpg" title=" 张奇.jpg" / /p p style=" text-align: center " strong   报告人: span style=" color: rgb(0, 176, 240) " 中国农业科学院油料作物研究所 张奇 /span /strong /p p style=" text-align: center " strong   报告题目: span style=" color: rgb(0, 176, 240) " 真菌毒素免疫试纸条检测技术:现状、问题与对策 /span /strong /p p style=" text-align: center " strong span style=" color: rgb(0, 176, 240) " img src=" http://img1.17img.cn/17img/images/201706/insimg/adbdd33d-3526-4e7d-ae4b-cc7e35f91488.jpg" title=" 张朝晖.jpg" / /span /strong /p p style=" text-align: center " strong   报告人: span style=" color: rgb(0, 176, 240) " 北京检验检疫技术中心 张朝晖 /span /strong /p p style=" text-align: center " strong   报告题目: span style=" color: rgb(0, 176, 240) " 同位素内标法在新版真菌毒素检测食品安全国家标准中的应用 /span /strong /p
  • 用于确定真菌核糖体结构的冷冻电镜
    大多数人身上携带真菌白色念珠菌,没有它会引起很多问题。然而,这种真菌的全身感染是危险的并且难以治疗。很少有抗菌剂是有效的,而且它的耐药性正在增加。包括格罗宁根大学副教授 Albert Guskov 在内的一个国际科学家小组已经使用单粒子冷冻电镜来确定真菌核糖体的结构。他们的研究结果近日发表在《科学进展》上,揭示了新药的潜在目标。白色念珠菌通常不会引起任何问题,或者只是容易治疗的皮肤瘙痒感染。然而,在极少数情况下,它可能会导致可能致命的全身感染。现有的抗真菌药物会引起很多副作用并且价格昂贵。此外,白色念珠菌的耐药性越来越强,因此确实需要新的药物靶点。“我们注意到没有抗真菌药物针对蛋白质合成,而一半的抗菌药物会干扰这个系统,”Guskov说。造成这种情况的一个原因是真菌核糖体,即将遗传密码转化为蛋白质的细胞机器,在人类和真菌中非常相似。所以,你需要一种非常有选择性的药物来避免杀死我们自己的细胞。——Albert Guskov,格罗宁根大学副教授原子分辨率因此,Guskov 和他的合作者推断,获得白色念珠菌核糖体的结构对于寻找药物靶点很有价值。经典的方法是从纯化的核糖体中生长晶体,并使用 X 射线晶体学确定它们的结构;然而,这是一项费力的技术。相反,他们使用单粒子冷冻电镜,其中大量单粒子在电子显微镜中在非常低的温度下成像。从不同角度看到的单个粒子的图像随后被组合以产生原子分辨率的结构。突变' 通过这种方式,我们解决了空缺和抑制剂结合的真菌核糖体的结构,并将它们的功能与酵母和兔子的核糖体进行了比较——后者作为人类核糖体的模型——并重复了与不同核糖体结合的核糖体抑制剂,”Guskov 解释道。其中一种抑制剂是抗微生物放线菌酮 (CHX),已知白色念珠菌对其具有抗药性。通过比较这些结构,科学家们注意到在蛋白质合成中起关键作用的 E 位点的单个突变阻止了 CHX 与白色念珠菌核糖体结合。 ' 突变将这个E位点结构中的一个氨基酸从脯氨酸改变为谷氨酰胺。这种替代减少了结合位点的大小,因此抑制剂不能附着,因此无效。另一种抑制剂叶花苷不会被突变阻断。威胁' 通过比较白色念珠菌和人类空缺核糖体中 E 位点的结构以及不同抑制剂与该位点结合方式的信息,我们可以开发出一种特异性抑制剂,它可以阻断真菌核糖体,但不能阻断人类的核糖体。这将成为治疗真菌感染的选择性药物。科学家们目前正在筛选分子库以寻找药物先导物。 “开发针对白色念珠菌的疫苗极具挑战性,就像我们针对冠状病毒所做的那样。因此,我们需要药物来治疗全身感染,”Guskov解释道。 “这种真菌日益增加的耐药性是一个真正的威胁。如果这种情况继续下去,除非开发出新药,否则我们可能会遇到严重的麻烦。Source:University of GroningenJournal reference:Zgadzay, Y., et al. (2022) E-site drug specificity of the human pathogen Candida albicans ribosome. Science Advances. doi.org/10.1126/sciadv.abn1062.
  • 我国现行真菌毒素检测标准概述
    1 真菌毒素标准的发展  真菌毒素是产毒真菌在粮食(或果蔬)的种植、收获、运输、储存过程中侵染粮食(或果蔬),并在适宜的生长条件下产生的次生代谢产物。真菌毒素污染谷物、饲料、果蔬,通过食物链危害人类健康和畜禽生产安全。因此,世界卫生组织(World Health Organization,WHO)和联合国粮农组织(Food and Agriculture Organization,FAO)把真菌毒素列为食源性疾病的三大根源之首。我国是真菌毒素污染最严重的国家之一。  目前,人们发现的真菌毒素有400多种。我国重点关注黄曲霉毒素(主要是Aflatoxin B1,AFB1和Aflatoxin M1,AFM1)、脱氧雪腐镰刀菌烯醇(Deoxynivalenol,DON)、玉米赤霉烯酮(Zearalenone,ZEN)、赭曲霉毒素(Ochratoxin A,OTA)、展青毒素(Patulin,Pat)、T-2毒素(T-2 toxin,T2)和伏马毒素(Fumonisins,FBs)等,这些毒素具有强毒性和高污染频率等特点,每种毒素的化学结构、生物毒性及适宜生长的基质不同;有些毒素会在饲用动物体内发生结构转化,以结构类似物存在动物源性食品中,危害人类健康。包括我国在内的许多国家都制定了真菌毒素的限量标准,这些限量标准是非关税壁垒的重要组成部分,也是保障我国食品安全和畜牧业健康发展的需要。黄曲霉毒素M1结构式从“十五”到“十二五”,国家重点关注农、兽药等外源性有毒有害物质污染,对真菌毒素的重视较晚,相关检测技术的研究起步也晚。国家标准委员会曾提出在标准制定中采用国际标准和国外先进技术、积极与国际接轨的要求,促使我国真菌毒素检测标准的制修订得到了充分的发展。一些标准制定借鉴了国外先进的检测技术,这在一定程度上为我国国有品牌树立了标杆和发展方向。  经过十多年的发展,我国制定了一系列的真菌毒素相关标准,但还需要在检测技术、作用毒理、公共危害等领域得到加强的基础上逐步改进和丰富。研究人员曾对我国真菌毒素的检测标准进行探讨,但那些被讨论过的标准很多已被废止,侧面反映了近些年来我国真菌毒素标准制定的活跃和国家的重视。  真菌毒素标准包括限量标准和检测标准。按照检测方法,可分为大型仪器方法和快速检测方法;按照适用范围,可分为食品类、原粮类和饲料类。本文对我国现行真菌毒素检测标准进行了梳理、阐述和分析,根据笔者对真菌毒素检测技术的了解,对各类标准涉及的技术进行思考和探讨,并从应用和市场角度提出了一些建议和意见,希望能为我国真菌毒素标准的发展提供有益的参考。2 我国现行的食品中真菌毒素的标准  现行的食品安全国家限量标准GB 2761-2017《食品中真菌毒素限量》,属国家强制执行的标准。GB 2761包括限定的毒素种类、限量、食品类型及检验方法的标准。最早的GB 2761是1981年颁布实施的,先后经过四次修订。1981年版只规定了AFB1的限量和食品种类;2005年版增加了AFM1、DON、Pat;2011版又增加了OTA、ZEN。2017版没有增加毒素种类,但对食品类型的划分更加细致。该标准没有做出受饲料行业监管、污染原粮的FBs、T-2的限定。GB 2761的修订,反映了国家对食品真菌毒素污染的重视。下边将对每种真菌毒素的现行检测标准逐一阐述和分析:  2.1 黄曲霉毒素(AF)  AF是产毒真菌黄曲霉和寄生曲霉产生的次级代谢产物,是毒性最强的化学致癌物质之一。目前分离鉴定出的AF包括AFB1、AFB2、AFG1、AFG2、AFM1和AFM2等18种。1993年国际癌症研究所将AF确定为一级人类致癌物。热带和亚热带地区农作物易遭受AF污染,居民肝癌发病率较高。  GB 276l-2017规定了食品中AFB1/M1的最大限量标准及其存在的食品类别:谷物及其制品、豆类及其制品、坚果及籽类、油脂及其制品、调味品、特殊膳食用食品等6大类18小类,限量范围为0.5~20 μg/kg,其中特殊膳食用食品的限量最低。AFM1限量的食品类别分为乳及乳制品、特殊膳食用食品等2大类8小类,统一限量0.5 μg/kg。GB 276l-2017的限量明显比GB 13078-2017《饲料卫生标准》严格,但低于欧盟食品的限量要求。  AF的检测标准(见表1)包括国家标准(GB)、粮油行业标准(LS)、农业行业标准(NY)、出入境检验检疫行业标准(SN)、地方标准(DB)及食药局快检标准(KJ)等,涵盖了真菌毒素检测的所有方法。涉及的检测方法有柱后光化学衍生高效液相色谱法、超高效液相色谱法、免疫亲和柱净化-高效液相色谱法、同位素内标-液相色谱-串联质谱法、高效液相色谱-柱前衍生法等仪器分析方法和胶体金定量/定性检测技术、酶联免疫吸附筛查法、时间分辩荧光定量检测技术、双流向酶联免疫法、薄层色谱法、免疫亲和层析净化荧光光度法等快检方法。  一种作物可能被多种真菌毒素污染,因此对多种真菌毒素同时检测的技术很有实际应用价值。刚刚实施的LS/T 6133-2018《主要谷物中16种真菌毒素的测定 液相色谱串联质谱法》采用稳定同位素内标液相色谱-串联质谱法,对谷物中多种毒素同时检测,该技术除了检测我国日常监管的毒素外,还可以检测其衍生物或结构类似物。  快检方法不仅仅是对实验室方法的有益补充,根据2015年颁布的《食品安全法》,国家认可的快检方法可以作为执法依据。农业部、国家粮食局和国家食药总局先后颁布了8个免疫检测技术的标准。粮食行业标准率先将胶体金定量检测技术纳入标准中,之前胶体金免疫层析技术只是作为定性筛查的手段。2017年国家食药局颁布了三个真菌毒素快检标准,其中两个是AF的标准。这些都为免疫层析技术在农业、粮油、食药行业的应用提供了技术保障和标准支撑,同时也有效保障了这些领域AF的监管和检测。唯一写入GB或GB/T的免疫方法是市场应用剧减的酶联免疫,目前应用广泛的免疫层析技术只出现在行业标准中。  全球有100多个国家和地区制订了食品和饲料中AF限量标准。我国对食品中AFB1和AFM1的最高允许量有严格规定,而美国、加拿大等国家主要对AF总量(B1+B2+G1+G2)做出限定。