当前位置: 仪器信息网 > 行业主题 > >

再现性

仪器信息网再现性专题为您整合再现性相关的最新文章,在再现性专题,您不仅可以免费浏览再现性的资讯, 同时您还可以浏览再现性的相关资料、解决方案,参与社区再现性话题讨论。

再现性相关的资讯

  • 干细胞模型再现人类胚胎早期发育
    据英国《自然》杂志2日发表的一项研究,科学家用人多能干细胞建立了一个模型,可用来研究人类胚胎植入子宫的过程。人胚状体(blastoid)是模拟早期人类胚胎的结构,在研究中能准确再现人类胚胎早期发育的关键阶段,包括黏附在体外子宫细胞上。该模型或有助于推进我们对人类发育早期阶段的认识,以及开发不孕不育的治疗方法或避孕药。  在受精后的一周内,人类胚胎会形成名为胚泡的细胞团,胚泡会植入子宫壁。准确模拟这一发育阶段的模型能支持对胚胎植入和早期发育的研究。利用干细胞构建胚泡的类似物是一种很有前景的方法,但此前的尝试遇到了瓶颈,比如会形成与胚泡不匹配的细胞。  此次,奥地利科学院分子生物技术研究所研究人员尼古拉斯利弗隆及其同事,利用人多能干细胞构建了人胚泡样结构(胚状体)。研究团队鉴定出3个信号通路,抑制它们就能得到有效模拟正常胚泡发育(成功率70%)和能形成正确细胞(成功率97%)的胚状体。  研究报告称,这种人胚状体能在体外特异性地黏附受激素刺激的子宫内膜细胞,让团队能重现直到第13天的围植入期发育过程。  由于该模型效率高、可扩展潜力大。研究人员认为,这种方法能为人类胚胎植入和发育研究提供重要帮助。  干细胞可揭示器官的形成机理,但此前这方面的研究,一直难以帮助我们更深入理解发育胚胎。通常来说,科学家试图培养本身没有干细胞的类器官时,都会用到多能干细胞这种更基本的干细胞类型。科学家既可以从人体胚胎中获得多能干细胞,也可将皮肤细胞或血细胞进行重编程进而培养出干细胞,然后诱导它们模仿特定器官的形成。  不过,这些结构或者说微型器官,通常只复制了真实器官的某些结构和功能而非全部。
  • 在线浓度计等不断创新 为工业生产带来更多可能性
    随着科技的不断进步和工业生产的发展,仪器仪表在工业领域中的应用变得越来越重要。其中,在线浓度计等仪器仪表的不断创新为工业生产带来了更多的可能性。在线浓度计等仪器仪表通过实时监测和分析物质的浓度,为企业提供了精确的数据和关键的信息,从而促进了工业生产的效率和质量的提升。过去,工业生产过程中常常需要通过间歇性的采样和分析来确定物质浓度,这既耗时又费力。然而,随着在线浓度计等仪器仪表的出现,工业生产效率得到了显著提高。这些先进设备实时监测和测量物质浓度,消除了传统方法中的延迟和不确定性,使生产过程更加连续高效,进一步提升了生产能力。在线浓度计等仪器仪表的创新也为工业生产带来了更高水平的质量控制。在许多工业生产过程中,物质浓度对产品质量有着重要影响。传统的采样和分析方法往往存在误差和延迟。而在线浓度计等仪器仪表可以实时监测和反馈浓度数据,及时发现异常情况并进行调整。另外,在线浓度计等仪器仪表的创新也为工业生产带来了更高水平的安全性。传统的采样和分析方法需要人工操作,存在一定的风险和误差。而通过自动化监测和报警功能,在线浓度计等仪器仪表可以及时预警和控制潜在的危险情况,提高了工业生产过程的安全性。相信随着人工智能、物联网和大数据分析等技术的融合,在线浓度计等仪器仪表将更加智能化和自动化,提供更精准的预测和决策支持。在线浓度计等仪器仪表的创新发展也为工业生产带来了更广阔的可能性。
  • WAGA-100大气水溶性离子在线分析仪
    大气颗粒物来源广泛,化学组分复杂,与痕量气态污染物如二氧化硫、氨等互相转化,造成大气复合污染的复杂状况。传统的大气颗粒物和气体组分多遵循采样-运输-实验室分析的流程,时间周期长,消耗人力物力较多。一些不稳定的物质在周期中容易挥发或者发生反应,导致检测结果不能准确地反映实时污染物组分浓度,造成测量误差。  因此,对颗粒物化学成分和痕量污染气体开展准确、实时、长期的监测、是治理大气颗粒物的先决基础。  聚光科技(杭州)股份有限公司(以下简称“聚光科技”)联合北京大学最新推出基于离子色谱法的WAGA-100大气颗粒物水溶性离子成分在线分析仪,可实现对大气中多种水溶性离子的自动准确测量。 WAGA-100大气水溶性离子在线分析仪可测气体组分NH3、HCl、HONO、HNO3和SO2可测颗粒物组分F-、Cl-、NO2-、NO3-、SO42-、Na+、NH4+、K+、Mg2+、Ca2+等WAGA大气颗粒物水溶性离子成分在线分析仪原理图关键技术  1)湿式平行板溶蚀器技术  它的基本工作原理是:选择能吸收被测组分的吸收剂涂渍于溶蚀器内壁,或让吸收剂以一定流速流过溶蚀器内壁,利用气体和气溶胶扩散系数的差异,使气体分子扩散到管壁被吸收剂吸收,而气溶胶不受影响一直通过扩散管,从而有效地分离气态污染物和气溶胶。湿式平行板溶蚀器工作原理示意图  2)蒸汽喷射-撞击式采样技术  基于蒸汽喷射的气溶胶采样技术原理是气溶胶颗粒在水蒸气的作用下长大,经过一个水汽分离装置后,水溶性组分进入溶液并进一步分析。该技术解决了传统膜采样法时间周期长、颗粒物成分变化等问题,应用于组分在线监测,可以实时、准确的获知颗粒物化学成分信息。 基于蒸汽喷射的气溶胶收集技术示意图  3)微差压全自动液面探测技术  基于微压差的自动化液面探测技术可以连续自动的输出收集液容积,适用于无人值守的在线监测仪器,结构简单,灵敏度高。 微差压全自动液面探测技术示意图  4)针对自动在线分析的智能化软件系统  聚光科技WAGA-100大气水溶性离子在线监测系统将采样、分析、检测单元、数据处理单元等集成在分析仪内部;通过内置程序控制电磁阀的开关和设定流量,根据时序控制不同采样流程状态下泵的工作状态和频率,减少仪器使用及维护的工作量;通过定时循环自动触发下一流程,实现流程的循环和连续在线测量,减少人工维护,实现高度自动化控制。产品特点  痕量气体和颗粒物组分的自动监测  适用于大流量的平行板溶蚀器设计  高效颗粒物捕集装置  联合北京大学研制,经十余年研发和应用验证  全自动化控制,可长时间无人值守  数据自动分析和上传应用案例 2017.04.17 凌晨5:00WAGA仪器在现场捕捉到颗粒物较高的硝酸盐和硫酸盐含量 2008.10.20~2008.11.09基于该技术现场监测的PM2.5水溶性离子成分和气体浓度的变化趋势
  • 石油化工在线分析软硬件并行——记CIOAE 2016“石油化工在线分析”主题报告
    仪器信息网讯 在线分析仪器又称过程分析仪器,直接安装在工业生产流程或其它源液体现场,对北侧物质的组成或物性参数进行自动连续测量的仪器,广泛应用在环境、化工、制药等领域。  2016年11月22-23日,在国家会议中心举办的CIOAE 2016上,众多来自石油化工企业、相关科研院所、仪器制造商等齐聚“石油化工在线分析”专题会议,从石油化工在线检测仪器技术最新发展、应用等方面进行了探讨。会议现场  目前,用于石油化工领域的仪器技术主要有光谱、色谱等,本次主题论坛上,多位嘉宾就相关仪器技术进展及用用进行了分享。其中来自中石化石油化工科学研究院褚小立教授为大家分享了近红外光谱分析技术进展。  近红外技术应用广泛,与人类生活产品的质控息息相关,成为快速、无损分析的首选技术。近红外技术的测量结果具有高重复性,在我过已有20多年的发展历史,是一种潜力巨大的仪器技术。  在当前信息化时代,数据库是未来应用的核心。以近红外技术为核心开发技术,结合互联网、移动等技术,可建立应用于农业、饲料等领域在线品控的大数据库。此外,随身式/便携式红外检测仪器已经完成了概念设计的工作,未来红外检测仪器或可类似于智能手环应用于人们的日常生活中,辅助人们把控生活品质。  褚小立在报告中指出,原油评价是一个非常复杂的过程,分析结果达到几百项,传统分析方法难以快速得到分析结果,近红外技术在国际上被广泛用于原油分析。对此,褚小立团队开发了定性算法与定量分析叠加的新方法,并指出,定性和定量方法的叠加可能是未来的原油分析的方法的发展趋势。  报告中,褚小立讲到,在线仪器技术的发展在我国有两次握手:一次是分析和分析仪器的握手,即硬件和软件的握手,目前已经融合到一定阶段 另一次握手是过程分析和过程控制的握手。褚小立指出,过程分析不是目的,真正的效益在过程控制即优化操作上产生。在我国,过程分析和过程控制的握手尚处起步阶段,未来还有许多工作要做。中石化石油化工科学研究院 褚小立  大连大特气体有限公司李福芬为与会者分享了“标准样品浓度的设计及使用”报告。报告从分析定量的原理讲起,并以外标法定量和矫正归一法定量为例,具体讲解了气体分析过程中标准样品浓度的设计和使用技巧。报告指出,标准样品的使用和设计应考虑到组成不同带来的差异,根据样品进样的相态,选择合适的计算公式,设计合适浓度的标准样品 或者换算成不会失误的浓度单位进行计算,之后再换算成需要的浓度单位。大连大特气体有限公司 李福芬  中国石化北京北化院燕山分院邱科鹏做“DCS与工业在线分析仪质检基于Modbus协议的串行通讯”精彩报告。  报告中指出,近年来,大量先进的在线分析检测仪器被越来越多的应用于化工装置的各种过程检测和自动化控制。与常规仪表相比,在线分析检测仪器最大的特点是与DCS控制系统进行数据交换的各种信号类型异常庞杂、信号数量较多。传统的传输方式对线缆等辅件的要求多且工作复杂。报告以“银催化剂中试评价装置及银催化剂工业侧线评价装置”为例,分析了Modbus协议、通讯方式、通讯硬件、通讯软件、存在的问题以及应用效果等。  来自E+H公司的沈宝良做了“拉曼光谱分析仪及其在煤化工领域的应用”报告。报告中指出KAISER拉曼光谱分析仪可应用在煤制甲醇、合成氨、煤制SNG/氢气等方面,目前全球已安装上百套。E+H公司 沈宝良
  • 2013第1批水质在线监测仪器适用性检测开始
    日前,中国环境监测总站发布“2013年第一批水质在线监测仪器适用性检测工作”通知,通知中称,2013年第一批水质在线监测仪器适用性检测于2013年3月开始,岛津公司、深圳朗石等16家仪器公司的20款水质在线监测仪器将被送进检测室开始检测。具体内容如下所示: 2013年第一批水质在线监测仪器适用性检测工作通知   2013年第一批水质在线监测仪器适用性检测将于2013年3月开始,计划检测时间为2013年3月-2013年6月。送检企业的名单见下表,请各送检企业于2013年3月18日-22日将被检仪器送进检测室并开始调试,2013年3月25日开始正式检测;逾期未到者视为自动放弃本次检测资格。   207室、208室、209室通讯协议见附件。   各公司送检时,请先将附件3的委托检测表和检测通知表有关企业部分的内容填好,一起带来。   联系人:王晓慧 左航 王利燕   联系电话:010-84943048 010-84943049 010-84943252   附件:   1. 207、208水质仪器检测通讯协议及验证工具   2. 209水质仪器检测通讯协议及验证工具   3. 氨氮委托检测表、氨氮检测通知单   4. COD委托检测表、COD检测通知单 氨氮水质在线监测仪   207检测室 序号 企业名称 产品型号 产品名称 1 爱华仪器有限公司 CL1000 氨氮在线监测仪 2 河北碧洁环保科技有限公司 SND-9000型 氨氮在线监测仪 3 杭州慕迪科技有限公司 NH3N-8000 氨氮在线分析仪 4 青岛崂山电子仪器总厂有限公司 LN1000型 氨氮在线监测仪 5 广东伟创科技开发有限公司 NH3N-2009 氨氮水质在线自动监测仪 6 宇星科技发展(深圳)有限公司 YX-NH3-N-Ⅲ 氨氮水质在线自动监测仪 7 杭州泽天科技有限公司 Wdet-5000 氨氮水质自动分析仪 8 太原罗克佳华工业有限公司 RK-NH3-N-I 氨氮水质在线自动监测仪 9 岛津企业管理(中国)有限公司 NHN-4210 氨氮在线监测仪 COD水质在线监测仪   208检测室 序号 企业名称 产品型号 产品名称 1 上海恩德斯豪斯自动化设备有限公司 CA71CODCr COD自动在线监测仪 2 拉尔分析仪器(杭州)有限公司 Elox 在线COD分析仪 3 宇星科技发展(深圳)有限公司 YX-COD-C 化学需氧量水质在线自动监测仪 4 深圳朗石生物仪器有限公司 PhotoTek6000 CODcr水质自动监测仪   209检测室 序号 申请企业 产品型号 产品名称 1 南京华都环保设备有限公司 HD02-1型 化学需氧量(CODcr)在线分析仪 2 江西怡杉环保有限公司 YSM-C型 CODcr在线监测仪 3 广东伟创科技开发有限公司 WCOD-2009 化学需氧量水质在线自动监测仪 4 杭州泽天科技有限公司 CODet-5000 COD在线分析仪 5 杭州富铭环境科技有限公司 WD2100 CODCr在线检测分析仪 6 兰州连华环保科技有限公司 5B-5型 COD在线快速测定仪 7 太原罗克佳华工业有限公司 RK-COD-I 化学需氧量水质在线自动监测仪
  • 2013年第二批水质在线监测仪器适用性检测工作开展
