当前位置: 仪器信息网 > 行业主题 > >

粘度变化曲线

仪器信息网粘度变化曲线专题为您整合粘度变化曲线相关的最新文章,在粘度变化曲线专题,您不仅可以免费浏览粘度变化曲线的资讯, 同时您还可以浏览粘度变化曲线的相关资料、解决方案,参与社区粘度变化曲线话题讨论。

粘度变化曲线相关的资讯

  • 橡胶硫化特性的测试 (包括门尼焦烧和硫化曲线)
    硫化是橡胶制品制造工艺中最重要的工艺过程之一。 就是使橡胶大分子链由线性变为网状的交联过程,从而获得良好物理机械性能和化学性能。 橡胶的硫化性能是反映橡胶在硫化过程中各种表现或者现象的指标,对进行科研、指导生产具有很大的实用价值,硫化性能主要包括焦烧性能、正硫化时间、硫化历程等,测定橡胶的硫化性能方法很多。其中以硫化仪和气泡点分析仪最佳。 ⑴ 门尼粘度计法 门尼粘度计法不但能测定生胶门尼粘度或混炼胶门尼粘度,表征胶料流变特性,而且能测定胶料的触变效应,弹性恢复、焦烧特性及硫化指数等性能,因此它是最早用于测定胶料硫化曲线的工具。虽然门尼粘度计不能直接读出正硫化时间,但可以用它来推算出硫化时间。 ⑵ 硫化仪法 硫化仪是近年出现的专用于测试橡胶硫化特性的试验仪器, 类型有多种。按作用原理有二大类。第一类在胶料硫化中施加一定振幅的力,测定相应变形量如流变仪;第二类是目前通用的一类。这一类流变仪在胶料硫化中施加一定振幅变形,测定相应剪切应力,如振动圆盘式流变仪。 3.1 橡胶门尼焦烧试验 胶料的焦烧是胶料在加工过程中出现的早期硫化现象,每个胶料配方都有它的焦烧时间(包括操作焦烧时间和剩余焦烧时间)。在生产中应控制此段时间的长短。如果太短,则在操作过程中易发生焦烧现象或者硫化时胶料不能充分流动,而使花纹不清而影响制品质量甚至出现废品,如果焦烧时间太长,导致硫化周期增长,从而降低生产效率。当前测定焦烧时间广泛使用的方法是门尼焦烧粘度计(测定的焦烧时间称为门尼焦烧时间),此外也可以用硫化仪测其胶料初期时间(t10)。 3.1.1 门尼焦烧的试验原理 用门尼粘度计测定胶料焦烧是在特定的条件下, 根据未硫化胶料门尼粘度的变化,测定橡胶开始出现硫化现象的时间。 3.2 橡胶硫化特性测定 为了测定橡胶硫化程度及橡胶硫化过程过去采用方法有化学法(结合硫法、溶胀法),物理机械性能法(定伸应力法、拉伸强度法、永久变形法等),这些方法存在的主要缺点是不能连续测定硫化过程的全貌。硫化仪的出现解决了这个问题,并把测定硫化程度的方法向前推进了一步。 硫化仪是上世纪六十年代发展起来的一种较好的橡胶测试仪器。广泛的应用于测定胶料的硫化特性。硫化仪能连续、直观地描绘出整个硫化过程的曲线,从而获得胶料硫化过程中的某些主要参数。 上岛 硫化试验仪(无转子) 型号:VR-3110 在规定的温度下,混合橡胶放在上下平板膜腔之间并施以正弦波扭矩振动时,随着橡胶的硫化测定其扭矩的变化。可根据最大扭矩、最小扭矩、焦烧时间、硫化时间、粘弹性等其它因素的变化求出硫化特性的试验机。 上岛 气泡点分析仪型号:VR-9110 气泡点分析仪是能在需要的最小限度抑制橡胶的硫化时间的测试机,而对车胎、皮带、防振橡胶等产品的硫化工程控制有效。对生产性提高、能源消减、摩耗特性或者耐久性等产品特性的提高有益。 橡胶硫化不够时看到的内部气泡在硫化工程中控制 ,知道每种材料的最佳硫化时间。
  • 单点粘度测量用于产品质量控制——IKA谈粘度测量在企业中的应用
    p    strong 仪器信息网讯 /strong 粘度是一个常用于表征材料特性的参数,是流变学中使用量最大,最简单直观的物理量。相较于流变仪而言,粘度计虽然测量的物理量很有限,但是其价格及操作分析难度较低,依然是科研院校、石油、化工、材料、制药、食品等行业用于表征产品及质量控制的关键设备。以测量粘度类型作主要区分,市场常见的两大类粘度计,一为运动粘度计(以毛细管粘度计为代表),二为动力粘度计(以旋转粘度计为主)。毛细管粘度计主要应用于低粘或近牛顿流体样品的粘度测量 而旋转粘度计因可适应非常广泛的样品测量(牛顿流体或非牛顿流体),以及可实现简单的流变曲线测量,可以说现在无论是国内或国外的粘度计品牌生产厂家都在重点投入研发力量进行产品开发。 /p p   IKA实验室技术事业部在石化、材料、食品制药等行业深耕多年,顶置式搅拌器及分散机几乎是这几个行业中必备的设备。在很久之前,IKA已经可以为客户提供可监测混匀或合成反应过程扭矩变化的设备,过程扭矩变化往往预示着物料粘度发生的变化,如:聚合反应中粘度越来越大 或破乳过程中产生的扭矩拐点等。而IKA发布的旋转粘度计则是承接过程扭矩监控的下一步,对最终产品的粘度或流变特性进行定义的设备。 /p p   目前对于产品质量定义及控制指标中,以单点粘度测量的应用为主。即通过测量特定转速下的粘度值,进一步设定可接受的质控粘度范围,作为企业内部质量控制或外部的收发货质量检验的基准。对同类产品(如同一配方不同批次的日化产品)的粘度测量来说,必须保证同样的测量条件,如粘度计型号,转子型号,测量转速,甚至装样容器,以及对于一些具有触变性(时间依存型流体:即粘度与剪切时间有关系)的样品来说,甚至需要保证同样的读数时间(如定时1min)。以IKA的产品为例,为了简化这些操作,IKA ROTAVISC旋转粘度计通过预设配置菜单,可以保存5个不同的测量条件设置,并且随时调出使用。因此对于质量控制的应用来说,这些重复性的操作将得到极大的简化。 /p p style=" text-align: center " img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/201911/uepic/6d2d27c1-5e7e-456f-a8a0-3df604f0e4b4.jpg" title=" 艾卡 ROTAVISC hi-vi Advanced 粘度计.jpg" alt=" 艾卡 ROTAVISC hi-vi Advanced 粘度计.jpg" / /p p style=" font-size: inherit font-weight: normal padding: 0px margin: 0px font-family: & quot Microsoft YaHei& quot white-space: normal background-color: rgb(255, 255, 255) text-align: center " a href=" https://www.instrument.com.cn/zc/87.html" target=" _self" strong 艾卡 ROTAVISC hi-vi Advanced 粘度计 /strong /a /p p   但是众所周知的是,单点粘度测量有极大的特异性,并不能完整地表征样品流变的特性。尤其对于非牛顿流体来说,如化工产品、材料产品、食品等等这些常见的样品,单点粘度并不能清晰地指示在使用或吞咽过程中的粘度变化。比如说当我们需要开发一款容易推开且能很好地停留在皮肤表面的膏霜时(比如药用敷膏),这不仅需要产品有合适的粘度,还需要具备良好的剪切变稀的特性,以及触变恢复的能力。而剪切变稀以及触变恢复的测量,则要求仪器可提供的剪切速率条件越多越好,即转速步进分辨率更高,达到转速连续可调的要求。而市场上大部分旋转粘度计只能提供阶梯式的转速档位(如4、8、18、54档不等),或部分较高端型号可提供200档(1-200rpm),如需要转速连续可调的仪器则只能考虑流变仪,但流变仪价格相对粘度计较贵,且对操作分析能力要求较高,需要接受多次培训才能熟练掌握测量及分析要点。得力于IKA在多款设计旋转及搅拌产品的多年技术累积上,IKA已经为ROTAVISC配备了转速连续可调的功能。作为一款万元级别的粘度计,ROTAVISC提供的不仅仅是常规单点粘度测量精确性及优秀的重复性,更可以进行基础的流变特性的测量,并且直接在屏幕读取流变曲线。 /p p   如仪器行业大趋势,IKA相信粘度计作为一款基础、通用型的分析仪器,也将逐步往智能化、功能和控制一体化集成的方向发展。如在现有的技术基础上,已经采用数字式电子水平仪对传统气泡式水平仪进行替代,水平调整更为灵敏,甚至可以监测到仪器不在水平状态进而向使用者发出警示讯号。在与粘度测量相关的参数控制上,如温度/ph值等,都可以接入实验室软件中,实现多参数的控制及数据记录,取代现在的单点、单参数、单机数据测量以及人工数据记录,最终形成一套集成多参数、多仪器操作及电子数据存储分析的系统。 /p p br/ /p
  • 从代理销售转向品牌建设 粘度界的西班牙“斗牛”在中国
    p    strong 仪器信息网讯 /strong 截至2018年底,市面上的粘度计产品型号已超过7000个,粘度计直销和代理公司超过600家,并且数量仍在逐年增长。目前,随着多家进口粘度计厂商品牌的不断崛起,中国的进口粘度计市场逐渐由一家独大逐步转化为多家竞争,最终获益的必将是中国消费者 同时,国产品牌也在悄然兴起,粘度计市场风起云涌,竞争加剧。随着国家政策对于制药等多个行业的标准日益严格和细化,粘度计仪器市场也在面临着重新洗牌的格局。一颗来自西班牙的新星在中国悄然扎根,并开始专注于在中国市场的品牌建设。仪器信息网近期走进了这家2017年正式在中国设立子公司的西班牙Fungilab公司——纺吉莱博科技(北京)有限公司。 /p p   仪器信息网从纺吉莱博科技(北京)有限公司营销总监赵德成处了解到,Fungilab公司进入中国市场的标志性转变发生在2017年。 2017年之前,Fungilab(飞莱博)在中国主要通过代理商进行产品推广,存在着售后维修体系不健全、应用与解决方案不及时等问题 2017年,Fungilab公司意识到了中国市场的重要性,在中国设立了纺吉莱博科技(北京)有限公司,并开始注重在中国市场的品牌建设 2018年,纺吉莱博公司在加强内部组织建设和提高客户满意度的同时,加强网络推广,积极参与会展、论坛等活动。凭借卓越的产品质量和独居特色的粘度测量功能,目前已经与多家高校、研究院所建立了广泛的合作关系,在国内粘度计市场中占有了一席之地,逐渐打响了在用户中的知名度。 /p p style=" text-align: center " img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/201911/uepic/e8c52cdc-d0a5-4f84-b1ef-399a64980d37.jpg" title=" Fungilab V-COMPACT自动升降旋转粘度计.jpg" alt=" Fungilab V-COMPACT自动升降旋转粘度计.jpg" / /p p style=" text-align: center " a href=" https://www.instrument.com.cn/netshow/C276778.htm" target=" _self" Fungilab V-COMPACT自动升降旋转粘度计 /a /p p   在粘度测量领域,Fungilab粘度计测量范围基本涵盖了所有流体,能够满足各种特殊情况的粘度测量,其突出优势主要体现在以下几个方面: /p p    strong 1.产品设计新颖,产品功能丰富 /strong /p p   Fungilab V系列旋转粘度计是世界上第一款没有内置屏幕的旋转粘度计,可以移动设备联用,其参数和功能可在APP上设置实现,为现代科研人员提供良好的访问体验,V系列产品赢得2015IBO工业设计银奖,2016年荣获德国红点大奖。V系列粘度计采用蓝牙控制,可以实现无线传输和操控,尤其是V-COMPACT型自动升降旋转粘度计,很好的满足了某些特殊条件下的粘度测量,比如在真空条件下测量样品粘度或者在有较强辐射的条件下测量样品的粘度,可以实现人机分离,仪器在真空或者辐射室(手套箱)内放置,实验人员可以在隔离区外操作平板,完成样品粘度测量,机器方便的解决了客户遇到的难题。 /p p   EVO型粘度计标配电脑软件,可选配PAD平板。内置数学模型,可单机测量,进行数据分析,编辑并存储9个程序,也可实现转速梯度测量,得到泵送,喷涂,流平及恢复等特性指标,预测出完整的流变行为。同时,通过FDB数据分析软件在电脑上操控仪器,实时采集数据并得到相应曲线,可以得到粘度与温度曲线,粘度与转速曲线,粘度与时间曲线,剪切应力与转速曲线,剪切速率与转速曲线,扭矩与转速曲线等多种曲线,便于客户对样品特性进行分析研究。 /p p   Fungilab锥板粘度计V-C& amp P是在V-compact的基础上研发的一款新产品,既具有了V-compact的一些特性,也具有锥板粘度计测量用量小,精确度高的特点。该锥板粘度计样品用量小于1ml,具有自动升降技术,蓝牙链接,平板操控,实时采集数据并得到粘度变化曲线,减少了人为操作产生的误差,实现了精准测量。 /p p   Fungilab其他几款粘度计SMART、ADV、ONE也都各具特色,满足不同应用环境的应用需要。 /p p    strong 2.产品测量器具配件丰富,满足多种样品的测量需求。 /strong /p p   Fungilab粘度计不仅主机型号多样,配件也是非常丰富,能够满足不同样品的粘度测量。 /p p   首先,如果样品低于50mPas,Fungilab公司建议选用超低粘度适配器LCP,尤其是粘度低于15mPas的时候,为了保证数据的准确性,必须选择超低粘度适配器LCP进行测量。Fungilab公司超低粘度适配器LCP测量的粘度最小值可以达到0.65mPas,且稳定性好,超过了市面上很多粘度计能够测量出的最低粘度,能够很好的满足一些需要测量超低粘度样品的客户的需求。 /p p style=" text-align: center " img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/201911/uepic/5bfa07e3-d8ae-48e7-a3f5-88ba74cd06ea.jpg" title=" 适配器.jpg" alt=" 适配器.jpg" / /p p style=" text-align: center " strong 适配器 /strong /p p   其次,对于样品量非常少或者价格比较贵的样品,可以选择APM小容量适配器,Fungilab公司的小容量适配器APM,最小用量为2ml,同时具有3.8ml、4.2ml、6.7ml等多种规格可选,很好的解决了很多客户样品少或贵的问题。相比样品用量较少的锥板粘度,Fungilab公司小容量适配器APM套装,价格非常有优势,有效的降低了客户的采购和应用成本。 /p p   以上两种配件如有控温需求均可选用Fungilab加热制冷控温浴,实现对样品温度的精准控制。 /p p    strong 膏状样品也能保证测量准确性 /strong /p p   对于一些膏状样品,比如牙膏、化妆品、药膏、锡膏等,如果用粘度计的标准转子测量,由于样品的流动性比较差,往往会在转子周围形成缝隙,影响测量结果的准确性。Fungilab公司HELDAL配件套装很好的解决了这一问题,HELDAL套装由一个升降支架和6个T型转子组成。在测量膏状样品的过程中,升降支架和T型转子独立运转,从而形成螺旋式上升和螺旋式下降的测量轨迹,避免在测量过程中产生缝隙,使得测量结果更加准确、可靠,目前该款组合应用于国内多家化妆品公司、制药公司和锡膏生产公司。 /p p    strong 高温配件组合满足国家相关要求 /strong /p p   Fungilab粘度计不仅能够测量常温下的样品,同时也采用Fungilab高温加热器Thermosphere,实现对样品高达300℃的加热熔化,该产品组合常用语热熔胶、煤块、沥青等样品的粘度测量。测量过程中可以实现温度的升降,既可以得到恒温情况下的粘度变化曲线,也可以研究温度上升或下降时的粘度变化曲线,分析样品流变特性。Fungilab粘度计+Thermosphere高温加热器套装完全满足国家《JTGE20-2011公路工程沥青及沥青混合料试验规程》第106页《T0625-2011沥青旋转黏度试验(布洛克菲尔德黏度计法)》,测试结果也非常精准。目前该组合已经应用到多个省份的公路建设现场,为国家的基础设施建设添砖加瓦。 /p p    strong 3.转子种类丰富,可选择性强。 /strong /p p   Fungilab粘度计转子种类多达43种,包含:标配转子、小容量适配转子、超低粘度适配器转子,桨叶转子,T型转子,L2C和L3C专门用于测量剪切速率和剪切应力的转子等。对于不同的样品,均可以找到最适合的转子,实现精准测量。转子种类的丰富,也为科研人员实现对样品粘度特性的研究提供了保障。Fungilab公司L2C转子、L3C转子、小容量适配器转子和超低粘度适配器转子均可实现对剪切速率和剪切应力的测量,可以研究不同剪切速率或不同转速下的样品粘度变化情况。尤其是L2C和L3C是Fungilab公司独有的直接测量剪切速率和剪切应力的转子,能有效的帮助客户在不增加太多成本的情况下,完成对科学实验的研究分析。 /p p   会谈现场,赵经理不仅给我们详细的介绍了Fungilab公司粘度计的各种特性和技术优势,同时也对当前中国粘度计市场做了分析交流。 /p p   对于当前粘度计市场的情况,赵德成表示,目前由于国家对于制药等行业的质量检验标准日益严格,制药行业等领域对于粘度测试产品需求旺盛,Fungilab粘度计产品发展势头强劲。纺吉莱博在珠三角、长三角、北京、武汉、重庆、西安等均设有办事处,并且对于重要客户,每年都会定期进行走访。 /p p   未来,纺吉莱博将在石油、制药、油墨、食品等多个领域深耕行业痛点,提出优质的配套解决方案,帮助解决行业人员在粘度测试过程中遇到的各种问题,以客户的满意度和用户口碑建立起Fungilab粘度计在中国粘度测试领域的行业品牌。 /p p    strong 公司简介: /strong /p p   Fungilab公司于1984年在西班牙成立,生产基地位于西班牙巴塞罗那,全球运营中心在美国纽约,是专业研发、制造粘度计和流变仪的公司,同时Fungilab公司为德国等多个全球著名品牌提供OEM订单。Fungilab公司粘度计产品线包含:旋转粘度计,落球粘度计、毛细管粘度计、在线粘度计等。Fungilab V系列旋转粘度计是Fungilab公司推出的世界上第一款没有内置屏幕的旋转粘度计,该产品获得2015IBO工业设计银奖和2016年德国红点大奖。Fungilab已获得ISO9001质量管理体系认证、欧盟TUV认证、CE认证、UL认证和CSA认证,同时为食品饮料、化妆品、石油石化、涂料、制药、制剂、高校科研、质检、药检和出入境检验检疫等领域提供检测解决方案。在粘度计专业领域,Fungilab公司在粘度测试领域位居前列。 /p p br/ /p
  • Brookfield粘度计在食品行业中的应用(上)
    食品流变学研究起步较早,但是由于食品体系的复杂性,早期流变学的研究主要是一些经验性的测定,例如产品在自身质量下其流动性、铺展性和碎裂性的测定等。近年来由于食品科学工作者为了提高对食物加工性,特别是食品的深加工性、工艺及设备设计的依据性等的需要,食品流变学的研究变得愈来愈广泛。随着研究活动的深入,研究手段亦有了较大地发展,表现在先进的流变学测试仪器的引入和开发。应用先进测试仪器,使实验与研究在建立食品物料的流变特性力学模型上更为方便。 Brookfield做为世界上最知名的粘度计生产商,推出了一系列产品均可以用于食品流变性特别是液体流变性的研究,下面即是Brookfield粘度计在一些具体行业的应用: 1、淀粉的糊化特性 混淀粉于水中,不停地搅拌。颗粒悬浮于水中,形成白色悬浮液,称为淀粉乳。加热淀粉乳,颗粒随温度的升高,吸水更多,膨胀更大,达到一定的温度,原淀粉结构被破坏,吸水膨胀成粘稠胶体糊。这种现象称为糊化,其温度称为糊化温度,形成的胶体称为淀粉糊。 粘度是淀粉糊的最重要性质,面在普遍用粘度曲线测定, Brookfield的SSB(淀粉测量系统)是为测量工业淀粉样品在自动快速糊化和快速冷却过程中的粘度变化而设计的。SSB可以准确、快速的进行测量,从而可以帮助产品研究者快速地调整产品结构。 2、乳品行业 乳制品在世界范围内,由于消费量较大,相应的流变学研究也较广泛。研究表明:牛乳的流变特性受其浓度的影响。浓度不同不仅使牛乳的表观粘度值发生变化,而且使牛乳的流体类型也发生变化。在浓度较低时,牛乳呈现涨塑性特性(n1),在中等浓度下变成牛顿流体(n=1),但在浓度较高时,又变成非牛顿流体,呈现出假塑性流体特性(n1),即随着浓度的增加,n值由大逐渐变小。虽然温度对牛乳粘度的大小有影响,但对牛乳的流型没有影响。在所有影响因素中,浓度对流型起决定性作用。 近年来,由于人们担心食入过多的脂肪,所以低脂奶逐渐成为市场上的流行品。但是由于脱脂使牛奶的口感和质地都不如以前。1991年,Shoemaker Nantz等人研究了乳制品的粘度与感官评定之间的相关关系。结果表明,奶油味和口感与脂肪含量相关很强,而同时奶油味和口感与仪器测定的粘度相关性也很强,初步证实了粘度与感官分析存在相关关系。所以在乳品的开发、质量控制等方面,粘度的测定越来越重要。 在搅拌型酸奶生产过程中最重要的控制项目之一是粘度,搅拌型酸奶生产过程中不可避免地要对已发酵好的、凝固的酸奶进行机械加工处理,如搅拌、冷却、灌装等工艺过程。如果生产线设计不合理或工艺参数控制不当,就会造成酸奶粘度大大降低,严重时会出现分层现象。粘度也是评价酸奶质量的重要指标。 另外,在乳品在浓缩过程中,也可以通过粘度的测定来确定浓缩的终点。Brookfield的旋转粘度计有众多类型的转子,在测定乳品的粘度时,可以根据不同的需要选择不同的转子,如桨式转子、升降支架等。 3、果汁 果汁的流变特性研究国内外均有开展。据报道,不含果胶的山楂汁、酸枣汁、黑加仑汁及澄清水蜜桃汁的流变曲线均为其延长线过原点的直线,说明其流型为牛顿流体。含果胶的果汁的流变曲线为一过原点呈凹形向上的曲线,说明流型为假塑性流体。因此说明,果汁的流型与是否含果胶有关。如果含果胶时,果汁溶液基本就有两步分组成,浆液和浮在浆液上的水果细胞壁碎屑组成的微粒物质。在很多情况下,其中的部分微粒很可能被分离出来,或浮在表面,或者沉到底部。所以在实际生产中,一个很重要的问题就是防止悬浮的微粒与浆液之间的分离。只有其粘度达到一定程度时,浆液对微粒的作用力与其受到向下的重力平衡时,才可以避免微粒与浆液分离。在生产中控制果汁的粘度也有很重要的意义,采用Brookfield的旋转粘度计,可以控制剪切速率,在较低的剪切速率下,基本可以模拟果汁内部的应力,增加了粘度测定的准确性。 美国Brookfield博勒飞粘度计中国独家代理:东南科仪 欢迎来电咨询东南科仪:400-113-3003请戳 www.sinoinstrument.com 查询更多产品优惠信息。扫描以下二维码或是添加微信号“dongnankeyi”,加入东南科仪的微信平台,和我们一起互动吧! 广州市天河区天河北路华庭路4号富力天河商务大厦1506-1507(510610) 电话:020-66618088 传真:020-83510388公司网址: www.sinoinstrument.comE-mail:dongnan@sinoinstrument.com意大利VELP搅拌器中国总代理:东南科仪VELP中文网站:www.velpchina.cn 【东南科仪创建于1992年。自创建伊始,即致力于向中国引进世界最先进的检测仪器。目前拥有十多个欧、美、日顶级品牌的总代理及一级代理权,产品资源丰富,种类齐全。品牌包括有ATAGO,ALP,VELP,Brookfield,Binder,Lovibond,X-rite,METTLER TOLEDO,alalis,Millipore,Nabertherm ,NICHIRYO,YSI,CURIOX,interscience, EYELA, Telstar,coleparmer等】