为了满足进出口的需求,SN标准是针对黄曲霉毒素总量的检测。  黄曲霉毒素的检测标准覆盖了AF污染的大多数食品,2020年《中国药典》2351真菌毒素测定法,更是增加了药材、饮片及中药制剂中真菌毒素的检测。但是,一些过时检测技术的行业标准依然有效:如NY/T 1664-2008《牛乳中黄曲霉毒素的快速检测 双流向酶联免疫法》,该技术操作繁琐,专业性要求高,且只能定性检测,市面上已很难买到相应的检测试剂。薄层色谱法是一种前处理复杂、当前应用很少的检测技术,依然作为第五法写入GB 5009.22-2016中。编者建议废止不能适应市场需要的一些标准。表1 我国现行标准中黄曲霉毒素的检测方法标准号标准名称适用样本检测方法检出限/定量限(μg/kg)GB5009.24-2016食品安全国家标准食品中黄曲霉毒素M 族的测定乳、乳制品和含乳特殊膳食用食品第一法:同位素稀释液相色谱-串联质谱法;第二法:高效液相色谱法;第三法:酶联免疫吸附筛查法。第一法:液态乳、酸奶,取样4g。AFM1:0.005/0.015; AFM2:0.005/0.015。乳粉、特殊膳食用食品、奶油和奶酪,取样1g。AFM1:0.02/0.05 AFM2:0.02/0.05;第二法:液态乳、酸奶 4g,AFM1 :0.005/0.015;AFTM2 0.0025/0.0075。乳粉、特殊膳食用食品、奶油和奶酪 1g,AFM1:0.02/0.05;AFM2:0.01/0.025 GB 5009.22-2016食品安全国家标准食品中黄曲霉毒素B族和G 族的测定谷物及其制品、豆类及其制品、坚果及籽类、油脂及其制品、调味品、婴幼儿配方食品和婴幼儿辅助食品第一法:同位素稀释液相色谱-串联质谱法;第二法:高效液相色谱-柱前衍生法;第三法:高效液相色谱-柱后衍生法;第四法:酶联免疫吸附筛查法;第五法:薄层色谱法第一法:B1:0.03/0.1;B2:0.03/0.1;G1:0.03/0.1;G2:0.03/0.1。第二法:B1:0.03/0.1;B2:0.03/0.1;G1:0.03/0.1;G2:0.03/0.1。第三法:B1:0.03/0.1;B2:0.01/0.03;G1:0.03/0.1;G2:0.01/0.03。第四法:B1(谷物、坚果、油脂、调味品样品): 1/3;B1(特殊膳食用食品):0.1/0.3第五法:B1:5 GB/T 30955-2014饲料中黄曲霉毒素B1、B2、G1、G2的测定 免疫亲和柱净化-高效液相色谱法饲料免疫亲和柱净化-高效液相色谱法B1:0.2/1.0;B2:0.2/1.0;G1:0.3/1.0;G2:0.3/1.0。GB/T 17480-2008饲料中黄曲霉毒素B1的测定 酶联免疫吸附法饲料原料、配合饲料及浓缩饲料酶联免疫0.1LS/T 6111-2015粮食中黄曲霉毒素B1 胶体金快速定量法小麦、玉米、大米等胶体金定量检测2LS/T 6108-2014谷物中黄曲霉毒素B1的快速测定免疫层析法大米、糙米、玉米等胶体金免疫层析(定性)4~20LS/T 6122-2017粮油及其制品中黄曲霉毒素含量测定 柱后光化学衍生高效液相色谱法粮油及其制品柱后光化学衍生高效液相色谱法B1: 0.5;B2: 0.25;G1: 1.0;G2: 0.5LS/T 6128-2017粮食中黄曲霉毒素B1、B2、G1、G2的测定 超高效液相色谱法粮食及其制品超高效液相色谱法B1: 0.2/0.4;B2: 0.1/0.3;G1:0.5/1.5;G2: 0.1/0.3LS/T 6133-2018主要谷物中16种真菌毒素的测定 液相色谱串联质谱法小麦、玉米、稻谷液相色谱串联质谱法 B1、B2、G1、G2:0.3/1.0NY/T 2547-2014生鲜乳中黄曲霉毒素M1筛查技术规程生鲜乳时间分辩荧光免疫层析法0.45NY/T 2548-2014饲料中黄曲霉毒素B1的测定 时间分辩荧光免疫层析法饲料及饲料原料时间分辩荧光免疫层析法0.3NY/T 2071-2011饲料中黄曲霉毒素、玉米赤霉烯酮和T2毒素的测定 液相色谱-串联质谱法单一饲料、配合饲料、浓缩饲料、添加剂预混合饲料液相色谱-串联质谱法1.0/2.0NY/T 2549-2014饲料中黄曲霉毒素B1的测定 免疫亲和荧光光度法饲料及饲料原料免疫亲和荧光光度法0.3NY/T 2550-2014饲料中黄曲霉毒素B1的测定 胶体金法饲料及饲料原料胶体金法1NY/T1664-2008牛乳中黄曲霉毒素的快速检测 双流向酶联免疫法生牛乳、巴氏杀菌乳、UHT灭菌乳、乳粉双流向酶联免疫法0.5DB 34/T 813-2008饲料中黄曲霉毒素的测定 免疫亲和层析净化荧光光度法 配合、浓缩饲料和单一饲料免疫亲和层析净化荧光光度法B1+B2+G1+G2 总量:1 DB37/T 2617-2014饲料中黄曲霉毒素B1 的测定高效液相色谱法饲料高效液相色谱法5SN/T 3136-2012出口花生、谷类及其制品中黄曲霉毒素、赭曲霉毒素、伏马毒素B1、脱氧雪腐镰刀菌烯醇、T-2毒素、HT-2毒素的测定花生、谷类及其制品液相色谱-质谱/质谱检测方法AFB1:0.5;AFB2、AFG1、AFG2:1SN/T 3263-2012出口食品中黄曲霉毒素残留的测定玉米、茶叶、花生果、苦杏仁、花生米方法一:高效液相色谱法;方法二:荧光光度法方法一:B1、B2、G1、G2:0.5。方法二:黄曲霉毒素总量:1.0SN/T 3868-2014出口植物油中黄曲霉毒素B1、B2、G1、G2的检测 免疫亲和柱净化高效液相色谱法花生油、芝麻油、橄榄油免疫亲和柱净化高效液相色谱法B1、B2、G1、G2:1.0KJ201708食用油中黄曲霉毒素B1的快速检测胶体金免疫层析法花生油、玉米油、大豆油及其他植物油脂等食用油胶体金免疫层析法B1 玉米油、花生油:20;其他植物油脂:10 KJ201709液体乳中黄曲霉毒素M1的快速检测胶体金免疫层析法生鲜乳、巴氏杀菌乳、灭菌乳胶体金免疫层析法0.52.2 脱氧雪腐镰刀菌烯醇(DON)  脱氧雪腐镰刀菌烯醇又称为呕吐毒素,广泛存在玉米、小麦、大麦等谷物中,是污染食物的主要真菌毒素。DON破坏人和动物免疫系统,具有一定的胚胎毒性和致畸性。世界各国都对食品中DON做出了限量要求。GB 276l-2017规定谷物及其制品中DON的限量是1000 μg/kg,与美国对小麦的限量标准一致。而欧盟标准规定的非常细致:未加工的硬质小麦、谷物和玉米中DON的限量为1750 μg/kg,未加工的谷物(除前述之外的谷物)的DON限量是1250 μg/kg,终端销售的谷物面粉、麸皮和胚芽的DON限量为750 μg/kg,谷物为原料的婴儿食品中DON限量不得超过200 μg/kg;日本规定小麦和小麦制品的DON限定量为1100 μg/kg。  DON的检测标准有9个(见表2),包括4个LS,1个KJ,3个GB和1个SN,其中GB 5009.111-2016《食品中脱氧雪腐镰刀菌烯醇及其乙酰化衍生物的测定》是GB 2761-2017指定的检验方法,可以检测谷物及其制品、酒类、酱油、醋中的DON及其乙酰化衍生物。与AF相比,DON检测标准的数量和方法明显减少,但DON作为粮食行业重点关注的毒素,LS占比非常大。DON的结构类似物雪腐镰刀菌烯醇(NIV)对我国中东部作物的污染较常见,但目前只有DB32/T 3205-2017《饲料中雪腐镰刀菌烯醇(NIV)的测定 免疫亲和柱净化-高效液相色谱法》提出了它的检测方法。  表2 我国现行标准中呕吐毒素检测方法标准号标准名称适用样本检测方法检出限/定量限(μg/kg)GB5009.111-2016食品中脱氧雪腐镰刀菌烯醇及其乙酰化衍生物的测定食品第一法:同位素稀释液相色谱-串联质谱法;第二法:免疫亲和层析净化高效液相色谱法第三法:薄层色谱测定法第一法:谷物及其制品、酒类、酱油、醋、酱及酱制品取样2g,DON、3-AC-DON、15-AC-DON: 10/20。酒类取样5g,DON、3-AC-DON、15-AC-DON 5/10 第二法:谷物及其制品、酱油、醋、酱及酱制品取样25g ,DON:100/200;酒类取样20g,DON:50/100 第三法:DON:300GB/T 8381.6-2005配合饲料中脱氧雪腐镰刀菌烯醇薄层色谱法饲料薄层色谱法1000GB/T 30956-2014饲料中脱氧雪腐镰刀菌烯醇的测定免疫亲和柱净化-高效液相色谱法饲料原料、配合饲料、浓缩饲料、精料补充料免疫亲和柱净化-高效液相色谱法100LS/T 6110-2014谷物中脱氧雪腐镰刀菌烯醇测定胶体金快速测试卡法小麦、玉米等谷物胶体金快速测试卡法1000LS/T 6113-2015粮食中脱氧雪腐镰刀菌烯醇测定胶体金快速定量法小麦、玉米等及其粮食制品胶体金快速定量法120LS/T 6127-2017粮食中脱氧雪腐镰刀菌烯醇的测定超高效液相色谱法粮食及其制品超高效液相色谱法50/150LS/T 6133-2018主要谷物中16种真菌毒素的测定 液相色谱串联质谱法小麦、玉米、稻谷液相色谱串联质谱法DON:45/150DON-3G:7.5/253-AcDON:12/4015-AcDON:6.0/20SN/T 3136-2012出口花生、谷类及其制品中黄曲霉毒素、赭曲霉毒素、伏马毒素B1、脱氧雪腐镰刀菌烯醇、T-2毒素、HT-2毒素的测定花生、谷类及其制品液相色谱-质谱/质谱检测方法50KJ201702食品中呕吐毒素的快速检测胶体金免疫层析法谷物加工品及谷物碾磨加工品胶体金免疫层析法10002.3 玉米赤霉烯酮(ZEN)  玉米赤霉烯酮主要污染玉米、小麦及其制品。动物食用被ZEN污染的饲料会引起中枢神经中毒,妊娠期的动物则可能流产、死胎、畸胎。GB 2761-2017规定小麦(粉)、玉米(粉)中ZEN的限量为60 μg/kg,未规定以小麦、玉米为原料的玉米油、调味品等的ZEN限量。ZEN现行的检测标准有8个(表3),包括4个LS,3个GB, 1个NY,基本覆盖了市场上ZEN的检测技术。GB 2761-2017指定的ZEN的检验方法GB 5009.209-2016《食品中玉米赤霉烯酮的测定》中规定的方法,适用很多检测样本:粮食和粮食制品、酒类、酱油、醋、酱及酱制品、玉米油、大豆、牛肉、猪肉、牛肝、牛奶、鸡蛋。ZEN在动物源性食品中常以代谢物玉米赤霉烯醇的形式存在,玉米赤霉烯醇对动物具有类似ZEN生物效应,但目前关于玉米赤霉烯醇的检测标准非常不完善。LS/T 6112-2015的检出限是5 μg/kg,远小于GB 2761确定的限量值,应用上没太大实际意义,但对推动检测技术和国家限量标准的改进具有积极的作用,建议放宽此类标准的检出限,给国内产品更多的市场机会。  