    中国环境监测总站2013年第二批水质在线监测仪器适用性检测工作通知   2013年第二批水质在线监测仪器适用性检测将于2013年6月开始,计划检测时间为2013年6月- 2013年8月。送检企业的名单见下表。请各送检企业于2013年5月29日-6月7日(不包括周六、周日)将被检仪器送进检测室并开始调试,2013年6月7日开始正式检测 逾期未到者视为自动放弃本次检测资格。   各公司的检测合同已发送邮箱,请查收   各公司送检时,请先将附件3和附件4的委托检测表和检测通知表中有关企业部分的内容填好   208室、209室通讯协议见附件。   联系人:王晓慧 左航 王利燕   联系电话:010-84943048 010-84943049 010-84943252   附件:   1. 208检测室通讯协议   2. 209检测室通讯协议   3. 氨氮委托检测表、氨氮检测通知单   4. TP委托检测表、TP检测通知单   总磷水质在线监测仪   208检测室 序号 企业名称 产品型号 产品名称 1 武汉泰肯环保科技发展有限公司 TKP-I型 总磷在线自动分析仪 2 成都乐攀环保科技有限公司 LP TP2013 总磷水质自动在线监测仪 3 聚光科技(杭州)股份有限公司 TPN-2000 总磷水质在线分析仪 4 岛津企业管理(中国)有限公司 TNP-4110 在线分析仪 5 青岛佳明测控科技股份有限公司 JMTPN2012型 总磷在线自动监测仪   pH水质在线监测仪   209检测室 序号 企业名称 产品型号 产品名称 1 北京环科环保技术公司 HBPH-3型 工业酸度计   氨氮水质在线监测仪   209检测室 序号 企业名称 产品型号 产品名称 1 邦达诚科技(常州)有限公司 Seres2000 氨氮水质自动分析仪 2 北京中自控环保科技有限公司 CAC-A型 氨氮在线自动监测仪 3 长沙华时捷环保科技发展有限公司 HSJ-(NH4-N)型 氨氮在线监测仪 4 厦门隆力德环境技术开发有限公司 AVVOR 9000 氨氮水质在线分析仪 5 青岛佳明测控科技股份有限公司 JMWS3000型 氨氮在线自动监测仪 6 杭州慕迪科技有限公司 NH3N-8000 氨氮在线分析仪 7 维赛仪器(北京)有限公司 TresCon A111 氨氮水质自动监测仪   附件1:附件   中国环境监测总站办公室   2013年5月22日印发
  • 在线分析仪器稳定性、可靠性专题报告会举行
    仪器信息网讯 2014年11月25-26日,由中国仪器仪表学会分析仪器分会、中国仪器仪表行业协会分析仪器分会联合主办的&ldquo 第七届中国在线分析仪器应用及发展国际论坛暨展览会(简称 CIOAE 2014)&rdquo 在国家会议中心举行。会议同期特别设置了在线分析仪器稳定性、可靠性专题报告会。 报告会现场   曾有业内人士如此评述:质量是分析仪器的生命线,可靠性是质量问题的核心,所以说,可靠性是分析仪器的灵魂。然而,产品的稳定性和可靠性问题已成为当前制约我国分析仪器产业创新发展的一个严重障碍,成为了产业化进展滞缓的一个关键因素。   根据仪器信息网在&ldquo 国产好仪器&rdquo 项目评选中反馈回的意见来看,目前国产仪器在性能上落后于国外知名厂商产品是一方面,但更多问题体现在仪器的可靠性上。   中国仪器仪表行业协会分析仪器分会秘书长曹乃玉表示:&ldquo 从目前市场的反馈来看,用户对于国产仪器意见最大的并不是技术指标问题,而是可靠性问题 另外,可靠性、稳定性问题是一个企业终生需要面对的问题。所以我们特别设置了在线分析仪器稳定性、可靠性专题报告会,希望对大家有所帮助。&rdquo 重庆科技学院金义忠   在线分析系统是复杂、开放的大技术系统,工程投入成本高,要求生产技术、经济效益的周期长而且稳定。稳定性、准确性、适应性、安全性、少维护性、协调性是其主要的技术特性,是仪器可靠性设计需要综合考虑的因素。   金义忠指出要解决在线分析系统的可靠性,必须明确在线分析系统的两大组成部分:在线分析仪器和样品处理系统。并坚持在线分析仪器&ldquo 稳定性第一&rdquo ,即&ldquo 少校准第一&rdquo ,在线分析的样品处理系统坚持&ldquo 少维护第一&rdquo 。   同时金义忠提出要理解和应用大师的思想理念,如钱学森提出的利用系统学的概念,处理好局部和整体的关系 以及朱良漪先生曾提出在线分析系统的四个难点和闪点是取样(探头)系统、可靠性、少维护和软件技术等。金义忠表示这些观点至今仍值得我们深思并应用于实践。   对于我国在线分析系统的质量发展,金义忠表示一定要打破行业的保守思维惯性,不能长期停滞在满足于&ldquo 能够用&rdquo 和&ldquo 一年质保期&rdquo 的落后状态 在线分析系统的工程应用要能够少维护、安全、稳定、准确、长寿命周期的协调运行,其寿命周期的设计目标应为10年,至少保证5年,争取达到15年(在规范化维护和检修的前提下),当前在线分析系统的一年质保期和5000h的MTBF所对应的可靠性,不能满足现实需要。另外要实行规范的专业化设计,积极学习和采用经过工程实践考验的在线分析系统可靠性设计理念和方法。加强系统的可靠性设计,并要关注细节。 中国仪器仪表学会分析仪器分会王复兴   过程仪器的设计原理涉及光学、电学、磁学、化学、机械、计算机等许多学科,掌握并用好各种类型的过程分析仪器具有相当的难度。另外,分析仪器的使用条件相当严格,过程测量的现场条件大都是不能直接使用过程分析仪器的,处理不好就会损坏分析仪器。因此,稳定、可靠、准确地用好过程分析仪器是当前大家关注的问题。   中国仪器仪表学会分析仪器分会王复兴介绍说只要我们能够设计好样品预处理系统,使其满足过程分析仪器的使用条件,并严格认真的做好日常维护工作,发现问题及时解决,这样分析仪器完全可以长期稳定可靠的工作 在使用过程中,启动和关机阶段是仪器故障的高发时段,一定要把好这两个关口,减少仪器的意外故障 要获得准确的测量结果,则要做好分析仪器的选型,不仅要在测量原理上满足测量任务的需要,而且要有正确的手段克服仪器测量原理的缺陷,使它能够给出准确的测量结果。做到以上这些,就能够稳定、可靠准确的用好过程分析仪器了。 全国工业过程测量和控制标准化技术委员会秘书长马雅娟   仪器的标准化对于促进仪器的稳定性和可靠性也有着重要的影响。主办方特别邀请了马雅娟介绍了全国工业过程测量和控制标准化技术委员会分析仪器分技术委员会SAC/TC124/SC6(以下简称SC6)的基本情况及其仪器企业如何申请国家或行业标准。   SC6成立于2005年6月,是由国家标准化管理委员会正式批准成立的分析仪器专业标准化组织。其前身为机械工业部北京分析仪器研究所标准化室,成立于1959年8月,负责全国分析仪器制造行业在线仪器及其系统制造标准化管理工作 并参与相关国家标准和机械行业标准的立项、起草、评审和报批工作 以及标准实施后的维护和宣贯 同时作为ICE/SC65B的P成员,参与国际标准的投票和国际标准在中国的推广和宣传工作。SC6的秘书处设在中国仪器仪表行业协会。   据介绍,SC6目前在研的在线仪器及其系统标准有在线分析仪器及其系统通用规范(GB)、空气中挥发性有机物在线气相色谱分析仪(JB)、水中挥发性有机物在线色谱分析仪(JB)、比色法在线水质分析仪器的性能标准(国际标准)。   最后,马雅娟介绍了申请国家或行业标准的程序,表示如果有仪器企业希望申请国家或行业标准、希望参与国际标准项目,具体要求可与SC6秘书处联系,联系电话:62403152。 北京华夏科创仪器技术有限公司郭肇新   另外,在本次会议中北京华夏科创仪器技术有限公司郭肇新作了题为《在线分析仪器电气部分可靠性设计方法》的报告。从印制板设计、电源及接地、接插件、机内布线及布线连接四个方面就电气系统的可靠性设计做了介绍。   据介绍,由于相关内容比较丰富,很难在短时间内做详细介绍,中国仪器仪表行业协会特别编制了电气部分可靠性、稳定性设计员手册。曹乃玉表示感兴趣的人员,可以联系索阅,希望该手册能指导刚入职或已经在职的设计人员形成最基本的电气部分可靠性设计理念和知识框架。 西克麦哈克(北京)仪器有限公司方培基   此外,西克麦哈克(北京)仪器有限公司方培基作了题为《气体分析仪系统解决水分横向灵敏度干扰的方法探讨》的报告。
  • 2012年第二批水质在线监测仪适用性检测工作将展开
    关于开展2012年第二批水质在线监测仪适用性检测工作的通知   2012年第二批水质在线监测仪适用性检测将于2012年5月开始,计划检测时间为2012年5月~7月。具体送检企业名录见下表,请所有送检企业于2012年5月7日~14日将被检设备送进检测室,逾期未到者视为自动放弃本次检测资格。   207室、208室、209室通讯协议见附件。   联 系 人:王晓慧 左航   联系电话:010-84943048   010-84943049   附件:   1. 207、208检测室通讯协议   2. 209检测室通讯协议   207检测室 序号 申请企业 产品型号 产品名称 性质 1 深圳市绿恩环保技术有限公司 GR-NH3-N 在线自动监测仪 初次检测 2 深圳市朗石生物仪器有限公司 PhotoTek 6000 氨氮在线水质分析仪 初次检测 3 河南乾正环保设备有限公司 QZ300 氨氮自动分析仪 换证检测 4 成都乐攀环保科技有限公司 LP NH3-N-2012 氨氮(NH3-N)在线自动监测仪 初次检测 5 江苏德林环保技术有限公司 DL2003 氨氮全自动在线分析仪 换证检测 6 成都海兰天澄科技有限公司 HLT-200 氨氮在线自动监测仪 换证检测 7 四川久环仪器有限责任公司 2000C 氨氮(NH3-N)在线自动监测仪 换证检测 8 北京环科环保技术公司 HB2000 在线氨氮分析仪 换证检测 9 南京小桥流水环保科技有限公司 GIM-2100A15 氨氮自动监测仪 初次检测 10 厦门市吉龙德环境工程有限公司 μMAC C NH3 Analyzer 在线氨氮分析仪 换证检测   208检测室 序号 申请企业 产品型号 产品名称 性质 1 湖北盘古环保工程技术有限公司 PG-02 水质在线检测仪 换证检测 2 深圳市绿恩环保技术有限公司 GR-CODCr 在线自动监测仪 初次检测 3 河南乾正环保设备有限公司 QZ5000 化学需氧量测定仪 换证检测 4 山东省恒大环保有限公司 SHZ-1 COD水质在线监测仪 换证检测 5 江苏天泽环保科技有限公司 TZ-CODCr-1001 水质CODCr在线监测仪 初次检测 6 成都乐攀环保科技有限公司 LP CODCr-2011 CODCr在线自动监测仪 初次检测   209检测室 序号 申请企业 产品型号 产品名称 性质 1 苏州聚阳环保科技有限公司NH3N-1040 氨氮在线分析仪 换证检测 2 山东龙发环保科技有限公司 LFH2005E NH3-N在线监测仪 换证检测 3 福禄克测试仪器(上海)有限公司 Amtax sc 氨氮水质在线分析仪 换证检测 4 江苏天泽环保科技有限公司 TZ-NH3-N-1001 水质氨氮在线监测仪 初次检测 5 武汉宇虹环保产业发展有限公司 TH-ZX200 氨氮在线分析仪 初次检测 6 武汉巨正环保科技有限公司 JZ-NG01 氨氮在线分析仪 初次检测 7 爱华仪器有限公司 CL1000 氨氮在线监测仪 初次检测 8 苏州阊亦宏环保科技有限公司 3Z-D(Ⅰ) 氨氮在线分析仪 初次检测 9 浙江环茂自控科技有限公司 Super Vision 氨氮在线自动监测仪 换证检测  附件1:207、208水质仪器检测通讯协议及验证工具 附件2:209水质仪器检测通讯协议及验证工具
  • 湖南省站重金属废水在线监测系统数据有效性审核课题通过验收
    近日,环保部监测司组织来自中国环境监测总站、山东省环境监测中心、上海市环境监测中心等单位的专家对湖南省环境监测中心站承担的《固定污染源排放重金属废水在线有效性审核技术规程》课题进行验收,胡克梅副司长到会指导。   该课题于2013年4月立项,旨在研究重金属废水在线监测数据有效性审核的内容和方法,对加强重金属废水在线监测系统设备的监管和数据应用具有重要意义。湖南省站接受课题任务后,高度重视,组织湖南慧正环境科技发展有限公司、聚光科技(杭州)股份有限公司和长沙华时捷环保科技发展有限公司等5家公司共同开展现场调研、实验室分析、试验等工作,并对取得的成果进行分类、归纳和总结,形成《固定污染源排放重金属废水在线有效性审核技术规程研究报告》。   验收会上,课题组就课题研究内容、开展和完成情况进行了详细介绍。专家评审后一致认为,该课题从重金属废水在线监测系统的安装、验收、日常运维、现场核查等方面进行了大量的调研,技术路线合理,提出的操作规程科学、合理 送审的基础资料齐全,内容翔实,较好的完成了合同规定的研究任务,符合结题要求,同意通过验收。   据课题组介绍,该项目的完成为确保重金属废水在线监测系统的数据质量和考核奠定了基础。下一步,课题组将继续凝炼成果,形成技术指南,为保证在线监测系统长期稳定的运行,规范排放企业运行,提供实用、有效的技术工具。
  • 北京兴东达泰公司推出10型在线总碳氢分析仪
    北京兴东达泰公司向中国市场推出VIG 10型在线总碳氢分析仪,详细信息欢迎登陆我公司网站在&rdquo 仪器介绍&rdquo 中查询.