  • 同样的样品,为什么测得的粘度不一样
    问题Q使用粘度计的时候,很多用户(尤其是初次使用粘度计的用户)往往会遇到类似的困扰,即:同样的样品,为什么往往测得的粘度值不一样?有的时候,这个差异还非常之大。 建议A要解决这个困扰,须从流体(样品)本身的流变特性和粘度测量方法两个方面的知识点去了解或掌握。 1样品的流变特性首先,我们要了解流体分为牛顿流体和非牛顿流体。任一点上的剪应力都同剪切变形速率呈线性函数关系的流体称为牛顿流体。简单地说,牛顿流体是指粘度值不随剪切率(转速)的变化,而保持恒定的流体。比如我们作为校验校准用的标准油即为牛顿流体。实际上,我们生产和生活中多接触的样品绝大多数都是非牛顿流体(粘度会随剪切率或转速的改变而变化)。非牛顿流体样品的流变特性非常复杂,但基本都会随剪切率(转速)、温度而改变,有些流体样品还和剪切时间相关。 2常规粘度测量方法其次,我们要了解标准型粘度计的粘度测量(测量系统无法精确计算或指定剪切率,一般泛指LV机型标配的4根转子,以及RV/HA/HB机型标配的6根转子),是一种相对的测量方法。同一个(或同一类)样品,如果使用不同的量程机型、或者使用同一机型但不同的测量方法(转子、转速、温度、读数时间等)进行测量,则彼此之间所测得的粘度结果则都可能会有很大的不同和差异性。就旋转粘度计而言,转子旋转时所感受到流体对之的阻力,即为该流体的粘度表征。通常而言,粘度是会变的,粘度测量是一种相对测量!流体在不同条件(剪切率、剪切应力、温度、时间等)下,所变化的各个粘度点连在一起,即为流变曲线。某种意义上说,粘度是点,流变是线。因此,如果要对同一个(或同一类)样品的粘度测量数据进行比较,不管您是自己的内部比较还是和第三方(客户、供应商或同行)进行数据对比,请务必使用相同量程的粘度计机型(LV、RV、HA、HB等)以及相同的测量方法(包含转子型号、转速、测试温度、测试或读数时间等);否则,同一样品的测试结果很可能会有很大的差异。 3进阶版粘度测量常规的粘度测量(标准型粘度计+标配转子),往往无法满足用户的进阶版粘度测量需求。此时,需要配置可以精确计算或控制剪切率的机型或测试附件。1、可以精确计算剪切率的附件,如:小量样品适配器SSA、超低粘度适配器ULA、DIN适配器等;2、可以精确计算剪切率的机型,如:DVNext CP流变仪、CAP2000+锥板粘度计等;3、可以控制剪切率和剪切应力的机型,如:RST系列流变仪、RSO震荡流变仪等;4、可以在指定剪切率下实时精确测量粘度的在线粘度计,如:TT-100旋转式在线粘度计。
  • 赛默飞世尔科技推出全新的粘度计系列
    —— 旋转粘度计,更好地进行质量控制 中国,上海(2010年12月22日)--作为全球科学服务领域的领导者,赛默飞世尔科技最近推出了全新的粘度计系列。该系列主要有三大模型,迎合用户的不同需求。 HAAKE Viscotester E -- 专业型粘度计 电脑全程控制,全自动测定流量曲线 HAAKE Viscotester D – 独特型粘度计 附数据传输功能,用于常规粘度测量 HAAKE Viscotester C – 便捷性粘度计 简易、快速、精确地实现手动粘度测量 粘度计Thermo Scientific HAAKE Viscotester D, C 和 E Thermo Scientific HAAKE Viscotester E, D, C 系列旋转粘度计被用于指定标准下质量控制过程中的快速而可靠的检测和比较粘度测量。能在预设速度下测量物质所受阻力。由此产生的扭转力即阻力能进一步测出流体的粘度。全系列的配件,让您可以对高粘度样品如奶油、涂料和凝胶的进行比较测量,也可对小体积样品进行粘度测量。 赛默飞世尔科技材料物性表征业务部的副总裁兼总经理Markus Schreyer表示:“与Thermo Scientific HAAKE Vistester D、E型号配合使用的 Thermo Scientific HAAKE RheoWin 软件保证用户能自由访问数据并拥有一些特定的访问权限,还能同时确保全自动的测量分析,数据分析和报告生成。另外,软件和Thermo Scientific的流变仪系列的兼容性也充分体现了我们的承诺,即为用户提供方便而可靠的物料表征仪器。” 作为流变学领域的先驱,赛默飞世尔科技拥有多种Thermo Scientific材料物性表征解决方案,成功的为多领域工业提供技术支持。材料物性表征解决方案能够分析并测量多种产品的粘性、弹性、可加工性和与温度相关的力学性能变化。这些产品包括:塑料产品、食品、化妆品、药物和涂层、化学或石油化学产品以及一系列液态或固态产品。欲获取更多信息,请登录:www.thermoscientific.com/mc Thermo Scientific 是全球科学服务领域的领导者赛默飞世尔科技的旗下品牌。 关于赛默飞世尔科技赛默飞世尔科技(纽约证交所代码:TMO)是全球科学服务领域的领导者,致力于帮助客户使世界更健康、更清洁、更安全。公司年度营收达到100多亿美元,拥有员工35,000多人服务客户。这些客户包括:医药和生物技术公司、医院和临床诊断实验室、大学、科研院所和政府机构以及环境与工业过程控制装备制造商等。公司借助 Thermo Scientific 和 Fisher Scientific 这两大品牌,帮助客户解决从常规测试到复杂的研发项目中所面临的各种分析方面的挑战。Thermo Scientific向客户提供了一整套完整的高端分析仪器、实验室设备、软件、服务、耗材和试剂,以实现实验室工作流程综合解决方案。Fisher Scientific 为卫生保健、科学研究,安全和教育领域的客户提供完整的实验室装备、化学药品、供应品和服务的组合。赛默飞世尔科技将努力为客户提供最为便捷的采购方案,为科研的飞速发展不断地改进工艺技术,并提升客户价值,帮助股东提高收益,还为员工创造良好的发展空间。欲了解更多信息,请浏览公司网站: www.thermofisher.com 或中文网站www.thermo.com.cn ;www.fishersci.com.cn 。
  • 应用速递 | 通过流动诱导分散分析(FIDA)技术表征构象变化
    评估蛋白质和结合物的整体结构变化 蛋白质 - 小分子相互作表征 天然条件和微量样品检测 同时评估结合亲和力,构象变化和绝对大小 介绍许多生物学过程通过蛋白与小分子或其他蛋白的相互作用进行调节。在许多情况下,这些相互作用会引起构象变化,该变化直接调节活性或提供新的结合位点,以促进建立高阶复合物。作为模型系统,本次实验我们使用了细菌性结合蛋白超家族的麦芽糖结合蛋白(MBP)。 MBP是麦芽糖糊精转运系统的可溶组分,驻留在革兰氏阴性细菌的周质中,在该细菌的周质中,它可以将其配体(Maltose,Maltotriose和Maltoheptaose)运送到膜结合的转运蛋白复合物。MBP的配体结合位点位于两个球状结构域之间。图1.(a)MBP(42.5 kDa)Apo状态(左,开放)以及与Maltose(360 Dalton)结合形成的麦芽糖结合态MBP(右,关闭);(b)MBP的开放式(浅蓝色)和封闭式(浅粉红色)结构的对比。 材料和方法该实验采用FIDA Neo仪器,480 nm LED荧光检测模块(FIDABIO ApS)。 耗材:FIDA标准毛细管(i.d.:75 µ m,LT:100cm,Leff:84 cm)。缓冲液:Tris缓冲液pH 7.4(20mm Tris,150mmNaCl,0.05%Tween)。指示剂:MBP(4.3ug/mL,100nM), MBP用Atto 488 NHS (Sigma Aldrich)标记。分析物:麦芽糖(O-α-D-Glucopyranosyl-D-glucose),0-1000 µ M。通过用分析物填充毛细管,然后注射指示剂与分析物共孵育混合物,在400 mbar下流经探测器进行样品分析。 结果麦芽糖会引起麦芽糖结合蛋白的构象变化。FIDA技术提供了对流体动力半径(Rh)的绝对测量,并用于测量与麦芽糖(0.3 kDa)结合后ATTO488标记的MBP(42.5 kDa)的尺寸变化。如图2A所示,在25°C下绘制了MBP表观Rh随麦芽糖浓度(0-1000 µ M)变化的函数曲线。MBP的Rh从2.88nm降低至2.62nm,对应于0.26nm的ΔRh,清楚地表明结合后的结构变化(图2A)。结合数学模型,通过流体动力半径(Rh)变化的数据解析,该相互作用亲和力KD≈10 µ M,与文献[1,2]报道一致。在图2中,显示了单独MBP和MBP-麦芽糖的叠加FIDA信号。在图2B中,指示剂峰在麦芽糖存在下变窄。利用FIDA 泰勒分散分布图的峰面积,可同时探测MBP的荧光强度在增加麦芽糖浓度时因MBP与麦芽糖结合发生的变化,即结合相关荧光强度变化(BRIC,Binding Realted Intensity Change)。它表明,MBP的荧光信号受麦芽糖结合的影响(图2B),利用BRIC信号可从第二个维度解析二者亲和力常数KD≈10 µ M,从而实现结合测量的正交估计。图2.(A)由FIDA在25°C分析的MBP和麦芽糖之间的相关结合曲线。即MBP的Rh随麦芽糖浓度(0-1000 µ M)变化的函数曲线。(B)与单独的MBP(实线)相比,当存在麦芽糖(虚线)时,指示剂峰的原始数据曲线变得更窄。 结论本文的数据显示了如何使用FIDA技术对蛋白质的构象变化进行测量。FIDA通过测量蛋白质的流动性半径(5 µ L样品消耗)来深入评估活性以及局部和全局蛋白质结构变化。在一个平台,同时采用2种方法解析分子互作亲和力常数,正交测量,相互验证。 分子互作与稳定性分析系统 FIDA技术无论在传统的生物大分子、小分子互作分析,还是三元复合物,血清、血浆、粗提物中互作分析都有很好的适用性,而且在一些传统互作技术具有挑战性的领域,例如免纯化样本、脂质体、外泌体、GPCR互作分析领域具有独特的优势,FIDA技术扩展了互作方法的应用领域,非常有利于实验平台进行分子互作仪器技术升级。 FIDA技术在分子质量表征方面同样优秀,一次运行只需4微升样品4分钟的时间即可获取多达8个质量参数,其中流体力学半径(Rh)和粘度(Viscosity)为绝对数值,黏性(Stickiness)是FIDA的独家指标,聚集和多分散系数(PDI)为量化参数。FIDA可以用在任何蛋白相关的实验,包括蛋白质控,蛋白稳定性筛选、制剂筛选等常规方向,还可在液-液相分离(LLPS),冷冻电镜样本制备质控、蛋白表达体系筛选等领域有很好的解决方案。产品特点1. 无固定相:溶液中直接检测分子相互作用2. 无标记或荧光标记3. 灵敏度:Rh范围0.5-500nm4. 分辨率:检测到<5%Rh变化5. 亲和力范围:pM-mM6. 分析物上样体积:≤4μL7. 每个数据点8个质控参数8. 适用于各种样本类型,包括免纯化蛋白、无缓冲液限制应用领域
  • DV-1C系列沥青*旋转粘度计
    热烈祝贺上海衡平仪器仪表厂于2016上半年成功发布*--DV-1C:粘度计 旋转粘度计 沥青*粘度计产品特点全新*LCD显示屏,操作简单方便,屏蔽性能*显示信息:粘度(mPa.S, Pa.S)%扭矩转速/转子剪切速率/剪切应力量程符合*标准中华人民共和国交通行业标准JTJ052《公路工程沥青及沥青混合料试验规程》中的T0625《沥青布氏旋转粘度试验(布洛克菲尔德粘度计法)》可选配电脑连接口及粘度上位机软件:选配RS-232通讯接口连接电脑选配粘度上位机软件可实现数据采集和数据分析,全程监控粘度-温度曲线其他可选配配件:加热炉:使用温度<250℃外循环式20ml小量样品适配器:使用温度<120℃粘度计*恒温水浴产品介绍:DV-1型布氏旋转粘度计,是按照中华人民共和国交通行业标准JTJ052《公路工程沥青及沥青混合料试验规程》中的T0625《沥青布氏旋转粘度试验(布洛克菲尔德粘度计法)》规定的要求*制造的,主要用于按布洛克菲尔德粘度计旋转法测定道路沥青在45℃以上200℃以下温度范围内的表观粘度。根据粘度-温度曲线还可用来确定沥青混合料的施工温度。DV系列沥青*旋转粘度计测量数值数据表图实时显示测试记录*参数型号DV系列沥青*机测量范围1~2× 105mPa.S转子规格标配21、27、28、29号转子转子转速(转/分)5、10、20、50PC接口选配打印机接口√ 测量精度± 1%(牛顿液体)供电电源交流110~240VAC 50/ 60HZ工作环境5℃ ~35℃ ,相对湿度不大于80%外形尺寸380mm× 320mm× 390mm净重4.5kg标配21、27、28、29号转子图与小量样品适配器配套图
  • 影响运动粘度测试准确度的因素——工业4.0时代 自动粘度测定仪发展新趋势
    p    strong 仪器信息网讯& nbsp & nbsp /strong 当前石油产品常用的测量运动粘度的方法大都遵循GB/T 265 ASTM D445。工业快速发展下手动运动粘度测量的效率越发不能满足生产的需要,一系列节省时间无需频繁更换粘度管的宽量程自动化运动粘度仪应运而生。 /p p   对于测量运动粘度,影响其准确性的因素非常多。最主要的因素是温度,还有其垂直度,测量时间准确度和动能修正以及装样量等因素。其中动能修正计算复杂,但因影响与时间方成反比,通常手动测量时选择用较长的时间而将其忽略。另外现有的运动粘度管中,乌氏粘度计通过多一支大气联通管的设计也将装样量的因素排除掉,这也是为什么自动粘度测定仪通常选用改良型乌氏粘度管的原因。但对于动能修正的影响,由于自动粘度测定仪要求测量时间短,因此动能修正的因素不能排除,所以在自动仪器测量的情况下如何用最短的时间测量出准确的数值和如何将一系列偏差修正便是主要的难题所在。 /p p   现在对于自动运动粘度测量的校准通常是在测量温度点上将一系列不同数值的标准油测量后画出校准曲线来寻找真正的修正系数,从而将所有的影响通过修正系数修正。其次通过进样过程预估测试样品的范围,从而选择合适的测量球泡,给予合理的测试时间,来达到消除偏差的目的。那么对于粘度测量中最主要的影响因素——温度,便是厂家首要解决的难题。而工业设计的集成化是在准确度基础上的又一个挑战。 /p p   市场上大多数粘度计都是模块化控制,很少一部分是完全集中的,对于模块化的好处是只要有无限大的水浴便能增加测试器的个数,但是较大的水浴温度稳定性和准确度无法得到保证,工业设计的集成化程度也被降低。 /p p   上海邦安检测工程有限公司在二十年前进入石油检测仪器行业,在石油行业发达国家——美国找到了权威的粘度仪器制造商凯能仪器(Cannon Instrument Co.,Ltd,后称凯能或坎侬公司)。在中国计量出版社出版的《粘度测量》一书中介绍,美国国家粘度基准保存在凯能公司,凯能生产的粘度标准可以直接溯源到美国NIST,并且凯能公司还是国际ASTM CIC(Cannon Instrument Company)黏度比对的组织者。而凯能公司生产的粘度测定仪在ASTM D445标准中被推荐使用,凯能一直在石油粘度计领域深耕研发,在保证满足方法和准确性的前提下,尽可能的将设备集成化生产出一代又一代的新产品,为实验室节省空间和提升生产效率。 /p p   以凯能的产品为例,随着工业4.0的脚步,凯能公司新推出的粘度测定仪 CAV 4.2用最小的空间满足尽可能多的测试要求。新的CAV 4.2将智能端与仪器集成在一起,配备智能芯片和触摸屏,新增加安全警示功能,通过内置灯光,实时显示仪器操作状态,为无人化实验室管理提供便利。CAV4.2在有限的空间里配备了两个完全独立的双浴,可以同时进行不同温度点检测。与此同时,两个恒温浴中内置的粘度管每支可以具有100倍的粘度测量范围,全面涵盖0.5mm2/s~10000mm2/s范围内的粘度测量,真正地满足从温度到测量范围多样化宽量程的需求。此外CAV4.2将进样方式设计成两个独立14位外露式自动进样盘,在检测过程中可以随时增加新的样品,真正的实现365天24小时无间断远程测试诊断。而对于基本的温度控制更是能将温差的稳定性控制在0.01℃以内,远远超过方法要求。 /p p style=" text-align: center " img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/201911/uepic/0b2635fd-8d7f-438b-95b7-56c29e826615.jpg" title=" CANNON 双浴全自动运动粘度仪 CAV4.2.jpg" alt=" CANNON 双浴全自动运动粘度仪 CAV4.2.jpg" / /p p style=" text-align: center " a href=" https://www.instrument.com.cn/netshow/C314305.htm" target=" _self" CANNON 双浴全自动运动粘度仪 CAV4.2 /a /p p   新的CAV 4.2推出以来受到许多关注,目前在国内已经有数十家生产企业投入使用,相比凯能公司的上一代产品,新的CAV4.2更加便利且节省空间,且安全性更高。但是不得不说CAV4.2的高集成化设计也让其售价更高,相比国内外的一些其他品牌粘度计来说,高端的设计也代表了高昂的费用。但是随着工业智能化的发展,先进的仪器是必不可少的,一个智能化实验室的前提投入必然是庞大的,但在长久的运营中,有前瞻性的投入都会转化为成倍的收益。高集成智能化的产品必然会取代落后的产品,高效率低成本的生产者也必将成为市场竞争中的胜者。使用者如何把握新浪潮机遇,不被工业化浪潮甩掉,是我们每个人值得思考的问题。 /p p br/ /p
  • 应用案例 | 在旋转流变仪上使用触变性测试定量评估挤出或喷涂后的粘度恢复
    在旋转流变仪上使用触变性测试定量评估挤出或喷涂后的粘度恢复简介许多消费产品包装在管或者瓶中,其使用方法牵涉到以泵送的方式让产品通过喷嘴。这类产品多表现为剪切变稀特性,在挤出过程中,由于剪切速率的增加导致粘度下降,然后在离开孔口后,随着剪切速率的降低,粘度恢复。此过程涉及的剪切速率与孔口半径r、体积流速Q相关,可由下式表示:参数n是幂律指数,对于牛顿流体为1,对于非牛顿流体为0 - 1之间。对样品进行变剪切速率测试,再使用幂律模型对数据进行拟合,可得到这一数值。通过测量体积流速(在一定时间内挤出的体积)和孔的内半径,可以估算挤出过程的相关剪切速率。该值可以输入到步阶式剪切速率测试(图1)中。测试首先在一定的时间内以低剪切速率剪切样品(模拟挤出之前),然后再提高到目标剪切速率(模拟挤出过程)。随着剪切速率下降到其初始值,粘度逐渐恢复。该测试展示了样品在挤出后的粘度恢复快慢,并与产品使用过程中的厚度或粘度相关。图1 步阶速率测试中的触变性可以通过在第一阶段结束时测量最终粘度,以及在第三阶段计算粘度恢复到一定比例所花费的时间,来对触变性进行量化表征。该数值可用于产品或配方之间的比较,广泛地应用于各个行业。方法在与产品使用过程中的挤出相关的剪切速率条件下,评估了牙膏和润肤露的粘度恢复特性。测量使用Kinexus旋转流变仪,Peltier温控单元,糙面平行板夹具,以及rSpace软件中标准的预配置程序。使用标准的装样步骤,以确保两个样品都经历一致且可控的装样方式。所有流变学测量均在25°C下进行。输入挤出体积,挤出时间和孔径半径,可以自动计算出相关的挤出剪切速率,并将其作为测试程序的一部分。在步阶式剪切速率测试中,以该计算值作为中间阶段的剪切速率,其前后使用0.1s-1的恒定剪切速率。自动测定产品恢复90%原始粘度所需时间,并在测试结束时报告。结果使用自动计算器,计算了产品挤出时的剪切速率为:牙膏为34 s-1,润肤露为840 s-1。在步阶测试的中间阶段应用了这些剪切速率。图2显示了牙膏的测试结果。 显然,这是一种高度触变性的材料,因为它无法在测试时间内完全恢复其结构,大约需要6分钟才能恢复到其原始粘度的70%。图2 牙膏的阶段剪切速率曲线相比之下,图3中所示的润肤露几乎可以完全恢复其原始粘度,并且仅需7秒即可获得与牙膏相同百分比的恢复,恢复到90%也仅需23秒即可。该材料可归为基本没有触变性。图3 润肤露的步阶剪切速率曲线对于消费者来说,这意味着润肤露在与皮肤接触后会很快重组结构,这可以防止过度铺展或可能发生的滴落。牙膏在刷牙之前停留在牙刷上的粘度较低,这将使其更易于在口腔中分布开,并可能影响感官特性。当然,牙膏的粘度也不能低到可以流过刷毛、或在刷毛上下垂的程度。结论对牙膏和润肤露进行了三步剪切速率测试,用来评估分别从管和瓶中挤出后的粘度恢复程度。牙膏显示出高度的触变性,需要6分钟才能恢复其原始粘度的70%。然而润肤露仅需7秒即可达到相同程度的恢复,两相比较,可以认为润肤露是非触变性的。
  • Reologica推出新型REOVISCO粘度仪
    瑞典Reologica公司推出新产品Reovisco粘度仪。该仪器可用于完成从常规粘度测量到复杂的流量曲线测量。因为Reovisco能够提供的温度范围和几何配置,该机器可广泛应用于多个行业,包括石油、制药、医疗、油墨、纸浆、食品、聚合物溶液、油漆和涂料等。此机器的设置与操作要求简单,使用起来非常便捷。有关详情尽请联系我们:   info@universalhkco.com.cn。
  • 润滑油粘度检测的温度?
