当前位置: 仪器信息网 > 行业主题 > >

粘附力

仪器信息网粘附力专题为您整合粘附力相关的最新文章,在粘附力专题,您不仅可以免费浏览粘附力的资讯, 同时您还可以浏览粘附力的相关资料、解决方案,参与社区粘附力话题讨论。

粘附力相关的资讯

  • 恒品推出全自动胶体粘附力测试仪
    HP-TCN-D胶体粘附力测试仪又叫压头式粘附力试验机(Probe Tack Tester),是胶带粘附力测试的方式之一,主要用于各种胶带、粘合剂类胶体,等各种不同产品的初始粘着力测试,产品满足ASTM D2979 的规范等国际标准,适合各类研究机构、胶粘剂企业、不干胶等检验检疫机构等。测试原理:使用1X1MM精密研磨的平面探头压在黏胶面,完全接触一定时间之后,再反方向恒速完全分离所产生的最大力,这个最大力值即为所测试样的粘附力,机器会记录离开时最大拉力数值。产品特点:1.数据收集系统具有即精确又易用的特点,是当前先进的测量仪器。2.采用触摸屏控制,控制技术,精度高,操作简便。3.采用高精度传感器,精确度可以达到重量感应器标准的+0.1%。4.先进的静音电机和精密滚珠丝杠,传动运行平稳,位移测量更加准确。5.高清晰触屏显示,操作一目了然6.连接微型打印机:可实现实验日期、试验结果,可打印.7.具有试验力值保持功能,查看实验结果更加方便。8.无级调速可在1—800范围内任意设定9、压头接触时间可调,初始接触压力可调。10、下压速度,初始压力、试验速度,接触时间,设置完成后,一键试验,整个实验过程全自动控制。技术参数:1.负荷范围:0-50N2.精 度:0.5级3.分 辨 率:0.01N4.试验速度:24 ipm (英寸/分),61cpm (公分/分),610 mm/min(0.001~800mm/min 可调 )5、 试验行程:350mm(标配)6、 速度控制范围:1mm/min~800mm/min7、试验机尺寸:530*266*1450或1610 mm8、供电电源:220V,50Hz9、重量:75kG10、压头接触时间可调:0-99s11、接触压头:1x1mm标准配置:主机、电源线、探头一副、夹持辅具一副。
  • 用于毫米尺度3D物体操纵的喇叭状粘附结构
    对于毫米尺度3D物体的操纵技术在电子转印、精密装配、微机电系统等领域具有重要的应用前景。传统的基于机械夹持的抓取方案(如镊子等)需要针对不同特征的物体进行专门的设计和定制。例如,普通的尖头镊子难以夹持球体,需要在镊子末端设计专门的环形结构,并且具有环形结构的镊子无法夹持直径小于环形的球体。此外,对于平放在基底表面上的薄片状脆性物体(如硅片等)来说,因其无特殊的可夹持特征,使用镊子等工具难以将其从基底表面夹持住。目前,对于毫米尺度的不同形状和尺寸的3D物体进行可控抓取操纵的通用性技术方案仍然面临挑战。近日,清华大学机械工程系摩擦学国家重点实验室的田煜教授课题组提出了一种毫米尺度的喇叭状可控粘附结构及其力学调控方法。喇叭状粘附结构由面投影微立体光刻技术(nanoArch S130,摩方精密)和多步浇铸的工艺方案制备而成,对于多种曲率表面具有良好的自适应接触性能。喇叭状可控粘附结构能够通过接触界面的范德华力作用和负压作用达到~80 kPa的粘附强度,通过外力调控屈曲失稳与基底表面主动脱附,从而实现对于多种三维物体的可控抓取和操纵。该项研究成果以“Trumpet-shaped controllable adhesive structure for manipulation of millimeter-sized objects”为题发表在国际知名期刊《Smart Materials and Structures》上。该研究工作由清华大学机械工程系摩擦学国家重点实验室的博士生李小松完成。原文链接:https://iopscience.iop.org/article/10.1088/1361-665X/ac262f图1 喇叭状可控粘附结构制备工艺流程图。(a)由面投影微立体光刻技术直接制备得到的蘑菇状结构;(b)通过浇铸得到阴模模具;(c)阴模模具浇铸PU并脱泡;(d)将PDMS球面按压模具得到凹面结构;(e)脱模后的喇叭状结构(dp = 1 mm, h = 1 mm, dt = 1.8 mm, θ =60º);(f)喇叭状结构的扫描电镜照片。图2 喇叭状粘附结构的粘附性能典型测试力曲线和对应的接触状态演化规律。(a)附着测试模式和(b)脱附测试模式对应的典型法向力测试曲线;(c)附着测试模式和(d)脱附测试模式对应的接触界面状态演化过程;(e)附着测试模式下喇叭状粘附结构的粘附力和预载荷之间的关系;(f)脱附测试模式下喇叭状粘附结构的粘附力和剪切距离的关系。图3 基于内聚力模型的喇叭状可控结构的有限元仿真与界面法向应力演化规律机理。(a)接触-脱附测试过程;(b)接触-卸载-剪切测试过程;(c)接触-卸载-扭转过程中喇叭状粘附结构的变形行为;(d)附着测试过程和(e)脱附测试过程中接触界面法向应力的演化规律,其中紫色的箭头表示法向应力分布的变化方向。图4 喇叭状可控粘附结构对不同大小、不同形状、不同质量、不同材质物体的操纵效果。(a)集成喇叭状粘附结构的操作器;(b)喇叭状粘附结构抓取、转移和释放物体的典型操作步骤;喇叭状粘附结构用于转移多种毫米尺度(c)平面物体和(d)曲面物体的展示;(e)喇叭状粘附结构用于操纵LED灯珠完成THU字样柔性电路装配的展示;(f)喇叭状粘附结构用于水下环境操纵曲面物体的展示。官网:https://www.bmftec.cn/links/10
  • 动态可逆粘附的高分子复合材料助力长期稳定的跨界面热传导
    四川大学傅强教授和吴凯副研究员报道了一种基于聚合物分子结构和填料表面设计的新型软物质热界面材料。研究团队通过力化学作用将液态金属(LM)包裹在球形氧化铝(Al2O3)表面形成核壳结构的填料,并将其嵌入具有动态粘附性的弹性体(PUPDM)中制备了三元复合材料。巧妙的PUPDM分子设计使得材料与各种热源/冷槽之间形成动态可逆的氢键相互作用,实现了零压状态下的低接触热阻和耐多次热循环的长期稳定性。而液态金属改性填料不仅可以作为导热桥梁,同时有利于聚合物链段在室温下的松弛,平衡了传统功能复合材料中导热性能与表面黏附可逆性的矛盾。这种在导热界面材料上构筑动态可逆键的概念在新型热管理材料和技术领域有广阔的应用前景。相关成果以“A Thermal Conductive Interface Material with Tremendous and Reversible Surface Adhesion Promises Durable Cross-Interface Heat Conduction”为题发表于《Materials Horizons》期刊(Mater. Horiz., 2022, DOI: 10.1039/D2MH00276K)。图1 具有可逆粘附能力的高导热/电绝缘/柔性软材料的分子设计和复合结构示意图随着现代电子设备朝着高度集成化和小型化发展,器件内部指数式增长的热严重影响到电子设备的工作性能、可靠性和使用寿命。因此,导热材料和先进的热管理技术引起广泛的关注。典型的热界面材料已经被大量应用去促进电子设备内部的界面热传导,并且评价其热管理效率的有两个重要的指标:材料本身的热导率和材料与接触基板的接触热阻。近年来,大量的研究人员致力于开发高导热的材料,然而随着电子设备尺寸的日益减小,解决接触热阻的问题变得同样重要。现有的一些降低接触热阻的方法有制备具备触变性和顺应性的材料或者施加外界应用压力。这些方法的目的都是增加接触界面的实际接触面积去实现更好的界面几何匹配。一些微纳尺度界面热传导的研究也表明界面相互作用有助于提高界面热导率,但在宏观热界面领域还缺乏系统的研究。更值得关注的是,由于热界面材料与接触基板的热膨胀系数不匹配,因此在经历长期热循环后,界面几何失配或者界面脱粘仍然会发生,阻碍着热管理的长期稳定性。图2 复合材料的导热和可逆粘附能力展示 为了解决上述问题,本工作采用的策略主要分为三个步骤:1)制备出具有可逆黏附能力的柔性弹性基体,提高热界面材料与基板的相互作用,并通过动态界面热管理实现跨界面热传导的长期稳定性。2)加工得到具有优异导热性能并且不影响柔性基体动态键的可逆性和活动性的导热填料。3)复合加工得到所需复合材料。基于独特结构的LM/Al2O3二元核壳填料结构设计, 结合具有动态可逆粘附弹性基体的合成,该工作中得到的复合材料完美地平衡了导热、柔性和粘附力的可逆性之间的矛盾。随着LM/Al2O3二元填料的加入,聚合物复合材料表现出出色的热导率(6.23 Wm-1K-1),允许材料内部的各向同性的热传导。同时,受益于二元填料的独特结构,绝缘的LM/Al2O3能有效地隔绝液态金属之间的电渗透网络,保证了复合材料的电绝缘性。此外,由于合成的PUPDM基体展现出超高的适用于多种基板的可逆粘附力(4.48 MPa, Al板,80℃),以及LM在基体和刚性填料的界面处为聚合物分子链链段的运动提供更多的自由度,有利于动态氢键的可逆解离与缔合,因此所得到的PUPDM/LM/Al2O3复合材料同样表现出出色的可逆黏附力(1.50 MPa, Al板,80℃),可以承担起一个10.66 kg的水桶。图3 PUPDM/LM/Al2O3复合材料的界面热管理展示 复合材料与基板之间出色的氢键结合作用实现了零压状态下的低接触热阻(18.28 mm2K W-1)。此外,这种动态可逆的氢键作用保证接触界面拥有良好的长期稳定性,即使复合材料与铝板的热膨胀系数不匹配,但是经过7500次热循环,接触热阻仍然没有明显上升。这种在高导热热界面材料上构筑动态可逆的界面相互作用的概念在微电子冷却技术、热电装置、大功率可穿戴设备等先进电子设备中具有广阔的应用前景。
  • 《Smart Materials and Structures》:用于毫米尺度3D物体操纵的喇叭状粘附结构
    对于毫米尺度3D物体的操纵技术在电子转印、精密装配、微机电系统等领域具有重要的应用前景。传统的基于机械夹持的抓取方案(如镊子等)需要针对不同特征的物体进行专门的设计和定制。例如,普通的尖头镊子难以夹持球体,需要在镊子末端设计专门的环形结构,并且具有环形结构的镊子无法夹持直径小于环形的球体。此外,对于平放在基底表面上的薄片状脆性物体(如硅片等)来说,因其无特殊的可夹持特征,使用镊子等工具难以将其从基底表面夹持住。目前,对于毫米尺度的不同形状和尺寸的3D物体进行可控抓取操纵的通用性技术方案仍然面临挑战。近日,清华大学机械工程系摩擦学国家重点实验室的田煜教授课题组提出了一种毫米尺度的喇叭状可控粘附结构及其力学调控方法。喇叭状粘附结构由面投影微立体光刻技术(nanoArch S130,摩方精密)和多步浇铸的工艺方案制备而成,对于多种曲率表面具有良好的自适应接触性能。喇叭状可控粘附结构能够通过接触界面的范德华力作用和负压作用达到~80 kPa的粘附强度,通过外力调控屈曲失稳与基底表面主动脱附,从而实现对于多种三维物体的可控抓取和操纵。该项研究成果以“Trumpet-shaped controllable adhesive structure for manipulation of millimeter-sized objects”为题发表在国际知名期刊《Smart Materials and Structures》上。该研究工作由清华大学机械工程系摩擦学国家重点实验室的博士生李小松完成。原文链接:https://iopscience.iop.org/article/10.1088/1361-665X/ac262f图1 喇叭状可控粘附结构制备工艺流程图。(a)由面投影微立体光刻技术直接制备得到的蘑菇状结构;(b)通过浇铸得到阴模模具;(c)阴模模具浇铸PU并脱泡;(d)将PDMS球面按压模具得到凹面结构;(e)脱模后的喇叭状结构(dp = 1 mm, h = 1 mm, dt = 1.8 mm, θ =60º);(f)喇叭状结构的扫描电镜照片。图2 喇叭状粘附结构的粘附性能典型测试力曲线和对应的接触状态演化规律。(a)附着测试模式和(b)脱附测试模式对应的典型法向力测试曲线;(c)附着测试模式和(d)脱附测试模式对应的接触界面状态演化过程;(e)附着测试模式下喇叭状粘附结构的粘附力和预载荷之间的关系;(f)脱附测试模式下喇叭状粘附结构的粘附力和剪切距离的关系。图3 基于内聚力模型的喇叭状可控结构的有限元仿真与界面法向应力演化规律机理。(a)接触-脱附测试过程;(b)接触-卸载-剪切测试过程;(c)接触-卸载-扭转过程中喇叭状粘附结构的变形行为;(d)附着测试过程和(e)脱附测试过程中接触界面法向应力的演化规律,其中紫色的箭头表示法向应力分布的变化方向。图4 喇叭状可控粘附结构对不同大小、不同形状、不同质量、不同材质物体的操纵效果。(a)集成喇叭状粘附结构的操作器;(b)喇叭状粘附结构抓取、转移和释放物体的典型操作步骤;喇叭状粘附结构用于转移多种毫米尺度(c)平面物体和(d)曲面物体的展示;(e)喇叭状粘附结构用于操纵LED灯珠完成THU字样柔性电路装配的展示;(f)喇叭状粘附结构用于水下环境操纵曲面物体的展示。
  • Nature Communication:在有丝分裂中整合素减少对细胞外基质的粘附而加强对相邻细胞的
    为了进入有丝分裂,大多数粘附的动物细胞减少粘附,随后细胞变圆。有丝分裂细胞如何调节与邻近细胞和细胞外基质(ECM)蛋白的粘附目前学界尚不清楚。尽管在有丝分裂之前、之中和之后的粘附调节的重要性已经被很好地证明,但是对于有丝分裂细胞如何调节细胞ECM和细胞-细胞粘附的启动的见解还是有限的。此外,整合素和钙粘蛋白介导的粘附在有丝分裂进入和进展过程中的相互作用还不清楚。 为此苏黎世联邦理工学院生物系和德国马汀里德马克斯普朗克生物化学研究所分子医学部的研究人员在基因工程细胞系中使用基于原子力显微镜(AFM)的单细胞力谱(SCFS)方法来定量测量细胞-ECM和细胞-细胞间粘附力的大小,以了解细胞与ECM和邻近细胞的粘附力的启动和加强是如何被不同地调节的。实验显示,在有丝分裂细胞中,整合素没有通过踝蛋白和纽蛋白与细胞骨架连接,导致了细胞与ECM粘附增强作用减弱,而β1整合素和不同的粘附蛋白,包括纽蛋白、黏着斑蛋白和踝蛋白,增加了有丝分裂钙粘蛋白介导的细胞-细胞粘附。研究人员结合单细胞力谱和荧光显微镜来定量HeLa细胞的细胞周期依赖性粘附力。将表达MYH9-GFP和H2B-mCherry的单个圆形间期或有丝分裂HeLa细胞连接到伴刀豆球蛋白A (ConA)包被的AFM的悬臂上,使它们接近基质胶或牛血清白蛋白(BSA)包被的底物,并允许它们启动和加强粘附5-360秒的时间,然后将它们从基底上脱离以定量测量粘附力的大小(补充图1a)。作者通过共聚焦的方法观察到间期HeLa细胞使粘附位点成熟并稳定增加其铺展面积(图1b-e)。图1. 有丝分裂细胞显著降低了对ECM的粘附增强,并增加了对邻近细胞的粘附。a在给定的接触时间后,间期(左)或有丝分裂(右)HeLa细胞与基质或牛血清白蛋白的粘附力。点表示单个细胞的粘附力,红条表示中位数,n(细胞)表示至少三次独立实验中测试的独立细胞的数量。as值将附着力增强率表示为所有接触时间内通过附着力线性拟合的斜率(±SE),并将as值与参考数据集进行比较的p值(补充图2a)。间期HeLa细胞对Matrigel的粘附力以灰色表示,与有丝分裂细胞比较。b,c在SCFS期间,表达paxillin- gfp的间期(b)或有丝分裂的stc (c) HeLa细胞(n = 7)粘附在Matrigel上的共聚焦显微镜图像的代表性时间序列。箭头显示paxillin-GFP簇。比例尺,20µ m。d表达paxillin- gfp的间期和有丝分裂stc HeLa细胞的接触时间依赖性和归一化扩散面积(±SEM) (n = 7个独立实验)。灰色区域表示间期和有丝分裂的stc HeLa细胞扩散面积有显著差异(P值补充表1)。e有丝分裂的stc HeLa细胞60min后对Matrigel的粘附力,360s后对Matrigel的粘附力作为灰色参考。描述的数据表示。 f接触时间120s时,间期(左)或有丝分裂stc(右)HeLa细胞与纯化ECM蛋白的粘附力。数据表示如a.间期HeLa细胞对各自ECM蛋白的粘附力以灰色参考给出。g在给定接触时间,两个间期(左)、间期和有丝分裂stc(中)或两个有丝分裂stc(右)HeLa细胞之间的粘附力。P值比较显示数据集和参考数据集的as值(补充图4a)。两个间期HeLa细胞之间的粘附力以灰色表示。数据表示如a.“MitoticSTC”所示,表明有丝分裂细胞通过STC富集(“方法”)。采用双尾Mann-Whitney检验计算给定数据与参考数据(a, d-g)比较的P值,采用双尾额外平方和f检验计算比较as值的P值。接下来为了测试有丝分裂HeLa细胞对ECM的粘附增强是否是由整合素细胞表面表达量的变化引起的,研究人员通过流式细胞术比较了间期和有丝分裂HeLa细胞表面的阿尔法V、贝塔1、阿尔法6和贝塔4整合素含量水平,有丝分裂的HeLa细胞显示出所有整合素的较高表达水平(图2a)。然后,研究人员还研究了钙粘蛋白表面表达的特征,发现与间期细胞相比,有丝分裂的HeLa细胞也表现出表面N-钙粘蛋白水平升高(图2d).接下来为了测试有丝分裂HeLa细胞对ECM的粘附增强是否是由整合素细胞表面表达量的变化引起的,研究人员通过流式细胞术比较了间期和有丝分裂HeLa细胞表面的阿尔法V、贝塔1、阿尔法6和贝塔4整合素含量水平,有丝分裂的HeLa细胞显示出所有整合素的较高表达水平(图2a)。然后,研究人员还研究了钙粘蛋白表面表达的特征,发现与间期细胞相比,有丝分裂的HeLa细胞也表现出表面N-钙粘蛋白水平升高(图2d).图2:a对间期和有丝分裂stc HeLa细胞进行整合素亚基荧光标记,并用流式细胞术进行分析。点表示每个样品分析的2万个细胞的中位荧光强度归一化到间期HeLa细胞样品中位荧光强度的平均值,条表示所有中位的平均值,误差条表示扫描电镜。N(样本)表示测试的生物独立样本的数量。b间期和有丝分裂stc HeLa细胞的流式细胞术,标记了扩展构象的整合素(克隆9EG7)。间期和有丝分裂stc HeLa细胞与Matrigel结合概率的数据表示。