  • 环境监测总站镉、铅、砷在线监测仪器适用性检测开始申报
    p   近日,环境监测总站发布通知《水质重金属在线监测仪器适用性检测需知(2015年10月起)》,自通知发布之日起,开始接受水质重金属镉(I、II型)、铅(I、II型)、砷(I、II型)在线监测仪器适用性检测报名。在今年六月份 a title=" " href=" http://www.instrument.com.cn/news/20150630/165644.shtml" target=" _self" 环境监测总站首次发布了水质重金属在线监测仪合格目录 /a ,公布的全部仪器测定的均为镉,此次增加了铅和砷两个指标。 /p p    strong 通知全文如下: /strong /p p style=" TEXT-ALIGN: center" 水质重金属在线监测仪器适用性检测需知(2015年10月起) /p p   一、适用性检测安排 /p p   根据工作安排,质检中心于本通知发布之日起,开始接受水质重金属镉(I、II型)、铅(I、II型)、砷(I、II型)在线监测仪器适用性检测报名。 /p p   二、报名及材料提交 /p p   1、 请需申请检测的企业企业提交申请表(见附件1)及其它相关材料(见材料清单),所有需提交的材料请将电子版发送至邮箱wqaas@cnemc.cn,除此之外不接受任何形式的报名 /p p   2、 材料审核通过后进入待检测序列,并由质检中心安排抽样,如抽样不通过视为申请未通过,不予安排检测。 /p p   三、申请检测所需提交材料清单(进口、国产) /p p   1、 水质在线监测仪器适用性检测申请书(加盖公章) /p p   2、 企业营业执照、组织机构代码(复印件加盖公章) /p p   3、 经备案的企业标准(产品执行标准,复印件加盖公章) /p p   4、 中华人民共和国制造计量器具生产许可证、中华人民共和国计量器具型式批准证书(如无,需企业提供说明并加盖公章) /p p   5、 仪器出厂检验报告(复印件加盖公章) /p p   6、 仪器说明书(中文版) /p p   7、 仪器照片(包括外观、内部结构、主要零部件、铭牌照片,所有照片请保证清晰) /p p   备注1:以上材料电子版的请调整成PDF格式后提交,邮件名称示例:XX公司-重金属铅II型仪器。 /p p   备注2:电子版材料审核合格后,请将上述材料的纸质版装订后快递至北京市朝阳区安外大羊坊8号院(乙)中国环境监测总站201室王晓慧收。 /p p   备注3:联系电话 王晓慧010-84943048 /p p   附件1:《水质在线监测仪器适用性检测申请书-2015版》 /p p   附件2:“水质重金属砷、镉、铅在线仪器” 作业指导书 /p p   附件3: a style=" COLOR: #0070c0 TEXT-DECORATION: underline" title=" " href=" http://www.instrument.com.cn/zc/1650.html" target=" _self" span style=" COLOR: #0070c0" strong 水质重金属仪器 /strong /span /a 适用性检测平台通信协议 /p
  • 中国环境监测总站:关于开展挥发性有机物在线监测设备比对测试的通知
    p   日前,中国环境监测总站印发关于开展挥发性有机物在线监测设备比对测试的通知。全文如下: p style=" TEXT-ALIGN: center" 关于开展挥发性有机物在线监测设备比对测试的通知 p & nbsp & nbsp & nbsp & nbsp 各有关单位:为进一步促进挥发性有机物(VOCs)在线监测设备在环境空气质量监测中的应用,保障监测数据的可比性与准确性,我站拟对VOCs在线监测设备开展比对测试。比对测试采取自愿报名的方式。有关事项通知如下: p 一、报名条件 p & nbsp & nbsp & nbsp & nbsp (一)参与测试的生产商或集成商须提供至少2台生产定型的同类型VOCs在线监测设备。 p & nbsp & nbsp & nbsp & nbsp (二)保证比对测试期间VOCs在线监测设备的正常运行。 p 二、报名时间和方式 p & nbsp & nbsp & nbsp & nbsp 请有意向参与本次比对测试的厂商于2017年4月12日前将报名表(附件)及相关产品资料发至邮箱: a href=" mailto:quality@cnemc.cn" quality@cnemc.cn /a 。 p 三、联系方式 p & nbsp & nbsp & nbsp & nbsp 联系人:杨楠、师耀龙 p & nbsp & nbsp & nbsp & nbsp 电话:(010)84949039、(010)84943292 p style=" TEXT-ALIGN: right" 中国环境监测总站 p style=" TEXT-ALIGN: right" 2017年4月6日 center img title=" 报名.jpg" src=" http://img1.17img.cn/17img/images/201704/noimg/6bb6ef5a-1462-4d75-85cc-34e00846eb34.jpg" / /center /p /p /p /p /p /p /p /p /p /p /p /p /p
  • 【精品巡礼】系列报道之一:工业园区大气挥发性有机物在线分析系统
    挥发性有机物(VOCs)是造成灰霾和臭氧超标的主要前体物之一,对环境空气质量和人们身体健康带来非常严重的危害。我国政府高度对此高度重视,在新修订的《环保法》中,首次将挥发性有机物列入监管对象;《“十三五”挥发性有机物污染防治工作方案》明确主要目标是到2020年,建立健全以改善环境空气质量为核心的VOCs 污染防治管理体系,实施重点地区、重点行业VOCs 污染减排,排放总量下降10%以上。通过与NOx 等污染物的协同控制,实现环境空气质量持续改善。VOCs怎么治先河环保针对挥发性有机物(VOCs)种类多、组分复杂、无组织排放特征明显和监管难度高等突出特点,充分利用网格化监测理念,构建点、面、域全覆盖/测、管、治一体化的工业园区VOCs综合整治解决方案,确保VOCs排放测得准、说得清、管得好;打造智能、高效和便捷的VOCs监管平台,为管理部门核算VOCs排放量,制定VOCs排污和收费政策,减排效果评估,污染预警与溯源和环境执法等提供关键数据和技术支撑。XH VOC6000大气挥发性有机物在线分析仪本期为您介绍先河环保XHVOC6000大气挥发性有机物在线分析仪,适用于工业园区或环境空气中全组分挥发性有机物浓度的在线监测,可实现污染来源追踪及溯源。产品概述针对国内环境空气中挥发性有机物成分复杂多变和部分地区空气湿度较大等特点,结合环保管理部门对环境监测仪器自动化和智能化运行的监测需求,先河环保开发了XHVOC6000型挥发性有机物在线监测系统,该监测系统具有定性可靠、测量精度高和扩展性强等特点,可实现环境空气中VOCs全分析,数据无盲点,真正实时反应环境空气中VOCs的类型和变化。适用于工业园区或环境空气中挥发性有机物浓度的在线监测。XHVOC6000型挥发性有机物在线监测系统利用二级脱附与电子制冷技术采集+富集+聚焦VOCs技术进样,由气质联用仪(或气相色谱)进行定性定量分析。该产品可一次采样监测100多种VOCs,其中包括C2-C12碳氢化合物、苯系物、卤代烃、氯苯类、含氧有机物、硫化物等挥发性有机物及部分半挥发性有机物。性能特点1) 所有流路经过惰性化处理。避免有机物在系统中粘附、反应,能用于活性较高的挥发性有机物的检测2) 全流路保温。将冷点减少到了最低,避免有机物在流路中冷凝损失3) 可测量组分多,可扩展性强。目前应用已完成100种以上物质的监测,并且可在一个程序中完成。可根据实际工作需要开发新的分析方法,可扩展测定半挥发性有机物4) 具备干吹功能。能在分析实际样品时有效降低水分的吸附,防止聚焦管出现的吸水“结冰”现象,从而保证流路通畅与捕集效率,保证样品分析时的准确度5) 定性能力强。系统的专利技术与整体优化,使得质谱检测器能够满足C2~C12的监测,其质谱自带的谱图库和检索能力,能够最大限度地保证定性的准确性;最大限度降低假阳性结果的产生和误报,并能对难分离的非同分异构体准确定量6) 识别未知组分的能力强,当出现未知组分时,通过质谱扫描,可实现及时定性;特别适用于未知挥发性气体的监测,满足应急监测的需要7) 仪器性能稳定,保留时间的稳定性强,测量结果可靠,校正工作量较小8) 可连接真空罐、采气袋,完成异地采样的分析9) 可以自动实现样品加标或添加替代物,考察基底效应与系统的稳定性技术指标
  • 微型光谱仪之在线光谱技术应用
    p strong   1. 工业在线光谱分析技术 /strong /p p   目前在线光谱分析已经以惊人的速度应用于多个领域的企业生产的多个环节,并已使得过程分析仪器领域发生了深刻变革。这种变革与在线光谱分析的独特优点是分不开的,比如: /p p span style=" COLOR: #548dd4" strong   在线光谱分析可以对多路多组分连续同时测量,且速度快,准确性高 /strong /span /p p span style=" COLOR: #548dd4" strong   在线光谱分析仪器易损坏和消耗品少,维护量小 /strong /span /p p span style=" COLOR: #548dd4" strong   在线光谱分析多采用光纤传输技术,适合环境恶劣的场合 /strong /span /p p span style=" COLOR: #548dd4" strong   在线光谱分析仪器结构相对简单,并适合多种样品(如液体,涂层,粉末和固体等) /strong /span /p p   这些优点对于企业原料和生产的中间环节进行快速质量控制、优化操作、稳定生产和节能降耗非常有价值。 /p p   与实验室环境不同,工业环境在要求光谱分析系统具有足够的灵敏度和探测限,同时对于性能稳定性,体积尺寸和抗干扰能力也都有严格要求。光谱仪是在线光谱分析的核心模块,它的性能好坏从根本上决定了系统性能。选择合适的光谱仪对于工业在线应用十分重要。 /p p   1992年美国海洋光学公司的Mike Morris博士发明了世界上第一台微型光纤光谱仪,他将光谱仪的大小缩小了几十倍,价格降低了十几倍。光纤光谱仪利用光纤把远离光谱仪器的样品光谱引到光谱仪器,以适应被测样品的复杂形状和位置。由光纤引入光信号还可使仪器内部与外界环境隔绝,可增强对恶劣环境(潮湿气候、强电场干扰、腐蚀性气体)的抵抗能力,保证了光谱仪的长期可靠运行,延长使用寿命。光纤光谱仪结构紧凑,组成包括入射狭缝、准直物镜、光栅、成像反射镜和阵列探测器,还包括数据采集系统和数据处理系统。光信号经入射狭缝投射到准直物镜上,将发散光变成准平行光反射到光栅上,色散后经成像反射镜将光谱呈在阵列接收器的接收面上,光信号被转换成电子信号后,经模拟数字转换,A/D放大后输出,最后由软件系统控制和采集信号,进而完成各种光谱信号测量分析。这些特点对于工业在线光谱应用是极其有利的。可以说,微型光谱仪是光谱测量技术从实验室走向工业应用的里程碑。 /p p   工业在线光谱分析系统核心为光谱仪,其配套部件一般还有采样附件,光源,控制软件和专用分析模型,它们对于系统整体性能也有重要影响。一般在线光谱分析系统构成如下图所示。 /p p style=" TEXT-ALIGN: center" img title=" QQ截图20161227100735.jpg" style=" HEIGHT: 294px WIDTH: 300px" border=" 0" hspace=" 0" src=" http://img1.17img.cn/17img/images/201612/insimg/37c32cc6-4188-46d5-bfe9-fef2d6bda031.jpg" width=" 300" height=" 294" / /p p style=" TEXT-ALIGN: center" 图1 在线光谱分析系统组成 /p p   strong  2. 应用案例-工业在线反射率与颜色测量 /strong /p p   下面以一个典型案例说明在线光谱系统设计需要考虑的因素。某特种印刷用户需要快速测量薄膜材料颜色,用于产品质量控制。用户主要需求为: /p p    strong span style=" COLOR: #548dd4" 系统需满足最快180米/分钟的检测速度,且具有足够精确性。 /span /strong /p p strong span style=" COLOR: #548dd4"   系统能够进行非接触非破坏性采样测量。 /span /strong /p p strong span style=" COLOR: #548dd4"   系统能直接输出最终结果给上位机。 /span /strong /p p strong span style=" COLOR: #548dd4"   系统能直接输出颜色值,并能与用户自己的上位机系统集成。 /span /strong /p p strong span style=" COLOR: #548dd4"   系统要能反映被测样品的峰值波长、光谱等特性。 /span /strong /p p strong span style=" COLOR: #548dd4"   系统具备自检和异常报警功能。 /span /strong /p p strong span style=" COLOR: #548dd4"   系统要能适应工厂持续噪声,细颗粒粉尘,电磁干扰以及不稳定供电环境。 /span /strong /p p strong span style=" COLOR: #548dd4"   系统要能7*24连续工作,且维护方便。 /span /strong /p p strong span style=" COLOR: #548dd4"   系统尺寸要能兼容于空间狭小的产线。 /span /strong /p p   这些需求涵盖了性能,尺寸和环境安全性多个方面,在工业在线光谱分析应用中具有典型性。 /p p   为满足检测速度要求,系统单次测量周期不得大于4毫秒。为此整个系统将采用流水线并行作业方式,确保测量速度和分辨率能够满足要求。如样品移动速度小于180米/分钟,则将得到更高的检测分辨率,即小于12毫米。所采用的工业定制型光谱仪的最小积分时间可达到1毫秒,可以充分满足速度要求。 /p p   为满足用户上位机数据接口要求,在线光谱分析系统应集成数据处理算法功能,且保证运算快速,结果准确。为此,在线光谱分析系统里搭载了高性能处理器,并且为了进一步提高速度,运算处理器直接与光谱仪模块集成。从而能够在CCD探测器进行下一周期积分时并行计算反射率数据。在前后两个计算周期之间,没有等待的延迟时间。在完成计算后,光谱仪将颜色数据提交给服务器,交由服务器判断是否需要触发停机信号。