表3 我国现行标准中玉米赤霉烯酮检测方法标准号标准名称适用样本检测方法检出限/定量限(μg/kg)GB/T 5009.209-2016 食品中玉米赤霉烯酮的测定第一法:粮食和粮食制品、酒类、酱油、醋、酱及酱制品、大豆、油菜籽、食用植物油;第二法:大豆、油菜籽、食用植物油;第三法:牛肉、猪肉、牛肝、牛奶、鸡蛋 第一法 液相色谱法;第二法:荧光光度法;第三法:液相色谱-质谱法第一法:粮食和粮食制品:5/17;酒类:20/66;酱油、醋、酱及酱制品:50/165;大豆、油菜籽、食用植物油:10/33。第二法:10/33。第三法:1/4。GB/T 28716-2012饲料中玉米赤霉烯酮的测定 免疫亲和柱净化-高效液相色谱法饲料免疫亲和柱净化-高效液相色谱法2/10GB/T 19540-2004饲料中玉米赤霉烯酮的测定于配合饲料和饲用谷物原料第一法:薄层色谱法第二法:酶联免疫吸附测定法第一法:500第二法:500LS/T 6112-2015粮食中玉米赤霉烯酮胶体金快速定量法小麦、玉米、大米胶体金快速定量法5LS/T 6109-2014谷物中玉米赤霉烯酮测定的胶体金快速测试卡法小麦、玉米胶体金快速测试卡法60LS/T 6129-2017粮食中玉米赤霉烯酮超高效液相色谱法粮食及其制品超高效液相色谱5/10LS/T 6133-2018主要谷物中16种真菌毒素的测定 液相色谱串联质谱法小麦、玉米、稻谷液相色谱串联质谱法ZEN:6/20NY/T 2071-2011饲料中黄曲霉毒素、玉米赤霉烯酮和T2毒素的测定 液相色谱-串联质谱法单一饲料、配合饲料、浓缩饲料、添加剂预混合饲料液相色谱-串联质谱法5/10  2.4 伏马毒素(FB)  伏马毒素是串珠镰刀菌产生的毒素,包括FB1、FB2和FB3。我国主要检测FB1和FB2总量,但目前尚无食品中的FB限量标准。GB 13078-2017规定了不同饲料及原料中FB的限量,范围是5~60 mg/kg。随着检测技术的改进和国家对检测标准统一的要求,近年来FB标准废止力度较大。我国现行的伏马毒素的检测标准(表4)有6个,包括1个GB和5个行业标准,适用样本包括粮食及其制品、玉米及其制品、花生、谷物、饲料(配合饲料、浓缩饲料、精料补充料)等。今年刚颁布实施的DB 36/T 1023-2018规定了饲料及其原料中FB的胶体金快速定量法,是FB唯一的现行有效的快检标准。GB(GB/T)或行标缺乏FB的快检方法,限制了FB快检技术及产品在相关行业领域的应用。  表4 我国现行标准中伏马毒素检测方法标准号标准名称适用样本检测方法检出限/定量限(μg/kg)
  • 来因科技|真菌毒素检测仪产品说明
    真菌毒素检测仪应用竞争抑制免疫层析的技术原理,通过就是通过待检测物与抗体结合的方法,分析待检样品中真菌毒素残留。可快速检测粮食、饲料、谷物、食用油、调味品中如玉米、大米、小麦、大麦、糙米、麸皮、稻谷、豆粕、米糠、饲料中的黄曲霉毒素B1、玉米赤霉烯酮、呕吐毒素、T2毒素、赭曲霉毒素、伏马毒素。  真菌毒素是指产毒真菌在适宜的环境条件下代谢产生的有毒物质。真菌毒素可污染粮食、水果、蔬菜等农产品,并通过食物链富集,对人体和其他经济动物的健康安全产生不利影响,严重威胁畜禽养殖生产安全。 真菌毒素检测仪产品详情介绍→https://www.instrument.com.cn/show/C511604.html  真菌毒素检测仪样品前处理简单,该仪器适用于地方粮库、粮食生产企业、饲料厂、各类畜禽养殖企业、面粉厂、食品加工厂、第三方检测机构及各级政府监管部门。  真菌毒素检测仪产品性能:  1、一体化便携式快检设备,机箱采用工业级ABS工程塑料箱,方便携带,稳固耐用,满足现场及流动检测使用需求。  2、安卓智能操作系统,采用更加高效和人性化操作,主控采用多核处理器,运转速度更快速,稳定性更强。  3、自动判断样品是否合格,检测结果更加直观,可以连续测试多个样品,循环检测,即放即检。  4、仪器内置强大的数据库,具有多种类样品名称菜单库,分类管理,可灵活选择检测样品、检测指标、检测单位等信息,并可按需编辑录入样品名称,检测指标、送检单位等信息,添加或删除名称,并保存进样品数据库。  6、仪器具有wifi联网功能,4G信号GPRS远传功能,可插shouji卡实现数据远传,可将数据快速上传电脑和服务器监管平台,进行数据管理与统计。  7、智能化程度高,仪器具有自检功能:具有开机自检和调零功能,具有自动检测重复性功能。  8、新一代高速热敏打印机,检测完成可自动打印检测报告和二维码。打印报告包含被测物质、合格不合格、检测单位、被检查单位、检验员、检测时间。  9、仪器带有监管平台,数据可局域网和互联网数据上传,检测结果直接传至食品安全监管平台。进行区域食品安全监管及大数据分析处理与数据统计,检测区域食品安全长短期动态,达到食品安全问题预估、预警。  10、能够在同一软件下实现所有检测项目的检测,并可通过同一窗口直观显示检测结果。  11、免疫层析检测模块检测方式:轨道式自动传输扫描,检测完成后自动退出检测卡。  12、CT线自动识别,无需手动调整。  13、样品处理简单省力,整体操作快速、安全、便捷。  14、高灵敏度,高检测精度,高重复性精度,扫描式高精度光学传感器。  15、仪器具有自身保护功能,可设置用户名及密码,防止非工作人员操作等。  16、仪器具有重新校准、锁定、恢复出厂设置功能。  17、支持U盘存储。结果判定线可修改,对照值标定值可保存,断电不丢失数据。  18、兼容市场上所有的检测卡,使用耗材不受限制,极大增强用户使用体验。  真菌毒素检测仪主要参数:  1、主控芯片采用ARM Cortex-A7,RK3288/4核处理器,主频1.88Ghz,运转速度更快速,稳定性更强。  2、显示方式:7英寸液晶触摸屏显示,人性化中文操作界面,读数直观、简单。  3、交直流两用,直流12V供电,可连接车载电源,可配6ah大容量充电锂电池,方便户外流动测试。  4、光源亮度自动调节与校准  6、智能恒流稳压,光强自动校准,长时间连续工作光源无温漂现象。。  7、内置新国家限量标准,与所测结果进行现场比对,并持续更新标准。  8、不间断进样,连续检测  9、样本编号自动累加。  10、检测项目可扩充。  11、检测结果可批量打印,批量上传。  12、检测结果为Excel表格,连接电脑即可拷贝。  13、检测结果存储容量20万条  14、标准USB接口,免驱动安装。  16、固件可升级
  • 真菌学国家重点实验室揭牌
    2月8日,真菌学国家重点实验室揭牌仪式暨第一届学术委员会第一次会议在中国科学院微生物研究所隆重举行。中科院副院长张亚平、国家自然科学基金委生命科学部常务副主任杜生明、微生物所所长黄力、科技部基础司基地处副处长王静共同为实验室揭牌。仪式由微生物所党委书记刘松林主持。   张亚平代表中国科学院对真菌学国家重点实验室的建立表示祝贺。他指出,国家重点实验室在国民经济、社会发展等方面应发挥更加重要的作用。希望真菌学国家重点实验室按照国家发展的要求,贯彻院新时期发展战略和发展思路,进一步凝练发展目标,明确研究方向,培养高水平的创新型研究队伍,积极承担国家任务,加强创新文化建设,加强国内外学术交流与合作,推动多学科交叉融合,提高真菌学领域在国际上的影响力,努力将研究室建设成为世界一流的科学研究中心和人才培养基地,为增强我国的科学技术创新能力、建设创新型国家作出更大贡献。   中国工程学院院士李玉,中国科学院院士方荣祥、魏江春、郑儒永、庄文颖,以及中科院生物局、计划财务局有关领导出席仪式。   在揭牌仪式举行前召开了真菌学国家重点实验室第一届学术委员会第一次会议。会议宣布了第一届学术委员会名单,并就实验室发展方向和整体规划进行了认真研讨。    揭牌仪式现场 张亚平讲话 学术委员会会议
  • 岛津支持真菌毒素检测方法国际培训班
    11月17至23日,由中国农业科学院油料作物研究所(以下简称“油料所”)主办、岛津公司协办的欧盟地平线计划亚洲首届国际农产品质量安全学术研讨会与真菌毒素国际培训在武汉召开。来自德国、法国、意大利等14个国家的60多位国内外农产品质量安全研究领域专家学者齐聚武汉,学习先进的真菌毒素检测技术。 油料所所长黄凤洪先生,国际真菌毒素学会主席、意大利国家研究委员会食品生产科学研究所所长安东尼奥先生(Antonio Logrieco),法国驻武汉总领事馆科技专员穆和颜先生(Yann Moreau)等出席开幕式并致辞,油料所油料产品质量安全与风险评估创新团队首席研究员李培武先生主持开幕式。真菌毒素国际培训班现场 真菌毒素是真菌产生的次生代谢产物,主要包括黄曲霉毒素、镰刀菌毒素等,污染花生、玉米、大米等主要农产品,严重威胁农产品质量安全和人民群众生命健康。高灵敏检测技术,是防止真菌毒素污染进入食物链、减少污染损失、保障消费安全的重要手段。油料所专家介绍真菌毒素的LC-MS/MS确证检测方法 岛津公司长期以来与油料所保持良好的合作关系,建立了“联合实验室”。培训期间,岛津赞助并支持了此次活动,不仅邀请了国内相关检测机构的用户参与培训,而且调派应用工程师协助完成LC-MS/MS对真菌毒素检测方法的培训。学员们使用LCMS-8060进行真菌毒素检测并查看结果 此次培训班是油料所在国际真菌毒素学会与欧盟地平线计划真菌毒素项目支持下,作为项目指定培训中心,首次在亚洲举办的国际真菌毒素培训班,研讨了真菌毒素检测技术现状与趋势,开展了实际操作培训,对推动国际真菌毒素检测技术水平提升,加强农产品及食品质量安全政府监管,保障农产品消费安全具有重要意义。
  • "不明香精包子"属非法添加 北京将严查包子铺
    针对有媒体报道称“蒸功夫”包子涉嫌使用不明香精加工馅料一事,昨天,北京市卫生监督所表示,已在全市及重点区县进行部署,要求朝阳区、昌平区卫生监督所对辖区内“蒸功夫”包子进行检查。即日起,本市将在全市范围内对包子类小餐饮进行为期10天的重点整顿。   用“洋香精”属非添   前日,有媒体报道称,经暗访调查发现,数家打着“蒸功夫”招牌的包子店均在店外隐蔽之处制作包子馅料,除卫生条件差外,都“偷偷”使用各种香精。其中,一种“veltol”品牌的“肉味香精”被广为使用,这种香精标签几乎全是英文标注。   卫监所表示,目前,我国食品卫生法规、标准中未规定肉馅中不能使用香精香料。但《食品安全法》规定,食品添加剂应当有标签,标签上需有食品添加剂的使用范围、用量和使用方法,并在标签上载明“食品添加剂”字样。   按照规定,若食品包装中大部分是英文标示,使用这种添加剂属于非法添加,如将使用的添加剂标签撕毁使用,这也是违法行为。   发现违法行为将严处   昨天下午,卫监所发布消息称,该报道发布后,其立即组织对报道中提及的位于朝阳区和昌平区的蒸功夫包子铺部署了检查。并于日前部署在全市范围内对包子类小餐饮进行为期10天的重点整顿,一旦发现有违法添加和滥用食品添加剂的行为,将立即依法按高限查处。   按规定,生产经营无标签的预包装食品、食品添加剂或者标签、说明书不符合本法规定的食品、食品添加剂者,情节严重的,责令停产停业,直至吊销许可证。同时,也鼓励周围居民,发现此类违法事实立即拨打北京市卫生局投诉举报电话12320进行举报。   朝阳3家铺均已关闭   朝阳区呼家楼地区两家蒸功夫包子铺位于朝阳区东大桥路8号SOHO尚都北塔一层和朝阳区呼家楼南里27号楼,卫生监督员到达时处于已关闭状态。   自朝阳区百日整治活动以来,卫生监督所曾经多次联合呼家楼街道办事处、城管、工商等部门对此类小餐饮开展监督检查,使得上述两单位已经关闭店铺,至今未营业。地铁安贞门附近的蒸功夫包子是一个临时的早餐售卖点,无餐饮服务许可证,其加工场所在安贞里1区20号楼东南角2层内,检查人员到达时也已关门。   昌平查封无证经营店   同时,卫生监督所表示,昌平区霍营城铁站附近一制售蒸功夫包子的店铺未取得餐饮服务许可证从事餐饮服务经营活动,卫生监督执法人员当场对该店进行了查封,并对该店制作包子的和面机、压皮机、蒸汽炉及不锈钢桌依法进行了查封扣押。现场未查到加工包子所添加的“香精”及剩余食品原料。   朝阳、昌平两区卫生局卫生监督所已布置对全区范围内的各类包子制售餐饮单位进行检查。截止到9月13日,检查蒸功夫包子店4家,检查其他现场制售包子店3家,未发现违法使用添加剂的行为。