圆点表示单个HeLa细胞的结合概率,红条表示所有被测细胞的中位数结合概率,误差条表示扫描电镜。n(cells)表示探测HeLa细胞的数量,并采样每种情况下记录的力-距离的数量。d对间期和有丝分裂的stc HeLa细胞进行n -钙粘蛋白标记,并用流式细胞术进行分析。数据表示如a. e所述,间期或有丝分裂stc HeLa细胞与散布在底物上的单个间期细胞的结合概率。整个的研究实验数据揭示了整合素在有丝分裂细胞中的双重作用:刚结合配体的整合素不与肌动蛋白偶联,因此很难增强与ECM的粘附,而贝塔1整合素增强了有丝分裂细胞与邻近细胞的粘附,间期细胞利用黏着斑蛋白、踝蛋白和纽蛋白快速启动和加强整合素介导的细胞-ECM粘附。有丝分裂细胞增加了它们对邻近细胞的粘附力。这部分是由于钙粘蛋白的细胞表面含量水平增加了约20%以及钙粘蛋白结合率增加了两倍。有趣的是,我们还发现贝塔1整合素促进了与相邻间期或有丝分裂细胞的粘附的启动和加强。在实验中,没有在间期细胞或有丝分裂细胞的细胞表面检测到胶原、层粘连蛋白或纤连蛋白,这表明参与有丝分裂细胞的细胞间粘附的整合素不太可能与其他间期细胞或有丝分裂细胞的细胞表面上的ECM蛋白结合。然而,不能完全排除ECM蛋白参与有丝分裂细胞-细胞粘附实验。是否贝塔1整合素的贡献是通过直接结合E-和/或N-钙粘蛋白来实现的,如报道的胶原结合整合素,还有待探索。Mn2+或抗体对贝塔1整合素的外源性激活不会增加有丝分裂细胞间的粘附,这可能表明贝塔1整合素的功能与构象无关,或者整合素的激活不会增加其结合动力学。尽管在最初的360秒内,贝塔1整合素并不促进两个间期细胞间的粘附形成,但在融合的MDCK细胞单层中,无论细胞周期状态如何,贝塔1整合素都定位于细胞间的接触。总之,细胞在有丝分裂开始时减少细胞ECM粘附,导致细胞变圆,对整合素和粘附素蛋白的需求有限。与此同时,有丝分裂细胞通过激活钙粘蛋白和利用细胞间粘附位点增强与邻近细胞的粘附。这种细胞ECM和细胞-细胞粘附位点的复杂重塑确保了有丝分裂细胞的圆形化和组织完整性的维持。 该工作使用了Bruker旗下的JPK Nanowizard4三轴分立的闭环、全针尖扫描的生物型原子力显微镜。最新的JPK Nanowizard V系统还配备了Bruker专利技术的PeakForce Tapping可以不用考虑针尖的动力学而非常轻易的成像。且还有专门针尖细胞成像的定量成像模式(QI)可以同时得到样品的表面形貌和机械性能的Mapping图。文章信息如下,感兴趣的朋友可以自行下载阅读。论文链接:https://www.nature.com/articles/s41467-023-37760-x Bruker NanoWizard® V 简介:https://www.bruker.com/de/products-and-solutions/microscopes/bioafm/jpk-nanowizard-v-bioscience.html
  • 凝胶膏剂塑料背膜剥离力测试:180度剥离方法与T型剥离方法之比较
    在凝胶膏剂塑料背膜剥离力测试中,180度剥离方法和T型剥离方法均为常用的测试手段。它们各自具有独特的特点和适用场景,下面将进行详细对比,以便更好地理解和选择适当的测试方法。一、180度剥离方法180度剥离方法是一种广泛应用的剥离力测试方法,其原理是将凝胶膏剂的塑料背膜固定在试验机的一端,另一端则固定在可移动的夹具上。在测试过程中,夹具以恒定的速度移动,使背膜沿180度方向从凝胶膏剂上剥离。这种方法的主要优点是操作简单、直观明了。它适用于评估凝胶膏剂与塑料背膜之间的粘附性能,尤其是在大面积剥离的情况下。此外,180度剥离方法还可以用于比较不同凝胶膏剂之间粘附力的差异,以及评估生产工艺对粘附力的影响。然而,180度剥离方法也存在一定的局限性。由于剥离角度固定为180度,它可能无法全面反映凝胶膏剂在实际使用过程中的复杂剥离情况。此外,该方法对于初始粘附力和剥离过程中的粘附稳定性评估可能不够精确。二、T型剥离方法T型剥离方法是一种模拟凝胶膏剂在实际使用中从皮肤上剥离情况的测试方法。在测试中,凝胶膏剂的一端被固定,另一端则沿T形夹具的垂直臂方向剥离。这种方法能够更真实地模拟凝胶膏剂在实际使用中的剥离过程,从而更准确地评估其剥离性能。T型剥离方法尤其适用于评估凝胶膏剂在不同方向上的剥离性能,以及在不同剥离速度下的剥离稳定性。然而,T型剥离方法相对于180度剥离方法来说,操作更为复杂,需要更高的试验技能。此外,T型剥离夹具的设计和制作也需要一定的精度和成本投入。三、两种方法的比较与选择在凝胶膏剂塑料背膜剥离力测试中,180度剥离方法和T型剥离方法各有优缺点。180度剥离方法操作简便、直观明了,适用于大面积剥离和粘附性能评估;而T型剥离方法则更贴近实际使用情况,能够更准确地评估凝胶膏剂在不同方向上的剥离性能。在选择测试方法时,应根据具体的测试需求和目的进行权衡。如果主要关注凝胶膏剂与塑料背膜之间的整体粘附性能,且对操作简便性要求较高,那么180度剥离方法可能更为合适。而如果需要更精确地模拟凝胶膏剂在实际使用中的剥离情况,并评估其在不同方向上的剥离性能,那么T型剥离方法可能更为适用。
  • DBL-01电子剥离试验机能否同时检测贴膏剂的剥离强度和黏附力
    DBL-01电子剥离试验机是一种专门用于测定材料剥离强度的设备,它能够模拟实际使用过程中材料层与层之间的剥离行为。这种设备广泛应用于各种材料的剥离性能测试,包括但不限于塑料薄膜、胶带、标签、医疗用品等。对于贴膏剂这类医疗用品,剥离强度和黏附力是两个重要的性能指标:剥离强度:指的是贴膏剂从皮肤或其他表面分离时所需的力量,它反映了贴膏剂的粘附持久性。黏附力:通常指的是贴膏剂在初次接触皮肤或其他表面时的粘附能力,它关系到贴膏剂的初始粘附性能。DBL-01电子剥离试验机在设计上可能具备同时检测这两种性能的能力,具体取决于设备的配置和测试模式。以下是使用DBL-01进行测试的一般步骤:测试剥离强度:样品准备:将贴膏剂固定在测试机的上夹具上,确保测试部分平整且无褶皱。设备设置:根据贴膏剂的特性和测试标准,设置适当的测试速度和行程。开始测试:启动测试,下夹具将沿着预定的路径移动,逐渐剥离贴膏剂。数据记录:记录剥离过程中的力量变化,以确定剥离强度。测试黏附力:样品准备:将贴膏剂的粘性面向下放置在测试平台上。设备调整:调整测试机的上夹具,使其能够施加一个垂直于粘性面的力。施加力:上夹具向下施加力,模拟贴膏剂初次粘附的过程。数据记录:记录达到一定粘附效果所需的力量,以评估黏附力。注意事项:确保测试前设备已经校准,以保证测试结果的准确性。测试条件(如温度、湿度)应符合相关标准或产品规格要求。测试后,应对测试数据进行详细分析,并与标准或历史数据进行比较。结论:DBL-01电子剥离试验机理论上能够同时检测贴膏剂的剥离强度和黏附力,但具体的测试能力还需根据设备的技术规格和测试条件来确定。通过这种设备,制造商可以确保贴膏剂产品在安全性、有效性和用户体验方面满足高标准。
  • 岛津原子力显微镜——iPS细胞与癌细胞的对比与区分
    干细胞的研究一直受制于供体细胞很难获得,而且相关实验的伦理风险也不容忽视。因此2007年发明的诱导式多能性干细胞(iPS)技术成为最佳的胚胎干细胞替代。iPS细胞在形态、基因和蛋白表达、表观遗传修饰状态、细胞倍增能力、类胚体和畸形瘤生成能力、分化能力等方面都与胚胎干细胞相似。但是iPS转化过程中,会有一定的几率发展为癌细胞。不同体细胞来源的iPS细胞成瘤性有差异。因此,如何筛选安全型iPS细胞是该技术能够进入临床实验的关键。原子力显微镜作为一种三维形貌观察工具,不仅具备超高分辨率,而且支持在液体环境下工作,是一种理想的细胞观测设备。除了形貌观察外,原子力显微镜还可以多种表面属性进行定量观测。例如,基于力学测试的表面机械性能测试。这些特征为原子力显微镜应用于iPS细胞观测与筛选提供了技术基础。为此设计一个实验,分别用原子力显微镜观察未分化的iPS细胞和HeLa细胞。HeLa细胞是一种被广泛使用的癌变细胞,因此可以和iPS细胞进行对比观察。上图显示了SPM形状图像(a)HeLa细胞和(b)iPS细胞。用光学显微镜观察到的相应相位差图像分别显示在(c)和(d)中。图中箭头所示位置处的截面形状轮廓如(e)和(f)所示。从细胞形态上来看,HeLa细胞呈圆顶形,表面隆起比较高,约7um;而iPS细胞呈扁平状且细胞间粘附呈网状结构,细胞高约1.7um。仔细观察细胞之间的边界,可以看出HeLa细胞之间的边界呈凹陷状,而iPS细胞之间的边界是凸起的,而且呈网络状。据此可分析得知这两种细胞各自的间粘附具有差异,且HeLa细胞之间的粘附较弱,而iPS细胞之间的粘附较强。除了形貌观察外,原子力显微镜还可以通过力学测量获得细胞表面的机械性能。如下图所示,用探针针尖压触细胞表面,通过对探针获得的力反馈分析样品各类机械性能。对于本实验,在对64×64点的测量区域进行测量后,从获取的体数据中形成形状图像。该观察中使用的探针是由OlympusCorporation制造的OMCL-TR800PSA并且具有0.15N/m的弹簧常数。测量是在培养液中的活细胞条件下进行的。对细胞的最终压力(排斥力)为2.5nN。通过比较从探针与样品接触的位置到达到2.5nN的力的变化,确定样品的硬度。(a)和(b)显示了SPM观察到的HeLa和iPS细胞的细胞形状图像,(c)和(d)显示了相应的ZX断面图像,是从样品竖截面方向看时在(a)和(b)中箭头所示的X线位置处施加到探针的力的图像。图中上方为测量起点,下方白色虚线为压触终点,显示了样品截面形状轮廓。在ZX图像中,探针与样品接触后检测到力的位置以黄色到红色的颜色显示。因为这表明探针对细胞的变形,所以可以理解较大量的细胞变形显示细胞的较软部分。可以从细胞变形量了解硬度。(c)中的HeLa细胞显示出均匀的变形,但相比之下,在(d)中的iPS细胞中,细胞体较软,细胞间粘附区较硬。分析结果表明,HeLa细胞表面硬度比较均匀,软硬部分差别不大,而iPS细胞主体较软,细胞间粘附区较硬。由以上测试可知,利用原子力显微镜对iPS细胞进行表征,有潜力发展为正常细胞筛选以及剔除癌变细胞的合适工具。本文内容非商业广告,仅供专业人士参考。
  • 湿巾不干胶标签应测试初粘力、持粘性、剥离强度以提高反复使用性能一致
    湿巾不干胶标签的粘接性能是影响湿巾使用体验和包装完整性的重要因素。为了提高湿巾在反复使用过程中的性能一致性,对不干胶标签的初粘力、持粘性和剥离强度进行测试是非常必要的。以下是对这些测试的详细介绍:1. 初粘力测试初粘力是指不干胶标签在初期接触时的粘接能力,它反映了标签与湿巾包装或其他表面接触时的即时粘附性。这项测试对于确保标签能够在第一次使用时迅速粘附,并在后续使用中保持其粘性至关重要。2. 持粘性测试持粘性测试用于评估不干胶标签在一定时间内抵抗分离的能力。这项测试模拟了湿巾在使用过程中可能遇到的各种条件,如温度变化、湿度变化等,以确保标签在这些条件下仍能保持良好的粘接性能。3. 剥离强度测试剥离强度测试测量的是不干胶标签从湿巾包装或其他表面分离时所需的力。高剥离强度意味着标签更难被意外剥离,这对于保证湿巾包装的完整性和防止内容物泄漏非常重要。测试的必要性:提高用户体验:通过确保标签的粘接性能,可以提高用户在反复使用湿巾时的便利性和满意度。增强包装完整性:良好的粘接性能有助于保持湿巾包装的密封性,防止湿巾干燥和污染。质量控制:定期进行粘接性能测试可以监控和保证不干胶标签的质量,及时发现和解决潜在的质量问题。符合标准:满足相关的国家和国际标准,如ISO、ASTM等,确保产品的市场竞争力和消费者信任。测试方法:初粘力测试:通常使用初粘力测试仪,通过一定重量的钢球在一定高度自由落体,落在不干胶表面,评估标签的初粘性能。持粘性测试:持粘性测试仪将标签粘贴在测试板上,然后在一定的温度和湿度条件下保持一定时间,评估标签的粘附持久性。剥离强度测试:使用剥离强度测试仪,将标签粘贴在标准的测试材料上,然后以一定的速度和角度剥离,测量所需的力。结论对湿巾不干胶标签进行初粘力、持粘性和剥离强度的测试,对于提高湿巾产品的整体性能和用户满意度具有重要意义。通过这些测试,制造商可以优化不干胶标签的设计和材料选择,确保湿巾包装在各种使用条件下都能保持良好的粘接性能,从而提升产品的市场竞争力。
  • 东方德菲推出新品---LSA100DARF光学粘滞力测量仪
    LSA100DARF 光学粘滞力测量仪由德国LAUDA Scientific公司研发生产,LSA100DARF不仅具备一般光学接触角测量仪的常规功能, 而且能够直接测量液体和固体材料之间在界面上的相互作用力,是表面分析仪器领域中的一个开拓性创新!LSA100DARF 光学粘滞力测量仪的测量方法:|| 粘附力测量液滴在超疏材料表面上被拉伸过程中产生的垂直方向的粘附力是一个评价材料表面润湿性质的重要指标。 在高精度自动升降台的操控下,材料表面和液滴先相互挤压使得液固两相充分接触,然后缓慢拉伸直到液滴 和材料表面完全分离。软件通过液滴的形变量可以精确的计算出材料表面作用于液滴的垂直方向的粘附力。液体表面张力:72.8 mN/m 液滴体积 v:5 μl 最da粘附力:45.9 μN|| 滞留力测量光学粘滞力测量仪配置速度可控的离心转台时,仪器可以自动对液滴进行离心操控。置于材料表面上的液滴在旋转状态下产生侧向滑动的趋势,当离心驱动力达到最da滞留力数值的时候,液滴沿材料表面发生横向水 平滑动。在这一动态过程中,仪器利用视频同步触发技术通过软件计算能够准确得到材料表面作用于液滴的水平方向的滞留力。技术参数:1.软件计算方法: Laplace-Young (垂直粘附力) Truedrop method(水平滞留力)2.垂直粘附力测量: 样品台升降方式:自动可编程 样品台移动速度:0.04---500 mm/min 位置精度:0.05μm 测量分辨率:0.01μN3.水平滞留力测量 离心样品台控制方式: 自动可编程 zui大离心力(加速度): 40 g 转速范围: 0---750 rpm 控制精度: 2 rpm 旋转加速度: 1---100 rpm/s 测量分辨率: 0.01μN
  • 技术线上论坛|5月25日《如何实现自动化、高通量单细胞力谱测量?单细胞显微操作技术一步搞定!》
    [报告简介]单细胞粘附力作为生物机械学分支的重要组成部分,是细胞与外周相互作用的直观体现,能够有效的反映出细胞与基质或细胞之间相互作用能力。细胞与基质之间的作用力十分微小,一般都在nN别,过去通常使用原子力显微镜才能够进行测量。但是原子力显微镜方案往往具有通量低,操作繁琐等问题,使得单细胞力谱的研究非常繁琐。基于此,Cytosurge推出的全新多功能单细胞显微操作FluidFM技术给细胞力谱测量带来了新的希望。该技术结合了的原子力显微镜探测技术与微流体控制系统,能够直接通过使用中空的原子力探针将细胞通过负压抓取在探针表面,并不需要激活细胞的任何通路信号,为粘附力的测量带来了大的优势。一方面,这种方法能够提供远比蛋白结合牢固的多的粘附力,能够将细胞牢固的固定在探针上并且无需包被探针。另一方面,由于没有生物化学处理,这种方法不会改变任何细胞表面的通路,从而能够得到接近细胞原生的数据。该系统具备高度自动化,能够快速,全自动的完成力学的测定,让单细胞力谱研究变得十分容易。本报告将介绍FluidFM单细胞显微操作技术的原理和发展,并结合多篇发表在期刊Nature、Cell、Bioactive Materials等上的近科研成果,深入阐述这种技术在单细胞力谱测量方面的新进展。[直播入口]请扫描下方二维码进入FluidFM单细胞显微操作技术群,届时会在微信群中实时更新直播入口,无需注册!扫码进群,即刻获取直播链接,无需注册![报告时间]05月25日 下午15:00-16:00 [主讲人介绍]Tamás Gerecsei 亚太区席应用科学家,高FluidFM解决方案工程师,Cytosurge AGTamás是一位生物物理学家,毕业于Etvs Loránd(ELTE罗兰大学)。 在与FluidFM在学术环境中合作多年后,他加入了Cytosurge公司,成为了一名训练有素的微纳米系统工程师。在Cytosurge AG,Tamás不断推动并拓展FluidFM技术的应用边界,并使FluidFM技术应用于各地研究人员的课题中。您可以经常发现他在各种专业的学术会议上传播关于Cytosurge和FluidFM技术的信息。 郭亚茹 北京大学口腔医院,口腔医学中心,获中国博士后科学基金,并入选北京大学医学部 2021年博雅博士后项目,在Advanced functional materials、Bioactive Materials、Journal of dental research等杂志上以作者或共同作者的身份发表5篇。 2021年,在Bioactive Materials发表了题为:Matrix stiffness modulates tip cell formation through the p-PXN-Rac1-YAP signaling axis的研究文章,报道了基质硬度通过p-PXN-Rac1-YAP信号轴调节细胞形成,这项工作不仅有助于在组织工程和再生医学中寻找佳材料,也为肿瘤治疗和病理性血管再生提供了新的治疗策略。在生物材料设计和治疗一些病理情况方面具有特殊意义。本实验研究人员采用了多功能单细胞显微操作系统——FluidFM技术,实现了单个细胞的分离,单个细胞粘附力的测量。 [原理&应用简介]FluidFM技术如何测定细胞粘附力?众所周知,细胞在基质上进行单层培养时,吸附在基质表面时主要会产生两种不同类型的力,一种是细胞与基质之间的粘附力,另一种是细胞与细胞之间的粘附力。因此对于细胞粘附力来说,单个细胞的粘附力就是细胞与基质之间的作用力。而单层细胞的细胞粘附力则是细胞之间相互作用力和细胞基质与细胞之间作用力之和。如下图所示:因此只要同时测定单个细胞粘附力即可得到细胞与基质之间的相互作用力,而细胞间的相互作用力则可以通过同时测量单层细胞的细胞粘附力和单个细胞的粘附力做差得到,如下公式所示:Force cell-cell ≌ Force Monolayer – Force Indiv.cellFluidFM测量力学步骤与一般的原子力显微镜十分类似,但是操作却远比原子力显微镜简单,这得益于FluidFM有的中空探针。