当前位置: 仪器信息网 > 行业主题 > >

载顺铂磁性纳米药物

仪器信息网载顺铂磁性纳米药物专题为您整合载顺铂磁性纳米药物相关的最新文章,在载顺铂磁性纳米药物专题,您不仅可以免费浏览载顺铂磁性纳米药物的资讯, 同时您还可以浏览载顺铂磁性纳米药物的相关资料、解决方案,参与社区载顺铂磁性纳米药物话题讨论。

载顺铂磁性纳米药物相关的资讯

  • Nature:形状变形的纳米磁性编码微型机器人
    磁性软体机器人已有多种应用,特别是在与人体密切相关的生物医学领域。如自折叠式“折纸”机器人可以在肠道中爬行、修补伤口、将吞下的物体取出来;胶囊状的机器人可以沿着胃的内表面滚动,进行活组织检查并运送药物。此外,科学家们还研制出了尺寸从几百微米到几厘米不等的更薄的线型机器人,它们有可能在大脑血管中穿行,以治疗中风或动脉瘤。磁性软体机器人的进一步小型化可能带来新的应用,如在小的血管中进行操作甚至操纵单个细胞,但制备这样的微型机器人并非易事[1]。 2019年11月,瑞士联邦理工学院的Cui Jizhai(现任职复旦大学) 、Huang Tian-Yun 及其同事在Nature发表了名为“Nanomagnetic encoding of shape-morphing micromachines”的文章[2],该工作使用电子束光刻技术,制造出了只有几微米大小的可磁重组机器人,通过对单个区域的纳米磁体进行设计,将形状变化指令通过编程的方式输入微型机器人,对纳米磁体施加特殊的磁场序列后,实现微型机器人的形状变化,如图一所示。图一 四片式变形微机械的设计 a.磁体磁态随尺寸增大的示意图:i.超顺磁性;ii.室温下稳定的单畴;iii.多畴态。b. 部,四个面板微机械,面板I上有520 nm×60 nm(I型)纳米磁体阵列,面板II上有398 nm×80 nm(II型)纳米磁体阵列;底部,纳米磁体阵列的相应SEM图像。c. 体积相同但长宽比不同的单畴纳米磁体的磁光克尔效应磁滞回线。d.根据矫顽力的不同选择两个磁场对微机械进行编码的示意图。e. 应用控制磁场B=15 mT时的磁性结构(I型和II型纳米磁体)和微机械折叠行为示意图,光学显微镜图像显示了所制造器件的四种不同结构。从左到右,上/下折叠的面板数为4/0、3/1、2/2(折叠方向不同的对面面板)和2/2(折叠方向相同的对面面板)。 这项工作构建了一个模块化单元的集合,这些模块化单元可以编程为字母表中的字母,此外还构建了一个微型的“鸟”,能够进行复杂的行为,包括“拍打”、“悬停”、“转弯”和“侧滑”,如图二所示。这为创造未来的智能微系统建立了一条路线,这些智能微系统可以重新配置和原位重新编程,可以适应复杂的情况。图二 折纸式的微型“鸟”与多种形状变形模式 文章中,作者使用了英国Durham Magneto Optics Ltd.公司的磁光克尔效应系统-NanoMOKE3对不同型的纳米磁体进行了磁滞回线测试,同时使用该设备的电磁铁产生的磁场对纳米磁体阵列进行了编程。NanoMOKE3可以进行微区的超高灵敏度测试,在本工作中,作者通过激光聚焦在不同的纳米磁体上获得对应的磁滞回线,如图一c所示,为微型机器人的磁学编码工作提供了帮助。图三 磁光克尔效应系统-NanoMOKE3 NanoMOKE3主要技术特点:超高灵敏度~10-12emu微区磁滞回线,激光光斑~2μm超快测试速度,1秒内可获得磁滞回线克尔角检测<0.5 mdeg纵向/横向/向克尔磁畴成像扩展无液氦低温MOKE图四 与Montana S50超精细多功能无液氦低温光学恒温器联用的低温MOKE 温度范围4.2K~350K磁场纵向>0.4T,向>0.3T 参考文献:[1] X H,zhao. et al. Nature 575, 58-59 (2019)[2] Cui, J. et al. Nature 575, 164–168 (2019).
  • ​【印度新材料案例】康宁反应器合成纳米磁性氧化铁
    研究背景纳米氧化铁在催化、药物传递、光吸收材料等前沿研究中扮演者不可或缺的角色。纳米氧化铁的尺寸大小和粒径分布对材料性能表现非常重要。因此,高效制备一系列小粒径(<10 nm)且平均粒径均一的纳米氧化铁颗粒变得尤为重要。康宁反应器印度团队与印度国家理工学院的研究人员合作,使用康宁微反应器合成氧化铁纳米颗粒(NPs),研究了不同操作参数对获得的NP特性的影响。氧化铁NPs的合成基于使用硝酸铁(III)前体和氢氧化钠作为还原剂的共沉淀和还原反应。使用透射电子显微镜(TEM)、傅里叶变换红外光谱和X射线衍(XRD)分析对氧化铁纳米颗粒进行了表征。简介近年来,由于在磁存储设备、生物技术、水净化和生物医学应用领域的广泛应用,如热疗、化疗、磁共振诊断成像、磁感染和药物递送等,对高效合成磁性氧化铁NP的兴趣显著增加。该工作涉及使用Corning AFR微通道反应器通过共沉淀和还原法合成胶体氧化铁纳米颗粒,氧化铁纳米颗粒的XRD和TEM分析分别证实了其晶体性质和纳米尺寸范围。另外使用电子自旋共振光谱研究了氧化铁纳米颗粒的磁性,康宁微通道反应器制备的氧化铁纳米颗粒表现出超顺磁性行为。结果和讨论一. 氧化铁纳米颗粒形成的反应原理1.控制两个反应器中氧化铁纳米颗粒形成的总沉淀还原反应如下:2.随后,按照以下反应生成氧化铁:二. 共沉淀和还原反应生成氧化铁纳米颗粒共沉淀和还原反应是获得氧化铁纳米颗粒的最简单和最有效的化学途径。在通过反应器的过程中,九水合硝酸铁(III)被氢氧化钠还原,形成还原铁,随后稳定为氧化铁纳米颗粒。图1. AFR实验装置表1 康宁微反应器中的操作条件和结果在康宁AFR反应器中,氧化铁(磁铁矿Fe3O4或磁铁矿γ-Fe2O3)在室温下将碱水溶液添加到亚铁盐和铁盐混合物中形成。在反应器中,由于铁还原加速而形成黄棕色沉淀物,得到胶体氧化铁纳米颗粒如图1所示。在AFR反应器中合成氧化铁纳米颗粒的实验条件Fe(NO₃ )₃ 9H₂ O和NaOH溶液的流速在20- 60 ml/h。对于所有实验,还原剂与前体的摩尔比保持恒定为1:1。图2. 在AFR中具有不同流量的氧化铁np的紫外吸收光谱&trade .实验显示了在AFR反应器中不同流速所对应的结果:在CTAB表面活性剂存在下获得的λ最大值在480和490 nm之间;AFR中的心形设计使混合更佳;氧化铁NP的平均粒径通常随着流速的增加而减小,在50 ml/h的流速下获得最小粒径。在60和50 ml/h的较高流速下,分别观察到窄PSD超过6.77&minus 29.39 nm和3.76&minus 18.92 nm,如图3和表1所示;另一方面,在20 ml/h的较低流速下,在10.1&minus 43.82 nm,如图5和表1所示。从图5B所示的数据也可以确定,由于纳米粒子的引发和成核在50 ml/h下比在60 ml/h时发生得更快。因为颗粒大小取决于纳米粒子在反应器中的成核过程和停留时间,这也通过图5所示的TEM图像得到证实,图5显示制备的颗粒大小在2~8nm;图3所示数据&minus 对于表1中报告的PSD和平均粒径,可以确定粒径随着进料流速的增加而减小,这归因于较低的停留时间。在反应器中的较大停留时间(较低流速)为颗粒的团聚和晶体生长提供了更多的时间,从而获取更大的颗粒尺寸。图4A、B所示的TEM图像也证实。图3. 不同流速下氧化铁纳米颗粒的粒度分布(PSD)图4:50 ml/h的微反应器中合成的氧化铁纳米颗粒的透射电子显微镜图像图5:(A,B)使用CTAB作为表面活性剂在AFR中合成的氧化铁NP的TEM图像。总结通过共沉淀还原方法,在Corning AFR微通道设备中成功制备了稳定的胶体氧化铁纳米颗粒;流速即反应停留时间和混合模式的差异对所获得的氧化铁NP的粒度和PSD有显著影响,这反过来也影响材料稳定性和磁性;CTAB的使用,有助于合成稳定的氧化铁NP;反应流速是决定NP的平均粒径以及粒径分布的关键参数。氧化铁NP的平均粒径随着反应物流速的增加而减小;通过ESR光谱分析和基于使用永磁体的研究证实,制备的氧化铁NP表现出超顺磁性行为。总的来说,当前的工作证明了使用康宁微通道反应器,合成了更小更均一粒径的磁性氧化铁纳米颗粒。这项研究为后续其它纳米科学相关领域的研究提供里有效的实验支持和指导。参考文献:Green Process Synth 2018 7: 1–11
  • 美国开发出检测纳米材料磁性特征新方法
    美国仁斯里尔工业学院12月8日宣布,研究人员成功地将直径为1纳米至10纳米的钴纳米结构团镶嵌于多层碳纳米管中,开发出了一种检测纳米材料磁性特征的新方法。   在经过一系列实验之后,研究人员最终确定,他们获得的由钴纳米材料和碳纳米管组成的混合结构具有足够的导电性灵敏度,可用来探测钴纳米结构这样微小的磁性材料的磁行为。据悉,这是研究人员首次展示利用独立的碳纳米管实现探测微小磁性材料磁场的技术。相关报道刊登在新出版的《纳米快报》上。   当人们常见的材料小到纳米级时,它们展示出了有趣和有用的新特征。纳米技术面临的一个重要的挑战就是要了解这些新特征,即特性的变化。磁性材料的磁性变化同材料本身的尺寸大小变化密切相关,过去纳米材料磁性变化的难以测量影响了人们对该课题的深入研究。   “由于在我们的混合材料中,钴纳米结构团是镶嵌在碳纳米管中而不是在其表面上,因此它们不会引起电子散射,从而不会影响碳纳米管宿主的传导特性。”仁斯里尔工业学院物理、应用物理和天文系助理教授兼研究带头人斯瓦斯迪克卡尔表示,“从根本上讲,这种混合纳米结构属于一类新的磁性材料。”   同系副教授萨偌吉纳亚克认为,这种新的混合纳米结构不仅为基础和应用物理研究开创了新方法,而且还有望帮助人们利用磁性自由度,为增加碳纳米管电学功能铺平道路。该混合结构的潜在应用包括新型纳米级导电传感器、新的电子存储器件、自旋电子器件和人体定向药物微型输送器组件等。
  • 新型纳米传感器芯片让药物开发提速
    据每日科学网报道,美国斯坦福大学的研究人员开发出一种新型的传感器芯片,可以大大加快药物开发过程。这种由高度敏感的纳米传感器构成的微芯片,可以分析蛋白质如何相互结合,在评估药物的有效性及可能带来的副作用方面迈出了关键一步。   这种新型生物传感器只需要一厘米大小的纳米传感器阵列,就能以高于现有任何传感器数千倍的能力持续不断地监测蛋白质的结合活动。新的传感器可以同时监测成千上万种反应,而且比目前的“金标准”方法敏感性更强,并能更快地提供检测结果。   该纳米传感器阵列有两大重大进步。首先是将磁性纳米标记附着在被研究的蛋白质上,大大地提高了监测的灵敏度。其次,研究人员开发了一种新的分析模型,以监测数据为依据,只要几分钟就能准确地预测结果。而目前其他的技术只能同时监测四种反应,需要长达数小时的时间才能获得结果。   研究人员在数年前就开发出了磁性纳米传感器技术,在检测小鼠血液中癌症相关蛋白的生物标志物时发现,其敏感性远高于其他技术,检测浓度为其他技术检测浓度的千分之一。   研究人员将磁性纳米标记附着在特定的蛋白质上,当其与另一个连接到纳米传感器的蛋白相结合时,磁性纳米标记改变纳米传感器周围的磁场。为了确定蛋白与药物之间的结合强度,研究人员将乳腺癌的蛋白放入纳米传感器阵列,同时将从肝脏、肺、肾脏及其他组织获得的蛋白也放入纳米传感器阵列,然后测量附着了磁性纳米标记的药物与各种蛋白的结合强度。这样可以不通过临床实验,就可以初步断定该药物的副作用。虽然目前的芯片每平方厘米只有1000个传感器,但研究人员表示,同样大小的芯片传感器可以增加到数万个之多。   下一步研究人员将利用这种新型生物传感器微芯片来研究正在开发的药物,研究人员确信这将极大地加快药物开发的进程。
  • 化学所纳米载体药物的原位释放质谱成像研究取得系列进展
    p   质谱技术具有快速、高灵敏度、高通量等优点,已被广泛应用于生物医药领域中蛋白质、糖类、代谢小分子等的检测。 /p p   在国家自然科学基金委和中国科学院的长期支持下,中科院化学研究所活体分析化学重点实验室研究员聂宗秀课题组研究人员开发了用于糖异构体区分(Anal. Chem. 2018, 90, 1525)、细胞表面糖蛋白检测(Anal. Chem. 2018, 90, 6397)、监测蛋白二硫键重构(Anal. Chem. 2018, 90, 10670)、胰腺癌生物标志物检测(Chem. Comm. 2018, 54, 10726)等的质谱分析新方法,以及用于基质辅助激光解吸电离质谱成像的新基质和新技术(Anal. Chem. 2018, 90, 729 Chem. Comm. 2018, 54, 10905)和新型基质喷涂装置(Anal. Chem. 2018, 90, 8309)。他们还发展了一种可以快速检测小鼠体内碳纳米材料亚器官分布的通用、免标记的直接质谱成像方法(Nature Nanotech. 2015, 10, 176)。 /p p   最近,该实验室的研究人员联合美国约翰惠普金斯医学院的学者,发展了一种新型无标记激光解吸电离质谱成像技术(LDI MSI),通过监测纳米载体和药物分子固有的质谱信号强度比,实现了质谱成像定量分析纳米载体在组织中的原位药物释放,相关结果发表于Science Advances,2018, 4, eaat9039。他们选择新型过渡金属二硫化物-MoS2纳米载药系统,使用LDI MSI技术,可以根据MoS2纳米片和其负载的抗癌药物阿霉素(DOX)在激光剥蚀下同时产生的质谱指纹峰来追踪纳米载体和药物在体内的分布,无需任何标签,且不受生物体内源性的分子干扰。通过原位监测纳米载体和药物的质谱指纹峰强度比值的变化得到定量测量,研究人员发现在正常和肿瘤模型小鼠中,药物在组织间和组织内的释放呈现组织依赖性。如在肿瘤中的释放量最多,肝组织中的释放量最小。 /p p   无标记激光解吸电离质谱成像技术(LDI MSI)克服了纳米载药研究中传统检测方法正存在空间分辨率有限、贴标过程复杂、难以同时跟踪纳米载体和药物等缺点。研究人员下一步计划将该技术应用于已进入临床的脂质体阿霉素的原位药物释放研究。 /p p style=" text-align: center " img title=" W020181112594468027136.jpg" alt=" W020181112594468027136.jpg" src=" https://img1.17img.cn/17img/images/201811/uepic/c279fa73-25d8-411a-84bd-12f0448681e3.jpg" / /p p style=" text-align: center "   纳米载体药物原位药物释放质谱成像研究 /p p & nbsp /p
  • 肿瘤微环境响应磁共振纳米诊疗剂研究取得进展
    p   近期,中国科学院合肥物质科学研究院技术生物与农业工程研究所研究员吴正岩课题组与上海交通大学医学院教授邹多宏团队合作,利用磁性氧化铁与硅酸锰纳米复合物制备出一种对肿瘤微环境响应的纳米磁共振造影剂和药物递送系统,相关工作已被生物材料期刊Biomaterials 接收发表(DOI: 10.1016/j.biomaterials. 2018.12.004)。 /p p   纳米诊疗一体化是当前研究肿瘤个性化治疗的主要研究方向之一,但是现有的纳米诊疗体系对病灶组织识别度差,对肿瘤微环境响应不足,使纳米诊疗剂难以精确观察和高效治疗肿瘤组织。对此,研究团队基于肿瘤微环境低pH值和谷胱甘肽高表达的特性,合成了对肿瘤组织pH和谷胱甘肽敏感的硅酸锰多孔纳米球,在其表面沉积磁性氧化铁纳米颗粒,制备出磁性氧化铁与硅酸锰的纳米复合物。该纳米复合物在正常组织和血液中,不会发挥造影功能,而一旦进入肿瘤组织,即可释放出锰离子,发挥高效肿瘤T1磁共振造影功能。同时,该纳米复合物装载的抗癌药物顺铂也释放出来,与锰离子和磁性氧化铁协同杀死癌细胞,达到肿瘤协同治疗效果。 /p p   该研究工作得到国家自然科学基金、中科院青年促进会项目、安徽省重大专项、安徽省自然科学基金等的资助与支持。 /p p style=" text-align: center " img title=" W020181219620098020563.png" alt=" W020181219620098020563.png" src=" https://img1.17img.cn/17img/images/201812/uepic/4e531ec7-7d15-4248-b1c2-7d6dec45a79d.jpg" / /p p /p
  • 【文献速递】纳米药物在慢性细菌性前列腺炎治疗方面取得新进展