由于本系统的规模仅需要至多两层交换机就能连接,因此网络的延迟时间将小于1毫秒。而经过测算,进行50万次(相当于6000米长的薄膜)100个通道的组合逻辑判断在普通的计算机上每次平均耗时仅0.02毫秒,单次最大耗时为2毫秒。按此测算,完成单次测量和判断所需时间为12毫秒,即瑕疵点在经过探头3.6厘米后系统会给出报警或停机信号。瑕疵点在经过数米的减速区之后,足以被减速,并停留在质量观察板上。报警采用光谱仪与声光报警器协同工作实现。 /p p   对于颜色测量,必须有参考光谱和背景光谱,即对反射测量的校准操作。经常校准能有助于使计算的颜色结果更接近于实际结果,消除光源、环境以及其他因素对测量的影响。当进行校准操作时,需将已知颜色的标准板置于探头下方,与探头所呈角度与样品一致。此时打开光源,确保光源强度不会使光谱仪饱和,并保存参考光谱(即各波长上的强度)。然后关闭光源,此时光谱将反映暗噪声和环境光,将该光谱作为背景光谱也保存下来。在完成校准操作后,即可对样品进行颜色的测量和计算了。颜色实际上是样品在特定波长上的光谱强度与标准板在特定波长上的光谱强度的比值。为消除环境光和暗噪声的影响,需要背景光谱也参与计算。 /p p   根据上述分析结果,系统使用了对颜色测量进行特殊优化的工业定制型光谱仪。其搭载的高性能处理器和以太网接口能在测量光谱的同时直接将颜色信息提交给服务器,并由服务器根据用户预先设置的判定规则进行报警或触发停机,确保了整个系统的实时性和可靠性。 /p p   系统的探头支架可安装在用户指定滚轮位置的样品切线垂直方向上,并在滚轴上安装速度编码器,以获取当前检测样品的所在位置。反射式探头为Y型分岔光纤,其两头将连接到机柜内的光谱仪和光源上。在探头支架上还将安装可自动旋转的机电装置和标准板,供定期获取参考光谱。 /p p   系统板载处理器为定制高性能FPGA模块,实现光谱数据到LCH颜色值的计算,并将结果上传至上位机(主控机)。 /p p   系统的重要部件均安装在工业级机柜内,包括光谱仪、光源、供电电源、以太网交换机、系统服务器等。光纤和各种线缆则通过上进线或侧进线方式接入机柜。 /p p   最终的人机接口将安装在操作员使用的盘台上,该工作站主机将安装在盘台内部,并通过屏蔽双绞线与机柜内的系统服务器连接。系统服务器和操作员工作站上会分别安装系统软件的服务器端和客户端,以呈现整卷或整批薄膜产品的质量情况。 /p p   系统组成示意图如下所示。 /p p style=" TEXT-ALIGN: center" img title=" QQ截图20161227101131.jpg" style=" HEIGHT: 250px WIDTH: 400px" border=" 0" hspace=" 0" src=" http://img1.17img.cn/17img/images/201612/insimg/27ed627d-b20b-4735-b0d4-39858b1574a5.jpg" width=" 400" height=" 250" / /p p style=" TEXT-ALIGN: center" strong 图2 系统组成示意图 /strong /p p   在软件模块上,系统提供的定制软件功能模块均运行于主控机的Windows系统上,主要功能模块如下图所示: /p p style=" TEXT-ALIGN: center" img title=" QQ截图20161227101230.jpg" style=" HEIGHT: 300px WIDTH: 300px" border=" 0" hspace=" 0" src=" http://img1.17img.cn/17img/images/201612/insimg/0754d649-1732-41c5-87ed-8a50be0c9ef5.jpg" width=" 300" height=" 300" / /p p style=" TEXT-ALIGN: center" strong 图3 软件功能模块 /strong /p p    strong 调度模块: /strong 为主程序核心,主要负责承担各模块之间的管理及任务调度 /p p    strong 通讯模块: /strong 主要负责与工业现场总线的通讯,解析通讯命令,并通过调度模块完成相关任务,如启动测量过程,读取测量数据等 /p p    strong 计算模块: /strong 计算光谱数据,得到LCH颜色值 /p p    strong 底层驱动: /strong 主要控制光谱仪、光源、电子快门、传动模块等硬件设备 /p p    strong 测量模块: /strong 根据测量时序、流程完成一个完整的测量流程 /p p    strong 数据库: /strong 主要用于保留系统参数、测量历史数据等信息 /p p    strong 用户界面 /strong :完成用户交互功能,主要包括系统参数配置,测量数据显示,历史数据浏览,系统功能测试等。 /p p   在故障维修与运行维护方面,光源和光谱仪都采用模块化方式安装布置,且均对通道号进行标识,方便找到故障的光源。并且配套的通过交换机及光谱仪上的状态指示灯可了解是否存在网络线缆故障。软件也能够识别光源故障。 /p p   该案例充分体现了在线光谱分析与实验室应用的巨大差异。工业环境下,在线光谱分析系统必须充分考虑应用环境的特殊性,各种影响因素都必须仔细评估。除了光谱仪,测量附件的选择在相当大程度上取决于光谱仪厂家的行业应用经验和水平,这一点在专用的在线分析系统开发方面体现的更为明显。 /p p strong   三、更多工业在线应用案例 /strong /p p strong   (1)LED芯片测试机 /strong /p p   由于制作工艺存在尚未解决的技术困难,所以对于生产过程中同一块外延片不同位置的光电特性是有细微差别的,呈现出不均匀性。在完成电极和引脚的过程中也会存在一定的瑕疵。这些缺陷会导致在LED产品的发光强度和颜色,在生产过程中如果残次芯片继续进行加工,会导致生产过程中不必要的浪费。所以LED芯片测试机是LED生产过程中不可或缺的一个环节。 /p p style=" TEXT-ALIGN: center" img title=" LED芯片检测过程.jpg" style=" HEIGHT: 252px WIDTH: 400px" border=" 0" hspace=" 0" src=" http://img1.17img.cn/17img/images/201612/insimg/19f4c15e-6033-4f19-8821-6c1b7452a872.jpg" width=" 400" height=" 252" / /p p style=" TEXT-ALIGN: center" LED芯片检测过程 /p p style=" TEXT-ALIGN: center" img title=" LED芯片测试结果.jpg" style=" HEIGHT: 323px WIDTH: 400px" border=" 0" hspace=" 0" src=" http://img1.17img.cn/17img/images/201612/insimg/46d98eb1-7886-4300-91fe-7c950a8fb913.jpg" width=" 400" height=" 323" / /p p style=" TEXT-ALIGN: center" LED芯片测试结果 /p p   微型光纤光谱仪主要将辐射光谱、发光强度、色坐标x,y和峰值波长作为测量指标。 /p p   一般检测设备只能对电气特性不合格进行筛选,微型光纤光谱仪被引入到LED芯片检测后,发光检测方面问题得到了很好地解决。由于微型光纤光谱仪测量每颗晶粒的时间是5-6ms,快于一般测试机探针机械移动时间,因此测量速度提到提高。由于微型光纤光谱仪体积小,因此不会占用机台的使用空间,不需要对原有机台的机械结构做出较大调整。同步触发功能保证了在检测过程中,能够保证每个晶粒在点亮后的相同时间进行测量。 /p p strong   (2)LED分光机 /strong /p p   LED制造流程是复杂、漫长的一个过程,想要生产出性能一致,功能完整的LED产品,LED分光机作为LED制造流程中靠后的工序,需要对封装后的器件根据光、色、电三方面参数进行筛选,然后才能将其包装为产品,最终流入市场。 /p p   LED分光机的测量指标是发射光谱、发光强度、色坐标x,y、峰值波长。 /p p   LED分光机工作流程一般包括:待分选的LED器件会在震动盘上排列进料,依次进入电测和光测的工位 进入电测工位后,LED会被通电进行电学指标测试 当被移动到光测工位时,LED芯片会被点亮,继而使用积分球和光谱仪测量其辐射光谱 通过计算光度学和色度学参数,并联合电学指标,一起进行数据分析 随后将数据转换为指令,传输到指令模块,将不同LED进行分选。基于微型光纤光谱仪的第一台LED分光机,可以完成分选5000颗/小时,使得LED检测从抽检进入到全检的时代。随着微型光纤光谱仪性能的提升以及与配套LED分光机兼容度提高,现在的LED分光机检测已经可以完成55000颗/小时,甚至更高。 /p p style=" TEXT-ALIGN: center" img title=" LED分光机.jpg" style=" HEIGHT: 338px WIDTH: 450px" border=" 0" hspace=" 0" src=" http://img1.17img.cn/17img/images/201612/insimg/3a28ae58-6315-466f-86d5-06cd09c39ad7.jpg" width=" 450" height=" 338" / /p p style=" TEXT-ALIGN: center" LED分光机 /p p style=" TEXT-ALIGN: center" img title=" LED器件进料.jpg" style=" HEIGHT: 188px WIDTH: 250px" border=" 0" hspace=" 0" src=" http://img1.17img.cn/17img/images/201612/noimg/6b21148a-276f-4227-a12a-1b2bc65ae312.jpg" width=" 250" height=" 188" / & nbsp img title=" 排列进入检测位置.jpg" style=" HEIGHT: 188px WIDTH: 250px" border=" 0" hspace=" 0" src=" http://img1.17img.cn/17img/images/201612/noimg/b89bc6db-320c-4f95-b46b-83ab7df07248.jpg" width=" 250" height=" 188" / /p p style=" TEXT-ALIGN: center" LED器件进料、排列进入检测位置 /p p style=" TEXT-ALIGN: center" img title=" 检测电学和发光特性.jpg" style=" HEIGHT: 188px WIDTH: 250px" border=" 0" hspace=" 0" src=" http://img1.17img.cn/17img/images/201612/noimg/8b14cb67-e6f3-42b1-a4c2-b122c600272a.jpg" width=" 250" height=" 188" / & nbsp img title=" 进行分选归类.jpg" style=" HEIGHT: 188px WIDTH: 250px" border=" 0" hspace=" 0" src=" http://img1.17img.cn/17img/images/201612/noimg/72c530e3-ff6e-46f1-9483-33f6ae9dec81.jpg" width=" 250" height=" 188" / /p p style=" TEXT-ALIGN: center" 检测电学和发光特性、进行分选归类 /p p   strong  (3)污染气体排放监测 /strong /p p   微型光纤光谱仪在污染气体排放监测指标是不同气体浓度,包括氮氧化物、二氧化硫、臭氧、丙酮和氨气等。不同气体所表现出的吸收光谱具有特异性,但也有一定相同性,大部分气体的吸收峰都位于紫外区域,所以采用在紫外区域的激发光或在紫外区域有响应的光谱仪对气体进行浓度的测试。 /p p style=" TEXT-ALIGN: center" img title=" 污染气体排放.jpg" style=" HEIGHT: 261px WIDTH: 400px" border=" 0" hspace=" 0" src=" http://img1.17img.cn/17img/images/201612/insimg/6b0a2621-b070-4789-ab04-9bb0cf9afa88.jpg" width=" 400" height=" 261" / /p p   通常使用微型光纤光谱仪对气体进行检测,会将所有检测设备放置于一辆移动检测车中,到达目标检测位时,将设备架设在相应位置。检测设备包括摄像机、激光器触发装置、激发光、光谱仪和反射镜。检测过程是通过光源发出一束激发光,照射到马路另一边的反射镜,通过反射镜反射使光谱仪能够检测到气体光谱。当一辆汽车经过检测系统时,汽车排放的尾气会和光路进行相互的作用,尾气中的物体由于浓度的不同,光谱仪可以测量光穿过气体的强度,就可以检测出汽车排放的尾气是否超标。 /p p style=" TEXT-ALIGN: center" img title=" 监测系统示意图1.jpg" style=" HEIGHT: 240px WIDTH: 400px" border=" 0" hspace=" 0" src=" http://img1.17img.cn/17img/images/201612/insimg/bddce1df-323a-45ad-a394-2c6bc379d0e3.jpg" width=" 400" height=" 240" / /p p style=" TEXT-ALIGN: center" img title=" 监测系统示意图2.jpg" style=" HEIGHT: 235px WIDTH: 400px" border=" 0" hspace=" 0" src=" http://img1.17img.cn/17img/images/201612/insimg/1bac5528-d221-4646-b16d-1321a1b27542.jpg" width=" 400" height=" 235" / /p p style=" TEXT-ALIGN: center" 监测系统示意图 /p p   这种尾气排放监测方法之所以能够得到广泛应用,首先得益于微型光纤光谱仪测量速度快,若被测汽车匀速通过检测系统,检测系统就能快速检测出吸收光谱,并且迅速处输入电脑进行分析和储存。