  • 荧光显微镜应用皮肤真菌荧光检验病理
    荧光显微镜应用皮肤真菌荧光检验病理真菌荧光染色技术检测原理是荧光染料与真菌细胞壁中几丁质等多糖成分反应,在真菌荧光染色液和荧光显微镜的配合使用下,借助试剂的荧光反应和荧光显微镜的特殊激发波段,可清晰准确的在荧光显微镜视野中将真菌显现出来。此种检测方法操作简单,检测时间短,反应灵敏,图像清楚,辨识度高,误差较小。能够协助临床医生诊断真菌感染性疾病,帮助更好地确定治疗方案。皮肤真菌荧光1皮肤真菌荧光2在荧光显微镜MHF100以及显微摄像系统观察下可以清楚的观察到真菌形态,在特定激发光下产生荧光。明慧荧光显微镜MHF100采用UCIS无限远校正光学系统,单个附件可搭配四组滤色片,满足不同领域的荧光检测。连接显微镜进行数码成像观察,进行图像采集、保存、处理、分析、共享等功能。识别度和对比度较高,同样适用于眼科、耳鼻喉科、妇产科等真菌病的检测。荧光显微镜MHF100荧光显微镜MHF100相关参数:光学系统 UCIS无限远色差独立校正光学系统物镜转盘 固定四孔,向内旋转目镜10X 视场数(FN)2010X 视场数(FN)22(可选)16X 视场数(FN)13(可选)物镜 平场消色差4X NA 0.13 W.D. 12.31mm10X NA 0.30 W.D. 6.75mm40X NA 0.70 W.D. 0.76mm100X NA 1.25 W.D. 0.12mmLED落射荧光照明系统(B/G/U单、双、三色可选) LED冷光源,亮度连续可调,可配置三种激发块。(单色,双色,三色,可选)激发块 激发光波段U 330-385nmB 450-490nmG 510-550nm)显微镜摄像头USB2.0 MHD500USB3.0 MHC600、MHD600、MHD800、MHD1600、MHD2000、MHS500、MHS900荧光显微镜应用皮肤真菌荧光检验病理能适用于各临床科室的各种类标本,能检测出临床常见的各种真菌菌属。广州明慧在显微镜领域给医院提供更贴心、更丰富、更智能的产品,提供显微技术解决方案,为皮肤病的诊治提供了更多的信息,帮助医生能够更全面、更精准地判断病情,为患者带来更好的医疗体验和治疗效果。产品清单:荧光显微镜MHF100 显微镜摄像头MHD1200
  • 临床丝状真菌鉴定是难点,VITEK MS来支招
    p style=" text-indent: 2em " 当田中耕一因发现‘生物大分子的软电离技术’而获得2002年诺贝尔化学奖时,他一定没有预想到,短短十几年时间,这一技术能够在微生物领域带来如此巨大的变革。 br/ /p p   MALDI-TOF MS这一技术自应用于微生物以来,其技术的成熟度和商品化程度迅猛发展令人咂舌。今天当一位临床微生物工作者说出“鉴定结果来自质谱”时,已经不再是带有些许的怀疑,而是成竹在胸的自信。成本低廉、操作简单、快速而准确已经使得质谱技术成为微生物发展中不可阻挡的一股趋势。 /p p   即使在这样的潮流下,也并非所有的事情都是那么一帆风顺的。 /p p   比如对于微生物中的丝状真菌,应用于质谱鉴定并非一路坦途。 /p p   不论是产品研发还是临床应用,丝状真菌在谱上的鉴定似乎注定要经历更多的时间和坎坷,而当下微生物工作者在这个问题上似乎仍然更依赖于形态学鉴定,纵使遇到难题时首先也是考虑测序的方法。 /p p style=" text-align: center" img src=" https://img1.17img.cn/17img/images/201903/uepic/af2392aa-bcd0-45b9-ac49-93ec182fd380.jpg" title=" 01.jpg" alt=" 01.jpg" / /p p style=" text-indent: 2em " strong span style=" text-indent: 2em color: rgb(0, 112, 192) " 关键问题一 /span /strong /p p   从原理上来看,丝状真菌的鉴定和细菌并无不同,此处省略1000字并再次脑补MALDI-TOF MS的原理过程…… /p p   然而必须要强调的是,对于微生物的质谱鉴定,一个足够丰富、有组织性的数据库才是真正重要的关键条件。这也是在某些数据库中的一个显著短板,即对于真菌,尤其是双相真菌和丝状真菌难以获得一个令人满意的结果,这些质谱系统要么是鉴定出一堆不相关的低分辨结果 要么由于分值太低而鉴定失败。 /p p   需要注意! /p p   对于鉴定失败的情况,一方面可能是由于数据库中确实不包含该菌种,另一方面可能数据库中包含该菌种,但在临床工作中分离出的临床菌株因为和建库菌株间的异质性(heterogeneity)而不能很好的匹配,导致没有鉴定结果。 /p p   丝状真菌质谱鉴定的复杂性正体现在此,由于丝状真菌本身的蛋白成分相比细菌更加复杂,加之培养条件、菌丝体大小、产孢情况的不同,也会导致丝状真菌的蛋白图谱会发生较大的差异变化,这显然给质谱的鉴定带来了一定程度的挑战。因为试图通过少量菌株的图谱来“演绎”所有菌株可能性的情况并不现实,这种蛋白表达上的“质”和“量”的变化是难以预测的。而可能的一个解决途径则是尽可能收集不同来源的菌株和不同培养条件下获得的图谱,通过“归纳”的方法将所有蛋白特征进行整理,以期覆盖该菌种的普遍性特征,并满足临床鉴定的需要。 /p p style=" text-align: center" img src=" https://img1.17img.cn/17img/images/201903/uepic/d7e5326e-b021-48b6-b336-494941ebe8c0.jpg" title=" 02.jpg" alt=" 02.jpg" width=" 600" height=" 300" border=" 0" vspace=" 0" style=" width: 600px height: 300px " / /p p style=" text-align: center " 黑曲霉在SDA平板上生长2天和8天获取的图谱 /p p    strong span style=" color: rgb(0, 112, 192) " 关键问题二 /span /strong /p p style=" text-align: center" img src=" https://img1.17img.cn/17img/images/201903/uepic/a756fa21-5e75-4de9-ba3d-6c3ecfae4517.jpg" title=" 03.jpg" alt=" 03.jpg" width=" 600" height=" 400" border=" 0" vspace=" 0" style=" width: 600px height: 400px " / /p p    strong 另一个问题是丝状真菌的前处理: /strong /p p   和一般细菌以及酵母样真菌不同,通过基质液甚至是甲酸处理并不能有效破坏其细胞壁并充分获取其蛋白。这是因为丝状真菌的细胞壁中包含一种叫几丁质的物质,该物质同样存在于昆虫的甲壳中,它不能被普通的有机溶剂(乙醇、甲酸等)所溶解。这也是为什么很多实验室按照一般的提取流程,所获得用于分析的蛋白波峰非常少,从而导致鉴定失败。 /p p   2018年10月,VITEK MS获得FDA临床实验验证的菌种数量已经达到401种,而其中丝状真菌达到了47种;成为目前唯一通过FDA认证的可用于丝状真菌的MALDI-TOF MS系统! /p p   其中包括了毛霉、双相真菌、皮肤真菌、暗色真菌、曲霉及其他潜在的病原菌。 /p p   在外部临床实验中总共检测了1519株丝状真菌,达到了91%的正确鉴定率² ,这显然已经完全达到了临床诊断的要求。 /p p   值得注意! /p p   VITEK MS IVD数据库中的丝状真菌已经超过了100种,但这其中仍然有一部分因为临床试验中没有分离到足够的菌株而尚未获得FDA的认证。 /p p   VITEK MS通过FDA批准的丝状真菌种类: /p p style=" text-align: center" img src=" https://img1.17img.cn/17img/images/201903/uepic/4a1d0ed1-1eed-4415-af10-6d01b81b96cf.jpg" title=" 04.jpg" alt=" 04.jpg" width=" 600" height=" 200" border=" 0" vspace=" 0" style=" width: 600px height: 200px " / /p p    strong span style=" color: rgb(0, 112, 192) " Q& amp A /span /strong /p p    strong 为什么目前只有VITEK MS的丝状真菌鉴定能够通过FDA的严苛考评呢? /strong /p p   正如前文所述,一方面梅里埃为VITEK MS的数据库开发提供了强大的菌株库,作为拥有全球最大的菌株贮藏机构之一,在丝状真菌的建库上选择了多株有代表性的菌株,同时经过不同的培养条件、培养时间及不同的操作人员获取图谱并通过权重矩阵的算法实现对普遍性的覆盖。 /p p   另一方面,专利性的丝状真菌提取技术(U.S. Provisional Patent Application no. 62/209,116)能够在保证生物安全的同时,实现高效率的蛋白提取,获得高质量的蛋白图谱。 /p p   2012年,VITEK MS成为史上第一台获得FDA认证的微生物质谱鉴定系统,从此质谱的临床应用开启了全新的时代。 /p p   而随着丝状真菌感染越来越受到临床的关注,质谱鉴定的方法已经成为临床工作中必不可少的选项,在这一领域中,VITEK MS再次走在了前列。 /p p style=" text-align: center " img src=" https://img1.17img.cn/17img/images/201903/uepic/70cf35ab-312a-4955-8e60-1557efde4f8f.jpg" title=" 07.jpg" alt=" 07.jpg" / /p p    /p p style=" text-align: center " VITEK MS 全自动快速微生物质谱检测系统 /p
