当前位置: 仪器信息网 > 行业主题 > >

月壤样品

仪器信息网月壤样品专题为您整合月壤样品相关的最新文章,在月壤样品专题,您不仅可以免费浏览月壤样品的资讯, 同时您还可以浏览月壤样品的相关资料、解决方案,参与社区月壤样品话题讨论。

月壤样品相关的资讯

  • 极低损耗研究嫦娥五号月壤样品
    如何尽可能降低损耗,测试嫦娥五号月壤样品的粒度和矿物组成?7月4日,记者从中国地质大学(武汉)获悉,该校佘振兵、汪在聪教授科研团队在月壤研究中取得了新进展:该团队开发了一种样品消耗极低的新技术,可同时测定月壤的粒度和矿物组成,对于解释月球深空探测轨道遥感光谱数据、理解月球岩浆活动和空间风化过程具有重要意义。《中国科学:地球科学》杂志中英文版同时在线发表该研究成果,第一作者为该校地球科学学院博士生曹克楠,佘振兵教授为通讯作者,汪在聪教授等为合作作者。去年7月,该校地球科学学院教授汪在聪领衔的团队申请到嫦娥五号首批月球样品,共200毫克。汪在聪介绍,“这批样品非常珍贵,我们获取的样品极为有限,可允许的损耗量仅为50毫克,要出更多研究成果,需要我们尽可能降低损耗。”自1970年代以来, 科学家开始使用各种手段来研究月壤样品,但前人所采用的方法通常需要消耗较多样品,并且难以同时获得矿物组成和粒度、形貌等多方面的信息。该研究团队基于拉曼光谱微颗粒分析技术,开发了以极低的样品损耗量,同时测定颗粒样品粒度和矿物组成的新方法,并成功运用到嫦娥五号月壤样品的研究,这一研究技术在月壤研究中的应用在世界上尚属首次,以往的技术通常只能开展粒度或矿物组成其中一项研究。该研究每次仅需约30微克样品,在获取多维度信息的同时,将样品损耗降到最低,并且样品制备简单,极大地降低了该流程可能带来的样品污染问题。另外,该方法可在短时间内快速建立一个矿物粒度和组成的多元化信息数据库,有助于发现稀有矿物相。该方法的进一步发展,将为未来火星和小行星等其他天体返回的微颗粒样品,进行快速分析提供关键技术支撑。该研究发现嫦娥五号月壤样品平均粒度为3.5微米,且呈单峰式分布,表明其具有较高成熟度,即受到的太空风化强烈。“矿物粒度是指颗粒的直径,最细的面粉平均粒度超过100微米,嫦娥五号月壤样品比面粉还细几十倍”,汪在聪表示,月壤粒度的测定对于研究太空风化过程具有重要作用。此外,研究团队还建成了一个月壤矿物的光谱数据库,并用它所分析的颗粒进行自动识别,获得每一种矿物相的粒度和体积等信息,计算得出不同粒径下矿物的模式丰度。研究人员发现在1-45微米粒度范围内的矿物组成为:辉石、斜长石、橄榄石、铁钛氧化物、玻璃等。该研究还识别出月壤中的一些微量矿物相,例如磷灰石、石英、方石英和斜方辉石等,其中斜方辉石的发现为首次报道,这表明嫦娥五号月壤中可能含有极少量的月球高地物质。上述成果为解译嫦娥五号着陆区的风暴洋北部地区光谱遥感数据,提供了地面实况信息,并为理解该区域深部和表面演化历史提供了新视角。该研究使用的样品由中国国家航天局提供,分析测试由地大生物地质与环境地质国家重点实验室完成,研究得到了国家航天局民用航天技术预研究项目、国家自然科学基金和生物地质与环境地质国家重点实验室的支持。
  • 显微FTIR光谱仪助力嫦娥五号月壤样品研究
    嫦娥五号任务成功从月球正面返回了1.73 kg表面与钻取样品,其采样区域比以往的Apollo及Luna任务的采样区域都要年轻。目前已经报道的样品分析结果表明,着陆区的物质组成是比较复杂的,因此对大尺度遥感探测数据的解译要格外慎重。准确的物质组成信息对行星地质演化历史的解译十分关键,而遥测光谱技术是目前获取这些信息最有效的手段之一。可见-近红外或中红外波段的一些独特的吸收特征可以用来识别行星表面矿物组成。其中可见-近红外光谱的吸收特征主要是由矿物中过渡性金属离子(Fe2+)如外层电子跃迁产生,而中红外光谱中的吸收则主要是由矿物晶体晶格振动(如硅酸盐矿物中Si-O的伸缩振动等)产生。在中红外谱段,光谱特征更为丰富,可以对可见-近红外光谱无法区分的物质类型进行有效判别。由于月球等地外样品比较珍贵,以往的行星光谱学研究大多是基于地球矿物或模拟物开展的,科学家通过在地面实验室开展控制性实验测量,分析不同类型物质的光谱特征变化规律,然后应用到行星遥测数据的反演分析中。地球上的模拟物虽然丰富,但是真实月壤的很多性质依然无法完美复制。尤其是发生于月表的太空风化作用,会对月表物质的光学特性产生显著影响。嫦娥五号采样任务的成功为利用真实月壤样品开展光谱分析提供了重要机遇。中国科学院国家空间科学中心太阳活动与空间天气重点实验室副研究员杨亚洲、研究员刘洋等从嫦娥五号返回的表层月壤样品中挑选出了一些粒径在200-500 μm之间的颗粒,其中包含了典型的月球矿物(橄榄石、辉石、斜长石)与玻璃球粒等(图1),并利用显微FTIR光谱仪测量了这些颗粒的中红外反射光谱。在中红外光谱中,Christiansen特征(CF)、剩余射线带(RB)、透明特征(TF)是硅酸盐矿物中最为显著的几个特征,借助这些特征可以对矿物的类型及具体成分进行判别。在反射光谱中,CF表现为反射率的最小值,硅酸盐矿物的主CF通常出现在7.5-9.0 μm波段范围内,主要与晶体中Si-O伸缩振动有关。月球主要矿物中,斜长石的CF峰位一般在波长较短位置(~8 μm),而橄榄石的CF峰位则出现在波长较长位置(~9 μm),辉石的CF峰位则在前两者之间。基于CF峰位与RB特征,以及显微镜下的矿物形貌特征,研究人员对挑选出的月壤颗粒类型进行初步判别(图2),然后对不同矿物与玻璃端元的显微红外光谱特征进行对比分析。图1(a)立体显微镜下月壤颗粒影像;(b)显微红外光谱仪获取的影像拼接图;(c)典型月壤矿物与玻璃颗粒影像放大图。图2 所测颗粒样品的CF峰位分布图通过与Apollo返样及月球陨石中不同矿物及玻璃端元的红外光谱进行对比(图3a),研究人员发现与常规FTIR测量相比,利用显微FTIR技术测量的红外反射光谱中没有透明特征(TF)。这主要是因为显微FTIR通常测的是单个颗粒,所测反射信号中没有颗粒之间的多重散射的贡献。但是CF峰位等特征不会受到这两种不同测量技术的影响。对于用常规FTIR方式测量的粉末样品光谱,其近红外波段的反射率通常要比中红外波段高很多,但是随着样品尺寸的增加,两个谱段之间的差异逐渐变小(图3a)。除了颗粒尺寸外,太空风化作用也会降低近红外与中红外谱段的光谱对比度,因为风化作用会使近红外谱段的反射率显著降低,但是对中红外谱段的影响很有限,这主要是因为两个谱段的光谱吸收特征的产生机制完全不同。月表的太空风化作用机制主要有太阳风注入与微陨石撞击等,在人们以往的研究中曾利用脉冲激光照射的方式来模拟微陨石撞击过程,以制备具有不同风化程度的模拟样品。通过对比嫦娥五号橄榄石颗粒与经过不同程度脉冲激光照射的地球橄榄石样品的光谱(图3b),可以看到,随着风化程度的增加,橄榄石近红外波段与中红外波段的反射率差异逐渐减小。在后续研究中,若能对更多具有不同风化程度的月壤矿物颗粒样品进行显微红外光谱分析,则有可能构建一个近红外-中红外光谱对比度与风化成熟度的关系模型,从而应用到更多样品的分析上。橄榄石是岩浆冷却过程中结晶最早的矿物之一,其晶体中Mg与Fe的相对含量(Fo,镁值)对于指示原始岩浆的成分具有重要意义。橄榄石RB特征中的几个反射峰的峰位会随着镁值的变化而发生系统的偏移。基于嫦娥五号橄榄石显微光谱中的RB峰位,研究人员反演得到了这些橄榄石的镁值,结果与先前报道的实验室测量结果相一致(图3d),表明该方法虽然是基于常规FTIR测量的红外光谱建立的,但是在显微红外光谱分析中也是可行的。除了矿物颗粒外,月壤中通常还含有丰富的玻璃质物质,这些玻璃物质主要有撞击与火山活动两种成因。该研究分析结果表明,这些玻璃大多属于月海撞击成因玻璃,但有少数可能具备火山成因。图3 (a)CE-5橄榄石颗粒显微红外光谱与Apollo返样中橄榄石粉末样品红外光谱对比图;(b)CE-5橄榄石颗粒与经过不同脉冲激光照射的地球橄榄石样品的光谱对比;(c)利用5.6-μm与6.0-μm波段峰位反演的橄榄石样品Fo值结果;(d)利用RB波段发峰位反演橄榄石Fo值结果。在行星光谱学研究中一直存在一个难题,就是实验室测量的光谱与遥测光谱之间往往存在较大差异,因为即使有了月壤样品,在实验室内也无法完全复制月表原始的堆积状态。因此实验室测量光谱往往无法直接应用于遥测数据的解译上,尤其是显微光谱分析结果。而通过反演光学常数(或折射率)的方式,可以将实验室测量结果与遥测分析很好的衔接起来。光学常数是光谱模型的重要输入量,有了不同矿物端元的光学常数,再结合给定的颗粒尺寸、孔隙度及各端元的含量等参数,就可以生成模型光谱。利用该模型对实际遥测月表光谱进行拟合,就可以实现对观测区域矿物组成的定量反演。目前的光学常数库中,基于真实地外样品的光学常数还比较匮乏。虽然地球上的矿物种类非常丰富,但是与地外样品相比,即使是同种类的矿物,其在具体成分上也存在一定差别。比如地球上的橄榄石大多Mg含量比较高,而月球上的橄榄石通常Mg含量比较低。因此,尽可能的扩充基于真实地外样品分析得到的光学常数库是很有必要的。该研究中,研究人员基于显微红外反射光谱,对挑选出的一些典型橄榄石、斜长石、辉石及玻璃端元的光学常数进行了反演(图4),这些结果将对现有的或将来的月球及其他小行星的光谱分析产生很大帮助。图4 基于反射光谱反演得到的典型矿物与玻璃端元的光学常数论文链接:https://doi.org/10.1029/2022JE007453
  • HORIBA | “嫦娥五号”月球样品入驻实验室,HORIBA拉曼助力月壤研究
    编辑| Rita润色| 孙平校阅| Lucy、Joanna12月19日,嫦娥五号采集的月球样品正式交接国家天文台,我国首次地外天体样品储存、分析和研究工作也将在这里拉开序幕。作为检测仪器之一,HORIBA拉曼光谱仪有幸参与其中,助力科研人员开展月球样品与科学数据的应用研究。图1 月球土壤现场交接(图片来源:新华网)01以月壤为支点,撬动宇宙发展奥秘,开发月球资源据悉,经初步测量,嫦娥五号任务采集的月壤约1731克。那么,经过千辛万苦取得的月壤究竟能用来干什么呢?中科院专家表示,月壤是从月球固体岩石圈到太阳系空间的过渡带,包含着相关区域的大量信息。对月壤的研究不仅涉及月球本身,还包含太阳系空间物质和能量的重要信息。其中包括太阳系早期演化的历史记录、月岩和月壤的宇宙线暴露与辐照历史、月球中挥发分的脱气历史、太阳风的组成、太阳表层的成分特征、小天体和微陨石撞击月球的历史记录等。图2 研究人员为月球样本称重(图片来源:新华网)除了探索月球历史之外,研究月球岩石还对开发月球资源意义重大。据全国空间探测技术首席科学传播专家介绍,研究月球样品的重要成果之一,就是发现其中含有氦-3。氦-3是世界公认的高效、清洁、安全的核聚变发电燃料。据计算,100吨氦-3所能创造的能源,相当于全世界一年消耗的能源总量。氦-3在地球上的蕴藏量极少,地球已知且易取用的只有500公斤左右,而在月球浅层的氦-3含量却多达上百万吨,足够解决人类的能源之忧。02现代科技助力科学研究,HORIBA拉曼成开路先锋为迎接月壤的归来,国家天文台已建成国内首个“月球样品实验室”,装备了最先进的仪器设备。目前已亮相的就包括HORIBA 拉曼光谱仪HR Evolution,它有幸成为月壤研究的开路先锋。拉曼光谱作为一种无损、非破坏的分析技术, 可以有效提供样品化学结构、结晶度、晶型等信息,这对于月壤这样稀有而珍贵的矿物样品来说至关重要。一般而言,矿物成分复杂未知,HR Evolution的高分辨有助于更加精准鉴定矿物成分及晶型,且真共焦三维滤光技术可有效去除非样品信号,提高灵敏度,为探测高复杂未知背景下的目标拉曼信号提供保障。另外,SWIFT 快速成像技术能够快速获得矿物整体成分分布信息,可以全面深入地研究矿物地质样品。图3 月球样品实验室的HORIBA拉曼光谱仪(图片来源:新华网)如果您对上述产品感兴趣,欢迎扫描如下二维码留言,我们的工程师将会及时为您答疑解惑。嫦娥五号“探月”归来,实现了我国航天史上多个重大突破,在后续的科学研究中,相信科研人员定会不负众望,倾尽全力,协同攻坚,做出佳绩。HORIBA拉曼光谱仪 HR Evolution有幸为此次科学研究贡献力量,希望能够发挥优势,再立新功。未来,HORIBA将承载着光荣与梦想,继续砥砺前行,奋力开拓,持续为客户提供优质技术产品和服务,助力科研人员接受挑战,铸就不凡。免责说明HORIBA Scientific 公众号所发布内容(含图片)来源于文章原创作者或互联网转载,目的在于传递更多信息用于分享,供读者自行参考及评述。文章版权、数据及所述观点归原作者或原出处所有,本平台未对文章进行任何编辑修改,不负有任何法律审查注意义务,亦不承担任何法律责任。若有任何问题,请联系原创作者或出处。
  • 月球样品实验室细节全公布,哪些品牌仪器在分析月壤?