    近日,重庆陆军军医大学西南医院泌尿外科周占松主任和沈文浩副主任研究团队在慢性细菌性前列腺炎的靶向治疗方面取得了新的进展,相关研究成果以“Antibiotic-loaded reactive oxygen species-responsive nanomedicine for effective management of chronic bacterial prostatitis”为题,发表在材料科学和生物材料类期刊《Acta Biomaterialia》(IF= 7.242,一区Top期刊)。△ 图1材料科学和生物材料类期刊《Acta Biomaterialia》慢性细菌性前列腺炎(CBP)经常发生在男性群体中,严重影响病人生活质量。抗生素是治疗慢性细菌性前列腺炎的主要药物,然而大多数抗生素对前列腺组织的渗透性差,因此疗效较低。为了克服这一挑战,科研人员制备了叶酸修饰的连接头孢泊肟酯(CPD)的活性氧簇响应型纳米药物颗粒(NPs),用于CBP的靶向治疗。由于被细菌感染的巨噬细胞和前列腺上皮细胞膜上有高表达的叶酸受体(FRs),纳米药物颗粒可以有效地进入细胞内并发挥药效。体外细胞实验表明,载有头孢药物的纳米颗粒可以有效地清除细胞内的细菌,并明显降低细胞内促炎细胞因子的表达。患有慢性细菌性前列腺炎小鼠的活体实验结果证实,叶酸修饰的纳米药物可以穿透前列腺上皮并在腺腔内积聚,也可以观察到在CBP小鼠的前列腺组织中有叶酸受体的过度表达。△ 图2用纳米材料CPD-loaded ROS-responsive NPs靶向治疗慢性细菌性前列腺炎的机理实验表明,经叶酸修饰的纳米药物可以显著减轻CBP小鼠的盆腔疼痛,并通过清除细菌和活性氧显著降低前列腺组织中的前炎性细胞因子表达。该研究结果为慢性细菌性前列腺炎的靶向治疗提供了一种新的思路。△ 图3静脉注射Cy5标记的纳米材料到CBP小鼠模型中,然后不同时间点使用AniView系列多模式动物活体成像系统拍摄的荧光图像论文链接https://doi.org/10.1016/j.actbio.2022.02.044
  • 【PNP】聚合物纳米药物载体使用多检测器SEC分析的应用案例
    纳米药物载体热点应用#本文由马尔文帕纳科GPC应用专家冯慧庆供稿#2022 PNP聚合物纳米药物载体纳米药物载体可实现靶向药物治疗。靶向给药治疗是指供助载体、配体或抗体将药物通过局部给药或全身血液循环而选择性地定位于靶组织、靶器官、靶细胞或细胞内结构的给药系统。在特定的导向机制作用下,纳米药物载体输送药物到特定靶点,发挥治疗作用,可达到药剂用量少、毒副作用低、药效持续、生物利用度高、长时间保持靶目标的有效药物浓度的效果。常见的纳米药物运载体系在药学研究中,正确定位小分子药物的给药位置和控制药物释放曲线是一个关键的挑战。通过小分子药物与聚合物纳米载体偶联起来,在很大程度上实现细胞内精准靶向给药,在实际应用过程中有较好的效果。该方法既可用于控制药物释放曲线,又可用于控制药物释放位置,以最大限度地减少可能的副作用。阿霉素(Doxorubicin)阿霉素(Dox)是一种高效抗肿瘤抗生素,对肺癌、急慢性白血病等多种恶性肿瘤都有很强的细胞毒性,其机制是:通过将自身插入细胞的DNA碱基对中,破坏DNA的双螺旋结构,阻断DNA复制和RNA转录。通常是通过血液循环导入肿瘤细胞实现其抗肿瘤功能。聚谷氨酸(PG)是一种以氨基酸谷氨酸为基础的具有生物相容性的聚合物。试验结果表明Dox和PG的偶联,可以实现靶向给药,提高药物在靶体内的聚集度,延长体内循环时间,降低毒副作用。在本文中我们展示了马尔文帕纳科OMNISEC多检测器SEC如何对PG、Dox 和两个PG-Dox 偶联样品进行表征。这种先进的分析技术可用于研究药物加载效率和药物加载后发生的聚合物结构变化。研究方法 PG和PG-Dox偶联物溶解在在pH7.4的PBS缓冲液中,通过OMINISEC进行样品的分离和检测。OMNISEC是一个多检测器SEC系统,包括示差检测器(RI)、紫外检测器(UV)、光散射检测器(LS)和粘度检测器(IV)。流动相为PBS pH 7.4,含30%(v/v)甲醇水溶液;采用马尔文A6000M和A3000色谱柱分离。OMNISEC多检测器SEC检测结果与讨论 测试PG样品和两个PG-Dox偶联物样品色谱图如图1所示,PG的数值结果见表1。PG样品分离显示一个单峰,测得其平均分子量(MW)约为13KDa。再看两个偶联样品,都分离出和PG具有相似保留体积的多峰。较早洗脱的光散射色谱图(绿色,12-14mL)表明存在一些大的聚集体。而且,这些峰包含明显的紫外吸收信号,表明Dox的存在成功地偶联到聚合物上。图1 PG(A)、PG-Dox 1(B)和PG-Dox 2(C)多检测器色谱图表1 PG测试结果在图2 A中可以看到,在不同进样量下检测游离Dox的UV色谱图,可以看到游离的Dox从柱上洗脱得很晚,实际上已经在整个柱体积之后。这清楚地表明了Dox与色谱柱发生了显著的相互作用,延迟了Dox的洗脱。但从图2 B所示浓度响应曲线可以看出,尽管存在相互作用,回收率仍然接近100%。该校准曲线用来测量存在于PG-Dox样品中的Dox的量。图2 A:不同进样量Dox在UV(490nm)色谱图;B:Dox浓度校准曲线如果我们确定36mL处的峰为游离Dox,这样PG-Dox样品中的相同位置峰也能确定为游离Dox。如图3所示,可以清楚地确定偶联样品含有PG-Dox偶联物和游离Dox。图3 UV色谱图显示偶联样品含有PG-Dox偶联物和游离Dox使用图2 B中的浓度校准曲线,可以计算偶联样品中存在的Dox量。如表2所示,两种PG-Dox偶联物都含有游离的Dox。在一次注射体积中,PG-Dox 1的偶联物中含有大约11μg的Dox,而PG-Dox 2的偶联物中含有大约39μg的Dox。然后,可以计算出样品中注入的总Dox质量和Dox浓度。然后,可以根据溶解物质的质量计算出近似的总样品浓度。这样就可以计算每个PG-Dox偶联物中Dox的近似负载量。由此可以近似地看出,样品2的偶联物中含有的Dox是样品1的三倍。表2 计算两个偶联样品中Dox的负载量我们可以对PG-Dox偶联物进一步表征(其中dn/dc假设分析),计算偶联聚合物的近似分子量、特性粘度和结构数据,如表3所示。表3 PG-Dox偶联物测试结果结论 本文展示了如何将多检测器SEC用于高分子聚合物
  • 显微成像赋能生物制药系列网络研讨会:纳米药物专题
    蓝宝石盘上生长的腺癌细胞,可观察单细胞内纳米药物的三维空间分布,图片由蔡司冷冻光电关联解决方案拍摄 纳米药物作为一个新兴的药物领域,有别于传统药物,在延长药物半衰期、药物靶向、提高药物稳定性和作用效率等具有非常大的优势,为药物研究提供了全新的领域。 纳米创新药物的研发过程离不开显微成像技术在材料科学和生物医学的多重应用,其中重要的纳米颗粒的形貌与结构表征和药物的功能性评价上,都需要显微镜将其可视化,助力以攻克相关研发难题,加速产业化进程。 负载金颗粒的 SiO2 球,图片由蔡司场发射扫描电镜GeminiSEM拍摄 从实验室到临床,纳米药物创造“看不见”的微观奇迹,蔡司显微成像提供多模态跨尺度的完整成像解决方案,见证每个微观瞬间,助力纳米药物研发的方方面面: l 药物颗粒表面形貌,内部结构及其在三维空间的分布情况分析l 纳米药物在亚细胞水平,3D 细胞团,类器官模型中的高分辨率观察l 作用机制研究及靶标生理功能的表现l 药物对细胞活性及毒性,健康活力的影响l 药物生产管理的可追溯工作流程 干粉吸入剂颗粒,图片由蔡司高分辨3D X射线显微镜拍摄 会议信息 显微成像赋能生物制药系列网络研讨会:纳米药物专题时间:7月26日 星期二 14:00-15:00 扫描二维码报名参会 显微成像赋能生物制药系列网络研讨会:7月 纳米药物专题8月 肿瘤免疫专题9月 制剂工艺专题10月 细胞治疗专题 本系列网络研讨会由蔡司显微镜与广州千江生物科技有限公司合作举办
  • 如何实现纳米药物的靶向递送?
    脂质体及聚合物作为纳米药物的常用载体,在药物合成方面已取得了巨大的成功,但在靶向递送方面,仍存在着诸多挑战,纳米药物该如何实现靶向递送呢?在谈论靶向之前,先要了解一个关键的药理学概念,以器官靶向为例:器官靶向药物输送不是将所有给药剂量都输送到目标器官,而是提供足够的剂量以达到所需的生物效果,同时限制脱靶积累的毒性;即使大部分注射剂量没有到达目标器官,也应该足以引起生理效应并为患者提供益处。靶向方式分类纳米药物靶向的方式多种多样,总的来讲,可以分为三大类(如图1)。图1. 靶向方式归类图被动靶向被动靶向依赖于调整纳米颗粒的物理性质,如大小、形状、硬度和表面电荷,使其与解剖学及生理学相结合。例如,调节纳米颗粒的大小可以确定纳米颗粒从不连续的血管(如肝脏和脾脏中的血管)外渗的趋势。主动靶向主动靶向包括用化学或生物的方法修饰纳米颗粒的表面,使其特异性地与靶器官高度表达的受体或其他细胞因子相结合。例如,用单克隆抗体修饰纳米颗粒,以使核酸传递到难以转染的免疫细胞中。内源性靶向内源性靶向包括设计纳米颗粒的组成,使其在注射时与血浆蛋白的一个不同的亚群结合,从而将其引导到目标器官并促进特定细胞的摄取。例如,参与体内胆固醇运输的蛋白质已被证明是脂质纳米颗粒有效的肝细胞传递所必需的。对比而言,被动靶向和内源性靶向的设计度与可控性相对较低,主动靶向自然成为了靶向递送的研究焦点。在肝外靶向的研究中,就涉及了较多的主动性靶向,表1也列出了多种肝外给药的纳米颗粒组合物。表1. 用于肝外给药的纳米颗粒组合物靶向修饰方法药物靶向本质上为官能团之间的相互作用,即纳米药物表面的核心基团与受体部位的基团进行化学结合。以脂质纳米颗粒为例,载体组分中的PEG脂质多位于颗粒表面且本身易于修饰,因此,可以在PEG脂质上加载受体部位的结合基团以实现靶向目的。以下列举了几种常见的PEG脂质修饰方法。马来酰亚胺修饰使用DSPE-PEG2000-马来酰亚胺作为功能化PEG脂质,替换LNP中一定摩尔量的聚乙二醇脂质,通过其取代的羧基端半胱氨酸直接与肽偶联,可以形成肽靶向的纳米粒子。再如SS-31,一种线粒体靶向的四肽,具有巯基,只需与马来酰亚胺标记的脂质纳米颗粒孵育,即可进行硫酰马来酰亚胺偶联。NHS修饰NHS酯通常用于标记胺基生物分子。NHS酯与胺基的反应具有pH依赖性,结合的较佳pH值与生理环境的pH值相同。使用DMG-PEG-COOH-NHS作为功能化PEG脂质,替换LNP中一定摩尔量的聚乙二醇脂质,通过在C端添加赖氨酸修饰MH42,并通过其侧链的伯胺偶联,可以形成肽靶向的纳米粒子。同样,许多具有胺基的抗体和靶向肽也可通过该反应偶联到脂质纳米颗粒上:乳铁蛋白可特异性结合活化的结肠巨噬细胞上的LRP-1,实现细胞靶向抗炎治疗;还有较为熟知的程序性死亡配体1单克隆抗体的应用。氨基修饰氨基有利于醛酮分子的化学选择性附着。甘露聚糖还原端醛基与氨基羧基修饰的脂质之间肟偶联反应的正交特性保证了脂质纳米颗粒表面多糖分子的取向。甘露聚糖受体靶向脂质体既可以作为抗菌药物递送的载体,也可以作为用于免疫治疗的重组疫苗的载体。DBCO修饰DBCO标记可促进巯基-炔反应,并可选择性偶联荧光探针、亲和标记和细胞毒性药物分子。例如,抗体scFv-N3可被有效地偶联到DBCO修饰的脂质纳米颗粒上。研究发现,抗体修饰的脂质纳米颗粒可穿越血脑屏障,并诱导脑特异性积累,以治疗中枢神经系统疾病。结论:人体复杂的生化环境给纳米药物的靶向递送制造了诸多阻力。在实际探索中,被动靶向,主动靶向和内源性靶向,可作为靶向设计的联合工具,在寻找绝对的靶向位点、真实的靶向机理与达到实际的靶向效果之间寻求平衡。在此当中,主动性靶向的尝试值得支持,正如文中所讲PEG脂质的各种修饰方式,大量的设计性尝试定能排除越来越多的靶向干扰因素,朝靶向机理的挖掘处更深一步。参考文献:1. Menon, Ipshita et al. “Fabrication of active targeting lipid nanoparticles: Challenges and perspectives.” Materials Today Advances (2022): n. pag.2. Dilliard, S.A., Siegwart, D.J. Passive, active and endogenous organ-targeted lipid and polymer nanoparticles for delivery of genetic drugs. Nat Rev Mater (2023).3. Herrera-Barrera, Marco et al. “Peptide-guided lipid nanoparticles deliver mRNA to the neural retina of rodents and nonhuman primates.” Science Advances 9 (2023): n. pag.应用范围:纳米药物制备系统:
  • 用磁场做导航 纳米机器人精准搏杀肿瘤细胞
    团队用靶向给药微纳米机器人在小鼠身上做了实验。他们用了乳腺癌细胞种植的皮下肿瘤模型,对30只小鼠跟踪了30天。团队发现,这种方法对小鼠肿瘤确有靶向杀伤作用,且对周围正常组织的影响最小。  上映于1966年的科幻电影《神奇旅程》,讲了这么一个故事:为给一名科学家实行高难度血管手术,5名医生被缩小成头发丝大小,置于针筒中,注射进他体内。5人驾驶着“潜艇”,躲过了免疫细胞的攻击,一路乘风破浪,成功完成任务。  50多年过去,当初的幻想,已经部分成为了现实。微纳米医疗机器人,就被认为是一种颇具前途的智能给药平台,目前被广泛用于肿瘤的靶向治疗。  近日,北京航空航天大学机械工程及自动化学院“卓越百人”副教授、博士生导师冯林课题组,研究出了一种新的更为智能的肿瘤靶向机器人。它有了伪装,还有了导航,能够在磁场的驱动下,精准抵达战场,投掷杀伤肿瘤的弹药。  让巨噬细胞吞下纳米药物,变身微纳米机器人  让纳米机器人装载药物,到达指定地点,定向治疗炎症或清除肿瘤,这是医学纳米技术的终极目标之一。但传统微纳米机器人在人体内的运动,其实靠的是分子之间的结合力,这是一种“被动靶向”,难免脱靶。“就好比我们知道,人群中具有某种特质的两类人可能会碰上。但茫茫人海中你最后碰上的是不是想要的人,其实要打一个问号。”冯林说。  而且,也如当初那部电影里所展示的,被注射进人体内的纳米机器人,稍有不慎,就会遭到兢兢业业工作的免疫细胞的攻击。  能不能让这类医疗机器人更为安全且精准地到达要去的地方?  2016年从日本回国后,冯林就一直思考这个问题。在北航机器人所的支持下,冯林和陈华伟老师合作申请获批了国家重点研发计划—机器人重大项目“靶向给药微纳米机器人”。在一次讨论中,陈华伟问可不可以让活细胞作为载体。这句看似很随意的提问提醒了冯林:直接让活的细胞吞进载药纳米颗粒变身微纳米机器人行不行?  他们想到了巨噬细胞——这是一种喜欢吞食并处理异物的细胞。  合适的载体和“伪装”找到了,接下来,就是设计机器人的“导航系统”。  磁性纳米颗粒可以由磁场来控制,药物释放可以利用红外或者超声波。几乎是从零开始,冯林团队自行设计了复合磁控系统。他们从电子线圈开始设计,一点点调整、摸索技术参数。磁性纳米颗粒进入小鼠体内后,通过这套系统,他们可以在体外对其行走路径进行高精度控制。  再接下来,就是让磁性纳米颗粒装载药物,并让它在合适地点,通过合适方式,释放药物。  这款机器人其实设计有许多层。在阿霉素外层,是聚乙二醇,一种具有良好水溶性的高分子化合物;再外一层,是吲哚菁绿,它是药物研究中常用的荧光标记物,帮助科研人员判断机器人所在的位置。最后他们还包裹了一层脂质体,它具有非常高的生物相容性。  团队还为机器人设计了一个开关——近场红外光。近红外光穿透表层皮肤,磁性纳米颗粒吸收光线,产生热量,会释放出阿霉素。  如此一来,纳米机器人基本实现“指哪打哪”的效果。  “接收指令,执行指令,完成任务,在我们做机械的人眼中,具备这些能力的,才是智能的机器人。”冯林说。  团队用靶向给药微纳米机器人在小鼠身上做了实验。他们用了乳腺癌细胞种植的皮下肿瘤模型,对30只小鼠跟踪了30天。团队发现,这种方法对小鼠肿瘤确有靶向杀伤作用,且对周围正常组织的影响最小。  9月,纳米科学领域权威期刊《小》(Small)以封面文章的形式报道了课题组的研究成果。  在机械学院,他们建立生物医学实验室  冯林的团队中,有好几个医学生物专业出身的博士。在他的机械实验室里,还有一块专门区域,用来做生物医学实验。  所以,你能看到这样一个略显奇特的景象——实验室里,有各类机械模型,有专业级的显微镜,以及小白鼠。  去采访时,由于已经结束了上一轮的实验,小白鼠所剩不多,正在笼子里踱来踱去,安度余生。  冯林是“80后”,本科学的电子信息工程,硕士专业是生物机器人,博士留学日本名古屋大学,跟着导师新井史人教授一头扎进了更为微观的世界——微纳米机器人。  回国后,冯林来到北航,获得北航“卓越百人”,加入了机械学院张德远老师领导的仿生与微纳系统研究所,之后又得到北京市“科技新星”资助。北航提倡“医工结合”,冯林也被聘入了北京市生物医学工程高精尖中心,更深入地进入到医疗机器人领域。  “不能只是炒概念,说纳米机器人未来能如何如何。”冯林一直存着这个念头,就是要真正把纳米机器人打入体内,真正杀死体内的肿瘤细胞。  就在不久前,冯林指导的学生团队凭借Medcreate磁悬浮胶囊机器人在第七届中国国际大学生“互联网+”创新创业大赛中获得本科生创意组全国第五名。  它用到的技术,也是“复合场磁控”。  这是一款主动可控高速图像传输型胶囊机器人,能对胃部等大体积消化道器官进行全方位无死角视频探查。胶囊机器人可以悬浮运动,无需改变患者体位,就能完成整个胃部的覆盖式检查。  冯林为学生取得的成绩高兴,但他也知道,要完善各类治疗型的微纳米机器人,还“路漫漫其修远兮”。  从小鼠到人体,从试验到临床,还需要一步步完善和摸索,这并非坦途。“你要舍得花一辈子的时间。”冯林说。
  • 管内填充磁性碳纳米管固相萃取-气相色谱/质谱法测定环境样品中多环芳烃