这种探针无需像普通原子力探针一样对探针进行修饰或者将细胞提前粘连在探针上,可以直接在液体中原位抓取细胞,完成粘附力测定,并且在测量后探针仍然可以继续进行测试,并且无需对探针进行更换或再修饰。FluidFM技术测量单细胞力谱的基本流程。仅需操作鼠标系统即可自动完成对细胞的抓取和粘附力的测量。此外FluidFM系统会自动记录探针运动轨迹和力学曲线,如上图中所示当探针开始靠近细胞后,探针表面开始出现压力变化,当系统达到设定力学值后系统会自动停止下降并开始施加负压抓住细胞。随着探针开始上升,细胞给予探针的拉力随之增高,并逐渐达到临界,随后细胞脱离基质,探针受力趋近于零,而这一过程中探针受力的大值即为细胞粘附力。FluidFM技术测量HeLa细胞核CHO细胞的粘附力。能够高通量测量单细胞粘附力谱FluidFM测量粘附力十分智能化,仅需5分钟即可完成单个细胞的粘附力测定,一天可完成上百个细胞的测量,能够大幅度提升单细胞力谱测量的通量,让单细胞力谱研究变得简单、快速、高通量。 应用举例一:FluidFM技术测定衰老内皮细胞的力谱内皮细胞衰老导致细胞表型的改变与心血管疾病有着密切关系。随着细胞的衰老,细胞的粘附力等机械属性会有很大改变,因此对于细胞粘附力的研究将有助于理解细胞衰老的变化。Nafsika Chala等人利用FluidFM技术对血管内皮细胞与基底之间的粘附力进行研究发现,衰老的细胞与正常细胞存在着nN别粘附力差异。如下图所示:FluidFM技术用于衰老与正常细胞的单细胞粘附力测定。对比衰老小、大和正常细胞的细胞尺寸(a)、细胞粘附力(b)和细胞周长(c)及单细胞粘附力/面积(e)和单细胞粘附力/周长(f)的变化。研究者认为,衰老内皮细胞的粘附力增加是与细胞的粘着斑增加有关,表明衰老细胞能够加强与基质的相互作用从而防止内皮剥脱,但是受制于血流的影响这种能力受到了很大限制。 应用举例二:FluidFM揭示应力依赖性酵母交配中的分子相互作用性凝集素是芽殖酵母酿酒酵母介导细胞聚集交配的关键蛋白。交配细胞表达的互补凝集素类“a”型和“α”型的结合是促进细胞的凝集和融合的关键。Marion Mathelié-Guinlet等通过测量“a”型和“α”型结合的单个特定键的强度(~100 pN),发现延长细胞间的接触能够大地增加了交配细胞间的粘附力,而这种增强可能是由于凝集素的表达。FluidFM技术用于酵母属间交配过程单细胞力谱测量。MATa与MATα相互作用的示意图(a)和Fluid测量细胞间相互作用示意图(b)及测量结果(c);用DTT和DEPC药物刺激研究二硫键和His273对粘附的影响(d)、其示机制意图(e)和无粘附、DTT和DEPC粘附发生的概率(f);以及物理应力增强MATa和MATα细胞之间的粘合力(g)、发生频率(h)及破裂长度(i)。此外,研究组发现凝集素二硫键在粘附过程中起到了关键作用,而这一作用主要来自于α-凝集素的组氨酸残基His273。更为有趣的是,作者发现机械张力增强了相互作用的强度,这可能是由于激诱导凝集素构象从弱结合折叠状态转换成强绑定伸展状态导致。这项研究很好地展现了一种理解控制酵母性别的复杂机制的可能方法。 总结 细胞粘附力测定在细胞生命科学研究中起着至关重要的作用,然而传统手段中有着各种各样的局限性,主要原因是缺乏一种能够有效抓取细胞并进行力学测定的手段。现如今FluidFM技术在细胞粘附力测定中的使用,使得研究者们有了一种能够有效、低损的方式抓取细胞,配合原子力显微镜的测量的特性,真正意义上做到、无损、快速的测量单细胞粘附力,帮助研究者寻找细胞粘附力与细胞生命发展、肿瘤细胞转移之间的关系。
  • 滚球法初粘性测试仪和环形初粘力测试仪检测的是同一种性能吗
    在探讨滚球法初粘性测试仪与环形初粘力测试仪是否检测同一种性能之前,我们首先需要深入理解这两种测试仪器的工作原理、应用场景以及它们各自所侧重测量的物理属性。通过对比分析,我们可以更清晰地认识到两者之间的异同点。一、测试原理与机制滚球法初粘性测试仪工作原理:滚球法初粘性测试仪,顾名思义,是通过观察特定重量的钢球在倾斜的试样表面滚落的最远距离,来评估材料的初粘性。测试时,将试样水平固定在测试台上,上方放置一定质量的钢球,并逐渐调整测试台的倾斜角度,直至钢球开始滚动并记录下滚动的最远距离。这个距离反映了材料表面对钢球的初始粘附能力,即初粘性。机制解析:此方法的核心在于模拟了材料在实际应用中,与轻小物体接触时产生的瞬间粘附效果。它侧重于测量材料表面的动态粘附特性,即在一定条件下,材料表面能够短暂保持接触物体不立即脱落的能力。环形初粘力测试仪工作原理:环形初粘力测试仪则采用了不同的测试原理。它利用一个特定形状和尺寸的环形压头,以恒定的速度或压力压在试样上,随后将环形压头与试样分离,通过测量分离过程中所需的最大力或能量,来量化材料的初粘力。这个过程模拟了材料在受到外力作用时,抵抗分离所需的力学性能。机制解析:环形初粘力测试仪更多地关注于材料表面在静态或准静态条件下的粘附强度,即材料表面与另一物体接触并尝试分离时,所展现出的抵抗分离的能力。这种测试方法对于评估材料的密封性、粘接强度等方面具有重要意义。二、检测性能的差异动态与静态的区分从上述原理可以看出,滚球法初粘性测试仪侧重于测量材料表面的动态粘附特性,即材料在受到外力作用(如倾斜角度变化导致的重力作用)时,表面能够短暂保持接触物体不脱落的能力。而环形初粘力测试仪则更侧重于评估材料在静态或准静态条件下的粘附强度,即抵抗分离所需的最大力或能量。应用场景的不同这两种测试方法的应用场景也因此而有所差异。滚球法初粘性测试仪因其简单快捷、易于操作的特点,广泛应用于胶带、不干胶、保护膜等材料的初粘性评估。它能够有效反映材料在实际使用过程中的粘附表现,为产品质量的控制提供重要依据。而环形初粘力测试仪则更适用于需要精确测量材料粘附强度的场合,如密封材料、粘合剂等领域的研发与质量控制。三、综合分析与结论综上所述,滚球法初粘性测试仪与环形初粘力测试仪虽然都涉及对材料初粘性能的测试,但它们所检测的具体性能并不完全相同。滚球法侧重于材料表面的动态粘附特性,而环形初粘力测试仪则更关注于静态或准静态条件下的粘附强度。因此,在选择测试方法时,应根据具体的应用场景和测试需求来确定使用哪种仪器,以确保测试结果的准确性和可靠性。此外,值得注意的是,随着科技的进步和测试技术的发展,新的测试方法和仪器不断涌现。在实际应用中,我们还可以结合多种测试手段,对材料的粘附性能进行全面、深入的评估,以更好地满足产品研发、质量控制以及市场应用的需求。总之,滚球法初粘性测试仪与环形初粘力测试仪各有其独特的测试原理和应用场景,它们共同构成了材料粘附性能测试领域的重要工具。通过科学合理地选择和使用这些工具,我们可以更加准确地了解材料的粘附性能,为相关领域的研发和创新提供有力支持。
  • 医用贴膏剂使用电子剥离试验机测试剥离强度时选择哪种测试方法合适
    医用贴膏剂是一种用于皮肤表面的药物制剂,其剥离强度是衡量产品性能的重要指标之一。在测试医用贴膏剂的剥离强度时,选择合适的测试方法至关重要,以确保测试结果的准确性和可靠性。电子剥离试验机是一种常用的设备,用于测定医用贴膏剂的剥离强度。以下是几种适合使用电子剥离试验机进行医用贴膏剂剥离强度测试的方法:180度剥离测试法:这种方法是将贴膏剂的背衬材料固定在试验机的一端,另一端固定在可移动的夹具上。测试时,夹具以恒定的速度移动,使贴膏剂沿180度方向剥离。这种方法适用于评估贴膏剂与皮肤或其他材料之间的粘附性能。90度剥离测试法:90度剥离测试与180度剥离测试类似,但剥离角度为90度。这种方法适用于测试贴膏剂的初始粘附力和剥离过程中的粘附稳定性。T-剥离测试法:T-剥离测试法模拟了贴膏剂在实际使用中从皮肤上剥离的情况。测试时,贴膏剂的一端固定,另一端沿T形的垂直臂方向剥离。这种方法可以评估贴膏剂在不同方向上的剥离性能。循环剥离测试法:循环剥离测试法通过在一定范围内反复剥离和粘贴贴膏剂,模拟实际使用中的循环剥离情况。这种方法有助于评估贴膏剂的耐久性和重复使用性能。温度和湿度控制测试法:在某些情况下,可能需要在特定温度和湿度条件下测试贴膏剂的剥离强度。电子剥离试验机通常配备有环境控制功能,可以在测试前对样品进行预处理,以模拟实际使用环境。动态剥离测试法:动态剥离测试法在测试过程中模拟了贴膏剂在运动或振动条件下的剥离性能。这种方法适用于评估贴膏剂在动态条件下的粘附稳定性。在选择测试方法时,需要考虑医用贴膏剂的具体应用场景、预期的使用条件以及相关的行业标准。例如,如果贴膏剂主要用于长时间固定在皮肤上,那么180度剥离测试法可能更为合适;如果需要评估贴膏剂在不同方向上的粘附性能,则T-剥离测试法可能更加适合。总之,选择合适的测试方法对于确保医用贴膏剂的质量和性能至关重要。电子剥离试验机提供了多种测试选项,可以根据具体需求进行选择,以获得准确可靠的测试结果。
  • 岛津原子力显微镜——表面之上(一)
    原子力显微镜是一种典型的表面分析工具。利用探针和表面的作用力,获取表面形貌、机械性能、电磁学性能等信息。但是,表面的状态往往是反应过程的最终表现,想要了解反应的动力学过程,只是着眼于“表面”明显就不够了。此外,对表面状态的诱发因素,也很难从表面的信息中获得。所以,表面的是最容易观察到的,但要究其根本,知其所以然,我们的视线要向“上”看,研究“界面”处的信息。表面之上,让表面不再肤浅。以原子力显微镜最基本的“力-距离”曲线为例。如下图所示,探针逐渐靠近样品表面直至接触,施加一定的作用力后再缓慢提起。在这个过程中,探针感受到的力和探针与样品表面间的距离标化曲线如下图。在逐步接近样品时,探针会受到一个吸引力,表现为曲线向负值方向有一个凹陷;然后逐步施加力至正值,停止;然后后撤探针,在脱离表面前会受到一个粘附力,形成第二个负值方向的凹陷。比较探针压入和提出的过程,探针的受力有一个明显的变化就是在提出过程中增加了探针表面与样品表面的粘附力作用。同时还要考虑样品表面的应力形变恢复带来的应力与吸附力作用距离延长。因此,从“力-距离”曲线中,我们可以获得压入-提出过程中,探针与样品保持接触阶段作用力的变化,由此分析得到杨氏模量;除此之外,在探针与样品表面脱离接触后,其范德华引力与粘弹性力在“界面层”仍然处于变化之中。分析这个阶段的粘附力力值和作用距离等数据,可以获得弹性形变恢复、粘性样品拉伸长度等信息。以上是针对一个点的分析,如果对一个面的每一个测试点都作如此分析,也就是通常所做的面力谱分析。如下图所示。一般而言,面力谱分析获得的是各类机械性能的面分布情况。如下图所示。但是,如果每一个测量点,我们都做如上的分析,还可以得到在垂直方向上,在探针针尖已经脱离了和样品表面的接触后的受力状态。从而获得了从表面向上一段距离内的力变化曲线。这样的数据用一个三维的图像表现出来呢,会给人更直观的认识。如下图所示。通过颜色变化表征垂直分布的力值变化,可以直观看到样品表面在受到压力后压缩和恢复程度,以及粘弹力的持续距离。前者可以反映样品的力学特征,后者可以反映表面化学成分,这个特征尤其在电化学和胶体科学领域非常重要。本文内容非商业广告,仅供专业人士参考。
  • “力”所能及——多功能单细胞显微操作系统FluidFM BOT在单细胞力学实验中的创新应用
    瑞士Cytosurge公司的多功能单细胞显微操作系统FluidFM BOT,是将原子力系统、微流控系统、纳米位移台系统合为一体的单细胞操作系统,能够在单细胞水平上为研究者提供很大的便利,可应用于单细胞力谱、单细胞质谱、单细胞基因编辑、细胞系构建、药物研发、医疗等领域。本文将从单细胞实验方法和多功能单细胞显微操作系统FluidFM BOT结构出发,详细介绍多功能单细胞显微操作系统FluidFM BOT在单细胞力学实验中的应用。 一. 单细胞实验方法简介 在细胞生物学实验中,由于细胞的异质性,每个细胞互相之间都存在一定差异,因此在单细胞层面研究细胞性质可以获得更加准确的结果。近年来,多种单细胞研究技术不断涌现,应用于医学诊断、组织工程和药物筛选等领域。 对于细胞力学测定,原子力显微镜(AFM)能够对单个细胞或生物分子进行高分辨成像和力谱测定,但是细胞与探针的结合过程不可逆,无法实现连续、快速的检测。 对于细胞分离/分选技术,可选的有玻璃细管、光镊、流式细胞分选和磁珠分选等方法,然而有的从表面分离细胞时容易损伤细胞,有的无法从同类细胞群中分离出单个细胞。 对于细胞注射与提取,可选用纳米喷泉探针、纳米针和碳纳米管等,然而这些方法无法实现飞升以下量的含量注射,且注射时间较长。 多功能单细胞显微操作系统FluidFM BOT,针对细胞力学测量、分离/分选、注射与提取等应用,在结合以上技术的优势的同时克服了这些技术固有的问题,是一套多功能的单细胞研究系统,在单细胞研究领域发挥着巨大作用。 二. 多功能单细胞显微操作系统FluidFM BOT结构 简单来说,多功能单细胞显微操作系统FluidFM BOT是AFM与微流控的结合,主要由AFM扫描头、压力控制器与微流控探针组成(图1)。AFM扫描头装载于倒置显微镜上,整体结构大致与普通AFM相同,主要区别是探针中间有微流通道,后端连接液体池,前端探针有一小孔,用于液体的流入流出。微流通道内径小于细胞,防止细胞进入堵塞;探针则有多种不同孔径和不同的弹性,可根据不同应用以及不同样本更换所需探针。图1 FluidFM BOT系统图示。(a)微流控系统与AFM的结合应用;(b)(c)(d)探针的特殊设计。 三. 单细胞力学应用 传统AFM用于单细胞力学测量时,需要对探针进行一定处理以粘附细胞,后再与需要和细胞相互作用的表面、分子或其他细胞相结合,有时会产生多个细胞粘附,且反复测力会导致细胞被破坏,使得每次测量都必须准备新的探针,实验效率较低。 多功能单细胞显微操作系统FluidFM BOT通过将AFM与微流控相结合,使单细胞力学实验更高效,更简洁。对于已经结合在表面的固定细胞,可根据细胞尺寸安装适用的探针,从上方接触需要测量的细胞,通过微流控系统施加负压吸起细胞,获得力-距离曲线;也可以吸取悬浮细胞,与表面或其他固定细胞接触后,测量力-距离关系。这种方法能够提供远比蛋白结合牢固的多的吸附力,能够将细胞牢固的固定在探针上面,因此能够用于直接从基质上分离;另一方面,由于没有生物处理,这种方法不会改变任何细胞表面的通路,从而能够得到接近细胞原生的数据。 单个细胞测量完成后可移动探针至细胞板其他孔内,施加正压将其释放,再回到实验孔吸取下一个细胞,意味着单个探针可以进行多次测量。 细胞粘附是许多生理过程的重要步骤,细胞粘附力的测定可以为组织形态发生、胚胎发育、肿瘤、免疫反应和微生物膜等研究提供重要信息。多功能单细胞显微操作系统FluidFM BOT支持真核和原核细胞与细胞板/培养皿表面、抗菌/粘性/抗体包被的表面或其他细胞的粘附力测量(图2)。图2 不同细胞在不同环境下的粘附力-距离曲线。(a)探针接近、暂停、吸取并拉伸细胞的过程中探针偏转随时间的变化;(b)Hela细胞与纤连蛋白包被的表面的粘附力-距离曲线;(c)不同接触时间下大肠杆菌与PLL表面的粘附力-距离曲线;(d)大肠杆菌与PLL表面的分离距离与接触时间的关系;(e)酿脓链球菌与玻璃表面的粘附力-距离曲线,表示多个球菌的连续分离;(f)单个细胞与单细胞层的粘附力-距离曲线。 Sankaran等人[1]使用多功能单细胞显微操作系统FluidFM BOT来研究在共价和非共价的表面整合素受体对细胞粘附力的影响。通过测定发现两者均可有效增加细胞的粘附能力,并且效果近似(图3)。图3使用FluidFM BOT测定共价键与非共价键的整合素受体之间RGD的区别。(a)实验示意图;(b)粘附力测定前后示意图;(c)粘附力-距离曲线;(d)大粘附力。 多功能单细胞显微操作系统FluidFM BOT还可用于测量细胞的应力以研究细胞骨架的性质。Sancho等人[2]将10μm的小胶球吸附于探针上,之后使用探针去压细胞直到探针压力达到2 nN,通过压痕曲线来分析细胞骨架变化。通过对比发现过量表达MSX1的细胞硬度显著高于普通细胞(图4)。图4 使用FluidFM BOT测定HUAEC中MSX1过表达对细胞骨架的影响。(d)实验示意图;(e)吸附10μm珠子;(f)下压时空白细胞的力学谱线;(g)下压时MSX1过表达细胞的力学谱线,凹陷更深、斜率更高,表示其刚度相对更高;(h)胶体压痕法的测量结果。 四. 其他应用 多功能单细胞显微操作系统FluidFM BOT可用于细胞内注射与提取(图3),通过力学测量,可以控制探针刺入细胞质或细胞核内进行飞升别含量的液体注射或提取。此外,FluidFM BOT系统还可用于细胞分离以及细胞延展性研究。图5 FluidFM BOT系统的细胞内注射过程。(a)探针对准细胞;(b)探针刺破细胞膜,注入含荧光染料的目标液体;(c)探针与细胞分离,注射完成。 多功能单细胞显微操作系统FluidFM BOT克服了现有单细胞技术的短板,将多种单细胞应用相结合,高通量、高效率地获取单细胞层面的详细数据,研究多种细胞性质,尤其适合应用于医疗、单细胞生物学、单细胞质谱、单细胞基因编辑、药物研发等领域。 多功能单细胞显微操作系统FluidFM BOT在Quantum Design中国子公司与北大生科院共建实验室成功安装,为了更好的服务客户,Quantum Design中国子公司提供样品测试、样机体验机会,还等什么?赶快联系我们吧! 电话:010-85120277/78 邮箱:info@qd-china.com,期待与您的合作! 参考文献:[1]. Cell Adhesion on Dynamic Supramolecular Surfaces Probed by Fluid Force Microscopy-Based Single-Cell Force Spectroscopy, ACS Nano 2017, 11, 4, 3867–3874.[2]. A new strategy to measure intercellular adhesion forces in mature cell-cell contacts. Sci Rep 7, 46152 (2017).