    p style=" text-align: justify text-indent: 2em " 北京时间12月17日凌晨1时59分,探月工程“嫦娥”五号返回器在内蒙古四子王旗预定区域成功着陆,标志着我国首次地外天体采样返回任务圆满完成! /p p style=" text-align: justify text-indent: 2em " 嫦娥五号带着月球“土特产”返回地球,对月球化学的研究是探讨月球起源与演化历史的基础,是了解月球物质成分和月球矿产资源开发利用前景的依据。而国家天文台为迎接月壤的归来,已建成国内首个“月球样品实验室”。 strong 近日,它的神秘面纱终于完全被揭开,里面的科学仪器也公之于众,我们快来看看哪些品牌的哪些仪器将担起分析月壤的重任吧! /strong /p p style=" text-align: justify text-indent: 2em " strong 1、 真空手套箱( a href=" https://www.instrument.com.cn/zc/844.html" target=" _blank" span style=" color: rgb(84, 141, 212) " 点击进入专场 /span /a )——西门子SIMATIC /strong /p p style=" text-align: center" img style=" max-width: 100% max-height: 100% width: 600px height: 400px " src=" https://img1.17img.cn/17img/images/202012/uepic/89972c1f-d82d-4d6b-bac4-13453b9f2773.jpg" title=" WechatIMG122.jpeg" alt=" WechatIMG122.jpeg" width=" 600" height=" 400" border=" 0" vspace=" 0" / /p p style=" text-align: center text-indent: 0em " 月球样品实验室 真空手套箱(图片来自:新华网) /p p style=" text-align: justify text-indent: 2em " 由于月球的真空环境,解封以及很多实验过程都需要真空的环境。因此月球样品实验室映入眼帘便是大量的真空手套箱。 /p p style=" text-align: justify text-indent: 2em " strong 2、高纯氮气供给系统( a href=" https://www.instrument.com.cn/zc/1254.html" target=" _blank" span style=" color: rgb(84, 141, 212) " 点击进入专场 /span /a )——品牌未知 /strong /p p style=" text-align: center" img style=" max-width: 100% max-height: 100% width: 600px height: 400px " src=" https://img1.17img.cn/17img/images/202012/uepic/4d217953-d990-4e42-9427-fcd68ae1c7c1.jpg" title=" efebc712c3eb49488f8a8f75ff8885d3.jpg" alt=" efebc712c3eb49488f8a8f75ff8885d3.jpg" width=" 600" height=" 400" border=" 0" vspace=" 0" / /p p style=" text-align: center text-indent: 0em " 月球样品实验室 高纯氮气供给系统(图片来自:中新网) /p p style=" text-align: justify text-indent: 2em " 因很多实验过程中需保持无氧状态,需要大量氮气。 /p p style=" text-align: justify text-indent: 2em " strong 3、拉曼光谱仪( a href=" https://www.instrument.com.cn/zc/34.html" target=" _blank" span style=" color: rgb(84, 141, 212) " 点击进入专场 /span /a )—— a href=" https://www.instrument.com.cn/netshow/sh100344/" target=" _blank" span style=" color: rgb(84, 141, 212) " Horiba /span /a /strong /p p style=" text-align: center" img style=" max-width: 100% max-height: 100% width: 600px height: 400px " src=" https://img1.17img.cn/17img/images/202012/uepic/728a8f5f-748b-40c8-bc98-67200f64bc5c.jpg" title=" WechatIMG124.jpeg" alt=" WechatIMG124.jpeg" width=" 600" height=" 400" border=" 0" vspace=" 0" / /p p style=" text-indent: 0em text-align: center " 月球样品实验室 拉曼光谱仪(图片来自:新华网) /p p style=" text-align: justify text-indent: 2em " strong 4、电子探针( a href=" https://www.instrument.com.cn/zc/53.html" target=" _blank" span style=" color: rgb(84, 141, 212) " 点击进入专场 /span /a )—— a href=" https://www.instrument.com.cn/netshow/SH100507/" target=" _blank" span style=" color: rgb(84, 141, 212) " 日本电子(JEOL) /span /a /strong /p p style=" text-align: center" img style=" max-width: 100% max-height: 100% width: 600px height: 400px " src=" https://img1.17img.cn/17img/images/202012/uepic/f138a83c-f331-4933-89a7-11a7c97da778.jpg" title=" WechatIMG125.jpeg" alt=" WechatIMG125.jpeg" width=" 600" height=" 400" border=" 0" vspace=" 0" / /p p style=" text-align: center text-indent: 0em " 月球样品实验室 扫描电子显微镜(图片来自:新华网) /p p style=" text-align: justify text-indent: 2em " strong 5、扫描电子显微镜( a href=" https://www.instrument.com.cn/zc/53.html" target=" _blank" span style=" color: rgb(84, 141, 212) " 点击进入专场 /span /a )—— a href=" https://www.instrument.com.cn/netshow/SH101532/" target=" _blank" span style=" color: rgb(84, 141, 212) " 蔡司(Zeiss) /span /a /strong /p p style=" text-align: center" img style=" max-width: 100% max-height: 100% width: 600px height: 400px " src=" https://img1.17img.cn/17img/images/202012/uepic/ae0bae5c-cc0d-4349-b475-a42f353efabe.jpg" title=" ab51c66815a74362ac38573cd7a86231.jpg" alt=" ab51c66815a74362ac38573cd7a86231.jpg" width=" 600" height=" 400" border=" 0" vspace=" 0" / /p p style=" text-indent: 0em text-align: center " 月球样品实验室 扫描电子显微镜(图片来自:新华网) /p p style=" text-align: justify text-indent: 2em " strong 6、电感耦合等离子体质谱仪(ICP-MS)( a href=" https://www.instrument.com.cn/zc/293.html" target=" _blank" span style=" color: rgb(84, 141, 212) " 点击进入专场 /span /a )—— a href=" https://www.instrument.com.cn/netshow/SH100320/" target=" _blank" span style=" color: rgb(84, 141, 212) " 安捷伦 /span /a /strong /p p style=" text-align: center" img style=" max-width: 100% max-height: 100% width: 600px height: 400px " src=" https://img1.17img.cn/17img/images/202012/uepic/8b30caa1-a6b2-48b1-af5e-5738284622d8.jpg" title=" d04589e9cc1a48c1b5b5cb53a25274a0.jpg" alt=" d04589e9cc1a48c1b5b5cb53a25274a0.jpg" width=" 600" height=" 400" border=" 0" vspace=" 0" / /p p style=" text-align: center text-indent: 0em " 月球样品实验室 电感耦合等离子体质谱仪(ICP-MS)(图片来自:中新网) /p p style=" text-align: justify text-indent: 2em " 目前,以获取的资料显示,这些仪器已经使用在分析月壤的第一线了,若各位网友还有更多发现,有其他仪器也在月球样品实验里发光发热,也欢迎大家积极反馈补充。 /p p style=" text-align: justify text-indent: 2em " strong 相关阅读: /strong /p p style=" text-align: justify text-indent: 2em " a href=" https://www.instrument.com.cn/news/20201215/567754.shtml" target=" _blank" span style=" color: rgb(84, 141, 212) " strong 中国首个月球样品实验室视频公布!快来看看里面有哪些仪器 /strong /span /a /p p style=" text-align: justify text-indent: 2em " a href=" https://www.instrument.com.cn/news/20201217/567974.shtml" target=" _blank" span style=" color: rgb(84, 141, 212) " strong 祝贺!嫦娥5号凌晨成功着陆地球,月壤分析抢先看 /strong /span /a /p
  • 地质地球所发布嫦娥五号月壤样品单颗粒分析工作流程图
    嫦娥五号月壤样品虽然微小,但每个小颗粒从一定程度上相当于一个独立的小岩块,其矿物组成、表面形貌、内部结构和化学成分均蕴含丰富的“月球演化和太空风化”等信息。将月壤颗粒分门别类并挑选出来,可用于有目的地开展其它科学研究。与电子束和离子束等微束分析方法相比,μXRF依托X-射线分析技术,穿透性强,化学灵敏度高,且不需要对样品及其表面进行复杂的预处理,因而能在微米尺度下,快速获得月壤颗粒的化学元素组成及各种元素的分布特征,用于挑选各种类型的目标颗粒。无论是机械抛光与SEM结合,还是XRM与FIB-SEM联合,均能将目标矿物暴露到一个平整的截面,既适用于SIMS(微米分辨率的元素和同位素)分析,也同样适用于不同尺度和不同类型的微区分析,如显微拉曼(Raman,微米分辨率的化合物和矿物相鉴定)、SEM(纳米分辨率的形貌、结构和成分分析)、电子探针(EPMA,纳米分辨率的主、微量元素定量分析)、纳米二次离子质谱(NanoSIMS,亚微米到纳米分辨率的元素和同位素分析),还能直接用于FIB-SEM的精准微切割,制备微纳尺寸的“薄片”或“针尖”样品,用于更为精细的同步辐射扫描透射X-射线显微镜(STXM,纳米分辨率的化学成分、元素价态和磁学分析)、透射电镜(TEM,亚纳米到原子分辨率的形貌、结构、成分、矿物相和微磁学分析)和原子探针(APT,原子分辨率的元素和同位素分析)研究。 基于样品挑选和后续分析的共性,中国科学院地质与地球物理研究所等提出针对嫦娥五号月壤以及未来行星返回样品的单颗粒综合分析的“六步走”工作流程图:步骤1:单颗粒样品显微操作,制备成样品阵列,利用μXRF技术快速扫描分析挑选目标颗粒,并按照后续分析测试需要制备成不同类型单颗粒样品(如树脂包埋、机械抛光或表面导电处理)。步骤2:目标颗粒样品的3D-XRM/FIB-SEM联合分析,在微纳米尺度上获得样品三维形貌、结构和成分信息。步骤3:目标颗粒样品的SEM综合分析,在微纳尺度上获得样品的表面形貌、结构和化学成分信息。步骤4:目标颗粒截面样品的综合微区分析(如SEM、Raman、EPMA、SIMS、NanoSIMS),在微纳尺度上获得样品截面的形貌、结构、矿物相、化学成分(包括主量、微量元素及其同位素)等信息。步骤5:利用先进的FIB-SEM技术,对目标颗粒样品中感兴趣的微区域进行三维重构分析,以及对其进行精准微切割,制备微纳尺寸的“薄片”或“针尖”样品。步骤6:综合利用同步辐射STXM、先进的TEM和APT技术,在纳米到原子水平,对“薄片”或“针尖”样品开展形貌、结构、矿物相、化学成分、元素价态、元素同位素和微磁学等综合分析。 需要指出的是,该研究提出的“六步走”工作流程,并不能涵盖嫦娥五号和未来行星返回样品所需的所有技术,也并不是一成不变和标准程式化的,在实际工作中需要根据样品特性或具体科学目标进行调配和改进。例如,可将步骤1、步骤2/步骤4结合,快速寻找富锆颗粒并精准定位含锆矿物,开展样品的微区同位素年代学和地球化学等研究工作。将步骤1、步骤3、步骤5和步骤6结合,选定特定类型单颗粒样品,开展太空风化、行星矿物学和微磁学等研究工作。此外,该研究提出的“六步走”工作流程按照“先无损,后微损”“先单颗粒,后微纳米尺度,最后原子水平”“先侧重表面,后开展内部结构”的分析思路,将现有的多种显微学和显微谱学技术,在分析的时间节点上进行了排列组合,可对同一个样品获得不同尺度下多种信息,因而也同样适用于各种地球珍贵样品(如来自地球早期、深部或深海等来之不易、不可重现的微小样品)的综合研究。 相关成果发表在Geoscience Frontier上。研究得到科技部重点研发计划、中科院前沿科学重点研究项目、地质地球所重点部署项目和国家自然科学基金资助。
  • 吉林大学在嫦娥五号月壤样品中首次发现月球天然形成的少层石墨烯,TESCAN联用电镜发挥关键作用