    采用原位反应法在碳纳米管(CNTs)的管内合成CoFe2O4纳米颗粒,制备了管内填充磁性碳纳米管(IF-MCNTs),建立了管内填充磁性碳纳米管/磁性固相萃取-气相色谱/质谱法(IF-MCNTs/MSPEGC/M S)测定土壤和水藻样品中7种多环芳烃(PAHs)的分析方法。通过透射电镜(TEM)、X射线衍射仪(XRD)、傅立叶变换红外光谱(FT-IR)等研究了IF-MCNTs的结构性能。考察了萃取条件对萃取性能的影响。研究表明,在最佳实验条件下,IF-MCNTs能够有效富集萘(NAP)、苊(ANE)、芴(FLU)、菲(PHE)、荧蒽(FLA)、芘(PYR)和苯并荧蒽(B(b) FL),对应饱和萃取容量分别为197.2,247.8,293.5,387.1,488.5,504.2和43.6 ng/mg。方法线性范围为5.0~500 ng/L,检出限在1.7~3.1 ng/L之间,相对标准偏差(RSD)小于6.8%。将所建方法应用于分析实际环境样品中7种PAHs,加标回收率在73.5%~97.2%之间,RSDs为3.4%~9.5%。方法可用于环境样品中多环芳烃的检测。管内填充磁性碳纳米管固相萃取_气_省略_谱_质谱法测定环境样品中多环芳烃_周婵媛.pdf
  • 带你了解纳米磁珠的妙用
    什么是磁珠?磁珠是利用一定的组织包裹四氧化三铁核而形成的可以被磁铁吸附的同时有通过表面被包物吸附(结合)目标物质的小珠子。之所以它神奇,是因为它的用途很多!具体有哪些呢?01 细胞分离在磁性纳米颗粒表面接上具有生物活性的吸附剂或其它配基如抗体、外源凝结素等,利用它们与目标细胞的特异性结合,借助外磁场的作用,可以很方便、快速的对细胞进行分离分类。与常用的细胞分离方法相比,具有简单、快捷、高效和安全等特点。下图是磁性纳米颗粒分离细胞原理的示意图。02 免疫分析免疫分析在现代生物分析技术中是一种重要的方法,它对蛋白质、抗原、抗体及细胞的定量分析发挥着巨大作用。高分子磁性纳米颗粒用于免疫分析,其原理是在高分子磁性纳米颗粒表面接枝定向吸附于细菌的抗体,并利用它与原液混合、沉降,在磁场作用下分离、提纯,得到吸附于高分子磁性纳米颗粒上的活细菌。高分子磁性纳米颗粒可偶联抗体分离带特定抗原的免疫细胞,利用高分子磁性纳米颗粒结合的抗原或抗体进行免疫分析,具有特异性高、分离快、重现性好等特点。这一方法已应用于一些免疫学功能检测中,例如人体器官移植前的人的主要组织相容性复合物分型,可将与不同抗原对应的抗体偶联于高分子磁性纳米颗粒上,分离相应的细胞,然后作微量细胞毒试验,以进行分型及交叉配型。此外,将高分子磁性纳米颗粒与针对不同细胞亚型标志抗原的抗体偶联,富集细胞后观察计数,即可得知外周血中各型细胞的比例。03 酶的固定化酶具有-COOH、-OH、-NH2等活性官能团,可通过物理吸附、交联、共价偶合、包埋等方式和磁性纳米颗粒结合,具体实施法有吸附交联法、共价结合、共价键偶合法等。磁性生物高分子微球固定化酶能提高酶的生物兼容性和免疫活性、亲疏水性和稳定性易于将酶与底物或产物分离、操作简单易行可利用外部磁场控制磁性材料固定化酶的运动方式和方向,提高固定化酶的催化效率。04 磁控检测在通常的介入治疗过程中,会发生异位栓塞及梗死等现象,并引起严重的并发症,这是临床上急需解决的棘手问题,而使用磁性纳米颗粒载体的介入治疗,在磁控血管内进行栓塞则具有磁控导向、靶位栓塞等优点,为解决以上难题提供了途径。05 靶向药物纳米颗粒的粒径比较小可以通过毛细血管,因而可用磁性纳米材料作为定向载体,在外加的磁性导向系统下,将药物输送到特定的病变部位释放,增强疗效、减少药物对人体正常组织的副作用、具有良好的生物兼容性,即磁靶向给药系统技术。06 基因治疗目前常用病毒载体和脂质体载体,病毒载体存在制备困难,装载外源大小有限制,能诱导宿主免疫反应及潜在的致瘤性等缺点。目前广泛应用的脂质体,具有病毒载体的优点,而没有病毒载体的缺点。但是脂质体的颗粒过大影响了转染效率磁性纳米粒子的出现克服了它们的缺点。磁性四氧化三铁生物纳米颗粒的制作简单直径可达10nm以下,具有非常大的表面能,且具有多个结合位点,因而携带能力优于其他载体,且转染效率也高于目前使用的载体。因此磁性生物纳米颗粒可成为较好的基因载体而应用于基因治疗。本文参考文章名称:功能化高分子磁性纳米颗粒的制备与表征 作者:毕如意
  • 独家专访|顾景凯教授畅谈小分子药物与纳米药物的药代动力学发展与挑战
    2002年SCIEX发布4000 QTRAP®系统产品时,首次将QTRAP®质谱推向市场,该质谱技术是一种将三重四极杆串联质谱与线性离子阱质谱高度结合的复合技术,可同时高灵敏地进行有机物的定量定性分析,目前已广泛应用于药物研发的各个阶段,同时也应用于蛋白、多肽的分析,是药物定性定量的分析利器。  2022年是SCIEX QTRAP®质谱进入中国的第20个年头,吉林大学顾景凯教授是QTRAP®质谱在中国的首批用户之一。作为药物研发领域的资深专家,顾教授不仅见证了“中国创新药物”市场突飞猛进的发展,也感受到QTRAP®质谱分析技术助力药物研发时的强劲推力。  药物分析贯穿药物从研发到上市乃至整个药物的生命周期,为药物研发和应用的全链条提供关键的技术和方法。随着纳米科技的迅速发展,纳米药物在疾病的早期诊断、预防和治疗等方面发挥出越来越重要的作用。为适应纳米药物相关的物理、化学及生物学特性,各种分离分析技术得以开发应用,那么当前纳米药物成分分析的常用方法有哪些?高分子药用辅料体内分析又面临哪些难题与挑战?未来纳米药代动力学研究的发展趋势如何?带着这些问题,仪器信息网特别采访了吉林大学顾景凯教授,与他进行了深入的交流。  吉林大学 顾景凯教授  相辅相成:仪器技术革命加速药物分析发展  2021年生物学界公布了一项重要研究进展,人工智能(AI)技术已能精准预测上万对蛋白质的三维结构,其工作量及效率远超多年来该领域科学研究者人力工作的总和。消息一经公布便引发全球关注,该进展也随之被顶级期刊Science、Nature评选为年度技术之一。这一现象背后,反映的是人类科学研究的革命、科学探索的迭代升级,都离不开科学技术/仪器技术的精进。  20世纪70年代,气相色谱、液相色谱、电化学分析和毛细管电泳分析等先进的仪器分析技术逐渐被用于药物及其制剂的常规杂质检查和定量分析。进入80年代后,为了适应新药研发,满足生物样品分析量少、药物浓度低等要求,各种微量和超微量分离分析技术得以开发应用。其中,最常用的分析方法有免疫测定法、气相色谱法、高效液相色谱法、高效毛细管电泳法及各种联用技术如气相色谱-质谱联用,液相色谱-质谱联用等。“90年代我们使用气相色谱法开展小分子药物分析,当时离子源技术不过关,联用质谱技术发展还不成熟,对现在来说司空见惯的肽、蛋白质、糖、核苷酸等化合物分析,在当时简直是不可思议的事。我最早是在1995年用热喷雾液相色谱-单四极杆质谱(LC-MS)开展药物分析研究,当时的仪器只能做全扫描和SIM(选择离子检测模式)。由于当时质谱技术分析化合物时的灵敏度与选择性不够高,致使药物的定性和定量分析研究工作进展非常有限。1997年以后,我开始全面接触基于大气压离子源(API,包括ESI与APCI)的液相色谱-串联质谱联用技术(LC-MS/MS),那时候全国医药口的LC-MS/MS还仅是个位数,当时我就察觉到,如果能利用结合了强大液相色谱分离能力及质谱的高选择性、高通量和高灵敏度的LC-MS技术替代传统方法去开展药物代谢和药代动力学的研究工作,也许一周就能完成当时传统分析方法三年的工作量。而且,LC-MS/MS技术从通量、灵敏度、定性和定量等各方面可以把研究结果提高几个数量级,所以我真切感受到技术革命带来的最大变化是研究者可以利用技术创新完成原来做不到的事情。近三十年间,我见证着质谱仪器相关技术的更新发展,我的研究内容也随之不断拓展和延伸,从最初的小分子药物向如今非常火热的大分子、高分子以及纳米药物逐步扩展”,顾景凯说道。  近几十年,药物分析技术的发展也从体外到体内,从小样本到高通量,从人工到自动化,由单一技术到联用技术。随着医学和生命科学的迅速发展,药物分析科学也呈现出多学科交叉融合的特点及优势,在此基础上发展起来的一系列质谱技术、超微量分析手段,被广泛用于新药研发、药品生产和临床应用的每个环节。  高分子药用辅料及其PEG化药物的定性与定量分析方法的创新突破  纳米药物的核心是药物的纳米化技术,包括药物的直接纳米化和纳米载药系统。纳米给药系统是对药物进行靶向递释、降低药物毒副作用的新手段。随着聚合物纳米载体在设计、合成方面不断取得进展,聚合物纳米材料在纳米给药系统中得到了广泛的应用。  聚乙二醇(Polyethyleneglycol, PEG)是美国食品药品管理局(FDA)认证的无毒、无害且具有良好生物相容性的生物医用高分子材料,常用作与亲水端来修饰药物和纳米制剂。聚乙二醇化(PEG化)是一种将聚乙二醇聚合物以共价方式连接到治疗药物上的技术,具有增加药物水溶性、降低毒性、延长药物循环半衰期以及减少酶降解作用提高生物利用度等优点。但对于PEG这类分子量不唯一,且呈多分散性的高分子聚合物,常用的质谱定量分析方法要实现精准定量还存在多方面的挑战。顾景凯团队近期在国际上率先公开发表了关于PEG、单价与多价态PEG化前体药物及代谢产物定性定量分析的文章,是高分子聚合物全轮廓定量与定性分析领域的一大突破,目前该方法已成功获得中国发明专利授权。  相比于单一直链型PEG,多价PEG化小分子药物可以大大提高载药量。然而,其体内动态释药规律及药代动力学过程也要比单一直链型PEG化药物要复杂的多。多价PEG化小分子药物除了围绕PEG化药物、PEG及游离药物等部分外还要同时考察不同价态PEG化药物的体内变化规律。随之而来对分析检测方法的考验更加严峻,基于此顾景凯团队利用SCIEX的高效液相色谱-四极杆串联飞行时间质谱技术,采用TripleTOF质谱的全谱分析模式(TOF-MS与MSAll),先通过高效液相色谱将样本中的多价PEG化药及其体内不同形态代谢产物的混合物进行分组分离,使同一组内的同分异构体或同系衍生物具有相同的液相保留行为,再通过质谱选取共有特征性碎片实现各组分的绝对定量,意即在全扫描模式下,所有待测物在Q1中全通过,在Q2过程中经适宜的碰撞能(CE)将待测物打碎,TOF质量分析器扫描通过的全部子离子,获得所有碎片的精确质量信息,然后进行定性与定量分析。  正如上文介绍的,顾景凯团队提出创新性分析方法,突破了串联质谱所无法全轮廓定量分析高分子药用辅料或PEG化药物的技术难题,使高分子聚合物或药物的全轮廓定量分析成为可能。当前越来越多的研究表明,许多过去被普遍认为是无活性的聚合物纳米材料可能具有某些活性或毒性。因此,建立针对聚合物纳米材料的体内定量分析方法,全面、深入地研究聚合物纳米材料的体内命运具有非常重要的药理学与毒理学意义。  直面高灵敏度定量定性分析挑战: SCIEX QTRAP®质谱大显身手  药代动力学是定量研究药物在生物体内吸收、分布、代谢和排泄的动态变化规律, 并阐明不同部位药物浓度与时间关系的科学。由于药代动力学的硬性要求,其对仪器的灵敏度、选择性以及分析通量等方面都提出非常高的要求。  “曲普瑞林是由十个氨基酸组成的合成肽,用于治疗激素反应性癌症,比如前列腺癌和乳腺癌,当前该药物已在市场上广泛应用。对于多肽类药物分析来说,由于其与内源性肽和蛋白质的质荷比相近的非常多,背景化学干扰非常强,所以对这类药物分析存在两大挑战,即灵敏度和选择性。通常使用三重四极杆串联质谱进行常规分析时,尽管利用了前端固相萃取净化,高效液相色谱分离以及MRM(多重反应监测技术)母离子选择性极高的分析手段,我们仍然发现有很强的背景干扰,并且信噪比达不到药代动力学的准确定量要求。由于QTRAP® 质谱是将三重四极杆串联质谱技术与线性离子阱质谱技术高度结合的复合技术,所以我们引进了QTRAP® 质谱技术,在四极杆选择、打碎的基础上,利用线性离子阱再次裂解即可获得选择性很高的孙离子。由于离子阱同时具有很强的离子富集功能,这时利用孙离子进行定量分析,就可以大幅度地提高灵敏度,我印象中提高了十几倍,因此成功地满足了药代动力学的定量要求。我们利用 QTRAP® 6500系统成功建立了多肽药物曲普瑞林的分析方法,这让我印象非常深刻。“顾景凯介绍道。  顾教授与研究生同SCIEX QTRAP质谱合影照片  推进超低浓度、超强干扰药物分析与纳米药代动力学:串联质谱与差分离子淌度大有可为  “不仅如此,我们还曾开发了一种选择性好、灵敏度和分析通量高的利马前列素分析方法。利马前列素临床使用剂量极低,用于后天性腰椎管狭窄症的给药剂量为5μg,达峰浓度(Cmax )仅为1.2 pg/mL,这要求利马前列素的定量下限至少达到0 .1~0 .2 pg/mL。同时,体内存在数十倍于利马前列素达峰浓度的内源性化学背景干扰,可以说该药物体内分析面临着以上“瓶颈”问题。  “基于此,我们的分析方法是通过液相色谱、SelexION™差分离子淌度(DMS)和SCIEX QTRAP® 6500系统三维度分离分析相结合的策略,可降低对液相色谱分离度的要求,缩短了分析时间,提高分析通量,有效避免基质中内源物干扰,减少必需萃取次数,缩短了样品处理时间,在国内率先成功地完成了利马前列腺素片的人体BE评价研究工作。“顾景凯介绍说。  ”这是国际上首次采用DMS-MS/MS实现了如此低药物浓度的准确定量分析,并且我们依照国家药品监督管理局药品审评中心相关技术指南的要求,前后共完成了7500个生物样品的分析,这也是差分离子淌度技术首次用于如此多的生物样品分析评价工作。“顾景凯补充道。  顾景凯也坦言,当前纳米给药系统的研究进展,国内已处于国际前沿,并且个别领域是国际领先。纳米药物载体的设计属于纳米药物产业上游,发展非常迅速,但针对纳米药物的药代动力学研究,国内外相对来说,是严重滞后纳米药物的设计与制备的,当前药物分析技术的能力远远达不到对纳米给药系统体内命运精准评价所提出的要求,目前主要还是主要依靠下游的药效或毒性评价来间接反映其体内命运,这严重制约了纳米药物的临床转化成功率。下一步需要通过新型的分离与分析手段,进一步推进纳米药代动力学研究的进程。  对于下一步的研究计划,顾景凯表示,当前团队研究方向主要有三方面,一是多糖类药物的分析 二是mRNA、LNP疫苗不同形态的体内准确分析 三是高分子药用辅料准确定量和定性分析。此外其团队也在开展基于药代动力学性质的前体药物设计合成,目前作为主要参与单位的前体药物已经上市,同时还有两个作为负责单位的前体药物处于IND研究阶段。
  • 微流控纳米药物递送平台助力核酸药物开发
    自辉瑞/BioNTech和Moderna的2款mRNA疫苗上市以来,mRNA行业拥有的巨大前景已经得到了广泛的认可,诸多企业也已纷纷进军。然而,受限于核酸药物的开发难度,不少企业在研发初期都会遇到同样的问题:如何进行有效的核酸包裹? 为了给更多的读者提供可借鉴的参考,小编将重点介绍MicroFlow™ 系列微流控设备,阐述其在核酸药物开发中起到的助力作用!MicroFlow™ 系列设备MicroFlow™ 系列微流控设备由铭汰医药设备(上海)有限公司开发,其开发之初就有着长远的设计考虑:依靠独特的芯片技术,使纳米药物早期开发、临床前放大及未来GMP生产实现工艺的无缝衔接。知识梳理在介绍设备之前,我们先来梳理一下核酸药物制备相关的知识。核酸药物的制备过程包括合成、修饰和递送三个环节。之所以将药物制备为纳米级,是因为在递送环节中纳米级的颗粒更容易透过血管壁和细胞膜等生物屏障;修饰环节则主要依靠配方的调整以及优化;而首个环节—合成环节,则需要借助于专业的设备,铭汰的MicroFlow™ 系列微流控设备可以合成直径为40-500nm的纳米粒子,其合成粒子的主要类型可参考图1。图1.纳米粒子类型图接下来,小编将分别介绍MicroFlow™ 系列微流控设备的四款产品。铭汰 Microflow T产品特点:1.Microflow T合成量为25μL~250μL,用于早期大量配方的筛选,可节省研发初期的成本消耗。2.单次制备可在数秒时间内完成,可缩短处方筛选耗时。3.混合过程高度均一且可重复。4.设备根据大量实验确定了较为通用的反应比,降低了试错成本。铭汰 Microflow S产品特点:1.Microflow S合成量为0.5~60 mL,旨在从实验规模上开发变革性药物,可制备少量样品,应用于小动物实验。2.制备速度快,总流速为0.1~50 mL/min,可节省大量时间。3.产物纳米粒子,粒径高度均一且可调;批次间重复性高。4.操作简单,可通过调整总流速、流速比等参数,来合成不同粒径的纳米粒子。铭汰 Microflow M产品特点:1.Microflow M合成总流速可达120L/h,有效的扩大了实验室合成规模,适用于更大的体内研究,如非啮齿类模型。2.保留核心的芯片技术,产品粒径、PDI与Microflow S设备无差异,实现工艺放大的快速转移。3.所有核心部件均具有高寿命、低故障率等特点;所有相关配件耐用且易更换。4.操作软件终生免费升级,提高适用性。铭汰 Microflow G产品特点:1.合成速率:120L/h(可根据需求定制,提升制备量)。2.承袭 Microflow M 特性的同时,优化设备细节,使其符合 GMP 要求。可进行大规模临床生产。3.使用与Microflow M相同的芯片设计,减少放大过程中的影响因素。4.一次性液体管路,消除清洁负担。读到这里,相必大家对于铭汰的设备已经有了初步的了解。随之可能会产生一个疑问:每一款产品是否都有与之匹配的芯片?答案是肯定的,以Microflow S设备为例,图6即为与之匹配的FlowTech S芯片。其最大特点为:在合成均一纳米粒子的前提下,能进行多次重复使用,大大的减少了研发成本。图6. FlowTech S芯片图微流控设备已经成为核酸药物开发者们的常用设备,其在合成均一纳米粒子方面有着显著的优势,铭汰公司的MicroFlow™ 系列微流控设备更是着眼长远,努力为纳米药物研究各个阶段提供解决方案。
  • 仪器表征,科学家开发新型纳米药物,用于治疗动脉粥样硬化!