    “检测润滑油的粘度时,的检测温度是多少度?应该是40度还是100度?”粘度是润滑油重要的指标,润滑油是否适宜使用,首先就要看粘度是否处在要求的范围。粘度不合适,那么润滑油就不宜使用,因此粘度是润滑油常见的检测项目。在检测粘度时,一般有运动粘度或者粘度两种检测,其中尤以运动粘度居多。1粘度检测为什么要确定温度?要检测润滑油的粘度,我们都是选定一个温度,在该温度下进行测量,因为粘度会随着温度变化而变化。同一种润滑油,在不同温度下测出的粘度是不一样的。当温度升高,润滑油会变稀,粘度减小。当温度降低,润滑油的粘度增大,油变稠。 2检测粘度,40度还是100度?目前,润滑油一般是在40℃或者100℃测量粘度,具体在40℃还是100℃,要看具体情况,并不是随意测定。关于粘度的测定温度,是接近于设备运转的温度。一般来说,工业润滑油在40℃时检测粘度,因为工业设备的运转温度比较接近这个范围。另外,润滑油的粘度变化在低温时相对更显著,因此,如果想检测一些异常因素引起的粘度变化,例如润滑油里进水、混入燃油、氧化引起的粘度变化等等,在40℃低温下相对更容易检测出来。但是,有些设备的运转温度相对较高,为了让检测温度接近使用温度,我们应当在高温下检测粘度,例如汽车发动机,一般是在100℃检测粘度。3计算润滑油的粘度指数:有些设备在运转中可能经历较大的温度变化,对于这种情况,我们需要测量一个高温粘度和一个低温粘度。例如多级油用于温度变化较大的润滑场合,多级油就是在两个温度分别测定粘度,一个高温粘度,一个低温粘度。通过这两个粘度,我们可以计算出润滑油的粘度指数。对于运转中温度变化较大的情况,润滑油的粘度指数是一项很重要的指标。粘度指数高,说明润滑油在温度变化中,粘度相对更为稳定。4小结:总之,在检测润滑油的粘度时,要弄清楚这几个问题: 设备正常运行时的温度。 设备运转中,是否会出现较大的温度波动(大于20-30℃)? 如果要和其它的油样进行粘度对比,测定条件(包括温度)应当保持一致。
  • 自动乌氏粘度计-外推法测定聚醚醚酮(PEEK)的特性粘度
    聚醚醚酮(PEEK)是在主链结构中含有一个酮键和两个醚键的重复单元所构成的高聚物,属特种高分子材料。具有耐高温、耐化学药品腐蚀等物理化学性能,是一类半结晶高分子材料,可用作耐高温结构材料和电绝缘材料,可与玻璃纤维或碳纤维复合制备增强材料。一般采用与芳香族二元酚缩合而得的一类聚芳醚类高聚物。这种材料在航空航天领域、医疗器械领域(作为人工骨修复骨缺损)和工业领域有大量的应用。聚醚醚酮(PEEK)塑胶原料是芳香族结晶型热塑性高分子材料,具有机械强度高、耐高温、耐冲击、阻燃、耐酸碱、耐水解、耐磨、耐疲劳、耐辐照及良好的电性能。耐高温性:具有较高的玻璃化转变温度(Tg=143℃)和熔点(Tm=343℃),其负载热变形温度高达316℃,瞬时使用温度可达300℃。机械特性:具有刚性和柔性,特别是对交变应力下的抗疲劳性非常突出,可与合金材料相媲美。自润滑性:具有优良的滑动特性,适合于严格要求低摩擦系数和耐磨耗用途的场合,特别是用碳纤维、石墨各占一定比例混合改性的PEEK自润滑性能更佳。耐腐蚀性:除浓硫酸外,PEEK不溶于任何溶剂和强酸、强碱,而且耐水解,具有很高的化学稳定性。阻燃性:具有自熄性,即使不加任何阻燃剂,可达到UL标准的94V-0级。易加工性:具有高温流动性好,而热分解温度又很高的特点,可采用多种加工方式:注射成型、挤出成型、模压成型及熔融纺丝等。耐剥离性:耐剥离性很好,因此可制成包覆很薄的电线或电磁线,并可在苛刻条件下使用。耐疲劳性:在所有树脂中具有最好的耐疲劳性。耐辐照性:耐高辐照的能力很强,超过了通用树脂中耐辐照性最好的聚苯乙烯。可以作成γ辐照剂量达1100Mrad时仍能保持良好的绝缘能力的高性能 。耐水解性:PEEK及其复合材料不受水和高压水蒸气的化学影响,用这种材料作成的制品在高温高压水中连续使用仍可保持优异特性。发烟性:在塑料中PEEK具有最低发烟性。毒气逸散性:PEEK与很多有机材料相同,在高温分解时,PEEK主要产生二氧化碳和一氧化碳,使用英国航行器测试标准BSS 7239可以检测到极低浓度的毒气逸散,这种检测过程需要在1立方米的空间内完全燃烧100克样品,然后分析其中所产生的毒气,毒性指数定义为在正常情况下产生的毒气浓度综合与30分钟可以使人致命的剂量之比,PEEK450G的指数为0.22,且没有检测到酸性气体。绝缘稳定性:具有良好的电绝缘性能,并保持到很高的温度范围。其介电损耗在高频情况下也很小。:稳定性:具有优越的尺寸稳定特性,这对某些应用来说有的很重要。温度、湿度等环境条件的变化对PEEK零件的尺寸影响不大,可以满足对尺寸精度要求比较高工况下的使用要求。PEEK塑胶原料注塑成型收缩率小,这对控制PEEK注塑零件的尺寸公差范围非常有好处,使PEEK零件的尺寸精度比通用塑料高很多。热膨胀系数小,随着温度的变化(可由环境温度的变化或运转过程中摩擦生热引起),PEEK零件的尺寸变化很小。尺寸稳定性好,塑料的尺寸稳定性是指工程塑料制品在使用或存放过程中尺寸稳定的性能,这种尺寸的变化主要是因为聚合物分子的活化能提高后,使链段有某种程度的卷曲导致的。PEEK耐热水解特性突出,在高温高湿环境下吸水性很低,不会出现类似尼龙等通用塑料因吸水而使尺寸发生明显变化的情况。众所周知,在复合材料成型工艺中,大家都会尽可能的寻求合适的基体粘度,使其对增强材料有良好的浸润性。那么特性粘度也是表征材料内部结构,分子的链结构、分子量及其分布等。 实验所需仪器:卓祥全自动粘度仪(溶剂测试、PEEK样品测试、粘度管清洗及干燥、样品各浓度在线稀释及混匀) 万分之一电子天平(PEEK样品的称重) 自动配液器(96%硫酸的精确移取,以及外推各浓度点稀释) 多位溶样器(PEEK样品溶解)实验所需试剂:96%浓硫酸粘度管规格:稀释型粘度管实验流程:1. 打开卓祥自动粘度仪①开启仪器控温部分、测量部分、清洗部分及在线稀释部分的电源,再打开PC电源后,双击点开卓祥粘度专用软件。②设置测试实验所需温度,待温度稳定后用标准温度计对温度进行校准后待用。2. 样品前处理①开启万分之一天平,用标准砝码对其校准或内校。②取干净的样品瓶,准确秤取PEEK样品质量0.**g左右,精确至0.0001g。③通过卓祥自动配液器ZPQ-50自动将样品配置至所需浓度值。④将配置好的样品瓶直接放置到卓祥MSB-15溶样器上溶解完全后待测。3. 样品测试①溶剂测试:加入**ml左右96%硫酸于稀释型粘度管中,启动卓祥粘度软件中的“溶剂粘度”至结束。②清洗粘度管:启动卓祥粘度软件中的“清洗”“干燥”等程序自动对粘度管进行清洗干燥后待测。③PEEK样品测试:精准移取**ml溶解好待用的PEEK样品溶液后,设置后续各浓度点参数、启动卓祥粘度软件至结束。④清洗粘度管:启动卓祥粘度软件中的“清洗”“干燥”程序自动对粘度管进行清洗干燥等任务。4. 测试结果:打开软件中的外推分析,选取各浓度点,自动推导出详细结果报表及谱图,得出的结果可在计算机上直接显示,并有数据储存。也可对其进行多样化粘度分析及打印等多种功能。
  • 润滑油粘度检测最合适温度 40度还是100度
    检测润滑油的粘度时,合适的检测温度是多少度?应该是40度还是100度?”粘度是润滑油最重要的指标,润滑油是否适宜使用,首先就要看粘度是否处在要求的范围。粘度不合适,那么润滑油就不宜使用,因此粘度是润滑油常见的检测项目。在检测粘度时,一般有运动粘度或者绝对粘度两种检测,其中尤以运动粘度居多。1,粘度检测为什么要确定温度?要检测润滑油的粘度,我们都是选定一个温度,在该温度下进行测量,因为粘度会随着温度变化而变化。同一种润滑油,在不同温度下测出的粘度是不一样的。当温度升高,润滑油会变稀,粘度减小。当温度降低,润滑油的粘度增大,油变稠。2,检测粘度,40度还是100度?目前,润滑油一般是在40℃或者100℃测量粘度,具体在40℃还是100℃,要看具体情况,并不是随意测定。关于粘度的测定温度,要接近于设备运转的温度。一般来说,工业润滑油在40℃时检测粘度,因为工业设备的运转温度比较接近这个范围。另外,润滑油的粘度变化在低温时相对更显著,因此,如果想检测一些异常因素引起的粘度变化,例如润滑油里进水、混入燃油、氧化引起的粘度变化等等,在40℃低温下相对更容易检测出来。但是,有些设备的运转温度相对较高,为了让检测温度接近使用温度,我们应当在高温下检测粘度,例如汽车发动机,一般是在100℃检测粘度。3,计算润滑油的粘度指数有些设备在运转中可能经历较大的温度变化,对于这种情况,我们需要测量一个高温粘度和一个低温粘度。例如多级油用于温度变化较大的润滑场合,多级油就是在两个温度分别测定粘度,一个高温粘度,一个低温粘度。通过这两个粘度,我们可以计算出润滑油的粘度指数。对于运转中温度变化较大的情况,润滑油的粘度指数是一项很重要的指标。粘度指数高,说明润滑油在温度变化中,粘度相对更为稳定。总结总之,在检测润滑油的粘度时,要弄清楚这几个问题:设备正常运行时的温度。设备运转中,是否会出现较大的温度波动(大于20-30℃)?如果要和其它的油样进行粘度对比,测定条件(包括温度)应当保持一致。
  • 钱义祥&曾智强 :DSC曲线的峰谷之美
    热分析的美存在于DSC曲线的峰谷、TG曲线的流淌和DMA曲线的激荡, 绝妙 ! DSC曲线的峰谷、TG曲线的流淌和DMA曲线的激荡的美学理念是一个完整的美学体系。DSC曲线的峰谷之美,TG曲线的流淌之美和DMA曲线的激荡之美构成热分析曲线之美的三部曲。本篇是DSC曲线的峰谷之美。【热分析简明教程】第五章是热分析实验方法的标准与规范。差示扫描量热法DSC的标准与规范包括玻璃化转变温度测定、熔融和结晶温度、熔融和结晶焓的测定、比热容的测定、特定反应曲线温度、时间、反应热和转化率的测定、氧化诱导期的测定、结晶动力学的测定。本文以差示扫描量热法DSC的标准与规范中提及的玻璃化转变测定、熔融和结晶测定、比热容测定、特定反应测定、氧化诱导期测定、结晶动力学测定为示例,展现DSC曲线的峰谷之美。山高人为峰,脚踏幽幻谷。迈开脚步,探索DSC峰谷之美。传热学是研究由温差引起的热能传递规律的科学。热流DSC是测定热变化引起试样与参比物温差变化的研究方法。温度差既是热量变化的反映,又是引发热传导的必要条件。当试样发生热反应时,温差引起热能传递,DSC曲线上出现了吸热峰、放热峰和和台阶。约定DSC曲线Y轴的代表的热效应方向之后(例如将Y轴正向约定为放热方向),吸热效应用凹下的谷表示;放热效应用凸起的峰表示。高聚物的玻璃化转变表现在DSC曲线上是基线的突然位移,表现为正常吸热曲线的阶跃,呈台阶形。峰、谷和向吸热方向偏离的台阶是展现DSC曲线的峰谷之美的基本形态和美姿。它反映了事物变化的本质和规律。 一.玻璃化转变曲线的阶跃之美玻璃化转变测定的标准是GB/T19466.2-2004/ISO11357-2 2020。它规定了塑料玻璃化转变温度的DSC测定法。玻璃化转变研究植根于高分子化学、高分子物理和近代研究方法(热分析)的根基上。热分析研究玻璃化转变的目的就是科学认识玻璃化转变,用高分子化学、高分子物理和凝聚态物理来解析玻璃化转变曲线中的科学问题和应用问题。玻璃化转变是高聚物的基本物理转变,研究内涵极为丰富,它涉及玻璃化转变的特征温度、状态变化、热力学参数、力学性能、滞后圈、活化能测定;玻璃化转变温度的调控;玻璃化转变与蠕变、应力松弛、屈服、界面、银纹的关联;热-力历史对Tg的影响、以及玻璃化转变与高聚物结构、性能、加工、使用的相关性等。并通过分子运动揭示分子结构与材料性能之间的内联系及基本规律。用DSC方法研究玻璃化转变,当试样发生玻璃化转变时,表现为正常吸热曲线的阶跃,呈台阶形。当高聚物发生物理老化时,应力松弛过程使台阶转化为凹下的谷。我们从玻璃化转变曲线的阶跃和凹下的谷发现玻璃化转变的外在美和内在美。1. 玻璃化转变的简约之美和变化之美 玻璃化转变峰形 应力松弛引起的峰形变化 TMA压入模式测定导线双层涂层的Tg,呈双台阶式,如图所示: 玻璃化转变的峰形简洁优美,简静和谐,简约的形式却表达了丰富的内容。玻璃化转变反映了物质的状态、使用温度、相容性、老化温度区间、制品加工、材料稳定等信息。2. 玻璃化转变台阶演变之美物理老化是玻璃态高聚物通过链段的微布朗运动使其凝聚态结构从非平衡态向平衡态过渡的松弛过程。它一般发生在玻璃化温度和次级转变之间。高聚物的物理老化引起玻璃化转变台阶变异,应力松弛过程使台阶演变为凹下的谷形特征,甚至酷似DSC曲线上的吸热峰。这是玻璃化转变台阶演变之美。从宏观性能角度来看,高聚物的玻璃化转变是指非晶高聚物从玻璃态到高弹态的转变(温度从低到高),或从高弹态到玻璃态的转变(温度从高到低)。DSC是一个测定近似比热容的方法,高聚物的玻璃化转变表现在DSC曲线上是基线的突然位移,呈台阶形。玻璃化转变本质上是一个动力学问题,是一个松弛过程。当高聚物从熔体猝火到玻璃态后,再在低于Tg的温度下进行热处理,则会在Tg附近出现一个吸热峰。如图所示:具有不同热历史的从熔融态淬火聚对苯二甲酸乙二酯膜的DSC曲线(a) 分别在温度下热处理2小时;(b)在25℃下热处理不同的时间此曲线摘自【新编高聚物的结构与性能】 何平笙编著 科学出版社出版社 2009物理老化在DSC的升温测量中表呈现出来,如上图所示。当高聚物从熔体淬火到玻璃态后,再在低于Tg温度下进行热处理,Tg台阶演变为一个松弛峰,温度越高,松弛峰越高。淬火试样在25℃热处理不同时间,DSC吸热峰随处理时间延长而移向高温。研究具有不同热历史对玻璃化转变的影响,其本质是研究高聚物的物理老化。3. 和谐美(统一美)PET的DSC曲线如图所示。热分析曲线集玻璃化转变、冷结晶和熔融于一身,体现了多重转变的和谐(包容)之美。曲线似狼毫疾书,峰(锋)起峰(锋)落,流淌着玻璃化转变、冷结晶、熔融的变化轨迹。PET的DSC曲线在DSC曲线上,既有物理转变峰,也有化学转变峰;既有平坦峰,也有陡削峰;既有强峰,也有弱峰。它们和谐地融汇在一起。 4. 玻璃化转变台阶宽化之美玻璃化转变是非晶态高聚物(包括部分结晶高聚物中的非晶相)发生玻璃态≒高弹态的转变,其分子运动本质是链段发生“冻结”“自由”的转变。基于热运动强烈的时间依赖性和温度度依赖性,高聚物的玻璃化转变不是一个温度点,而是一个温度区间。因此科学认识玻璃化转变峰的寛化现象非常重要。玻璃化转变区一般宽达10~20℃,而且玻璃化转变区还明显地依赖于实验条件。某些高聚物体系的玻璃化转变区域发生加宽现象,加宽现象表明存在多种形式分子链段运动,这主要来源于交联高聚物中交联程度的微观差异、嵌段或接枝共聚物微相结构的差异、高聚物共混体系中相结构和相互作用的不同等因素。5. 玻璃化转变的双重峰之美非晶高聚物通常只有一个玻璃化温度。但高聚物也会出现双重玻璃化现象和双玻璃化温度。从热分析应用研究史来看,随着新型材料不断出现,热分析研究领域也不断扩展。科学认识双重玻璃化温度现象是以热分析实验为基础。在新材料的研究中,通常都需要测定玻璃化转变,常常会发现双玻璃化转变转变现象。归纳整理大量的热分析曲线,发现下列情况常常会出现双重玻璃化现象和双重玻璃化温度:1)许多部分结晶高聚物常表现出两个玻璃化温度;2)交联高聚物的两相球粒模型;微相分离;3)部分相容的共混高聚物;4)部分橡胶均聚物、树脂/基体体系;5)高聚物涂布在基体(尼龙纤维)上的双玻璃化温度;6)导线双层涂层的双玻璃化温度高聚物具有双玻璃化温度,它的DSC曲线将出现二个玻璃化转变的台阶。摘抄几个具有双玻璃化转变的高聚物:DMA也可以测定玻璃化转变,如交联高聚物的两相球粒模型和交联高聚物中的双玻璃化转变现象如图所示:交联高聚物的两相球粒模型和交联高聚物中的双玻璃化转变现象 高交联微球分散在低交联基体中的两相结构中。一个对应于高交联球的玻璃化转变,另一个对应于低交联基体的玻璃化转变。DMA和DSC是测定到双玻璃化现象和双玻璃化温度的常用方法。6. 玻璃化转变的可逆之美 玻璃化转变是一个可逆过程。从宏观性能角度看,高聚物的玻璃化转变是指非晶高聚物玻璃态转变为高弹态(温度从低到高),或从高弹态转变为玻璃态(温度从高到低)。通常,玻璃化转变测量是进行升温实验。但严格来说,玻璃化过程应是从高弹态转变为玻璃态(温度从高到低),由降温曲线求得玻璃化温度更合理。非晶高聚物由玻璃态转变为高弹态(温度从低到高)是解玻璃化过程。非晶高聚物的升温与降温的DSC曲线如图所示: 非晶高聚物的升温与降温的DSC曲线7. 玻璃化温度的调控之美物质的热变化是可调控的,玻璃化温度也是可以调控的。解读特定材料玻璃化转变的热分析曲线,研究它的特征和变化规律,进而对玻璃化温度进行调控,优化材料热物性参数、状态和特性,服务于材料研发、生产和使用,使热变化沿着确定的研究方向发展。你欲调控材料的玻璃化温度,你就要知道哪些因素会影响材料的玻璃化温度。调控玻璃化温度依赖于你对影响玻璃化温度因素的认知。高分子物理告诉我们:玻璃化温度是高分子的链段从冻结到运动(或从运动到冻结)的一个转变温度,而链段运动是通过主链的单键内旋转来实现的,因此,凡是能够影响高分子链柔性的因素,都对Tg有影响。减弱高分子链柔性或增加分子间作用力的因素,如引入刚性基团或极性基团、交联和结晶都使Tg升高,而增加高分子柔性的因素,如引入增塑剂或溶剂,引进柔性基团等都使Tg降低。基于高分子物理对玻璃化转变的认知,改变玻璃化温度的手段有:增塑、共聚、交联、结晶及改变相对分子质量可以使高聚物玻璃温度在一定范围内连续地变化。如不同结构的聚苯并噁嗪,Tg 在107 ℃—368 ℃宽的温度范围内变化;N-羟甲基丙烯酰胺(NMA),参与共聚的EVA乳液的 Tg 值可以在 -30~30℃之间调控;偏二氯乙烯与丙烯酸酯共聚,可制备得到不同Tg的两种乳液:低Tg(-50~0℃)的乳液和高Tg(0~30℃)的乳液;用于粘接水晶的 UV 固化胶,添加增塑剂来降低 Tg , 增加胶的柔韧性。8. 科学认识玻璃化转变中的“未知”人的认知是不断提高的,常常用已知来解释未知。探索未知的利器是丰富完善自身的知识体系,完善的知识结构包括雄厚的知识储备和系统、灵活地运用这些知识的科学方法。几十年来,我们已科学认识了玻璃化转变中的许多“未知”,但还有很多的“未知”需要继续探索。探索未知的前提是你要有求索的觉醒。如果一个人的思维被禁锢,视野和认知就会变狭隘,认知也就停止不前了。玻璃化转变研究中最大的“未知”是人们还是无法回答玻璃态的本质是什么这一基本问题。