    吉林大学在嫦娥五号月壤样品中首次发现月球天然形成的少层石墨烯,TESCAN联用电镜发挥关键作用2024年6月23日,吉林大学在嫦娥五号月壤样品中首次发现月球天然形成的少层石墨烯,成为国内外媒体关注的焦点。TESCAN公司向其合作伙伴吉林大学电子显微镜中心表示诚挚祝贺。此次研究中,TESCAN ALL-IN-ONE 综合微分析系统发挥了关键作用,展现了TESCAN以先进设备助力科研,推动科技进步的坚定承诺。----------以下文章来源于人民网 - 吉林频道。----------人民网长春6月23日电 近日,吉林大学邹猛教授、张伟教授、李秀娟正高级工程师及中国科学院金属研究所任文才研究员等,通过对嫦娥五号钻采岩屑月壤(No. CE5Z0806YJYX004)的观察分析,首次发现天然形成的少层石墨烯。相关研究为月球的地质活动和演变历史以及月球的环境特点提供了新见解,拓宽了人们对月壤复杂矿物组成的认知,为月球的原位资源利用提供了重要信息及线索。研究成果以“Discovery of Natural Few-Layer Graphene on the Moon”为题,于6月17日发表在National Science Review期刊上。CE-5月壤样品中天然石墨烯的先进电子显微结构表征和谱学分析。(图片来源:吉林大学)过往报道指出,通过观测月球的全球碳离子通量,科研人员认为月球上存在原生碳,利用月球样品的表征研究来揭示原生碳相的晶体结构是可行的。石墨烯以其新奇的物理现象和非凡的特性,在包括行星和空间科学在内的广泛领域发挥着越来越重要的作用。据估计,星际碳总量中约1.9%是以石墨烯的形式存在,其形态和性质由特定的形成过程决定,因此天然石墨烯的组成和结构特征将为星体的地质演化和月球的原位资源利用提供重要的参考和信息。少层石墨烯在月球上可能形成过程(图片来源:吉林大学)在该项研究中,科研团队采用电镜—拉曼联用技术,在月壤样品含碳量相对较高的位置采集了拉曼光谱,确认了月壤样品中石墨碳的结晶质量相对较高。值得注意的是,月壤样品中存在碳的区域含有铁化合物,这与石墨烯的形成密切相关。通过扫描电子显微成像、透射电子显微成像、冷冻条件下球差电镜的高角环形暗场像和高分辨像、能谱和电子能量损失谱、飞行二次质谱等多种表征技术的综合运用及测试结果的多方面严谨比对分析,探究并证实了月壤样品中检测到的石墨碳是少层石墨烯(2—7层),并提出少层石墨烯和石墨碳的形成可能源于太阳风和月球早期的火山喷发共同诱导的矿物催化进程。(曲家伟)(责编:李洋、谢龙)-------- 原文完 ---------吉林大学电子显微镜中心-TESCAN中国联合实验室简介该实验室于2021年3月31日正式揭牌,配备了TESCAN公司提供的高端电子显微镜设备,旨在推动科学研究和技术创新。目前已配备TESCAN各类电镜有:ALL-IN-ONE综合为分析系统、AMBER X 氙离子双束电镜、CLARA超高分辨扫描电镜、MIRA 场发射扫描电镜、VEGA 钨灯丝扫描电镜。作为东北地区首个此类实验室,它不仅为吉林大学的科研人员提供了先进的研究工具,也成为促进地区科技发展的重要平台。联合实验室的成立,体现了校企合作的深度与广度,为双方在电子显微镜领域的研究与应用开辟了新的篇章。● 校企合作再添新篇章 | 吉林大学电子显微镜中心-TESCAN中国联合实验室成立 点击阅读● 【喜报】东北首台“ALL IN ONE” 综合微分析系统落户吉林大学电镜中心 ► 点击阅读TESCAN 联用技术TESCAN ALL-IN-ONE 综合为分析系统,在常规的SEM系统上,增加电镜与拉曼(Raman)、飞行时间二次离子质谱仪(TOF-SIMS)和原子力显微镜(AFM)等多种表征系统,可以极大的提升扫描电镜系统的原位综合分析能力,做到所见即所得。随着国际和国内客户科研成果的不断涌现,ALL-IN-ONE的理念已经被广大老师认同,应用前景越来越广泛。更多案例更多ALL-IN-ONE案例, 6月26日上午10点在第十届电子显微学网络会(iCEM 2024)上, 由TESCAN应用专家李景为您分享《TESCAN电镜在材料领域的最新应用》。长按识码 免费报名扫码直接报名,或点击下方邀请函了解详情:● 网络会议 | 提升原位综合分析能力,TESCAN联用电镜应用分享@iCEM2024 ► 点击阅读
  • 讲座预告 | 土壤样品前处理技术分析
    9月16日(周五)10:00-12:00,奥豪斯将开展主题为【土壤样品前处理技术分析】的线上讲座。扫描下方二维码即可免费报名。本期会议简介对于土壤,根据测定物质的不同特性,可以选用不同的前处 方法。在整个检测分析过程中,有60%的分析误差来源于样品的前处理方法。目前,土壤消解的前处理技术可以分为湿法消解(电热板、石墨消解仪)、微波消解、干灰化法等。土壤样品盘除测定常见的重金属外,还包括氰化物、氟化物等无机化合物。在土壤质量及污染检测时涉及的无机物指标及前处理方法。本期特邀讲师:赵小学河南省土壤重金属污染监测与修复重 点实验室高级工程师,近10年来,中文核心期刊发表学术论文20篇;参与编著环境监测行业教材3部;主持制定地方标准5项,参与国家环境准监测技术标准3项;获批7件专 利,发明专 利3件;主持取得4项省级技术成果。本期特邀讲师:阮秀秀上海大学环境科学与工程系教授,研究方向有有机污染土壤修复、废弃生物质的资源化、功能型生物炭材料的开发及环境应用、新型LDH类污染控制材料、工业固废资源化。我想听直播课,请问怎么报名?扫描下方的二维码,即可免费报名直播课如果您对本期话话题感兴趣赶紧报名参加吧 奥豪斯集团成立于1907年,拥有遍布各地的营销、研发和生产基地。通过不断为各地用户提供优质的称量产品与完善的应用方案,奥豪斯产品已遍及环保、疾控、食药、教学科研、食品、新能源和制药工业等各种应用领域,赢得了广泛的认可与青睐。我们致力于提供符合各国安全、环境及质量体系的产品,涵盖电子天平、台秤、平台秤、案秤、摇床、台式离心机、加热磁力搅拌器、涡旋振荡器、干式金属浴、实验室升降台和电化学产品等。
  • 实验室土壤样品前处理如何操作
    实验室中,在对土壤进行相关的检测分析前,需要对样品进行前处理,以保证实验检测结果的准确。土壤样品的前处理主要有干燥、挑拣、研磨、筛分、分选、装瓶这六个过程,下面东方天净就来详细介绍一下每个过程的具体实验操作步骤。土壤样品检测前处理实验步骤一、干燥采集回实验室的土壤需要尽快进行干燥,常用的干燥方法有风干和烘干。风干是将取回的土壤样品置于阴凉、通风且无阳光直射的房间内,并将土壤在晾土架、油布、牛皮纸或塑料布上平铺成薄薄的一层。烘干是将土壤样品放置在土壤干燥箱进行加热干燥(温度不超过40℃)。在干燥过程中,当土壤样品达到半干状态时,须将大土块(尤其是黏性土壤)捏碎,以免干燥后结成硬块,不易压碎。此外,土壤样品在干燥时要防止酸、碱等气体以及灰尘污染,供微量元素分析用的土壤样品时,要注意不能用含铅的旧报纸或含铁的器皿衬垫。某些土壤性状(如土壤酸碱度、亚铁、硝态氮及铵态氮等)在干燥时会发生显著变化,所以涉及此类的分析项目需用新鲜的土壤样品进行测定,但新鲜土壤样品较难压碎和混匀,称样误差比较大,因而需采用较大的称样量或者多次的平行测定,才能得到较为可靠的平均值。二、挑拣在土壤样品干燥的过程中,应该随时将混入其中的植物残渣、新生体、侵入体挑拣出去。如果挑拣的杂物太多,应将其挑拣于器皿内,并在分类后称其重量,同时称量剩余土壤样品的重量,计算出不同类型杂物的百分比,做好记录。细小的植物根系,可在土壤研磨前利用静电或者微风吹佛的方法清除。三、研磨土壤研磨的方法有两种,一种为手动研磨,一种是利用专用的土壤研磨仪。手动研磨费时费力,但成本相对较低,土壤研磨仪虽然需要购置设备,不过可以大大提高实验效率,比如东方天净TJTR土壤研磨仪三五分钟即可完成土壤研磨。土壤研磨需要根据实验类型来确定研磨后的样品粒度,比如在土壤pH、交换性能及速效养分等实验测定中,就不可将土壤研磨太细,如果磨得过细,就容易破坏土壤矿物晶粒,使分析结果偏高。如果是测定土壤中硅、铁、铝、有机质及全氮的含量,为保证检测结果准确,就需要将土壤样品研磨至100目至200目。手动研磨:将干燥、挑拣后的土壤样品平铺在木板上,用木碾轻轻碾压,然后将碾碎的土壤用带有筛底和筛盖的1mm筛孔的筛网过筛。未通过筛网的土粒,铺开后再次碾压过筛,直至所有土壤样品全部过筛,只剩下砾石为止,切勿碾碎砾石。土壤研磨仪研磨:将待研磨的土壤样品和玛瑙材质的研磨球一起放入玛瑙球磨罐中,然后将球磨罐固定在土壤研磨仪的罐座上,即可打开设备进行研磨。使用TJTR土壤研磨仪,可在三至五分钟内将土壤样品研磨至200目左右。四、筛分在土壤研磨后,我们要用筛分的方法确定所有样品都满足实验要求的粒度,每次筛分的土壤样品需全部过筛,不可将难以磨细的粗粒部分丢弃,否则会造成样品组成的改变而失去原有的代表性,使得实验结果出现误差。另外筛分要使用尼龙材质的筛网,不能使用金属材质的筛网。筛分具体操作如下:①通过0.5mm筛孔:取部分通过1mm筛孔直径的土壤样品,经过研磨使其通过0.5mm筛孔直径,通不过的再研磨过筛,直至全部通过为止。过筛后的土壤样品可测定碳酸钙含量。②通过0.25mm筛孔:取部分通过0.5mm或1mm筛孔的土壤样品部分,经过研磨使其全部通过0.25mm筛孔,做法同①。此样品可测定土壤代换量、全氮、全磷及碱解氮等项目。③通过0.149mm筛孔:取部分通过0.25mm筛孔的土壤样品部分,经过研磨使其全部通过0.149mm筛孔,做法同②。此样品可测定土壤有机质。五、分选分选采用“四分法”取样,可将研磨过筛后的土壤样品平铺成圆形,分成四等分,取相对的两份混合,然后再平分,直到达到要求。注意留部分样品待用。六、装瓶将处理好的土壤样品装入具有磨塞的广口瓶、塑料瓶内,或装入牛皮纸袋内,容器内及容器外各具标签一张,标签上注明编号、采样地点、土壤名称、土壤深度、筛孔、采样日期和采样者等信息。所有样品处理完毕之后,登记注册。一般装瓶的土壤样品可保存半年到一年,待全部分析工作结束之后,分析数据核对无误,才能舍弃。此外,还需注意样品存放应避免阳光直射,防高温,防潮湿,且无酸碱和不洁气体等对处理好的土壤样品造成影响。有关土壤样品检测前处理的具体实验步骤就和各位分享到这里了,相信大家对土壤样品前处理都有了更深的认识和理解。土壤检测实验的影响因素较多,我们需要通过前处理来尽量减少这些影响因素,保证检测结果的相对准确。
  • “土十条”土壤样品前处理标准解读及解决方案
    土壤,作为人类乃至整个生物界赖以生存的根基,为人类提供了栖息地和食物,随着人类的活动,污染越来越严重。??土壤重金属污染(heavy metal pollution of the soil)是指由于人类活动,土壤中的微量金属元素在土壤中的含量超过背景值,过量沉积而引起的含量过高,统称为土壤重金属污染。土壤重金属是指由于人类活动将金属加入到土壤中,致使土壤中重金属明显高于原生含量、并造成生态环境质量恶化的现象。??污染土壤的重金属主要包括汞(hg)、镉(cd)、铅(pb)、铬(cr)和类金属砷(as)等生物毒性显著的元素,以及有一定毒性的锌(zn)、铜(cu)、镍(ni)等元素。主要来自农药、废水、污泥和大气沉降等,如汞主要来自含汞废水,镉、铅污染主要来自冶炼排放和汽车废气沉降,砷则被大量用作杀虫剂、杀菌剂、杀鼠剂和除草剂。??2016年5月28日,国务院印发了《土壤污染防治行动计划》,简称“土十条”。这一计划的发布可以说是整个土壤修复事业的里程碑事件。??计划中明确提及重点监测土壤中镉、汞、砷、铅、铬等重金属和多环芳烃、石油烃等有机污染物,重点监管有色金属矿采选、有色金属冶炼、石油开采、石油加工、化工、焦化、电镀、制革等行业,以及产粮(油)大县、地级以上城市建成区等区域。??不同用途的土壤对于金属元素含量要求也不同建设用地土壤污染风险筛选指导值中规定金属元素限制如下表(单位:mg/kg)农用地土壤污染物基本项目含量限值(单位:mg/kg)农用地土壤污染物其他项目含量限值(单位:mg/kg)涉及到土壤中金属元素分析的相关分析方法土壤样品前处理方法:??目前常见的土壤消解方法有两种:微波消解法和敞口电热板消解法,由于敞口电热板方法使用酸的种类多,一般都要使用硝酸,氢氟酸,高氯酸,且使用量大,消解时间长,且使用到高氯酸,危险系数大,耗时耗力,目前很多方法都采用微波消解法,微波消解法具有全密闭,高温,高压,消解完全的优点。??现在已经有很多方法已经明确提出使用微波消解法处理土壤样品:??hj 803-2016 土壤和沉积物 12种金属元素的测定 王水提取-电感耦合等离子体质谱法??hj 491-2009 土壤 总铬的测定 火焰原子吸收分光光度法??hj 737-2015 土壤和沉积物 铍的测定 石墨炉原子吸收分光光度法??hj 680-2013 土壤和沉积物 汞、砷、硒、铋、锑的测定 微波消解/原子荧光法??从检测元素来看,微波消解法已经覆盖了土壤和沉积物中的铬(cr),钴(co),镉(cd),铜(cu),锰(mn),镍(ni),铅(pb),锌(zn),钒(v), 汞(hg),砷(as),硒(se),铋(bi),锑(sb),钼(mo),铍(be)等16种元素,完全满足土壤中元素分析的前处理要求。微波消解常用方法:??称取风干、过筛的样品0.1~0.5g(精确至0.0001g。样品中元素含量低时,可将样品称取量提高至1.0g)置于溶样杯中,用少量实验用水润湿。在通风橱中,先加入6ml 盐酸,再慢慢加入2ml 硝酸,混匀使样品与消解液充分接触。若有剧烈化学反应,待反应结束后再将溶样杯置于消解罐中密封。将消解罐装入消解罐支架后放入微波消解仪的炉腔中。按照推荐的升温程序进行微波消解,程序结束后冷却。待罐内温度降至室温后在通风橱中取出,缓慢泄压放气,打开消解罐盖。??把玻璃小漏斗插于50ml 容量瓶的瓶口,用慢速定量滤纸将消解后溶液过滤、转移入容量瓶中,实验用水洗涤溶样杯及沉淀,将所有洗涤液并入容量瓶中,最后用实验用水定容至标线,混匀。??安东帕高性能微波消解、萃取系统multiwave pro微波消解系统,可以配备各种不同型号规格的转子,满足您对于所有土壤,沉积物浸提,消解,萃取等分析前处理要求。最高安全标准唯一获北美etl和欧盟gs(“认可的安全”)双安全认证的微波样品制备设备操作简便无需任何工具,手动即可完成所有操作不折不扣的安全性能全面地温度压力控制保证消解效果,无线传输数据,避免了酸性环境下的连线和接口即调即用成熟方法库全面验证的综合方法库提供涵盖所有样品类型的成熟方法库,支持即调即用
  • 参与土壤检测知识问答,赢取价值 60 元的 《土壤样品分析测试方法实操手册》!
    土壤检测Questions&知识问答Answers参与土壤检测知识问答,赢取价值 60 元的 《土壤样品分析测试方法实操手册》!随着越来越多的省市开始试点,第三次全国土壤普查已逐渐在全国范围内铺开。本次土壤普查,以完善与校核补充土壤类型为基础,以土壤理化性状普查为重点,更新和完善全国土壤基础数据,构建土壤数据库和样品库,开展数据整理审核、分析和成果汇总。查清不同生态条件、不同利用类型土壤质量及其障碍退化状况,摸清特色农产品产地土壤特征、后备耕地资源土壤质量、典型区域土壤环境和生物多样性等,全面查清农用地土壤质量家底。为助力本次土壤普查,步琦提供了针对性的解决方案,并得到了部分客户的积极响应。为进一步更好地帮助客户答疑解惑,助力普查土壤工作;步琦将提出一些土壤检测相关的知识问答,参与知识问答将有机会赢取近期出版的价值 60 元的《土壤样品分析测试方法实操手册》一本。本书围绕全国重点行业企业用地土壤样品检测技术需求,在现行国家或其他检测标准的基础上,经过归纳与实际操作建立了一套土壤样品中 135 种污染物分析测试方法和土壤样品中污染物快速筛查与识别方法,具有很强的实用性和适用性,并已应用于重点行业企业用地土壤污染状况调查样品测试项目中,推广性极强,可为高等院校教学、环境检测、科研机构提供技术参考。在参与本次知识问答之前,让我们先来回顾一下步琦为本次土壤普查提供的解决方案,也许会对您的正确回答有所帮助哦!在国家还公布的部分第三次全国土壤普查理化性状检测的主要仪器设备中,在全自动定氮仪和可控温电热消解仪领域,步琦可以提供行业内领先的优秀产品助力普查工作。相关仪器01步琦凯氏定氮仪 K-365最大限度地提高准确度和性能得益于自动蒸馏仪 AutoDist 功能和 OnLevel 传感器凯氏定氮产品系列可实现凯氏定氮的最高准确度。以下几种特征有助于实现最高性能:自动识别蒸馏起点以获得完美的重现性自动识别蒸馏终点以获得最高准确度使用连接的滴定仪进行自动滴定,最大限度地减少用户影响节省资源和时间利用反应监测传感器等功能 节省资源和时间是进行有效凯氏定氮的关键。因此, BUCHI 开发了许多技术来提高流程效率:优化的碱化步骤可节省高达 30% 的试剂智能冷却水控制,降低用水量无需预热,从而提高时间效率自动蒸馏和滴定技术可实现无人值守操作体验最高的便利性和安全性采用创新的传感器技术完美的可用性和模块化可升级性是整个凯氏定氮产品系列的关键特征。主要特点包括:创新的传感器技术最大限度地减少了用户接触化学品直观的触摸屏,过程处理非常简单可按需升级,以最便利的方式自动执行分析02步琦快速红外消解仪 K-439控温能力强步琦 K-439 可实现手动控温和编程自动控温,精准、方便、快速地控制消解温度和时间。高速和高产量红外加热器快速将热量传输给样品和更快的冷却过程,可节约时间。消解时间短,增加样品输出量。连续添加过氧化氢可加速消解步骤。灵活快速红外消解仪 K-425 / K-436 一体二用,结合凯氏消解和回流消解。可灵活使用所有 BUCHI 样品管 (100 mL, 300 mL, 500 mL),样品管符合 COD 和其他回流消解(例如:王水)的 ISO 6060 标准。可选特定的抽吸模块进行水性样品消解。安全全密封的抽吸模块可高效转移有害烟雾,提升安全性。结合尾气吸收仪 K-415 可高效中和气体,带来安全的操作性并可延长通风橱的使用寿命。便捷便于方便且安全地储存吸入模块的滴水盘。节省工作台空间,并将机架放置在冷却位置。回顾了步琦高颜值高效率的土壤检测设备之后,让我们开始进行土壤检测知识问答,赢取价值 60 元的《土壤样品分析测试方法实操手册》吧!活动规则活动期间,每人都将获得 1次 问答机会,问答结束后,您可查看正确答案,我们将在 9 月 30 日 截止活动,获得 前 20 名 的用户即可获奖,机不可失,失不再来,快来扫码参与吧!“ 长按以上二维码即刻参与