    【科学背景】动脉粥样硬化是一种以动脉斑块逐渐沉积为特征的疾病,最终可能导致严重的动脉血栓事件。因此,抗炎策略在临床治疗中显现出巨大的潜力。近来,Canakinumab抗炎血栓结果研究(CANTOS)临床试验对约10,000名心肌梗死后患者进行了研究,结果显示,使用Canakinumab(一种中和促炎性IL-1β细胞因子的单克隆抗体)的治疗显著减少了心血管事件的发生。然而,这一疗法也增加了致命感染的风险,主要是因为中性粒细胞减少,宿主防御能力受到削弱。另一个临床试验,心血管炎症减少试验(CIRT),则表明低剂量甲氨蝶呤的系统治疗未能有效减少促炎细胞因子的表达或心血管事件。这些结果提示,若能将治疗药物有效地递送至动脉壁病变区域,将可能显著提高疗效并减少副作用。此外,病灶巨噬细胞中过量的活性氧(ROS)是促进动脉粥样硬化进展的另一个关键因素。ROS过量产生会增加氧化应激,导致细胞凋亡并激活炎症反应。由于炎症在动脉粥样硬化过程中引起ROS的过量生成,因此尽管具有挑战性,但同时解决炎症和抑制病灶ROS生成的治疗策略对于动脉粥样硬化的管理具有重要意义。虽然一些纳米治疗剂在临床前研究中显示出双重治疗功能,但其在疾病部位的低积累、复杂的合成路线和潜在的毒性问题仍然是临床转化的障碍。因此,迫切需要合成具有抗氧化和抗炎功能并且能在疾病部位高效积累的生物相容性纳米材料。为此,科学家们将研究目光投向了二维(2D)黑磷纳米片(BPNSs)。由于其独特的物理化学特性和优异的生物相容性,BPNSs在纳米医学领域得到了广泛研究。最近的一项临床前研究表明,BPNSs可以有效清除过量的ROS,改善急性肾损伤。基于这一发现,四川大学华西医院宋相容课题组和哈佛大学医学院的陶伟、Wei Chen合作开发了具有良好生物相容性和高病灶巨噬细胞积累能力的靶向BPNS纳米治疗剂。与传统的纳米载体递送药物策略不同,作者采用了一种创新的“纳米药物递送药物”方法,用于治疗动脉粥样硬化。具体而言,作者利用BPNSs的药物携带能力,将解决炎症的脂质介质Resolvin D1(RvD1)加载其中。RvD1负载的BPNSs不仅能够清除周围的ROS,且在病灶巨噬细胞中选择性地释放RvD1,从而在载脂蛋白E缺乏(Apoe&minus /&minus )小鼠的动脉粥样硬化模型中增强抗动脉粥样硬化效果。【科学亮点】(1)实验首次开发了靶向肽修饰的黑磷纳米治疗剂(BPNSs@PEG-S2P/R),旨在解决动脉粥样硬化治疗中的挑战。(2)实验通过将2D PEGylated BPNSs结合S2P靶向肽和抗炎药物RvD1,成功实现了以下几点结果:&bull BPNSs@PEG-S2P/R能有效积聚于动脉粥样硬化斑块的病灶巨噬细胞,并在S2P肽的协助下渗透斑块。&bull 药物RvD1在ROS响应性释放的方式下,被有效递送至病灶巨噬细胞,展现出显著的抗炎效果。&bull BPNSs@PEG-S2P/R不仅能同时清除ROS,还能抑制病灶巨噬细胞中ROS诱导的炎症反应。&bull 在Apoe&minus /&minus 小鼠模型中,BPNSs@PEG-S2P/R显著减少了斑块面积,并提高了斑块的稳定性。&bull 在动脉粥样硬化斑块中,BPNSs@PEG-S2P/R能有效抑制巨噬细胞负担、炎症反应和氧化应激。&bull 长期治疗后,BPNSs@PEG-S2P/R未引起小鼠免疫或毒性不良反应。【科学图文】图1:BPNSs@PEG-S2P/R的合成策略和抗动脉粥样硬化机制示意图。图2:BPNSs@PEG-S2P/R的表征及RvD1负载和释放研究。图3:BPNSs@PEG-S2P/R处理后细胞摄取、ROS清除能力、抗炎效果、氧化低密度脂蛋白摄取和泡沫细胞形成的体外分析。图4:BPNSs@PEG-S2P/R的药代动力学和生物分布。图5:通过量化病变面积和评估斑块稳定性特征,评估BPNSs@PEG-S2P/R在Apoe&minus /&minus 小鼠中的抗动脉粥样硬化效果。图6:单细胞转录组学揭示了BPNSs@PEG-S2P/R治疗调控主动脉病灶巨噬细胞的基因和关键分子通路。【科学结论】本研究深入探索了动脉粥样硬化的复杂病理机制,突出了慢性炎症和ROS过量生成在疾病发展中的关键作用。通过利用二维黑磷纳米片(BPNSs)的独特特性,如优异的生物相容性和强大的ROS清除能力,本文创新性地设计了靶向肽修饰的纳米治疗剂,实现了双重治疗功能:有效清除ROS并解决斑块中的炎症。这一“纳米药物递送药物”的策略不仅有效提高了治疗效果,还显著减少了对机体的不良影响。研究结果不仅在动物模型中验证了其显著的疗效和安全性,而且通过单细胞水平的分析揭示了治疗机制的深层次调控,为未来开发治疗动脉粥样硬化及其他炎症性疾病的新型纳米药物提供了重要的价值。这些成果不仅有望促进相关领域的进一步研究和临床应用,还为纳米技术在个体化医疗和精准治疗中的广泛应用提供了有力支持,为解决复杂疾病治疗中的关键挑战开辟了新的道路。原文详情:He, Z., Chen, W., Hu, K. et al. Resolvin D1 delivery to lesional macrophages using antioxidative black phosphorus nanosheets for atherosclerosis treatment. Nat. Nanotechnol. (2024). https://doi.org/10.1038/s41565-024-01687-1
  • 癌症治疗:纳米粒子-药物结合物临床转化应用取得新进展
    抗体-药物结合物(ADC)在靶向给药方面具有非常明显的优势,但其不足以克服肿瘤异质性所带来的给药局限。近日,来自美国康奈尔大学、斯隆凯特林癌症研究所和一家肿瘤药物公司的联合团队,采取分子工程的路径,开发了一种由超小(小于10 纳米)纳米颗粒-药物构成的缀合物(NDC),这种缀合物与ADC有许多相似之处,且在克服肿瘤异质性方面具有显著优势。相关成果4月22日在线发表于《材料化学》上。科研团队表示,NDC开发的关键挑战包括纳米颗粒载体和细胞毒性药物之间的连接化学设计,以及满足制造控制、稳定性和药物释放的严格标准。只有解决了这些关键环节,才可成功实现NDC的临床翻译。在这项研究中,科研团队采用相关化学方法和分子工程手段,通过精确调整粒子表面化学,将化疗药物和靶向部分共价连接到聚乙二醇(PEG)涂层包覆的超小二氧化硅纳米颗粒平台上,形成缀合物。这种方法利用颗粒表面PEG链之间的间隙来装载药物,与ADC相比,这种缀合物能够显著增强药物装载能力,同时保持良好的生物分布和药代动力学特征。为了在癌症治疗中实现高血浆稳定性和有效药物释放,科研团队开展了相关测试,将环戊二烯硅烷分子插入到颗粒的PEG层中,并与硅芯表面的硅醇基团缩合。通过进一步反应,环戊二烯基团随后被官能团化,从而实现点击化学,细胞毒性有效载荷最终通过可切割连接物点击到颗粒上,实现在癌组织内释放药物。科研团队表示,该研究产生的靶向NDC药物,最近已进入一二期人体临床试验。纳米颗粒-药物构成的缀合物结构示意图
  • 纳米药物制造系统——助力新冠病毒疫苗研发
    p style=" line-height: 1.5em text-indent: 2em margin-top: 10px margin-bottom: 10px " span style=" text-indent: 2em " 这个新年,注定会被铭记。岁末年初,一场出乎所有人意料的严重疫情在武汉爆发,并迅速在全国蔓延开来。这场突如其来的新型冠状病毒疫情让本是阖家团聚的农历新年过得并不太平,医护工作者们放弃春节假期奋斗在抗疫一线,医疗物资生产商加班加点以满足全国的医疗物资需求,相关领域的专家科研学者同样加速针对新型冠状病毒的研究,各行各业的有志之士都在各自的领域上发光发热,为防控疫情做着贡献。 /span br/ /p p style=" line-height: 1.5em text-indent: 2em margin-top: 10px margin-bottom: 10px " 面对严峻的疫情形势,锘海生物科学仪器(上海)有限公司也在贡献着自己的力量,凭借着独家代理的纳米药物制造系统NanoAssemblr在疫苗研发生产领域的独特优势,积极为正在使用该套仪器研发针对新型冠状病毒的mRNA疫苗的客户提供技术及仪器耗材帮助,保证其研发生产可以顺利进行。 /p p style=" text-align: center " img width=" 600" height=" 450" title=" 纳米药物制造系统NanoAssemblr.jpg" style=" width: 600px height: 450px max-height: 100% max-width: 100% " alt=" 纳米药物制造系统NanoAssemblr.jpg" src=" https://img1.17img.cn/17img/images/202001/uepic/b08caadc-4bc6-4242-b361-a4982489bc38.jpg" border=" 0" vspace=" 0" / /p p style=" text-align: center " 纳米药物制造系统NanoAssemblr适用于研发和生产的Ignite型号 /p p style=" line-height: 1.5em text-indent: 2em margin-top: 10px margin-bottom: 10px " 此外由于疫情的严重性以及紧迫性,也不断有新的客户在加紧采购此套仪器设备以推进自己的研究进展,某科研院所即在1月底表达了采购意向并立刻采购了满足其需求的仪器,锘海生物科学的员工也是随时为客户进行问题解答,并迅速为客户安排仪器发货以及安装培训。 /p p style=" line-height: 1.5em text-indent: 2em margin-top: 10px margin-bottom: 10px " NanoAssemblr是纳米药物研发生产领域的革命性创新技术,其设计宗旨在于帮助用户加速开发个性化纳米药物。NanoAssemblrTM专利技术通过定制设计微流体混合芯片,使纳米颗粒能够可控、自下而上地进行分子自体组装,从而快速和智能控制纳米药物制造,允许药物研发人员能够更快速地开发尖端纳米药物,以更有效地治疗相关疾病,解决了现有纳米药物研制中存在的相关重大问题。NanoAssemblr是可用于纳米药物研究各个阶段的唯一内在可调方案, 目前在全球20多个国家已有超过300台仪器得以使用,并帮助全球应用科学家团体发表了超过100篇科技文献。NanoAssemblr特有的微流混合技术将会显著提高纳米粒制备过程的效率,可满足不同研究阶段纳米药物的制备需求,从实验室研究到临床前研究,再到临床生产均有相应的仪器系统支持。 /p p style=" line-height: 1.5em text-indent: 2em margin-top: 10px margin-bottom: 10px " 随着疫情的不断变化发展,我们也会持续对相关研究者们提供仪器以及试剂耗材方面的帮助,相信会有更多的企业及科研院所会对纳米药物制造系统感兴趣,我们也随时准备好为他们提供帮助。 /p
  • AM:低温强磁场磁力显微镜助力化合物薄膜中纳米尺度非共线自旋结构研究取得重要进展
    近年来,磁性斯格明子受到了广泛的关注。这些拓扑保护的非共线磁性自旋结构纳米粒子稳定在反转对称破坏的磁性化合物中,是手性洛辛斯基-莫里亚相互作用(DMI)以及铁磁交换相互作用的结果。为广泛研究的自旋结构先是在单晶和外延薄膜中非中心对称B20化合物中观察到的类布洛赫斯格明子,其次是在超薄铁磁层和重金属层形成的薄膜异质结构中的斯格明子。对非共线自旋结构的观察很多都是利用从晶体中提取的薄片进行的。磁性纳米粒子,即反斯格明子和布洛赫斯格明子,已被发现同时存在于由具有二维对称的反四方赫斯勒化合物形成的单晶片层中。然而,制作四方赫斯勒化合物的薄膜以及在其中的自旋结构测量仍然具有挑战性。图1. 100K温度MFM成像研究35 nm厚Mn2RhSn薄膜中纳米磁性结构的演化 通过各种直接成像技术可以在真实空间中观察到斯格明子。近期,德国科学家Parkin等人使用低温强磁场磁力显微镜(MFM)成像来研究[001]取向的Mn2RhSn薄膜中的磁性结构。图1展示了在100K下随磁场增加而变化的典型MFM结果。为了进一步研究Mn2RhSn薄膜中观察到的纳米物体的稳定性,在矢量磁场存在下对35 nm厚的薄膜进行了MFM测量(图2)。图2 :200K温度下,35 nm厚Mn2RhSn薄膜中纳米粒子在矢量磁场中的稳定性科学家在很大的温度范围内(从2k到280K)和磁场的作用下观察磁性纳米物体,从研究结果可知,形成不同的椭圆和圆形的大小孤立粒子取决于场和温度(图3)。此外,借助于由MFM产生的局部磁场梯度,科学家还演示了这些纳米粒子的产生和湮灭(图4)。图3. 35 nm厚Mn2RhSn薄膜中, MFM研究不同温度下的纳米粒子, 图a-f分别是5K, 50K, 100K, 150K, 200K, 250K温度下MFM成像数据 图4. 基于MFM显微探针技术控制35 nm厚Mn2RhSn薄膜中纳米粒子的产生和湮灭综上所述,由磁控溅射形成的Mn2RhSn外延薄膜中存在磁性纳米粒子。类似于单晶薄片,这些纳米粒子在广泛的尺寸范围内以及在磁场和温度下都具有稳定性。然而,纳米粒子并没有形成明确定向的阵列,也没有任何证据发现螺旋自旋结构,这可能是薄膜中化学顺序均匀性较差导致的结果。然而,在外延薄膜中发现了沿垂直晶体方向的椭圆扭曲纳米粒子,这与在单晶片中观察到的椭圆布洛赫斯格明子一致。因此,这些测量结果为Mn2RhSn薄膜中非共线自旋结构的形成提供了强有力的证据。实验结果表明,在这些薄膜中,可以利用磁性的局部磁场来删除单个纳米物体,也可以写出纳米粒子的集合。 低温强磁场原子力/磁力显微镜attoAFM/MFM I主要技术特点:温度范围:1.8K ..300 K磁场范围:0...9T (取决于磁体, 可选12T,9T-3T矢量磁体等)工作模式:AFM(接触式与非接触式), MFM样品定位范围:5×5×4.8 mm3扫描范围: 50×50 μm2@300 K, 30×30 μm2@4 K 商业化探针可升PFM, ct-AFM, CFM,cryoRAMAN, atto3DR等功能 图5. 低温强磁场原子力磁力显微镜以及attoDRY2100低温恒温器 参考文献:[1]. Parkin et al, Nanoscale Noncollinear Spin Textures in Thin Films of a D2d Heusler Compound,Adv. Mater. 2021, 33, 2101323.