  • 黏着力试验机能否胜任胶带解卷力的测试需求
    在现代工业生产和科研领域中,胶带的性能评估至关重要。其中,胶带的解卷力作为衡量其使用性能的重要指标之一,直接关系到胶带在实际应用中的表现。而针对这一指标的测试,黏着力试验机能否胜任,成为了行业内广泛关注的焦点。一、胶带解卷力的定义与重要性胶带解卷力,又称胶带剥离力,是指从特定条件下卷绕的胶带卷上,剥离单位宽度胶带所需的力。这一指标直接反映了胶带与卷芯或剥离面之间的粘附性能,对于胶带的实际应用具有重要影响。在包装、运输、生产等各个环节中,胶带的解卷力过大或过小都可能导致一系列问题,如解卷困难、胶带断裂、贴合不良等,从而影响产品的质量和生产效率。二、黏着力试验机的工作原理与特点黏着力试验机是一种专门用于测量材料间粘附性能的试验设备。其工作原理通常是通过施加一定的力,使试样与测试面产生相对位移,从而测量出试样与测试面之间的粘附力。黏着力试验机具有测量精度高、操作简便、数据可重复性好等特点,在材料科学、化工、电子、包装等领域得到了广泛应用。三、黏着力试验机在胶带解卷力测试中的应用在胶带解卷力的测试中,黏着力试验机可以通过模拟实际使用条件,对胶带进行剥离操作,从而测量出胶带的解卷力。具体而言,测试过程中,将胶带试样固定在试验机的夹具上,通过调整夹具的角度和速度,使胶带试样与测试面产生相对位移,同时记录剥离过程中所需的力值。通过对不同条件下的测试结果进行比较和分析,可以得出胶带解卷力的变化规律及其影响因素。四、黏着力试验机在胶带解卷力测试中的优势精确度高:黏着力试验机采用先进的测量技术和控制系统,能够实现高精度的力值测量和位移控制,从而确保测试结果的准确性和可靠性。可重复性好:由于黏着力试验机采用标准化的测试方法和操作流程,因此测试结果具有良好的可重复性,方便进行不同批次或不同厂家生产的胶带之间的性能比较。操作简便:黏着力试验机通常具有友好的用户界面和便捷的操作方式,使得用户能够轻松上手并快速完成测试任务。数据处理方便:黏着力试验机通常配备有数据采集和处理系统,能够自动记录测试数据并进行统计分析,为用户提供直观、全面的测试结果报告。五、结论与展望综上所述,黏着力试验机在胶带解卷力测试中具有显著的优势和广泛的应用前景。随着科技的不断进步和市场的不断发展,相信未来会有更多先进、高效的测试设备和技术被引入到胶带行业中来,为胶带的性能评估和产品创新提供更加有力的支持。
  • 应用 | “德国总督楼”旧址琉璃瓦件的釉胎损毁研究
    研究背景1907年德国汉堡阿尔托纳区F. 0.施密特公司在山东青岛郊外信号山南麓半山坡建造了一座欧洲城堡式建筑作为“德国总督楼”(总督官邸)。在经历了几十年的风吹雨淋后,主楼的琉璃构件出现不同的病损。20世纪80年代,文物保护工作者对其进行了多次保护修复,其中为了与周围建筑环境颜色相协调,在琉璃构件表面施加了一层蓝色保护材料。目前,这些经过保护修复后的琉璃构件再次出现了表面保护材料与釉层脱落、胎体粉化等严重病变(图1)。 图1 绿色琉璃瓦的保存现状本工作通过分析青岛“德国总督楼”旧址博物馆绿色琉璃板瓦的表面保护材料、釉层、胎体以及胎釉结合层等不同结构的界面、显微形貌以及热性能变化,探究琉璃釉层脱落的主要变化过程以及产生的主要因素,从基础性科学研究角度确定琉璃釉层和胎体层状脱落的原因。实验仪器与条件界面张力分析采用德国KRÜ SS公司的DSA25接触角分析仪,测试不同表面的接触角和表面张力,然后根据Young - Dupre方程计算不同表面之间的界面张力和粘附功 ,其中 Young - Dupre公式为式中,Wsl为固液相粘附功;σs 、σl分别为固相、液相的表面张力;σsl为固液相界面张力;θ为接触角。当溶液粘附在不同表面的面积为a时,在等温等压条件下,由热力学可得在粘附过程中的降低表面自由晗(粘附功)为图2 DSA25接触角分析仪结论与讨论界面张力琉璃釉层的脱落从釉表面冰裂纹延伸至胎釉界面以及腐蚀胎体,针对各层之间的相互作用,分析不同界面的张力变化尤为重要。选取的样品包括保护层和釉层、腐蚀胎和未腐蚀胎等各部分,测试结果显示样品保护层、釉层、腐蚀胎和未腐蚀胎的表面能分别为45.57 mN/m、35.46 mN/m和61.37 mN/m和44.96 mN/m,其中釉层和腐蚀胎之间的表面能相差较大。表1. 不同界面层的粘附功和界面张力测试样品的表面能后,如表1所示,根据公式计算出保护层-釉之间的界面粘附功为88.52 mN/m,界面张力为0.16 mN/m,釉-腐蚀胎间的界面粘附功为78.96 mN/m,界面张力为1.52 mN/m,而腐蚀胎-未腐蚀胎的界面粘附功为87.99 mN/m,界面张力为8.83 mN/m。实验同时计算了脱落釉层施加表面材料的胎体和未处理胎体之间的界面粘附功为74.93 mN/m,界面张力为15.05 mN/m。众所周知,两相组成一个界面时,其界面张力的大小与界面两相质点间结合力的大小成反比。两相结合力越大,界面张力就越小;两相结合力越小,其界面张力就越大。所以对比发现:保护层和釉之间的界面张力相对最小,粘附功较大,说明保护层和釉层两相质点间结合力较大,而釉-腐蚀胎之间的界面张力较小,二者质点间结合相对较为紧密;区别最为明显的是腐蚀胎-未腐蚀胎之间以及脱落釉层施加表面材料的胎体和未处理胎体之间的界面张力相对最大,这两部分的结合最为疏松。显微形貌和不同相之间的界面张力和粘附功的变化,较为直接地展示出琉璃不同界面的结合状况以及容易出现病损的部位为胎釉界面的腐蚀胎-未腐蚀胎之间以及脱落釉层施加表面材料的胎体和未处理胎体之间。结论通过对山东青岛“德国总督楼”旧址建筑琉璃构件的表面保护材料、釉层和胎体的显微形貌、界面张力以及热性能等分析,确定了琉璃构件釉层和胎体呈层状脱落的主要原因。本文有删减,详细信息见原文[1] 张艳群,于文頔,赵静等.山东青岛“德国总督楼”旧址琉璃瓦件的釉胎损毁研究[J].文物保护与考古科学,2023,35(02):72-80.DOI:10.16334/j.cnki.cn31-1652/k.20210802225.
  • 电子剥离试验机测试压敏胶带的标准适用于捆扎线束胶带吗
    在胶带行业中,压敏胶带和捆扎线束胶带各自扮演着不同的角色。压敏胶带以其特有的粘附性能,广泛应用于各类包装、固定、密封等场景。而捆扎线束胶带则因其出色的绑扎、绝缘和固定性能,在电子、电气等领域发挥着不可替代的作用。然而,关于电子剥离试验机测试压敏胶带的标准是否适用于捆扎线束胶带这一问题,却常常引发业内的讨论和争议。一、电子剥离试验机与压敏胶带测试标准电子剥离试验机作为一种精密的测试设备,主要用于测量胶带在一定条件下的剥离强度。在压敏胶带的测试标准中,通常规定了剥离速度、剥离角度、剥离力等参数,以确保测试结果的准确性和可靠性。这些标准旨在反映压敏胶带在实际应用中的粘附性能,为产品质量的评估和改进提供依据。二、捆扎线束胶带的特性与应用捆扎线束胶带通常由尼龙或其他高强度材料制成,具有优异的绝缘性、耐磨性和耐候性。它主要用于电子线束的固定和绝缘保护,确保线束在复杂的工作环境中能够稳定运行。捆扎线束胶带不仅需要具备一定的粘附力,还需要能够承受一定的拉伸和剪切力,以满足线束固定的需求。三、电子剥离试验机测试标准与捆扎线束胶带的适用性从理论上讲,电子剥离试验机测试压敏胶带的标准在一定程度上可以应用于捆扎线束胶带的测试。毕竟,剥离强度是评估胶带粘附性能的重要指标之一。然而,在实际操作中,我们需要注意到捆扎线束胶带与压敏胶带在结构和性能上的差异。捆扎线束胶带往往需要承受更大的拉伸和剪切力,因此在测试时可能需要调整剥离速度、角度等参数,以更准确地反映其实际性能。此外,由于捆扎线束胶带的应用场景较为特殊,其阻燃性、耐磨损性和降噪性等性能也是评估其质量的重要指标。这些性能在电子剥离试验机的测试中可能无法得到充分体现,因此需要结合其他测试方法进行综合评估。四、结论与建议综上所述,电子剥离试验机测试压敏胶带的标准在一定程度上可以应用于捆扎线束胶带的测试,但需要注意调整测试参数以更准确地反映其实际性能。同时,为了全面评估捆扎线束胶带的质量,还需要结合其他测试方法进行综合评估。建议相关企业和研究机构在制定捆扎线束胶带测试标准时,充分考虑其特殊性能和应用场景,确保测试结果的准确性和可靠性。
  • 机械力调控B淋巴细胞免疫活化研究获新进展
    p   2017年7月31日,清华大学生命学院刘万里研究组在《eLife》期刊在线发表了名为《蛋白激酶Cβ(PKCβ)和黏着斑激酶协同调控B淋巴细胞的免疫活化对呈递抗原的基质硬度的敏感性》(Substrate stiffness governs the initiation of B cell activation by the concerted signaling of PKCβ and focal adhesion kinase)的研究论文,报道了机械力感知能力调控B淋巴细胞免疫活化的精细分子机制。清华大学生命学院巴基斯坦籍博士生萨明娜(Samina Shaheen),北京大学、清华大学和北京生命科学研究所联合培养博士研究生项目博士生万政鹏和生命科学学院本科生李宗昱是本文的共同第一作者,刘万里研究员为本文的通讯作者。 br/ /p p   本研究需要大力整合分子免疫学、细胞生物学、生物化学、新型材料科学、高精度活细胞成像和生物物理学等不同学科的交叉优势,涉及基因修饰小鼠脾脏B细胞和自身免疫疾病病人外周血B细胞等实验材料的广泛使用,在研究过程中得到了国内外同行的大力支持。 /p p   B淋巴细胞作为抗体免疫应答过程中的重要参与者,维系着人类的健康,B淋巴细胞的免疫活化进程在其质膜表面的B细胞受体(BCR)识别外来病原体抗原后启动。该课题组之前的工作揭示B淋巴细胞具有灵敏的机械力感知功能,利用B细胞受体(BCR)来精确地识别抗原的理化性状。该论文结合不同刚性抗原呈递基质系统和基于全内反射、共聚焦荧光显微镜的高速高分辨率成像系统,对机械力感知调控B淋巴细胞免疫活化的分子机制进行系统而全面的研究。该论文发现B淋巴细胞感受机械力调控其活化依赖于B细胞受体(BCR)下游信号分子。由佛波酯(PMA)诱导的蛋白激酶Cβ(PKCβ)激活可以绕过B细胞通常需要的酪氨酸激酶(Btk)和磷脂酶Cγ2(PLCγ2)信号分子来区分底物刚度。然而,这一过程依赖于由蛋白激酶Cβ(PKCβ)介导的黏着斑激酶(FAK)激活,进而表现出黏着斑激酶(FAK)介导的B细胞扩散和粘附反应的增强。黏着斑激酶(FAK)失活或缺陷将导致B细胞丧失鉴别基底刚性的能力,而粘附分子可以大大增强B细胞的这种能力。最后,该研究利用类风湿性关节炎患者的样品进行研究,发现与健康人相比,类风湿性关节炎患者的B细胞对基底刚度表现出不同的活化反应。这些发现更系统的提供了B细胞如何通过蛋白激酶Cβ(PKCβ)介导黏着斑激酶(FAK)激活的方式区分底物刚度并作出不同活化反应的分子解释。这些研究成果为B淋巴细胞的免疫识别、免疫活化和免疫调节研究提供了新的研究思路,帮助人们进一步理解自身免疫疾病,从而对探索相关疾病的致病机理、以及药物疫苗研发等重要工作提供新的理论依据。 /p p   刘万里研究员课题组一直致力于使用新型的高速高分辨率的活细胞单分子荧光成像技术结合传统的分子免疫学、生物化学和生物物理学研究手段,对B淋巴细胞的免疫活化及相关疾病的分子机制进行研究。继2013年在《免疫学杂志》(Journal of Immunology),2015年在《欧洲免疫学杂志》(European Journal of Immunology)和《eLife》上发表B淋巴细胞的免疫活化受到机械力调控的相关论文后,这一新成果是他对该领域的又一贡献。该研究由国家自然科学基金委、科技部和青年千人计划提供经费支持。萨明娜(Samina Shaheen)受到中国政府奖学金项目的支持。(来源:清华大学生命科学学院) /p p   论文链接: a href=" https://elifesciences.org/articles/23060" _src=" https://elifesciences.org/articles/23060" https://elifesciences.org/articles/23060 /a /p p style=" text-align: center " img src=" http://img1.17img.cn/17img/images/201708/noimg/e71fa001-dac6-4706-bca7-5f946b9f1f18.jpg" title=" 1.jpg" / /p p   蛋白激酶Cβ(PKCβ)和黏着斑激酶(FAK)协同调控B淋巴细胞的免疫活化对呈递抗原基质硬度的敏感性 /p p br/ /p
  • 拉力试验机检测胶粘贴剂的剥离强度有什么缺点和不足
    拉力试验机在检测胶粘贴剂的剥离强度时,虽然可以作为一种力学测试手段,但相比专门的卧式剥离试验机,确实存在一些缺点和不足。以下是拉力试验机在此应用中的几个主要问题:一、测试原理的局限性方向性不匹配:剥离强度测试要求的是沿着材料界面施加的剥离力,而拉力试验机主要用于测量材料在拉伸方向上的力学性能。这种方向性的不匹配可能导致测试结果无法准确反映胶粘贴剂在界面处的粘附性能。测试模式差异:卧式剥离试验机通过特定的夹具和测试模式,能够模拟更真实的剥离过程,而拉力试验机可能无法提供相同的测试条件,从而影响测试结果的准确性和可靠性。二、测试参数的难以精确控制剥离速度和角度:剥离速度和剥离角度是影响剥离强度测试结果的重要因素。拉力试验机在控制这些参数方面可能不如卧式剥离试验机精确,特别是在需要高精度控制时,可能导致测试数据的偏差。试样准备和夹持:胶粘贴剂的剥离强度测试对试样的准备和夹持有特殊要求。拉力试验机可能无法提供足够的夹具选择和试样准备指导,从而影响测试结果的稳定性和可重复性。三、测试结果的局限性数据解读困难:拉力试验机在测试过程中记录的数据可能更多地反映了材料的整体力学性能,而非界面处的粘附性能。因此,在解读测试结果时可能存在困难,难以直接得出剥离强度的准确值。缺乏多维度分析:卧式剥离试验机能够记录剥离力、剥离速度、剥离距离等多种数据,并进行多维度分析。而拉力试验机可能无法提供如此全面的数据分析功能,限制了测试结果的深入理解和应用。四、适用范围的限制材料类型限制:对于某些特定类型的胶粘贴剂或材料组合,拉力试验机可能无法提供准确的剥离强度测试结果。这是因为不同材料和界面间的粘附性能差异较大,需要采用更适合的测试方法和设备。应用场景限制:在实际应用中,胶粘贴剂的剥离强度往往与具体的应用场景密切相关。拉力试验机可能无法完全模拟这些场景下的测试条件,导致测试结果与实际应用存在偏差。总结拉力试验机在检测胶粘贴剂的剥离强度时存在测试原理局限性、测试参数难以精确控制、测试结果局限性以及适用范围限制等缺点和不足。相比之下,卧式剥离试验机在这些方面更具优势,能够提供更准确、可靠和全面的测试结果。因此,在选择测试设备时,应根据具体需求和测试标准来选择合适的试验机。
  • Elisa试剂盒双11大促销