微型光纤光谱仪的体积优势,使其能够与气体检测系统更好的集成到一起,方便检测车辆进行运输与架设。 /p p strong   (4)水果分选机 /strong /p p   吸收光谱在工业领域应用案例不仅仅局限于气体应用,微型光纤光谱仪也被应用于水果流通的分选环节,将水果的糖分和水分作为测量指标,结合其他物理探头对水果进行分选。相对于水果的大小,对于特殊人群,如糖尿病患者,其糖分对于消费者而言意义更为重要,使用近红外光谱仪可以对糖分和水分的含量进行判定。 /p p   基于微型光纤光谱仪的水果分选机一般由两部分组成,一个是发射的光源,一个是用来检测的光谱仪。一般在检测中会采用高功率的卤钨灯,提供近红外段宽光谱的能量,由于光源的高功率也就能提升了检测时穿透水果果皮的能力,在水果另一侧的光谱仪才能够获得更多更强的信号,提高信息的准确性。在水果分选过程中,水果数量巨大,微型光纤光谱仪检测的高效性正好满足了水果分选机的工作特点。 /p p style=" TEXT-ALIGN: center" img title=" 水果分选机示意图.jpg" style=" HEIGHT: 225px WIDTH: 400px" border=" 0" hspace=" 0" src=" http://img1.17img.cn/17img/images/201612/insimg/bf2f6dfa-79a1-4ca1-9671-cdc594f97c04.jpg" width=" 400" height=" 225" / /p p style=" TEXT-ALIGN: center" img title=" 水果分选机示意图2.jpg" style=" HEIGHT: 188px WIDTH: 400px" border=" 0" hspace=" 0" src=" http://img1.17img.cn/17img/images/201612/insimg/82a91140-60f2-402f-a77a-68eb2038a124.jpg" width=" 400" height=" 188" / /p p style=" TEXT-ALIGN: center" 水果分选机示意图 /p p    strong (5)节能玻璃镀膜工艺在线监控 /strong /p p   由于现在玻璃工艺技术的发展,很多高楼选择使用玻璃作为外墙的建筑材料,但与传统建筑材料相比,玻璃的隔热性能有所欠缺。如果想使室内温度维持在一个稳定值,就需要对玻璃进行处理,最常见的手段是将玻璃进行镀膜工艺,使得玻璃能够尽可能的透过可见光,而同时增强隔热性能。所以镀膜过程的质量保证,成为了玻璃隔热性能优良与否的重要因素。 /p p   将多个微型光纤光谱仪与玻璃生产线相集成,对镀膜的效果进行实时测量。微型光纤光谱仪所采集到测量指标,如镀膜玻璃的反射率,透过率,膜厚数据,反馈给镀膜机,使其在下一次镀膜过程中对镀膜工艺进行调整。在检测过程中,氘灯和卤钨灯混合光源照射到被测样品上,会反射一部分光,被光源同侧的光谱仪接收,而另一侧放置的光谱仪对透射光谱进行测量。所以整个检测系统能对反射光谱和透射光谱进行测量。由于检测的玻璃尺寸较大,所以为了对玻璃镀膜的均匀性进行全面的测量,探头采取平移方法扫描整块玻璃。由于微型光纤光谱仪的体积小巧,内部结构紧密,无移动部件,可以适应较高加速度和震动的环境,使得微型光纤光谱仪和探头可以进行在检测过程中进行往复运动。 /p p style=" TEXT-ALIGN: center" img title=" 微型光纤光谱仪检测示意图.jpg" style=" HEIGHT: 303px WIDTH: 300px" border=" 0" hspace=" 0" src=" http://img1.17img.cn/17img/images/201612/noimg/db4108c9-dd18-411e-a72b-22c214e334a1.jpg" width=" 300" height=" 303" / /p p style=" TEXT-ALIGN: center" 微型光纤光谱仪检测示意图 /p p style=" TEXT-ALIGN: center" img title=" QQ截图20161227102542.jpg" src=" http://img1.17img.cn/17img/images/201612/noimg/4f9ed63a-2184-4b8c-b7a5-bf34940b80f5.jpg" / /p p style=" TEXT-ALIGN: center" 玻璃镀膜工艺监控系统 /p p style=" TEXT-ALIGN: center" img title=" 微型光纤光谱仪与平移台集成.jpg" style=" HEIGHT: 301px WIDTH: 400px" border=" 0" hspace=" 0" src=" http://img1.17img.cn/17img/images/201612/noimg/233a6763-fd1d-4dc3-91e6-23e90370af1f.jpg" width=" 400" height=" 301" / /p p style=" TEXT-ALIGN: center" 微型光纤光谱仪与平移台集成 /p p strong   (6)印刷机的在线颜色监控 /strong /p p   颜色准确性是印刷行业重点关注的技术指标,由于不同纸张材料的吸水性差异于油墨的批次差异会导致印刷品之间存在色差,将微型光纤光谱仪与印刷实时颜色监控系统相集成就显得尤为的重要。 /p p   在印刷机上集成一个反射光谱的测量系统,对印刷品的校准色块进行反射测量,并通过相应算法将光谱数据换算为行业内能够接受的颜色指标。由于印刷中的纸张具有快速移动的特性,所以在运用中往往会采用积分球或环形的反射镜对光源进行匀化,从而减小检测样品在印刷过程中的振动与倾斜。光谱仪所得光谱数据反馈到印刷设备对颜色的品控进行调整。 /p p style=" TEXT-ALIGN: center" img title=" 印刷机颜色监控示意图.jpg" src=" http://img1.17img.cn/17img/images/201612/noimg/bf5b28d3-6d21-4722-b1a1-17761d368c5b.jpg" / /p p style=" TEXT-ALIGN: center" 印刷机颜色监控示意图 /p p   光谱仪自带可编程逻辑电路,可将复杂的逻辑关系写入微型光纤光谱仪中,可以使光谱仪直接与印刷设备油料控制器对接,产生在线的闭环系统。 /p p style=" TEXT-ALIGN: right" (内容来源:海洋光学) /p
  • 爱威森举办在线药品混合均匀性监测系统讲座
    2009年6月, 公司经理JASON陪同加拿大C-Therm公司Managing Director在中国广州,西安,上海举办了多场公司代理的Mathis在线药品混合均匀性监测系统技术讲座. 多家药品生产厂家,设备制造厂家的相关生产质检部门领导及技术人员应邀参加了会议. 对于其先进的技术特点有了进一步地了解. 我公司正在此基础上大力开展相关技术咨询及业务联系. 详细技术特点请参阅 http://www.aws.cn/C14761.htm
  • HEPS自主研制共振非弹性散射分析晶体完成在线实测
    2023年5月,国家重大科技基础设施高能同步辐射光源(HEPS)自主研制的共振非弹性散射(RIXS)分析晶体完成在线实测,实测能量分辨率37.7meV@8.9keV,标志着HEPS自主研制光学部件又进一步。   HEPS是亚洲首台第四代同步辐射光源,有利于开展高能量分辨谱学实验。为满足高分辨谱学需求,HEPS光源部署自主研制高分辨RIXS谱学分析晶体,100毫米直径的球面衬底上,布满近1万块1.5毫米见方、2毫米厚的小晶块,小晶块之间排列取向精度误差小于400μrad。该类分析晶体制备工艺极为复杂,国际上仅有少数光源具备此类分析晶体研制能力。HEPS高能量分辨谱学线站负责人徐伟研究员带领团队与光学设计、光学机械、光束线控制系统相关人员,联合多学科中心晶体实验室积极攻关,完成RIXS分析晶体自主加工。   RIXS分析晶体的在线表征是检验分析晶体品质的关键步骤。2023年5月,高分辨谱学线站团队包括徐伟研究员、郭志英副研究员、张玉骏副研究员、靳硕学副研究员等通过与日本超级环光源-日本量子科学技术研究开发机构线站(SPring-8-QST-BL11XU)的Kenji Ishii(石井贤司)教授合作,顺利完成了RIXS分析晶体的在线表征。曲率半径2米的单晶硅(553) RIXS分析晶体,实测分辨达到37.7meV (FWHM)@8985eV。这一结果表明,HEPS团队已具备RIXS分析晶体自主研制能力。   值得一提的是,2022年10月,依托北京同步辐射装置,HEPS首批自主研制X射线拉曼散射(XRS)谱仪分析晶体完成在线表征,实测1eV(FWHM)@9.7 keV;2023年3月,依托上海光源BL13SSW稀有元素线站,HEPS相关人员与上海光源边风刚研究员、何上明研究员、曾建荣副研究员、洪春霞高级工程师等团队合作,完成了一批(15组)条带型高分辨XRS分析晶体的在线表征,实测0.53 eV@9.7 keV。   高分辨分析晶体再一次取得突破性进展,离不开团队合作、国内外同行协助。下一步,团队成员将齐心协力,进一步开发定制指数面硅基、非硅基高能量分辨分析晶体。在满足HEPS高分辨分析晶体需求基础上,也可为国内外同行提供先进光学部件。   高分辨分析晶体在线表征得到上海光源稀有元素线站BL13SSW、测试线站BL09B,日本SPring-8 BL11XU等线站的大力支持。
  • 在线分析仪器稳定性可靠性专题报告论坛召开
    仪器信息网讯 2012年10月30日,第五届中国在线分析仪器应用及发展国际论坛分论坛之“在线分析仪器稳定性可靠性专题报告论坛”召开,浙江大学系统与控制研究所吕勇哉、重庆凌卡分析仪器有限公司金义忠、北京北分麦哈克分析仪器有限公司郭肇新和南京分析仪器厂有限公司朱卫东等来自科研院所和企业的专业人士就提高国产仪器的稳定性、可靠性方面发布了报告。   与会发表报告的专家普遍表达了对国产仪器提升稳定性、可靠性的重视,并与与会者分享了自己在研发中总结的经验。   本次论坛由中国仪器仪表行业协会分析仪器分会秘书长曹乃玉主持。 中国仪器仪表行业协会分析仪器分会秘书长 曹乃玉 浙江大学系统与控制研究所 吕勇哉 报告名:信息技术在过程分析仪(PA)系统可靠性分析中的应用 重庆凌卡分析仪器有限公司总工程师 金义忠 报告名:解决分析仪稳定性、可靠性难题的探讨 北京北分麦哈克分析仪器有限公司郭肇新 报告名:分析仪器稳定性可靠性的实现 南京分析仪器厂有限公司朱卫东 报告名:在线分析系统的可靠性与可靠性设计技术探讨
  • 江苏省首台走航式海洋放射性在线监测系统下海应用测试
    7月11日至12日,江苏省核与辐射安全监督管理中心(以下简称江苏核管中心)在连云港组织首台走航式海洋放射性在线监测系统海上测试,取得圆满成功。   海洋放射性监测传统采用人工采集水样、运至实验室开展分析测量的方式,监测周期长,特别是涉及离岸较远的管辖海域和远洋海域监测时,耗时更长。近年来,在线监测由于其节约人力、可实时监测的优点,日趋受到重视。该方法通常采用海上浮标平台搭载水下辐射探测器进行测量,但只能定点测量,如面临事故造成的大范围海域核污染时,要想快速得到核污染分布情况必须在目标海域投放大量浮标监测设备,投入成本高。   本次测试的走航式海洋放射性在线监测系统由江苏省自主研发,可用于海洋核污染预警监控和应急监测,搭载于各类船只,开展大范围海域放射性巡测,大大提高监测效率。系统采用高灵敏水下辐射探测器阵列,在船载移动测量条件下有效提高探测效率、降低放射性核素探测限;同时利用先进的多探测器信号融合算法与谱数据分析方法,提高核素识别与活度测量的准确性。测试获取了连云港近岸、近海多处海域海水放射性核素的走航监测基础数据,为下一步开展更大范围海域监测和相关研究工作奠定了基础。
  • 德国耶拿“在线拉曼技术”隆重亮相于2016仿药一致性评价研讨会
    迎春花迎来了生机勃勃的春天,古人有烟花三月下扬州,现今在美丽的人间天堂-杭州,中国医药工业研究总院于2016年3月10-12号举办了“2016仿制药一致性评价政策与工艺难点解析研讨会”,迎来了事关国民身体健康的药学研讨会。200余名来自药监局、药企、高校科研单位、知名仪器公司等单位的专家出席了该次会议。德国耶拿分析仪器股份公司,作为始终引领世界光谱技术革新和发展的仪器制造商,也为仿药一致性评价带来了完整高效的凯撒在线拉曼药学应用解决方案,受到与会专家的好评。 该次会议主要围绕着国家政策,深度解读仿制药一致性评价法规政策的实质和实施细节;通过经典案例分析工艺技术难点,实现法规要求与研发生产无缝对接;探讨工艺优化和过程控制提高药品质量,按时达到仿制药与原研药质量一致的目标。 德国耶拿公司的拉曼产品专家王兰芬博士在会上分享了《在线拉曼光谱在药物结晶与PAT过程分析技术中的应用案例》。报告引起了与会专家的广泛兴趣与关注。美国工程院孙勇奎院士亲身体验过过凯撒公司的拉曼仪器,给出了极大的肯定。与会很多专家更是热烈讨论并相约会后进一步联系。 在线拉曼是一种非常有效的过程分析技术,在国际与国内制药行业越来越受到重视,可最佳实现QbD目标。凯撒公司的在线拉曼光谱技术为制药行业的一系列环节提供完整高效的解决方案。例如,化学反应过程、晶化过程,高通量晶型筛选与形态筛选等化学开发过程;制粒、混合、热熔挤出、包衣等单元操作。与会专家对凯撒公司的专利的大面积原位探头,专利的透射式体相分光系统设计,多通道检测设计,主机移动式设计,稳定的数据分析模型等给予了高度评价。 关于德国耶拿公司 德国耶拿分析仪器股份公司(Analytik Jena AG, 简称AJ公司)成立于1990年,前身为卡尔.蔡司(Carl-Zeiss Jena GmbH)公司的分析仪器部, 今天已成为德国最大的分析仪器公司之一。公司总部设在世界光学精密仪器制造中心的德国耶拿(Jena)市。目前Analytik Jena在全球90多个国家设有分支机构。公司的宗旨是不断创新和追求活力。 公司目前的主要业务是研究、开发、设计和生产制造原子吸收光谱仪(AAS),电感耦合等离子体发射光谱仪(ICP-OES),电感耦合等离子体质谱仪(ICP-MS),总有机碳(TOC)/总氮(TN)分析仪,有机卤素化合物(AOX)分析仪,元素(C、S、N、Cl)分析仪和紫外/可见(UV/VIS)分光光度计和生化分析仪器等。另外,Analytik Jena不仅生产制造分析仪器而且还提供实验室的一体化解决方案,2015年起全面负责美国凯撒公司(兄弟公司)在中国的拉曼业务,为用户提供更完整的一体化分析解决方案。 自从德国耶拿公司2001年在中国建立代表处以来,在中国一直保持着高速发展的态势,逐步建立了高品质的专业品牌形象,形成了耶拿中国专业严谨,勤奋敬业的团队文化。德国耶拿公司将再接再厉,不断创新,以非凡的品质,精湛的技术,全方位的售后服务来回馈广大用户与专家学者对德国耶拿公司的支持与厚爱。