  • 哈工大深圳马星课题组《ACS Nano》:可操作的免疫分析探针磁性纳米机器人用于自动化和高效的酶联免疫吸附检测
    哈工大深圳马星课题组《ACS Nano》:可操作的免疫分析探针磁性纳米机器人用于自动化和高效的酶联免疫吸附检测基于抗体抗原“特异性结合”的免疫分析已被广泛用于实验室研究和临床诊断中。其中,酶联免疫吸附试验(ELISA)是一种经典且功能强大的生化传感技术,可通过生物酶反应和化学比色法对超低浓度分析物进行定量。ELISA已广泛应用于医疗诊断、环境分析和食品安全等领域。然而,在传统ELISA检测中,抗原或抗体被包覆到多孔板(例如,96孔板)的孔壁上,这导致了三个主要缺点:(ⅰ) 由于所有步骤都在同一槽内进行,因此在每步反应前后需要多次清洗,以去除未结合的残留试剂和非特异性相互作用的分子,这给检测人员造成了繁重的体力劳动 (ⅱ) 此外,由于操作中存在的差异性也可能为检测结果带来误差。(ⅲ)检测物与抗原抗体是通过被动的扩散来实现结合,因此传统的ELISA检测需要较长的孵育时间。以上原因都造成了传统ELISA检测效率低的问题。近日,哈尔滨工业大学马星课题组提出了棒状磁驱动纳米机器人(MNR)作为可操作的免疫分析探针,实现自动高效的ELISA分析方法,称为纳米机器人激活ELISA(nR-ELISA)。为了制备MNR,研究人员利用外部磁场辅助实现Fe3O4磁性颗粒的自组装以及在其表层原位生长一层刚性氧化硅(SiO2)。紧接着将捕获抗体(Ab1)通过法学法修饰到其表面,最终成功制备了磁性可操作免疫分析探针(MNR-Ab1)。通过数值模拟研究了微尺度下MNR周围的流体速度分布,并通过实验结果验证了主动旋转MNR能够提高混合效率。为了使传统的ELISA检测过程实现自动化,研究人员通过三维打印设计并使用面投影微立体光刻技术(nanoArch P150, 摩方精密)制造了一个由三个功能槽组成的检测单元。MNR-Ab1在外部磁场的作用下,通过微通道实现在不同的功能槽间运动,参与不同的阶段的生化反应。主动旋转的MNR-Ab1s可以在微尺度下,通过加速物质交换实现抗原/抗体与待检测物的快速结合,从而达到缩短培养时间的目的。该工作实现了ELISA检测的自动化。在未来,为了实现ELISA的高通量检测,研究人员拟采用亥姆霍兹线圈来替代目前磁场发生器。并且通过数值模拟的方法证明了:亥姆霍兹线圈不仅可以提供足够大的操作空间,同时空间内的磁场偏差较小(图1 磁性纳米机器人实现了自动化和高效的ELISA(nR ELISA)分析示意图。图2 MNR的制备和运动特性表征。图3 MNRs实现了自动化ELISA检测。采用摩方精密P150面投影微立体光刻技术打印了检测单元。如图b所示,微通道的狭缝宽度为200 μm,狭缝间距为300 μm。文章链接:https://doi.org/10.1021/acsnano.1c05267官网:https://www.bmftec.cn/links/7
  • 扫描电镜不适合测磁性材料吗?——安徽大学林中清33载经验谈(11)
    p style=" text-align: justify text-indent: 2em " span style=" font-size: 16px font-family: 微软雅黑 " 【作者按】一直以来的观点都认为磁性材料不适合用电子显微镜来观察。理由似乎无可辩驳:电子显微镜的关键部件,磁透镜,会将磁性材料磁化并在透镜表面形成吸附。造成的影响是电镜性能大大的下降,若情况严重,会使得电镜无法形成图像。正是基于这一缘由,许多电镜室将磁性材料拒之门外,拒绝对这类样品进行检测。 /span /p p style=" text-align: justify text-indent: 2em " span style=" font-size: 16px font-family: 微软雅黑 " 虽然我们对磁性材料十分的在意,但对磁性材料的定义却很少能说得清楚,许多过分的误杀也由此产生。 /span /p p style=" text-align: justify text-indent: 2em " span style=" font-size: 16px font-family: 微软雅黑 " 什么是磁性材料?扫描电镜的磁透镜和磁性材料之间有何关联?怎样判断测试结果是否受样品磁性的干扰?如何对磁性较强的材料进行测试?怎么避免其对镜筒的污染?所有这些问题,都将在本文中给您一一解答。 /span /p section style=" box-sizing: border-box text-align: justify " section style=" text-align: center justify-content: center margin: 10px 0% position: static box-sizing: border-box " powered-by=" xiumi.us" section style=" display: inline-block width: auto vertical-align: top min-width: 10% max-width: 100% height: auto border-top: 1px solid rgb(92, 107, 192) border-top-left-radius: 0px padding: 0px 20px box-sizing: border-box " section style=" margin: 0px 0% position: static box-sizing: border-box " powered-by=" xiumi.us" section style=" display: inline-block min-width: 10% max-width: 100% vertical-align: top transform: matrix(1, 0, -0.2, 1, 0, 0) -webkit-transform: matrix(1, 0, -0.2, 1, 0, 0) -moz-transform: matrix(1, 0, -0.2, 1, 0, 0) -o-transform: matrix(1, 0, -0.2, 1, 0, 0) border-style: none none none solid border-width: 1px 5px 1px 0px border-radius: 0px border-color: rgba(255, 255, 255, 0) rgba(255, 255, 255, 0) rgb(92, 107, 192) rgb(223, 46, 0) padding: 5px 10px background-color: rgb(92, 107, 192) box-shadow: rgba(255, 255, 255, 0) 0px 0px 0px line-height: 1 letter-spacing: 0px width: auto height: auto box-sizing: border-box " section style=" color: rgb(255, 255, 255) font-size: 15px text-align: justify letter-spacing: 4px line-height: 1 box-sizing: border-box " powered-by=" xiumi.us" p style=" white-space: normal margin-top: 0px margin-bottom: 0px padding: 0px box-sizing: border-box " span style=" font-family: 微软雅黑 " strong span style=" font-size: 18px " 一、什么是磁性材料 /span /strong strong span style=" font-size: 18px " /span /strong /span /p /section /section /section /section /section /section p style=" text-align: justify text-indent: 2em " strong span style=" font-size: 16px font-family: 微软雅黑 " 1.1 物质磁性的来源 /span /strong /p p style=" text-align: justify text-indent: 2em " span style=" font-size: 16px font-family: 微软雅黑 " “磁性理论”起源于安培的“分子电流假说”:分子中存在回路电流,即分子电流,分子电流相当于一个最小的磁性单元。分子电流对外界的磁效应总和决定磁性是否对外显示。 /span /p p style=" text-align: justify text-indent: 2em " span style=" font-size: 16px font-family: 微软雅黑 " 安培理论是建立在当时分子学说体系的基础之上,现在我们知道组成物质的最基本粒子是原子,在原子学说的理论体系中,“分子电流”并不存在,故必须建立新的模型假说。 /span /p p style=" text-align: justify text-indent: 2em " span style=" font-size: 16px font-family: 微软雅黑 " 波尔在卢瑟福原子结构模型理论和普朗克量子理论的基础上,提出了被称为经典的原子模型假说(见经验谈4)。 /span /p p style=" text-align: justify text-indent: 2em " span style=" font-size: 16px font-family: 微软雅黑 " 基于原子模型假说,对物质磁性来源的解释是:物质的磁性源自物质原子中电子和原子核的磁矩。原子核的磁矩很小可以忽略,故物质的磁性取决于“电子磁矩”。电子的磁矩源自电子运动,电子的轨道运动形成“轨道磁矩”,自旋运动形成“自旋磁矩”。在充满电子的壳层中,电子的在轨运动占满了所有可能方向,各种方向的磁矩相互抵消,因此总角动量为零。我们在考虑物质磁性时只需考虑那些未填满电子的壳层,称为“磁性电子壳层”。物质对外显现磁性的状态,也取决于这个磁性电子壳层的状况。 /span /p p style=" text-align: justify text-indent: 2em " strong span style=" font-size: 16px font-family: 微软雅黑 " 1.2 磁性物质的分类 /span /strong /p p style=" text-align: justify text-indent: 2em " span style=" font-size: 16px font-family: 微软雅黑 " 物质的磁性源自原子中电子运动所形成的磁矩。任何物质都存在着电子的轨道运动和自旋运动,因此都存在着磁矩,只是依据电子填充核外电子轨道的情况按大类分为:反磁(抗磁)、顺磁、铁磁,这三大类磁性物质。 /span /p p style=" text-align: justify text-indent: 2em " strong span style=" font-size: 16px font-family: 微软雅黑 " 1.2.1 反磁性与反磁性物质 /span /strong /p p style=" text-align: justify text-indent: 2em " span style=" font-size: 16px font-family: 微软雅黑 " 反磁性也称为抗磁性。定义为:在外加磁场的作用下,电子的在轨运动会产生附加转动(Larmor进动),动量矩将发生变化,产生与外磁场相反的感生磁矩,表现出“反磁性”。应该说所有的物质进入磁场都会表现出反磁的特性,那么为啥还有反磁性物质这一分类呢? /span /p p style=" text-align: justify text-indent: 2em " span style=" font-size: 16px font-family: 微软雅黑 " 反磁性物质:当物质的原子核外电子充满所有轨道时,无论是单质还是配合物所形成的杂化轨道,电子各向磁矩都将完全的相互抵消,因此该类物质在进入磁场后电子只表现出反磁特性。称为反磁性物质。 /span /p p style=" text-align: justify text-indent: 2em " strong span style=" font-size: 16px font-family: 微软雅黑 " 1.2.2 顺磁性物质 /span /strong /p p style=" text-align: justify text-indent: 2em " span style=" font-size: 16px font-family: 微软雅黑 " 顺磁性物质:物质的分子或原子中含有未成对电子,这些电子的磁矩在各自的原子和分子中无法完全抵消。而热扰动的影响使原子和分子间的未成对电子无序排列,造成个体磁矩的互相抵消,最终合磁矩为零,物质整体对外不显磁性。 /span /p p style=" text-align: justify text-indent: 2em " span style=" font-size: 16px font-family: 微软雅黑 " 物体进入磁场后,未成对电子将受磁场作用而趋向磁场排列,同时热扰动的作用使其趋向混乱排列,但综合结果是在磁场方向产生一个磁矩分量,对外表现出磁性,低温会使得磁矩分量加强。常温下拆除磁场后,热扰动的作用会使这些单电子重归无序排列,合磁矩归零,对外不表现磁性。 /span /p p style=" text-align: justify text-indent: 2em " span style=" font-size: 16px font-family: 微软雅黑 " 顺磁物质按照磁性强弱可粗分为:弱顺磁、顺磁、超顺磁。“弱顺磁”物质进入磁场,对外表现出的磁性极弱,需极精密设备才能测出。“超顺磁”物质靠近磁场后,表现出的磁性极强接近铁磁。普通顺磁材料的磁性介于两者之间。 /span /p p style=" text-align: justify text-indent: 2em " span style=" font-size: 16px font-family: 微软雅黑 " 顺磁物质大致包括以下几大类:过渡元素、稀土元素、还有铝、铂等金属,氮的氧化物、稀土金属的盐,玻璃,水,非惰性气体等等。 /span /p p style=" text-align: justify text-indent: 2em " strong span style=" font-size: 16px font-family: 微软雅黑 " 1.2.3 铁磁性物质 /span /strong /p p style=" text-align: justify text-indent: 2em " span style=" font-size: 16px font-family: 微软雅黑 " 相对于顺磁性物质,铁磁性物质原子核外的电子轨道上有更多未配对电子。这些未配对电子的自旋方向趋同,形成所谓的 “磁畴”。 “磁畴”可认为是同方向电子的集合,由其形成的“饱和磁矩”要远大于单电子形成的磁矩。 /span /p p style=" text-align: justify text-indent: 2em " span style=" font-size: 16px font-family: 微软雅黑 " 铁磁性物质各原子或配合物所形成的磁畴,相互之间大小和方向都不相同。如同顺磁性物质一样,在热扰动影响下这些磁畴杂乱排列,最后形成的合磁矩为零。 /span /p p style=" text-align: justify text-indent: 2em " span style=" font-size: 16px font-family: 微软雅黑 " 当铁磁物质进入磁场,这些磁畴在磁场影响下趋向沿磁场方向的趋同排列,而热扰动影响下的杂乱排列趋势相对磁场对磁畴的影响要小很多,故该物质进入磁场后表现出的合磁矩比顺磁性物质要强大得多。当外加磁场达到一定值(饱和值),移除磁场影响后,常规的热扰动无法使得这些磁畴回归无序排列状态,合磁矩保持进入磁场的强度,物质对外继续保持被磁化的状态。该现象被称为“磁滞”现象。 /span /p p style=" text-align: justify text-indent: 2em " span style=" font-size: 16px font-family: 微软雅黑 " 高温(500-600度)所形成的热扰动才会使得处于“磁滞”状态的磁畴重新回归无序排列,这就是高温消磁的缘由。一些所谓的交变磁场消磁器也能打乱磁畴的有序排列,但是效果最佳、消磁最彻底的方法,还是高温消磁。 /span /p p style=" text-align: justify text-indent: 2em " span style=" font-size: 16px font-family: 微软雅黑 " “磁滞”现象最先在铁器上被发现,故该磁特性被称为“铁磁性”。过渡族金属及其合金和化合物都具有这种特性。 /span /p p style=" text-align: justify text-indent: 2em " span style=" font-size: 16px font-family: 微软雅黑 " 综上所述,物质的磁性来自它们原子核外电子的运动,严格来说所有的物质都带有磁性。依据物质进入磁场后对外所表现出来的磁性可分为:反磁、顺磁以及铁磁性材料。顺磁性材料依据磁性强弱可粗分为弱顺磁、顺磁、超顺磁。 /span /p p style=" text-align: justify text-indent: 2em " span style=" font-size: 16px font-family: 微软雅黑 " 反磁或弱顺磁材料进入磁场,对外不表现出磁性或表现出的磁性极其微弱(只有精密仪器才能测得);顺磁及超顺磁性材料进入磁场后会表现出较强的磁性;铁磁性材料不仅进入磁场表现出强磁性,离开磁场后还具有强烈的磁滞现象。 /span /p p style=" text-align: justify text-indent: 2em " span style=" font-size: 16px font-family: 微软雅黑 " /span /p section style=" box-sizing: border-box text-align: justify " section style=" text-align: center justify-content: center margin: 10px 0% position: static box-sizing: border-box " powered-by=" xiumi.us" section style=" display: inline-block width: auto vertical-align: top min-width: 10% max-width: 100% height: auto border-top: 1px solid rgb(92, 107, 192) border-top-left-radius: 0px padding: 0px 20px box-sizing: border-box " section style=" margin: 0px 0% position: static box-sizing: border-box " powered-by=" xiumi.us" section style=" display: inline-block min-width: 10% max-width: 100% vertical-align: top transform: matrix(1, 0, -0.2, 1, 0, 0) -webkit-transform: matrix(1, 0, -0.2, 1, 0, 0) -moz-transform: matrix(1, 0, -0.2, 1, 0, 0) -o-transform: matrix(1, 0, -0.2, 1, 0, 0) border-style: none none none solid border-width: 1px 5px 1px 0px border-radius: 0px border-color: rgba(255, 255, 255, 0) rgba(255, 255, 255, 0) rgb(92, 107, 192) rgb(223, 46, 0) padding: 5px 10px background-color: rgb(92, 107, 192) box-shadow: rgba(255, 255, 255, 0) 0px 0px 0px line-height: 1 letter-spacing: 0px width: auto height: auto box-sizing: border-box " section style=" color: rgb(255, 255, 255) font-size: 15px text-align: justify letter-spacing: 4px line-height: 1 box-sizing: border-box " powered-by=" xiumi.us" p style=" white-space: normal margin-top: 0px margin-bottom: 0px padding: 0px box-sizing: border-box " span style=" font-size: 18px font-family: 微软雅黑 " strong 二、电镜对磁性材料的影响 /strong /span /p /section /section /section /section /section /section p style=" text-align: justify text-indent: 2em " span style=" font-size: 16px font-family: 微软雅黑 " 电子显微镜的光源是高能电子束,对电子束进行会聚的最佳方案是采用电磁透镜。因此在电镜中充满着各种磁场,不可避免会对进入磁场的那些易被磁化的样品产生影响。 /span /p p style=" text-align: justify text-indent: 2em " span style=" font-size: 16px font-family: 微软雅黑 " 扫描电镜对样品产生磁影响的主要部件是物镜。不同类型的物镜对样品的磁影响不同。扫描电镜物镜类型分为三类:外透镜、内透镜、半内透镜。下面将分别加以探讨。 /span /p p style=" text-align: justify text-indent: 2em " strong span style=" font-size: 16px font-family: 微软雅黑 " 2.1 外透镜物镜 /span /strong /p p style=" text-align: justify text-indent: 2em " span style=" font-size: 16px font-family: 微软雅黑 " 物镜磁场被封闭在物镜内部,样品置于物镜的外围,物镜的磁场对样品产生的影响极其微弱或基本不产生影响。 /span span style=" font-family: 微软雅黑 text-indent: 2em " & nbsp & nbsp /span /p p style=" text-align:center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202008/uepic/8410991c-d00d-4266-b0b6-1091eb88c9ab.jpg" title=" 1.png" alt=" 1.png" / /p p style=" text-align: justify text-indent: 2em " span style=" font-size: 16px font-family: 微软雅黑 " 从上图可见,外透镜物镜模式,磁场影响不到样品,样品可以极度靠近物镜观察。但由于磁场的封闭,使得进入物镜的样品表面电子信息减少,不利于镜筒内探头对其接收。对观察表面信息较弱的样品,成像质量不如其它透镜模式。 /span /p p style=" text-align: justify text-indent: 2em " strong span style=" font-size: 16px font-family: 微软雅黑 " 2.2内透镜物镜 /span /strong /p p style=" text-align: justify text-indent: 2em " span style=" font-size: 16px font-family: 微软雅黑 " 样品置于物镜磁场中,物镜磁场对样品磁影响极大。 /span /p p style=" text-align: justify text-indent: 2em " span style=" font-family: 微软雅黑 text-indent: 2em " /span /p p style=" text-align:center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202008/uepic/36bc7008-2663-4aa7-91a8-e46dd75a471c.jpg" title=" 2.png" alt=" 2.png" / /p p style=" text-align: justify text-indent: 2em " span style=" font-size: 16px font-family: 微软雅黑 " 如上图,样品置于磁场中。物镜磁场将电子束激发并溢出样品的电子信息基本都收集到探头。探头接收到更为充足的样品信息,故成像质量优异,特别适合弱信号样品形成高分辨像。缺点是:样品尺寸不可过大。对样品的磁性质限制大,只允许对反磁性或磁性极弱的弱顺磁样品进行测试。 /span /p p style=" text-align: justify text-indent: 2em " strong span style=" font-size: 16px font-family: 微软雅黑 " 2.3半内透镜物镜 /span /strong /p p style=" text-align: justify text-indent: 2em " span style=" font-size: 16px font-family: 微软雅黑 " 物镜对样品仓泄漏部分磁场,样品在靠近物镜时(WD≤2mm)进入磁场,受到磁场的强烈影响。但随着工作距离加大,其受磁场的影响逐渐减弱,远离物镜时(WD≥7mm)受磁场影响极小,WD& nbsp & gt & nbsp 8mm以后基本不受磁场的影响。 /span /p p style=" text-align: justify text-indent: 2em " span style=" font-size: 16px font-family: 微软雅黑 " 以上WD是指样品上最高点到物镜下平面的距离。 /span /p p style=" text-align:center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202008/uepic/aa3a5112-d480-4bb6-a699-15e1a7a9c536.jpg" title=" 3.png" alt=" 3.png" / /p p style=" text-align: justify text-indent: 2em " span style=" font-size: 16px font-family: 微软雅黑 " 该透镜模式被目前绝大多数追求高分辨性能的扫描电镜所采用。特点是:镜筒内探头对样品电子信息的接收能力介于外透镜和内透镜模式之间;对样品的检测尺寸、磁特性的限制不大;有利于对绝大部分样品进行高分辨观察。 /span /p p style=" text-align: justify text-indent: 2em " span style=" font-size: 16px font-family: 微软雅黑 " 高分辨扫描电镜为了帮助镜筒内探头获取更多的二次电子,基本上都采用半内透镜物镜设计,其优势在于兼顾面较为广泛。顺磁性、铁磁性样品只要保持一定工作距离且本身不带有磁性,测试效果与反磁性物质没有区别。 /span /p p style=" text-align: justify text-indent: 2em " span style=" font-size: 16px font-family: 微软雅黑 " /span /p section style=" box-sizing: border-box text-align: justify " section style=" text-align: center justify-content: center margin: 10px 0% position: static box-sizing: border-box " powered-by=" xiumi.us" section style=" display: inline-block width: auto vertical-align: top min-width: 10% max-width: 100% height: auto border-top: 1px solid rgb(92, 107, 192) border-top-left-radius: 0px padding: 0px 20px box-sizing: border-box " section style=" margin: 0px 0% position: static box-sizing: border-box " powered-by=" xiumi.us" section style=" display: inline-block min-width: 10% max-width: 100% vertical-align: top transform: matrix(1, 0, -0.2, 1, 0, 0) -webkit-transform: matrix(1, 0, -0.2, 1, 0, 0) -moz-transform: matrix(1, 0, -0.2, 1, 0, 0) -o-transform: matrix(1, 0, -0.2, 1, 0, 0) border-style: none none none solid border-width: 1px 5px 1px 0px border-radius: 0px border-color: rgba(255, 255, 255, 0) rgba(255, 255, 255, 0) rgb(92, 107, 192) rgb(223, 46, 0) padding: 5px 10px background-color: rgb(92, 107, 192) box-shadow: rgba(255, 255, 255, 0) 0px 0px 0px line-height: 1 letter-spacing: 0px width: auto height: auto box-sizing: border-box " section style=" color: rgb(255, 255, 255) font-size: 15px text-align: justify letter-spacing: 4px line-height: 1 box-sizing: border-box " powered-by=" xiumi.us" p style=" white-space: normal margin-top: 0px margin-bottom: 0px padding: 0px box-sizing: border-box " span style=" font-size: 18px font-family: 宋体, SimSun " strong 三、如何判断样品的磁性 /strong /span /p /section /section /section /section /section /section p style=" text-align: justify text-indent: 2em " span style=" font-size: 16px font-family: 微软雅黑 " 如何评判样品磁性的强弱是否适合进行扫描电镜检测。 /span /p p style=" text-align: justify text-indent: 2em " span style=" font-size: 16px font-family: 微软雅黑 " 许多实验室都依据样品名称或采用磁铁对样品进行测试。 /span /p p style=" text-align: justify text-indent: 2em " span style=" font-size: 16px font-family: 微软雅黑 " 1.& nbsp 依据名称:把磁性样品等同于铁、钴、镍,并扩展为含 /span /p p style=" text-align: justify text-indent: 2em " span style=" font-size: 16px font-family: 微软雅黑 " & nbsp & nbsp 铁、钴、镍的所有材料。 /span /p p style=" text-align: justify text-indent: 2em " span style=" font-size: 16px font-family: 微软雅黑 " 2.利用磁铁:只要磁铁可以吸引,就被认为是磁性样品。 /span /p p style=" text-align: justify text-indent: 2em " span style=" font-size: 16px font-family: 微软雅黑 " 凡符合以上所罗列的样品,统统列为扫描电镜的禁测样品。实践证明,这种判断方式简单粗暴,错误百出。 /span /p p style=" text-align: justify text-indent: 2em " span style=" font-size: 16px font-family: 微软雅黑 " 通过前面的介绍我们知道,材料按磁性区分为反磁性、顺磁性、铁磁性物质。弱顺磁、反磁性物质进入磁场不会受到磁场影响,顺磁、超顺磁、铁磁性材料进入磁场会被磁化。一旦离开磁场,顺磁、超顺磁物质恢复原状,而铁磁性物质会表现出强烈的磁滞现象。 /span /p p style=" text-align: justify text-indent: 2em " span style=" font-size: 16px font-family: 微软雅黑 " 依据样品的磁特性和物镜的分类,样品磁特性对电镜测试的影响首先要考虑以下两种情况: span style=" font-size: 16px font-family: 微软雅黑 color: rgb(0, 176, 240) " strong 样品本身带磁或不带磁 /strong /span 。 /span /p p style=" text-align: justify text-indent: 2em " span style=" font-size: 16px font-family: 微软雅黑 " A)& nbsp 样品本身带磁:所有电镜都会受到影响。吸附污染镜筒、扰乱电子束影响测试结果,这些都是样品带磁的直接后果。可采用铁制品(薄铁片、大头针)来检测样品是否带磁。 /span /p p style=" text-align: justify text-indent: 2em " span style=" font-size: 16px font-family: 微软雅黑 " B)& nbsp 样品本身不带磁性: /span /p p style=" text-align: justify text-indent: 2em " span style=" font-size: 16px font-family: 微软雅黑 " 1.& nbsp 物镜采用内透镜模式,测试时需检测样品是否为顺 /span /p p style=" text-align: justify text-indent: 2em " span style=" font-size: 16px font-family: 微软雅黑 " 磁材料。用磁铁,如磁铁能吸引该样品,则不可测。& nbsp & nbsp /span /p p style=" text-align: justify text-indent: 2em " span style=" font-size: 16px font-family: 微软雅黑 " 2.& nbsp 物镜是半内透镜模式,大工作距离(WD& gt 8mm)测试& nbsp /span /p p style=" text-align: justify text-indent: 2em " span style=" font-size: 16px font-family: 微软雅黑 " 无限制,小工作距离测试,则需如上检测其顺磁性。 /span /p p style=" text-align: justify text-indent: 2em " span style=" font-size: 16px font-family: 微软雅黑 " 3. 外透镜物镜模式,理论上不受工作距离影响。 /span /p p style=" text-align: justify text-indent: 2em " span style=" font-size: 16px font-family: 微软雅黑 " 其次, strong span style=" font-size: 16px font-family: 微软雅黑 color: rgb(0, 176, 240) " 样品的合磁矩会随着物体体积的改变而发生变化,体积越小合磁矩越微弱 /span /strong 。这是量变到质变的关系,因此对于外透镜和半内透镜模式设计的扫描电镜,可采用以下的方式对测试样品进行筛选,并选用与之相匹配的样品处理方式。 /span /p p style=" text-align: justify text-indent: 2em " span style=" font-size: 16px font-family: 微软雅黑 " a.& nbsp 直径在两、三百纳米以下的小颗粒,合磁矩总量极其微弱,一般不会对测试工作产生太大的影响。充分的分散、采用稍大一些的工作距离,即可放心测试。 /span /p p style=" text-align: justify text-indent: 2em " span style=" font-size: 16px font-family: 微软雅黑 " 这类小颗粒材料的堆积体容易使得合磁矩增加,松散的堆积与基底结合不牢,易受电子束轰击溅射并吸附在镜筒上。达一定值,会对仪器性能产生影响,特别是磁性稍强一些的纳米颗粒。故制样时,应极力避免堆积体的形成。 /span /p p style=" text-align: justify text-indent: 2em " span style=" font-size: 16px font-family: 微软雅黑 " b.& nbsp 微米级别颗粒所形成的合磁矩就应当引起重视。充分的固定和远离镜筒(WD& gt 8mm)是保证样品测试的关键。 /span /p p style=" text-align: justify text-indent: 2em " span style=" font-size: 16px font-family: 微软雅黑 " 个人体会是绝大部分情况:合磁矩较大的样品,所需观察的表面细节都较大,采用样品仓探头在大工作距离(15mm)下观察,获取的样品信息将会更加充分。 /span /p p style=" text-align: justify text-indent: 2em " span style=" font-size: 16px font-family: 微软雅黑 " 固定、分散好样品,控制好工作距离,只要样品本身不带磁(铁片试),进行SEM测试基本都不会有问题。 /span /p p style=" text-align: justify text-indent: 2em " span style=" font-size: 16px font-family: 微软雅黑 " /span /p section style=" box-sizing: border-box text-align: justify " section style=" position: static box-sizing: border-box " powered-by=" xiumi.us" section style=" text-align: center justify-content: center margin: 10px 0% position: static box-sizing: border-box " section style=" display: inline-block width: auto vertical-align: top min-width: 10% max-width: 100% height: auto border-top: 1px solid rgb(92, 107, 192) border-top-left-radius: 0px padding: 0px 20px box-sizing: border-box " section style=" margin: 0px 0% position: static box-sizing: border-box " powered-by=" xiumi.us" section style=" display: inline-block min-width: 10% max-width: 100% vertical-align: top transform: matrix(1, 0, -0.2, 1, 0, 0) -webkit-transform: matrix(1, 0, -0.2, 1, 0, 0) -moz-transform: matrix(1, 0, -0.2, 1, 0, 0) -o-transform: matrix(1, 0, -0.2, 1, 0, 0) border-style: none none none solid border-width: 1px 5px 1px 0px border-radius: 0px border-color: rgba(255, 255, 255, 0) rgba(255, 255, 255, 0) rgb(92, 107, 192) rgb(223, 46, 0) padding: 5px 10px background-color: rgb(92, 107, 192) box-shadow: rgba(255, 255, 255, 0) 0px 0px 0px line-height: 1 letter-spacing: 0px width: auto height: auto box-sizing: border-box " section style=" color: rgb(255, 255, 255) font-size: 12px text-align: justify letter-spacing: 4px line-height: 1 box-sizing: border-box " powered-by=" xiumi.us" p style=" white-space: normal margin-top: 0px margin-bottom: 0px padding: 0px box-sizing: border-box " strong span style=" font-family: 微软雅黑 font-size: 18px " 四、如何对磁性较强的样品进行SEM测试 /span /strong /p /section /section /section /section /section /section /section p style=" text-align: justify text-indent: 2em " span style=" font-size: 16px font-family: 微软雅黑 " 对磁性较强的样品应当排除采用内透镜物镜设计的扫描电镜对其进行测试。下面的讨论主要针对外透镜和半内透镜。 /span /p p style=" text-align: justify text-indent: 2em " strong span style=" font-size: 16px font-family: 微软雅黑 " 4.1外透镜物镜模式 /span /strong /p p style=" text-align: justify text-indent: 2em " span style=" font-size: 16px font-family: 微软雅黑 " 采用这类物镜模式的扫面电镜。无论物质具有铁磁或是顺磁特性,只要未被磁化,理论上可以在任何位置进行测试。 /span /p p style=" text-align: justify text-indent: 2em " span style=" font-size: 16px font-family: 微软雅黑 " 但是样品最好能被充分固定,特别是粉末样品,更要保证每一个颗粒都有很好的固定。否则小工作距离观察,粉末颗粒在电子束轰击下,也容易溅射进镜筒对磁场产生干扰。 /span /p p style=" text-align: justify text-indent: 2em " strong span style=" font-size: 16px font-family: 微软雅黑 " 4.2半内透镜物镜模式 /span /strong /p p style=" text-align: justify text-indent: 2em " span style=" font-size: 16px font-family: 微软雅黑 " 这类物镜模式由于有部分磁场外泄,因此样品必须远离物镜观察。具体工作距离依据样品合磁矩大小的不同而不同,一般来说大于8mm工作距离是比较安全的。其他操作和外透镜模式基本相同,只是固定必须更为加强。 /span /p p style=" text-align: justify text-indent: 2em " span style=" font-size: 16px font-family: 微软雅黑 " 对于大型块状物体建议使用夹持台,以保证测试的安全。 /span /p p style=" text-align: justify text-indent: 2em " span style=" font-size: 16px font-family: 微软雅黑 " 如果发现有像散消除不掉的现象,基本说明样品被磁化,可通过高温或消磁器进行消磁处理来排除磁场干扰。 /span /p p style=" text-align: justify text-indent: 2em " span style=" font-size: 16px font-family: 微软雅黑 " 铁磁性、顺磁性物质的细节一般都在几十纳米以上,大工作距离下采用样品仓探头观察,将呈现更为丰富的样品信息。 /span /p p style=" text-align: justify text-indent: 2em " span style=" font-size: 16px font-family: 微软雅黑 " 前面的文章已经探讨过,小工作距离、镜筒探头组合,适合观察松软样品的几纳米细节信息,拥有这种特性及细节的样品,基本都是反磁或弱顺磁样品,漏磁对其不产生影响。 /span /p p style=" text-align: justify text-indent: 2em " span style=" font-size: 16px font-family: 微软雅黑 text-align: justify text-indent: 32px " /span /p section style=" box-sizing: border-box text-align: justify " section style=" position: static box-sizing: border-box " powered-by=" xiumi.us" section style=" text-align: center justify-content: center margin: 10px 0% position: static box-sizing: border-box " section style=" display: inline-block width: auto vertical-align: top min-width: 10% max-width: 100% height: auto border-top: 1px solid rgb(92, 107, 192) border-top-left-radius: 0px padding: 0px 20px box-sizing: border-box " section style=" margin: 0px 0% position: static box-sizing: border-box " powered-by=" xiumi.us" section style=" display: inline-block min-width: 10% max-width: 100% vertical-align: top transform: matrix(1, 0, -0.2, 1, 0, 0) -webkit-transform: matrix(1, 0, -0.2, 1, 0, 0) -moz-transform: matrix(1, 0, -0.2, 1, 0, 0) -o-transform: matrix(1, 0, -0.2, 1, 0, 0) border-style: none none none solid border-width: 1px 5px 1px 0px border-radius: 0px border-color: rgba(255, 255, 255, 0) rgba(255, 255, 255, 0) rgb(92, 107, 192) rgb(223, 46, 0) padding: 5px 10px background-color: rgb(92, 107, 192) box-shadow: rgba(255, 255, 255, 0) 0px 0px 0px line-height: 1 letter-spacing: 0px width: auto height: auto box-sizing: border-box " section style=" color: rgb(255, 255, 255) font-size: 12px text-align: justify letter-spacing: 4px line-height: 1 box-sizing: border-box " powered-by=" xiumi.us" p style=" white-space: normal margin-top: 0px margin-bottom: 0px padding: 0px box-sizing: border-box " span style=" font-family: 微软雅黑 font-size: 18px " strong 五、半内透镜物镜测试强磁性样品的实例 /strong /span /p /section /section /section /section /section /section /section p style=" text-align:center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202008/uepic/916e6529-9bb5-49a2-b8d3-57f48734f16e.jpg" title=" 4.png" alt=" 4.png" / /p p style=" text-align:center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202008/uepic/7674d57d-40c8-42c8-bfaf-3d270d6d42b4.jpg" title=" 5.png" alt=" 5.png" / /p p style=" text-align:center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202008/uepic/ca2e06fc-9f45-4296-a1b1-717ac9a0af50.jpg" title=" 6.png" alt=" 6.png" / /p p style=" text-align:center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202008/uepic/868c5744-d43f-4cdd-acae-e6012c5ba6b5.jpg" title=" 7.png" alt=" 7.png" / /p p style=" text-align: justify text-indent: 2em " span style=" font-size: 16px font-family: 微软雅黑 " /span /p p style=" text-align:center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202008/uepic/978c64de-0c97-4b8d-9e4e-5a032c4cacd7.jpg" title=" 8.png" alt=" 8.png" / /p p style=" text-align:center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202008/uepic/0ee817bf-2352-4e19-92dd-37e18e7d0f0e.jpg" title=" 