    真正的打折,真正的实惠,疯狂双11大促销,利用ELISA进行临床检验常见的样本一般包括血液(指血,静脉血),尿,粪便,脑脊液,胸腹水,前列腺液,精液,阴道分泌物等,这些样本收集的时间、方法和保存都有一定的要求。Elisa试剂盒报价,Elisa试剂盒价格,Elisa试剂盒说明书,Elisa试剂盒技术,Elisa试剂盒售后,Elisa试剂盒免费代测详情咨询:人β干扰素(IFN-β/IFNB)Elisa试剂盒人可溶性CD38(sCD38)Elisa试剂盒人可溶性CD21(CR2/sCD21)Elisa试剂盒人可溶性瘦素受体(sLR)Elisa试剂盒人Toll样受体9(TLR-9/CD289)Elisa试剂盒人转化生长因子β2(TGFβ2)Elisa试剂盒人单核细胞趋化蛋白4(MCP-4/CCL13)Elisa试剂盒人白三烯D4(LTD4)Elisa试剂盒人N钙黏蛋白/神经钙黏蛋白(N-Cad)Elisa试剂盒人肝素结合性表皮生长因子(HB-EGF)Elisa试剂盒人红细胞刺激因子(ESF)Elisa试剂盒人肿瘤坏死因子相关激活诱导因子(TRANCE)Elisa试剂盒人生长激素释放因子(GH-RF)Elisa试剂盒人巨噬细胞趋化因子(MCF)Elisa试剂盒人α/β干扰素受体(IFN-α/βR)Elisa试剂盒人B细胞生长因子(BCGF)Elisa试剂盒人B细胞分化因子(BCDF)Elisa试剂盒人上皮细胞粘附分子(Ep-CAM/CD362)Elisa试剂盒人可溶性粘附分子(Sam)Elisa试剂盒人巨噬细胞替代激活相关化学因子1(AmAC-1)Elisa试剂盒人可溶性血管内皮生长因子受体2(VEGFR-2/sFLK-1)Elisa试剂盒人胸腺基质淋巴细胞生成素(TSLP)Elisa试剂盒人穿孔素/成孔蛋白(PF/PFP)Elisa试剂盒人多效生长因子(PTN)Elisa试剂盒人可溶性CD28(sCD28)Elisa试剂盒人淋巴细胞因子Elisa试剂盒人胸腺活化调节趋化因子(TARC/CCL17)Elisa试剂盒人神经细胞粘附分子配体1(NCAM-L1/CD171)Elisa试剂盒人神经保护因子(CVNPF)Elisa试剂盒人可溶性肿瘤坏死因子α受体(sTNFαR)Elisa试剂盒人可溶性细胞因子受体(sCKR)Elisa试剂盒人可溶性凋亡相关因子配体(sFASL)Elisa试剂盒人细胞凋亡抑制因子(IAP)Elisa试剂盒人集落刺激因子(CSF)Elisa试剂盒人γ干扰素诱导单核细胞因子(MIGF/CXCL9)Elisa试剂盒人干扰素诱导T细胞趋化因子(ITAC/CXCL11)Elisa试剂盒人CD14分子(CDl4)Elisa试剂盒人凋亡诱导因子(AIF)Elisa试剂盒人白细胞共同抗原(LCA/CD45)Elisa试剂盒人CD4分子(CD4)Elisa试剂盒人P钙黏蛋白/胎盘钙黏蛋白(P-cad)Elisa试剂盒人角化细胞生长因子(KGF)Elisa试剂盒人血小板衍生生长因子BB(PDGF-BB)Elisa试剂盒人CXC趋化因子配体16(CXCL16)Elisa试剂盒人CXC趋化因子受体3(CXCR3)Elisa试剂盒人γ干扰素诱导蛋白16/p16(IFI16/p16)Elisa试剂盒人基质细胞衍生因子1a(SDF-1a/CXCL12)Elisa试剂盒人淋巴细胞趋化因子(Lptn/LTN/XCL1)Elisa试剂盒人α干扰素(IFN-α)Elisa试剂盒人可溶性CD86(B7-2/sCD86)Elisa试剂盒人白介素27(IL-27)Elisa试剂盒人白介素23(IL-23)Elisa试剂盒人巨噬细胞移动抑制因子(MIF)Elisa试剂盒人组织因子途径抑制物(TFPI)Elisa试剂盒人干扰素诱导蛋白10(IP-10/CXCL10)Elisa试剂盒人白介素1(IL-1)Elisa试剂盒人白介素17(IL-17)Elisa试剂盒人白介素1β (IL-1β)Elisa试剂盒人表皮生长因子(EGF)Elisa试剂盒人碱性成纤维细胞生长因子(bFGF)Elisa试剂盒人巨噬细胞炎性蛋白5(MIP-5)Elisa试剂盒人可溶性E选择素(sE-selectin)Elisa试剂盒人可溶性细胞间粘附分子1(sICAM-1)Elisa试剂盒人细胞间粘附分子2(ICAM-2/CD102)Elisa试剂盒人细胞间粘附分子3(ICAM-3/CD50)Elisa试剂盒人结缔组织生长因子(CTGF)Elisa试剂盒人白介素18(IL-18)Elisa试剂盒人粘膜相关上皮趋化因子(MEC/CCL28)Elisa试剂盒人粘膜相关上皮趋化因子(MEC/CCL28)Elisa试剂盒人B细胞活化因子受体(BAFF-R)Elisa试剂盒人血管内皮细胞生长因子受体3(VEGFR-3/Flt-4)Elisa试剂盒人血管内皮细胞生长因子受体1(VEGFR-1/Flt1)Elisa试剂盒人血管内皮细胞生长因子D(VEGF-D)Elisa试剂盒人血管内皮细胞生长因子C(VEGF-C)Elisa试剂盒人血管内皮细胞生长因子A(VEGF-A)Elisa试剂盒人血管内皮细胞生长因子C(VEGF-C)Elisa试剂盒人血管内皮细胞生长因子B(VEGF-B)Elisa试剂盒人血管内皮细胞生长因子(VEGF)Elisa试剂盒人血管内皮细胞粘附分子1(VCAM-1/CD106)Elisa试剂盒人可溶性肿瘤坏死因子相关凋亡诱导配体(sTRAIL)Elisa试剂盒人肿瘤坏死因子相关凋亡诱导配体4(TRAIL-R4)Elisa试剂盒人肿瘤坏死因子相关凋亡诱导配体3(TRAIL-R3)Elisa试剂盒人肿瘤坏死因子相关凋亡诱导配体1(TRAIL-R1)Elisa试剂盒人肿瘤坏死因子β(TNF-β)Elisa试剂盒人肿瘤坏死因子α(TNF-α)Elisa试剂盒人肿瘤坏死因子可溶性受体Ⅱ(TNFsR-Ⅱ)Elisa试剂盒人肿瘤坏死因子可溶性受体Ⅰ(TNFsR-Ⅰ)Elisa试剂盒人转化生长因子β1(TGF-β1)Elisa试剂盒人转化生长因子α(TGF-α)Elisa试剂盒人基质细胞衍生因子1β(SDF-1β/CXCL12)Elisa试剂盒人干细胞因子受体(SCFR)Elisa试剂盒人干细胞因子/肥大细胞生长因子(SCF/MGF)Elisa试剂盒人可溶性CD40配体(sCD40L)Elisa试剂盒人可溶性CD30配体(sCD30L)Elisa试剂盒人正常T细胞表达和分泌因子(RANTES/CCL5)Elisa试剂盒人P选择素(P-Selectin/CD62P/GMP140)Elisa试剂盒人血血小板衍生生长因子AB(PDGF-AB)Elisa试剂盒人血血小板衍生生长因子可溶性受体α(PDGFsR-α)Elisa试剂盒人神经营养因子4(NT-4)Elisa试剂盒人神经营养因子3(NT-3)Elisa试剂盒人的神经生长因子(NGF)Elisa试剂盒人巨噬细胞炎性蛋白3β(MIP-3β/ELC/CCL19)Elisa试剂盒人巨噬细胞炎性蛋白3α(MIP-3α/CCL20)Elisa试剂盒人巨噬细胞炎性蛋白1β(MIP-1β/CCL4)Elisa试剂盒人巨噬细胞炎性蛋白1α(MIP-1α/CCL3)Elisa试剂盒人巨噬细胞来源的趋化因子(MDC/CCL22)Elisa试剂盒人巨噬细胞来源的趋化因子(MDC/CCL22)Elisa试剂盒人巨噬细胞集落刺激因子(M-CSF)Elisa试剂盒人单核细胞趋化蛋白3(MCP-3/CCL7)Elisa试剂盒人单核细胞趋化蛋白2(MCP-2/CCL8)Elisa试剂盒人单核细胞趋化蛋白1(MCP-1/CCL2/MCAF)Elisa试剂盒人L选择素(L-Selectin/CD62L)Elisa试剂盒人白介素9(IL-9)Elisa试剂盒人白介素8(IL-8/CXCL8)Elisa试剂盒人白介素6(IL-6)Elisa试剂盒人白介素-5(IL-5)Elisa试剂盒人白介素4(IL-4)Elisa试剂盒人白介素3(IL-3)Elisa试剂盒人白介素2可溶性受体β链(IL-2sRβ )Elisa试剂盒人白介素2可溶性受体α链(IL-2sRα/CD25)Elisa试剂盒人白介素2(IL-2)Elisa试剂盒人白介素1α(IL-1α )Elisa试剂盒人白介素1可溶性受体Ⅱ(IL-1sRⅡ)Elisa试剂盒人白介素1可溶性受体Ⅰ(IL-1sRⅠ)Elisa试剂盒人白介素16(IL-16)Elisa试剂盒人白介素13(IL-13)Elisa试剂盒人白介素12(IL-12/P70)Elisa试剂盒人白介素12(IL-12/P40)Elisa试剂盒人白介素11(IL-11)Elisa试剂盒人白介素10(IL-10)Elisa试剂盒人胰岛素样生长因子结合蛋白4(IGFBP-4)Elisa试剂盒人胰岛素样生长因子结合蛋白3(IGFBP-3)Elisa试剂盒人胰岛素样生长因子结合蛋白2(IGFBP2)Elisa试剂盒人胰岛素样生长因子结合蛋白1(IGFBP-1)Elisa试剂盒人胰岛素样生长因子2(IGF-2)Elisa试剂盒人胰岛素样生长因子1(IGF-1)Elisa试剂盒人γ干扰素(IFN-γ)Elisa试剂盒人细胞间粘附分子1(ICAM-1/CD54)Elisa试剂盒人肝细胞生长因子(HGF)Elisa试剂盒人粒细胞巨噬细胞集落刺激因子(GM-CSF)Elisa试剂盒人胶质细胞系来源的神经营养因子(GDNF)Elisa试剂盒人粒细胞集落刺激因子(G-CSF)Elisa试剂盒人中性粒细胞趋化蛋白2(NAP-2/CXCL7)Elisa试剂盒人趋化因子(fractalkine/CX3CL1) (TCA3)Elisa试剂盒人碱性成纤维细胞生长因子9(bFGF-9)Elisa试剂盒人碱性成纤维细胞生长因子6(bFGF-6)Elisa试剂盒人碱性成纤维细胞生长因子4(bFGF-4)Elisa试剂盒人酸性成纤维细胞生长因子1(aFGF-1)Elisa试剂盒人凋亡相关因子配体(FASL)Elisa试剂盒人凋亡相关因子(FAS/CD95)Elisa试剂盒人E选择素(E-Selectin/CD62E)Elisa试剂盒人嗜酸粒细胞趋化蛋白Eotaxin 1(Eotaxin 1/CCL11)Elisa试剂盒人鼠嗜酸粒细胞趋化因子(ECF)Elisa试剂盒人内分泌腺来源的血管内皮生长因子(EG-VEGF)Elisa试剂盒人睫状神经营养因子(CNTF)Elisa试剂盒人CD30分子(CD30)Elisa试剂盒人CXC趋化因子受体1(CXCR1)Elisa试剂盒人XC趋化因子受体1(XCR1)Elisa试剂盒人二级淋巴组织趋化因子(SLC/CCL21)Elisa试剂盒人E钙粘着蛋白/上皮性钙黏附蛋白(E-Cad)Elisa试剂盒人脑源性神经营养因子(BDNF)Elisa试剂盒人白细胞活化黏附因子(ALCAM)Elisa试剂盒人活化素A(ACV-A)Elisa试剂盒人神经调节蛋白1(NRG-1)Elisa试剂盒人心钠肽(ANP)Elisa试剂盒人多巴胺D2受体(D2R)Elisa试剂盒人内吗啡肽-2(EM-2)Elisa试剂盒人α-内吗啡肽(α-EP)Elisa试剂盒人抑制素(INH)Elisa试剂盒人神经元凋亡抑制蛋白(NAIP)Elisa试剂盒人食欲素/阿立新B(OX-B)Elisa试剂盒人促睡眠肽(DSIP)Elisa试剂盒人6-羟多巴胺(6-OHDA)Elisa试剂盒人心纳素(ANF)Elisa试剂盒人神经髓鞘蛋白(p2)Elisa试剂盒人精氨酸加压素(AVP)Elisa试剂盒人垂体腺苷酸环化酶激活肽(PACAP)Elisa试剂盒人微管相关蛋白2(MAP-2)Elisa试剂盒人神经丝蛋白(NF)Elisa试剂盒人利钾尿肽(KP)Elisa试剂盒人神经降压素(NT)Elisa试剂盒人神经激肽B(NKB)Elisa试剂盒人强啡肽(Dyn)Elisa试剂盒人脑啡肽(ENK)Elisa试剂盒人γ肽(Pγ)Elisa试剂盒人C型钠尿肽(CNP)Elisa试剂盒人阿立新A(Orexin A)Elisa试剂盒人神经肽Y(NP-Y)Elisa试剂盒人脑肠肽(BGP/Gehrelin)Elisa试剂盒人乙酰胆碱(ACH)Elisa试剂盒人脑钠素/脑钠尿肽(BNP)Elisa试剂盒人细胞角蛋白20(CK20)Elisa试剂盒人β内啡肽(β-EP)Elisa试剂盒人N端前脑钠素(NT-proBNP)Elisa试剂盒人前心钠肽(Pro-ANP)Elisa试剂盒人细胞角蛋白13(CK-13)Elisa试剂盒人细胞角蛋白17(CK17)Elisa试剂盒人制瘤素M受体(OSMR)Elisa试剂盒人B细胞淋巴瘤因子3(Bcl3)Elisa试剂盒人癌蛋白诱导转录物3(OIT3)Elisa试剂盒人P27蛋白(P27)Elisa试剂盒人P糖蛋白/渗透性糖蛋白(P-gp)Elisa试剂盒人大肠癌专一抗原3(CCSA-3)Elisa试剂盒人大肠癌专一抗原2(CCSA-2)Elisa试剂盒人大肠癌专一抗原4(CCSA-4)Elisa试剂盒人粘蛋白/粘液素5B(MUC5B)Elisa试剂盒人肠三叶因子(ITF)Elisa试剂盒人Dickkopf 1(DKK1)Elisa试剂盒人激肽释放酶11(KLK 11)Elisa试剂盒人生长调节致癌基因γ/黑素瘤生长刺激因子(GROγ/CXCL3/MGSA)Elisa试剂盒人生长调节致癌基因β/黑素瘤生长刺激因子(GROβ/CXCL2/MGSA)Elisa试剂盒人美丽线虫凋亡基因(CED-3)Elisa试剂盒人胸腺白血病抗原(TLa)Elisa试剂盒人肿瘤特异性移植抗原(TSTA)Elisa试剂盒人足细胞标记蛋白/足盂蛋白(PCX)Elisa试剂盒人乳腺癌易感蛋白1(BRCA-1)Elisa试剂盒人T细胞急性淋巴母细胞白血病相关抗原(TALLA-1/CD231)Elisa试剂盒人核仁形成区嗜银蛋白(Ag-NORs)Elisa试剂盒人硫氧化还原蛋白(Trx)Elisa试剂盒人窖蛋白(Cav-1)Elisa试剂盒人普通急性淋巴细胞白血病抗原(CALLA)Elisa试剂盒人黑色素细胞刺激素(MSH)Elisa试剂盒人表皮角蛋白(EK)Elisa试剂盒人细胞角蛋白21-1片段(CYFRA21-1)Elisa试剂盒人糖缺失性转铁蛋白(CDT)Elisa试剂盒人桥粒芯糖蛋白-1(DSG-E1)Elisa试剂盒人肿瘤标志物(CA724)Elisa试剂盒人中性粒细胞明胶酶相关脂质运载蛋白(NGAL)Elisa试剂盒人非小细胞肺癌抗原(LTA)Elisa试剂盒人肺癌标志物DR-70(DR-70TM)Elisa试剂盒人胚胎性硫糖蛋白抗原(FSA)Elisa试剂盒人本周蛋白(BJP) Elisa试剂盒人癌胚铁蛋白(CEF) Elisa试剂盒人鳞状细胞癌相关抗原(SCCAg)Elisa试剂盒人肿瘤特异性抗原(TSA) Elisa试剂盒人黑色素瘤转移表面黏附分子(MMSAM)Elisa试剂盒人乳腺癌易感蛋白2(BRCA-2)Elisa试剂盒人凋亡信号调节激酶I(ASK-1)Elisa试剂盒人凋亡信号调节激酶I(ASK-1)Elisa试剂盒人Bcl-2相关X蛋白(BAX)Elisa试剂盒人转移因子(TF)Elisa试剂盒人结肠癌抗原(CCA)Elisa试剂盒人H-ras Elisa试剂盒人c-sis Elisa试剂盒人c-jun Elisa试剂盒人c-fos Elisa试剂盒人c-myc癌基因产物(c-myc)Elisa试剂盒人Smad1 Elisa试剂盒人Smad7 