  • 李培武:粮油真菌毒素检测技术研究进展
    仪器信息网讯 2012年6月5日,由中国仪器仪表学会分析仪器分会、中国仪器仪表学会农业仪器应用技术分会主办,北京雄鹰国际展览公司承办的2012中国食品与农产品质量安全检测技术应用国际论坛暨展览会(CFAS 2012)在北京国际会议中心隆重开幕。本届论坛特别邀请到了多位食品、农产品监管部门的领导和食品质检领域的著名学者做主题报告。   如下是农业部生物毒素检测重点实验室李培武研究员报告的精彩内容:   农业部生物毒素检测重点实验室李培武研究员   报告题目:粮油真菌毒素检测技术研究进展   报告伊始,李培武研究员介绍说,目前已知的真菌毒素有300多种,其中粮油真菌毒素包括黄曲霉毒素、玉米赤霉烯酮、呕吐毒素、赭曲霉毒素、棒曲霉素、伏马毒素和T2毒素等。并介绍了粮油真菌毒素在农产品中的分布和危害性,同时以粮油毒素为例介绍了食品安全与真菌毒素污染的关系。   李培武研究员说到:“真菌毒素不仅危害人民的身体健康和生命安全,同时对一个国家的现代化食品产业的可持续发展和农产品的出口贸易有制约作用,并且危害公共安全。另外,在粮油安全问题中,真菌毒素含量低、毒性强、危害大、管控难、检测要求高,粮油问题成为了政府重视、社会关注、全球瞩目的热点,人们对检测仪器的要求也就越来越高”。   接着,他介绍说:“真菌毒素检测技术包括确证检测技术和快速检测技术,其中确证检测技术从传统的UV、FL到HPLC-MS/MS,此技术的重要特点是高的准确度、精密度、灵敏度,其中,灵敏度可以达到0.003ppb;但是检测时间较长,且仪器昂贵,需要专业人员在特定环境下进行检测;此外还有基质效应等”。   “快速检测技术从ELISA发展到免疫传感/芯片技术,其中免疫亲和快速检测技术的突破主要体现在以下几个方面:超灵敏高特异单抗研制,一步完成了杂交瘤细胞筛选和细胞单克隆化,提高单克隆抗体研制效率;抗体与微球偶联修饰与免疫亲和柱方面研制出了一系列真菌毒素免疫亲和微柱;研制出了黄曲霉毒素速测仪”。   “在免疫层析与传感快速检测技术方面,近期研制出了数码免疫层析与传感检测仪,该技术灵敏度高、操作简单、成本低廉,适合大批量样品的同步快筛,可以在线可视化检测,适合半定量分析”。   最后,李培武研究员说到:“确证检测技术的发展趋势是多级质谱精确定性定量技术,以及多组分信号解析技术等;快速检测技术的发展趋势是微型化、数字化、集成化和增敏化”。
  • 【Detelogy应用方案】中药及饮片真菌毒素测定
    中药材霉变现象中药材生产、储存、运输、流通过程中,若管理不当,在外界条件(温度、湿度、车间环境、虫害等)和药材自身因素(含水量>15%、含糖量高等)的综合作用下,易出现霉变现象。真菌滋生对中药材进行分解和消耗,药材中所含的糖类和脂类物质渗出,从而导致粘连、泛油、异味、变色等现象,其有效药用成分含量降低。轻度霉变的药材经二次加工处理后入药,也会造成气味变淡、色泽转暗、品质降低、影响疗效的后果。常见真菌毒素及其危害真菌毒素(mycotoxin)是真菌产生的次级代谢产物,易产生于中药种植、储存环节中。绝大多数的产毒真菌为曲霉属、镰刀菌属和青霉属。曲霉属:黄曲霉毒素、赭曲霉毒素A 等镰刀菌属:玉米赤霉烯酮、T- 2毒素 、呕吐毒素(脱氧雪腐镰刀菌烯醇)和伏马毒素等青霉属:青霉素、桔青霉素等真菌毒素检测方法分类药典2351通则对比相较于2015版药典黄曲霉毒素测定法,2020版药典2351通则中新增赭曲霉毒素A、玉米赤霉烯酮测、呕吐毒素、展青霉素对应的样品前处理和分析方法,并增添了多种真菌毒素测定法。1、由于各类真菌毒素毒理不同,容易受污染药材品种也不同。2、处方中含有易污染的药材以及生粉投料的中成药品种应注意相关真菌毒素的检测。3、黄曲霉毒素:粮谷类、种子类、油性成分多的药材品种4、赭曲霉毒素、呕吐毒素、玉米赤霉烯酮:与粮谷类基质类似的药材,如淡豆豉、薏苡仁、白扁豆等5、展青霉素:酸性果实类药材,如枸杞子、乌梅、酸枣仁等新增第六法[多种真菌毒素测定]样品前处理流程1. 量取供试品粉末约 5g (过二号筛)2. 加入70 %甲醇溶液 50ml, 超声30min3. 离心后取上清液10ml,用水稀释至20ml,MultiVortex混匀4. 3ml甲醇和水依次预处理HLB小柱(规格:3ml,60mg)5. 准确量取3ml样品液过柱,直至有适量空气通过,收集洗脱液6. 再次用3ml甲醇洗脱,收集洗脱液。合并两次洗脱液7. 通过FV64或FV64UP缓氮吹至近干(水温40℃)8. 50%乙腈溶液定容至1ml, 用经0.22μm滤膜过滤,即得分析设备(LC-MS/MS)液相色谱:十八烷基硅烷键合硅胶为填充剂,0.01%甲酸为流动相 A 相 ,乙腈-甲醇(1 : 1)为流动相B相,0.3ml/min流速下进行梯度洗脱。三重四极杆质谱仪:电喷雾离子源ESI)黄曲霉毒素(B1、B2、G1、G2)、伏马毒素(B1、B2)、T-2毒素选正离子采集方式,赭曲霉毒素A 、呕吐毒素、玉米赤霉烯酮则为负离子采集模式。Detelogy优选智能实验室设备轻松应对药典2351真菌毒素测定法MHS-60多样品均质系统多刀头并联,同时快速均质6位样品兼容5-180ml样品管,转速1800-25000rpm2351通则内,1-5法前处理流程均适用MultiVortex多样品涡旋混合器标配26位&12位试管架,兼容100ml以内的样品转速范围200-3000rpm,触屏可存12个涡旋方法每个方法可设多达6段变速,样品混匀更充分QSE系列固相萃取装置12/24位,每通道配优质独立阀门控制特制加厚真空腔体,可耐80Kpa负压MFV智能氮吹仪通用型圆盘氮吹仪,可选12/24/36位可分组控制启停,每通道配数字刻度微调阀兼容1-150ml样品管,具备观察窗和排水口FV64全自动智能氮吹仪氮吹针自动下降,最多容纳64个样品每氮吹通道多路供气设计,平行性良好延时增压功能,同时自动近干氮吹所有样品FV64UP全自动智能双模式氮吹仪兼容双模式:针追随式或涡旋式氮吹三面透视水浴设计,样品观察更方便DTLabs微信小程序异地远程监控Tip 残留有黄曲霉毒素的废液或废渣的玻璃器皿,应置于专用贮存容器内浸泡 24小时以上(10%次氯酸钠溶液),再用清水冲洗干净。下期Detelogy应用方案再见
  • 漫谈真菌霉毒素检测技术及发展趋势
    p style=" line-height: 1.75em text-indent: 2em text-align: justify " span style=" text-indent: 2em font-family: 宋体, SimSun " 真菌毒素主要存在于粮谷、油料、香辛料、坚果及果蔬中,可对人类健康造成从急性中毒到长期后果(如免疫缺陷和癌症)等各种不良影响,并对牲畜构成严重的健康威胁。真菌霉毒素的发现历史可以追溯到上世纪中叶。迄今为止,已经确定的真菌毒素有数百种,其中有十几种因对人类健康具有严重影响而受到高度重视。其中黄曲霉毒素毒性位居目前已知的真菌毒素之首,为I类致癌物,其主要靶器官为肝脏,长期暴露还可能引起癌变。 /span /p p style=" line-height: 1.75em text-indent: 2em text-align: justify " span style=" font-family: 宋体, SimSun " 自发现以来,研究人员从未停止过针对真菌毒素的探索,对其全面系统的研究也日趋成熟。相关国际组织及各个国家亦因而加强了真菌毒素的监测和监管。 strong 虽然群体安全事件鲜有发生,然而直至今天,很多大品牌也难逃在真菌毒素的通报上“榜上有名”。目前监管部门的抽检报告中常常能看到真菌毒素超标的字眼。 /strong 可见,真菌毒素防控并非一朝一夕,我们与真菌毒素必将相伴相生,防控之路任重道远。真菌毒素之所以不能杜绝,主要因为它是粮谷食品中天然产生的微生物的代谢产物,相较于非法添加及农残兽残,其污染具有广泛性、不可预知性及不可控性等特性。 /span /p p style=" line-height: 1.75em text-indent: 2em text-align: justify " span style=" color: rgb(192, 0, 0) " strong span style=" font-family: 宋体, SimSun " 国内外真菌霉毒素相关标准简介 /span /strong /span /p p style=" line-height: 1.75em text-indent: 2em text-align: justify " span style=" font-family: 宋体, SimSun " 为了加强对食品中真菌毒素的检测与监管,国际国内也纷纷制定相关检测标准。如,针对真菌毒素,我国分别制定了食品、饲料及中药材中真菌毒素限量标准。纵观多年来限量标准的变化,加入限量标准的真菌毒素类别及样品种类也呈逐渐增加的趋势。 strong 以食品为例,最早GB 2761-1981 规定了食品中黄曲霉毒素B1允许量,随后1996年颁布了脱氧雪腐镰刀菌烯醇限量,2003年颁布黄曲霉毒素M1及展青霉素限量,直至2005年颁布了整合版的GB 2761-2005 食品中真菌毒素限量,此后2011年在此版本上增加了赭曲霉毒素A、玉米赤霉烯酮指标,2017年又丰富了样品种类。 /strong /span /p p style=" line-height: 1.75em text-indent: 2em text-align: justify " strong span style=" font-family: 宋体, SimSun " 在限量水平上,基于国情,我国在毒素限量和样品类别上会与欧盟、日本等其他国家存在差异,而一些发展中国家基于粮食供应不足等问题,对真菌毒素限量要求会更加宽泛或者无要求。 /span /strong span style=" font-family: 宋体, SimSun " 欧美国家普遍分类更细,而且限量大部分较为严格。