玻璃态本质的研究一直是凝聚态物理及软物质领域的重要内容,也是至今悬而未决的难题。迄今为止没有一个理论能解释玻璃化转变过程中的所有现象,已有的理论也只是在某些特定的过冷区间和特定的体系中才与实验或模拟结果吻合。诺贝尔奖获得者Andcrson在文章中展示了他对玻璃化转变问题的兴趣,并预言玻璃化转变问题将在21世纪得到最终解决。对玻璃化转变机制的研究,正在不断深入并逐渐逼近正确,对它的研究,既是挑战也是机遇,并将继续吸引科学家们研究下去。经过科学家们持续不断的努力,玻璃及玻璃化转变的物理本质之谜最终一定会解开!热分析方法研究高聚物材料已有几十年的历史,它不仅为材料提供了热物性参数,还为探索玻璃化转变的实验特征(玻璃化转变过程的热力学行为、动力学特征)、实验技术表征和玻璃化转变理论的演变积累了大量的数据,是探索玻璃化转变理论的实验基础。它在玻璃化转变理论研究中的作用不容忽视。热分析方法表征高聚物材料需要玻璃化转变理论指导,研究玻璃化转变理论也需要近代科学方法(包括核磁共振、热分析等)的实验基础和实验证据。玻璃化转变研究在进行中,玻璃化转变的峰谷之美将在不断研究中绽放得更灿烂。二、熔融-结晶的峰谷之美熔融和结晶温度、熔融和结晶焓测定的标准是GB/T 19466.3-2004/ISO 11357-3 2018。它规定了塑料熔融与结晶的DSC测量法。可用DSC方法测定结晶或部分结晶聚合物的熔融和结晶温度及其熔融和结晶热。1. 冷结晶、热结晶、等温结晶之美结晶或部分结晶聚合物的非等温结晶有冷结晶和热结晶之分。试样以适当的速率升温,熔融后淬火,淬火试样以相同速率升温,DSC曲线上的结晶峰称为冷结晶峰。把开始结晶的温度与Tg之差 ∆Tg 作为非等温冷结晶速率的度量,初略地说,∆Tg越大,则冷结晶速率越慢。 聚合物升温熔融与降温结晶的DSC曲线如图所示;可以用过冷度∆Tc来分析非等温实验数据。过冷度 ∆Tc定义为升温DSC曲线熔融峰温与降温DSC曲线开始结晶温度之差,用线性方程式中截距表示聚合物所固有的结晶能力。∆Tc随降温速率而变。 2. 熔融-结晶峰的峰、岭、谷之美DSC方法测定结晶或部分结晶聚合物的熔融和结晶温度及其熔融和结晶热。高聚物的DSC曲线显现结晶高聚物的熔融与结晶过程。升温测量高聚物的结晶-熔融过程,假设DSC图中约定Y轴正方向代表放热,那么冷结晶曲线呈峰的形式,熔融曲线呈谷的形式。降温测量热结晶,热结晶曲线呈峰的形式。PTFE熔融的DSC曲线如图所示:PTFE不同升温速率的DSC曲线PTFE熔融峰的峰形与升温速率有关。随升温速率的提高,熔化峰变宽,河谷越来越深。熔融峰好似平原上的河谷。结晶度高的部分结晶聚合物熔融峰的谷坡陡峻、狭而深,似大峡谷;结晶度低的结晶或部分结晶聚合物熔融峰的谷坡浅而宽。熔融双峰呈现谷—谷相连突起的“岭”,似水中的暗礁或小岛。如图示意:熔融双峰的双谷和暗礁或岛屿的示意结晶峰好似独立高耸的山峰。结晶双峰呈现山峰相连的岭和狭窄低凹的山谷。如图示意:结晶双峰的峰、岭、谷的示意3. 等温结晶峰的变化之美 结构相当规整的聚合物在玻璃化温度Tg和熔融温度Tm所限定的温度范围内出现结晶作用。结晶速率随温度而变,所以采用恒温法测定高聚物的结晶过程,结晶峰的峰形是随结晶温度而变。不同结晶温度的DSC曲线如图所示。它显现了高聚物结晶速率对温度的依赖性,也显现了不同结晶温度下结晶峰形的变化之美。PBS熔融后分别在80℃、81℃、83℃、85℃、88℃等温结晶的DSC曲线部分结晶高聚物是晶相和非晶相的混合体系。晶相最重要的特征温度是熔点Tm。非晶相最重要的特征温度是玻璃化转变温度Tg 。部分结晶高聚物结晶温度范围正是在Tg与Tm之间。实现结晶的途径有两条:一是将熔体或溶液冷却到Tg与Tm之间的温度使之结晶,称为热结晶;二是先将熔体骤冷到Tg以下形成过冷液体(即玻璃),然后再升温到Tg与Tm之间的温度下使之结晶,称为冷结晶。高聚物结晶速率对温度的依赖性取决于成核速率和晶体生长速率的温度依赖性。随温度的下降,成核速率逐渐增大;晶体生长速率的温度依赖性取决于高分子链段向晶核扩散并作规整排列的速度。温度越低,熔体黏度越大,晶体生长速率越小。因此,高聚物的结晶速率随温度的变化不是单调上升,也不是单调下降,而是在某一温度下达到最大值。在结晶温度略低于熔点时,结晶速率因成核速率很低而很慢;在接近玻璃化转变温度时,结晶速率因晶体生长速率很低而很慢;而结晶温度在(0.80 ~ 0.85)Tm附近时,因成核速率和晶体生长速率都较高,结晶速率达到极大。等温实验得到多条等温结晶曲线,绘制等温温度-等温结晶时间下的关系曲线,如图所示:等温结晶温度和结晶时间的关系由等温结晶温度-等温结晶时间下的关系曲线方便地选择等温结晶温度,具有选择之美。U字形曲线显现结晶温度和结晶时间相关性之美。三.比热容曲线的线性美及松弛峰特征比热容的DSC测定法的标准是ISO11357-4 2021和ASTM E 1269-11(2018)规定了比热容的DSC测定法。比热容是指单位温升所需的热量(热容C)除以质量m,单位为J / kg. K 。比热容的DSC曲线如图所示: 显现玻璃化转变和应力松弛特征的比热容曲线通常,比热容与温度的关系是线性增大。当试样发生玻璃化转变且有应力松弛时,比热容曲线会出现台阶和松弛峰峰形。四.特定反应的特征/特性之美 特定反应曲线温度、时间、反应热和转化率测定标准是ISO11357-5。它规定了特征反应曲线温度、时间、反应热与反应程度的DSC测定法。热分析研究特定的反应,热分析曲线就是这种特定反应的特定的形象。DSC研究的特定反应泛指氧化、还原、固化、热降解、热氧降解等。用DSC曲线来表征特定反应曲线温度、时间、反应热和转化率,也可进行剩余热的测量。依实验目的可以采用升温法或恒温法。特定反应的DSC曲线峰谷具有特定反应的特征和特性,呈现特定反应特有的特性之美。特定反应的美是建立在反应本身固有的特征和特性基础上,人们从研究特定反应中得到了快乐,为什么能从中得到快乐呢?因为特定反应的DSC曲线的峰谷具有特定反应的特性之美。特定反应的美是建立在特定反应本身,如DSC研究胶粘剂的固化反应。胶粘剂的固化反应是一个高分子化学问题。高分子链之间通过化学键连接起来形成相对分子质量无限大的三维网络,称之为交联。交联固化过程不是按化学反应平衡方程式来表示,而是以一种不均一的状态存在,交联高分子的网络结构可以是规则的,也可以是不规则的。因此固化反应的DSC曲线常出现双峰峰形和多峰峰形,如图所示。交联固化的DSC曲线示意玻璃化温度(Tg)的测定这是一个高分子物理问题,通过测定Tg来研究交联高分子网状结构和宏观性能(玻璃化转变)的相关性。胶粘剂的固化反应出现双峰,表明固化产物以不均一的状态存在。那么固化产物的DSC峰就会出现双玻璃化转变现象。限于篇幅,其它特定反应曲线温度、时间、反应热和转化率测定就不介绍了。五.氧化诱导期的蓄势之美氧化诱导期的测定标准是ISO11357-6 2018。它规定了聚合物材料氧化诱导期的DSC测定法。氧化诱导期是指稳定化材料耐氧化分解的一种相对度量。是由DSC测量材料在某一特定温度、常压氧气气氛下起始氧化放热的时间间隔来确定的。典型的热氧化稳定性曲线如图所示:热氧化稳定性曲线(切线分析法)t1氧气流切换点 t2氧化起始点 t3切线法起点 t4氧化峰时间氧化诱导期是用起始氧化放热的时间间隔来确定的。在某一特定温度下等温,试样吸附氧,是一个蓄势过程,当物理吸附和化学吸附氧的量蓄聚达到某一个值时,试样突然氧化放热,出现一个氧化放热峰。DSC方法测定聚乙烯的氧化诱导期是典型的实例。试样在氧化气流中200℃或210℃下等温,吸附氧气,蓄势诱导,氧化放热直冲峰顶。润滑油的氧化诱导期是采用压力差示扫描量热法(PDSC)。美国试验与材料协会于1998年将PDSC法测定润滑油的氧化诱导期列为ASTM D6186标准(最近版本发布于2013年。润滑油是液体,易挥发,使用PDSC法测定润滑油的氧化诱导期,试验数据重复性好。氧化起始温度是另一个表示材料氧化分解的概念。动态测定是由DSC测量材料在程序升温下、常压氧气气氛下起始氧化放热的温度来确定的。典型的氧化起始温度的DSC曲线如图所示:两种不同HDPE的氧化起始温度(动态OIT)测试由DSC曲线的氧化放热峰分别求出反应起始温度、外推起始温度、最大反应速率温度、外推终止温度和反应终止温度。氧化诱导时间和氧化起始温度都是稳定化材料耐氧化分解的一种相对度量。氧化诱导时间(等温OIT),氧化诱导温度(动态OIT)分别表示开始出现氧化放热的时间或温度。氧化诱导时间与氧化起始温度是二个不同的概念。要证明材料耐氧化的时间,采用氧化诱导时间来表示;要证明材料耐氧化的温度,采用氧化起始温度来表示;氧化诱导时间长,并不表示氧化起始温度高。反之亦然。六.结晶动力学的测定 结晶动力学测定的标准是ISO11357-7 2022。它规定了利用差示扫描量热法研究部分结晶聚合物结晶动力学的等温和非等温两种方法。该方法可应用于已熔融的聚合物。如果测试过程中聚合物的分子结构有所改变,此法不适用。上面我们用图形和文字展现了差示扫描量热法DSC的标准与规范中提及的玻璃化转变测定、熔融和结晶测定、比热容测定、特定反应测定、氧化诱导期测定、结晶动力学测定的DSC曲线的峰谷之美。峰谷之美的源泉是什么?源之温差引起的能量传递的热传导过程。温差引起的能量传递的热传导过程是峰谷之美的源泉。傅立叶定律是传热学中的一个基本定律,也称为热传导定律。傅立叶热传导定律与差示扫描量热法有一定的内在渊源。传热学是研究由温差(temperature difference)引起的热能传递规律的科学。热流DSC是测定由于热变化引起试样与参比物温差变化的研究方法。DSC热力学体系因温差引起热传导现象,热传导现象与能量的传递相联系,热传导过程就是热量热传递(流动)的过程。DSC测量流入(流出)试样和参比物的热流与温度或时间的关系,得到了热流随温度或时间变化的轨迹,DSC曲线上出现了吸热峰、放热峰和和台阶。热流DSC的理论基础是傅立叶热传导定律,应用傅立叶热传导理论解析热流DSC曲线的热传导现象,展现DSC曲线的峰谷之美。峰谷之美从温差、能量传递和热传导过程中绽放。人们发现美的同时,DSC曲线的峰谷也给人以美的享受。 下面我们继续探索DSC曲线的特性参数转折之美、曲线变异之美、峰-峰、谷-谷、峰-谷连绵之美。托宽思路,探索古陶瓷DSC曲线的远古之美和空间材料的遥远之美。七.特性参数转折之美DSC可以测定比热容、导热系数;TMA可以测定膨胀系数;导热仪可以测定导热系数。比热容、膨胀系数、导热系数在玻璃化转变温度的转折如图所示: 比热容、膨胀系数、导热系数在玻璃化转变前后的转折由图可以看出:比热容、膨胀系数、导热系数峰值都在玻璃化转变温度出现峰值。比热容、膨胀系数、导热系数在高聚物玻璃化转变温度出现转折点是特性参数转折之美。聚合物的比热容、热膨胀、导热系数与分子活动性直接相关。不同物质的比热容、膨胀系数、导热系数各不相同;相同物质的比热容、膨胀系数、导热系数与其结构、密度、湿度、温度、压力等因素有关。八.曲线变异之美 曲线变异是指与定势思维相侼的DSC曲线。热分析实验中出现DSC曲线变异是常见的事。如高聚物玻璃化转变峰出现应力松弛峰;固化反应的DSC曲线出现双峰或多峰时,在固化产物的DSC曲线上就会出现相应的双玻璃化现象。当测试到变异峰时,一定要溯源曲线变异的原因。避免将变异的热分析曲线当作异常峰处理,产生误读与误判。进化的基本机制是变异与选择。求异思维的逻辑内核是“敏于生疑,敢于存疑,勇于质疑”。思维的求异或求异意识是指敢于向权威或传统观念挑战,从已有思路或从相异、相逆的思路去思考变异的DSC曲线,获得新的认知。。物质世界中,唯一不变的是变化,变化是永恒的。人类对变化的认知虽然不断演进,但变化自身的哲学内涵远比我们对变化所能理解的更为深邃。人类对热变化的探索无止境,当你遇到变异的热分析曲线时,潜心研究变异的曲线。运用热变化中的哲理解析变异的热分析曲线。开智悟理,悟而生慧、悟得智慧。科学研究中,常常悟生于常规、传统、标准、经典之外,探索前行。由“悟”而后产生变则通思维具有必然性。“悟”出变幻无常的曲线变异之美是对热变化的认识深化。玻璃化转变是高聚物的一个基本转变,它常常会发生变异。如物理老化引起玻璃化转变曲线变异。物理老化使玻璃化转变峰的峰形由台阶式峰形变异为松弛峰峰形。MDSC可将可逆的玻璃化转变和不可逆的应力松弛分离。 通常,水合氧化铝脱水形成低温氧化铝(γ、δ、η、κ-Al2O3), 低温氧化铝于1250℃转型生成高温氧化铝(ɑ-Al2O3)。测试某一样品,偶然发现高温氧化铝(ɑ-Al2O3)的生成放热峰提前到1050℃。经溯源,峰的变异是由样品中加入了矿化剂之故,使转相温度提前了200℃。玻璃化转变的宽化现象和双重玻璃化现象也是DSC曲线变异的实例。探索曲线变异的原因是认识的深化。变异的DSC曲线呈现峰谷变异之美。DSC曲线的峰谷在变异中越变越美。九.峰-峰、谷-谷、峰-谷连绵之美用凹下的谷表示吸热效应;用凸起的峰表示放热效应;用向吸热方向偏离的台阶表示玻璃化转变。峰、谷和台阶是展现DSC曲线的峰谷之美的基本形态。是对事物本质和规律的反映。DSC曲线中,常常出现峰-峰、谷-谷、峰-谷相连的现象。座座山峰相连称为岭,两峰之间狭窄低凹处称为谷。峰美!谷美!峰-峰相连的山岭美!狭窄低凹的山谷美! 1. 峰-峰连绵之美Al-ZrO2体系的DSC曲线如图所示:不同升温速率下Al-ZrO2反应过程的DSC曲线Al-ZrO2体系在一定条件下(不同升温速率下)发生化学反应。图中两个放热峰分别对应于两个分步反应:Al + ZrO2 → ɑ-Al2O3 + [Zr][Zr] + Al → Al3Zr 两个分步反应在不同升温速率下的峰顶温度Tm是不同的,两个放热峰相连形成不同形状的山岭和山谷。DSC曲线因峰冠雄,因峡显幽。DSC曲线显现放热峰相连的山岭美!显现狭窄低凹的山谷美!2. 谷-谷连绵之美不同升温速率的PET的熔融双峰如图所示: 不同升温速率下PET的DSC曲线PET的结晶比较慢,因此不同的热历史可以造成不同的结晶和熔化过程。在慢速升温过程中,由于PET形成的片晶部分熔化,未熔化部分似作成核点,形成熔融再结晶,这种结晶可以在更高的温度熔化,从而形成熔融双峰。如果用TMDSC的话,还可以测到再结晶过程的放热峰。还有一种观点是,结晶过程中形成了两种不同稳态的晶体,热稳定性差的在较低温度熔化,热稳定性高的在较高温度熔化,从而形成熔融双峰。如果在120-140℃长时间退火,将试样降温到室温后再升温,DSC曲线在140℃以上还会出现第三个小峰。聚乳酸一次升温的DSC曲线如图所示: 161.0℃和167.4℃是聚乳酸的熔融峰,这个双峰现象有几种解释:1)熔融再结晶;2)晶型转变;3)分子量分布宽,片晶厚度不同。聚乳酸的熔融双峰具有紧紧相依之美。3. 3.谷-峰衔接之美 Al2O3与ZnO反应过程的DSC曲线如图所示: 图中表明:Al(OH)3脱水谷与AL2O3.ZnO生成的放热峰光滑衔接、谷-峰相连。好似造山运动,Al(OH)3脱水反应使曲线下降,形成脱水谷,AL2O3.ZnO生成的放热反应使曲线突然上升,形成雄伟的山峰。真是一幅因峡显幽,因峰冠雄,绝壁长崖的山水图。 Al2O3与B体系的DSC曲线如图所示:Al-B反应过程DSC曲线Al的熔融吸热峰形成显幽之谷,液态Al与B反应生成ALB2, 放热峰使曲线上升,熔融吸热峰与放热峰光滑衔接,谷-峰相连。好似地壳下沉后又突然升高,绝壁长崖直冲峰顶。4. 台阶与应力松弛峰的组合之美 高聚物的玻璃化转变在DSC曲线上的特征是基线的突然位移,表现为正常吸热曲线的阶跃,呈台阶形。当高聚物在玻璃化转变温度和次级转变温度之间发生物理老化时,应力松弛过程使台阶转化为凹下的谷。 十.迷人材料热分析(DSC)研究的诗意和美“迷人的材料”是英国人马克.米尔多尼克所著。对构建现代世界的物质做了美好的描述,从细微中发现诗意和美, 是一部材料科学的颂歌, 也是对人类智慧的赞颂。“迷人的材料”是《物理世界》2014年推荐的最佳科普书。书中展现了人类需求和欲望的材料,带领人们走进神奇的材料世界。本书介绍了“迷人的材料”:钢、纸、混凝土、巧克力、发泡材料、塑料、玻璃、碳材料、瓷器、长生不死的植入物等材料。介绍迷人材料的资料还有:未来最有潜力的新材料;有能力改变整个世界的超级材料及地球上十大神奇的极端物质。如石墨烯、气凝胶、碳纳米管、富勒烯 、非晶合金、泡沫金属、离子液体、纳米纤维素、纳米点钙钛矿、3D打印材料、柔性玻璃、自组装自修复材料、可降解生物塑料、钛碳复合材料、超材料、超导材料、形状记忆合金、磁致伸缩材料、磁(电)流体材料、智能高分子凝胶。美国材料研究学会在每次年会上进行图片比赛,通过显微镜人们看到了如艺术品一般的材料组织,发现材料既有外在美,又有内在微观世界的神奇,微观世界与宏观世界具有异曲同工之妙。用热分析研究迷人的材料,可以提供许多有用的参数。DSC在材料研究中有着广泛的应用,展现了材料DSC曲线之美。 1.石墨烯的DSC曲线之美2.锂电池的的DSC曲线之美3.含能材料瞬变反应的新奇美 4.古陶瓷DSC曲线的远古之美以古陶瓷研究为例,古陶瓷是火与土的艺术,运用近代科技方法研究釉陶的的物理—化学过程,对古陶瓷样品的显微结构、物相结构进行深入研究,为推测古陶瓷的烧制工艺、揭示我国古代名瓷的呈色机理、再现我国古代名瓷的制作奥秘提供有力的数据支撑。应用近代科技方法(含热分析方法)研究古陶瓷是将今论古,今为古用,呈现远古之美。 现代陶瓷研究:先驱体裂解转化制备陶瓷,突破了火与土的传统,是突破之美。先驱体裂解转化制备陶瓷是利用有机先驱体聚合物裂解制备陶瓷材料的新方法。人们已用热分析方法(DSC方法)探索先驱体裂解转化制备陶瓷工艺中的合成过程、交联过程和裂解过程。 陶瓷反应体系Al-TiO2的DSC曲线及反应结果的X射线衍射花样如图所示: 陶瓷反应的DSC曲线的包容性陶瓷反应体系Al-TiO2的DSC曲线主要有三个峰和谷:第一个谷为吸热峰,发生在667℃,对应于Al液化吸热过程;随着温度升高,在950℃左右时出现了第二个峰,为放热峰,表明试样中发生了以下化学反应:4Al + 3TiO2→ 2ɑ-Al2O3 + 3[Ti]反应产生的活性[Ti]原子随后又与Al原子结合生成Al3Ti ,该反应为强放热反应,峰顶温度1000℃左右。因此,Al-TiO2体系在升温过程中依次经历了一个物理转变(Al的熔融)和两个化学反应,分别产生两种增强体 ɑ-Al2O3陶瓷和Al3Ti金属化合物。