Elisa试剂盒人肿瘤相关抗原(TAA)Elisa试剂盒人TGF-β诱导早期基因1(TIEG1)Elisa试剂盒人肿瘤血管生长因子(TAF)Elisa试剂盒人细胞角蛋白20(CK-20)Elisa试剂盒人细胞角蛋白19(CK-19)Elisa试剂盒人细胞角蛋白18(CK-18)Elisa试剂盒人嗜铬蛋白A(CgA)Elisa试剂盒人视网膜母细胞瘤抑制蛋白(pRB)Elisa试剂盒人生长调节致癌基因α/黑素瘤生长刺激因子(GROα/CXCL1/MGSA)Elisa试剂盒人成熟促进因子(MPF)Elisa试剂盒人去唾液酸糖蛋白受体(ASGPR)Elisa试剂盒人可溶性转铁蛋白受体(sTfR)Elisa试剂盒人金属硫蛋白(MT)Elisa试剂盒人小扁豆素结合型甲胎蛋白/甲胎蛋白异质体3(AFP-L3)Elisa试剂盒人小扁豆素结合型甲胎蛋白/甲胎蛋白异质体2(AFP-L2)Elisa试剂盒人小扁豆素结合型甲胎蛋白/甲胎蛋白异质体1(AFP-L1)Elisa试剂盒人黑色素瘤标记物(MART/Melan-A)Elisa试剂盒人高分子量细胞角蛋白(CK-HMW)Elisa试剂盒人肝癌抗原(PHC)Elisa试剂盒人凋亡蛋白酶激活因子1(Apaf-1)Elisa试剂盒人鼻咽癌(NPC)Elisa试剂盒人膀胱癌抗原(UBC)Elisa试剂盒人广谱细胞角蛋白(P-CK)Elisa试剂盒人癌基因蛋白质p190/bcr-abl Elisa试剂盒人膀胱肿瘤抗原(BTA)Elisa试剂盒人中期因子(MK)Elisa试剂盒人BH3结构域凋亡诱导蛋白(Bid)Elisa试剂盒人B细胞淋巴瘤因子2(Bcl-2)Elisa试剂盒人肿瘤特异生长因子/肿瘤相关因子(TSGF)Elisa试剂盒人色素上皮衍生因子(PEDF)Elisa试剂盒人克拉拉细胞蛋白(CC16) Elisa试剂盒人低氧诱导因子1α(HIF-1α)Elisa试剂盒人黑色素细胞抗体(MC Ab)Elisa试剂盒人转铁蛋白受体(TFR/CD71)Elisa试剂盒人P53(P53)Elisa试剂盒人细胞周期素D3(Cyclin-D3)Elisa试剂盒人细胞周期素D2(Cyclin-D2)Elisa 人细胞周期素D1(Cyclin-D1)Elisa试剂盒人内皮抑素(ES)Elisa试剂盒人铁蛋白(FE)Elisa试剂盒人微量转铁蛋白(MTF)Elisa试剂盒人基质金属蛋白酶组织抑制因子1(TIMP-1)Elisa试剂盒人髓鞘碱性蛋白抗体(MBP)Elisa试剂盒人组织多肽抗原(TPA)Elisa试剂盒人肺癌标志物Elisa试剂盒人胃癌标志物Elisa试剂盒
  • 最新人ELISA试剂盒产品上线
    人原钙黏素1(PCDH1)ELISA试剂盒 人白介素2受体(IL-2R)ELISA试剂盒 人皮肤T细胞虏获趋化因子(CTACK/CCL27)ELISA试剂盒 人胸肾表达趋化因子(BRAK/CXCL14)ELISA试剂盒 人B-淋巴细胞趋化因子1(BLC-1/CXCL13)ELISA试剂盒 人结缔组织活化肽Ⅲ(CTAPⅢ)ELISA试剂盒 人免疫球蛋白A Fc段受体Ⅰ(Fc&alpha RⅠ/CD89)ELISA试剂盒 人免疫球蛋白E Fc段受体Ⅱ(Fc&epsilon RⅡ/CD23)ELISA试剂盒 人免疫球蛋白G Fc段受体Ⅲ(Fc&gamma RⅢ/CD16)ELISA试剂盒 人免疫球蛋白G Fc段受体Ⅱ(Fc&gamma RⅡ/CD32)ELISA试剂盒 人免疫球蛋白G Fc段受体Ⅰ(Fc&gamma RⅠ/CD64)ELISA试剂盒 人免疫球蛋白G Fc段受体Ⅲ(Fc&gamma RⅢ/CD16)ELISA试剂盒 人免疫球蛋白G Fc段受体Ⅱ(Fc&gamma RⅡ/CD32)ELISA试剂盒 人免疫球蛋白G Fc段受体Ⅰ(Fc&gamma RⅠ/CD64)ELISA试剂盒 人粒细胞趋化蛋白-2(GCP-2/CXCL6)ELISA试剂盒 人糖基化依赖的细胞黏附分子(GlyCAM-1)ELISA试剂盒 人干扰素调节因子(IRF)ELISA试剂盒 人淋巴毒素&beta (LTB)ELISA试剂盒 人淋巴毒素&alpha (LTA)ELISA试剂盒 人CC趋化因子受体1(CCR1)ELISA试剂盒 人CX3C趋化因子受体1(CX3CR1)ELISA试剂盒 人肺部活化调节趋化因子(PARC/CCL18)ELISA试剂盒 人黏膜地址素细胞黏附分子(MAdCAM-1)ELISA试剂盒 人&beta 干扰素(IFN-&beta /IFNB)ELISA试剂盒 人可溶性CD38(sCD38)ELISA试剂盒 人可溶性CD21(CR2/sCD21)ELISA试剂盒 人可溶性瘦素受体(sLR)ELISA试剂盒 人Toll样受体9(TLR-9/CD289)ELISA试剂盒 人转化生长因子&beta 2(TGF&beta 2)ELISA试剂盒 人单核细胞趋化蛋白4(MCP-4/CCL13)ELISA试剂盒 人白三烯D4(LTD4)ELISA试剂盒 人N钙黏蛋白/神经钙黏蛋白(N-Cad)ELISA试剂盒 人红细胞刺激因子(ESF)ELISA试剂盒 人肿瘤坏死因子相关激活诱导因子(TRANCE)ELISA试剂盒 人生长激素释放因子(GH-RF)ELISA试剂盒 人巨噬细胞趋化因子(MCF)ELISA试剂盒 人&alpha /&beta 干扰素受体(IFN-&alpha /&beta R)ELISA试剂盒 人B细胞生长因子(BCGF)ELISA试剂盒 人B细胞分化因子(BCDF)ELISA试剂盒 人上皮细胞粘附分子(Ep-CAM/CD362)ELISA试剂盒 人可溶性粘附分子(Sam)ELISA试剂盒 人巨噬细胞替代激活相关化学因子1(AmAC-1)ELISA试剂盒 人可溶性血管内皮生长因子受体2(VEGFR-2/sFLK-1)ELISA试剂盒 人胸腺基质淋巴细胞生成素(TSLP)ELISA试剂盒 人穿孔素/成孔蛋白(PF/PFP)ELISA试剂盒 人多效生长因子(PTN)ELISA试剂盒 人可溶性CD28(sCD28)ELISA试剂盒 人淋巴细胞因子ELISA试剂盒 人胸腺活化调节趋化因子(TARC/CCL17)ELISA试剂盒 人神经细胞粘附分子配体1(NCAM-L1/CD171)ELISA试剂盒 人神经保护因子(CVNPF)ELISA试剂盒 人可溶性肿瘤坏死因子&alpha 受体(sTNF&alpha R)ELISA试剂盒 人可溶性细胞因子受体(sCKR)ELISA试剂盒 人可溶性凋亡相关因子配体(sFASL)ELISA试剂盒 人细胞凋亡抑制因子(IAP)ELISA试剂盒 人集落刺激因子(CSF)ELISA试剂盒 人&gamma 干扰素诱导单核细胞因子(MIGF/CXCL9)ELISA试剂盒 人干扰素诱导T细胞趋化因子(ITAC/CXCL11)ELISA试剂盒 人CD14分子(CDl4)ELISA试剂盒 人凋亡诱导因子(AIF)ELISA试剂盒 人白细胞共同抗原(LCA/CD45)ELISA试剂盒 人CD4分子(CD4)ELISA试剂盒 人P钙黏蛋白/胎盘钙黏蛋白(P-cad)ELISA试剂盒 人角化细胞生长因子(KGF)ELISA试剂盒 人血小板衍生生长因子BB(PDGF-BB)ELISA试剂盒 人CXC趋化因子配体16(CXCL16)ELISA试剂盒 人CXC趋化因子受体3(CXCR3)ELISA试剂盒 人&gamma 干扰素诱导蛋白16/p16(IFI16/p16)ELISA试剂盒 人基质细胞衍生因子1a(SDF-1a/CXCL12)ELISA试剂盒 人淋巴细胞趋化因子(Lptn/LTN/XCL1)ELISA试剂盒 人&alpha 干扰素(IFN-&alpha )ELISA试剂盒 人可溶性CD86(B7-2/sCD86)ELISA试剂盒 人白介素27(IL-27)ELISA试剂盒 人白介素23(IL-23)ELISA试剂盒 人巨噬细胞移动抑制因子(MIF)ELISA试剂盒 人组织因子途径抑制物(TFPI)ELISA试剂盒 人干扰素诱导蛋白10(IP-10/CXCL10)ELISA试剂盒 人白介素1(IL-1)ELISA试剂盒 人白介素17(IL-17)ELISA试剂盒 人白介素1&beta (IL-1&beta )ELISA试剂盒 人表皮生长因子(EGF)ELISA试剂盒 人碱性成纤维细胞生长因子(bFGF)ELISA试剂盒 人巨噬细胞炎性蛋白5(MIP-5)ELISA试剂盒 人可溶性E选择素(sE-selectin)ELISA试剂盒 人可溶性细胞间粘附分子1(sICAM-1)ELISA试剂盒 人细胞间粘附分子2(ICAM-2/CD102)ELISA试剂盒 人细胞间粘附分子3(ICAM-3/CD50)ELISA试剂盒 人结缔组织生长因子(CTGF)ELISA试剂盒 人白介素18(IL-18)ELISA试剂盒 人粘膜相关上皮趋化因子(MEC/CCL28)ELISA试剂盒 人粘膜相关上皮趋化因子(MEC/CCL28)ELISA试剂盒 人B细胞活化因子受体(BAFF-R)ELISA试剂盒 人血管内皮细胞生长因子受体3(VEGFR-3/Flt-4)ELISA试剂盒 人血管内皮细胞生长因子受体1(VEGFR-1/Flt1)ELISA试剂盒 人血管内皮细胞生长因子D(VEGF-D)ELISA试剂盒 人血管内皮细胞生长因子C(VEGF-C)ELISA试剂盒 人血管内皮细胞生长因子D(VEGF-D)ELISA试剂盒 人血管内皮细胞生长因子C(VEGF-C)ELISA试剂盒 人血管内皮细胞生长因子B(VEGF-B)ELISA试剂盒 人血管内皮细胞生长因子(VEGF)ELISA试剂盒 人血管内皮细胞粘附分子1(VCAM-1/CD106)ELISA试剂盒 人可溶性肿瘤坏死因子相关凋亡诱导配体(sTRAIL)ELISA试剂盒 人肿瘤坏死因子相关凋亡诱导配体4(TRAIL-R4)ELISA试剂盒 人肿瘤坏死因子相关凋亡诱导配体3(TRAIL-R3)ELISA试剂盒 人肿瘤坏死因子相关凋亡诱导配体1(TRAIL-R1)ELISA试剂盒 人肿瘤坏死因子&beta (TNF-&beta )ELISA试剂盒 人肿瘤坏死因子&alpha (TNF-&alpha )ELISA试剂盒 人肿瘤坏死因子可溶性受体Ⅱ(TNFsR-Ⅱ)ELISA试剂盒 人肿瘤坏死因子可溶性受体Ⅰ(TNFsR-Ⅰ)ELISA试剂盒 人转化生长因子&beta 1(TGF-&beta 1)ELISA试剂盒 人转化生长因子&alpha (TGF-&alpha )ELISA试剂盒 人基质细胞衍生因子1&beta (SDF-1&beta /CXCL12)ELISA试剂盒 人干细胞因子受体(SCFR)ELISA试剂盒 人干细胞因子/肥大细胞生长因子(SCF/MGF)ELISA试剂盒 人可溶性CD40配体(sCD40L)ELISA试剂盒 人可溶性CD30配体(sCD30L)ELISA试剂盒 人正常T细胞表达和分泌因子(RANTES/CCL5)ELISA试剂盒 人P选择素(P-Selectin/CD62P/GMP140)ELISA试剂盒 人血血小板衍生生长因子AB(PDGF-AB)ELISA试剂盒 人血血小板衍生生长因子可溶性受体&alpha (PDGFsR-&alpha )ELISA试剂盒 人神经营养因子4(NT-4)ELISA试剂盒 人神经营养因子3(NT-3)ELISA试剂盒 人的神经生长因子(NGF)ELISA试剂盒 人巨噬细胞炎性蛋白3&beta (MIP-3&beta /ELC/CCL19)ELISA试剂盒 人巨噬细胞炎性蛋白3&alpha (MIP-3&alpha /CCL20)ELISA试剂盒 人巨噬细胞炎性蛋白1&beta (MIP-1&beta /CCL4)ELISA试剂盒 人巨噬细胞炎性蛋白1&alpha (MIP-1&alpha /CCL3)ELISA试剂盒 人巨噬细胞来源的趋化因子(MDC/CCL22)ELISA试剂盒 人巨噬细胞来源的趋化因子(MDC/CCL22)ELISA试剂盒 人巨噬细胞集落刺激因子(M-CSF)ELISA试剂盒 人单核细胞趋化蛋白3(MCP-3/CCL7)ELISA试剂盒 人单核细胞趋化蛋白2(MCP-2/CCL8)ELISA试剂盒 人单核细胞趋化蛋白1(MCP-1/CCL2/MCAF)ELISA试剂盒 人L选择素(L-Selectin/CD62L)ELISA试剂盒 人白介素9(IL-9)ELISA试剂盒 人白介素8(IL-8/CXCL8)ELISA试剂盒 人白介素6(IL-6)ELISA试剂盒 人白介素-5(IL-5)ELISA试剂盒 人白介素4(IL-4)ELISA试剂盒 人白介素3(IL-3)ELISA试剂盒 人白介素2可溶性受体&beta 链(IL-2sR&beta )ELISA试剂盒 人白介素2可溶性受体&alpha 链(IL-2sR&alpha /CD25)ELISA试剂盒 人白介素2(IL-2)ELISA试剂盒 人白介素1&alpha (IL-1&alpha )ELISA试剂盒 人白介素1可溶性受体Ⅱ(IL-1sRⅡ)ELISA试剂盒 人白介素1可溶性受体Ⅰ(IL-1sRⅠ)ELISA试剂盒 人白介素16(IL-16)ELISA试剂盒 人白介素13(IL-13)ELISA试剂盒 人白介素12(IL-12/P70)ELISA试剂盒 人白介素12(IL-12/P40)ELISA试剂盒 人白介素11(IL-11)ELISA试剂盒 人白介素10(IL-10)ELISA试剂盒 人胰岛素样生长因子结合蛋白4(IGFBP-4)ELISA试剂盒 人胰岛素样生长因子结合蛋白3(IGFBP-3)ELISA试剂盒 人胰岛素样生长因子结合蛋白2(IGFBP2)ELISA试剂盒 人胰岛素样生长因子结合蛋白1(IGFBP-1)ELISA试剂盒 人胰岛素样生长因子2(IGF-2)ELISA试剂盒 人胰岛素样生长因子1(IGF-1)ELISA试剂盒 人&gamma 干扰素(IFN-&gamma )ELISA试剂盒 人细胞间粘附分子1(ICAM-1/CD54)ELISA试剂盒 人肝细胞生长因子(HGF)ELISA试剂盒 人粒细胞巨噬细胞集落刺激因子(GM-CSF)ELISA试剂盒 人胶质细胞系来源的神经营养因子(GDNF)ELISA试剂盒 人粒细胞集落刺激因子(G-CSF)ELISA试剂盒 人中性粒细胞趋化蛋白2(NAP-2/CXCL7)ELISA试剂盒 人趋化因子(fractalkine/CX3CL1) ELISA试剂盒 人碱性成纤维细胞生长因子9(bFGF-9)ELISA试剂盒 人碱性成纤维细胞生长因子6(bFGF-6)ELISA试剂盒 人碱性成纤维细胞生长因子4(bFGF-4)ELISA试剂盒 人酸性成纤维细胞生长因子1(aFGF-1)ELISA试剂盒 人凋亡相关因子配体(FASL)ELISA试剂盒 人凋亡相关因子(FAS/CD95)ELISA试剂盒 人E选择素(E-Selectin/CD62E)ELISA试剂盒 人嗜酸粒细胞趋化蛋白Eotaxin 1(Eotaxin 1/CCL11)ELISA试剂盒 人鼠嗜酸粒细胞趋化因子(ECF)ELISA试剂盒 人内分泌腺来源的血管内皮生长因子(EG-VEGF)ELISA试剂盒 人睫状神经营养因子(CNTF)ELISA试剂盒 人CD30分子(CD30)ELISA试剂盒 人CXC趋化因子受体1(CXCR1)ELISA试剂盒 人XC趋化因子受体1(XCR1)ELISA试剂盒 人二级淋巴组织趋化因子(SLC/CCL21)ELISA试剂盒 