9.png" alt=" 9.png" / /p p style=" text-align: justify text-indent: 2em " span style=" font-size: 16px font-family: 微软雅黑 " /span /p section style=" box-sizing: border-box text-align: justify " section style=" position: static box-sizing: border-box " powered-by=" xiumi.us" section style=" text-align: center justify-content: center margin: 10px 0% position: static box-sizing: border-box " section style=" display: inline-block width: auto vertical-align: top min-width: 10% max-width: 100% height: auto border-top: 1px solid rgb(92, 107, 192) border-top-left-radius: 0px padding: 0px 20px box-sizing: border-box " section style=" margin: 0px 0% position: static box-sizing: border-box " powered-by=" xiumi.us" section style=" display: inline-block min-width: 10% max-width: 100% vertical-align: top transform: matrix(1, 0, -0.2, 1, 0, 0) -webkit-transform: matrix(1, 0, -0.2, 1, 0, 0) -moz-transform: matrix(1, 0, -0.2, 1, 0, 0) -o-transform: matrix(1, 0, -0.2, 1, 0, 0) border-style: none none none solid border-width: 1px 5px 1px 0px border-radius: 0px border-color: rgba(255, 255, 255, 0) rgba(255, 255, 255, 0) rgb(92, 107, 192) rgb(223, 46, 0) padding: 5px 10px background-color: rgb(92, 107, 192) box-shadow: rgba(255, 255, 255, 0) 0px 0px 0px line-height: 1 letter-spacing: 0px width: auto height: auto box-sizing: border-box " section style=" color: rgb(255, 255, 255) font-size: 12px text-align: justify letter-spacing: 4px line-height: 1 box-sizing: border-box " powered-by=" xiumi.us" p style=" white-space: normal margin-top: 0px margin-bottom: 0px padding: 0px box-sizing: border-box " strong span style=" font-size: 18px font-family: 微软雅黑 " 六、总结 /span /strong /p /section /section /section /section /section /section /section p style=" text-align: justify text-indent: 2em " span style=" font-size: 16px font-family: 微软雅黑 " 物质的磁性主要来自于核外电子的在轨运动,因此所有物质都具有一定磁性。依据物质进入磁场后对外表现出的磁特性可将物质分为:反磁性、顺磁性、铁磁性这三类。 /span /p p style=" text-align: justify text-indent: 2em " span style=" font-size: 16px font-family: 微软雅黑 " 反磁性物质由于核外不存在未成对电子,无论是否进入磁场,其合磁矩都为零,对外不表现出磁性。 /span /p p style=" text-align: justify text-indent: 2em " span style=" font-size: 16px font-family: 微软雅黑 " 顺磁性物质核外存在未成对电子,故具有一定的个体磁矩。热扰动的影响使得原子或分子间未成对电子排列杂乱,个体磁矩互相抵消,最终合磁矩为零,对外不表现磁性。当这类物质进入磁场,未成对电子受磁场的影响,克服热扰动的束缚而按磁场方向趋同排列,合磁矩不为零,将对外表现出磁性。由于合磁矩较弱,离开磁场后热扰动会使得这些未成对电子重归无序,磁性也随之消失。依据磁性的强弱,顺磁性物质可分为:弱顺磁、顺磁、超顺磁。 /span /p p style=" text-align: justify text-indent: 2em " span style=" font-size: 16px font-family: 微软雅黑 " 铁磁性物质的原子核外存在多个方向一致的未成对电子,形成“磁畴”。磁畴的合磁矩要远强于单个未成对电子,因此在离开磁场后,常温下,热扰动无法使这些磁畴重归无序,对外表现出所谓“磁滞”现象。该现象最先出现在铁器上,故被称为“铁磁性”。500度以上的高温,热扰动会使得磁畴重归无序,磁滞现象随即消失,这就是所谓的“高温消磁”。 /span /p p style=" text-align: justify text-indent: 2em " span style=" font-size: 16px font-family: 微软雅黑 " 扫描电镜的物镜有三种模式:外透镜、内透镜、半内透镜。 /span /p p style=" text-align: justify text-indent: 2em " span style=" font-size: 16px font-family: 微软雅黑 " 外透镜模式:物镜磁场封闭在透镜中不对外泄露,因此样品受磁场影响极小。缺点是镜筒内探头获取的样品信息较少,不利于形成样品的高分辨形貌像。 /span /p p style=" text-align: justify text-indent: 2em " span style=" font-size: 16px font-family: 微软雅黑 " 内透镜模式:样品置入物镜磁场,受磁场影响极大。优点是镜筒内探头获取样品信息充分,有利于高分辨像的形成。 /span /p p style=" text-align: justify text-indent: 2em " span style=" font-size: 16px font-family: 微软雅黑 " 该物镜模式对样品的限制极大。体积大小是一方面,更关键在于对样品磁性质的限制,故应用面不大,市占率不高。 /span /p p style=" text-align: justify text-indent: 2em " span style=" font-size: 16px font-family: 微软雅黑 " 半内透镜模式:物镜对样品仓泄漏部分磁场,小工作距离时样品进入物镜泄漏的磁场,大工作距离样品远离物镜磁场。该透镜模式兼顾了外透镜和内透镜模式的优、缺点。 /span /p p style=" text-align: justify text-indent: 2em " span style=" font-size: 16px font-family: 微软雅黑 " 目前外透镜及半内透镜模式是高分辨扫描电镜的两类主力机型。主流的观点认为: 外透镜模式适合磁性材料观察,半内透镜模式适合样品的高分辨观察。 /span /p p style=" text-align: justify text-indent: 2em " span style=" font-size: 16px font-family: 微软雅黑 " 通过对物质的磁性及物镜类型的仔细剖析发现,这种观念显得过于简单和偏颇。其存在的根源是基于两个错误概念: /span /p p style=" text-align: justify text-indent: 2em " span style=" font-size: 16px font-family: 微软雅黑 " 1.& nbsp 小工作距离才能获得高分辨像,并引伸为是进行扫描 & nbsp 电镜高分辨测试的基本选择。 /span /p p style=" text-align: justify text-indent: 2em " span style=" font-size: 16px font-family: 微软雅黑 " 2.& nbsp 磁性材料才有磁性,且一定会被半内透镜物镜所磁化。 /span /p p style=" text-align: justify text-indent: 2em " span style=" font-size: 16px font-family: 微软雅黑 " 在样品的测试工作中,常常发现实际情况却是如下表现。 /span /p p style=" text-align: justify text-indent: 2em " span style=" font-size: 16px font-family: 微软雅黑 " 样品被磁化:无论哪种物镜模式都不会获得满意的结果。电子束都会被干扰,也都有可能被吸到物镜中去。 /span /p p style=" text-align: justify text-indent: 2em " span style=" font-size: 16px font-family: 微软雅黑 " 样品未被磁化:理论上外透镜物镜模式对样品进行测试可不受限制;半内透镜物镜模式,样品需在大工作距离下测试。 /span /p p style=" text-align: justify text-indent: 2em " span style=" font-size: 16px font-family: 微软雅黑 " 工作距离和图像分辨力之间并非是一种单调的变化关系。需要获取的样品表面信息细节大于20纳米,采用大工作距离、样品仓探头组合反而有更高的图像分辨力。 /span /p p style=" text-align: justify text-indent: 2em " span style=" font-size: 16px font-family: 微软雅黑 " 顺磁性、铁磁性物质的表面细节都较粗,在大工作距离下测试,获得的结果更充分,细节分辨更优异。因此这类样品更适合在大工作距离下采用样品仓探头来观察。 /span /p p style=" text-align: justify text-indent: 2em " span style=" font-size: 16px font-family: 微软雅黑 " 近几篇文章都在反复且充分的展示这样的结果:大工作距离测试对于扫描电镜来说极为关键。它不仅能给我们带来更多的样品信息,还充分扩展了应对疑难样品的操作空间。 /span /p p style=" text-align: justify text-indent: 2em " span style=" font-size: 16px font-family: 微软雅黑 " 特别是对于磁性较强的样品,扫描电镜在大工作距离测试时的分辨能力越强大,获取的样品表面信息就越充分。 /span /p p style=" text-align: justify text-indent: 2em " strong span style=" font-size: 16px font-family: 微软雅黑 " 参考书籍: /span /strong /p p style=" text-align: justify text-indent: 2em " span style=" font-size: 16px font-family: 微软雅黑 " 《扫描电镜与能谱仪分析技术》张大同2009年2月1日 /span /p p style=" text-align: justify text-indent: 2em " span style=" font-size: 16px font-family: 微软雅黑 " 华南理工出版社 /span /p p style=" text-align: justify text-indent: 2em " span style=" font-size: 16px font-family: 微软雅黑 " 《微分析物理及其应用》 丁泽军等 & nbsp & nbsp & nbsp 2009年1月 /span /p p style=" text-align: justify text-indent: 2em " span style=" font-size: 16px font-family: 微软雅黑 " 中科大出版社 /span /p p style=" text-align: justify text-indent: 2em " span style=" font-size: 16px font-family: 微软雅黑 " 《自然辩证法》 & nbsp 恩格斯 & nbsp 于光远等译 1984年10月 /span /p p style=" text-align: justify text-indent: 2em " span style=" font-size: 16px font-family: 微软雅黑 " 人民出版社 & nbsp /span /p p style=" text-align: justify text-indent: 2em " span style=" font-size: 16px font-family: 微软雅黑 " 《显微传》 & nbsp 章效峰 2015年10月 /span /p p style=" text-align: justify text-indent: 2em " span style=" font-size: 16px font-family: 微软雅黑 " & nbsp 清华大学出版社 /span /p p style=" text-align: justify text-indent: 2em " span style=" font-size: 16px font-family: 微软雅黑 " 日立S-4800冷场发射扫描电镜操作基础和应用介绍 /span /p p style=" text-align: justify text-indent: 2em " span style=" font-size: 16px font-family: 微软雅黑 " 北京天美高新科学仪器有限公司 & nbsp 高敞 2013年6月 /span /p p style=" text-align: justify text-indent: 2em " span style=" font-size: 16px font-family: 微软雅黑 " img style=" max-width: 100% max-height: 100% float: left width: 80px height: 124px " src=" https://img1.17img.cn/17img/images/202008/uepic/3f96819c-185b-42ce-b06e-a5d9445545c0.jpg" title=" 111.jpg" alt=" 111.jpg" width=" 80" height=" 124" border=" 0" vspace=" 0" / strong 作者简介: /strong 林中清,1987年入职安徽大学现代实验技术中心从事扫描电镜管理及测试工作。32年的电镜知识及操作经验的积累,渐渐凝结成其对扫描电镜全新的认识和理论,使其获得与众不同的完美测试结果和疑难样品应对方案,在同行中拥有很高的声望。2011年在利用PHOTOSHIOP 对扫描电镜图片进行伪彩处理方面的突破,其电镜显微摄影作品分别被《中国卫生影像》、《科学画报》、《中国国家地理》等杂志所收录、在全国性的显微摄影大赛中多次获奖。& nbsp & nbsp /span /p p style=" text-align: justify text-indent: 2em " strong style=" text-indent: 2em " span style=" font-family: 微软雅黑 " 延伸阅读: /span /strong /p p style=" text-align: justify text-indent: 2em margin-bottom: 15px " a href=" https://www.instrument.com.cn/news/20200714/553843.shtml" target=" _self" style=" text-indent: 2em font-family: 微软雅黑 font-size: 16px color: rgb(0, 176, 240) text-decoration: underline " span style=" text-indent: 2em font-family: 微软雅黑 font-size: 16px color: rgb(0, 176, 240) " 扫描电镜工作距离与探头的选择(上)——安徽大学林中清32载经验谈(10) /span /a /p p style=" text-align: justify text-indent: 2em margin-bottom: 15px " a href=" https://www.instrument.com.cn/news/20200616/551389.shtml" target=" _self" style=" font-family: 微软雅黑 text-indent: 2em font-size: 16px color: rgb(0, 176, 240) text-decoration: underline " span style=" font-family: 微软雅黑 text-indent: 2em font-size: 16px color: rgb(0, 176, 240) " 扫描电镜工作距离与探头的选择(上)——安徽大学林中清32载经验谈(9) /span /a /p p style=" text-align: justify text-indent: 2em margin-bottom: 15px " span style=" font-size: 16px font-family: 微软雅黑 " /span /p p style=" margin-top: 0em padding: 0px color: rgb(68, 68, 68) text-indent: 2em margin-bottom: 15px " span style=" color: rgb(0, 176, 240) margin: 0px padding: 0px text-indent: 2em font-family: 微软雅黑 text-decoration: underline " a href=" https://www.instrument.com.cn/news/20200515/538555.shtml" target=" _self" style=" color: rgb(0, 176, 240) margin: 0px padding: 0px text-indent: 2em font-family: 微软雅黑 text-decoration: underline " 如何正确选择扫描电镜加速电压和束流 ——安徽大学林中清32载经验谈(8) /a /span /p p style=" margin-top: 0em padding: 0px color: rgb(68, 68, 68) text-indent: 2em margin-bottom: 15px " a href=" https://www.instrument.com.cn/news/20200414/536016.shtml" target=" _self" style=" text-indent: 2em color: rgb(0, 176, 240) margin: 0px padding: 0px font-family: 微软雅黑 text-decoration: underline " span style=" margin: 0px padding: 0px text-indent: 2em " 扫描电镜操作实战技能宝典——安徽大学林中清32载经验谈(7)& nbsp /span /a /p p style=" margin-top: 0em padding: 0px color: rgb(68, 68, 68) text-indent: 2em margin-bottom: 15px " a href=" https://www.instrument.com.cn/news/20200318/534104.shtml" target=" _self" style=" color: rgb(0, 176, 240) margin: 0px padding: 0px text-indent: 2em font-family: 微软雅黑 text-decoration: underline " span style=" margin: 0px padding: 0px text-indent: 2em font-family: 微软雅黑 " 扫描电镜的探头新解——安徽大学林中清32载经验谈(6) /span /a span style=" margin: 0px padding: 0px text-indent: 2em color: rgb(0, 176, 240) text-decoration-line: underline font-family: 微软雅黑 " & nbsp /span /p p style=" margin-top: 0em padding: 0px color: rgb(68, 68, 68) text-indent: 2em margin-bottom: 15px " a href=" https://www.instrument.com.cn/news/20200218/522167.shtml" target=" _self" style=" color: rgb(0, 176, 240) margin: 0px padding: 0px text-indent: 2em font-family: 微软雅黑 text-decoration: underline " span style=" margin: 0px padding: 0px text-indent: 2em font-family: 微软雅黑 " 二次电子和背散射电子的疑问(下)——安徽大学林中清32载经验谈(5) /span /a span style=" margin: 0px padding: 0px text-indent: 2em color: rgb(0, 176, 240) text-decoration-line: underline font-family: 微软雅黑 " & nbsp /span /p p style=" margin-top: 0em padding: 0px color: rgb(68, 68, 68) text-indent: 2em margin-bottom: 15px " a href=" https://www.instrument.com.cn/news/20200114/520618.shtml" target=" _self" style=" color: rgb(0, 176, 240) margin: 0px padding: 0px text-indent: 2em font-family: 微软雅黑 text-decoration: underline " span style=" margin: 0px padding: 0px text-indent: 2em font-family: 微软雅黑 " 二次电子和背散射电子的疑问[上]-安徽大学林中清32载经验谈(4) /span /a span style=" margin: 0px padding: 0px text-indent: 2em color: rgb(0, 176, 240) text-decoration-line: underline font-family: 微软雅黑 " & nbsp /span /p p style=" margin-top: 0em padding: 0px color: rgb(68, 68, 68) text-indent: 2em margin-bottom: 15px " a href=" https://www.instrument.com.cn/news/20191224/519513.shtml" target=" _self" style=" color: rgb(0, 176, 240) margin: 0px padding: 0px text-indent: 2em font-family: 微软雅黑 text-decoration: underline " span style=" margin: 0px padding: 0px text-indent: 2em font-family: 微软雅黑 " 电子枪与电磁透镜的另类解析——安徽大学林中清32载经验谈(3)& nbsp /span /a /p p style=" margin-top: 0em padding: 0px color: rgb(68, 68, 68) text-indent: 2em margin-bottom: 15px " a href=" https://www.instrument.com.cn/news/20191126/517778.shtml" target=" _self" style=" color: rgb(0, 176, 240) margin: 0px padding: 0px text-indent: 2em font-family: 微软雅黑 text-decoration: underline " span style=" margin: 0px padding: 0px text-indent: 2em font-family: 微软雅黑 " 扫描电镜放大倍数和分辨率背后的陷阱——安徽大学林中清32载经验谈(2)& nbsp /span /a /p p style=" margin-top: 0em padding: 0px color: rgb(68, 68, 68) text-indent: 2em margin-bottom: 15px " span style=" color: rgb(0, 176, 240) margin: 0px padding: 0px text-indent: 2em font-family: 微软雅黑 text-decoration: underline " a href=" https://www.instrument.com.cn/news/20191029/515692.shtml" target=" _self" style=" color: rgb(0, 176, 240) margin: 0px padding: 0px text-indent: 2em font-family: 微软雅黑 text-decoration: underline " 扫描电镜加速电压与分辨力的辩证关系——安徽大学林中清32载经验谈 /a /span /p