反应结果的X射线衍射花样进一步说明了这一点。Al-TiO2体系反应过程的DSC曲线具有强大的包容性。它包容了物理转变(Al的熔融)吸热峰的谷和两个化学反应放热峰及峰-峰相连形成的山岭和山谷。以上多图均摘自【材料科学研究与测试方法】朱和国 王新龙编著 东南大学出版社 2013 5. 空间材料DSC曲线的遥远之美国际空间站的微重力实验:空间条件下集成热分析的先进管式炉(ADV、TITUS)进行材料生长实验。最高工作温度1250℃,采用炉体移动的方式进行材料生长,其最主要的技术特点是该设备在进行材料生长实验的同时,也进行了材料的差热分析(DTA)测试。该实验即为空间材料科学与微重力下的热分析的诌型。在地球万有引力下,单晶硅生长由于重力的作用,生长单晶硅区浮液桥的直径不能超过8 mm。微重力环境实现无容器过程,增大浮区的直径没有限制,生长出比8 mm粗得多的硅单晶。结晶研究表明:具有高体积分数的样品,在有重力的地面上经过一年也不能结晶化的样品,在微重力条件下(10-6g),不到两周就全部晶化了。发挥DSC研究晶体的潜能,应用DSC开展微重力下的晶体生长实验成为可能。 空间生长的GaSb单晶(左、中)与地面生长的GaSb单晶(右)对比图微重力环境下高聚物的结晶研究:微重力环境下的结晶是为制备太空高聚物材料而进行的研究。模拟太空条件下的高真空微重力下对尼龙11、聚偏氟氯乙烯、间同聚苯乙烯、全同聚丙烯(i-PP)等做了等温结晶,发现不少与常规重力下不同的结晶现象。美国国家航空航天局在航空飞机的实验中测出了比热奇异性的趋势,验证了理论物理的预言。比热奇异性的实验曲线如图所示: 空间LPE实验的比热测量结果实线为地面的实验结果;点划线为空间微重力实验结果;虚线为重整化群理论预期结果比热测量时的相变温度控制在10-9 K以内,液体在相变点处的比热为无穷大。由于地面的重力作用使实验温度达不到要求的精度,测量不出比热奇异性。微重力环境提供了高精度的物理实验条件,测出了比热奇异性的趋势。空间LPE实验的比热测量结果如图。红框内即为比热奇异性。值得注意的是温度坐标为纳度nK。 以上均摘自【微重力科学概论】 胡文瑞等著 科学出版社 2010 十一.DSC曲线峰谷群像图DSC曲线的形态犹如地球的地貌特征,独立高耸的山峰和座座山峰相连的岭、两峰之间狭窄低凹的山谷和幽幻的大峡谷,低缓的丘陵、广阔的平原及谷坡陡峻、狭而深的河谷。山峰、山岭、山谷、丘陵、平原及河谷的特征构成了DSC曲线峰谷群像图。DSC曲线与地理地貌的相似性形象,增添了曲线的天然美(自然美)。 DSC方法研究材料的转变和热物性参数,得到各种各样的DSC曲线。DSC曲线的峰谷呈现物质变化规律之美。DSC曲线群像中,既有共性,又有特性,还有变异性。曲线有相像、相似、类似的形象;也有截然不同的形象,以及曲线变异的形象。转变峰的形状、大小、位置似水无常形,变化万千,借助文字和图形的阐释能力,揭示曲线峰谷蕴含的意义。DSC曲线与地理地貌的相似性形象图: 从DSC曲线与地理地貌的相似性形象,领略DSC曲线峰-谷的天然美。 DSC曲线转变峰群像如图所示: 从DSC转变峰群像图中看出:DSC曲线峰谷变幻无穷、群像纷呈。读懂、读透DSC曲线的峰谷不容易,那是你的理解能力。解析DSC曲线的峰谷并被别人读懂也不容易,那是你的表达能力。清乾隆蘅塘退土孙洙对《唐诗三百首》的题词是:“熟读唐诗三百首,不会做诗也会呤”。解读DSC曲线亦如此。熟读经典的DSC曲线和群像图中的应用曲线,认知DSC曲线的峰谷之美。发现美!欣赏美! 如何认知群像图中DSC曲线峰谷呢?人类学习与机器学习方法相结合。传统的方法是人类学习方法。人类对事物的认知路径经是从原始数据出发,凭借人脑拥有的科学知识去认知DSC曲线峰谷的内涵。面对同样的原始数据,拥有不同知识的人将得出不同的认知;同样,拥有相同知识的人,面对没有数据、有少量数据、有大量数据以及有充分数据等不同情况时,也将得出不同的认知。知识的拥有者占据上风。机器学习方法是一种全新的思维方式。机器学习的本质是跳出“知识”的束缚,建立原始数据与认知之间的直接映射,“数据”价值连城。机器学习方法直接建立“数据—认知”关系库,以更加深邃、更加贴近物质本来面貌的视角去认知DSC曲线的峰谷。机器学习方法已在化学、材料科学和高分子玻璃化研究中得到应用。如中国科学院长春应用化学研究所徐文生研究员和美国北达科他州立大学夏文杰教授基于在高分子玻璃化领域的多年研究经历,综述了机器学习方法在高分子玻璃化领域的研究进展。杨镇岳,聂文建,刘伦洋,徐晓雷,夏文杰,徐文生撰写了机器学习方法在高分子玻璃化研究中的应用。此文刊登于高分子学报2023,54(4)409-427运用人类学习和机器学习方法探索DSC曲线峰谷之美是人的需求。山高人为峰,脚踏幽幻谷,迈开脚步,探索DSC峰谷之美,以人为主导。科学的美是客观存在的,人对美的追求,是自然科学发展的源动力。DSC研究物质受热时发生的物理变化和化学变化,并以峰谷的外在美呈现物质变化的内在美。人,怀着对热分析的情感,自由地鉴赏DSC曲线峰谷的美感,发现美,享受物质变化之美。美使人感到愉悦的同时,也揭示了隐含在曲线中的物质热变化规律。
  • Fungilab viscopad 系列触摸屏粘度计新品上线!
    全新的触摸屏技术将为您提供与众不同的使用体验!7大亮点点亮你的实验室!!1. 10英寸触摸屏(多点)2. 系统可在线升级3. 新用户界面4. 加强型控制5. 实时曲线图6. 多语言支持7. 强大的远程数据交互功能(基于WIFI的远程操作及数据传输) 显示信息:- 粘度(cP或mPaS)- 温度(℃或℉)- 剪切率/剪切力- %扭矩- 转速/转子- 程序状态阶段- 数学模型计算 以下是我们仪器通过的标准:BS: 6075, 5350 ? ISO: 2555, 1652 ? ASTM: 115, 789, 1076, 1084, 1286, 1417, 1439, 1638, 1824, 2196,2336, 2364, 2393, 2556, 2669, 2849, 2983, 2994, 3232, 3236, 3716 专属的控制软件:这款软件是Fungilab自主研发供建立粘度程序、记录和实时读取粘度测量结果使用的。这款软件非常直观,“选项菜单”可以清晰的看到整个程序,“帮助菜单”可以清晰的读取图表和描述性文字,让工作变的更直观明了。 可选配件:APM小量样品适配器LCP 低粘度样品适配器Heldal 组件:高粘度样品适配器硅标准油旋转式样品托盘恒温槽 技术参数:注:以上信息皆来自原型机,具体以实际为准 更多详情欢迎来电咨询:400 820 0117 同时欢迎点击我司网站 www.renhe.net 查询更多产品优惠信息 扫描以下二维码或是添加微信号“renhesci”,加入人和科仪的微信平台,即刻成为人和大家庭中的一员。 现在加入更有好礼相送! 上海人和科学仪器有限公司 上海市漕河泾新兴技术开发区虹漕路39号华鑫科技园区B座四楼(200233) 电话:021-6485 0099 传真:021-6485 7990 公司网址: www.renhe.net E-mail:info@renhesci.com 【上海人和科学仪器有限公司数十年来一直致力于提升中国实验室水平,从提供全球一流品质的实验室仪器、设备,到为客户度身定制系统的实验室整体解决方案,通过专业、细致和全面的技术支持服务实现“为客户创造更多价值”的承诺。主要代理品牌:DRAGONLAB、FUNGILAB、BRUINS、GRABNER、EXAKT、ATAGO、ART、ILMVAC、IKA、MIELE、MEMMERT、KOEHLER、YAMATO、海洋光学、全谱科技等。】
  • 热分析耄耋老人钱义祥:DMA曲线激荡之美
    DMA曲线激荡之美热分析耄耋老人 钱义祥引言:“DMA曲线激荡之美”是一篇短文。短文诠释(解读)了黏弹性材料的DMA曲线的显信息以及蕴含在DMA曲线中的滞后圈。展现了黏弹性材料在正弦交变应力作用下的激荡之美。近日,和耐驰公司市场与应用副总经理曾志强博士切磋热分析中的美学问题。曾志强博士语出金句:热分析的美存在于DSC曲线的峰谷、TG曲线的流淌和DMA曲线的激荡!妙 ! 我将他的金句镶嵌进“热分析中的美学”论文中,增辉!今以DMA曲线激荡之美为题,撰写了以下短文:一.试样在振动中呈现激荡之美激荡是汉语词语,是指事物受到激发而动荡。强迫非共振法DMA以设定频率振动,使试样处于振动状态,呈现激荡之美。二.激荡的DMA曲线蕴含的信息1. 显信息和隐信息强迫非共振法DMA就是测量应力—应变(同频正弦信号)信号的相位差,其滞后圈即为李萨如图形。由试样在振动中的应力与应变幅值以及应力与应变之间的相位差,直接计算得到储能模量、损耗模量、损耗角正切等性能参数。DMA测量应力—应变(同频正弦信号)信号的相位差,但在DMA曲线中并没有显现相位差信息,它是DMA曲线的隐信息。 DMA曲线中显现的储能模量、损耗模量、损耗角正切等性能参数是显信息。它由试样在振动中的应力与应变幅值以及应力与应变之间的相位差直接计算得到。非晶高聚物的DMA曲线(温度谱)非晶高聚物的DMA曲线(频率谱)2. 一个震荡周期的滞后参数DMA实验要设定振动频率,让试样在一定的频率下振动。一个振动周期即为一个实验点。无数个振动周期构成了DMA曲线。DMA曲线中,每一个振动周期的应力-应变曲线相位差、Tanδ、滞后圈和能量损耗是不一样的。一个震荡周期得到的滞后参数如下图: 3. 损耗角正切Tanδ蕴含的信息:DMA曲线中的Tanδ线如图所示: 损耗角正切Tanδ反映材料的阻尼特性,是DMA曲线的显信息。Tanδ中δ是一个震荡周期的相位差,是DMA曲线的隐信息。从三角函数表中由Tanδ值得到相位差δ。DMA曲线中,损耗角正切Tanδ蕴含哪些信息呢? 1) 显信息Tanδ以DMA曲线形式显现黏弹性材料的阻尼特性,可以从DMA曲线上直接读出每个振动周期的Tanδ。Tanδ表示每周期振动所消耗的能量与最大应变能的比值,是能量损耗和阻尼能力的直接量度。2) 潜信息-相位差相位差:DMA是测量应力—应变(同频正弦信号)信号的相位差。相位差无量纲,用弧度rad表示。李萨如滞后圈:李萨如滞后圈是隐藏在Tanδ曲线内的应力-应变曲线,单位是焦耳j。3)关联Tanδ和简谐振动的能量损耗。4. 诠释DMA曲线:DMA曲线显现显信息,潜藏隐信息。下图诠释了DMA曲线的显信息、隐信息:三.滞后圈的变化美滞后圈的形状多种多样,变化无穷,具有变化之美!黏弹性材料的应力-应变曲线,由于粘性的作用形成滞后圈。DMA计算的理论基础是线性粘弹性,要求施加在试样上的动态应力或动态应变落在应力-应变曲线的初始线性范围内。当试样是线性粘弹性材料(处于线性粘弹性区域),施加的应力是正弦波,则滞后圈为一椭圆形。滞后圈的形状在直线和圆之间变化,如图: 如果是非线性粘弹性材料(处于非线性粘弹性区域),滞后圈的形状是不规则的,如图所示: 滞后圈变异反映了材料的特性,不是怪异,不是丑,而是变化之美!滞后圈变异已经广泛应用于阻尼材料的振动疲劳特性、应力—时间疲劳测试曲线、位移—时间疲劳测试曲线、振幅对阻尼材料的振动疲劳的影响、温度对阻尼材料振动疲劳的影响、频率对阻尼材料振动疲劳的影响、长周期振动的疲劳性能等方面。从滞后圈上可以获得的信息:1. 储能模量、损耗模量、损耗角正切等性能参数。强迫非共振法DMA以设定的频率振动,测定试样在振动中的应力与应变幅值以及应力与应变之间的相位差,直接计算实验得到储能模量、损耗模量、损耗角正切等性能参数。2. 滞后圈形态封闭回线:粘弹性阻尼材料滞后圈是应力、应变所经过的路径形成的封闭回线。滞后圈的形状有椭圆形和不规则图形。椭圆形:如果是线性粘弹性材料(区域),施加的应力是正弦波,则滞后圈为一椭圆形。椭圆的变形:圆形—δ越大,链段运动越困难,越跟不上应力的变化,椭圆越圆;扁形—δ越小,应变落后越小,椭圆越扁。椭圆长轴的斜率等于复模量。不规则图形:如果是非线性粘弹性材料(区域),滞后圈的形状是不规则的。3. 滞后圈面积阻尼材料的动态变形生热现象。由于滞后的存在,每一循环周期中都有能量的损耗,即内耗。消耗的功以热能形式散发,内耗越大,吸收的振动能也越多。 滞后圈面积只表示振动循环一个周期的能量损耗。一个周期中能量收支不平衡,其差值就是椭圆面积 ,表示能量的耗损ΔW,ΔW为阻尼大小的量度。滞后圈面积的变化:振动疲劳试验中,滞后圈随阻尼性能下降而变小。由滞后圈面积的变化得到不同疲劳周期的能量损耗和阻尼衰减特性。4. 损耗因子曲线下的面积:5. 疲劳破坏的周数当材料内部出现疲劳裂纹时,滞后圈发生突变或无法对试样继续加载试验应力,疲劳试验就此终止。结束语:材料的动态力学行为是指材料在交变应力(或应变)作用下的应变(或应力)响应。试样在正弦交变应力作用下呈现材料动态的激荡之美。致谢:曾志强博士提出热分析的美存在于DSC曲线的峰谷、TG曲线的流淌和DMA曲线的激荡的美学理念, 绝妙! “DMA曲线的激荡之美”一文是受曾志强博士的美学理念启迪撰写而成,特此致谢!2023-01-06
  • 带您了解石油产品运动粘度的重要性
    随着润滑油知识的普及,消费者对粘度、闪点、倾点、粘度指数四大指标,有了初步的认识,今天我们来说一说,判断润滑油好坏的重要指标之一的粘度指标。  粘度指标的意义  润滑油,如切削油、成型油、液压油的牌号是根据润滑油的粘度来划分的。  润滑油在使用过程中,粘度发生变化。用粘度的增减可确定油品是否需要报废更换。  可以指导控制生产,按照粘度大小控制馏分。  粘度是选择润滑油的重要依据。其选用的一般规律是:压力高,转速低,磨损大的工况时,选择粘度大的油;反之,选择粘度小的油。需要油膜厚的场合,选择粘度大的油;需要散热强的场合,选择粘度小的油。  粘度也是轻质燃料油的重要指标。这是因为粘度-分子量-闪点这些指标具有相关性。
  • 【技术知识】油品检测之运动粘度的重要性
    01粘度概述运动粘度是润滑油及其他石油产品检测较为基本也是较为重要的指标之一,可以反应润滑油在特定温度下的粘稠度。单位是cSt,mm2/s。通俗理解粘度越大说明油品越粘稠。02运动粘度的重要性实际油品使用过程中,不是油品的运动粘度越大就表示油品质量越好,而是根据使用设备或车辆的需求的相匹配的运动粘度。油品运动粘度的大小会影响设备或车辆的正常使用。通过运动粘度来判断是否更换润滑油1液压油运动粘度变化率超过±10%就要换油;2工业齿轮油运动粘度变化率超过±15%需要换油;3汽油机油运动粘度100℃变化率SE,SF超过±25%就要换油,其他型号超过±20%就要换油;4柴油机油运动粘度100℃变化率CD,SF/CD超过±25%就要换油,CF-4和CH-4超过±20%就要换油;运动粘度对柴油的影响影响供油量 如柴油粘度过小,在供油系统中运行时,因内漏失量较多,使有效供油量减少 反之,粘度过大,则会使有效供油量超过标准,虽然提高了功率,但会造成燃烧不完全,排气冒黑烟及造成油耗上升。影响雾化质量 粘度过小的柴油,油束易扩散,细微度好,但其透穿距小,燃烧时,离喷油器较远的一部分空气便不能与柴袖有效混合,从而使得空气利用系数降低 粘度大的柴油/隋况正好相反。所以要求柴油粘度应适宜,以利于形成均匀的可燃混合气。影响供油系精密偶件的润滑柱塞偶件、针阀与针阀体等精密配合的运动偶件,主要靠柴油润滑,柴油粘度若过小,则会使上述偶件相对运动阻力增大,磨损加剧。油品指标监测不但是生产企业把关油品质量的重要手段,也是使用者维护保养设备的方法之一。那么检测方法和测定仪器在实际生产使用过程中就显得尤为重要,根据不同的油品制定相应的检测指标并选择合适的检测仪器是每个实验人员的重要工作。粘度计的选定一般来说,使用粘度管应使流过的时间大于200s,但是从节约时间的角度出发,流动时间太长没有意义,浪费时间而已,流动时间太长还有可能造成结果偏差,因温度恒定会波动。在测定过程中至少记录三次流动时间,因为为了保证结果的准确性,在计算粘度时需要使用三次流动时间的平均值。为保证所测的流动时间满足计算条件,一般实际测定时要至少记录四次时间。相关仪器A1010运动粘度测定仪适用于测定液体石油产品的运动粘度。运动粘度表示液体在重力作用下流动时内摩擦力的量度,其值为相同温度下的动力粘度与其密度之比。是对油品等级及质量鉴别的重要理化性能指标之一。在实际应用中,选择合适粘度的润滑油品,可以保证机械设备正常、可靠地工作。适应标准:GB/T265应用领域1、电力、石油、化工、环保及科研部门2、需测定石油产品运动特性的油品。A1011自动运动粘度测定仪可测量透明或半透明液体的同样精度,包括原油、轻重质燃料油、润滑油、添加剂、废油的运动粘度。是具有恒温、粘度测试、清洗、烘干等功能的全自动机型,不需人员随机操作,操作员在放样后,可以离开现场,仪器可以自动完成全部任务。执行标准适应标准:GB/T265、ASTM D445应用领域:1、电力、石油、化工、环保及科研部门。2、需测定石油产品运动特性的油品。A1012 低温运动粘度测定仪适用于测定液体石油产品的运动粘度。广泛适用于铁路、石油、化工、科研、计量等部门。执行标准:适应标准:GB/T 265 石油产品运动粘度测定法A1015高温运动粘度测定仪仪器特点:1、仪器由电脑控温、搅拌器、加热器、恒温浴等部分组成。 恒温浴为加厚玻璃圆缸、浴内温度分布均匀,控温效果优良,仪器最高可控温至120℃,控温精度±0.01℃。2、仪器采用高精度控温表,控温准确,操作简单方便,执行元件采用先进的SSR配件,其特点无动作噪声,无火花,耐振动,使用寿命长。3、加热器及导流筒等浴内部件采用不锈钢制作,耐腐耐用。4、环型日光灯照明,透视度好,观察更清晰。A1019全自动粘度测定仪采用模块化设计,自动完成恒温、液位检测、计时、计算、清洗、烘干、打印等测试工作,系统采用耐腐蚀材料,可用于强酸及聚合物粘度、粘数、相对粘度、比浓粘度、粘均分子量等的检测。广泛用于聚乳酸脂(PLA)、聚酯(PET)、聚氯乙烯(PVC)、聚碳酸酯(PC)、锦纶(尼龙PA)、聚丙烯酰胺(PAM)等聚合材料领域以及中国药典规定的医药领域。适用标准:GB/T3401用毛细管黏度计测定聚氯乙烯树脂稀溶液的黏度GB/T 1632.1塑料 使用毛细管黏度计测定聚合物稀溶液黏度 第1部分GB/T 12006.1塑料 聚酰胺 第1部分:黏数测定GB 12005.1聚丙烯酰胺特性粘数测定方法HG/T 2234聚碳酸脂稀溶液粘数的测定方法HG/T 2364聚对苯二甲酸烷撑二酯稀溶液 粘数的测定HG/T 2626浇铸型甲基丙烯酸甲酯聚合物和共聚物稀溶液粘数测定HG/T 2627甲基丙烯酸甲酯聚合物 稀溶液粘数和特性粘数测定HG/T 2758乙酸纤维素稀溶液粘数和粘度比的测定HG/T 3604聚甲醛树脂稀溶液粘数和特性粘数测定HG/T 3605聚氯醚树脂稀溶液粘数和特性粘数测定GB/T 38138纤维级聚己内酰胺(PA6)切片试验方法GB/T 14190纤维级聚酯(PET)切片试验方法GB/T 17931瓶用聚对苯二甲酸乙二酯(PET)树脂_ GB/T 17932膜级聚酯切片(PET) ASTM D2857 高分子聚合物的稀释溶液的粘度ASTM D4603 聚对苯二甲酸乙二酯特性粘度ASTM D789 聚酰胺(PA)溶液粘度ASTM D4020 超高分子量聚乙烯模制和挤压材料ISO 1628.3/4/5/6塑料.用毛细管粘度计测定稀释溶液中聚合物的粘度.聚乙烯和聚丙烯