人E钙粘着蛋白/上皮性钙黏附蛋白(E-Cad)ELISA试剂盒 人脑源性神经营养因子(BDNF)ELISA试剂盒 人白细胞活化黏附因子(ALCAM)ELISA试剂盒 人活化素A(ACV-A)ELISA试剂盒 人神经调节蛋白1(NRG-1)ELISA试剂盒 人心钠肽(ANP)ELISA试剂盒 人多巴胺D2受体(D2R)ELISA试剂盒 人内吗啡肽-2(EM-2)ELISA试剂盒 人&alpha -内吗啡肽(&alpha -EP)ELISA试剂盒 人抑制素(INH)ELISA试剂盒 人神经元凋亡抑制蛋白(NAIP)ELISA试剂盒 人食欲素/阿立新B(OX-B)ELISA试剂盒 人促睡眠肽(DSIP)ELISA试剂盒 人6-羟多巴胺(6-OHDA)ELISA试剂盒 人心纳素(ANF)ELISA试剂盒 人神经髓鞘蛋白(p2)ELISA试剂盒 人精氨酸加压素(AVP)ELISA试剂盒 人垂体腺苷酸环化酶激活肽(PACAP)ELISA试剂盒 人微管相关蛋白2(MAP-2)ELISA试剂盒 人神经丝蛋白(NF)ELISA试剂盒 人利钾尿肽(KP)ELISA试剂盒 人神经降压素(NT)ELISA试剂盒 人神经激肽B(NKB)ELISA试剂盒 人强啡肽(Dyn)ELISA试剂盒 人脑啡肽(ENK)ELISA试剂盒 人&gamma 肽(P&gamma )ELISA试剂盒 人C型钠尿肽(CNP)ELISA试剂盒 人阿立新A(Orexin A)ELISA试剂盒 人神经肽Y(NP-Y)ELISA试剂盒 人脑肠肽(BGP/Gehrelin)ELISA试剂盒 人乙酰胆碱(ACH)ELISA试剂盒 人脑钠素/脑钠尿肽(BNP)ELISA试剂盒 人细胞角蛋白20(CK20)ELISA试剂盒 人&beta 内啡肽(&beta -EP)ELISA试剂盒 人N端前脑钠素(NT-proBNP)ELISA试剂盒 人前心钠肽(Pro-ANP)ELISA试剂盒 人细胞角蛋白13(CK-13)ELISA试剂盒 人细胞角蛋白17(CK17)ELISA试剂盒 人制瘤素M受体(OSMR)ELISA试剂盒 人B细胞淋巴瘤因子3(Bcl3)ELISA试剂盒 人癌蛋白诱导转录物3(OIT3)ELISA试剂盒 人P27蛋白(P27)ELISA试剂盒 人P糖蛋白/渗透性糖蛋白(P-gp)ELISA试剂盒 人大肠癌专一抗原3(CCSA-3)ELISA试剂盒
  • 表面活性剂:从分子到纳米粒子
    p   韩国科学技术信息通信部发布消息称,韩国先进软性物质研究团组利用纳米粒子研制出表面活性剂。该研究结果刊登在国际学术杂志《自然》上。 /p p   表面活性剂是广泛用于肥皂、洗涤剂、洗发水等生活用品的化学物质。在一个分子中存在易粘附于水和易粘附于油两个部分,使用表面活性剂可将水、油分离,呈现水滴形态。因此,利用表面活性剂传送特定物质(药物等)可作为新一代医学材料,特别是作为调节液体水滴的技术可广泛应用于制药、疾病诊断、新药开发等领域。 /p p   现有调节液体水滴的技术多采用“分子表面活性剂”,是使表面活性剂包裹的液体水滴受到外部刺激的分子结构设计方式,但想实现两种以上刺激反应难度较大。此次研究组利用纳米粒子具有杀死细菌以及运送酵素等多种功能的特点,研制出可在多种刺激下控制液体水滴的“纳米粒子表面活性剂”,比现有分子表面活性剂具有更多样的功能。通过纳米表面活性剂可对电、光、磁场全部反应,磁场和光可以调节液体水滴的位置以及移动、旋转速度,并可以与电场结合。例如,使用操纵液体水滴移动或组合的工具可将活体细胞植入液体水滴里培养或将利用液体水滴还原细胞内的酵素反应等需要特殊环境的制药、生物医学领域。 /p p br/ /p
  • 2012年布鲁克原子力显微镜西安用户研讨会圆满召开
    2012年9月27日,德国布鲁克纳米表面仪器部原子力显微镜西安用户研讨会在西安交通大学圆满召开。会议得到了西安各高校、研究所的积极响应及到会参与。 布鲁克公司纳米表面仪器部亚太区销售总监时晓明先生对布鲁克公司以及布鲁克纳米表面仪器部的发展历程和产品特色,做了精彩的阐述。随后布鲁克纳米表面仪器部中国区应用科学家仇登利博士何龙飞博士针对布鲁克最新研发的自动优化全智能扫描模式、纳米尺度定量机械性能测试模式、峰值力隧道电流显微术、AFM-Raman联用、针尖增强拉曼、AFM快速扫描技术、生物型快速扫描原子力显微镜等产品和技术进行了详细而专业的讲解,这些内容将加深广大AFM用户对原子力显微镜强大功能和广泛用途的认识,大大提高用户在仪器使用、操作、结果分析上的熟练掌握程度。此外,布鲁克客户服务中心主管孙昊博士,还为大家详细讲解了布鲁克纳米表面仪器部在中国强大的售后服务资源,布鲁克中国维修中心也将于2012年10月11日在北京正式成立,提供专业及时的电话咨询、测试、维修、培训等服务。 专题报告结束后,为各位老师和同学安排了充裕的答疑和现场测试时间。基于不同领域和研究方向对于仪器的实际操作需要,布鲁克工程师们与广大原子力显微镜、光学轮廓仪和摩擦磨损测试设备使用者就仪器的操作技巧、数据处理、常见问题分析等展开了热烈的讨论。 本次技术交流会得到了用户的广泛好评,通过面对面的交流畅谈,解疑答惑,用户对布鲁克纳米表面仪器部在技术、应用、服务及管理等方面给予了更多的信赖。客户对本次交流会的专题报告和现场仪器演示给予高度评价,希望类似的技术研讨会议能经常举办。通过技术交流会,我们有机会更好地了解客户实际操作过程中存在的各种问题及客户对仪器的切实需求,促进仪器功能的持续创新,以及为用户提供更好更完善的客户服务。 布鲁克公司纳米表面仪器部 作为表面观测和测量技术的全球领导者,布鲁克公司纳米表面仪器部提供世界上最完整的原子力显微镜、三维非接触式光学形貌仪、探针式表面轮廓仪以及摩擦磨损测试系列产品。布鲁克公司纳米表面仪器部一直着眼于研发新的计量检测方法和工具,不断迎接挑战,致力于为客户解决各种技术难题,提供最完善的解决方案。此外,还可根据工业生产中的操作模式和操作习惯,精简仪器功能,针对生产中的特定应用需求,为客户量身打造相匹配的仪器设备,简化生产过程的操作流程,提高工作效率。布鲁克的表面测量仪器广泛用于大学、研究所,工业领域的LED行业、太阳能行业、触摸屏行业、半导体行业以及数据存储行业等,进行科学研究、产品开发、质量控制及失效分析,提供符合需求和预算的最佳解决方案。 畅销15年,作为世界上最受欢迎,分辨率做高的原子力显微镜,已经成为AFM高分辨成像的标杆。现在Bruker推出全新升级版MultiMode® 8原子力显微镜,添加更多功能和配件,是这套系统更趋于完美。全新专利技术ScanAsystTM ---自动优化全智能扫描模式:世界上第一个自动优化成像参数的AFM扫描模式,采用智能演算方法自动连续地监测图像质量,适时作出相应的参数调整。使用ScanAsyst™ 模式,不必繁琐地调整setpoint、反馈增益、扫描速度等参数,只要选定所需扫描区域和扫描范围,即轻松获得高质量图像。PeakForce QNM --峰值力定量机械性能测试模式:Bruker专利的新型成像模式,可以对材料进行纳米尺度的力学性质定量检测表征,获得材料的粘附力和弹性模量图像,同时还能得到样品形貌的高分辨图像。使用 PeakForce QNM操作模式,可以延长探针的使用寿命,降低针尖更换频率,维持样品完整性和测量准确度,这些优势条件下,除了获得样品高分辨形貌图像,无需额外操作,即可获得样品的杨氏模量和粘附力图谱。 Dimension FastScan AFM - 世界上扫描速度最快、分辨率最高的原子力显微镜 在空气或液体中,Dimension FastScan的成像速度是原来AFM成像速度的100倍,自动激光调节和检测器调节,智能进针,大大缩短了实验时间,无论在大气下或者溶液环境中,都有可能每秒钟获得1张高分辨的AFM图像。 客户服务热线:400-890-5666 邮箱:sales.asia@bruker-nano.com
  • 布鲁克公司纳米表面仪器部国内首台红外原子力显微镜安装调试成功
    近日,国内首台红外原子力显微镜(Inspire)在北京化工大学安装调试成功。 Inspire™ 系统是Bruker公司最新推出的基于AFM的纳米尺度下红外表征系统。它可以在通常的AFM成像速度下,采集样品的红外反射和吸收图像,从而获得样品的化学成分信息。结合Bruker独有的PeakForce TappingTM ,在获得高分辨形貌的同时,可获得样品的模量、粘附力等力学信息,样品的电导性、功函数等电学信息,和纳米尺度上的化学成分信息,提供了材料多维度的关联信息,为材料科学微观尺度的检测提供了新的视野。Inspire红外原子力显微镜安装过程安装过程样品测试结果了解更多的产品信息请进入http://www.instrument.com.cn/netshow/SH100735/ 或直接登陆布鲁克公司官网。
  • 新标准:颗粒 微生物气溶胶采样和分析(GB/T38517-2020)
    由我司(青岛众瑞智能仪器有限公司)参与起草的《颗粒 微生物气溶胶采样和分析通则(GB/T38517-2020)》已于2020年3月6日正式发布,并将于6月1日正式实施。 本标准为环境空气中细菌、病毒、真菌和毒素等不同特性的生物气溶胶(也称之为空气微生物)的采样提供了采样方法和生物气溶胶的分析,其中,采样方法包括采样原理、采样器的选择和采样过程中应关注的问题;分析方法包括分析方法的类型、方法的适用性、分析结果的表达方式。 一 生物气溶胶采样方法及采样器 众瑞仪器相关产品 ZR-2000型智能空气微生物采样器是经精心研制的新型智能空气微生物采样器,主机配备不同的采样终端可以实现安德森采样、冲击式采样、过滤式采样等功能,做到一机多用,具有极高的性价比。该仪器可广泛应用于环保、医疗卫生、食品工业、发酵工业、制药工业、农牧业、工矿企业、劳动卫生以及其它相关研究部门。 1 撞击式采样原理:利用惯性作用,通过喷嘴、喷口或裂隙的加速作用把生物气溶胶粒子采集到固体介质表面的气溶胶采集方式。 众瑞仪器相关配件 ZR-A01型二级安德森采样头是微生物采样专用器皿,采用惯性撞击原理,既能测定空气中微生物的总数,又能区分可吸入微粒和不可吸入微粒的数量。采样头每级中放置一个装有琼脂培养基的培养皿,用于收集空气中的微生物粒子,采样过程中,微生物粒子会随气流的撞击留在培养基上,随后培养皿取出培养后,可进行菌落总数统计或单独菌落分析。技术特点:标准撞击法筛孔式工作方式。标准二级分层生物气溶胶采样。 ZR-A02型六级安德森采样头是符合国际标准的多级采样装置,用于监测细菌和真菌的浓度和粒径分布,它可以真实模拟人类肺部的沉积情况进行采集所有微粒,无论物理尺寸、形状或密度,都具有较高的准确度和可靠性。采样头每级中放置一个装有琼脂培养基的培养皿,用于收集空气中的微生物粒子,采样过程中,微生物粒子会随气流的撞击留在培养基上,随后培养皿取出培养后,可进行菌落总数统计或单独菌落分析。技术特点:标准撞击法筛孔式工作方式;标准六级分层生物气溶胶采样; ZR-A05型八级安德森采样头是一个多孔、层叠碰撞(空气)取样器,通常用于环境中的需氧细菌和真菌浓度和颗粒大小分布的测量。该采样器可以根据人体肺部的沉积情况进行采集所有微粒,无论物理尺寸、形状或密度。采样器的每级中可放置一个装有琼脂培养基的培养皿,用于收集采样空气中的微生物粒子,微生物粒子会随气流的撞 击留在培养基上。随后培养皿可以取出,进行培养后,用菌落计算公式计算。技术特点:标准撞击法筛孔式工作方式;标准八级分层生物气溶胶采样; 2 冲击式采样能够使具有足够大惯性的生物气溶胶粒子撞击液体并进入液体介质中的气溶胶采集方式。 众瑞仪器相关配件 ZR-A03型冲击式采样头是微生物采样专用器皿,其工作原理是利用喷射气流的方式将空气中的微生物粒子采集于小量的采样液体中。在吸收瓶中加入采样液后,启动抽气动力,空气就从吸收瓶入口处进入,由于入气口末端喷咀孔径狭小,因而微生物气溶胶在此处流动加速,当速度达到一定程度后,空气中的微生物粒子被冲击到吸收瓶的采样液中,由于液体的粘附性,将微生物粒子捕获。 ZR-B01型空气微生物吸收瓶(AGI-30)是微生物采样专用器皿,其工作原理是利用喷射气流的方式将空气中的微生物粒子采集于小量的采样液体中。在吸收瓶中加入采样液后,启动抽气动力,空气就从吸收瓶入口处进入,由于入气口末端喷咀孔径狭小,因而微生物气溶胶在此处流动加速,当速度达到一定程度后,空气中的微生物粒子就冲击到吸收瓶的采样液中,由于液体的粘附性,将微生物粒子捕获。 ZR-B02型空气微生物吸收瓶(AGI)是微生物采样专用器皿,其工作原理是利用喷射气流的方式将空气中的微生物粒子采集于小量的采样液体中。在吸收瓶中加入采样液后,启动抽气动力,空气就从吸收瓶入口处进入,由于入气口末端喷咀孔径狭小,因而微生物气溶胶在此处流动加速,当速度达到一定程度后,空气中的微生物粒子被冲击到吸收瓶的采样液中,由于液体的粘附性,将微生物粒子捕获。 二生物气溶胶采样方法的选择 新标准中,生物气溶胶细分为细菌、真菌、病毒及毒素四钟,采样方法主要分为定量、定性两种,以细菌为例(其他种类可点击“阅读原文”下载原文件查看):
  • 布鲁克成功举办2013年原子力显微镜上海技术交流会及应用培训班