  • 土壤样品中As、Hg等元素的测定
    土壤中微量As的测定一、取0.2000克试样于25毫升的比色管中,加入1:1的王水5毫升,于沸水浴中加热溶解1小时,冷却后加入蒸馏水10毫升,摇匀,再加入混和还原剂2.5毫升,用蒸馏水定容到25毫升,摇匀放置澄清。二、原子荧光光谱仪测定。 ***保持样品介质为10%王水,1%硫脲,1%的抗坏血酸。 ***标准系列也要保持介质为10%王水,1%硫脲,1%的抗坏血酸。土壤中微量Hg的测定一、取0.2000克试样于25毫升的比色管中,加入1:1的王水5毫升,于沸水浴中加热溶解1小时,冷却后用蒸馏水定容摇匀放置澄清。二、原子荧光光谱仪测定。 ***保持样品介质为10%王水。 ***标准系列保持介质为10%王水。 原子荧光光谱仪还能检测土壤样品中的Sb、Bi、Pb、Sn、Te、Se、Ge、Zn、Cd、Au、Ag、Cu、Cr、Co、Ni等元素。 详情请垂询:北京金索坤技术开发有限公司,联系电话:010-56370668
  • 土壤样品风干箱使用方法
    1.打开土壤干燥箱电源,机器自动加热恒温。  2.在每个样品室放入需要干燥的土壤样品。  3.接通气源箱电源,按实验需要打开空气泵电源。空气泵电源一共有两个,可以根据需要打开一个或两个空气泵电源。  4.机器使用环境尽量保持空气流通,而且气源箱尽量和箱体保持远一点的距离,这样可以有效避免产生二次污染。  5.干燥箱内部的数显温控装置使用方法:按设定键上排显数显示SP,下排显示设定温度,按△、▽键设定温度,按两次SET键返回到正常工作状态,温度设定完毕。  6.使用完毕请把工作室擦拭干净,内部不允许有水滴、污物、积垢和其它异物残留,避免下次使用产生污染。  7.土壤干燥箱工作完毕,关闭电源开关,切断电源。
  • 伟业新品:土壤分析质控样品系列标准物质
    伟业新品:土壤分析质控样品系列标准物质 土壤阳离子交换量是指土壤胶体所能吸附各种阳离子的总量。其数值以每千克土壤中含有各种阳离子的物质的量来表示,即mol/kg。土壤是环境中污染物迁移、转换的重要场所,土壤胶体以其巨大的比表面积和带点性,而使土壤具有吸附性。土壤的吸附性和离子交换性能又使它成为重金属类污染物的主要归属。土壤阳离子交换性能对于研究污染物的坏境行为有重大意义,它能调节土壤溶液的浓度,保证土壤溶液成分的多样性,因而保证了土壤溶液的“生理平衡”,同时还可以保持养分免于被雨水淋失。 阳离子交换是土壤比较重要的性质之一,是土壤本身的特有属性,主要原因就是土壤胶体的负电特性,其电荷分为可变电荷和固定电荷,当ph较低时(到达等电点时),整个性质就会发生变化,阳离子交换,顾名思义,负电荷的土壤胶体表面吸附有一些可交换态的阳离子如k、mg、ca等,当污染物特别是重金属类物质与土壤接触时,由于其于土壤胶体表面基团具有更强的结合能力,从而取代部分正电性基团,但是阳离子交换过程并不稳定,属于静电作用,因此自身并不稳定,如上述内容所说,易受ph影响,低ph条件下容易被淋洗。同时由于其具有很强的水溶性,因此生物有效性较高,容易被动植物吸收而贮藏在体内,是土壤化学反应较为活跃的一部分,受土壤环境影响较大。一、标准物质的制备本标准物质选择经筛查的土壤为基体,经过风干、去杂、研磨、混匀、过筛、灭菌而成。量值核验一致后在洁净干燥的实验室环境下分装。二、标准物质的检测本标准物质定值方法参照NY/T295-1995中性土壤阳离子交换量和交换性盐基的测定、LY/T 1243-1999 森林土壤阳离子交换量的测定,通过使用满足计量学特性要求的计量器具保证其量值溯源性。实验原理:用1mol/L乙酸铵溶液(pH7.0)反复处理土壤,使土壤成为NH+4饱和土。用乙醇洗去多余的乙酸铵后,用水将土壤洗入凯氏瓶中,加固体氧化镁蒸馏。蒸馏出的氨用硼酸溶液吸收,然后用盐酸标准溶液滴定。三、结论通过多次重复性实验的检测,产品的均匀性良好。经12个月长期稳定性研究结果表明有良好的稳定性,研制单位将继续跟踪监测该标准物质的稳定性,有效期内如发现量值变化,将及时通知上级主管部门与用户。四、应用领域本产品通常运用于土壤方面阳离子交换量、交换性盐基指标的检测。作为产品的质控分析样品,也可以用在环境土壤检测。五、注意事项需要注意的是,阴凉密闭及避光条件下保存。使用前应混匀,最小取样量为1.5g,并注意水分的影响。淋洗次数需合理,淋洗次数不够,不能把交换剂全部洗掉,淋洗过头会使易水解的被洗去产生误差,且不能超声提取。
  • 睿科集团成功举办土壤样品前处理及检测技术交流会
    2019年8月2日,由睿科集团携手安捷伦共同举办的“土壤样品前处理及检测技术交流会”在睿科集团共享培训中心成功举办,来自第三方检测机构、高校及环境监测站等实验人员参加了此次交流会。近年来由于国家对土壤防治工作的重视,大大增加了土壤样品的检测量,由于土壤样品基质的复杂性,如何更高效快速的完成样品前处理,及更准确的完成土壤检测,此次交流会为客户提供了一系列从土壤样品前处理到检测的解决方案。交流会进行时睿科集团与安捷伦公司的讲师们通过理论结合实操的方式向参会人员带来土壤有机和无机两部分前处理及检测技术解决方案的展示。首先,在有机前处理解决方案中,通过各种提取方式基本原理对比,指出加压流体萃取的优越性及睿科高通量加压流体萃取的优势,在整个土壤样品自动化前处理流程中,从提取到预浓缩、净化,再到富集浓缩,运用睿科自动化产品串联起各个步骤,最后上机检测,形成一整套完整的土壤样品检测全过程;并以土壤有机样,如多环芳烃、有机氯、半挥发性有机物、多氯联苯、二噁英等为例,再次用实际案例提出了睿科关于土壤前处理自动批量化的应用解决方案。而在无机前处理解决方案中,应用工程师提出湿法消解与干法消解两种样品消解常见办法,同时又对湿法消解中的传统湿法消解与全自动石墨消解及微波消解进行对比,指出全自动石墨消解与微波消解的优势;从标品配制,样品加标到样品消解,再到分析检测,在无机样品前处理解决方案中,就样品消解而言,睿科的全自动石墨消解仪可自动完成加液-摇匀-预消解-消解-赶酸-定容等所有步骤;而在实际应用中,重点以金属铬为例,辅以其他元素案例,再次对我们的无机样品前处理解决方案进行一次案例巩固。接下来,安捷伦公司的应用工程师们则带来了土壤中SVOC检测的有机解决方案及ICP-MS在土壤检测中的无机解决方案。从案例介绍入手,对土壤标准物质以及实际样品的结果进行分析,指出了GC-MS/MS及ICP-MS的分别在有机物检测和无机检测中的优势。在有机物检测中,重点指出了大量、脏基质样品分析的“痛点”是系统污染,从而点出反吹对系统维护的必要性及“智氢洁 ”自清洁离子源的技术优势。实操进行时实际操作内容包括:以土壤中的多环芳烃的前处理与检测分析为例,睿科应用工程师们为与会人员进行“土壤中多环芳烃提取、提取液浓缩、固相萃取净化、土壤净化液氮吹浓缩”的操作演示,最后在GC-MS-MS进行待测化合物的定性和定量分析,结合睿科集团实验室的样品前处理和分析设备,完成整个样品从前处理到上机检测全流程的操作。睿科集团始终相信“Knowledge Optimized Laboratory”,为分析测试行业不断提供新产品、新技术、新服务、新方法是我们努力的目标,科技让实验室更加智能化,为用户提供一站式的解决方案和全方位的服务是我们前进的方向,未来,睿科会追寻科技发展趋势,及时响应用户需求,与用户共同迎接挑战,将服务贯彻到为用户服务的每一个环节。
  • ​多样品土壤重金属检测仪的作用及特点
    多样品土壤重金属检测仪还具有广泛的应用范围。它可以用于检测不同类型的土壤,如耕地、林地、草地等,也可以用于检测不同类型的土壤污染,如工矿企业排放、农业化肥施用等。这有助于全面了解各种土壤污染源对土壤环境的影响,为环境保护工作提供科学依据。 多样品土壤重金属检测仪对于土壤样品检测具有重要的帮助。它可以提高检测效率,准确测定土壤中的重金属元素含量,为环境保护和人类健康做出重要贡献。 多样品土壤重金属检测仪能够高效地同时检测多个土壤样品中的不同重金属元素。传统的化学分析方法需要耗费大量时间和人力,而这种仪器可以在短时间内同时分析多个样品,大大提高了检测效率。这有助于研究人员或环境监测机构更全面地了解一个地区的土壤污染状况,为后续的环境治理或生态修复提供依据。
  • 安东帕:“土十条”土壤样品前处理标准解读及解决方案
    土壤,作为人类乃至整个生物界赖以生存的根基,为人类提供了栖息地和食物,随着人类的活动,污染越来越严重。 土壤重金属污染(Heavy Metal Pollution of the Soil)是指由于人类活动,土壤中的微量金属元素在土壤中的含量超过背景值,过量沉积而引起的含量过高,统称为土壤重金属污染。土壤重金属是指由于人类活动将金属加入到土壤中,致使土壤中重金属明显高于原生含量、并造成生态环境质量恶化的现象。 污染土壤的重金属主要包括汞(Hg)、镉(Cd)、铅(Pb)、铬(Cr)和类金属砷(As)等生物毒性显著的元素,以及有一定毒性的锌(Zn)、铜(Cu)、镍(Ni)等元素。主要来自农药、废水、污泥和大气沉降等,如汞主要来自含汞废水,镉、铅污染主要来自冶炼排放和汽车废气沉降,砷则被大量用作杀虫剂、杀菌剂、杀鼠剂和除草剂。 2016年5月28日,国务院印发了《土壤污染防治行动计划》,简称“土十条”。这一计划的发布可以说是整个土壤修复事业的里程碑事件。 计划中明确提及重点监测土壤中镉、汞、砷、铅、铬等重金属和多环芳烃、石油烃等有机污染物,重点监管有色金属矿采选、有色金属冶炼、石油开采、石油加工、化工、焦化、电镀、制革等行业,以及产粮(油)大县、地级以上城市建成区等区域。 不同用途的土壤对于金属元素含量要求也不同 建设用地土壤污染风险筛选指导值中规定金属元素限制如下表(单位:mg/kg) 农用地土壤污染物基本项目含量限值(单位:mg/kg) 农用地土壤污染物其他项目含量限值(单位:mg/kg) 涉及到土壤中金属元素分析的相关分析方法 土壤样品前处理方法:目前常见的土壤消解方法有两种:微波消解法和敞口电热板消解法,由于敞口电热板方法使用酸的种类多,一般都要使用硝酸,氢氟酸,高氯酸,且使用量大,消解时间长,且使用到高氯酸,危险系数大,耗时耗力,目前很多方法都采用微波消解法,微波消解法具有全密闭,高温,高压,消解完全的优点。 现在已经有很多方法已经明确提出使用微波消解法处理土壤样品:HJ 803-2016 土壤和沉积物 12种金属元素的测定 王水提取-电感耦合等离子体质谱法HJ 491-2009 土壤 总铬的测定 火焰原子吸收分光光度法HJ 737-2015 土壤和沉积物 铍的测定 石墨炉原子吸收分光光度法HJ 680-2013 土壤和沉积物 汞、砷、硒、铋、锑的测定 微波消解/原子荧光法从检测元素来看,微波消解法已经覆盖了土壤和沉积物中的铬(Cr),钴(Co),镉(Cd),铜(Cu),锰(Mn),镍(Ni),铅(Pb),锌(Zn),钒(V), 汞(Hg),砷(As),硒(Se),铋(Bi),锑(Sb),钼(Mo),铍(Be)等16种元素,完全满足土壤中元素分析的前处理要求。 微波消解常用方法:称取风干、过筛的样品0.1~0.5g(精确至0.0001g。样品中元素含量低时,可将样品称取量提高至1.0g)置于溶样杯中,用少量实验用水润湿。在通风橱中,先加入6ml 盐酸,再慢慢加入2ml 硝酸,混匀使样品与消解液充分接触。若有剧烈化学反应,待反应结束后再将溶样杯置于消解罐中密封。将消解罐装入消解罐支架后放入微波消解仪的炉腔中。按照推荐的升温程序进行微波消解,程序结束后冷却。待罐内温度降至室温后在通风橱中取出,缓慢泄压放气,打开消解罐盖。把玻璃小漏斗插于50ml 容量瓶的瓶口,用慢速定量滤纸将消解后溶液过滤、转移入容量瓶中,实验用水洗涤溶样杯及沉淀,将所有洗涤液并入容量瓶中,最后用实验用水定容至标线,混匀。 安东帕高性能微波消解、萃取系统Multiwave PRO微波消解系统,可以配备各种不同型号规格的转子,满足您对于所有土壤,沉积物浸提,消解,萃取等分析前处理要求。 最高安全标准唯一获北美ETL和欧盟GS(“认可的安全”)双安全认证的微波样品制备设备 操作简便无需任何工具,手动即可完成所有操作 不折不扣的安全性能全面地温度压力控制保证消解效果,无线传输数据,避免了酸性环境下的连线和接口 即调即用成熟方法库全面验证的综合方法库提供涵盖所有样品类型的成熟方法库,支持即调即用
  • 浪声:精准数据让样品说话,土壤三普这样检
    按照党中央,国务院要求,自2022年起我国各地将陆续开展“第三次全国土壤普查”(以下简称“土壤三普”)。此项任务是保障国家粮食安全的重要普查,也是针对我国国情国力的一项重要调查。2022年,31个省(自治区、直辖市)的80个以上县将陆续开展土壤三普试点,验证和完善土壤三普技术路线、方法及技术规程,健全工作机制,培训技术队伍,同时启动并完成盐碱地普查工作。2023—2024年全面开展土壤三普工作,开展多层级技术实训指导,分时段完成外业调查采样和内业测试化验,强化质量控制,开展土壤普查数据库与样品库建设,形成阶段性成果,最终在2025年形成土壤三普成果。这其中,势必会涉及土壤的采样,以及土壤理化性质、污染物等的检测,涉及多类别的仪器分析方法。近日,仪器信息网独家采访了苏州浪声科学仪器有限公司(以下简称“浪声”),浪声将从具体的产品出发,就土壤三普的检测环节的各种仪器应用进行剖析。仪器信息网:本次土壤三普有何特点?在土壤普查中需要检测的项目有哪些?浪声:相较于第二次土壤普查,土壤三普范围更大,内容更加丰富,包括肥力、环境、健康、保水、抗蚀等内容,整体普查工作的仼务更加艰巨,对数据的要求更高,全新的、高性能的检测分析技术和仪器对本次土壤普查至关重要。土壤三普是查明土壤类型及分布规律,查清土壤资源数量和质量等的重要方法,普查结果可为土壤的科学分类、规划利用、改良培肥、保护管理等提供科学支撑,也可为经济社会生态建设重大政策的制定提供决策依据。这需要在普查过程中对土壤进行全方位的检测,包括土壤养分检测、土壤墒情检测、土壤重金属检测等内容,覆盖土壤中的酸碱度、有机质、水分、盐分中微量元素、重金属(镉、铜、砷、铬、汞、镍、铁、铝、锌、锰、铜等)等多个指标。仪器信息网:本次土壤普查中贵公司有哪些新技术可以应用到本次土壤三普?具体有哪些客户?浪声:浪声科学作为国内科学仪器行业的先行者,一直致力于为环保领域的客户提供全方位的、高性能的检测解决方案,解决方案包括空气污染、土壤检测、固废污染检测等模块,以满足用户多场景应用,坚持贯彻可持续发展理念,助力我国环境资源的治理与保护。其中,针对此次土壤普查土壤检测,浪声提供完善的土壤检测解决方案,方案覆盖土壤重金属检测分析(XRF原理)、土壤粘粒矿物分析(XRD)等检测项目。在土壤重金属检测方面,浪声科学的手持式X荧光分析仪(XRF)作为浪声土壤重金属检测分析的明星产品,汇聚多项专利技术,轻便易携,能够对土壤中的重金属进行实时定性、定量测试,被广泛应用于环保领域,客户有新余市公安局、哈尔滨市公安局、厦门市人民检察院、鹰潭市人民检察院、河北恒一检测科技集团有限公司等。为应对土壤中元素种类繁多,结构复杂,其有害重金属Pb、Cd、As等元素含量较低、分布不均匀等检测难点,浪声新推出的漾YANG便携式单波长土壤重金属分析仪,采用双曲面弯晶技术,大大提高了重元素的灵敏度,降低了检出限,使得XRF技术,轻松实现由ppm向ppb跨越。想要掌握土壤的保肥、保水、抗蚀等能力,需要对土壤的重要组成部分--粘土矿物质进行分析检测,粘土矿物质种类复杂多样,且随地貌、气候、环境、海拔等条件的改变,其组成和分布都会收到影响。粘土矿物的种类和分布又会影响土壤的理化性质,对此,公司自主研发的便携式X衍射分析仪--映SHINE,对于极限条件下的土壤矿石测试,具有很好的可操作性。2D探测器,能够完成XRD&XRF的同时测量,XRD全谱峰位同时展现,测试效率高。这项新技术填补了国内便携式X射线衍射仪的空白。此外,浪声科学自主研发的桌面式X衍射分析仪(XRD)--界FRINGE,也是本次土壤普查检测中的理想工具,利用土壤中粘土矿物质的晶体结构在X射线下的衍射信息,能够快速、精准地分析土壤中粘土矿物质的组成及含量分布。一键墙插的电源和独有的内循环制冷系统,使得仪器的安装条件大大降低,配合浪声的“移动实验室”,可轻松完成土壤普查的就地取样及户外检测。仪器信息网:您认为,与其他仪器企业相比,贵公司的优势体现在哪些方面?浪声:1.从大环境上来说,疫情之下国际经济形势严峻,以及国家长期政策鼓励,更利好我们这种国产精密仪器。精准数据让样品说话,脚踏实地的优质的产品是我们的立身之本,我们的产品价格更优,配置更全,更注重差异化、多元化、个性化;目前,浪声科技的产品与解决方案已经广泛应用于全国各地各个领域,得到的客户们的一致认可。2.此外长远的技术创新是我们的优势所在,我们以多项专利技术为支撑,聚焦客户需求,不断推陈出新,为客户提供领先的产品与服务,为中国生态文明建设做出积极贡献。仪器信息网:贵公司将来重点关注和拓展的方向是什么?浪声:将来,我们将进一步深耕客户需求,以土壤三普为基点,针对土壤三普试点中遇到的难点,持续优化现有产品便捷性和智能化等方面的优势,为更多的客户提供整体解决方案。也将一如既往地坚持走自主创新之路,潜心钻研前沿先进环保技术研究与应用开发,为国家生态环境建设提供创新力量和强力支持,传递国产仪器品牌价值。