  • 乌氏粘度计使用遇到的问题解答
    1.乌氏粘度计毛细管太粗太细各有何特点?  答:乌氏粘度计的毛细管太粗的时候,流速过快,可能导致测的时间太快而未能及时反应,因而测出来的时间可能不准确;乌氏粘度计的毛细管太细,流速过慢,虽然读数较为精确,但花费的时间也较长。所以,乌氏粘度计粗细应该适当。2.为什么强调粘度计一定要干净、无尘? 答:黏度计中如果不干净,会影响液体的流速,若溶解在溶液中,还会使溶液的成分发生变化,对分子量的测定结果影响较大。3.乌氏粘度计测定高聚物分子量有哪些注意事项? 答:使用乌氏粘度计应注意以下几点:  a.使用乌式粘度计时,要在同一支粘度计内测定一系列浓度成简单比例关系的溶液的流出时间.每次吸取和加入的液体的体积要很准确。为了避免温度变化可能引起的体积变化,溶液和溶剂应在同一温度下移取,故实验应选择在恒温槽中进行,恒温槽中温度应该恒定,溶液每次稀释恒温后才能测量。  b.在每次加入溶剂稀释溶液时,必须将粘度计内的液体混合均匀,还要将溶液吸到E线上方的小球内两次,润洗毛细管,否则溶液流出时间的重复性差。  c.粘度计必须洁净,如毛细管壁上挂有水珠,需用吹风机吹干。  d.测定时粘度计要垂直放置,否则影响结果曲准确性。4.特性黏度是溶液无限稀释时的比浓黏度,它与纯溶剂的黏度是否一样,为什么要用来测量高聚物的分子量?  答:特性黏度与纯溶剂的黏度不一样。溶剂分子与溶剂分子间的内摩擦是纯溶剂的黏度,而特性黏度是溶液无限稀释时的比浓黏度,还是存在高分子与溶剂分子间的摩擦的。根据高聚物分子量愈大,则它与溶剂间接触表面也愈大,也即摩擦愈大,表现出来的特性黏度也愈大,从而可以从其特性黏度来测定高聚物分子量。
  • 专家约稿|热重曲线规范表示中的常见问题分析
    1. 简介作为热分析中最常用的一种传统的分析技术,热重分析技术是研究物质的物理过程与化学反应的一类重要的实验技术。这类技术主要通过精确测定物质的质量随温度的关系来研究性质的连续变化过程,不仅可以用来广泛地研究物质在实验过程中随温度或者时间发生的与质量相关的的各种转变和反应(如氧化、分解、还原、交联、成环等反应),其还可以用来确定物质的成分、判断物质的种类和热分解机理等。迄今为止,热重分析技术已在矿物、金属、石油、食品、建材、陶瓷、医药、化工等材料的各个领域获得了广泛的应用。作为对热重曲线进行解析的第一步,应规范表示由实验得到的曲线。在规范表示的热分析曲线中,可以方便、准确地确定在实验过程中样品的变化信息。2. 热重曲线的规范表示方法概括来说,在表述热分析曲线时,应遵循以下几个原则:(1)热重曲线中的横坐标自左至右表示温度或时间物理量的增加,纵坐标自下至上表示质量(通常用百分比形式表示)的增加。(2)为了便于对比不同样品间的变化,通常用归一化后的质量表示热重曲线的纵坐标。(3)对于线性加热/降温的实验而言,横坐标为温度,单位常用℃表示。在进行热力学或动力学分析时,横坐标的单位一般用K表示;对于含有等温条件的热重曲线的横坐标应为时间,通常在纵坐标中增加一列温度列。当只需要显示某一温度下的等温曲线时,则不需要在纵坐标中增加一列温度。(4)规范表示热重曲线中的台阶和DTG曲线中的峰的变化。由热重曲线可以确定转变过程的特征温度或特征时间以及特征质量变化等信息。如果出现多个转变,则分别报告每个转变的特征温度或特征时间、特征质量的变化。对于多个转变过程,则需由曲线分别确定每个过程的特征温度或特征时间、特征质量的变化。对于单条热重曲线,当特征转变过程不多于两个(包括两个)时,应在图中空白处标注转变过程的特征温度或时间、质量变化等信息;当特征转变过程多于两个时,应列表说明每个转变过程的特征温度或时间、质量变化等信息。使用多条曲线对比作图时,每条曲线的特征温度或时间、质量等信息应列表说明。3. 热重曲线的规范表示中的常见问题分析在对热重曲线作图时,图中的横坐标和纵坐标分别对应于实验中检测的物理量,名称也应用物理量的名称表示,而不应使用所使用的热分析方法的名称来笼统表示。在实际应用中表示热分析曲线时,存在着相当多的不规范现象。例如,图1中给出了TG曲线几种常见的表示形式。其中,(1)图1(a)中,TG曲线的纵坐标用TG(%)表示。TG为热重法的总称,为由不同温度或时间下得到的质量信息,仅用其作为纵坐标是不合适的;(2)图1(b)中,TG曲线的纵坐标用Weight Loss(%)表示。Weight Loss(%)表示的是失重的百分比,而图中纵坐标的数值为从100%开始减少,意为实验开始已经失重100%,显然这是不合理的;(3)图1(c)中为TG曲线的规范表示形式。纵坐标用Weight (%)表示,由图可以清晰地看出样品在不同的温度下的重量百分比信息,通过计算台阶的高度可以定量反映过程进行的程度;(4)图1(d)中, TG曲线的纵坐标用Weight Loss(%)表示。Weight Loss(%)表示的是失重的百分比,而图中纵坐标的数值为从0开始逐渐减少的负值形式,由于Weight Loss本身已经包含了减少的含义,再继续用负值形式表示质量减少则变成了增加,这种表示形式也是不合理的;(5)图1(e)中, TG曲线的纵坐标用Weight Change(%)表示。Weight Change(%)表示的是重量变化的百分比,图中纵坐标的数值为从0开始逐渐减少的负值形式表示发生了质量减少过程,这是一种相对合理的TG曲线的另一种表示形式;(6)图1(f)中, TG曲线的纵坐标用Weight(%)表示,而图中纵坐标的数值为从0开始减少的以百分比形式表示的负值形式,其实表示的是样品自实验开始发生的重量减少的百分比信息,而非样品在不同温度下的重量百分比信息。显然这种表示形式也是不合理的;(7)图1(g)中,TG曲线的纵坐标用实验时所用的样品的绝对重量Weight(mg)表示,由图可以看出样品在不同的温度下的质量信息,但由这种形式的TG曲线无法直观地定量反映过程进行的程度。另外,这种表达形式仅反映了实验时所用的样品量的质量变化,不便于直观地比较不同的TG曲线之间的变化规律;(8)图1(h)与图1(f)相似,TG曲线的纵坐标用实验时所用的样品的绝对质量Weight(mg)表示,而图中纵坐标的数值为从0开始减少的负值形式,其实表示的是样品自实验开始发生的重量信息,而非样品在不同温度下的重量信息。显然这种表示形式也是不合理的;(9)图1(i)中,纵坐标用Weight (%)表示,由图可以清晰地看出样品在不同的温度下的重量百分比信息,通过计算台阶的高度可以定量反映过程进行的程度。但是,图中纵坐标的数值为从1开始逐渐减少的数值形式。其实这种数值为未转化为百分比形式的归一化后的相对质量。如果用百分比形式表示,纵坐标中的数值应乘以100%。(a)(b)(c)(d)(e)(f)(g)(h)(i)图1 TG曲线常见的几种表示形式综合以上分析,对于TG曲线而言,优先推荐采用图1(c)和图1(e)的表示形式。除了以上不规范的表示形式外,在实际应用中还存在其他形式的不规范作图。例如,图2为由实验得到的TG-DSC曲线。由图可见,图中分别列出了TG曲线、DSC曲线和DTG曲线。其中:(1)图2中TG曲线(红色曲线)的纵坐标为Weight Loss(%)表示的是实验过程中样品失重的百分比,而图中纵坐标的数值为从100%开始减少,意为实验开始已经失重100%,显然这是不合理的。应将图中的Weight Loss(%)改为Weight(%);(2)图2中DSC曲线(黑色曲线)的纵坐标为Heat Flow,为在实验中检测到的热流信号。但图中给出的归一化后的热流的单位为μV/mg(该单位为DTA检测到的归一化后的温度差的单位),实际上归一化后的热流单位为mW/mg或者W/g。因此,图中的DSC曲线的热流单位表示不规范,应改为mW/mg或者W/g;(3)图2中DTG曲线的纵坐标对应的物理量为DTG,单位为%/℃。其中,DTG是对TG曲线一阶微商后得到的完整的微商热重曲线,包括横坐标温度和纵坐标对应的微商重量信息。因此,在图中仅用DTG表示该曲线的纵坐标是不合适的,应将DTG改为微商重量(Derivative Weight)。另外,从数学角度,对TG曲线求导时,当重量变化对应于失重引起的向下的台阶时,在该范围得到的DTG曲线的峰的方向应与台阶的变化方向保持一致。因此,图中的DTG曲线的峰的方向应为向下方向。基于以上分析,在对图2中不规范的表示进行修改后得到图3,由图可方便地得到物质在不同的温度下的变化信息。图2 一水合草酸钙的TG-DSC曲线(含有多处不规范表示)(实验条件:在流速为50mL/min的氮气气氛下,由室温开始以10℃/min的加热速率加热至900℃,敞口氧化铝坩埚。)图3 规范表示的一水合草酸钙的TG-DSC曲线(实验条件:在流速为50mL/min的氮气气氛下,由室温开始以10℃/min的加热速率加热至900℃,敞口氧化铝坩埚。)综合以上分析,在实际应用中对热重曲线进行表示时,应尽可能避免以上常见的问题。作者简介:丁延伟,博士、中国科学技术大学教授级高级工程师。自2002年开始从事热分析与吸附技术的分析测试、实验方法研究等工作,现任中国化学会化学热力学与热分析专业委员会委员、中国仪器仪表学会分析仪器分会热分析专业委员会委员、中国分析测试协会青年委员会委员、全国教育装备标准化委员会化学分委会委员、中国材料与试验团体标准委员会科学试验领域委员会委员等。曾获中国分析测试协会科学技术奖(CAIA奖)二等奖,主持修订教育行业标准《热分析方法通则》(JY/T 0589.1~4-2020),以主要作者发表SCI论文30余篇,获授权专利7项。以第一作者或唯一作者身份出版《热分析基础》、《热分析实验方案设计与曲线解析概论》、《热重分析 —方法、实验方案设计与曲线解析》等热分析相关著作5部。
  • 2018年粘度计新品回顾 安东帕、Fungilab领衔
    p    strong 仪器信息网讯 /strong 粘度计用于测量流体粘度的仪器。粘度是表示流体在流动时,流体内部发生内摩擦的物理量,是流体反抗形变的能力,是用来鉴定某些成品或半成品的一项重要指标。 /p p   仪器信息网通过新品首发的栏目视角回顾了2018年发布的7款粘度计新品,其中涵盖了安东帕、Fungilab等知名粘度计品牌。 br/ /p p    strong span style=" color: rgb(255, 0, 0) " 安东帕旋转粘度计 ViscoQC 300 上市时间:2018年11月 /span /strong /p p style=" text-align: center " a href=" https://www.instrument.com.cn/netshow/C311750.htm" target=" _self" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/201908/uepic/e6a64d5c-0e15-49ee-80b2-6551c7374827.jpg" title=" 安东帕旋转粘度计 ViscoQC 300.jpg" alt=" 安东帕旋转粘度计 ViscoQC 300.jpg" / /a /p p style=" text-align: center " a href=" https://www.instrument.com.cn/netshow/C311750.htm" target=" _self" strong 安东帕旋转粘度计 ViscoQC 300 /strong /a /p p   ViscoQC 30可使用智能的功能准确快速测量粘度,适合进行多点测量能够简化实验室和生产线的日常质量控制,适合化学品、食品、制药等多个行业。 /p p   创新点: /p p   1.快速测试转子磁力耦合连接安装,单手安装以及拆卸 /p p   2.转子内置芯片,自动转子型号检测,无需手动输入 /p p   3.自动最优转速推荐 /p p   4.电子水平校准 /p p   5.自动测试前轴承检查 /p p    strong span style=" color: rgb(255, 0, 0) " 纺吉莱博Fungilab V-cone& amp Plate 锥板粘度计 上市时间:2018年11月 /span /strong /p p style=" text-align: center " img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/201908/uepic/b83dcf07-fb60-4f15-9779-06b12dcd6a77.jpg" title=" 纺吉莱博Fungilab V-cone& amp Plate 锥板粘度计.jpg" alt=" 纺吉莱博Fungilab V-cone& amp Plate 锥板粘度计.jpg" / /p p style=" text-align: center " a href=" https://www.instrument.com.cn/netshow/C295696.htm" target=" _self" strong 纺吉莱博Fungilab V-cone& amp Plate 锥板粘度计 /strong /a /p p   V系列旋转粘度计是没有内置屏幕的旋转粘度计,可以移动设备联用,其参数和功能可在APP上设置实现,为现代科研人员提供良好的访问体验。其中的V-COMPACT旋转粘度计赢得2015IBO工业设计银奖,2016年荣获德国红点大奖,该产品自2017年隆重进入中国市场以来,备受客户青睐,赢得一致好评。 /p p   创新点: /p p   Fungilab第二代锥平板粘度计增加了帕尔帖快速升温模块,增加了转子种类,由一种转子增加到八种转子可选。 /p p   应用范围: /p p   中等粘度领域:粘合剂、涂料、面霜、食品、凝胶、胶水、油墨、有机醇、油漆、纸浆、塑料溶胶、树脂、淀粉、清漆等。 /p p   高粘度领域:胶粘剂、沥青、化合物、巧克力、复合聚合物、环氧树脂、凝胶、粘性油墨(胶印光刻)、糖蜜、密封剂、浆料、板料、焦油、乙烯基酯等。 /p p    strong span style=" color: rgb(255, 0, 0) " 德国IKA 粘度计ROTAVISC me-vi Complete 上市时间:2018年9月 /span /strong /p p style=" text-align: center " img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/201908/uepic/4361e301-1936-4a43-90ea-fbae2e57d5e7.jpg" title=" 德国IKA 粘度计ROTAVISC me-vi Complete.jpg" alt=" 德国IKA 粘度计ROTAVISC me-vi Complete.jpg" / /p p style=" text-align: center " a href=" https://www.instrument.com.cn/netshow/C311066.htm" target=" _self" strong 德国IKA 粘度计ROTAVISC me-vi Complete /strong /a /p p   全新的 ROTAVISC 系列提供从实验室到质量控制中所有的流体粘度测量应用,4 个型号覆盖超宽的粘度范围。 /p p   创新点: /p p   1. 与市场同类相比,IKA rotavisc采用了全新的电子水平仪,并且可以对粘度计水平状态进行实时监测,一旦仪器不处于水平状态,马上会通过红色警示标识显示在屏幕上,以便操作者随时调整。 /p p   2. 同等级产品中唯一具有转速连续可调功能,市场类似产品在转速范围0.3-100rpm或0.1-200rpm内设置18-54档,部分型号200档,IKA rotavisc除了具备更宽的转速范围0.01-200rpm,还可以0.01/0.1rpm为增量调节转速。为测量流体曲线提供更高性价比的选择。 /p p   3. 主机集成多种高级程序控制(编程,梯度控制)及图形功能,无须使用电脑软件即可完成单机编辑操作及运行。同类产品只具备部分功能,或需要电脑进行编程和梯度控制。 /p p    strong span style=" color: rgb(255, 0, 0) " 得利特A1010运动粘度测定仪& nbsp 上市时间:2018年7月 /span /strong /p p style=" text-align: center " img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/201908/uepic/a2d7d438-5925-4fe8-9579-18215e787a56.jpg" title=" 得利特A1010运动粘度测定仪.jpg" alt=" 得利特A1010运动粘度测定仪.jpg" / /p p style=" text-align: center " a href=" https://www.instrument.com.cn/netshow/C292006.htm" target=" _self" strong 得利特A1010运动粘度测定仪& nbsp /strong /a /p p   A1010运动粘度测定仪是依据国家标准《GB/T265-88石油产品运动粘度测定法》设计制造的专用测试仪器,适用于测定液体石油产品的运动粘度。