  • 重金属在线监测仪器迎来爆发性增长
    据环境保护部环境监测仪器质量监督检验中心副主任杨凯介绍,随着国家环保政策的不断出台,污水重金属在线监测仪器将会迎来一个增长周期,相比之下,国内企业更了解用户需求,更具发展潜力。 &ldquo 十二五&rdquo 规划中关于环境水质监测提到:重金属污染防治规划规划获批,要求重点区域重点重金属污染物排放量比2007年减少15%,非重点区域重点重金属污染物排放量不超过2007年水平。 受国家政策影响,重金属在线监测仪器迎来爆发性增长,预计未来2~3年重金属在线监测仪器安装量在3000~5000套。目前,业内一些供应商如厦门隆力德环境技术开发有限公司,已紧随政策,开始在重金属领域这一细分市场的研发与市场推广。 地表水和氨氮监测仪器也将成为环境监测领域新的重要增长点。污水处理指标主要污染物在COD的基础上增加氨氮检测,在部分省控企业中,之前大量未安装氨氮监测仪表的污染源企业将大力带动这一产品的市场需求。过去,国内的地表水监测项目相对较少,未来几年地表水监测。
  • 2017大气挥发性有机物应急、在线监测及治理技术研讨会召开
    p & nbsp & nbsp & nbsp 近年来,我国多个城市和区域频繁发生大范围、持续多日的大气污染天气。一些主要城市大气细颗粒物(PM2.5)和臭氧(O3)超标严重,污染影响范围广、持续时间长,严重影响空气质量和人体健康,引起了社会的广泛关注。挥发性有机物(VOCs)是PM2.5和O3的重要前躯体,对空气质量有很大的影响。目前,VOCs污染防控已成为我国生态文明建设的重要任务,受到国家的高度重视,“十三五”期间,国家把16个省份纳入了VOCs减排约束性考核。 br/ & nbsp & nbsp & nbsp 为了集中分享大气挥发性有机物(VOCs)的应急、在线监测和治理技术的最新进展,探讨技术发展过程中的问题及未来发展方向,由暨南大学质谱仪器与大气环境研究所(以下简称大气所)主办,广州禾信仪器股份有限公司(以下简称禾信仪器)协办的“2017年大气挥发性有机物应急、在线监测及治理技术研讨会”于2017年5月24日-26日在上海新晖大酒店成功举办,吸引了来自全国各地环境管理部门、科研院所及环保相关企业单位的170多名专家和技术人员参会。 /p p style=" text-align: center " img width=" 600" height=" 337" title=" 1.png" style=" width: 600px height: 337px " src=" http://img1.17img.cn/17img/images/201706/insimg/f75300e2-dc54-4b08-8c67-ae140385e8ac.jpg" border=" 0" vspace=" 0" hspace=" 0" / /p p & nbsp & nbsp & nbsp 会议伊始,暨南大学质谱仪器与大气环境研究所所长周振教授作大会致辞,周振介绍了举办此次研讨会的初衷,同时介绍了暨南大学大气所团队和禾信仪器团队,并承诺会继续努力,不断推出新技术和新方法,为我国的环境监测事业做出新的贡献。& nbsp /p p style=" text-align: center " img title=" 2.jpg" src=" http://img1.17img.cn/17img/images/201706/insimg/66f01e96-bf9b-4529-9281-2eab09f44f02.jpg" / /p p style=" text-align: center " 暨南大学质谱仪器与大气环境研究所所长周振 /p p style=" text-align: left " & nbsp & nbsp & nbsp 此次会议共邀请了15位VOCs领域的专家做专题报告,包括中国环境科学研究院研究员柴发合,华南理工大学环境与能源学院院长叶代启,中国环境监测总站质检室梁宵博士,北京市环境监测中心王琴博士,上海市环境监测中心大气室副主任高松,浙江省环境监测中心副总工程师田旭东,浙江省环境保护科学设计研究院大气所所长吴健,上海市环境监测中心高级工程师崔虎雄,中国石化上海石油化工股份有限公司安环部高级工程师杨自然,宁东能源化工基地管委会环保局科长温雪山,广州禾信仪器股份有限公司VOCs产品总监燕志奇等。 /p p style=" text-align: center " & nbsp img title=" 3.png" src=" http://img1.17img.cn/17img/images/201706/insimg/ef75cc17-a102-4730-87d7-4a183dbf3141.jpg" / /p p style=" text-align: center " 中国环境科学研究院研究员柴发合 br/ 专题报告:蓝天保卫战,大气污染综合防治 br/ /p p style=" text-align: center " img title=" 4.png" src=" http://img1.17img.cn/17img/images/201706/insimg/f6a8c11f-0b8a-4149-a765-bc55df34aac3.jpg" / & nbsp br/ 华南理工大学环境与能源学院院长叶代启 br/ 专题报告:“十三五”期间挥发性有机物的排放与控制& nbsp /p p style=" text-align: center " img title=" 5.png" src=" http://img1.17img.cn/17img/images/201706/insimg/2003525d-b15c-4445-b9ed-da872148e6d9.jpg" / /p p style=" text-align: center " 上海市环境监测中心大气室副主任高松 br/ 专题报告:VOCs在线监测关键技术研究及应用 br/ /p p style=" text-align: center " img width=" 600" height=" 392" title=" 6.png" style=" width: 600px height: 392px " src=" http://img1.17img.cn/17img/images/201706/insimg/ad8085cd-c0d8-4894-8971-4ce0a3741d79.jpg" border=" 0" vspace=" 0" hspace=" 0" / /p p style=" text-align: center " 北京市环境监测中心王琴博士 br/ 专题报告:北京市大气环境VOCs监测研究与应用& nbsp /p p style=" text-align: center " img title=" 7.png" src=" http://img1.17img.cn/17img/images/201706/insimg/ace1d64b-bb24-47eb-9716-293326876739.jpg" / /p p style=" text-align: center " 浙江省环境保护科学设计研究院大气所所长吴健 br/ 专题报告:浙江省大气污染源(含VOCs)排放清单的建设 /p p style=" text-align: center " img title=" 8.png" src=" http://img1.17img.cn/17img/images/201706/insimg/7e5d55ce-8a22-42c2-8f32-ea54cbae5305.jpg" / & nbsp /p p style=" text-align: center " 广州禾信仪器股份有限公司VOCs产品总监燕志奇 br/ 专题报告:VOCs在线监测全面解决方案& nbsp /p p style=" text-align: center " img title=" 9.png" src=" http://img1.17img.cn/17img/images/201706/insimg/e76f7101-c3af-4e0a-874b-9780261e0654.jpg" / /p p style=" text-align: center " 中国环境监测总站质检室梁宵博士 br/ 专题报告:环境空气VOCs采样等相关问题探讨 /p p style=" text-align: center " img title=" 10.png" src=" http://img1.17img.cn/17img/images/201706/insimg/fa41b426-c92c-44d2-93fa-2be7d9be9999.jpg" / & nbsp /p p style=" text-align: center " 上海市环境监测中心高级工程师崔虎雄 br/ 专题报告:上海空气VOCs自动监测管理及应用的探索及思考 br/ /p p style=" text-align: center " img title=" 11.png" src=" http://img1.17img.cn/17img/images/201706/insimg/dc7f9cf1-f920-4163-9cfa-1cf1069281fa.jpg" / & nbsp br/ 浙江省环境监测中心副总工程师田旭东 br/ 专题报告:G20峰会光化学监测应用及启示 /p p style=" text-align: center " img title=" 12.png" src=" http://img1.17img.cn/17img/images/201706/insimg/7d8e08b2-ed51-40b9-a162-f1c1068fd222.jpg" / & nbsp br/ 中国石化上海石油化工股份有限公司安环部高级工程师杨自然 br/ 专题报告:石油石化行业VOCs监测与治理的思考和设想& nbsp /p p style=" text-align: center " img title=" 13.png" src=" http://img1.17img.cn/17img/images/201706/insimg/2258245a-a877-4720-bf1a-5f67b74c56c3.jpg" / /p p style=" text-align: center " 宁东能源化工基地管委会环保局科长温雪山 br/ 专题报告:在线VOCs质谱在宁东能源化工基地监测及溯源中的应用 /p p style=" text-align: center " img title=" 14.png" src=" http://img1.17img.cn/17img/images/201706/insimg/1641e108-ea41-48f6-bba3-0fab8656f044.jpg" / & nbsp br/ 广州同胜环保科技有限公司总经理张卫 br/ 专题报告:不同工况下的VOCs处理技术简介 br/ /p p style=" text-align: center " img title=" 15.png" src=" http://img1.17img.cn/17img/images/201706/insimg/43d25bf3-8ed3-4e6e-ad4b-2da8fbd93e6e.jpg" / & nbsp br/ 南京创蓝环保科技有限公司周德荣博士 br/ 专题报告:箱模式、拉格朗日模式及欧拉模式在VOCs和O3溯源中的应用 /p p style=" text-align: center " img title=" 16.png" src=" http://img1.17img.cn/17img/images/201706/insimg/a55597d1-74a4-4141-a6c0-681314cc08ac.jpg" / /p p style=" text-align: center " 中科弘清(北京)科技有限公司技术部经理高明君 br/ 专题报告:VOCs组分清单开发与基于反应活性的控制对策研究 br/ /p p style=" text-align: center " img title=" 17.png" src=" http://img1.17img.cn/17img/images/201706/insimg/60e57b60-a316-4249-a657-bbc1b7236658.jpg" / & nbsp br/ 广州禾信仪器股份有限公司高级工程师王冠男 br/ 专题报告:在线VOCs质谱在镇江新材料产业园环境管理中的应用 /p p & nbsp & nbsp & nbsp & nbsp 会议期间,广州禾信仪器股份有限公司在会场展出了大气挥发性有机物吸附浓缩在线监测系统(AC-GCMS 1000)、化工园区大气挥发性有机物在线监测系统(SPI-MS 2000)以及便携式数字离子阱质谱系统(DT-100),受到了与会者的高度关注。 /p p style=" text-align: center " img title=" 18.png" src=" http://img1.17img.cn/17img/images/201706/insimg/48de158f-5563-462f-8442-a833100d9aea.jpg" / /p p style=" text-align: center " 大气挥发性有机物吸附浓缩在线监测系统(AC-GCMS 1000) /p p style=" text-align: center " img title=" 19.png" src=" http://img1.17img.cn/17img/images/201706/insimg/6f395ea2-b752-4f23-be30-f9d07194a8e7.jpg" / & nbsp br/ 化工园区大气挥发性有机物在线监测系统(SPI-MS 2000)& nbsp /p p style=" text-align: center " img title=" 20.png" src=" http://img1.17img.cn/17img/images/201706/insimg/7029d155-5288-4476-a5a7-f2d851aa55d4.jpg" / /p p style=" text-align: center " 便携式数字离子阱质谱系统(DT-100) /p
  • 2023离子色谱标准解读下:从行标看在线IC应用领域