  • 全自动石墨消解仪在土壤样品前处理中的优势
    土壤改良在国家发展中日益受到重视,土壤利用的标准化也逐渐增多,因此在选择土壤消解仪时,很多用户都会对全自动石墨消解仪和微波消解仪之间的优劣产生疑虑。接下来简要介绍一下在土壤样品前处理中选择仪器的建议。使用微波消解仪和全自动石墨消解仪做土壤消解都可以达到实验效果,但两者在某些方面存在差异。1.微波消解仪采用封闭式处理样品进行高温消解,具有20多到60多个微波孔,可为用户提供大批量的消解能力。然而,微波消解孔数越多,每个消解管可装填的样品量就越小,不适合处理微量含量的样品消解,甚至在处理微量含量的样品时可能无法检测出来。2.格丹纳全自动石墨消解仪与微波消解相反,它在常温环境下进行消解,消解孔数可由36到72个进行设定,每个消解孔的直径都相同,能够处理大量样品。相较于微波消解,全自动石墨消解仪处理土壤样品的速度快。全自动石墨消解仪省去了微波消解中的手动加液、赶酸等繁琐操作,只需在电脑中设置好程序,就能轻松完成。另外,微波消解存在罐体爆炸风险的问题,而全自动石墨消解仪则不需要考虑这个问题。3.全自动石墨消解仪还配备了抽风系统,可将样品消解时产生的气体等一并抽走,无需再购买排风柜来排气。石墨消解仪不仅可以根据国家标准方法进行消解,还能自定义消解方法并将其自动保存在电脑软件中,随时调用使用。
  • 全国第三次土壤普查土壤样品检测技术规范(征求意见稿)
    按照《国务院关于开展第三次全国土壤普查的通知》要求,根据《第三次全国土壤普查工作方案》(农建发〔2022〕1号)确定的全国统一技术路线,各省、自治区、直辖市等开始组织开展土壤普查实验室筛选工作。第三次全国土壤普查实验室分为检测实验室、省级质量控制实验室和国家级质量控制实验室 3 类。其中,检测实验室通过筛选确定,省级质量控制实验室和国家级质量控制实验室通过确认确定,分别承担不同职责任务。  检测实验室需依据《第三次全国土壤普查土壤样品制备、保存、流转和检测技术规范(试行)》等要求和省级第三次土壤普查领导小组办公室土壤普查样品检测任务安排,做好样品制备、保存、流转和检测工作。本文特摘录《全国第三次土壤普查土壤样品 制备、保存、流转和检测技术规范 (征求意见稿)》第5部分:样品检测,供相关检测实验室参考。5样品检测各省(区、市)农业农村部门负责确定本区域承担任务质量控制实验室和检测实验室,组织样品检测工作。承担任务的检测实验室应在质控实验室的指导下按照检测任务要求和规定的技术方法开展土壤样品检测工作,按时报送检测结果。5.1 检测计划省级土壤三普工作领导小组办公室负责对本区域内土壤样品检测工作进行统筹,制定样品检测计划。样品检测计划应包括样品检测指标、检测方法、质量控制要求、检测数据上报要求等。5.2 检测方法检测实验室严格按照以下规定的技术方法开展检测工作。5.2.1 土壤容重5.2.1.1 环刀法:《耕地质量等级》附录 E(规范性附录)土壤容重的测定(GB/T 33469-2016)。5.2.2 机械组成5.2.2.1 吸管法:《土壤分析技术规范》第二版,5.1 吸管法。5.2.2.2 比重计法:《耕地质量等级》附录 D(规范性附录)土壤机械组成的测定(GB/T 33469-2016)。5.2.2.3 吸管法(森林土壤):《森林土壤颗粒组成(机械组成)的测定》(LY/T 1225-1999)。5.2.2.4 密度计法(森林土壤):《森林土壤颗粒组成(机械组成)的测定》(LY/T 1225-1999)。5.2.3 水稳性大团聚体5.2.3.1 人工筛法:《土壤检测第 19 部分:土壤水稳性大团聚体组成的测定》(NY/T 1121.19-2008)。5.2.3.2 机械筛选法:《森林土壤大团聚体组成的测定》(LY/T 1227-1999)。5.2.4 土壤田间持水量5.2.4.1 环刀法:《土壤检测 第 22 部分:土壤田间持水量的测定 环刀法》(NY/T 1121.22-2010)。5.2.4.2 环刀法:《森林土壤水分- 物理性质的测定》(LY/T 1215-1999)。5.2.5 矿物组成5.2.5.1 X-射线衍射仪XRD 法:《土壤粘粒矿物测定 X射线衍射法》。5.2.6 pH5.2.6.1 电位法:《耕地质量等级》附录 I(规范性附录)土壤 pH 的测定(GB/T 33469-2016)。5.2.6.2 电位法:《森林土壤 pH 值的测定》(LY/T 1239-1999)。5.2.7 可交换酸度5.2.7.1 氯化钾交换-中和滴定法:《土壤分析技术规范》第二版,11.2 土壤交换性酸的测定。5.2.7.2 氯化钾交换-中和滴定法(森林土壤):《森林土壤交换性酸度的测定》(LY/T 1240-1999)。5.2.8 水解性酸度5.2.8.1 乙酸钠水解-中和滴定法:《森林土壤水解性总酸度的测定》(LY/T 1241-1999)。5.2.9 阳离子交换量5.2.9.1 乙酸铵交换-容量法(酸性、中性土壤):《中性 土壤阳离子交换量和交换性盐基的测定》(NY/T 295-1995)。5.2.9.2 乙酸钙交换-容量法(石灰性土壤):《土壤检测第 5 部分:石灰性土壤阳离子交换量的测定》(NY/T 1121.5-2006)。5.2.9.3 EDTA-乙酸铵盐交换-容量法:《土壤分析技术规范》第二版,12.1EDTA-乙酸铵盐交换法。5.2.9.4 乙酸铵交换-容量法(酸性、中性森林土壤):《森林土壤阳离子交换量的测定》(LY/T 1243-1999)。5.2.9.5 氯化铵-乙酸铵交换-容量法(石灰性森林土壤):《森林土壤阳离子交换量的测定》(LY/T 1243-1999)。5.2.10 水溶性盐总量5.2.10.1 重量法:《耕地质量等级》附录 F(规范性附录)土壤水溶性盐总量的测定(GB/T 33469-2016)。5.2.10.2 质量法、电导法(森林土壤):《森林土壤水溶性盐分分析》(LY/T 1251-1999)。5.2.11 交换性盐基总量5.2.11.1 乙酸铵交换法-中和滴定法(酸性、中性土壤):《土壤分析技术规范》第二版,13.1 酸性和中性土壤交换性盐基组成的测定(乙酸铵交换法)。5.2.11.2 氯化铵-乙醇交换-原子吸收分光光度法/火焰光度法(石灰性土壤):《石灰性土壤交换性盐基及盐基总量的测定》(NY/T 1615-2008)。5.2.11.3 乙酸铵交换法-中和滴定法(酸性、中性森林土壤):《森林土壤交换性盐基总量的测定》(LY/T 1244- 1999)。5.2.12 电导率5.2.12.1 电导法:《森林土壤水溶性盐分分析》(LY/T 1251-1999)。5.2.13 有机质5.2.13.1 重铬酸钾氧化-容量法:《耕地质量等级》附录C(规范性附录)土壤有机质的测定(GB/T 33469-2016)。5.2.13.2 重铬酸钾氧化-外加热法:《森林土壤有机质的测定及碳氮比的计算》(LY/T 1237-1999)。5.2.14 总碳5.2.14.1 杜马斯燃烧法:《土壤中总碳和有机质的测定元素分析仪法》。5.2.15 全氮5.2.15.1 自动定氮仪法:《土壤检测第 24 部分:土壤全氮的测定自动定氮仪法》(NY/T 1121.24-2012)。5.2.15.2 凯氏定氮法(森林土壤):《森林土壤氮的测定》(LY/T 1228-2015)。5.2.15.3 连续流动分析仪法(森林土壤):《森林土壤氮的测定》(LY/T 1228-2015)。5.2.15.4 元素分析仪法(森林土壤):《森林土壤氮的测定》(LY/T 1228-2015)。5.2.16 全磷5.2.16.1 氢氧化钠熔融-钼锑抗比色法:《土壤分析技术规范》第二版,8.1 土壤全磷的测定(氢氧化钠熔融-钼锑抗比色法)。5.2.16.2 碱熔-钼锑抗比色法(森林土壤):《森林土壤磷的测定》(LY/T 1232-2015)。5.2.16.3 酸溶法-钼锑抗比色/电感耦合等离子体发射 光谱法(森林土壤):《森林土壤磷的测定》(LY/T 1232-2015)。5.2.17 全钾5.2.17.1 氢氧化钠熔融-火焰光度法/原子吸收分光光度法:《土壤分析技术规范》第二版,9.1 土壤全钾的测定。5.2.17.2 碱熔-火焰光度法/原子吸收分光光度法(森林土壤):《森林土壤钾的测定》(LY/T 1234-2015)。5.2.17.3 酸溶-火焰光度法/原子吸收分光光度法/电感耦合等离子体发射光谱法(森林土壤):《森林土壤钾的测定》(LY/T 1234-2015)。5.2.18 全硫5.2.18.1 硝酸镁氧化-硫酸钡比浊法:《土壤分析技术规范》第二版,16.9 全硫的测定(硝酸镁氧化-硫酸钡比浊法)。5.2.18.2 燃烧碘量法(森林土壤):《森林土壤全硫的测定》(LY/T 1255-1999)。5.2.18.3 EDTA 间接滴定法(森林土壤):《森林土壤全硫的测定》(LY/T 1255-1999)。5.2.19 全硼5.2.19.1 碱熔-甲亚胺-比色法:《土壤分析技术规范》第二版,18.1 土壤全硼的测定。5.2.19.2 碱熔-姜黄素-比色法:《土壤分析技术规范》第二版,18.1 土壤全硼的测定。5.2.19.3 碱熔-等离子体发射光谱法:《土壤分析技术规范》第二版,18.1 土壤全硼的测定。5.2.20 全硒5.2.20.1 酸溶-氢化物发生-原子荧光光谱法:《土壤中全硒的测定》(NY/T 1104-2006)。5.2.21 全铁5.2.21.1 酸消解-电感耦合等离子体发射光谱法:《固体废物 22 种金属元素的测定 电感耦合等离子体发射光谱法》(HJ 781-2016)。5.2.21.2 碱熔-电感耦合等离子体发射光谱法:《土壤和沉积物 11 种元素的测定 碱熔-电感耦合等离子体发射光谱法》(HJ 974-2018)。5.2.22 全锰5.2.22.1 酸消解-电感耦合等离子体发射光谱法:《固体废物 金属元素的测定 电感耦合等离子体质谱法》(HJ 766-2015)。5.2.22.2 酸消解-电感耦合等离子体发射光谱法:《固体废物 22 种金属元素的测定 电感耦合等离子体发射光谱法》(HJ 781-2016)。5.2.23 全铜5.2.23.1 酸消解-电感耦合等离子体发射光谱法:《固体废物 金属元素的测定 电感耦合等离子体质谱法》(HJ 766-2015)。5.2.23.2 酸消解-电感耦合等离子体发射光谱法:《固体废物 22 种金属元素的测定 电感耦合等离子体发射光谱法》(HJ 781-2016)。5.2.24 全锌5.2.24.1 酸消解-电感耦合等离子体发射光谱法:《固体废物 金属元素的测定 电感耦合等离子体质谱法》(HJ 766-2015)。5.2.24.2 酸消解-电感耦合等离子体发射光谱法:《固体废物 22 种金属元素的测定 电感耦合等离子体发射光谱法》(HJ 781-2016)。5.2.25 全钼5.2.25.1 酸消解-电感耦合等离子体发射光谱法:《固体废物 金属元素的测定 电感耦合等离子体质谱法》(HJ 766-2015)。5.2.26 全铝5.2.26.1 酸消解-电感耦合等离子体发射光谱法:《固体废物 22 种金属元素的测定 电感耦合等离子体发射光谱法》(HJ 781-2016)。5.2.26.2 碱熔-电感耦合等离子体发射光谱法:《土壤和沉积物 11 种元素的测定 碱熔-电感耦合等离子体发射光谱法》(HJ 974-2018)。5.2.27 全硅5.2.27.1 碱熔-电感耦合等离子体发射光谱法:《土壤和沉积物 11 种元素的测定 碱熔-电感耦合等离子体发射光谱法》(HJ 974-2018)。5.2.28 全钙5.2.28.1 酸消解-电感耦合等离子体发射光谱法:《固体废物 22 种金属元素的测定 电感耦合等离子体发射光谱法》(HJ 781-2016)。5.2.28.2 碱熔-电感耦合等离子体发射光谱法:《土壤和沉积物 11 种元素的测定 碱熔-电感耦合等离子体发射光谱法》(HJ 974-2018)。5.2.29 全镁5.2.29.1 酸消解-电感耦合等离子体发射光谱法:《固体废物 22 种金属元素的测定 电感耦合等离子体发射光谱法》(HJ 781-2016)。5.2.29.2 碱熔-电感耦合等离子体发射光谱法:《土壤和沉积物 11 种元素的测定 碱熔-电感耦合等离子体发射光谱法》(HJ 974-2018)。5.2.30 全钛5.2.30.1 酸消解-电感耦合等离子体发射光谱法:《固体废物 22 种金属元素的测定 电感耦合等离子体发射光谱法》(HJ 781-2016)。5.2.30.2 碱熔-电感耦合等离子体发射光谱法:《土壤和沉积物 11 种元素的测定 碱熔-电感耦合等离子体发射光谱法》(HJ 974-2018)。5.2.31 有效磷5.2.31.1 氟化铵-盐酸溶液/碳酸氢钠浸提-钼锑抗比色法:《土壤检测第 7 部分:土壤有效磷的测定》(NY/T 1121.7-2014)。5.2.31.2 盐酸-硫酸/氟化铵-盐酸溶液/碳酸氢钠浸提-钼锑抗比色法(森林土壤):《森林土壤磷的测定》(LY/T 1232-2015)。5.2.31.3 盐酸-硫酸/氟化铵-盐酸溶液浸提-电感耦合等离子体发射光谱法(森林土壤):《森林土壤磷的测定》(LY/T 1232-2015)。5.2.31.4 氟化铵-盐酸/碳酸氢钠浸提-连续流动分析仪法(森林酸性土壤):《森林土壤磷的测定》(LY/T 1232- 2015)。5.2.32 速效钾5.2.32.1 乙酸铵浸提-火焰光度法:《土壤速效钾和缓效钾的测定》(NY/T 889-2004)。5.2.32.2 乙酸铵浸提-火焰光度法/原子吸收分光光度法/电感耦合等离子体发射光谱法(森林土壤):《森林土壤钾的测定》(LY/T 1234-2015)。5.2.33 缓效钾5.2.33.1 热硝酸浸提-火焰光度法:《土壤速效钾和缓效钾的测定》(NY/T 889-2004)。5.2.33.2 热硝酸浸提-火焰光度法/原子吸收分光光度法/电感耦合等离子体发射光谱法(森林土壤):《森林土壤钾的测定》(LY/T 1234-2015)。5.2.34 有效硫5.2.34.1 磷酸盐-乙酸溶液/氯化钙浸提-电感耦合等离子体发射光谱法:《土壤检测第 14 部分:土壤有效硫的测定》(NY/T 1121.14)。5.2.34.2 磷酸盐-乙酸溶液浸提-硫酸钡比浊法(森林土壤):《森林土壤有效硫的测定》(LY/T 1265-1999)。5.2.35 有效硅5.2.35.1 柠檬酸浸提-硅钼蓝比色法:《土壤分析技术规范》第二版,20.2 土壤有效硅的测定。5.2.35.2 HOAc 缓冲液浸提-硅钼蓝比色法(森林土壤):《森林土壤有效硅的测定》(LY/T 1266-1999)。5.2.36 有效铁5.2.36.1 DTPA 浸提-原子吸收分光光度法:《土壤有效态锌、锰、铁、铜含量的测定二乙三胺五乙酸(DTPA)浸提法》(NY/T 890-2004)。5.2.36.2 DTPA 浸提-电感耦合等离子体发射光谱法:《土壤有效态锌、锰、铁、铜含量的测定二乙三胺五乙酸(DTPA)浸提法》(NY/T 890-2004)。5.2.36.3 DTPA 浸提-邻菲啰啉比色法(森林土壤):《森林土壤有效铁的测定》(LY/T 1262-1999)。5.2.36.4 DTPA 浸提-原子吸收分光光度法(森林土壤):《森林土壤有效铁的测定》(LY/T 1262-1999)。5.2.37 有效锰5.2.37.1 DTPA 浸提-原子吸收分光光度法:《土壤有效态锌、锰、铁、铜含量的测定二乙三胺五乙酸(DTPA)浸提法》(NY/T 890-2004)。5.2.37.2 DTPA 浸提-电感耦合等离子体发射光谱法:《土壤有效态锌、锰、铁、铜含量的测定二乙三胺五乙酸(DTPA)浸提法》(NY/T 890-2004)。5.2.37.3 乙酸铵溶液浸提-高锰酸钾比色法(森林土壤交换性锰):《森林土壤交换性锰的测定》(LY/T 1263-1999)。5.2.37.4 乙酸铵溶液浸提-原子吸收分光光度法(森林土壤交换性锰):《森林土壤交换性锰的测定》(LY/T 1263- 1999)。5.2.37.5 对苯二酚-0.1mol/L 乙酸铵浸提-高锰酸钾比色法(森林土壤易还原锰):《森林土壤易还原锰的测定》(LY/T 1264-1999)。5.2.37.6 对苯二酚-0.1mol/L 乙酸铵浸提-原子吸收分光光度法(森林土壤易还原锰):《森林土壤易还原锰的测定》(LY/T 1264-1999)。5.2.38 有效铜5.2.38.1 DTPA 浸提-原子吸收分光光度法:《土壤有效态锌、锰、铁、铜含量的测定二乙三胺五乙酸(DTPA)浸提法》(NY/T 890-2004)。5.2.38.2 DTPA 浸提-电感耦合等离子体发射光谱法:《土壤有效态锌、锰、铁、铜含量的测定二乙三胺五乙酸(DTPA)浸提法》(NY/T 890-2004)。5.2.38.3 0.1mol/L 盐酸/DTPA 浸提-DDTC 比色法(森林土壤):《森林土壤有效铜的测定》(LY/T 1260-1999)。5.2.38.4 0.1mol/L 盐酸/DTPA 浸提-原子吸收分光光度 法(森林土壤):《森林土壤有效铜的测定》(LY/T 1260-1999)。5.2.39 有效锌5.2.39.1 DTPA 浸提-原子吸收分光光度法:《土壤有效态锌、锰、铁、铜含量的测定二乙三胺五乙酸(DTPA)浸提法》(NY/T 890-2004)。