运动粘度表示液体在重力作用下流动时内摩擦力的量度,其值为相同温度下的动力粘度与其密度之比。是对油品等级及质量鉴别的重要理化性能指标之一。在实际应用中,选择合适粘度的润滑油品,可以保证机械设备正常、可靠地工作。A1010可以计时试样运动时间,自动计算运动粘度的最终结果。 /p p   创新点: /p p   技术参数进行了改变 测量范围:0~800 mm2/s 恒温精度:± 0.1 外观进行了创新升级。 /p p    strong span style=" color: rgb(255, 0, 0) " 斯达沃自动折管式运动粘度仪SDW-552 上市时间:2018年5月 /span /strong /p p style=" text-align: center " img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/201908/uepic/00768016-80fa-4c0b-9f1d-9c7f3fa05fab.jpg" title=" 斯达沃自动折管式运动粘度仪SDW-552.jpg" alt=" 斯达沃自动折管式运动粘度仪SDW-552.jpg" / /p p style=" text-align: center " a href=" https://www.instrument.com.cn/netshow/C332147.htm" target=" _self" strong 斯达沃自动折管式运动粘度仪SDW-552 /strong /a /p p   SDW-552自动折管式运动粘度仪是一款快速测定油品运动粘度的自动化仪器,依据标准:ASTM D7279 、D445、D446、NB/SH/T0956-2017、T/CEC127-2016,测量结果满足并优于GB/T265标准的要求设计制造 该仪器具有全自动清洗功能,性能可与进口同类仪器媲美。 /p p   创新点: /p p   1、测量速度快。最快1分钟出结果,普遍为3~5分钟出结果。进样、测量、清洗、干燥、结果计算全过程一般不超过10分钟。 /p p   2、自动化程度高。测量、清洗、干燥、结果计算全部自动完成。 /p p   3、测量样品种类多。可以测量透明及不透明样品,包括汽油、柴油、煤油、切削液、导热油、添加剂、润滑油的新油和在用油等牛顿液体。 /p p   4、清洗干净快速,清洗成本低。一个清洗流程耗费清洗液一般不超过10毫升。 /p p   5、辅助功能多。包含:常数校准、温度校准、内部时钟计时检定、粘度指数自动计算、运动粘度-恩氏粘度自动换算。 /p p   6、软硬件双重超温保护,超温报警,防干烧保护功能。 /p p   7、升降温速度快。最快升降温速率为5℃/分钟。 /p p   8、采用双层玻璃缸,温度更均匀。 /p p   9、采用PT500高精度温度传感器,恒温槽温度稳定精确,控温精度达到0.01℃。 /p p   10、可配备一次性过滤器,极大程度的减少实验人员对样品预处理的工作量。 /p p    strong span style=" color: rgb(255, 0, 0) " 高温高剪切粘度测定仪FDH-8461自动型 上市时间:2018年4月 /span /strong /p p style=" text-align: center " img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/201908/uepic/f488d24a-90a2-4e85-97e9-a68fdc923b18.jpg" title=" 高温高剪切粘度测定仪FDH-8461自动型.jpg" alt=" 高温高剪切粘度测定仪FDH-8461自动型.jpg" / /p p style=" text-align: center " a href=" https://www.instrument.com.cn/netshow/C226814.htm" target=" _self" strong 高温高剪切粘度测定仪FDH-8461自动型 /strong /a /p p   自动高温高剪切粘度测定仪主要测定润滑油在高温高剪切速率下表观粘度,其测试原理是在150℃试验条件下,在氮气(二氧化碳)的压力作用下,使试样从毛细管粘度计中流出,由试样的流出时间及压力,可得到毛细管粘度计表观剪切速率达到一定的表观粘度,用各个粘度计池校正的曲线与所测压力相对应的油品粘度。 /p p   创新点: /p p   1、全自动高温高剪切粘度测定仪采用触摸屏显示,中英文友好提示界面。 /p p   2、全自动高温高剪切粘度测定仪采用富兰德专用的高剪切粘度控制软件,拥有自主知识产权。 /p p   3、全自动高温高剪切粘度测定仪自动进样、自动抽样、自动检测、自动打印,支持USB数据采集系统。 /p p style=" text-align: left "    span style=" color: rgb(255, 0, 0) " strong 斯达沃便携式快速运动粘度仪SDW-120 上市时间:2018年2月 /strong /span /p p style=" text-align: center " img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/201908/uepic/70e4b1e8-26a5-48bd-a6c9-bd19aee3f2d4.jpg" title=" 斯达沃自动折管式运动粘度仪SDW-552.jpg" alt=" 斯达沃自动折管式运动粘度仪SDW-552.jpg" / /p p style=" text-align: center " a href=" https://www.instrument.com.cn/netshow/C332150.htm" target=" _self" strong 斯达沃便携式快速运动粘度仪SDW-120 /strong /a /p p   SDW-120便携式快速运动粘度仪是按照ASTM D7279 、D445、NB/SH/T 0956-2017、T/CEC 127-2016标准对户外现场快速检测需求设计制造,操作简便,集成高效自动清洗系统,可快速测定多点温度下包括润滑油新油、在用油等透明及不透明牛顿液体的运动粘度。 /p p   创新点: /p p   1、便携:体积小,重量轻,集成高效自动清洗系统,随时随地测试。 /p p   2、快速:普遍1分钟出结果。 /p p   3、安全:定制三防工程箱一体化设计,携带更轻松、更安全。 /p p   4、简便:全中文显示,向导式操作,插拔式更换粘度计。 /p p   5、超长续航:采用原装进口锂电电芯,控温100℃也能保持10小时超长续航。 /p p   6、可配备一次性过滤器,极大程度的减少实验人员对样品预处理的工作量。 /p p    strong 拓展阅读 /strong /p p   2019年,仪器信息网特针对粘度计用户发放有奖调研问卷,只需不到3分钟,10元话费送不停!全文链接如下: /p p    a href=" https://www.instrument.com.cn/news/20190806/490587.shtml" target=" _self" https://www.instrument.com.cn/news/20190806/490587.shtml /a /p p   有奖调研问卷电脑端链接: a href=" http://magicguancg.mikecrm.com/YHbm2A0" target=" _self" http://magicguancg.mikecrm.com/YHbm2A0 /a /p p   有奖调研问卷微信二维码: /p p style=" text-align: center " a href=" http://magicguancg.mikecrm.com/YHbm2A0" target=" _self" img style=" max-width: 100% max-height: 100% width: 223px height: 223px " src=" https://img1.17img.cn/17img/images/201908/uepic/920e19a3-4341-48f6-812b-868f5bfb2899.jpg" title=" 粘度计有奖调研问卷二维码.jpg" alt=" 粘度计有奖调研问卷二维码.jpg" width=" 223" height=" 223" border=" 0" vspace=" 0" / /a /p p /p p   特向认真完成调研问卷者提供总计200份10元话费奖励,只要你够走心,小编还将择优选取10名用户,奖励50元话费! br/ /p p br/ /p
  • 显微CT揭示:您的原位力学曲线精确吗?
    【导读】增材制造(AM)在过去十年中的发展为整个制造领域创造了颠覆性的技术革命。然而,在最后的质量检测方面,如何创建完整样品的高度详细的检测,并做好增材制造部件的整个生命周期内质量监控,包括:工艺开发,工艺监控和最终零件质量,这些仍具有挑战。目前,一般使用延时成像的显微CT研究点阵金属,泡沫金属,等结构材料,做原位力学分析。由于整个原位过程不连续,时间轴就不对,力学曲线也会不精确。为了更好地了解:增材制造部件的性能与变化特别是当工件受到特定的外部条件如加热或负载时,如何突破常规手段,对整体力学性能进行实时观测,而不是从初始和最终状态来推断测试期间发生了什么。此时,动态显微CT与时间分辨率显得尤为重要。动态CT,是一种利用X射线收集3D数据的技术,在无损检测方面非常实用。现在可被用于力学测试过程中三维结构变化的监测。目前有一款实时动态micro-CT,能够在原位实验过程中收集具有高时间分辨率,且不间断的3D数据,可以看清增材制造零件中常见的复杂和错综复杂的几何形状,观察在力学加载、高温以及气氛等条件下材料内部结构的变化,这将使研究人员更完整并更准确地理解材料在真实环境下的内部行为表现,有助于更多具有优异性能的新材料开发研究。△3D打印塑料样品压缩的动态成像。每次扫描 6 秒即可采集超过 200 张 3D 图像【实验视频】【实验背景】对于复杂和/或隐藏结构,传统的力学测试方法只能提供整体力学性能的常规结果,每个特征变化只能在测试结束后进行破坏性评估。传统显微CT虽然能够在变化的外部条件(如负载或温度)下对样品内部的变化过程进行三维检测,但常规做法是对中断的多个非连续过程进行成像,也称为延时成像。为了获得更清晰的图像,TESCAN采用了动态CT方法。这是最先进的时间分辨率3D X射线成像系统,利用高时间分辨率,样品在不断变化的过程中连续成像,而这个过程是真实连续的。【实验设计】图1:(上)安装在 UniTOM XL 中的 Deben 原位台;(左下)未压缩的3D打印零件样品;(右下)压缩后的3D打印零件样本对不同填充结构下打印出来的三个塑料件进行了原位三维变形研究。为了使这些塑料件内部支撑结构能肉眼可见。本研究使用的是TESCAN UniTOM XL micro-CT系统。在22分钟内收集了220张断层图,样品旋转的时间分辨率为5.8秒,体素大小为59μm,保持持续压缩每个样品,载荷传感器使用的是Deben CT5000RT。同时为了保证在连续旋转和数据采集期间进行“无电缆缠绕”操作,本研究使用了TESCAN原位接口套件。上图图1显示了原位装置、样品初始和最终状态的图像。填充图案式样需要考虑对后续层和零件完整性的影响,而且填充图案式样的选择也对3D打印零件的性能有很大影响。没有任何一种填充图案模式适用于所有应用环境。使用什么图案以及使用多少图案,很大程度上取决于最终的形状和零件的应用需求,以及打印技术、时间和成本。对于本研究,我们选择了三种不同的常见填充式样: Cross 3D、Cube 和 Triangle。【实验结果】图2:(上)负载曲线显示了测得的力随时间的变化 (下)测试过程中每个样品在不同时间的示例图像图2显示了三种不同填充模式(Cross 3D, Cube和Triangle)的负载曲线与时间的关系,以及每个样品在不同时间点的代表性3D渲染和2D切片成像。从负载曲线和图像中都可以得到一些有效信息:在负载曲线中我们可以发现三者总体上变化相似,但Cross 3D模型能够在最初承受更大的载荷,然后迅速下降到其他两个样品以下,随后再次恢复到平均水平。如果观察3D成像,会看到在单层发生初始坍塌,接着被持续压缩,直到它坍缩到下一层。通过观察样品的最终状态,我们可以看到大部分的变形发生在一个小区域内并且外层有大量的形变。相比之下,立方试样几乎保持整体几何完整性,始终只有局部发生屈曲变形。最初,在样品底部发现了一个单层失效缺陷,但当我们对整个过程进行检查时,在样品高度方向发现了几层贯穿的断裂。相比其他模式,三角形填充模式具有明显不同的载荷曲线变化,可发现样品沿初始“滑动”的地方发生了明显的剪切变形。图3:压缩过程中Cross 3D样品在不同时间点的层分离细节:a)3.5分钟b) 5.8分钟c) 6.5分钟d) 8.3分钟除了提供对整个样品的三维观察外,它还可以聚焦于样品的特定点,并在固定的时间框架内观察局部变化:例如,如果我们仔细观察Cross 3D样本中的一些变化,如图3所示,随着负载的增加,可以清晰的看到各个层之间的分离。在这里,我们可以清楚地看到缺陷在5分钟内的失效过程。这些特殊的失效过程可能表明某些层之间缺乏融合,需要对初始构建参数进行更改。最后,可以对这类样品采取多尺度扫描,在力学测试之前和/或之后进行更高空间分辨率的扫描,以更好地了解特定位置的微观结构:例如,三角形填充样品,在压缩前,我们通过相对低分辨率的整体扫描获得样品信息,然后对感兴趣部位进行更高空间分辨率(8.5μm体素)的感兴趣区域扫描(VOIS)。通过可视化软件Panthera™ ,低分辨率扫描发现了其中一个结构表面有异常。通过一个简单的操作,我们再选择这个异常区域进行半自动高分辨率扫描。多尺度扫描成像如下图4所示。在更高分辨率的成像中,我们可以看到单个构建层,并可清楚地发现由于不规则的构建模板导致了孔洞。这些孔洞可能是初始失效点,可能导致动态CT结果中看到的剪切变形现象。图4:(左)全样品预览扫描成像 (中间)VOIS感兴趣区域扫描成像(红色),显示位于整个样品内的位置 (右)打印缺陷的细节(体素大小为8.5μm)。【总结】随着增材制造技术的成熟,可以实现的几何形状变得越来越复杂。为了进一步了解这些独特的部件在各种条件下的性能,必须要使用适合的检测手段和设备。在整个TESCAN显微CT解决方案产品线中,动态CT可以在这些过程中收集连续、不间断的3D数据。在本研究中,使用TESCAN UniTOM XL设备以及动态CT技术,观察3D打印零件在承受压缩载荷时内部和隐藏结构的变化。这个例子说明了动态CT可作为一种有价值和潜力的手段,来更好地了解在机械负载过程中,3D打印部件的整体性能发生了哪些内部(隐藏)变化。
  • 上海卢湘仪设计离心机法测量土壤水分特征曲线
    土壤水分特征曲线可反映不同土壤的持水和释水特性,也可从中了解给定土类的一些土壤水分常数和特征指标,研究土壤水分特征曲线具有重大意义。笔者获悉,近期,上海卢湘仪离心机仪器有限公司研发了一款测定土壤pF曲线专用离心机——H1400pF土壤用高速冷冻离心机,该离心机的成功研发将可助攻于农业科技领域的发展。一、产品简介 土壤检测离心机,用于土壤含水量对应的pF(水势)值的曲线测试,是表达土壤水势和土壤水分含量关系。 二、产品特点 土壤水分特征曲线通常采用压力膜(室)和离心机等方法进行测定。离心机法比其他方法操作简单、省时,可测定较宽的吸力范围,广泛应用于土壤水分动态模拟。这款离心机用于测量土壤含水量对应的pF(水势)值。 三、离心机设计 上海卢湘仪设计了特有的土壤水特性曲线专用水平转子,达到水平转子在测试中的转速14000转/分,相对离心力25220*g ,设计有接水器、过滤板、过滤膜、离心套筒、离心上盖、密封圈等,土壤离心机转子设计保正了在做测定土壤水特性pf曲线数据时高速旋转无渗漏,有效保证了所收集的水准确无误,使计算参数和依据得到了保证。 为了避免因空气和转子在高速旋转时产生温升过高而造成水分挥发损失,离心机设置制冷系统和温度调节系统,使工作腔温度恒定在4度左右,可根据客户需求进行调整温度。电气方面采用变频交流调速,电脑控制,离心机设有门盖,不平衡,超温,超速安全保护措施,保证高速旋转下的安全性。据相关工作人员表示,该离心机是卢湘仪技术团队倾力打造的一款离心机产品,具有多方面的技术优势。 四、离心操作方法 操作离心机前首先检查离心机电源,打开离心机总开关,取出转子上4组离心筒组件,准备土壤,准备水、天平、打开离心套筒组件,根据使用说明书要求安装稀释好的土壤,称重配平,安装离心套筒组件,检查4个组件对称放置,关上离心机门盖,设置参数,启动离心机,离心机倒计开始运转时间为0停机,打开门盖,取出离心完的离心套筒,取出接水器,将水倒入并记录水量。 五、土壤水分特征曲线概念不同质地土壤水分特征曲线有所不同 土壤水的基质势(或土壤水吸力)随土壤含水量的变化而变化,其关系曲线称为土壤水分特征曲线,英文名称为soil water characteristic curve。 一般,该曲线以土壤含水量Q(以体积百分数表示,比如土壤含水量为10%,那么在横坐标上就是对应的数字10)为横坐标,以土壤水吸力S(以大气压表示)为纵坐标。有了横坐标和纵坐标就可以绘制出不同土壤的水特性曲线图了。 六、研究土壤水分特征曲线的意义 土壤水分对植物的有效程度最终决定于土水势的高低,而不是自身的含水量。如果测得土壤的含水量,可根据土壤水分土特征曲线查得基质势值,从而可判断该土壤含水量对植物的有效程度。 土壤水分特征曲线可反映不同土壤的持水和释水特性,也可从中了解给定土类的一些土壤水分常数和特征指标。曲线的斜率倒数称为比水容量,是用扩散理论求解水分运动时的重要参数。曲线的拐点可反映相应含水量下的土壤水分状态,如当吸力趋于0时,土壤接近饱和,水分状态以毛管重力水为主;吸力稍有增加,含水量急剧减少时,用负压水头表示的吸力值约相当于支持毛管水的上升高度;吸力增加而含水量减少微弱时,以土壤中的毛管悬着水为主,含水量接近于田间持水量;饱和含水量和田间持水量间的差值,可反映土壤给水度等。故土壤水分特征曲线是研究土壤水分运动、调节利用土壤水、进行土壤改良等方面的最重要和最基本的工具。 关于上海卢湘仪离心机仪器有限公司 上海卢湘仪离心机仪器有限公司是中国一家获得美国FDA认证的专业离心机企业,生产历史悠久、技术力量雄厚、生产设备精良、检测设备齐全。其以设计精巧、造型新颖、工艺精良而闻名,生产的离心机产品质量可靠、性能稳定、规格齐全,广泛应用于高等院校,科研单位,生物制药,医疗,石油化工等领域。 经过四十多年的发展,卢湘仪已先后设计生产各种领域的离心机产品,本次研发生产的H1400pF土壤用高速冷冻离心机是一款专业测定土壤pF曲线的离心机产品,该产品将对于农业发展以及教学方面具有重要意义。