    仪器信息网联合中国仪器仪表学会分析仪器分会离子色谱专家组于2024年3月12-13日召开“第五届离子色谱技术进展及应用”主题网络研讨会,共同探讨离子色谱的最新技术进展及热点应用等大家关心的话题(点击查看会议议程及报名方式)。离子色谱仪是高效液相色谱的一种,作为测定阴离子、阳离子及部分极性有机物种类和含量的一种液相色谱方法,已被广泛应用在环境、化工、能源、生物、医药、食品、化妆品等领域;同时,与MS、AFS的联用技术等也丰富了离子色谱的应用领域,开发了一系列具有实用性的分析方法。近些年来,离子色谱方法标准也在持续完善中。据不完全统计,离子色谱近5年发布国家标准19项,行业标准35项。行标主要涉及环保、冶金、矿业/地质、石油化工、农业、公共安全、食品、医药、玩具/消费品等领域。2023年发布的离子色谱检测行业标准有多项涉及在线离子色谱检测,且涵盖了环保、煤化工等行业。在线离子色谱品类可能存在新的行业增长点,可加速扩展环境、煤化工等领域。更多离子色谱标准解读见:《2023离子色谱标准解读上:从国标看IC新的市场机会》1、 仪器品类相比前几年发布的离子色谱检测行业标准,2023年发布的标准涉及到在线离子色谱(点击进入专场)品类。比如,2023年12月5日,生态环境部发布的《环境空气颗粒物(PM2.5)中水溶性离子连续自动监测技术规范》;2023年5月5日,海关总署发布《SN/T 5576-2023 煤中氟和氯的测定在线燃烧-离子色谱法》。在线离子色谱逐渐应用到更多的行业。随着在线离子色谱标准的陆续发布,这一行业可能会迎来新的发展机遇。这些标准的制定和实施将有助于规范市场,提高产品质量,推动技术创新,从而促进整个行业的繁荣发展。对于在线离子色谱的生产和销售企业来说,这些标准的发布将为其提供更加明确的发展方向和更广阔的市场空间,可能将为其带来新的业绩增长点。2、 环保行业2023年12月5日,生态环境部发布《环境空气颗粒物(PM2.5)中水溶性离子连续自动监测技术规范》,标准号HJ 1328—2023。该标准于2024年7月1日正式实施,规定了环境空气颗粒物(PM2.5)中水溶性离子连续自动监测系统的方法原理与系统组成、技术性能、安装、调试、试运行与验收、系统日常运行维护、质量保证和质量控制、数据有效性判断、废物处置等技术要求。该标准所监测的水溶性离子包括Cl-、NO3-、SO42-、Na+、NH4+、K+、Mg2+和Ca2+。在线监测技术一种基于现场的采样分析技术,可以提供高时间分辨率的监测数据,在组分变化非常迅速的污染过程,在线监测能充分发挥其优势,捕捉到PM2.5快速上升时组分的变化,可以为环境保护政策和标准的制定提供重要的基础依据。与采用实验室手工分析方法的现行标准相比,该标准具有自动化程度高、干扰因素较少等优点,可用于指导我国颗粒物组分自动监测工作的开展,推动环境空气细颗粒物浓度持续下降。3、 煤化工行业2023年5月5日,海关总署发布《SN/T 5576-2023 煤中氟和氯的测定在线燃烧-离子色谱法》,本标准规定了离子色谱法在线吸收测定吸收液中氟离子和氯离子的详细方法。煤是国民生产和生活必不可缺的能源和化工原料,煤的质量不仅与环境污染相关,对煤化工等以煤为原材料的行业和发电厂等用煤大户也至关重要。国家市场监督管理总局发布的标准 GB/T 17608-2022《煤炭产品品种和等级划分》中,煤中氟和氯的含量都是划分煤炭等级的重要指标。传统的分析方法每次仅能测定其中一种元素,还不能实现自动化,大大影响分析效率。燃烧炉-离子色谱联用系统是燃烧裂解技术和离子色谱技术的结合,一次分析即可测定不同类型的卤素,不仅克服了传统离线燃烧技术效率低下的缺点,还避免了人为操作可能带来的误差,分析结果更加准确和稳定。附表:近5年发布的离子色谱国标和行标(部分)序号行业标准名称发布日期1石油化工GB/T 35212.4-2023天然气处理厂气体及溶液分析与脱硫、脱碳及硫磺回收分析评价方法 第4部分:用离子色谱法测定醇胺脱硫溶液中钠、镁、钙离子组成2023-05-232GB/T 41946-2022 橡胶 全硫含量的测定 离子色谱法2022-12-303GB/T 40395-2021 工业用甲醇中铵离子的测定 离子色谱法2021-08-204GB/T 40111-2021石油产品中氟、氯和硫含量的测定 燃烧-离子色谱法2021-05-215GB/T 40062-2021 变性燃料乙醇和燃料乙醇中总无机氯的测定方法 离子色谱法2021-04-306GB/T 39305-2020再生水水质 氟、氯、亚硝酸根、硝酸根、硫酸根的测定 离子色谱法2020-11-197GB/T 37907-2019 再生水水质 硫化物和氰化物的测定 离子色谱法2019-08-308HG/T 6116-2022 废弃化学品中硫、氟、氯含量测定 氧弹燃烧 离子色谱法2022-09-309SN/T 5307-2021 石油产品 氟、氯和硫的测定 直接燃烧-离子色谱法(石油)2021-06-1810GB/T 41068-2021纳米技术 石墨烯粉体中水溶性阴离子含量的测定 离子色谱法2021-12-3111GB/T 41067-2021纳米技术 石墨烯粉体中硫、氟、氯、溴含量的测定 燃烧离子色谱法2021-12-3112冶金GB/T 3884.12-2023铜精矿化学分析方法 第12部分:氟和氯含量的测定 离子色谱法和电位滴定法2023-08-0613GB/T 42276-2022氮化硅粉体中氟离子和氯离子含量的测定 离子色谱法2022-12-3014GB/T 39285-2020 钯化合物分析方法 氯含量的测定 离子色谱法2020-11-1915GB/T 38216.2-2019钢渣 氟和氯含量的测定 离子色谱法2019-10-1816GB/T 37385-2019硅中氯离子含量的测定 离子色谱法2019-03-2517YS/T 1593.4-2023 粗碳酸锂化学分析方法 第4部分:阴离子含量的测定 离子色谱法2023-04-2118YS/T 1569.4-2022 镍锰酸锂化学分析方法第 4 部分:硫酸根含量的测定 离子色谱法2022-09-3019YS/T 1497-2021 铂化合物分析方法 杂质阴离子含量测定 离子色谱法2021-12-0220YS/T 1496-2021 钯化合物分析方法 杂质阴离子含量测定 离子色谱法2021-12-0221YS/T 1472.6-2021 富锂锰基正极材料化学分析方法 第 6 部分:硫酸根含量的测定 离子色谱法2021-12-0222YS/T 445.16-2020 银精矿化学分析方法 第16部分:氟和氯含量的测定 离子色谱法2020-12-0923YS/T 1380-2020 铑化合物化学分析方法 氯离子、硝酸根离子含量的测定 离子色谱法2020-12-0924环保/水工业HJ 1328—2023《环境空气颗粒物(PM2.5)中水溶性离子连续自动监测技术规范》2023-12-0525HJ 1288-2023 水质丙烯酸的测定离子色谱法2023-02-0926HJ 1271-2022 环境空气颗粒物中甲酸、乙酸和乙二酸的测定离子色谱法2022-12-1227HJ 688-2019 固定污染源废气 氟化氢的测定 离子色谱法2019-12-3128HJ 1076-2019 环境空气 氨、甲胺、二甲胺和三甲胺的测定 离子色谱法2019-12-3129HJ 1041-2019 固定污染源废气 三甲胺的测定 抑制型离子色谱法2019-10-2430HJ 1040-2019 固定污染源废气 溴化氢的测定 离子色谱法2019-10-2431HJ 1050-2019水质 氯酸盐、亚氯酸盐、溴酸盐、二氯乙酸和三氯乙酸的测定 离子色谱法2019-10-2432GB/T 5750.5-2023生活饮用水标准检验方法第5部分 无机非金属指标(氟化物、硫酸盐、氯化物、硝酸盐、高氯酸盐)第6部分 金属和类金属(锂、钠、钾、镁、钙)第8部分 有机物指标(丙烯酸)第9部分 农药指标(草甘膦)第10部分 消毒副产物指标(亚氯酸盐、氯酸盐、溴酸盐、一氯乙酸、二氯乙酸、三氯乙酸、一溴乙酸、二溴乙酸)2023-03-1733矿业/地质SN/T 5576-2023 煤中氟和氯的测定在线燃烧-离子色谱法2023-05-0534SN/T 5305-2021 铅精矿中氟和氯含量的测定 离子色谱法2021-06-1835SN/T 5254-2020 煤中氟和氯的测定 高温水解-离子色谱法2020-08-2736DZ/T 0064.28-2021 地下水质分析方法 第28部分:钾、钠、锂和铵量的测定 离子色谱法2021-02-2237DZ/T 0064.51-2021 地下水质分析方法第51部分:氯化物、氟化物、溴化物、硝酸盐和硫酸盐的测定离子色谱法2021-02-2238玩具/消费品GB/T 41525-2022玩具材料中可迁移六价铬的测定 离子色谱法2022-07-1139QB/T 5529-2020 口腔清洁护理用品 水溶性焦磷酸盐和三聚磷酸盐的检测方法 离子色谱法2020-12-0940JY/T 0575-2020 离子色谱分析方法通则2020-09-2941GB/T 40895-2021化妆品中禁用物质丁卡因及其盐类的测定 离子色谱法2021-11-2642农业NY/T 3943-2021 水果中葡萄糖、果糖、蔗糖和山梨醇的测定 离子色谱法2021-11-0943NY/T 3902-2021 水果、蔬菜及其制品中阿拉伯糖、半乳糖、葡萄糖、果糖、麦芽糖和蔗糖的测定 离子色谱法2021-05-0744NY/T 3513-2019 生乳中硫氰酸根的测定 离子色谱法2019-12-2745食品YC/T 377-2019 卷烟 主流烟气中氨的测定 浸渍处理剑桥滤片捕集-离子色谱法2019-12-2646SN/T 5120-2019 进出口食用动物、饲料中亚硝酸盐测定 比色法和离子色谱法(食品)2019-09-0347SN/T 5120-2019 进出口食用动物、饲料中亚硝酸盐测定 比色法和离子色谱法(食品)2019-09-0348公共安全GA/T 1918-2021 法庭科学 亚硝酸根离子检验 化学和离子色谱法2021-10-1449GA/T 1946-2021 法庭科学 盐酸、硫酸和硝酸检验 化学和离子色谱法2021-10-1450GA/T 1628-2019| 行业标准| 法庭科学 生物检材中草甘膦检验 离子色谱-质谱法2019-10-1451电子/电气GB/T 37861-2019电子电气产品中卤素含量的测定 离子色谱法2021-05-2152GB/T 37861-2019电子电气产品中卤素含量的测定 离子色谱法2019-08-3053DL/T 2280-2021 燃煤电厂烟气中三氧化硫含量的测定 异丙醇溶液吸收 离子色谱法2021-04-2654卫生医药YY/T 1675-2019 血清电解质(钾、钠、钙、镁)参考测量程序(离子色谱法)2019-10-23仪器信息网联合中国仪器仪表学会分析仪器分会离子色谱专家组于2024年3月12-13日召开“第五届离子色谱技术进展及应用”主题网络研讨会,共同探讨离子色谱的最新技术进展及热点应用等大家关心的话题。在环境领域,离子色谱被广泛应用于大气、水质、土壤等监测方面,具有稳定性好、重现性好、精密度高等优势。会议特别举办了“离子色谱在环境领域中的应用”专场。届时,甘肃省环境监测中心教授级高级工程师张宁将分享《大气干湿沉降物中氮磷的离子色谱测定》,哈尔滨工业大学(深圳)副教授张冠将分享《电催化处理垃圾渗滤液及其含氮含氯副产物离子色谱分析》,四川大学建筑与环境学院研究员黄荣夫将分享《离子色谱-质谱联用技术在环境污染物分析中的应用》,桂林电子科技大学教授张敏将分享《离子色谱微型化研究进展》,敬请期待!!!点击可查看全部报告专家及内容(点击图片也可进入会议详情页面)。
  • 上海精科2008年580型在线水质监测仪产量增加
    公司电化学仪器产品部2008年生产的580型在线水质监测仪比2007年增长近20%,取得了较好成绩。该仪器是受用户青睐的大型环保仪器,也是近年来该部的重点产品及成熟产品。现在,这种型号的仪器经技术人员持续技术革新,外形美观、操作简便、质量稳定、功能齐全,更是受到了用户的欢迎。 2008年,电化学仪器产品部生产的580型在线水质监测仪产量比2007至少增加了20%,创近几年来销量新高。2008年上半年,该部取得了国家环保部门对包括上述环保产品在内的认证证书后,加大了对外宣传上海精科生产优质环保仪器的力度,使580型在线水质监测仪等环保仪器销量有较明显的增长。目前,该产品部形成了比较完整的大型环保仪器的系列化,以满足环保仪器市场对水环境保护(对多种污水进行有效监测和监控)的需求。
  • 北大首次用酵母菌实现PM2.5毒性实时在线监测
    空气污染特别是PM2.5是当前人类面临的重要的环境问题之一。北京大学课题组研究人员近期在此问题上取得跨学科进展,首次以荧光标记的酵母菌取代现有方法中的半导体传感器,实现了对PM2.5多方面毒性的实时在线监测。  据了解,目前对于大气颗粒物的毒性研究,大多采用离线的方式,不能及时知晓其毒性 而细胞染毒或动物暴露实验灵敏度偏低,一些健康效应不易检测到。在颗粒物致病机理方面,目前也存在类似“盲人摸象”的现象,不能够全方面地了解PM2.5的毒性机理。  受酵母菌相关研究的启发,由北大环境科学与工程学院研究员要茂盛、物理学院副教授罗春雄领导的研究团队,集成利用空气采样、微流控、荧光蛋白标记的酵母菌以及单酵母菌蛋白荧光自动检测平台,用活体酵母菌替代传统半导体传感器,创建了大气PM2.5毒性实时在线监测系统。  要茂盛介绍,课题组先将PM2.5颗粒物采集到液体中,再将样品实时输送至放有酵母菌的芯片里。由于酵母菌会对来自颗粒物的刺激发生反应,通过用不同荧光蛋白标记酵母菌的所有基因,就可实时看到酵母菌的哪些基因对颗粒物的刺激发生了响应,就好像可“实时监测不同地区车辆行驶状况”。  目前,此项研究成果已申请国家发明专利。课题组正在利用该体系对不同国家、地区颗粒物的毒性进行研究,同时也在筛查更多有响应的酵母菌蛋白,并研究其灵敏度、响应的毒性标定,以进一步揭示PM2.5对人体的具体致病毒性机制。
  • 光谱技术融入在线分析平台——访蓝星智云在线分析高级工程师艾宏
    近几年,在线光谱分析技术正以惊人的速度应用于多领域企业生产的多个环节,并已使得过程分析仪器领域发生了深刻变革。但目前,光谱技术的“仪器仪表化”和“微量分析仪”,以及流程工业中在线分析仪器仍存在许多难题。蓝星智云(山东)智能科技有限公司是一家走在前沿的公司,致力于在流程工业智能制造领域,研发在线光谱分析平台。在仪器信息网光谱网络会议(iCS2021)十周年之际,编辑采访到了蓝星智云(山东)智能科技有限公司在线分析高级工程师艾宏。采访中,艾宏首先介绍了光谱仪器分析平台、软件开发等相关内容,他解释道:蓝星智云的在线分析平台专为流程工业定制研发,让用户通过组态方式,集成多种在线分析设备、分析方法和数据通讯技术。随后,他就光谱分析技术在生产应用中存在的问题,提出了仪器向仪表转化、专用微量光谱仪等设想,艾宏还对光谱分析技术在生产应用中存在的问题提供了很好的经验和建议。更多详细内容请观看以下视频。为促进中国科学仪器行业健康快速发展,进一步提升光谱技术及相关应用的专业水平,促进各相关单位的交流与合作,仪器信息网将于2021年5月25-28日举办“第十届光谱网络会议, iCS2021”。本次会议由江苏省分析测试协会、中国仪器仪表学会近红外光谱分会、中国生物物理学会太赫兹生物物理分会等协办。2021年,正值光谱网络会议的十周年。iCS 2021不仅聚焦最新、最前沿的光谱技术及应用,而且将就食品、制药、环境、生命科学、材料、文保等目前最热门的应用领域进行深入探讨,为国内外光谱科研工作者及专业技术人士提供一个全新、高效的沟通交流平台,以促进业内交流,提高光谱研究及应用水平。点击进入会场