5.2.39.2 DTPA 浸提-电感耦合等离子体发射光谱法:《土壤有效态锌、锰、铁、铜含量的测定二乙三胺五乙酸(DTPA)浸提法》(NY/T 890-2004)。5.2.39.3 0.1mol/L 盐酸/DTPA 浸提-DDTC 比色法(森林土壤):《森林土壤有效锌的测定》(LY/T 1261-1999)。5.2.39.4 0.1mol/L 盐酸/DTPA 浸提-原子吸收分光光度 法(森林土壤):《森林土壤有效锌的测定》(LY/T 1261-1999)。5.2.40 有效硼5.2.40.1 沸水提取-甲亚胺-H 比色法:《土壤分析技术规范》第二版,18.2 土壤有效硼的测定。5.2.40.2 沸水提取-姜黄素-比色法:《土壤分析技术规范》第二版,18.2 土壤有效硼的测定。5.2.40.3 沸水-硫酸镁浸提-电感耦合等离子体发射光谱法:《土壤有效硼的测定 电感耦合等离子体发射光谱法》。5.2.40.4 沸水浸提-甲亚胺-H 比色法:《森林土壤有效硼的测定》(LY/T 1258-1999)。5.2.41 有效钼5.2.41.1 草酸-草酸铵浸提-示波极谱法:《土壤检测第 9 部分:土壤有效钼的测定》(NY/T 1121.9-2012)5.2.41.2 草酸-草酸铵浸提-电感耦合等离子体质谱法:《土壤检测 第 9 部分:土壤有效钼的测定》(NY/T 1121.9)。5.2.41.3 草酸-草酸铵浸提-电感耦合等离子体发射光谱法:《土壤检测 第 9 部分:土壤有效钼的测定》(NY/T 1121.9)。5.2.41.4 草酸-草酸铵浸提-硫氰化钾比色法/极谱法:《森林土壤有效钼的测定》(LY/T 1259-1999)。5.2.42 有效硒5.2.42.1 磷酸二氢钾溶液浸提-氢化物发生原子荧光光谱法:《土壤有效硒的测定 氢化物发生原子荧光光谱法》(NY/T 3420-2019)。5.2.43 交换性钙5.2.43.1 乙酸铵交换-原子吸收分光光度法(酸性、中性土壤):《土壤分析技术规范》第二版,13.1 酸性和中性土壤交换性盐基组成的测定(乙酸铵交换法)5.2.43.2 氯化铵-乙醇交换-原子吸收分光光度法(石灰性土壤):《石灰性土壤交换性盐基及盐基总量的测定》(NY/T 1615-2008)。5.2.43.3 乙酸铵交换-EDTA 络合滴定法/原子吸收分光光度法(酸性、中性森林土壤):《森林土壤交换性钙和镁的测定》(LY/T 1245-1999)。5.2.44 交换性镁5.2.44.1 乙酸铵交换-原子吸收分光光度法(酸性、中性土壤):《土壤分析技术规范》第二版,13.1 酸性和中性土壤交换性盐基组成的测定(乙酸铵交换法)。5.2.44.2 氯化铵-乙醇交换-原子吸收分光光度法(石灰性土壤):《石灰性土壤交换性盐基及盐基总量的测定》(NY/T 1615-2008)。5.2.44.3乙酸铵交换-EDTA 络合滴定法/原子吸收分光光度法(酸性、中性森林土壤):《森林土壤交换性钙和镁的测定》(LY/T 1245-1999)。5.2.45 交换性钠5.2.45.1 乙酸铵交换-火焰光度法(酸性、中性土壤):《土壤分析技术规范》第二版,13.1 酸性和中性土壤交换性盐基组成的测定(乙酸铵交换法)。5.2.45.2 乙酸铵交换-火焰光度法(森林土壤):《森林土壤交换性钾和钠的测定》(LY/T 1246-1999)。5.2.45.3 乙酸铵-氢氧化铵交换-火焰光度法(碱化森林土壤):《碱化土壤交换性钠的测定》(LY/T 1248-1999)。5.2.46 水溶性钠和钾离子5.2.46.1 火焰光度法:《森林土壤水溶性盐分分析》(LY/T 1251-1999)。5.2.47 水溶性钙和镁离子5.2.47.1 EDTA 络合滴定法:《森林土壤水溶性盐分分析》(LY/T 1251-1999)。5.2.47.2 原子吸收分光光度法:《森林土壤水溶性盐分分析》(LY/T 1251-1999)。5.2.48 水溶性碳酸根和碳酸氢根5.2.48.1 双指示剂中合法:《森林土壤水溶性盐分分析》(LY/T 1251-1999)。5.2.49 水溶性硫酸根5.2.49.1 土壤浸出液中硫酸根的预测:《森林土壤水溶性盐分分析》(LY/T 1251-1999)。5.2.49.2 EDTA 间接滴定法(含量适中):《森林土壤水溶性盐分分析》(LY/T 1251-1999)。5.2.49.3 硫酸钡比浊法(含量较低):《森林土壤水溶性盐分分析》(LY/T 1251-1999)。5.2.49.4 硫酸钡质量法(含量较高):《森林土壤水溶性盐分分析》(LY/T 1251-1999)。5.2.50 水溶性氯根5.2.50.1 硝酸银滴定法:《森林土壤水溶性盐分分析》(LY/T 1251-1999)。5.2.51 总汞5.2.51.1 氢化物发生原子荧光法:《土壤质量 总汞、总砷、总铅的测定 原子荧光法 第 1 部分:土壤中总汞的测定》(GB/T 22105.1-2008)。5.2.51.2 催化热解-冷原子吸收分光光度法:《土壤和沉积物 总汞的测定 催化热解/冷原子吸收分光光度法》(HJ 923-2017)。5.2.52 总砷5.2.52.1 原子荧光法:《土壤质量 总汞、总砷、总铅的测定 原子荧光法壤样品 制备、保存、流转和检测技术规范 (征求意见稿)更多资料:《第三次全国土壤普查资料汇编》——仪器+方法+采样+制备+质控(全册)
  • 睿科:提升土壤有机物检测效率 需从样品前处理着手
    p   随着土壤污染防治攻坚战的开展,各级政府对土壤污染防治纷纷从政策和资金上给予了大力支持, 2019年1月1日起正式施行的《中华人民共和国土壤污染防治法》更是从法律上给予了坚实的保障。由此看来,提升土壤检测能力的重要性和紧迫性越来越凸显。在众多的土壤污染物中,有机化合物由于品种多、化学结构和性质各不相同、待测组分复杂,检测分析方法难度系数较大,对从业者的专业要求也相当之高。 /p p   为了帮助相关领域的用户学习、了解土壤有机物检测最新技术、方法及相关标准等内容,仪器信息网特别策划了“土壤有机物检测最新技术进展”专题,并邀请睿科集团应用工程师叶维鹏就土壤有机物检测技术相关的问题发表了自己的观点。 /p p style=" text-align: center " img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/201909/uepic/19b9a10e-0b03-4ca6-ad4d-68fff2857acf.jpg" title=" 睿科1.jpg" alt=" 睿科1.jpg" / /p p /p p style=" text-align: center " strong 叶维鹏 睿科仪器应用工程师 /strong /p p   span style=" color: rgb(255, 0, 0) " strong  仪器信息网:请谈谈您对我国现行的土壤有机污染物检测标准或方法的看法,有哪些方面需要进行改进和完善? /strong /span /p p    strong 叶维鹏: /strong 土壤中的污染物检测不像人们的想象那样简单,存在很多复杂的有机污染物,甚至有许多无法解释的东西,给相关的检测部门带来了相当大的难度。总体而言,有机物和重金属是土壤污染的最主要来源,为保证土壤有机物检测有标准可依,国家相关部门定期地对现有的土壤有机污染物进行编制,目前现行的土壤有机物污染物检测标准几乎能满足绝大多数的检测要求,但某些标准还未细致划分到每种物质,以致于有些有机污染物无法参照相应的标准,比如没有明确的苯胺类气质标准,目前已经发布的有《土壤和沉积物苯胺类和联苯胺类的测定液相色谱-三重四级杆质谱法》征求稿。 /p p   span style=" color: rgb(255, 0, 0) " strong  仪器信息网:在目前的土壤有机污染物检测项目中有哪些值得特别关注?相关检测方法的技术难点主要在哪? /strong /span /p p    strong 叶维鹏: /strong 目前我们比较关注的是苯胺类化合物、有机氯农药以及半挥发性有机物的检测,难点主要还是在于前处理(萃取、浓缩、净化)。比如低沸点目标化合物的回收率相对较低,必须控制好氮吹或旋转蒸发过程中的浓缩温度;酚类目标化合物则主要看仪器灵敏度,因为仪器的灵敏度决定最低检出限;邻苯二甲酸酯类目标化合物需尽可能避免用到塑化剂前处理设备,做空白基底扣除,否则做出来回收率相对较高,有可能偏离标准;极性相对大沸点相对较高目标化合物可选择二氯甲烷和丙酮(1:1)取代正己烷和丙酮进行萃取,效果明显。 /p p    span style=" color: rgb(255, 0, 0) " strong 仪器信息网:请介绍贵公司在土壤有机物检测方面有哪些仪器产品或产品组合?相比于同类产品,在技术上有哪些优势? /strong /span /p p    strong 叶维鹏: /strong 我们可提供多种土壤有机物检测前处理组合、提取设备,例如HPFE高通量加压流体萃取仪+浓缩设备、MPE高通量真空平行浓缩仪+净化设备、Fotector plus高通量全自动固相萃取仪等。其中HPFE高通量加压流体萃取仪一次可运行6个样品(30分钟),按照正常工作时间8个小时来计算,日处理最多可达96个样品。而且HPFE的收集瓶可兼容MPE,可直接将萃取后的收集液转移至MPE ,一次可处理16个大体积120mL的收集液或36个小体积40mL的收集液,浓缩时间30分钟左右,大大提高浓缩效率,再将预浓缩后的样品转移至Fotector plus 进行净化,一次可同时运行6个样品,可批量处理60个样品,解放人工手动净化,整个实验只需将架子转移,无需其他手动操作,避免目标化合物的损失。 /p p style=" text-align: center " img style=" max-width: 100% max-height: 100% width: 500px height: 375px " src=" https://img1.17img.cn/17img/images/201909/uepic/7ab83486-b71e-4b06-a804-8feffea67c4f.jpg" title=" 睿科2.jpg" alt=" 睿科2.jpg" width=" 500" height=" 375" border=" 0" vspace=" 0" / /p p /p p style=" text-align: center " strong 图一、睿科HPFE高通量加压流体萃取仪 /strong /p p style=" text-align: center " strong img style=" max-width: 100% max-height: 100% width: 500px height: 376px " src=" https://img1.17img.cn/17img/images/201909/uepic/fa430f98-ead0-458e-91fe-8f40ca18dd7e.jpg" title=" 睿科3.jpg" alt=" 睿科3.jpg" width=" 500" height=" 376" border=" 0" vspace=" 0" / /strong /p p /p p style=" text-align: center " strong 图二、睿科Fotector plus高通量全自动固相萃取仪 /strong /p p style=" text-align: center " strong img style=" max-width: 100% max-height: 100% width: 500px height: 375px " src=" https://img1.17img.cn/17img/images/201909/uepic/1f9ba127-13d1-454e-8942-bf28240697e9.jpg" title=" 睿科4.jpg" alt=" 睿科4.jpg" width=" 500" height=" 375" border=" 0" vspace=" 0" / /strong /p p /p p style=" text-align: center " strong 图三、睿科MPE高通量真空平行浓缩仪 /strong /p p    span style=" color: rgb(255, 0, 0) " strong 仪器信息网:贵公司可以提供哪些土壤有机物检测解决方案? /strong /span /p p    strong 叶维鹏: /strong 我们可提供土壤和沉积物以及固体废物等相关应用解决方案,符合标准如下: /p p   1& nbsp & nbsp 固体废物 半挥发性有机物的测定 气相色谱-质谱法(HJ 951-2018) /p p   2& nbsp & nbsp 固体废物 多环芳烃的测定 高效液相色谱法(HJ 892-2017) /p p   3& nbsp & nbsp 固体废物 多环芳烃的测定 气相色谱-质谱法(HJ 950-2018) /p p   4& nbsp & nbsp 固体废物 多氯联苯的测定 气相色谱-质谱法(HJ 891-2017) /p p   5& nbsp & nbsp 固体废物 有机氯农药的测定 气相色谱-质谱法(HJ 912-2017) /p p   6 土壤和沉积物 半挥发性有机物的测定 气相色谱-质谱法(HJ 834-2017) /p p   7 土壤和沉积物 多氯联苯的测定 气相色谱法(HJ 922-2017) /p p   8 土壤和沉积物 多氯联苯混合物的测定 气相色谱法(HJ 890-2017) /p p   9 土壤和沉积物 有机氯农药的测定 气相色谱法(HJ 921-2017) /p p   10 土壤和沉积物 有机氯农药的测定 气相色谱-质谱法(HJ 835-2017) /p p   11 土壤和沉积物 石油烃(C10-C40)的测定 气相色谱法(HJ1021-2019 /p p   12 GB5085.3-2007《危险废物鉴别标准 浸出毒性鉴别》 /p p   正如以上所言,土壤有机物检测工作的难点在于样品前处理,耗时、耗力、且容易产生操作误差,有资料表明有60%的分析误差产生于样品前处理,而不是最后的分析过程。如何快速、高效且准确地完成样品前处理,是土壤有机物检测工作中亟待解决的问题。睿科集团作为自动化样品前处理解决方案领先供应商,通过多种高通量、自动化样品前处理设备组合,为土壤有机物检测,如多环芳烃、有机氯、半挥发性有机物、多氯联苯、石油烃等,提供从提取、预浓缩、净化再到富集浓缩的全套土壤样品前处理自动化、批量化应用解决方案。 /p p br/ /p
  • 2019年国家土壤样品制备与流转中心工作有序开展
    p   为充分发挥国家土壤样品制备与流转中心(以下简称“制备中心”)作用,推进国家网土壤环境监测工作,中国环境监测总站(以下简称“总站”)组织6个制备中心开展2019年国家网土壤环境监测相关样品流转、制备与质量控制等工作。 /p p   制备中心由国家土壤专业实验室建设项目支持建设,总站负责组织实施,目前已在全国6个区域(华北、东北、华东、华南、西南和西北)建成6个制备中心,分别依托北京市环境保护监测中心、辽宁省生态环境监测中心、江苏省环境监测中心、广东省环境监测中心、四川省生态环境监测总站和陕西省环境监测中心站建设完成并投入使用。为确保制备中心统一、规范、有序运行,总站制定印发了统一的管理制度、技术规程、工作流程和仪器操作规程,确保制备中心工作制度化、规范化。 /p p style=" text-align: center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/201907/uepic/518650b3-bffd-4adc-948e-0f693ecbfb21.jpg" title=" 图1.jpg" alt=" 图1.jpg" / /p p style=" text-align: center "    span style=" font-family: 楷体, 楷体_GB2312, SimKai " 姜晓旭博士(右一)现场指导华北中心人员开展质量控制样品发放工作 /span /p p   自2018年起,制备中心已逐步开始承担国家土壤环境监测相关任务。2019年,各制备中心大力支持国家网土壤环境监测工作,按照总站《2019年国家网土壤环境监测技术要求》(总站土字﹝2019﹞84号)《2019年国家网土壤环境监测国家比对测试工作实施方案》(总站土字﹝2019﹞205号)要求,分别制定工作实施方案,将各项工作任务进行细化分解,责任到人,现场平行样品流转与制备、实验室平行样品流转与发放、标准物质样品发放、比对样品测试等工作按计划执行。 /p p   目前,6个中心分别开展了对应区域土壤质控样品的流转、拆分与发放工作,严格按照总站制定的工作方案和计划及时开展实验室平行样、标准物质样品等各类土壤质控样品的流转、拆分与发放。截至7月上旬已完成500余个样品的发放,年度总任务量已完成超过50% 华东、华南和西南中心承担的200余个现场平行样和比对样品的制备与测试工作按计划同步开展。 /p p style=" text-align: center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/201907/uepic/4d08e649-0b0a-4986-a472-bc826897f5a2.jpg" title=" 图2.jpg" alt=" 图2.jpg" / /p p style=" text-align: center "    span style=" font-family: 楷体, 楷体_GB2312, SimKai " 华南中心按照统一要求规范建设接样前台和形象墙 /span /p p style=" text-align: center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/201907/uepic/42a9d26c-a18f-43ce-8add-6fe8f4f6eec5.jpg" title=" 图3.jpg" alt=" 图3.jpg" / /p p style=" text-align: center "    span style=" font-family: 楷体, 楷体_GB2312, SimKai " 东北中心制度上墙,保证工作过程规范化、制度化 /span /p p style=" text-align: center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/201907/uepic/ec80233d-b6cd-423a-9824-aefeb95016a2.jpg" title=" 图4.jpg" alt=" 图4.jpg" / /p p style=" text-align: center "    span style=" font-family: 楷体, 楷体_GB2312, SimKai " 西北中心运行全方位视频监控,保证全过程可控可追溯 /span /p p style=" text-align: center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/201907/uepic/dd6e868d-5385-47fc-9333-84bd8f7adbb9.jpg" title=" 图5.jpg" alt=" 图5.jpg" / /p p style=" text-align: center "    span style=" font-family: 楷体, 楷体_GB2312, SimKai " 华东中心规范进行样品混匀与分装,保证样品的均匀性和代表性 /span /p p style=" text-align: center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/201907/uepic/01f73f32-9830-435a-9089-942fa9638736.jpg" title=" 图6.jpg" alt=" 图6.jpg" / /p p style=" text-align: center "    span style=" font-family: 楷体, 楷体_GB2312, SimKai " 西南中心样品制备工作人员严格按照技术规范要求制备土壤样品 /span /p p style=" text-align: center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/201907/uepic/3d524ec5-4c81-46c2-9be9-c94f95ee7411.jpg" title=" 图7.jpg" alt=" 图7.jpg" / /p p style=" text-align: center "    span style=" font-family: 楷体, 楷体_GB2312, SimKai " 华北中心为第二届北京市生态环境监测专业技术人员大比武活动提供场地保障 /span /p p   制备中心的有序运行,不仅强力支撑着国家网的例行土壤环境监测工作,同时在全国土壤污染状况详查、地方土壤环境监测等环境监测专项工作中发挥重要作用。下一步,总站和6家制备中心将继续按生态环境部及工作计划要求开展各项工作,运行制度化、规范化管理体系,持续提升国家土壤环境监测能力。 /p p style=" text-align: center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/201907/uepic/f9eeaebb-bc61-4e42-9605-5c4a04847ad5.jpg" title=" 绿· 仪社.jpg" alt=" 绿· 仪社.jpg" / /p p style=" text-align: center " span style=" font-family: 楷体, 楷体_GB2312, SimKai " 扫二维码加“绿· 仪社”为好友 了解更多对科学仪器市场的分析评论! /span /p
  • 变化内容解读∣第三次土壤普查土壤样品制备与检测技术规范(修订版)
    《第三次土壤普查技术规范》从2022年4月份的审议稿、2022年5月份的试行稿、2022年7月份的试行稿、到最后2023年2月的修订稿。每一版都有一些变化,但最终修订版变化最大,我现将最终修订版与7月份试行稿的变化内容做一个总结。一、样品制备变化内容(一)制样场地要求发生变化1、风干室要求增加了:“温湿度适宜,其面积应与承接制样任务数量相匹配,高湿地区根据需要安装除湿设施,如受场所限制不能集中风干,应确保每个分散风干的场所均满足本规范要求,并安排专人负责日常监督管理。”2、样品制备室制样过程全程摄像,保存记录由以前的“不少于3年”变为“不少于1年”。(二)制备流程1、一般样品制备(1)“一般样品”全部改为“表层样品”(2)风干:a、对于黏性土壤的风干更加具体,变为“在土壤样品半干时,戴一次性丁腈或聚乙烯等无污染材质手套将大块土捏碎,以免完全干后结成硬块。”b、把风干 “样品风干后混匀,用以粗磨”一句改为“一部分按照国家级和省级土壤样品库留存量要求,采用四分法分取后装入容器中流转至土壤样品库保存,剩余样品粗磨制成2mm样品,数量要确保样品检测和质控等需要。”说明样品库样品只需要风干即可,不需要粗磨。(3)粗磨:粗磨中去掉了“石砾含量较多时,耕地园地土壤样品应记录风干、粗磨过程中弃去的石砾质量,并计算石砾质量百分数。林地草地土壤样品应记录风干、粗磨过程中弃去的砖瓦石块、石灰结核、石砾质量,并计算碎石和石砾的总体质量百分数。”其实不管耕地园地、林地草地要求是一样的,都需要挑拣、称重、记录,所以去掉了。(4)称重:增加了称重“土壤样品应记录风干、粗磨过程中弃去的碎石和石砾等质量, 并计算质量百分数。”其实就是粗磨中去掉的部分,一句话概括为这一条“称重。”(5)分装:分装不按耕地园地、林地草地分不同要求了,统一变为:“粗磨后样品充分混匀后进行分装,每个表层样品的送检样品不少于800g,留存样品不少于200g,如果送检样品含密码平行样,则不少于1600。”2、剖面样品也不分耕地园地、林地草地,基本参照表层样品风干、粗磨、称重、分装步骤要求。3、土壤水稳性大团聚体样品(1)去掉了“一般样品、剖面样品的第1层样品采集时,均需采集土壤水稳性大团聚体样品”要求。(2)水稳性大团聚体送检要求由原来了“送检1000g、含密码1500g”变为:“送检样品不少于1100g,如果送检样品含密码平行,则不少于1600g。”二、样品流转变化内容(一)流转场地增加了流转场地要求:“承担制备任务的实验室应向省级质量控制实验室提供相对独立且配备相关设备设施场地,用于样品转码、组批和流转等,有条件的省级质控实验室也可自行设置专门场地用于样品转码、组批和流转等。”(二)样品组批和装运剖面样品组批要求发生变化,变为:“原则上按照10个剖面样点的全部剖面发生层样品组成一个批次,剖面样点量不足10个时,按照实际样品数量组批,每个批次的密码平行样品和质控样品各不少于1个,其余要求同表层样品。”三、样品保存变化内容(一)留存样品保存留存样品保存条件由原来的“存放温度不高于25℃”变为“实验室保存样品须密封存放,室温保存 (或不高于30 ℃) ”。(二)预留样品保存预留样品统一改为:“每份不少于400g,预留样品须移交本实验室保存室造册保存,保存时间不少于2年,保存条件同留存样品要求。”(三)剩余样品保存剩余样品保存时间由以前的“不少于半年”变为“”不少于1年,保存条件同留存样品要求。”四、样品检测变化内容(一)检测指标1、耕地园地检测指标中去掉了科研部门检测的 “土壤田间持水量”、“凋萎系数”、“矿物组成”,由原来的46项变为43项。林地草地检测指标中去掉了“土壤水稳性大团聚体”和“矿物组成”,由原来的19项变为17项。具体变化见下表1、表2。2、去掉了盐碱地水样检测指标,原备注由省级质量控制实验室检测。表1 耕地园地检测指标变化序号参数剖面样表层样备注修订后备注1机械组成√√剖面样品全部检测,表层样品选择50%检测2土壤水稳性大团聚体√√30%表层土样剖面样品的第一层样品检测,表层样品选择10%检测3可交换酸度√南方酸性土壤区域(pH小于6.0)检测pH√√盐碱土普查涉及的县中均需侧水溶性盐总量、电导率和8大离子。注:水溶性盐总量小于0.1%时,不测电导率和8大离子。全部样品检测水溶性盐总量和电导率,当水溶性盐总量除铁铝土纲不测,其余都测。pH7.0的样品检测6游离铁√仅测定铁铝土纲和淋溶土纲的土样长江以南 (除青藏高原) 所有剖面样品检测,长江以北 (含青藏高原) 水田剖面样品检测7土壤田间持水量√科研部门检测。黑土、棕壤、潮土、栗钙土、黄绵土、紫色土、红壤、黄壤、灰漠土、水稻土各100个土样,环刀法测定。耕地园地采集耕作层、犁底层、心土层3个土层环刀样,林草地采集0-20cm表层、20-40cm亚表层土层环刀样。去掉此项目8凋萎系数√科研部门检测。具体同“4 土壤田间持水量”去掉此项目9矿物组成√科研部门检测去掉此项目表2 林地草地检测指标变化序号参数剖面样表层样备注修订后备注1机械组成√√剖面样品全部检测,表层样品选择50%检测2土壤水稳性大团聚体√去掉此项目3矿物组成√去掉此项目4碳酸钙(无机碳)√除铁铝土纲不测,其余都测pH7.0的样品检测5全铁√pH仅测定铁铝土纲和淋溶土纲的土样长江以南(除青藏高原)所有剖面样品检测(二)检测方法变化以前耕地园地、林地草地的检测方法都是分开的,现在检测方法不分耕地园地、林地草地,统一为土壤样品检测指标方法。具体变化见下表3。表3 检测方法变化序号指标方法标准或规范备注变化内容1机械组成吸管法《土壤分析技术规范》(第二版),5.1吸管法1、仅能用吸管法2、去掉了比重计法2土壤水稳性大团聚体筛分法《土壤检测第19部分:土壤水稳性大团聚体组:成的测定》(NY/T1121.19-2008) (机械筛分方式,详见土壤样品制备与检测技术规范培训教材1、仅能用机械筛分法2、去掉了人工筛分法3阳离子交换量乙酸铵交换法《土壤分析技术规范》(第二版)12.2乙酸铵交换法pH≤7.5的样品1、方法全部变为《土壤技术规范的方法》。2、去掉了NY/T295- 1995和NY/T1121.5-2006两个方法。EDTA-乙酸铵盐交换法《土壤分析技术规范》(第二版)12.1EDTA-乙酸铵盐交换法pH7.5的样品4交换性盐基及盐基总量(交换性钙、交换性镁、交换性钠、交换性钾、盐基总量)乙酸铵交换法等《土壤分析技术规范》(第二版),13.1 酸性和中性土壤交换性盐基组成的测定 (乙酸铵交换法) (交换液中钾、 钠、 钙、 镁离子的测定增加等离子体发射光谱法,详见本规范培训教材)pH≤7.5的样品测定方法增加了ICP法氯化铵-乙醇交换法等《石灰性土壤交换性盐基及盐基总量的测定》(NY/T1615-2008) (交换液中钾、钠、钙、镁离子的测定增加等离子体发射光谱法,详见本规范培训教材)pH7.5的样品5水溶性盐(水溶性盐总量、电导率、水溶性钠离子、钾离子、钙离子、镁离子、碳酸根、碳酸氢根、硫酸根、氯根)质量法等《森林土壤 水 溶 性 盐 分 分 析》(LY/T1251-1999) (浸提液中钾、 钠、 钙、 镁离子的测定采用等离子体发射光谱法,硫酸根和氯根的测定增加离子色谱法,详见本规范培训教材)1、浸提液中钾、 钠、 钙、 镁离子的测定只能用ICP法。2、硫酸根和氯根的测定增加了离子色谱法。3、去掉了NY/T1121.16-2006法6有机质重铬酸钾氧化-容量法《土壤检测第6部分:土壤有机质的测定》(NY/T1121.6-2006)增加了元素分析仪法元素分析仪法《土壤中总碳和有机质的测定 元素分析仪法》(农业行业标准报批稿)7碳酸钙气量法《土壤分析技术规范》(第二版)15.1土壤碳酸盐的测定1、仅能用气量法2、去掉了非水滴定法 8全磷酸消解-电感耦合等离子体发射光谱法《森林土壤磷的测定》(LY/T1232-2015) (详见本规范培训教材1、仅能用ICP法2、去掉了氢氧化钠熔融-钼锑抗比色法3、去掉了酸溶-钼锑抗比色9全钾酸消解-电感耦合等离子体发射光谱法《森林土壤钾的测定》(LY/T1234-2015)1、仅能用ICP法2、去掉了碱熔-火焰光度法和原子吸收分光光度法《土壤分析技术规范》(第二版),9.1土壤全钾的测定10全硫硝酸镁氧化-硫酸钡比浊法《土壤分析技术规范》(第二版),16.9全硫的测定1、去掉了燃烧碘量法LY/T 1255-19992、增加了燃烧红外光谱法燃烧红外光谱法本规范培训教材11全硼碱熔-姜黄 素-比色法《土壤分析技术规范》(第二版),18.1土壤全硼的测定去掉了碱溶-亚甲胺-比色法碱熔-等离子体发射光谱法《土壤分析技术规范》(第二版),18.1土壤全硼的测定12全铁酸消解-电感耦合等离子体发射光谱法《固体废物22种金属元素的测定电感耦合等离子体发射光谱法》(HJ781-2016)去掉了碱溶-ICP法HJ974-2018 13全锰14全铝15全钙16全镁17速效钾乙酸铵浸提-火焰光度法《土壤速效钾和缓效钾含量的测定》(NY/T889-2004)前处理统一为2mm粒径样品样品粒径要求由原来的1mm统一变为2mm18缓效钾热硝酸浸提-火焰光度法19有效硼沸水提取-电感耦合等离子体发射光谱法土壤样品制备与检测技术规范培训教材1、仅能用ICP法2、去掉了沸水提取-甲亚胺-H比色法3、去掉了沸水提取-姜黄素-比色法20有效钼草酸-草酸铵浸提-电感耦合等离子体质谱法《土壤检测第9部分: 土壤有效钼的测定》(NY/T1121.9-2023)1、仅能用ICP法2、去掉了示波极谱法NY/T 1121.9-201221总铅酸消解-电感耦合等离子体质谱法《固体废物 金属元素的测定 电感耦合等离子体质谱法》(HJ766-2015)1、仅能用ICP-MS法2、去掉了ICP法HJ781-20163、去掉了火焰光度法HJ491-20194、去掉了石墨炉原子吸收法GB/T17141-199722总镉23总铬24总镍中国冶金地质总局第三地质中心实验室总工程师 刘桀佳2023年6月22日
  • 格丹纳样品前处理仪器助力全国“土壤三普”
    国务院颁发了《关于启动第三次全国土壤普查的通知》,决定自2022年开始进行为期四年的全国性土壤普查,以掌握我国土壤资源的状况。作为专注于样品前处理仪器研发的制造商,格丹纳拥有多种前处理设备,并在环境检测领域深耕多年,已经成为广大环境检测实验室可以信赖的合作伙伴。面对第三次全国土壤普查,格丹纳特别推荐其高效的消解仪,以助力土壤普查工作的顺利进行。微波消解仪1、优秀的防爆能力,极低的微波泄漏量,高安全等级设计贯穿于产品设计的各个方面。2、机械式安全保护装,开门0.1秒瞬间物理断电停止微波,保护人体安全 。3、SUS316超厚不锈钢腔体,激光无缝焊接,喷涂多层防腐耐高温特氟龙涂层,有效防止强酸腐蚀。4、全罐温度实时监控,可实时对每个消解罐内部样品溶液的温度非接触式直接测量并直观显示,控温更准确。5、超压自密闭智能控压技术,正常工作状态下消解罐完全密闭无泄露,超压状态下自动安全泄压。全自动石墨消解仪全自动化:自动实现加酸、消解、赶酸、摇匀、定容和酸雾排放等全过程,省时省力。无线控制技术:无线蓝牙控制,操作更便捷,真正实现无人值守自主实验。实验高效:完全独立的双模块设计,可同时执行两套不同的消解程序,互不干扰无污染高等级防腐:全防腐操作平台,自带通风系统,隔绝酸气酸液,让仪器运行更稳定智能石墨消解仪1、高纯石墨体环绕式加热,加热均匀,消除加热盲点。2、智能程序升温,消解过程程序化3、石墨体表面喷涂特氟龙涂层,易清洁、耐腐蚀;聚四氟乙烯台面,整机外围无金属部件,可在强酸强碱等恶劣环境中放心使用。4、批量处理,整体时间大大缩短。
  • 土壤污染物分析解决方案:自动化样品前处理