以黄曲霉毒素B1为例,仅坚果类,欧盟又细分为直接食用的花生、其它坚果、果干(限量2μk/kg);其它加工用的坚果、果干(限量5μk/kg);加工用的花生、榛子、巴西坚果(限量8μk/kg);加工用的杏仁、开心果和杏(限量12μk/kg);直接食用的用的杏仁、开心果和杏(限量8μk/kg);直接直接食用的榛子和巴西坚果(限量5μk/kg)。我国仅分为花生及其制品(限量20μk/kg);其他熟制坚果及籽类(限量5μk/kg)。印度所有的谷物坚果限量均为30μk/kg。而伊朗对于黄曲霉毒素没有限量要求。 /span /p p style=" line-height: 1.75em text-indent: 2em text-align: justify " span style=" color: rgb(192, 0, 0) " strong span style=" font-family: 宋体, SimSun " 真菌毒素检测技术概况 /span /strong /span /p p style=" line-height: 1.75em text-indent: 2em text-align: justify " span style=" font-family: 宋体, SimSun " 而随着检测技术及精密仪器的发展,真菌毒素检测手段也在不断更新。从最早的借助于薄层色谱,不断发展为依靠色谱、质谱等仪器实现更加准确、更安全快速的分析。 strong 比较前沿的还有快速、无损、环保的光谱分析技术,可以做到完全不需要提取净化等前处理步骤。与此同时,基于免疫原理的快速筛选技术也逐步被编撰入相关检测标准。越来越多的新方法,新技术被应用在真菌毒素检测领域 /strong ,如噬菌体免疫PCR技术可以实现更高的检测灵敏度和多毒素同步检测、通过电子鼻技术探索挥发性物质与真菌毒素关系有望实现无损无前处理预警,等等。 /span /p p style=" line-height: 1.75em text-indent: 2em text-align: justify " span style=" font-family: 宋体, SimSun " 真菌毒素样品前处理技术也逐渐从单一处理发展为集成、自动化处理。前处理方面目前应用较多的是免疫亲和柱净化及内标技术。除此之外, strong 固相萃取(SPE)、多功能净化柱、分子印迹等技术,以及比较新的农药残留中应用较为成熟的QuEchErs、适配体亲和柱净化技术、凝胶渗透色谱法、免疫磁珠技术、分散液相微萃取(DLLME)等应用也较为广泛 /strong 。 /span /p p style=" line-height: 1.75em text-indent: 2em text-align: justify " strong span style=" font-family: 宋体, SimSun " 目前应用较多的主要为免疫亲和柱净化-液相色谱法、同位素内标-液相色谱质谱联用法,以及用于筛选的酶联免疫试剂盒及胶体金免疫层析试纸条方法。 /span /strong span style=" font-family: 宋体, SimSun " 相较于其他净化方式,免疫亲和柱具有特异性好,结合效率高,净化效果好等特点,并可同时实现净化富集,不需要特殊的化学试剂,相对环保,因此被大多数国内外检测标准采用。而同位素内标稀释-液相色谱质谱联用法因内标的加入可以有效校正回收率,提高了检测准确性,并且质谱方法可实现多毒素同时检测,分析时间也将大大缩短。作为初筛手段,酶联免疫试剂盒有多年的发展历史,商品化产品性能稳定,适用于一次检测多个样品,批次处理效率高,胶体金免疫层析试纸条不需要接触标准品,安全,便捷,单样单测,一般20min即可判定结果,在原料收购及生产线上有较好的应用。 /span /p p style=" text-align: center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202010/uepic/ec4beb8c-867d-4a4b-9cb5-b9733539b31b.jpg" title=" 1.jpg" alt=" 1.jpg" / /p p style=" line-height: 1.75em text-indent: 2em text-align: justify " span style=" color: rgb(192, 0, 0) " strong span style=" font-family: 宋体, SimSun " 真菌毒素检测技术发展趋势 /span /strong /span /p p style=" line-height: 1.75em text-indent: 2em text-align: justify " span style=" font-family: 宋体, SimSun " 真菌毒素检测技术发展至今,越来越趋向于快速、准确、高效、自动及多毒素同时检测。前处理技术日趋便捷、环保、低成本。 strong 当真菌毒素检测覆盖面越发宽广之后,在保障检测结果准确性的同时,检测成本的控制及大批量样品处理的便捷度将成为检测的关注点 /strong 。因而前处理技术的变更会更为快速,新技术的涌入也将层出不穷。各种新技术、新手段还需要从研究走向应用,接受时间的验证。正如免疫亲和柱、固相净化柱及酶联免疫试剂盒、胶体金免疫层析技术,都是经过广大分析实验者应用检验后被广为接受,并写入标准方法沿用至今的前处理手段。 /span /p p style=" line-height: 1.75em text-indent: 2em text-align: justify " strong span style=" font-family: 宋体, SimSun " 在分析仪器方面,虽然新的分析仪器应用在真菌毒素检测上的研究陆续发表,但在短期内,液相色谱、液质联用作为主流的确证分析仪器和分析手段仍将沿用较长时间 /span /strong span style=" font-family: 宋体, SimSun " 。而将二者结合的技术,也是一个新的突破口。如将前处理耗材与分析仪器联合使用,实现自动化操作、通过在线处理实现耗材的多次使用等等。 /span /p p style=" line-height: 1.75em text-indent: 2em text-align: justify " span style=" font-family: 宋体, SimSun " /span /p table style=" border-collapse:collapse " align=" center" tbody tr class=" firstRow" td style=" border: 1px solid windowtext word-break: break-all " width=" 312" valign=" middle" align=" center" p style=" text-align:center" img style=" max-width: 100% max-height: 100% width: 250px height: 308px " src=" https://img1.17img.cn/17img/images/202010/uepic/48ec10f9-c7e2-4f5b-b6c6-66d1eb0f8632.jpg" title=" 1.png" alt=" 1.png" width=" 250" height=" 308" border=" 0" vspace=" 0" / /p p span style=" font-size: 16px font-family: 宋体, SimSun " Pribolab sup & reg /sup 自动化免疫亲和柱操作仪 /span /p /td td style=" border: 1px solid windowtext word-break: break-all " width=" 312" valign=" middle" align=" center" p style=" text-align:center" img style=" max-width: 100% max-height: 100% width: 251px height: 309px " src=" https://img1.17img.cn/17img/images/202010/uepic/d706ab30-2e4c-4ad8-8de1-4e528f8abd2c.jpg" title=" 2.png" alt=" 2.png" width=" 251" height=" 309" border=" 0" vspace=" 0" / /p p span style=" font-family: 宋体, SimSun font-size: 16px " Pribolab sup & reg /sup 全自动多样品均质器 /span /p /td /tr tr td style=" border: 1px solid windowtext word-break: break-all " width=" 312" valign=" middle" align=" center" p style=" text-align:center" img style=" max-width: 100% max-height: 100% width: 250px height: 247px " src=" https://img1.17img.cn/17img/images/202010/uepic/89a6127a-1124-49ab-9034-2d63e0d5d21d.jpg" title=" 3_副本.png" alt=" 3_副本.png" width=" 250" height=" 247" border=" 0" vspace=" 0" / /p p br/ /p p br/ /p p span style=" font-family: 宋体, SimSun font-size: 16px " Pribolab sup & reg /sup 全自动标液配制仪 /span br/ /p /td td style=" border: 1px solid windowtext word-break: break-all " width=" 312" valign=" middle" align=" center" p style=" text-align:center" img style=" max-width: 100% max-height: 100% width: 250px height: 285px " src=" https://img1.17img.cn/17img/images/202010/uepic/af7f0e01-3e4f-4af6-80c2-5e07999d9756.jpg" title=" 4_副本.png" alt=" 4_副本.png" width=" 250" height=" 285" border=" 0" vspace=" 0" / /p p br/ /p p span style=" font-family: 宋体, SimSun font-size: 16px " Pribolab sup & reg /sup 多功能光电衍生系统 /span /p /td /tr /tbody /table p style=" line-height: 1.75em text-indent: 2em text-align: justify " span style=" font-family: 宋体, SimSun " /span br/ /p p style=" text-indent: 2em " strong style=" text-align: justify text-indent: 2em " span style=" font-family: 宋体, SimSun " 关于普瑞邦 /span /strong /p p style=" line-height: 1.75em text-indent: 2em text-align: justify " span style=" font-family: 宋体, SimSun " 普瑞邦(Pribolab)成立于2008年,专注于食品安全(尤其生物毒素)检测产品的研发与应用。