  • 马尔文帕纳科与迈安纳仪器达成战略合作,共助纳米药物递送行业发展
    9月22日,马尔文帕纳科与迈安纳(上海)仪器科技有限公司签署战略合作协议。本次战略合作,将为用户提供纳米药物从筛选、实验室研究,到生产、质控的全流程支持服务。双方将在未来继续深化合作,不断致力于解决RNA纳米药物递送行业痛点,为国内RNA纳米药物的快速发展提供助益。马尔文帕纳科医药与食品行业销售经理叶飞(左)与迈安纳总经理吴刚(右)代表双方公司签署战略合作协议在签约仪式上,中国区医药与食品行业销售经理叶飞先生表示,马尔文帕纳科与迈安纳近年来凭借在纳米药物递送领域专业的仪器和服务,已有多次合作和深入的了解,双方都深谙用户需求。通过本次战略合作,期待双方能针对未来行业发展需求,在产品和服务上不忘初心,为纳米药物行业的蓬勃发展做出努力。迈安纳的总经理吴刚先生回顾了公司创立的初心,是做出世界领先的纳米药物制备系统的国产品牌。团队在服务客户的过程中,积累了丰富的实战经验,助力多家企业纳米药物制备的早期科研到临床产品及商业化生产转化全阶段,看到了该行业的广阔前景,相信药物递送行业大有可为。迈安纳在技术和品质上的坚持,对得起自己的理念,公司成员的付出对得起自己的青春。迈安纳是一家拥有多项发明专利技术,专注于解决RNA纳米药物递送行业痛点的整体解决方案本土提供商。公司不仅可提供从实验室到产业化的核酸-LNP全系列封装设备,更可提供整体解决方案中的技术支持。马尔文帕纳科作为粒度分析仪器开创者,多年来深耕于颗粒表征行业,针对脂质药物载体拥有成熟的生物物理表征仪器和解决方案,通过综合使用互相补充的、非标记生物物理技术,包括动态光散射(DLS)、多角度光散射(MADLS)、电泳光散射(ELS)、纳米颗粒跟踪分析(NTA)、多检测器SEC和差示扫描量热法(DSC),表征包裹RNA的药物载体的理化属性。关于迈安纳迈安纳(上海)仪器科技有限公司是一家新兴的纳米药物递送方案的本土供应商,自主研发生产的INanoTM全系列产品已获得欧盟CE认证和美国FCC认证。目前已服务于国内数百家顶尖生物制药公司以及科研学术机构,并已成功助力多个客户相继获得中国,美国,巴西,澳大利亚等mRNA类药物IND临床批件,进入临床和商业化生产。作为上海市闵行区重点引进的项目,迈安纳已在上海莘庄工业区投资数千万元,建成了国内首家集核酸药物装备研发制造和核酸递送工艺开发为一体的创新中心。该中心具备GMP级递送工艺开发实验室和十万级无尘核心组件装配区。
  • 聚苯乙烯磁性微球正式上架
    产品特点:功能化聚苯乙烯磁性微球是指通过化学修饰结合不同的官能团及具有特异性的抗体、核酸和蛋白,应用于核酸纯化、细胞筛选、免疫分析等多个领域。其表面可以修饰不同的功能基团,如氨基、羧基、羟基等,用于结合不同的生物分子,实现靶向检测和诊断等应用。此外,聚苯乙烯磁性微球还具有以下三大特点:1、单分散性好:粒径均一,可制备出单分散性良好的磁性微球。比表面积大,吸附性好:高比表面积有利于提高与生物分子结合的密度和效率。2、稳定性好:不易发生聚集和沉淀,可长时间保持稳定。材料亲和性好、生物相容性好:具有良好的生物相容性和生物安全性,可应用于生物医学和药物制剂等领域。3、磁响应性强:在外加磁场的作用下,可以方便地实现磁分离和定向操控。应用背景:氨基、羧基化聚苯乙烯磁性微球的应用背景主要基于其独特的物理和化学性质。通过氨基和羧基化修饰,这种材料可以在表面引入多种功能基团,从而实现对生物分子的特异性结合。由于其具有粒径均一、稳定性好、磁响应性强等特点,氨基、羧基化聚苯乙烯磁性微球在生物医学、化学、材料科学等领域具有广泛的应用前景。在生物医学领域,氨基、羧基化聚苯乙烯磁性微球可以用于药物载体、靶向药物、免疫分析、生物传感器等领域。通过其表面的氨基和羧基功能化,这种材料可以与生物分子(如蛋白质、酶和DNA等)相互作用,实现生物分子的分离、纯化和检测。此外,氨基、羧基化聚苯乙烯磁性微球还可以用于制备组织工程支架、细胞培养基质等领域,为组织再生和细胞培养提供良好的微环境。在化学和材料科学领域,氨基、羧基化聚苯乙烯磁性微球可以用于制备高分子复合材料、催化剂载体、过滤材料等。由于其大孔容积和高比表面积等特点,这种材料可以作为添加剂改善材料的性能和特性。此外,氨基、羧基化聚苯乙烯磁性微球还可以用于色谱填料和分离技术领域,实现高纯度、高回收率和高分离效率的分离效果。海岸鸿蒙颗粒标准物质的研发已经达到国内领先、国际前沿水平,其中PM2.5、可见异物等百余种标准物质的研制成功填补了国内的空白,被国家市场监督管理总局批准为国家一级、二级标准物质。其颗粒产品包括颗粒标准物质和功能微粒两大类,共有3000多种产品,涵盖颗粒尺寸从30纳米到2000微米,涉及聚苯乙烯、金属、二氧化硅、胶体金和多元琼脂糖等不同材质以及彩色微粒、荧光微粒、磁性微粒等不同功能的微粒产品。此外,海岸鸿蒙还可根据用户需可根据客户需求,提供多种材质,不同粒径,不同功能,单分散、窄分布,近乎于标准球体的微粒定制服务。产品特点: match 产品特点:产品特 啊啊特点:啊大
  • 哈工大深圳马星课题组《ACS Nano》:可操作的免疫分析探针磁性纳米机器人用于自动化和高效的酶联免疫吸附检测
    基于抗体抗原“特异性结合”的免疫分析已被广泛用于实验室研究和临床诊断中。其中,酶联免疫吸附试验(ELISA)是一种经典且功能强大的生化传感技术,可通过生物酶反应和化学比色法对超低浓度分析物进行定量。ELISA已广泛应用于医疗诊断、环境分析和食品安全等领域。然而,在传统ELISA检测中,抗原或抗体被包覆到多孔板(例如,96孔板)的孔壁上,这导致了三个主要缺点:(ⅰ) 由于所有步骤都在同一槽内进行,因此在每步反应前后需要多次清洗,以去除未结合的残留试剂和非特异性相互作用的分子,这给检测人员造成了繁重的体力劳动;(ⅱ) 此外,由于操作中存在的差异性也可能为检测结果带来误差。(ⅲ)检测物与抗原抗体是通过被动的扩散来实现结合,因此传统的ELISA检测需要较长的孵育时间。以上原因都造成了传统ELISA检测效率低的问题。 近日,哈尔滨工业大学马星课题组提出了棒状磁驱动纳米机器人(MNR)作为可操作的免疫分析探针,实现自动高效的ELISA分析方法,称为纳米机器人激活ELISA(nR-ELISA)。为了制备MNR,研究人员利用外部磁场辅助实现Fe3O4磁性颗粒的自组装以及在其表层原位生长一层刚性氧化硅(SiO2)。紧接着将捕获抗体(Ab1)通过法学法修饰到其表面,最终成功制备了磁性可操作免疫分析探针(MNR-Ab1)。通过数值模拟研究了微尺度下MNR周围的流体速度分布,并通过实验结果验证了主动旋转MNR能够提高混合效率。为了使传统的ELISA检测过程实现自动化,研究人员通过三维打印设计并使用面投影微立体光刻技术(nanoArch P150, 摩方精密)制造了一个由三个功能槽成的检测单元。MNR-Ab1在外部磁场的作用下,通过微通道实现在不同的功能槽间运动,参与不同的阶段的生化反应。主动旋转的MNR-Ab1s可以在微尺度下,通过加速物质交换实现抗原/抗体与待检测物的快速结合,从而达到缩短培养时间的目的。该工作实现了ELISA检测的自动化。在未来,为了实现ELISA的高通量检测,研究人员拟采用亥姆霍兹线圈来替代目前磁场发生器。并且通过数值模拟的方法证明了:亥姆霍兹线圈不仅可以提供足够大的操作空间,同时空间内的磁场偏差较小( 磁性纳米机器人实现了自动化和高效的ELISA(nR ELISA)分析示意图。图2 MNR的制备和运动特性表征。图3 MNRs实现了自动化ELISA检测。采用摩方精密P150面投影微立体光刻技术打印了检测单元。如图b所示,微通道的狭缝宽度为200 μm,狭缝间距为300 μm。 文章链接:https://doi.org/10.1021/acsnano.1c05267
  • 发光“纳米快递员”可显示药物在体内移动
    俄罗斯国立核研究大学与其他机构的科研人员合作,开发出一种纳米探针,可以精准地向病变组织递送药物。有关专家称,该研究成果将有助于开发通用的靶向药物递送工具,有效治疗心血管疾病、癌症、糖尿病和一些其他疾病。相关论文发表在《纳米材料》杂志上。  向特定组织和细胞靶向递送药物是治疗病灶性疾病最重要的方向之一,包括心血管疾病、癌症、肺结核、两种类型的糖尿病和其他疾病。近年来的最新方法是通过纳米探针(能够携带药物和特殊分子的特殊结构)靶向病灶来实现。探针必须很小,大约几十纳米,同时它应具有严格定义的理化特性和尽可能低的毒性。  目前,世界上创建此类系统的技术正处于早期发展阶段,关键任务是研究药物递送过程。这就要求能够实时观察到探针在体内的移动,为此要使用特殊的激光照明。  俄国立核研究大学纳米生物工程实验室与莫斯科谢切诺夫第一国立医科大学、布洛欣国家肿瘤医学研究中心和法国兰斯香槟—阿登大学的科研人员,合作开发的新型超微探针满足了所有这些条件。  这种新型纳米探针由一个光致发光纳米晶体(量子点)和附着在其表面的吖啶衍生物分子(帮助探针穿过细胞膜的药物)组成。该系统与同类产品相比,优势在于尺寸超小,而CT亮度更高。  俄国立核研究大学纳米生物工程实验室副主任帕维尔萨莫赫瓦洛夫说,量子点是应用于一些高科技领域的荧光纳米结构,吸收光谱宽,发射光谱窄,由纳米晶体的尺寸决定。也就是说,一个量子点会以特定的颜色“发光”,这些特性使其成为医学中超敏感生物对象检测的近乎理想工具。  据悉,新型探针的尺寸大约15纳米,只有人体细胞的数百到数千分之一。CT扫描仪明亮的发光效果使研究人员可以通过定向激光束来追踪探针在身体组织中的移动。特殊的端羧基聚乙二醇外壳使纳米探针具有生物相容性,实验表明,它能够在细胞中迅速积累到所需的数量。  帕维尔萨莫赫瓦洛夫解释说,这种新型纳米探针主要用于开发抗癌药物靶向递送工具的实验研究,已经成为这种通用工具的原型。
  • 美国宇航局在纳米卫星有效载荷上首次使用赛多利斯一次性无菌液体处理袋
    赛多利斯无菌袋随火箭进入外太空这是Flexboy不平凡的应用:美国航空航天局将首次使用50毫升和150毫升的赛多利斯一次性无菌袋进行外太空研究, 美国政府机构,美国国家航空航天局艾姆斯研究中心,硅谷,CA,计划发射带有细胞培养载荷的纳米卫星进入太空,以检测在零重力环境下细胞的生长情况。这些细胞培养物将被存储在一个赛多利斯Flexboy无菌储液袋中。纳米卫星上配备一个微型实验室, 其中的光学传感器可以监测细胞生长情况,测量体积不超过一个鞋盒的大小,最多重15公斤或33磅。此项研究的使命具有和测试治疗真菌感染药物以及测试抑制细菌生长的抗生素药物具有类似的意义。美国国家航空航天局进行此项研究的目的在于为长时间暴露在失重的条件下的宇航员提供更好的医疗服务。Flexboy令人兴奋的应用:参加美国宇航局的航天生物实验This is no ordinary application for Flexboy: NASA will be using the 50 ml and 150 ml version of Sartorius single-use bags for the first time to conduct research in outer space. The U.S. governmental agency, NASA Ames Research Center, Silicon Valley, CA, plans to launch nanosatellites, with a payload of cell cultures, into space in order to examine cell growth in a zero-gravity environment. These cultures will be stored in a Sartorius Flexboy. Measuring not much larger than a shoe box and weighing 15 kilograms, or 33 pounds, at most, the nanosatellites are equipped with a mini-lab, in which cell growth is monitored by optical sensors. There have been missions similar to these in order to test medications for treating fungal infections as well as antibiotics for curbing bacterial growth. Such research conducted by NASA is designed to provide better medical care to astronauts exposed to the conditions of weightlessness over long periods.赛多利斯集团是一家国际领先的实验室仪器、生物制药技术和设备的供应商。实验室产品及服务部为客户提供一流的实验室仪器如实验室天平、移液器和纯水设备、实验室耗材包括实验室过滤器和移液器吸头,以及优质的服务。生物工艺解决方案涵盖过滤、液体处理、发酵、细胞培养和纯化,并致力于生物制药行业过程控制。工业称重专注于对食品,化工和制药行业生产工艺过程中的称重、监控和控制。 赛多利斯集团在欧洲、亚洲以及美洲都拥有自己的生产及研发机构,并已在全球110多个国家设立了办事处及代表处,总共拥有5,000多名员工。 赛多利斯中国 电话:400.920.9889 / 800.820.9889 传真:021.68782332 邮箱:info.cn@sartorius.com 官网:www.sartorius.com.cn
  • 科学家研制纳米火箭将可人体内配送药物
    纳米火箭可以自行组装成微型球体并使用过氧化氢作为燃料 这种技术或将帮助进行体内配药 1966年的电影《奇异的旅程》中描述了一艘微型飞船,它进入一位科学家的体内帮助治疗血栓   北京时间3月1日消息,据英国《每日邮报》报道,科幻题材再一次在科学家们努力下变成了现实:他们制造出了纳米火箭!就像是上世纪60年代电影《奇异的旅程》中的情节,这种纳米火箭有朝一日或许也将在人体内执行医疗任务。这种微型设备已经由荷兰奈梅亨大学的研究人员开发出来,他们认为这种技术将有望为患者带来福音。   科学家们表示:“我们认为这是第一种现实可用的纳米电机。”首席科学家詹赫斯特(Jan van Hest)说:“我们的纳米火箭基于简单的设计,即聚合物泡囊,这是一种球形胶囊。”他说:“我们可以在这些胶囊内配置不同的内容物分子,将其和外部的标记分子,功能酶或肽段相匹配,如此一来我们将有望开启一些实际应用,如帮助在人体内递送药物等等。”   纳米粒子的大小比细菌体型小10倍,它们可以自行组装成微型球体并使用过氧化氢作为燃料。铂纳米颗粒分解时会生成氧气和水,并同时释放出能量,推动“小火箭”前进。研究人员在《自然-化学》上撰文写道:“这将产生快速的排放作用,包括推力和定向运动。”   然而,在这种新技术投入实际应用之前,还有一些困难需要去解决。首先过氧化氢是会耗尽的,因此这种小火箭需要能够自动补充燃料,并且它本身对于人体组织是有毒的。科学家们还需要学习该如何操控它们在人体内运行。不过,纳米工程师,美国加州大学圣迭戈分校的约瑟夫王(Joseph Wang)告诉记者说,这是“一项通往‘奇异旅程’的关键一步。”
  • 【会议精彩回顾】锘海生命科学于第三届国际纳米药物会议闪耀亮相!
    第三届国际纳米药物大会将于 2018年 10月 15日至 17日在上海富悦饭店举办。会议的主题为“纳米药物创新与变革”。来自国内外的学术、临床和产业界的领军科学家和专家学者,将围绕会议的主题开展多学科讨论和深度交流。 锘海生命科学作为行业领先整体服务商和大会赞助商,为参会人员提供了纳米药物制备和分析,以及小动物活体成像的完整解决方案。锘海带来的行业领先科技和产品吸引众多科研和企业行业人士,展位人气爆棚!参展产品 加拿大 Precision Nanosystems 纳米药物载体制造系统通过微流控芯片技术制造纳米颗粒包裹体,可包裹药物,mRNA、siRNA,CRISPR,DNA,蛋白等,从低通量至高通量均可覆盖,适合于临床及临床前研究,并可在纳米颗粒表面添加marker制造靶向药物。 美国 Spectradyne 全自动纳米微米颗粒分析仪测量纳米粒时应用电学性质识别混悬介质中的粒子,而无需依赖其光学参数。该仪器可测量单个粒子并快速整合粒子尺寸、定量浓度以及Zeta电荷的统计数据。这一特殊性能将nCS1与市面上其他纳米分析仪区分开来。 西班牙Bionicia 静电纺丝及静电喷雾设备通过电流体动力学制备纳米/微纤维和颗粒流程(EHDA)俗称静电纺丝(纤维)或电喷雾(颗粒)。并且提供与之相关的产品和服务(CRO\CMO) 法国 VILBER NEWTON 7.0 小动物荧光/生物发光成像系统采用7通道 LED双光源激发,双磁控溅射镀膜的滤光片技术,可进行高效的光谱分离,检测光谱范围可以从400nm至900nm,可同时实现GFP, YFP, Dyelight 680, Cy5.5, Cy7等多种染料标记的小动物荧光/生物发光成像。 美国 Photosound 小动物3D光声/荧光成像系统(PAFT)可同时实现近红外一区&近红外二区3D光声成像 具有100 um等向分辨率、高通量 (256个电子通道)、灵敏度高(60 nM ICG )、桌面式设计,方便使用、成像速度快 (完成一次3D扫描只需30秒)的特点。 比利时 Molecubes 临床前成像PET/SPECT/CTPET/SPECT/CT能够实现小鼠(4只)和大鼠高灵敏度全身3D成像。PET具备出色的分辨率和灵敏度;SPET系统拥有高分辨探测器和专利准直器;CT系统能够以超低放射剂量获取很高的图像对比度。 希腊 Betsolutions小动物平面型PET/SPECT成像系统“β-eye”(PET) 是一款适用于生物分子、纳米粒子分子成像的符合探测摄像机。γ-eye”(SPECT)是一款适用于放射性药物、放射性生物分子和纳米粒子的体内分子闪烁成像的γ摄像系统,特别适用于小鼠全身长时间动态或静态成像的台式系统。 法国RX Solutions 离体CT成像系统DeskTomTM产品是占用空间最小的显微CT成像设备,有效视野大(25cm),具备超高的立体分辨率和高精度的重复工作性能,为客户提供高端的小动物离体CT成像服务。 关于锘海锘海生物科学仪器(上海)股份有限公司(Nuohai Life Science)致力于提供先进的实验/研究与生产仪器、相关试剂耗材, 并提供专业的应用和技术服务支持。不断促进生命科学领域新技术发展,及时引进国外最新的技术和产品。同时,锘海生命科学为科研及企业客户提供全方位的CRO/CMO 服务,满足产业中的研发和生产需求。锘海生命科学在不断引进世界先进产品的同时,更注重培养专业的销售、技术和售后服务团队,本着客户至上的原则,为每一位生命科学工作者提供整体解决方案。 并提供持续而良好的售后服务,因此获得了广大客户的信任与认可。锘海生命科学成立于2004年,总部设在上海,并陆续在北京,广州,成都等地设立了8个办事处。保证了更快速有效的为全国客户提供咨询和技术服务。
  • 客户成就 |Nanoscribe微纳加工技术助力纳米粒药物递送研发
    在长期对药物递送的研究中,学者发现纳米颗粒已成为克服常规药物制剂及其相关药代动力学限制的合适载体。随着微流控设备的创新混合和过滤技术发展,针对药物研究新领域的探索正在得到不断拓展。特别是脂质纳米粒携带药物的新发现吸引了研究人员的浓厚兴趣。脂质体已被证明在溶解治疗药物方面具有优势,可以控制药物长期缓释,大大延长了药物的循环寿命。微流体的性能对于在极小尺寸下精确制备脂质纳米粒作为药物载体具有巨大优势。在这一领域,德国布伦瑞克工业大学(TU)的一个科研团队利用Nanoscribe的高精度3D微纳加工技术发明了一种特制的微流控芯片。该芯片包含一个创新的混合器,用于生产单分散载药纳米颗粒,并进行精确的粒径控制。这将有助于推动新的药物递送概念发展。图示同轴层压混合器可以完全消除与带通道壁有机相的接触,同时有效地混合有机相和水相。这种独特的混合器包括同轴注射喷嘴、一系列拉伸和折叠元件以及入口过滤器是无法通过传统的2.5D微纳加工实现的,但是3D双光子聚合技术则可以完美实现加工制造。图片来自于Peer Erfle, TU Braunschweig生产有效且成本效益高的定制药物在制药行业广受关注。难溶性药物的特性限制其口服和非肠道给药,为解决难溶性问题,含有难溶性药物的脂质纳米粒将成为有效候选药物,因为它们提供更快的溶解速度。然而,生产这些脂质纳米粒则非常具有挑战性。整个流程包括多个步骤,例如纳米颗粒的制备和药物载体与纳米颗粒的结合。在纳米颗粒的生产过程中,重要的是管理窄粒径分布,以达到70 nm至200 nm的要求范围。为此,与批量混合技术相比,微流控系统提供了一种更为优化的解决方案。微流体能够精确控制和调节极少量液体的混合,且在微流体中的混合可同时实现纳米颗粒的制备。而这需要使用更有效、更复杂的混合元件来调节纳米颗粒的性质并优化混合机制。如今科学家们利用Nanoscribe公司双光子聚合(2PP)技术制作自由曲面三维微流控元件,并将其集成到复杂的微流控芯片中。这种多功能3D微加工的使用旨在实现缩小粒度分布。复杂微流控芯片3D微纳加工制作布伦瑞克大学(TU Braunschweig)的科学家们通过对微流控领域的研究发明了一种开创性的解决方案,以制备单分散的药物载体纳米粒。他们利用Nanoscribe公司的双光子聚合3D打印技术制作出完整的微流控芯片。该芯片采用独特的微纳混合器件,用于同轴层压和稳定的纳米颗粒生成。整个厘米级微流控芯片由一个连接到横向通道的主通道、一个用于同轴注射喷嘴、一系列3D混合原件和用于减少污染的入口过滤器组成。这种复杂的芯片设计因其小型化特性和极高的表面质量脱颖而出(如内径达到200µm的主通道,孔径达到15µm的入口过滤器)。可以混合有机相和水相的拉伸和折叠微纳元件具有复杂的3D结构。在以往,由于底部内切结构和开放圆柱区域难以成型,传统的2.5D微纳加工和使用微纳注塑成型的大规模生产是无法制造这种微流控系统的。由Nanoscribe公司打印系统制作的3D微纳加工微流控系统可实现用于生产特定尺寸的纳米颗粒,并具有高度复制性特点。用三个单独制作的微纳系统对相同的设计做了测试,结果显示出纳米颗粒大小在几纳米范围内的分散性变化非常小。该结果证实了基于Nanoscribe 2PP技术的3D打印能够生产出具有窄粒径分布的高重复性纳米颗粒。这些发现对未来实现纳米颗粒的平行生产制造具有重要意义。位于喷嘴下游的一个拉伸和折叠混合元件的SEM图像。图片来自于Peer Erfle, TU Braunschweig科研团队:Technical University Braunschweig – Institute of Microtechnology Technical University Braunschweig – Department of Pharmaceutics Technical University Braunschweig - PVZ - Center of Pharmaceutical Engineering Nanoscribe Photonic Professional GT2使用双光子聚合(2PP)来产生几乎任何3D形状:晶格、木堆型结构、自由设计的图案、顺滑的轮廓、锐利的边缘、表面的和内置倒扣以及桥接结构。Photonic Professional GT2结合了设计的灵活性和操控的简洁性,以及广泛的材料-基板选择。因此,它是一个理想的科学仪器和工业快速成型设备,适用于多用户共享平台和研究实验室。Nanoscribe的3D无掩模光刻机目前已经分布在30多个国家的前沿研究中,超过1,000个开创性科学研究项目是这项技术强大的设计和制造能力的证明。更多有关3D双光子无掩模光刻技术和产品咨询欢迎联系Nanoscribe上海分公司 - 纳糯三维科技(上海)有限公司德国Nanoscribe 超高精度双光子微纳3D无掩模光刻系统: Photonic Professional GT2 双光子微纳3D无掩模光刻系统 Quantum X 双光子灰度光刻微纳打印设备
  • Precision NanoSystems宣布与日本Ajinomoto Bio-Pharma 达成纳米药物GMP生产战略合作
    国际纳米药物创新周直播报名锘海生命科学诚挚的邀请您报名参加2018年11月1日下午5点(英国时间10:00)在苏格兰Strathclyde大学举行的国际纳米药物创新周直播。此次直播将包含在Dr. Pieter Cullis和Dr. Yvonne Perrie的演讲。届时报告者们将对当前纳米药物研发最近进展进行介绍以及分享新的研究灵感。Strathclyde大学拥有世界上先进的纳米药物创新实验室,前卫的纳米药物相关技术均在此举行过讲座和demo。点击此处报名观看现场直播Precision NanoSystems宣布与日本Ajinomoto Bio-Pharma Services达成纳米药物GMP生产战略合作Precision NanoSystems Inc. (PNI)近日宣布公司与日本Ajinomoto Bio-Pharma Services达成纳米药物GMP生产战略合作。Ajinomoto将采用PNI的纳米药物制备系统 NanoAssemblr Scale-up型号为客户提供用于临床高质量的纳米药物。点击此处了解更多信息关于NanoAssemblr 纳米药物制备系统来自加拿大Precision Nanosysems公司的纳米药物制备系统NanoAssemblr,通过微流控芯片技术制造纳米颗粒包裹体,多种生物材料可选,可包裹药物,siRNA,mRNA,CRISPR,DNA,蛋白等, 纳米药物制备系统包括Spark、Benchtop、Blaze以及Scale-up,为药物研发从发现到临床各个阶段量身定制。全球装机量超过300台!世界级高校及TOP 25药企均采用NanoAssemblr平台制备纳米药物!了解更多纳米药物制备和生产解决方案,欢迎莅临慕尼黑生化展E3.3274展台!现场有样机演示,更有精美礼品相送!往期精彩回顾纳米药物制备,基因递送载体构建新技术! 加拿大Precision Nanosystems纳米药物制造系统NanoAssemblr关于锘海:锘海生物科学仪器(上海)股份有限公司(Nuohai Life Science)成立于2004年,总部设在上海,并陆续在北京,广州,成都等地设立了8个办事处。锘海致力于提供先进的实验/研究与生产仪器、相关试剂耗材, 并提供专业的应用和技术服务支持。不断促进生命科学领域新技术发展,及时引进国外最新的技术和产品。同时,锘海生命科学为科研及企业客户提供全方位的CRO/CMO 服务,满足产业中的研发和生产需求。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制