  • 禾信298万中标一台在线挥发性有机物质谱仪及配套
    p   重庆市环境科学研究院日前发布大气环境科研能力建设项目(18A1884)结果公告,广州禾信仪器股份有限公司以298万元中标一台SPIMS2000在线挥发性有机物在线分析质谱仪及配套设备,用于对大气挥发性有机物进行实时监测。 /p p   详情如下: /p p   一、项目号:18A1884 采购执行编号:0611-BZ1800400845AH-2 /p p   二、项目名称:重庆市环境科学研究院大气环境科研能力建设项目 /p p   三、采购方式:公开招标 /p p   四、评审日期: 2018年9月17日 /p p   五、公告日期: 2018年9月18日 /p p   六、中标结果 br/ /p p style=" text-align: center" img src=" https://img1.17img.cn/17img/images/201809/uepic/544cd421-817b-46fa-be4a-dd48c5e44840.jpg" title=" 2018-09-30_002321.jpg" alt=" 2018-09-30_002321.jpg" / /p p   七、评标委员会 /p p   汪洪 熊华明 彭岗 申世明 方维凯 /p p   八、其他事项 /p p   公告期限:1个工作日 /p p   九、联系人 /p p   采购人:重庆市环境科学研究院 /p p   采购经办人:高奥 /p p   采购人电话:023- 67850069 /p p   采购人传真:023- 67850069 /p p   采购人地址:重庆市渝北区冉家坝旗山路252号 /p p   代理机构:重庆市政府采购中心 /p p   代理机构经办人:白帆 毛艺洁 /p p   代理机构电话:023-67078013 67707443 /p p   代理机构传真:023-67707355 /p p   代理机构地址:重庆市江北五里店五简路2号重庆咨询大厦B幢505室 /p
  • 聚光科技低量程型水质重金属在线分析仪(铅)首批通过环保认证检测
    日益严峻的水体重金属污染问题已对人们的饮水安全带来了巨大威胁。根据国家环境保护“十二五规划”要求,“遏制重金属污染事件高发态势”是加强重点领域环境风险防范的一项非常重要的内容,因此亟需加大对水体重金属污染的监控力度,建立全面的监控预警体系。 聚光科技(杭州)股份有限公司作为绿色环保科技引领者,自2006年开始研制水质在线分析仪器设备。经过多年的研究与经验总结,已研制出一系列水质在线分析仪,包括COD在线分析仪、氨氮在线分析仪和水质重金属在线分析仪(铅)等。2015年,聚光科技推出了低量程型水质重金属在线分析仪(铅)产品,并于2015年11月参加了中国环境保护协会组织的铅水质自动在线监测仪Ⅰ型仪器的认证检测,经过3个多月的严苛测试,于2016年3月一次性通过了本次检测。该产品采用先进的同位镀膜阳极溶出伏安法检测技术,电极活性好且灵敏度高,具备稳定可靠的分析性能。 至此,聚光科技已有三款水质重金属在线分析仪设备通过环保认证检测,另外还包括高量程型水质重金属在线分析仪(铅)和高量程型水质重金属在线分析仪(镉)两款产品。 HMA-2000系列水质重金属在线仪产品特点: 同位镀膜检测技术,电极膜自修复,电极维护周期长达一个月; 专利的在线顺序注射平台,试剂消耗为常规技术的1/10~1/5; 高精准注射泵的非接触式液体定量设计,样品、试剂体积定量稳定,无需频繁更换泵管; 密封式高温高压样品消解技术,消解速度快,转化率高,实现总含量的检测; 仪器实时监控试剂余量,及时提示用户补充,有效避免仪器无试剂空运转; 周期、定时等多样的测量模式,可根据排水情况灵活设定,方便现场应用。 为满足在线监测设备市场不断扩大的应用需求,聚光科技已开发完成其他系列水质重金属在线分析仪产品,如水质重金属在线分析仪(汞)、总锌在线分析仪、总铜在线分析仪等。编号产品型号产品名称1HMA-2000(Pb)水质重金属在线分析仪(铅)2HMA-2000(Cd)水质重金属在线分析仪(镉)3HMA-2000(Hg)水质重金属在线分析仪(汞)4HMA-2000(As)水质重金属在线分析仪(砷)5HMA-2000(TZn)总锌在线分析仪6HMA-2000(TMn)总锰在线分析仪7HMA-2000(TCr)总铬在线分析仪8HMA-2000(Cr)六价铬在线分析仪9HMA-2000(TNi)总镍在线分析仪10HMA-2000(TCu)总铜在线分析仪
  • 关于印发《上海市固定污染源挥发性有机物在线监测体系建设方案》的通知
    p   7月5日上海市环境保护局发布关于印发《上海市固定污染源挥发性有机物在线监测体系建设方案》的通知,内容如下: /p p style=" text-align: center " img src=" http://img1.17img.cn/17img/images/201807/insimg/45b659d1-949c-4eae-aeae-5e983777b457.jpg" title=" 上海市环境保护局_副本.jpg" / /p p style=" text-align: center "  关于印发《上海市固定污染源挥发性有机物在线监测体系建设方案》的通知 /p p style=" text-align: center " 沪环保总〔2018201820182018〕231 号 /p p   各区环保局,各有关单位: /p p   根据国家《“十三五”挥发性有机物污染防治工作方案》和本市实施固定污染源排污许可制度的有关要求,在完成试点工作的基础上,我局制定了《上海市固定污染源挥发性有机物在线监测体系建设方案》。现印发给你们,请遵照执行。 /p p style=" text-align: right "   上海市环境保护局 /p p style=" text-align: right "   2018年7月4日 /p p   抄送:上海化工区管委会 /p p   附件: /p p style=" text-align: center " 上海市固定污染源挥发性有机物在线监测体系建设方案 /p p   根据国家《“十三五”挥发性有机物污染防治工作方案》和本市实施固定污染源排污许可制度的有关要求,制定本方案。 /p p   一、实施范围本市固定污染源挥发性有机物(VOCs)在线监测体系的实施范围,包括以下排污单位涉及VOCs排放的排口: /p p   (一)纳入排污许可证管理的排污单位 /p p   (二)大气环境重点排污单位 /p p   (三)国家和本市规定应当实施在线监测的排污单位。 /p p   二、安装要求 /p p   (一)安装范围。纳入排污许可证管理的排污单位的主要排口 重点排污单位处理设施设计风量大于10000立方米/小时的排口。受监测技术及设备限制,处理设施进口和火炬系统排口暂不纳入安装范围,待相关技术要求出台后另行规定。 /p p   (二)安装位置。涉及VOCs排放的排口或烟道。 /p p   (三)安装设备。采取非燃烧方式治理VOCs的,在排口直接安装非甲烷总烃在线监测设备,包含非甲烷总烃、烟气温度、烟气压力、烟气流速或流量、烟气含湿量等监控项目 采取燃烧方式治理VOCs的,除上述监控项目外,还需在排口同时加装氮氧化物在线监测设备。 /p p   针对《石油化学工业污染物排放标准》(GB 31571-2015)、《石油炼制工业污染物排放标准》(GB 31570-2015)以及其他行业标准有明确排放限值的VOCs单项指标,排污单位还应选择重点排口试点开展重点指标的在线监测工作。 /p p   三、工作要求 /p p   (一)建设进度。已核发排污许可证的企业在2018年12月31日前完成设备的建设、联网和备案 其他排污单位应当于纳入挥发性有机物在线监测体系实施范围之日起的6个月内完成设备的建设、联网和备案。 /p p   (二)运行维护。依据《上海市固定污染源非甲烷总烃在线监测系统安装及联网技术要求(试行)》和《上海市固定污染源非甲烷总烃在线监测系统验收及运行技术要求(试行)》,以及《固定污染源烟气(SO2、NOX、颗粒物)排放连续监测技术规范》(HJ 75-2017)开展运行维护。 /p p   (三)其他监管要求。本市固定污染源挥发性有机物在线监测体系建设的其他监管要求,按照《上海市固定污染源自动监测建设、联网、运维和管理有关规定》(沪环规〔2017〕9号)执行。 /p
  • 静守一方碧水清流——EXPEC 2100系列 水中挥发性有机物在线监测系统
    EXPEC 2100系列 水中挥发性有机物在线监测系统(以下简称EXPEC 2100),可在无人监守下进行连续性在线监测,监测水中VOCs的浓度,主要应用于河流断面水质监测、湖泊、水库水质监测、饮用水源水质监测、自来水厂原水的在线监测等领域。系 统 组 成 EXPEC 2100由EXPEC 240全自动吹扫捕集进样器和EXPEC 2000-MS在线GC-MS组成,主要包括在线采样、吹扫捕集、GC-MS分析三部分。 EXEPC 240是配合在线GC-MS分析的前处理设备,具有自动加入内标的功能,通过连续的采水、吹扫捕集和解吸,将获得的样品送至在线GC-MS进行实时的在线分析,得到准确的定性、定量结果。系 统 特 点定性能力强 EXPEC 2100采用吹扫捕集—气质联用法的标准分析方法,用保留时间结合化合物的指纹质谱图来鉴定组分,其定性远比GC方法可靠。 质谱作为检测器,既是一种通用型检测器,又是有选择性的检测器。它通过检测离子质荷比(m/z),从而获得化合物质谱图,解决气相色谱定性的局限性问题;针对不同化合物,GC-MS具有全扫描、选择离子、二级质谱等多种检测模式。在应用时,因优于其他色谱检测器,通常被作为最终确证方法。 质谱不但能对目标化合物进行准确的定性定量分析,还能对未知化合物进行定性半定量监测,有效实现水中挥发性有机物的监测预警。定量精度高 GC方法中常用的只有FID和TCD是通用检测器,其余都是选择性检测器,与检测样品中的元素或官能团有关。 与GC利用总离子流峰面积定量不同,GC-MS常用提取离子峰面积进行定量,这样可以较大限度地去除其他组分干扰,使得GC-MS的定量精度和灵敏度优于GC。 此外,还可以利用质谱分离在色谱图上无法分离的色谱峰,如1,1,1,2-四氯乙烷和氯苯在常见的DB-1色谱柱上因保留时间相同无法分离,但在质谱上可将二者分离开。自动化程度高 可灵活设置采水周期,进行自动取水分析; 分析时自动加入内标物,确保监测数据的稳定性; 智能监控仪器及系统运行状态,实时将监测数据上传至指定平台; 整套系统不使用附加溶剂,仅需定期更换载气; 搭配自动稀释仪,可实现标液的自动分析; 较大程度降低了运维人员的工作难度和工作强度。流路分析图系 统 应 用《地表水环境质量标准》分析应用 EXPEC 2100分析GB 3838-2002《地表水环境质量标准》中常见的24种VOCs,相关方法学数据如下:检测结果: 24种组分在一定浓度范围五点标曲线性良好,线性相关系数R2在0.9955~0.9999之间; 标样重复进样6次,各组分含量RSD在3.56~9.86%之间; 对实际水样进行加标回收实验,24种VOCs回收率在94.2~118.7%之间; 标样连续进样7次,求得方法检出限在0.028~0.088μg/L之间。 各项性能指标均符合GB 3838-2002标准要求,适用于地表水、海水、工业废水等各类水体的在线监测。满足HJ 639-2012方法 EXPEC 2100不仅能检测GB 3838-2002中常见的24种VOCs,也能满足HJ 639-2012《水质 挥发性有机物的测定 吹扫捕集/气相色谱-质谱法》中的56种VOCs的检测需求。
  • 在线视频演示安捷伦科技的刑侦学分析工具
    在线视频演示安捷伦科技的刑侦学分析工具“2014 年世界杯背后的科技”现已支持自选观看 2014 年 6 月 17 日,北京 — 安捷伦科技公司(纽约证交所:A)今日宣布其参与由 SelectScience 制作的系列在线视频专题“世界杯背后的科技”。 SelectScience 是一家专注于为实验室科学家提供信息的网上刊物。 在今年世界杯之前,SelectScience 到巴西与顶尖的科学家进行了讨论,以了解在杯赛期间如何利用现场和实验室科学协助保护球员和球迷,并了解如何使用科学分析工具管理运动员健康和改善运动员的发挥。 首个视频“走进巴西军队的移动式测试实验室”(http://www.chem.agilent.com/en-US/promotions/Pages/worldcup2014.aspx)展示了巴西军队在杯赛期间将如何使用安捷伦法医学解决方案保护观众和球队的安全。在对巴西军队的 Paulo Malizia 中校的独家采访中了解到,届时观众将从移动式测试实验室通过,该实验室将在整个杯赛期间布置在马拉卡纳体育场(世界杯决赛场地)外面。 “我们的移动式测量和基于实验室的技术已成为国土安全、军事和公共安全领域日益重要的工具”,安捷伦法医和毒理学产品全球营销经理 Tom Gluodenis 说道。“我们非常荣幸参与这一重要而及时的专题视频,我们期待在世界杯期间为巴西国家安全机构提供专业化的分析解决方案。” 安捷伦完善的刑侦学系列产品包括用于刑侦学应用的各种分析工具,其适合现场分析和实验室分析。观看该视频并了解关于安捷伦刑侦学系列产品的更多信息。 安捷伦是法医与毒理学解决方案领域全球领先的供应商,为刑事司法系统、职工药物检测行业和国际体育反兴奋剂机构提供解决方案。公司开发并制造了先进的实验室仪器、移动式测量技术和数据管理软件,可用于收集、制备、鉴别和分析药物、爆炸物和数千种物质。关于安捷伦科技公司 安捷伦科技公司(纽约证交所:A) 是全球领先的测试测量公司,同时也是化学分析、生命科学、诊断、电子和通信领域的技术领导者。公司拥有 20600 名员工,遍及全球 100 多个国家,为客户提供卓越服务。在 2013 财年,安捷伦的净收入达到 68 亿美元。要了解安捷伦科技的信息,请访问:www.agilent.com.cn。 2013 年 9 月 19 日,安捷伦宣布将通过对旗下电子测量公司进行免税剥离,分拆为两家上市公司的计划。分拆后的电子测量公司命名为是德科技 (Keysight Technologies, Inc.),此次分拆预计将于 2014 年 11 月初完成。 编者注:更多有关安捷伦科技公司的技术、企业社会责任和行政新闻,请访问安捷伦公司新闻网站:www.agilent.com.cn/go/news。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制