经过十多年的发展,公司已成为集产品研发应用、生产销售、检测技术开发及检测服务的综合性公司。依托于优秀的研发团队和经验丰富的检测技术团队,并在广大分析实验工作者的支持下,普瑞邦历经十余年开拓发展,普瑞邦在真菌毒素检测领域的标准品、稳定同位素内标(13C)、免疫亲和柱、固相净化柱、ELISA试剂盒/胶体金检测试纸及样品前处理仪器等产品得到在不同行业得到广泛应用和认可。可提供食品、饲料、果蔬、畜产品、中药材等样品中单一及多种真菌毒素检测的全套解决方案。 /span /p p style=" line-height: 1.75em text-indent: 2em text-align: justify " span style=" font-family: 宋体, SimSun " 从样品前处理到仪器分析方法建立,普瑞邦团队可协助检测实验室实现从无到有,从有到优,更便捷的完成真菌毒素检测。全自动多样品均质器在高速均质的基础上实现了多样品连续自动均质的功能,并可选配自动添加均质溶液模块,真正意义上实现了高速均质的自动化和无人化,告别单个均质反复清洗均质杯的耗时费力。MDS多功能光电衍生系统将电化学试剂衍生和和光化学衍生反应集成于一体,采用双流路通道,可以自主实现切换反应池流路,实现电化学试剂衍生与光衍生的快速转换和即时使用,有效提高检测效率,使分析工作变得简洁、高效。光电化学柱后衍生系统配套高效液相色谱仪使用,有效拓展色谱系统的分析功能范围,可对多种物质衍生化后进行检测,广泛适用于环境、临床、药物、食品和饲料工业等行业。ASSP-100全自动标液配置仪是一款全新的全自动液体配置设备。可实现单一标准溶液、混合标准溶液的自动化配置、固体样品的溶解、稀释、转移等过程。精度高、速度快、安全可靠,极大地降低配标、移液过程的不确定性,提高效率。 /span /p p style=" line-height: 1.75em text-indent: 2em text-align: justify " span style=" font-family: 宋体, SimSun " & nbsp /span /p p style=" text-align: center" a href=" https://www.instrument.com.cn/zt/spzjds2020" target=" _self" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202009/uepic/669369f6-b025-4fef-9f51-27cf4e3a0fcd.jpg" title=" 真菌毒素.jpg" alt=" 真菌毒素.jpg" / /a /p p br/ /p p style=" line-height: 1.75em text-align: justify text-indent: 0em " span style=" font-family: 宋体, SimSun " /span /p p style=" text-align: center" img style=" max-width: 100% max-height: 100% width: 182px height: 176px " src=" https://img1.17img.cn/17img/images/202010/uepic/b261eccd-9cc1-4f40-930d-8cf3ce750381.jpg" title=" 食品安全交流群.jpg" alt=" 食品安全交流群.jpg" width=" 182" height=" 176" / /p p style=" line-height: 1.75em text-indent: 2em text-align: justify " span style=" font-family: 宋体, SimSun " /span /p p style=" text-align: center " strong span style=" font-family: 宋体, SimSun font-size: 14px " 想了解更多食品安全信息 /span /strong /p p style=" text-align: center " strong span style=" font-family: 宋体, SimSun font-size: 14px " 请扫描上方二维码加入食品安全交流群吧! /span /strong /p p style=" line-height: 1.75em text-indent: 2em text-align: justify " span style=" font-family: 宋体, SimSun " br/ /span br/ /p p style=" line-height: 1.75em text-indent: 2em text-align: justify " span style=" font-family: 宋体, SimSun " br/ /span /p p style=" text-align: center" br/ /p p style=" line-height: 1.75em text-indent: 2em text-align: justify " span style=" font-family: 宋体, SimSun " /span br/ /p p br/ /p
  • 高品质保证策略 – 食品中多种真菌毒素分析
    报告主题:通过免疫亲和柱净化,QSight液相色谱-串联质谱联用技术来验证不同食品基质中多种真菌毒素分析物的检测方法通过此次研讨会, 您将有机会了解更多关于该全新解决方案的信息,它将帮助您应对与日俱增的多种样品基质和引起关注的各种真菌毒素。届时我们的应用科学家将和您在线讨论测定不同食品基质中多种真菌毒素的可靠、灵敏和选择性的新方法。日期:2020年12月1日时间:11:00 am(专为中国客户开设的专场)分享嘉宾:Feng Qin,珀金埃尔默全球应用经理注册链接https://event.on24.com/wcc/r/2822668/44530B06C3ACEDC425ED4AB89486C26F/1819822请在注册页面选择11:00 AM CST (UTC + 8)
  • 新型酵母生物传感器有望高效检测病原真菌
    “生物传感器的广泛开发与应用,主要归功于生物元件对于其敏感的分析物具有很强的特异性,不会识别其他分析物。利用生物传感器,可以快速、实时获得有关分析物准确可靠的信息。”袁吉锋说。合成生物学的发展推动了细胞生物传感器的开发。这种生物传感器以活细胞为生物元件,基于活细胞受体检测细胞内外的微环境状况和生理参数的变化,并通过两者之间的相互作用产生细胞信号转导,进一步激活不同的信号输出模块,从而产生不同的信号。袁吉锋介绍,从本质上讲,其他类型的生物传感器使用的是从生物中提取出的生物元件。而基于活细胞的细胞生物传感器是一种独特的生物传感器,它可以通过模拟细胞正常的生理生化变化来检测信号。目前,这种生物传感器已成为医疗诊断、环境分析、食品质量控制、化学制药工业和药物检测领域的新兴工具。“用于构建细胞生物传感器的生物元件包括细菌细胞、真菌细胞以及哺乳动物细胞。我们这次所构建的工程化酵母生物传感器,正是基于酿酒酵母细胞所构建的真菌细胞传感器。”袁吉锋说,酿酒酵母细胞用于生物传感器的构建,在细胞性能上具有优势。作为一种真核生物,酿酒酵母细胞与哺乳动物细胞的大多数细胞特征和分子机制一致,特别是与感知和响应环境刺激密切相关的GPCR信号通路具有极高的相似性;酿酒酵母是酵母物种中第一个基因组已完全测序的真核生物,并且遗传修饰工具非常完备;酿酒酵母的培养条件简易、培养成本低、生长速度快、温度耐受范围宽,可以通过冷冻或脱水等方式进行储存和运输,具有生物安全性。可进一步设计改造成检测试纸基于工程化酵母细胞构建生物传感器多年来一直是研究热点。袁吉锋团队此次通过人工转录因子,将GPCR信号通路与高效基因转录模块——半乳糖调控模块进行耦合,在酵母生物传感器中引入了一个额外的正反馈回路,以此来增强酵母生物传感器的灵敏度和信号输出强度。袁吉锋解释说:“我们相当于设计了一种正反馈放大器,让酿酒酵母细胞中GPCR在识别到白色念珠菌的信息素信号之后,不仅能通过人工转录因子激活下游信号报告模块的表达,同时还能驱动半乳糖调控模块自身的转录因子Gal4表达。两个转录因子协同作用,就能持续激活和放大报告基因的输出信号。”数据显示,相比于初始传感器的性能,改造后的酵母生物传感器的检测限提升了4000倍,激活浓度提升了9700倍,信号输出强度提升了近3倍,尤其是信号输出的持续时间得到了明显提升。初始传感器在检测使用2小时后就出现荧光信号的衰退,而改造后的传感器在使用12小时后仍可产生明显的荧光信号。“此次构建的酵母生物传感器,可以设计成一种简单、低成本的检测试纸,用于检测医疗样本或环境样本中的病原真菌。”袁吉锋介绍,只需将试纸浸入待检测液体样本中,即可实现对该样本快速灵敏和可视化的检测。
  • 津津有卫| 关注食品安全,当心食品中的“隐形杀手”-真菌毒素