  • 一文揽尽:荧光定量PCR扩增曲线哪个阶段最重要
    qPCR扩增曲线一般分成四个阶段:基线期、指数期、线性期和平台期。那么每个阶段PCR产物量的变化都有什么区别呢?哪个阶段最重要呢?小编这就一一道来。基线期PCR起始时,刚开始前几个循环的荧光信号还没有发生变化,接近一条直线,将其称之为基线,一般是3-15个循环。在基线期内,扩增的荧光信号被背景荧光信号所掩盖,无法判断PCR产物量的变化。指数期扩增的荧光信号高于背景荧光信号,扩增曲线起峰,开始进入指数期。在指数期内,每个循环积聚的产物准确加倍(假定100%反应效率)。该阶段的PCR反应具有高度特异性和精确度。因为所有试剂均充足,反应的动力学推动反应有利于扩增子加倍,所以产物出现指数级扩增。只有在这个阶段,Cq值与初始模板量的对数之间存在线性关系,所以在此阶段进行定量分析最合适。线性期(高变异性)随着PCR反应体系各成分的消耗,其中的一种或者多种成分限制反应,导致反应开始减缓,并且每个循环的PCR产物不再加倍,该阶段不再是指数级扩增。平台期反应停止,不再产生更多产物,并且如果放置时间够长,PCR产物将开始降解。因为每个样品具有不同的反应动力学,所以每支试管或每个反应将在不同的时间点进入平台期,最终的产物含量也各不相同。由于线性期和平台期的扩增产物已不再呈指数级的增加,PCR的产物量与初始模板量之间没有线性关系,所以也不能通过这两个阶段的PCR产物量计算出初始模板量。想要知道初始模板量的多少,还要依赖指数期的Cq值进行计算。▲ 图1. qPCR 反应的重要阶段如图所示,标准的扩增曲线是呈现S型的。曲线是否符合标准,不仅跟样本起始量、qPCR体系配制、反应程序等相关,更依赖于一套高品质的实时荧光定量PCR系统。对于实时荧光定量PCR系统来说,高度检测灵敏度、高度重复性和高度稳定性,是每一台qPCR仪的追求。高性能的Azure Cielo™ 实时荧光定量PCR系统完全符合以上要求,该系统来自美国Azure Biosystems公司,融合了高品质的帕尔特温度模块和基于光纤传输的光学检测系统,为您的科学研究提供高精准、高灵敏可靠结果。提供Azure Cielo-3通道和Azure Cielo-6通道,可根据实验需求灵活配置。同时配有10.3”触控系统,主机本身可独立运行、连接、远程交互,让您随时随地知悉实验进程和及时获得实验结果。▲ 图2. Azure Cielo™ 实时荧光定量PCR系统高度的灵敏度使用探针法,同时在Azure Cielo™ 实时荧光定量PCR系统和其他品牌产品上检测GAPDH基因,结果表明:A)Azure Cielo™ 实时荧光定量PCR系统对单拷贝基因的检出率更高。B)Azure Cielo™ 实时荧光定量PCR系统的Cq平均值要低于2个Cq。▲ 图3. 单拷贝基因检测对比(n=96)高度的重复性源于优异的孔间均一性。105拷贝数GAPDH模板,GAPDH引物扩增,96孔重复结果。Cq平均值=19.1,变异系数(Cv)=0.002。▲ 图4. 96孔重复扩增曲线 A)线性图 B)对数图 高度的稳定性稳定可靠的温度模块和光学系统,确保仪器连续运行1000轮qPCR实验,数据依然稳定可靠,重复性高度一致。对GAPDH进行检测并连续计算Cq值得出平均值和Cq值的标准偏差。Cq值=22.4+0.01。▲ 图5. 长时间连续工作数据稳定
  • 博勒飞粘度计在手机胶水行业的应用
    新闻背景介绍:随着手机发货量越来越大,华为再次为自己敲响了质量警钟。不仅召开了内部质量大会,更于近日罕见向媒体开放了历来保密的华为北京研究所终端实验室。几乎没有手机厂商会不重视质量,但《证券日报》记者在探访过华为北研所终端实验室后发现,手机质量管控是一个庞大复杂的系统,质量底线如何守,守不守得住,得靠硬实力。 曾因为胶水缺陷损失九千多万元马兵还指出,华为现在的强大在于,整个制造体系和测试体系,对于质量的拦截作用很强。基本上很多的质量问题,在研发的测试环节和生产、制造环节基本上都能够拦截到。“我们前年有一个产品,屏幕缝隙的地方在高温的时候有胶水溢出的概率,千分之几的概率,怎么办?后来按照我们的流程决策这批货发不了,那一次就损失了九千多万元。我们经常会面临这样的问题,因为生产中有这样的问题,我们就会想怎么在前端控制避免这样的浪费。” 对华为来说,当前面临的最大挑战是如何与整个产业链共同构建质量。马兵给记者讲了去年碰到的一个问题:在生产测试过程中发现手机对焦模糊,后来发现是摄像头上的马达出了问题,再追究下去,是马达上用的胶水出了问题,因为马达产线那个胶水的工艺出现了一些变化。 胶水?手机里面也有胶水?是的,部分关键零件必须使用到加水来粘合。对于华为这么重视手机质量的大企业,对于胶水的供应商必须严格审核。前年由于胶水之痛损失近一个亿,对于每个企业来说这是很揪心的事情,但是也很现实来看供应的管理是要认真对待。 不仅要管理好供应商,还要管理好供应商的供应商。“这个挑战也需要我们投入庞大的人力和设备。我们在很多提供原件的厂家都要部署测试设备,保证它在出厂前经过我们的测试,才允许进入我们的公司。” 胶水的粘度影响手机摄像头?应用在手机的胶水质量好坏如何判断?如何提高胶水的质量?粘度尤为重要。为什么会胶水溢出?所有的因素还是在于胶水粘度的控制。上述所说的“由于胶水的质量问题,手机摄像头对焦模糊”,追根到底是因为摄像头马达上面用的胶水质量不过关,是否考虑过粘度也会影响手机摄像头的拍照效果? 手机摄像头制作过程中,摄像头粘贴的胶粘度对手机摄像头拍照效果影响尤为重要。 检测来料粘度,实时反映是否合格,是否需要添加溶剂等。对于摄像头粘贴的来料检测,胶水拖尾现象可通过粘度体现。太稀或太稠镜头会有移位,丁点移位严重影响照相效果。 在此过程,手机生产线建设都会用到粘度计,某公司每年会用到美国Brookfield博勒飞粘度计,Brookfield LVDV2T,RVDV2T等机型都会使用到,为了生产出拍摄效果更好的手机,胶水粘度检测也是必不可少的。生产行业中通常使用Brookfield粘度计来检测控制产品粘度。Brookfield粘度计精度可达测量范围的±1%,而重现性在±0.2%,使用Brookfield粘度计可以精准的控制粘度,是生产和产品开发不可或缺的工具。 美国Brookfield粘度计是全球粘度计的泰斗,发明了全球第一台旋转粘度计,率先创造了粘度测量的世界标准。80年的生产经验,使得Brookfield的名字在粘度测量和控制领域成为精确的代名词。Brookfield粘度计已成为粘度计的行业标杆,市场占有率达70%以上。Brookfield粘度计质量稳定可靠,精确度高,重复性好。通过精准的Brookfield粘度计测量后,可以精确的控制在合适的粘度范围,让性能发挥到极致。
  • 博勒飞粘度计- 经典零部件或产品使用
    温故而知新,博勒飞将不时地带您重温一些粘度计的经典零部件或产品使用分享。本篇将再次详细地为您重温如何正确地认识标准粘度计中的护腿。 正确认识护腿GET IT RIGHT设计护腿的初衷Brookfield标准粘度计/流变仪的护腿最初的设计目的在于在使用过程中保护转子(参阅下图)。Brookfield粘度计的应用是手持粘度计测量在一个55加仑鼓形圆桶中的流体粘度。显然,在那种条件下对转子的潜在损坏会很严重。最初的护腿设计包括用一个套筒来防止转子受到侧面撞击。早期的RV护腿连接到表盘式外壳上,LV护腿则是用一个扭转锁定装置连接到转轴罩杯上。GET IT RIGHT适用的机型系列Brookfield标准粘度计/流变仪的护腿是一个带支架的U形金属环,顶部连接到博勒飞粘度计/流变仪的转轴罩杯上。因为它必须连接到转轴罩杯上,所以锥板型仪器不能使用护腿。护腿用于所有的LV和RV系列仪器,但不适用于HA或HB系列。护腿为转子而设计,形状如下图所示。由于RV的#2转子直径大,RV护腿要比LV的护腿宽,两者不可互换使用。GET IT RIGHT测量条件的界定Brookfield标准粘度计/流变仪的校准需要使用600毫升浅型烧杯。LV和RV系列标准仪器的校准务必加装护腿。烧杯壁(HA/HB仪器)或者护腿(LV/RV仪器)界定了测量的“外边界”。LV、RV和HA/HB转子的转子系数是根据上述边界条件计算出来的。转子系数用于将仪器扭矩(表示为表盘读数或%扭矩值)换算为厘泊。理论上,如果测量在不同的边界条件下进行:例如,不使用护腿或在一个非600 mL烧杯,则在系数表中的转子系数不能用于粘度的精确计算。边界条件的改变不会改变流体的粘度,但它会改变仪器的扭矩转换成粘度值。如果新的边界条件下仍使用原来的转子因子,则由仪器扭矩计算出的粘度将是不正确的。GET IT RIGHT现实中的应用实际上,使用LV和RV转子组(注意:RV/HA/HB #1转子不包括在内)中的#1 & #2转子,护腿的影响很大。其他LV(#3 & #4)或RV(#3 -#7)转子在600mL烧杯中,用或不用护腿都可以得到正确的结果。HA/HB系列粘度计/流变仪不提供护腿,以减少测量高粘度物料时的潜在问题。HA/HB的 #3 ~ #7转子与RV转子是相同的。HA/HB#1和#2转子和RV转子在尺寸上略有差别。尺寸的不同允许RV和HA/HB#1和#2转子即使在边界条件不同的情况下,也可使仪器扭矩按相同的比例变化。有些用户不方便严格按照推荐的步骤,即使用一个600毫升的烧杯和护腿。同时,护腿也是一个需要清洗的部件。在某些应用中,可能无法在600毫升的烧杯中将转子浸没到500毫升的测量样品。实际上,实际生产中可以使用较小的容器并卸下护腿。Brookfield粘度计/流变仪在任何测量环境下都可以得到一个精确和可重复的扭矩读数。但是,只有转子系数在规定条件下使用,扭矩读数转换为厘泊才是正确的。在《More Solutions to Sticky Problems》一书中,Brookfield介绍了一种在任何测试环境中重新校验Brookfield粘度计/流变仪的方法。值得注意的是,对于许多粘度计/流变仪的用户而言,真实的粘度值并不一定比可以天天重复得到的测量值更重要。不改变测量环境的情况下,可获得这个重复的测量值。但是,我们必须需要知道的是,即使使用Brookfield系数,但其边界条件不符合Brookfield的规定,则这种类型的扭矩读数不能转换为正确的厘泊值。正确认识护腿让您的粘度测量更为从容和精确!护腿是Brookfield LV和RV系列标准粘度计/流变仪校验、校准的一部分。我们应该了解它存在的目的和用途,以及对测量数据可能存在的影响。有了这方面的深刻认识,用户甚至可以改进Brookfield所推荐的操作方法,以适应自身的实际需求。
  • 资讯:运动粘度测定仪如何更好的维护
    运动粘度测定仪合理的保存才能延长寿命 运动粘度计是按照国家标准GB/T265-88研制生产的新仪器,适用于液体石油产品的运动粘度。大屏幕液晶,中文数据显示,人机对话管理界面可预值温度、 试验研究时间等参数,菜单提示式输入,外型设计更加美观,系统可以稳定安全可靠。 一、运动粘度测定仪保存: 1. 仪器存放室应清洁、干燥、明亮、通风良好,室温不得有剧烈变化。ZUI适宜的温度约为10-16℃。在冬季,仪器公司不能存放在暖气设备以及附近。应在室内提供灭火设备,但不应使用普通的酸碱灭火器,而应使用液态二氧化碳和四氯化碳及新的安全灭火器。室内也不要进行存放系统具有酸、碱类气味的物品,以防腐蚀实验仪器。 2.在存放仪器的仓库中,运动粘度测试仪应采取严格的防潮措施。库房管理相对湿度控制要求在60%以下,特别是中国南方的梅雨季节,更应采取一些专门的防潮措施。可以安装空调来控制湿度和温度。一般企业可用使用氯化钙吸潮,也可用一个块状石灰吸潮。对于存放在一般房间的常用仪器,必须保存仪器箱中的干燥,其中可以包含 1 到 2 袋"防潮剂"。这种“防潮剂"的主要经济成分是硅胶(硅酸钠)和少量钴盐,即将钴盐溶于水(按5%浓度),洒在硅胶上加热进行烘干处理即可。钴盐主要用作指示剂,因为干燥时呈深蓝色,吸湿时呈粉红色。变红后的硅胶失去了吸潮能力,必须进行加热温度烘烤或烈日暴晒,使水分通过蒸发复呈紫色以致深蓝色,才能发展继续学习使用。将硅胶装入小布袋(每袋40-80克),放入仪器盒中使用。 3、仪器应放在木柜内或柜架上,不要进行直接管理放在一个地上。三脚架应平垂直放置或放置,不得随意倾斜,以防变形。
  • 快速粘度分析仪在淀粉领域的崭新应用
    波通仪器公司和澳大利亚核能科学与技术研究组织(ANSTO)首次共同合作的项目&mdash &mdash 通过中子散射方法帮助阐述淀粉在蒸煮过程中分子水平级结构发生的变化。 波通公司的快速粘度分析仪(RVA)经特殊的改造在标准的淀粉糊化实验中,采用ANSTO' S的小角度中子散射设备-&ldquo Quokka&rdquo ,将一束中子照射通过淀粉。 淀粉在很多食品产品和造纸、粘合剂、纺织品和生物燃料工业产品中被广泛使用, 通过这项研究更好的理解淀粉在蒸煮过程中结构和功能之间的联系,了解淀粉类产品的形成机理, 以求最大化提高产品质量和加工过程。 快速粘度分析仪是一款带有灵活的加热冷却功能和可调的剪切率的旋转粘度计,广泛应用于淀粉和食品行业,评价原料和成品的糊化特性。 考虑到这项工作的重要性,澳大利亚联邦科学部长参议员写到:&ldquo 这项重大发现意味着生产者可以用较低的能量输出生产更高效的产品,还可以帮助生产出性能稳定的健康的淀粉类食品。&rdquo Elliot Gilbert博士是ANSTO&rsquo S食品科学项目的带头人与波通澳大利亚公司的James Doutch博士共同合作研究这个项目里使用的&ldquo nRVA&rdquo ,这款仪器目前正用于第三方的研究 。 更详细的内容请与波通澳大利亚公司的t Mark Bason联系,他的邮箱是:mbason@perten.com 登陆ANSTO' s 网站查看更多关于此项目的信息»
  • 奔腾公司对自动粘度计市场现状以及发展趋势的分析
    随着科技的不断进步,自动粘度计作为一种重要的测量仪器,越来越受到人们的关注和重视。本文将从自动粘度计市场现状入手,对市场发展趋势进行调查分析。一、自动粘度计市场现状目前,国内外市场上自动粘度计品牌众多,主要产地集中在美国、日本、中国等地。其中,高端产品主要集中在欧美市场,而中低端产品则在中国市场上占据较大份额。自动粘度计主要用于测定液体的粘度,广泛应用于石油、化工、制药、食品等众多行业。二、市场发展趋势1.技术不断创新随着科技的不断进步,自动粘度计技术也在不断创新和发展。一方面,新型的传感器和测量技术不断涌现,提高了自动粘度计的测量准确度和可靠性;另一方面,智能化、自动化、网络化的技术不断发展,使得自动粘度计的应用范围更加广泛。2.应用领域不断扩展目前,自动粘度计的应用领域正在不断扩展。除了传统的石油、化工、制药、食品等行业外,自动粘度计在环保、科研、造纸、涂料等领域的应用也逐渐增多。这些领域对自动粘度计的需求不断增长,同时也为自动粘度计的发展提供了更多的机遇。3.产品质量不断提高为了满足市场的需求和用户的要求,自动粘度计生产厂家不断提高产品质量,采用新型的传感器和先进的测量技术,同时加强生产管理和质量管理体系的建设,确保产品的质量稳定可靠。4.市场竞争日益激烈虽然自动粘度计市场前景广阔,但随着市场竞争的日益激烈,各个品牌之间的竞争也越来越激烈。价格战、技术战和服务战成为市场竞争的主要手段。此外,国外品牌与国内品牌的竞争也逐渐加剧,这使得市场竞争更加激烈。三、市场调查分析1.用户需求分析通过对市场上的用户需求进行分析,我们发现用户对自动粘度计的需求越来越高。除了对产品的性能和测量准确度的要求外,用户还对产品的可靠性、稳定性和智能化程度提出了更高的要求。此外,用户还希望产品能够提供更好的服务和支持,以保证生产的安全和稳定。2.市场价格分析通过对市场价格进行分析,我们发现自动粘度计的价格相对比较稳定。不过,由于市场竞争的加剧,各个品牌之间的价格差异比较明显。一般来说,国外品牌的价格高于国内品牌的价格,而且高端产品的价格也高于中低端产品的价格。但是,也有一些国内品牌的产品质量与国外品牌相当,价格相对较低,这使得这些产品具有很大的市场竞争力。3.市场技术分析目前,自动粘度计的技术已经比较成熟,但是在一些特殊应用领域中仍然存在着一些技术难点和瓶颈。例如,在环保、科研等领域中,需要测量的样品成分比较复杂,对测量技术的要求比较高;在涂料、油漆等领域中,需要测量不同配方下样品的粘度变化等。因此,自动粘度计厂家需要不断进行技术研发和创新,以适应市场的需求和提高产品的竞争力。4.市场服务分析由于自动粘度计是一种精密的测量仪器,用户在使用过程中需要专业的服务支持。因此,自动粘度计厂家需要提供更好的售前、售中和售后服务。例如,提供专业的选型指导、使用培训、维修保养等服务;同时还需要加强与用户的沟通与联系,及时解决用户的问题和反馈。良好的服务能够提高用户对产品的信任度和满意度,也能够增强厂家的市场竞争力。四、结论通过对自动粘度计市场发展趋势的调查分析,我们发现自动粘度计市场具有广阔的发展前景。但是,厂家需要不断提高产品的技术水平、质量和可靠性,加强服务支持以提高产品的竞争力。同时还需要不断进行市场调研和分析,了解用户的需求和反馈,以适应市场的变化和增强企业的可持续发展能力。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制