    2013年5月7-10日,布鲁克原子力显微镜上海技术交流会和培训班在中国科学院上海应用物理所,与第五届原子力显微镜生物医学国际学术会议(5th AFM BioMed)同期举行。会议得到了全国各高校、研究所以及部分欧美高校研究人员的积极响应及到会参与。 布鲁克公司纳米表面仪器部美国总部高级产品运营总监Dean Dawson先生对布鲁克公司以及布鲁克纳米表面仪器部的发展历程和产品特色,做了精彩的阐述。随后布鲁克纳米表面仪器部中国区应用科学家龙飞博士、亚太区应用科学家孙万新博士和李昂博士针对 布鲁克最新研发的生物型原子力显微镜Catalyst,尤其是快速扫描生物型原子力显微镜Dimension FastScan Bio,与到会者探讨了利用原子力显微镜如何快速获取生物样品的高分辨AFM图像,以及直观获取高分辨图像之外其他生物学样品信息的收集和分析。作为原子力显微镜操作使用方面的专家,尤其是在生命科学领域具有多年的研究工作经历,李昂博士还结合自己的研究经验,与大家交流了做好生物学实验的心得体会,如何准备高质量的生物学样品,如何对探针进行合理修饰,并最终获得高分辨的AFM图像。 这些内容将加深广大AFM用户对原子力显微镜强大功能和生命科学领域应用的认识,大大提高用户在仪器使用、操作、结果分析上的熟练掌握程度。 技术交流会结束后,为各位老师和同学安排了充裕的答疑和现场测试时间。基于不同领域和研究方向对于仪器的实际操作需要,布鲁克工程师们与广大原子力显微镜使用者就仪器的操作技巧、数据处理、常见问题分析等展开了热烈的讨论。 此外,布鲁克还于5月8-10号举行了为期三天的原子力显微镜应用技巧培训班,为用户讲授最新的AFM测量模式,以及如何获取高分辨AFM图像的线上线下操作技巧,测试过程中的参数优化技巧。客户服务中心主管孙昊博士,还为大家详细讲解了布鲁克纳米表面仪器部在中国强大的售后服务资源,布鲁克中国维修中心也将于2012年10月11日在北京正式成立,提供专业及时的电话咨询、测试、维修、培训等服务。 本次技术交流会得到了用户的广泛好评,通过技术交流会、仪器现场操作演示以及应用技巧培训班,广大原子力显微镜用户,尤其是生命科学各研究领域的用户,对布鲁克纳米表面仪器部在技术、应用、服务及管理等方面给予了更多的信赖。希望借助此类活动,可以帮助大家更好的理解和使用各型号仪器,更好的完成各领域研究工作。 布鲁克公司纳米表面仪器部 作为表面观测和测量技术的全球领导者,布鲁克公司纳米表面仪器部提供世界上最完整的原子力显微镜、三维非接触式光学形貌仪、探针式表面轮廓仪以及摩擦磨损 测试系列产品。布鲁克公司纳米表面仪器部一直着眼于研发新的计量检测方法和工具,不断迎接挑战,致力于为客户解决各种技术难题,提供最完善的解决方案。此 外,还可根据工业生产中的操作模式和操作习惯,精简仪器功能,针对生产中的特定应用需求,为客户量身打造相匹配的仪器设备,简化生产过程的操作流程,提高 工作效率。布鲁克的表面测量仪器广泛用于大学、研究所,工业领域的LED行业、太阳能行业、触摸屏行业、半导体行业以及数据存储行业等,进行科学研究、产 品开发、质量控制及失效分析,提供符合需求和预算的最佳解决方案。 BioScope Catalyst 生物型原子力显微镜 AFM与光学完美结合的生物型原子力显微镜,为生物样品检测提供简单而有效的解决方案,高效易用,功能完备 Bruker把成熟的光学显微镜技术与原子力显微镜的独特测量优势完美结合,利用ScanAsyst&trade 和Peak Force&trade 等创新性设计保证AFM的优异性能,又通过实时软件控制,实现与光学显微镜的最完美结合。 Bruker独有的MIRO (显微镜图像定位和叠合) 软件通过使用光学成像系统指导AFM针尖到指定的检测区域,进行扫描成像和力学性质测量。实验中可以选用载玻片,盖玻片或者培养皿作为基片,都可以很好地完成检测任务。此外,仪器还配备了微量液体池附件,降低科研成本,需要很少的样品就可以完成检测;控温培养皿液体池可以精确控制实验温度,延长细胞存活时间,保证实验顺利完成。 Dimension FastScan Bio AFM - 世界上扫描速度最快、分辨率最高的生物型原子力显微镜 Dimension FastScan Bio&trade 原子力显微镜 (AFM)以每秒3帧时间分辨率进行活体样品观测,使得生物动力学高分辨研究成为可能。此外,它的出现,大大简化了传统的AFM操作和测试流程。FastScan Bio是在世界上最先进的大样品台原子力显微镜--Dimension FastScan&trade 基础上建立的,结合其独特设计,应用特殊的形状和镀层的新型探针,大大提高探针柔性,与快速扫描成像有利结合,提高了专业的生物样品测试功能,适合于生物样品的高分辨成像、活体样品的分子间相互作用观测、膜蛋白、DNA/蛋白结合、细胞间的信号传导以及其他的生物动力学研究。 畅销15年,作为世界上最受欢迎,分辨率做高的原子力显微镜,已经成为AFM高分辨成像的标杆。现在Bruker推出全新升级版MultiMode® 8原子力显微镜,添加更多功能和配件,是这套系统更趋于完美。 全新专利技术 ScanAsystTM ---自动优化全智能扫描模式: 世界上第一个自动优化成像参数的AFM扫描模式,采用智能演算方法自动连续地监测图像质量,适时作出相应的参数调整。使用ScanAsyst&trade 模式,不必繁琐地调整setpoint、反馈增益、扫描速度等参数,只要选定所需扫描区域和扫描范围,即轻松获得高质量图像。 PeakForce QNM --峰值力定量机械性能测试模式: Bruker 专利的新型成像模式,可以对材料进行纳米尺度的力学性质定量检测表征,获得材料的粘附力和弹性模量图像,同时还能得到样品形貌的高分辨图像。使用 PeakForce QNM操作模式,可以延长探针的使用寿命,降低针尖更换频率,维持样品完整性和测量准确度,这些优势条件下,除了获得样品高分辨形貌图像,无需额外操作, 即可获得样品的杨氏模量和粘附力图谱。 布鲁克纳米表面仪器部开通优酷视频专辑 Bruker Nano Surfaces YouKu Channel &mdash 欢迎订阅优酷上Bruker Nano Surfaces的相关视频,观看最新的AFM产品和相关技术进展,以及历届网络研讨会和培训资料,精彩内容持续更新中! http://i.youku.com/u/UNDU0NDQ5MTEy 客户服务热线:400-890-5666 邮箱:sales.asia@bruker-nano.com
  • 应用 | 定向有机玻璃表面能与黏结强度研究
    摘要酸处理和等离子处理后定向有机玻璃表面粗糙度和表面极性增加,同时表面润湿性能得到改善,使黏结强度分别上升了14%和22%;而过渡层预处理提高了基材表面能,处理后定向有机玻璃表面极性与TPU相近,降低了界面张力,明显改善界面黏结性能,黏结强度由4.44kN/m上升至23.61kN/m。研究背景轻度交联和定向研磨赋予了定向有机玻璃(stretched acrylicsheet)更为优异的力学性能、抗裂纹扩展性能和光学性能,使其强度高、韧性优良,具有良好的耐热性和耐久性,因此成为航空透明件的主要材料。定向有机玻璃与热塑性聚氨酯(TPU)中间层作为航空有机层合结构透明件的关键材料,二者间界面的黏结强度是影响有机层合透明件在工程应用中可靠性的重要因素。实验部分接触角测试:采用德国KRÜ SS接触角测量仪测量液体在固体表面上的接触角。每次滴液2μL,在样品表面稳定30s后读取结果。取10个接触角平均值作为此液体在该表面的接触角。所有测量均在室温(25 ℃)下进行。测试液体使用去离子水、二碘甲烷和乙二醇,测试液体表面能参数如表1所示。 表面能计算:根据Van Oss理论,对表面能有贡献的除了色散力外还有极性作用力,并将极性部分视为电子给体与电子受体之间的相互作用。因此表面能分为Lifshitz-vander Waals分量γLW和Lewis酸碱分量γAB(分为Lewis酸分量γ+和Lewis碱分量γ-)。固体的表面能γS和液体的表面能 γL可分别表示为: 固液之间界面张力γSL与固体的表面能和液体的表面能的关系为: 根据杨氏方程,可得: 表面能作为衡量润湿性能的重要参数,固体表面能可以通过测量一系列测试液体在固体表面上的接触角,通过上述方程就可以计算。结果与讨论由于界面的形成、结构和稳定会受到多种物理、化学因素的影响,目前没有单一黏结理论可以解释所有的黏结现象。但不论是何种黏结机理,都要求黏结的二者具有良好的润湿性能。将结合在一起的两相分开所需力做的功称之为Wa,为: 式中:γ1, γ2分别为两相表面能;γ12为两相间界面张力。从粘附功公式可知,增大两相表面能或者降低两相之间界面张力都可以提高黏结强度。不同预处理方法处理的定向有机玻璃基材和TPU胶片表面接触角测试结果如表2所示。由红外结果可知,酸处理和等离子处理后与水接触角定向有机玻璃表面C=O极性基团含量增加,亲水性增加,酸处理和等离子处理后水接触角减小;且酸处理和等离子处理后表面粗糙度增加,有利于接触角的降低。而过渡层处理后,样品表面疏水基团-(CH₂ )-含量增加,表面粗糙度下降,故水接触角增加。 根据表2的接触角结果计算得到的各材料表面能,结果见表3。TPU表面能较处理前后定向有机玻璃都低,说明TPU作为中间层材料可以在定向有机玻璃表面铺展,且处理后样品表面能增加,更有利于TPU在表面的铺展和吸附。由表3中参数可知定向有机玻璃和TPU都属于极性聚合物,且呈现出明显的Lewis碱特性。定向有机玻璃的极性源于侧链上的酯基;而TPU的极性来自于主链上的氨基甲酸酯基、醚键等基团。材料γAB大小差异与极性基团在分子结构中所处位置有关。高聚物的极性大小可通过偶极矩来判断,极性基团活动性越好,高聚物极性越大。TPU的线性主链上氨基甲酸酯基和醚键酯键能形成分子内氢键,使得极性下降。由红外结果可知,经酸处理和等离子处理后,定向有机玻璃表面含氧基团数量增加,故表面能极性分量γAB增大。而过渡层界面相较于定向有机玻璃表面具有更多的-(CH₂ )-基团,柔性优于定向有机玻璃,有利于降低界面张力;同时过渡层界面的表面自由能极性分量与TPU胶片相近,由润湿理论所述当黏结剂与被黏体的极性相匹配时,界面张力最小;且处理后表面能增加,由粘附功公式可知,过渡层处理同时增加了表面能并降低了界面张力,有利于提高TPU与定向有机玻璃之间的黏附功。小结(1)酸处理和等离子处理在提高定向有机玻璃表面粗糙度的同时增大了基材的表面张力,增加了表面极性,提高了黏结界面处分子间相互作用力,从而改善了TPU在基材表面的黏结性能。但界面处物理吸附力对提高黏结强度效果有限,经酸处理和等离子处理后定向有机玻璃与TPU黏结强度分别提高了14%和22%。(2)过渡层处理大幅度改善了定向有机玻璃与TPU的黏结性能。这是由于形成了与定向有机玻璃和TPU具有一定化学相容性的柔性界面,同时与TPU极性匹配,增大表面能并降低了界面张力。过渡层处理后黏结强度由4.44 kN/m上升至23.61 kN/m。(3)比较三种预处理方法对定向有机玻璃表面性能的影响以及与TPU间黏结强度差异,相较于增加表面粗糙度和物理吸附作用,改善界面的极性匹配性和化学相容性对提高TPU与定向有机玻璃间的黏结性能更具优势。本文有删减,详细信息请参考原文。
  • 浙大李兰娟院士国际期刊连发两项基因组测序成果
    p   浙江大学的李兰娟(Lanjuan Li)院士是我国传染病学领域杰出的领军人物,其从事传染病临床、科研和教学工作已有40多年。她不仅是我国人工肝的开拓者,创建的人工肝支持系统治疗重型肝炎曾获得重大突破。还首次提出了感染微生态学理论,从微生态角度来审视感染的发生、发展和结局,为感染防治提供了崭新的思路。 /p p   近日,李兰娟院士课题组宣布她们不仅对分离自脑脊液的耐药山羊葡萄球菌进行了全基因组测序,还首次获得了从酵母中提取出的面包乳杆菌的基因组序列草图。两篇研究论文发布在《Genome Announc》杂志上。 /p p   Whole-Genome Sequence of Multidrug-Resistant Staphylococcus caprae Strain 9557, Isolated from Cerebrospinal Fluid /p p   山羊葡萄球菌(Staphylococcus caprae)是凝固酶阴性葡萄球菌(CNS)中的一员,最早是从山羊分离出来,已被公认为是一种重要的医院病原菌。山羊葡萄球菌主要与骨及关节感染有关。此外,它也可以引起侵入性感染,包括尿道感染、菌血症、心内膜炎、脑膜炎和眼内炎。但目前对于促成其毒力及存活的基因却知之甚少。 /p p   在这篇文章中,研究人员从脑脊髓液样本中分离出了多药耐药山羊葡萄球菌菌株9557,对其进行全基因组测序解析了这种细菌致病及耐药的遗传基础。组装基因组的大小达2,747,651 bp,GC含量达33.34%,获得了249倍的覆盖度。基因组序列预期编码了2,678个基因。 /p p   基因组分析结果揭示,9557菌株包含各种类型的、与粘附、抗吞噬作用、胞外酶、铁摄入和分泌系统及溶血素相关的毒力因子。这些毒力因子是粘附宿主、免疫逃避和损伤宿主细胞所必需的。在9557菌株中鉴别这些基因对于阐明可能与毒力和流行分布相关的基因至关重要。此外,研究人员还鉴别出了一些抗菌素耐药性基因,包括aadD、blaZ、mecA、qnrD、lnuA和msrA基因。 /p p   进一步搜寻假定的噬菌体元件,揭示出存在一个完整的原噬菌体区域及两个可疑的原噬菌体区域。有研究证实,原噬菌体与金黄色葡萄球菌的毒力直接相关。但迄今尚未描述过原噬菌体在山羊葡萄球菌中的功能和含量。此外,在这一基因组中研究人员还鉴别出了7个假定的CRISPR重复区域。 /p p   Draft Genome Sequence of Lactobacillus panis DSM 6035T, First Isolated from Sourdough /p p   面包乳杆菌(Lactobacillus panis)最早是从长期发酵的酵母中分离出来,是一种杆状的革兰氏阳性的、不会移动的、无孢子细菌。 /p p   在这篇文章中,研究人员绘制出了面包乳杆菌DSM 6035T的基因组序列草图。其基因组大小为2.08 Mb,G+C含量为47.9%,与高效液相色谱法检测结果相似。这一DSM 6035T基因组包含2,047条编码序列(CDS)、20个不完整的rRNAs和61个tRNA。预计总共有81种非编码RNAs (ncRNAs)和3个CRISPR序列。 /p p   研究人员从中发现了一些与糖代谢有关的基因,包括6-磷酸葡萄糖酸脱氢酶、L-核酮糖-5-磷酸-4-差向异构酶等,与以往的结果相一致表明了这一物种是异型发酵。面包乳杆菌的基因组信息对于进一步研究它在食品工业领域和其他方面的应用将非常有用。 /p
  • 朱永官院士实现环境中致病菌毒力基因高通量检测
    近日,中科院生态环境研究中心土壤环境科学与技术实验室朱永官院士团队在环境中致病菌毒力基因高通量检测方面取得新进展,相关研究成果以“VFG-Chip: A high-throughput qPCR microarray for profiling virulence factor genes from the environment”为题发表于环境领域主流期刊Environment International上。环境中的致病菌及其迁移扩散会导致一些人畜共患疾病,进而威胁人体健康和生态安全。致病菌所携带的毒力基因(Virulence factor genes, VFGs)是一种具有微生物性质的新型污染物,具有潜在的健康风险与生态风险。然而,由于缺乏高效可靠的量化工具,目前关于环境中致病菌的毒力组研究仍处于起步阶段。为此,团队基于高通量实时定量PCR技术开发了一种致病菌毒力基因芯片(VFG-Chip),可用于环境中致病菌的毒力组研究。VFG芯片针对环境中4种典型人畜致病菌——肺炎克雷伯氏菌(Klebsiella pneumoniae)、鲍曼不动杆菌(Acinetobacter baumannii)、大肠杆菌(Escherichia coli)和肠道沙门氏菌(Salmonella enterica),覆盖了其中参与编码毒素、粘附因子、分泌系统、免疫逃避/入侵和铁摄取等5种主要功能的96个毒力基因,基于SmartChip高通量实时定量PCR平台,可在2小时内一次性检测42个样品的毒力组,且大于91%的引物扩增效率为90%至110%,具有高效、快速、准确等特点。目前,VFG芯片已成功地应用于城市污水处理系统以及土壤等环境样品毒力组的检测(图1)。VFG芯片为量化环境中致病菌毒力组提供了一种高效可靠的高通量检测手段,未来有望在致病菌毒力组特征及其健康风险与生态风险评估等相关研究中发挥重要作用。团队已为VFG芯片及其应用申请了发明专利。图1 VFG芯片的设计、验证与应用中科院生态环境研究中心博士研究生谢舒婷和丁龙君副研究员为论文共同第一作者,朱永官院士为通讯作者。该研究得到了国家自然科学基金重大项目、中国科学院战略性先导科技专项A、国家重点研发计划和中国科学院青年创新促进会的资助。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制