    概述 真菌毒素是真菌在适宜环境条件下产生的次级代谢产物,在农作物、食品、饲料及中药中污染较为普遍,目前已知的真菌毒素有400多种,常见的真菌毒素有黄曲霉毒素、赭曲霉毒素、展青霉素、脱氧雪腐镰刀菌烯醇、伏马毒素等。真菌毒素是天然存在而非人为添加的,尽管污染量小,但危害性大。在适宜的环境因素(如温度、湿度)条件下,食品可以直接感染真菌并被其产生的毒素污染,且这种污染可以发生在食品链的任何阶段如生产、加工处理、运输和储藏过程等。据联合国粮农组织(FAO)统计,全球每年有25%的食品会受到不同程度的真菌毒素污染。 真菌毒素的危害 大多数真菌毒素可抑制动物体内蛋白的合成,破坏细胞结构,进而影响动物体肝脏、肾脏等器官的正常运作。人或动物摄入被真菌毒素污染的农、畜产品,或通过吸入及皮肤接触真菌毒素可引发多种毒害作用,如致幻、催吐、皮炎、中枢神经受损,甚至死亡;许多真菌毒素还可在体内积累后产生致癌、致畸、致突变和免疫毒性,这些均对人和动物的生命与健康造成重大威胁。 国内限量及监测 我国食品安全限量标准《食品安全国家标准 食品中真菌毒素限量》(GB 2761-2017)中规定了6种真菌毒素在不同类别食品中的限量值。由于真菌毒素污染的普遍性和危害的严重性,每年的食品安全监督抽检均包含真菌毒素的检测项目,2022年新版《国家食品安全监督抽检实施细则》中检测的真菌毒素种类与GB 2761-2017一致,食品涉及粮食加工品、食用油、油脂及其制品、调味品、饮料、罐头等17大类食品。小编列出了所测毒素的限量值、检测方法及检测仪器,具体见表1。 表1 真菌毒素列表目前常用的检测真菌毒素的方法有:薄层色谱法(TLC)、酶联免疫法(ELISA)、胶体金法、液相色谱法(HPLC)以及液质联用法(LC-MS/MS),其中LC 和LC-MS/MS最为常用。 在真菌毒素检测方面,岛津开展了大量的工作,推出了多重解决方案。 01液相色谱 黄曲霉毒素柱后化学衍生分析系统该系统具有灵敏度高的荧光检测器以及性能优异的化学反应器,温控精密度高,确保反应效率稳定和良好的重现性;同时高效的软件,可以提高工作效率。 应用示例—中药材莲子中黄曲霉毒素的测定:结果见下图,标准曲线线性方程相关系数均0.999,添加回收平均回收率在78.7~95.0%之间,RSD为0.71~1.44%,重现性试验化合物保留时间和峰面积RSD见下表,从结果可以看出,该系统完全满足检测的需求。 02液相色谱 黄曲霉毒素柱后光衍生系统岛津柱后光衍生系统采用高品质的紫外光源和电路元器件,光源寿命高达9000小时;且衍生系统延迟体积小,衍生效率高;无需化学衍生试剂和高温反应系统,操作简单、安全。PR-1000光化学衍生器可使黄曲霉毒素B1和G1的荧光强度增强4-6倍,满足高灵敏度分析需求。PR-1000光化学衍生器值得一提的是,无论是光衍生系统还是化学衍生系统,都可以基于岛津不同系列的HPLC搭建,可以灵活选择您的配置方案哦。 03i-Series 液相色谱 真菌毒素分析方法包使用内置的二极管阵列检测器及外置的荧光检测器(RF-20AXs),方法包包含专用色谱柱、方法文件、必要组件及使用说明书等; 使用此方法包可在14 min以内实现10种常见真菌毒素的高灵敏度检测。无需衍生的情况下满足各国标准的最低检测要求。 04LC-MS/MS法测定真菌毒素 岛津LC-MS/MS生物毒素数据库包含了谷物、水果、水产品中常见的100余种生物毒素的化合物信息、MRM参数、分析方法及操作指南,帮助用户快速建立分析各种毒素的方法。同时岛津还提供多个LC-MS/MS法测定真菌毒素的应用分享,客户可在岛津官网免费下载。 应用实例:岛津参考标准NY/T 3803-2020饲料中37种霉菌毒素的测定 液相色谱-串联质谱法,建立了37种毒素的LC-MS/MS检测方法。该方法采用正负模式同时扫描的方法,一针进样可在16 min完成37种生物毒素的同时检测;通过方法学考察此方法灵敏度高,分析时间短,结果准确,可用于饲料中多种霉菌毒素的定量检测。 岛津Q-TOF筛查真菌毒素目前,高分辨质谱法在非法物质筛查,未知组分鉴定等多个领域应用越来越广泛,如下面发布的农业农村部公告均采用了高分辨质谱法对化合物进行筛查和确认。 √ 农业农村部公告第312号 饲料中风险物质的筛查与确认导则 液相色谱–高分辨质谱法(LC–HRMS)。√ 农业农村部公告第197号-9-2019 畜禽血液和尿液中150种兽药及其它化合物鉴别和确认 液相色谱-高分辨串联质谱法。 针对真菌毒素,岛津建立了Q-TOF生物毒素数据库,包括GB 2761中毒素在内的50余种真菌毒素的化合物信息及不同碰撞能(CE)下的300多张二级质谱图,可以对常见的真菌毒素进行筛查和确认。 扫码可以在岛津官网下载【生物毒素检测整体解决方案】查看更多精彩内容哦。本文内容非商业广告,仅供专业人士参考。
  • 亮点回顾:"质”同道“禾” 上下求索 多学科抗感染论坛-真菌专场
    8月23日,由中山大学附属第一医院医学检验科、广东省真菌病监测网、广州禾信仪器股份有限公司联合举办,以“‘质’同道‘禾’”,上下求索”为主题的多学科抗感染论坛-真菌专场交流会圆满落幕。点击图片跳转观看精彩回放温馨提示此次论坛干货满满,特意准备了汇集6位教授学术精华的真菌专场知识地图,8月26日17:00后,在本公众号后台回复 CMI-1600 便可获取。本次论坛大咖云集,北京协和医院徐英春教授、张丽教授,浙江大学医学院附属邵逸夫医院俞云松教授,中山大学附属第一医院谢灿茂教授、廖康教授、郭鹏豪教授齐聚一堂,以线上主题演讲的形式聚焦真菌感染的诊疗与检测,为大家呈现了一场饕餮学术盛宴。左右滑动查看更多《念珠菌感染诊治现状》浙江大学医学院附属邵逸夫医院 俞云松教授俞云松教授分享了从侵袭性真菌病趋势、易感高危人群类型、IFD诊断困惑、抗真菌治疗策略、念珠菌定植与感染、念珠菌病原学检测方法和治疗方案、抗真菌药物的选择等方面,进行了多维度、全面系统地论述。俞云松教授指出:侵袭性真菌病的临床管理面临诸多挑战,突破重点仍在于诊断技术的不断改进与升级。《真菌感染实验室诊断操作规范》中国医学科学院北京协和医院 张丽教授张丽教授从真菌概况、国内真菌检测能力、真菌实验室诊断相关指南、真菌实验室仪器设备基本配置、各种标本的采集和处理、真菌培养基接种选择和方式、真菌培养条件和时间等方面展开细致讲解。在培养后菌株鉴定方法板块中,张丽教授提到,在酵母菌的鉴定中,MALDI TOF-MS的准确性能达到90%以上,其在丝状真菌的鉴定上也有相关应用。《"重"中之"重"一例血流感染案例分享》中山大学附属第一医院 郭鹏豪教授郭鹏豪教授以一例血流感染的案例抛砖引玉,在对患者惊险起跌的病情进行了详细介绍后,不断抛出问题,并由俞云松教授和张丽教授针对性地给予详细专业点评及解答。最后郭鹏豪教授对该案例进行总结:真菌性心内膜炎是一种死亡率极高的感染病,不明原因发热的患者,需关注心内膜炎的可能性,实验室可借助MALDI TOF-MS技术缩短病原体鉴定的时间。最后名家论道环节,教授们就“真菌病诊疗的困难与挑战”发表见解,多学科精彩思维齐碰撞,直将热度推向最高峰,评论区内大家直呼“内容丰富,精彩纷呈,值得回看”。本次论坛展示了多学科合作模式在真菌病诊疗中的价值,各专家共同为真菌病诊疗事业贡献了一份力量。温馨提示此次论坛干货满满,特意准备了汇集6位教授学术精华的真菌专场知识地图,8月26日17:00后,在本公众号后台回复 CMI-1600 便可获取。MALDI-TOF MS检测是近年发展起来的一种快速准确、经济可靠的病原微生物鉴定方法。通过绘制具有保守特征的微生物核糖体蛋白指纹图谱并与标准数据库进行比对,实现对病原菌的快速鉴定。全自动微生物质谱检测系统CMI-1600禾信仪器在此方面,已自主研发出全自动微生物质谱检测系统CMI-1600,目前已获得发明专利15项,实用新型专利14项,是国内唯一在核心期刊上以封面论文形式介绍该仪器研制的国产仪器。01关联案例:马尔尼菲篮状菌采用全自动微生物质谱检测系统CMI-1600,利用甲酸-乙腈蛋白提取法分别对酵母相和丝状真菌相的数十株临床分离的马尔尼菲篮状菌进行检测,并批量采集高质量图谱,使用禾信仪器自主研发的MicroCreate软件进行特征峰提取建立专项子谱库。部分马尔尼菲篮状菌质谱图马尔尼菲篮状菌特征谱初步验证表明,6株从病患样本分离的马尔尼菲篮状菌种级鉴定准确率达到100%。因此,马尔尼菲篮状菌自建库可实现相关样本的快速准确鉴定,CMI-1600对临床少见疑难菌株有良好的鉴定潜力。02关联案例:109种1710菌株采用全自动微生物质谱检测系统CMI-1600对临床即时分离的109种1710菌株进行鉴定,包括肺炎克雷伯菌、金黄色葡萄球菌、鲍曼不动杆菌、大肠埃希菌、无乳链球菌、头状葡萄球菌、流感嗜血杆菌、产吲哚金黄杆菌、新型隐球菌、阿莎丝孢酵母、成团泛菌、小孢根霉菌、白色假丝酵母、热带假丝酵母、光滑假丝酵母等临床病原菌。鉴定结果与医院LIS系统最终诊断结果(某进口质谱及生物鉴定结果为主)进行比对显示:CMI-1600种水平鉴定一致率为99.18%(1669/1710),属水平鉴定一致率为99.88%(1708/1710),表明对临床微生物鉴定结果与医院检验科鉴定结果具有高度的一致性。
  • 我国粮食食品中真菌毒素检测技术取得突破
    据联合国粮农组织统计,全球每年有25%的农产品受到真菌毒素污染,每年粮食及食品损失达到10亿吨。据国家粮食局统计,中国每年有3100万公吨粮食在生产、储存、运输过程中被真菌毒素污染,约占粮食年总产量的6.2%,如果拥有科学的农产品真菌毒素防控措施,中国每年能减少约850亿元损失。   &ldquo 十二五&rdquo 期间,国家863计划设立了&ldquo 食品生物有害物精准检测与控制&rdquo 项目。经过两年的研发,该项目在食品和粮食中真菌毒素的精准检测技术及控制技术方面获得了突破性进展。   科研人员通过对石墨烯的改性修饰,结合分子印迹材料,开发了桔霉素、展青霉素等真菌毒素的特异性分离富集材料 建立了高效样品前处理技术,与目前常用的免疫亲和柱相比,前处理成本降低了80%,提高了前处理效率,开发的前处理产品,解决了粮食、食品中真菌毒素样品前处理复杂、成本高、检测速度慢、准确度不高、变异系数大等问题。   在高效前处理技术基础上,该项目还开发了简单净化&mdash 稳定同位素稀释&mdash 液相色谱质谱联用同时检测16种重要真菌毒素的技术,涵盖了目前国内外已设定限量和即将设定限量的真菌毒素,适合于批量原粮样品真菌毒素的快速准确测定。   该方法参加英国FAPAS分析实验室组织的玉米粉中多种真菌毒素的检测能力验证和比利时真菌毒素检测,以及国家基准实验室组织的燕麦粉中多种真菌毒素同时检测能力验证,所有指标均为满意,检测结果符合&ldquo fit-for-purpose&rdquo 的多组分真菌毒素检测方法的要求,证明该方法达到国际先进水平。   目前,该项目已经发表SCI论文61篇,获得国家技术发明二等奖、科技进步二等奖和省部级奖励9项,申请专利23项。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制