    “土十条”及“土壤详查”接连两项土壤环保部规定的出台,凸显国家对土壤污染问题的重视。然而土壤污染治理成本极大,劳民伤财,故,防与控为当下土壤问题解决的关键手段。“土壤详查”的千斤重担必定会落到实验室人员身上,那么土壤分析涉及哪些过程呢?图-1 土壤检测中的两座大山(左:无机物;右:有机物)无机物污染是当今土壤污染物的主要类型,包括:镉大米(镉)、水俣病(汞)、毒大米(砷)、贫血(铜锌)、神经衰弱(铅)、致癌(铬)、白血病(镍)等,无一不让人谈之色变。无机如此,有机又如何呢?有机污染物主要包括有机农药、酚类、氰化物、石油、合成洗涤剂、苯并芘以及由城市污水、污泥及厩肥带来的有害微生物等。隐蔽性和滞后性土壤污染往往要通过对土壤样品进行分析化验和农作物的残留检测,甚至通过研究对人畜健康的影响后才能确定。实验室对土壤污染物的传统检测大致流程如图-1,(左)为无机污染物检测,(右)则为有机污染物检测,从时间占比来说,样品的采集与前处理占据了实验的绝大部分时间,常以天做单位;然而上机检测却只以小时计,甚至是分钟计。由此不难看出:在土壤检测分析的过程中,样品前处理是关键,也是重点步骤,如何提高该步骤的时间和效率便是重中之重。而随着社会的高速发展及科技的进步,传统的手动前处理方法已经不能满足当下检测的需求,因此,设备的自动化及集成化越来越成为主流趋势。表-1 实验室手动前处理与自动前处理的时间对比过程方法消耗的时间与人力研磨人工研磨2-3 h, 1人研磨仪10-20 min, 1人筛分人工筛分1-2 h, ≥ 1人自动筛分10-20 min, 1人消解电热板消解5-8 h, ≥ 2人全自动石墨消解仪(Reeko Auto GDA-72)4-5 h, 1人提取索氏提取3-20 h, ≥1人快速溶剂萃取仪(Reeko ASE)30 min, 1人浓缩手动旋转蒸发0.5-1 h/单样, ≥2人全自动氮吹浓缩仪(Reeko Eva-20L/20 plus/60)0.5-1h/20-60个样品,1人固相萃取手动固相萃取≥3 h, ≥ 2人全自动固相萃取(Reeko Fotector Plus/02HT)0.5-1 h, 1人标液制备人工配液4-8 h,≥1人全自动液体样品处理工作站(Reeko Auto Prep 100)2 h, 1人通过上表,可以清楚直观的看出手动前处理与自动前处理的优劣,无论是从耗时还是人力方面,自动前处理都更胜一筹。作为与环境检测相关的从业者,我们不仅要熟悉各类土壤污染物的检测方法,更应对它们的成因和危害有深刻的认识,才能担负起相应的社会责任。土壤保卫战已经开展,我们将用产品+解决方案,找出土壤污染的根源所在,重新唤醒土壤生命力。无机物前处理有机物前处理睿科仪器曾对土壤样品中的多氯联苯、酚类和多环芳烃等项目进行检测,并根据国标的相关要求提出了自己的解决方案——《土壤与沉积物中多氯联苯解决方案》、《土壤与沉积物中酚类化合物残留的解决方案》、《土壤中15种多环芳烃解决方案》及《土壤中乙草胺/丁草胺残留量测定的解决方案》等,详细链接如下:土壤中15种多环芳烃解决方案土壤与沉积物中多氯联苯解决方案土壤与沉积物中酚类化合物残留的解决方案土壤中乙草胺/丁草胺残留量测定的解决方案未来,土壤样品随着污染的日益加重,不论是监控,检测还是治理都将有非常大的工作量,实验室检测设备自动化将成为大势所趋。睿科仪器将进一步完善土壤样品前处理的整体解决方案,提供从样品制取,前处理及检测分析一系列技术支持,且愿意根据您的实际情况,与您一同寻找真正适合自己的解决方案。
  • 展会掠影 | 莱伯泰科助力浙江省土壤、地下水环境调查及土壤样品分析测试技术发展
    为进一步改善土壤与地下水环境质量,规范地块环境质量调查、监测工作流程,提升地块环境质量调查从业人员的专业技能,浙江省环境监测协会于6月22~23日举办了“土壤、地下水环境调查及土壤样品分析测试技术培训班”。 此次培训班主要针对生态环境部门土壤与地下水相关工作人员以及有开展土壤、地下水环境调查及土壤样品分析测试业务的社会环境监测机构及其他机构的从业人员。会上,多位专家做了精彩分享,主要围绕土壤污染防治法律法规及政策解读、土壤中重金属实验室前处理及分析要点、土壤中有机物监测分析—VOC和SVOC监测分析等多个模块一一进行研讨、分析。关于土壤中重金属实验室前处理,莱伯泰科的微波消解、超级微波等产品可以为实验室提供便利,在会议休息期间,就有学员特意来到莱伯泰科展位前询问超级微波的相关信息,听到工程师的详细解答后,学员对于超级微波技术相当认可,并希望能够来到公司进行现场体验。此次培训班,莱伯泰科带来了高效快速溶剂萃取仪HPSE-2 Ultra和MultiVap-10平行浓缩仪两款产品,其中快速溶剂萃取仪HPSE-2是我公司今年推出的新品,很多学员对其产生浓厚兴趣。HPSE-2仪器为模块化设计,可以双通道,也可以4/6/8等连续多通道扩张,实验室可根据自身需求进行配置,最终提高效率的同时还可以节省成本。高效快速溶剂萃取仪HPSE-2 Ultra❖灵活配置:模块化设计,支持 2、4、6 等多通道可选,支持现场升级,非常灵活❖一机多用:本机兼容 1~100ml 规格大小罐的设计,满足环境(土壤、空气)、食品检测等各种应用领域的使用需求,应用领域兼容性广❖超快流速:多套高压泵设计,泵液动力更强,速度更快,萃取时间更短❖一机多法:本机可以同时做多种方法,可设置不同溶剂、温度等参数,满足不同项目的检测需求,方法兼容性强❖双通道同时运行❖兼容多种规格萃取罐同时运行❖ 密闭设计,安全环保❖ 一体式终端触屏控制❖ 可现场升级至更高通道 MultiVap-10平行浓缩仪❖ 十个样品通道可以同时,又可任意组合,随时启停,随时追加或移除,灵活方便❖ 可配用200ml及50ml浓缩杯,且两种浓缩杯可同时使用,并具有蒸干模式❖ 涡流式氮吹,氮吹位置及角度可以方便的调节,以便达到最大浓缩速度❖ 开启浓缩室的盖子后自动停止氮吹,闭合浓缩杯的盖子后自动恢复到上一氮吹状态,人性设计无需额外操作❖ 可自动检测浓缩终点,稳定可靠❖ 人机交互界面采用触摸屏,界面友好,易于操控 UltraWAVE超级微波消解系统❖ 超级微波化学平台 改变了传统微波消解的设计规则,是样品消解领域划时代的革命性产品!❖ 实现了超高温度和压力的消解,可在200bar压力长时间工作,工作效率是常规微波的3倍以上;❖ 同一批次消解食品,土壤,矿石,塑料,金属等多种类型样品;❖ 仅需2-3mL加酸量,与常规微波相比减少70%,无需赶酸;❖ 很低的使用成本,无需使用特殊的消解罐,普通的石英/玻璃/TFM试管均可使用;❖ 大幅减少人力消耗,10秒左右快速密闭消解罐,避免了几十分钟的装罐过程;❖ 大样品批处理量和称样量。关于莱伯泰科北京莱伯泰科仪器股份有限公司(股票代码:688056.SH)成立于2002年,公司自成立之初便专注于科学仪器设备的研发,立志为环境检测、食品安全、医疗卫生、疾病控制、材料研究等众多基础科学及行业应用提供实用可靠的实验室设备和整体解决方案。公司发展至今已拥有各类专利及软件著作权100余项,持续通过高新技术企业认证,连续多年被业内媒体评为中国仪器仪表行业“最具影响力企业”。产品服务涵盖实验室分析仪器、样品前处理仪器、实验室设备、医疗设备、实验室耗材和实验室工程建设等。目前,公司产品已销往全球90多个国家,共计服务客户近3万家。如需了解莱伯泰科的详细信息,请访问http://www.labtechgroup.com/。
  • 里程碑| 全自动土壤样品制备设备全国首个标准正式发布实施
    由兰友科技牵头,浙江省辐射环境监测站、北京市科学技术研究院资源环境研究所、河南省生态环境监测和安全中心等多家单位联合起草的《全自动土壤样品制备设备技术规范及评价方法》团体标准,历时近一年,通过了杭州市科技合作促进会标准化工作委员会组织的立项、调研、征求意见、专家评审等程序,于2023年1月18日正式批准发布,并于2023年1月20日开始实施。该标准的发布实施标志着我国土壤检测领域的样品制备技术进入标准化、自动化、可追溯的全新阶段 专家对该标准进行现场评审 全自动土壤样品制备设备自2019年由兰友科技首次商业化发布以来,已陆续装备在中国环境科学研究院、河北省环境监测中心、湖南省农村工作工作站、北京市土壤样品库等20多家土壤制样相关实验室,获得了用户的认可和好评,自动化制样方式相对于人工方法制样的优势也逐渐被用户接受。然而,该设备仍属于原始创新的新兴设备,市面上相继出现了一些部分功能自动化的土壤样品制备设备,其技术水平参差不齐,需要对其合规性、交叉污染、混匀程度、制样合格性、干燥和研磨温度控制、样品残留、噪声控制等重要技术指标进行规范和评价,以确保制备出来的样品符合现行规范的要求,并对检测结果没有影响。因此,建立规范的全自动土壤样品制备设备技术规范和评价方法势在必行! 兰友科技牵头,联合多家应用单位共同起草制定了《全自动土壤样品制备设备技术规范及评价方法》团体标准。该标准基于HJ/T 166-2004等多项现行的相关技术标准和规范,定义了逐级研磨、低温干燥、样品制备稳定性、样品残留、交叉污染等与土壤样品制备相关的术语;详细规范了全自动土壤样品制备设备的十一项功能;对用户关心的,能够体现设备制样质量的13项关键性能指标提出了具体数据和相应试验方法。可以说,该团体标准的发布,是全自动土壤制样技术发展的里程碑,是用户选择和使用全自动土壤样品制备设备的重要参考和保障。更为全自动土壤样品制备的行业标准和国家标准,提供基本的应用数据支持。 高标准才有高质量早已成为行业的共识,努力成为一流企业,努力成为行业标准的制定者,作为全自动土壤样品制备技术的原创者,兰友科技有责任更有义务引领和规范全自动土壤制样技术,树立自己的高端品牌,为用户提供真正能解决实际问题的好产品,推动我国土壤环境监测自动化技术的快速发展。
  • 全国土壤详查样品分析测试方法技术规定(报批稿)发布
    p   日前,国家环境分析测试中心、中国环境监测总站等五部委联合发布《全国土壤污染状况详查土壤样品分析测试方法技术规定》(报批稿),对土壤样品中的无机项、有机污染物及样品理化性质的分析测试方法做出详细规定,涉ICP-MS、ICP-AES、GC、GC-MS等数十项仪器设备。 /p p   本规定适用于“全国土壤污染状况详查”工作中农用地土壤污染状况详查和重点行业企业用地土壤污染状况调查的土壤样品的分析测试。本规定适用于所有参与“全国土壤污染状况详查”土壤样品分析测试任务的实验室。 /p p style=" line-height: 16px "    a href=" http://img1.17img.cn/17img/files/201708/ueattachment/f8fdaff2-a9af-4e26-8881-7f854e799bc0.pdf" style=" color: rgb(255, 0, 0) text-decoration: underline " span style=" color: rgb(255, 0, 0) " 《全国土壤污染状况详查土壤样品分测试方法技术规定》(报批稿).pdf /span /a /p p style=" text-align: center" img src=" http://img1.17img.cn/17img/images/201708/insimg/6128efc2-66a2-4c0f-89d1-c7ac9ec9c41a.jpg" style=" " title=" 1.jpg" / /p p style=" text-align: center" img src=" http://img1.17img.cn/17img/images/201708/insimg/65fdc7f4-bb3b-431d-ba4b-48e667d4b6da.jpg" style=" " title=" 2.jpg" / /p p style=" text-align: center" img src=" http://img1.17img.cn/17img/images/201708/insimg/1cdd461d-024c-474d-a7a7-2ecd25d2bfb9.jpg" style=" " title=" 3.jpg" / /p p style=" text-align: center" img src=" http://img1.17img.cn/17img/images/201708/insimg/099e7b43-f201-49b4-a296-1c4e83cd9694.jpg" style=" " title=" 4.jpg" / /p p style=" text-align: center" img src=" http://img1.17img.cn/17img/images/201708/insimg/f085b988-eefd-421c-aa10-b87ea9f9a137.jpg" style=" " title=" 5.jpg" / /p p style=" text-align: center" img src=" http://img1.17img.cn/17img/images/201708/insimg/57690a86-9088-4600-8b6a-fe071dbb8657.jpg" style=" " title=" 6.jpg" / /p p br/ /p
  • 河南省土壤样品检测技术与质量控制培训班在郑州举办
    为进一步优化检测工作流程,强化检测质量控制,全面提高检测的进度与质量,保障河南省第三次全国土壤普查(以下简称“土壤三普”)内业测试化验工作规范、高效、有序开展,按照国务院第三次全国土壤普查领导小组办公室(以下简称“全国土壤普查办”)要求,11月27日—28日,省三普办在郑州举办了土壤样品检测技术与质量控制培训班。全国土壤三普国家级专家、省土壤三普内业技术组组长、省土壤肥料站副站长孙笑梅研究员出席了会议并讲话。省土壤三普内业技术组相关人员,省级质量控制实验室主要技术负责人、质量负责人,有关检验检测机构的主要技术负责人、质量负责人等100余人参加了培训班。  孙笑梅指出,各检测机构要站位政治高度,充分认识土壤检测的重要性艰巨性;要对标对表找差距,凝心聚力抓落实,提高检测技术,确保数据可靠;要多措并举,全力做好土壤三普样品检测工作,落实好土壤样品检测质量控制;同时要严格按照全国土壤普查办有关要求,做好“三抓”即抓好组织、抓好沟通、抓好安全;在落实上切实按照“五靠四控”的要求认真执行。并要求各内业专家、省级质量控制实验室以及检验检测机构要进一步提高思想,增强责任感,主动入位,积极作为,高质量做好河南省土壤三普工作。  河南省土壤三普内业技术组副组长、省土壤肥料站监测中心主任袁天佑高级农艺师围绕土壤样品检测与质量控制开展了详细培训,对各检测机构提出了具体内部质量控制要求,并要求各检测机构回去后务必贯彻好孙笑梅副站长的讲话精神,落实好全国土壤普查办“三必须”,夯实主体责任落地,强化使命担当,高质量开展检测工作。  针对当前检测机构存在的实际问题,全国土壤三普国家级数据审核专家栾桂云高级农艺师讲解了土壤三普土壤样品检测流程优化步骤,对土壤样品检测作业指导书进行了分参数详细解读,并与各检测机构进行了现场互动,解答指正了实验过程出现各种问题,强化了实验过程管理,提升了各检测机构的技术水平,确保了各检测机构土壤三普样品分析数据准确、可靠。
  • 全自动石墨消解仪:智能化土壤样品处理解决方案
    全自动石墨消解仪是一项先进的实验设备,通过程序化标准化的操作,自动呈现了土壤样品的消解过程。其自动化特性大幅度提高了操作效率,让用户只需轻松完成样品称量和简单的仪器设置,即可放心交由仪器自动完成消解流程,包括加酸、摇匀、消解、赶酸以及定容等关键步骤。全自动石墨消解仪的显著优势:1.能够同时处理72个样品,适用于大批量样品的高效处理需求。2.通过自动添加腐蚀性试剂,如氢氟酸,有效避免了危险试剂对实验人员的潜在伤害。3.机械臂采用全塑设计,关键支撑部位使用全塑热熔包裹钢结构,具有不腐蚀、不变形的特性,同时不影响定容传感器的坐标。4.配备优化的通风系统,无需额外的通风橱空间。5.通过程序化标准化,消除了重复繁琐的操作,为实验人员节省了大量的工作时间。6.消解内腔采用不腐蚀塑料材质,台面使用聚四氟乙烯材质,有效防止回落的酸雾腐蚀。7.双模块设计,适合样品种类复杂的客户提高样品处理的效率。全自动石墨消解仪应用于土壤样品的方法:1.样品: 土壤2.检测项目: Cu、Zn、Cr、Pb3.设备: 全自动石墨消解仪G8(72位,格丹纳)4.试剂:硝酸(HNO3),65%氢氟酸(HF),40%高氯酸(HClO4),70%消解程序:1) 称取样品0.1g,置于消解管中;2) 全自动石墨消解仪设置程序后一键启动。注意事项:1) 针对具体样品的消解状况可适当延长样品在150℃和190℃的加盖消解时间;2) 赶酸时注意不要将样品蒸干;3) 根据实验结果,允许调整微波消解的温度和时间以及酸的比例,以得到最好的消解结果。全自动石墨消解仪的自动化操作省时省力,为实验室工作提供了更高效、更安全的解决方案。
  • 科学仪器助力嫦娥五号月球土壤样品表面微结构研究
    数十亿年来,月球上的土壤受到微陨石轰击、太阳风、宇宙射线中的带电粒子辐射等太阳风化的作用,其表面微结构和化学组分与地球土壤有较大区别。我国嫦娥五号采集的月壤样品属于最年轻的玄武岩,且取样点的纬度最高,为探究月壤在太空风化作用下的物质和结构演化提供了新机会。  近日,中国科学院物理研究所科研团队,与国家纳米科学中心、国家天文台、广州地球化学研究所等合作,对月壤中主要矿物铁橄榄石、辉石和长石开展了系统的表面微结构表征。在25个尺寸较小和外形规则的不同矿物样品中,科研团队仅在铁橄榄石表面观察到非常薄的SiO2非晶层(厚度约10纳米),其中包裹着大小为2-12纳米的晶粒。辉石和长石表面的化学组分与内部相同,表面不存在明显的非晶层。  在铁橄榄石边缘,最外层区域I是SiO2非晶层,区域II是SiO2非晶和FeO共存,区域III是SiO2非晶和铁橄榄石共存,这是首次在月球土壤中观察到此种特殊的微结构。  前期研究表明,太空风化使月球上的铁橄榄石和其他矿物表面形成厚的非晶层,厚度为50-200纳米,层内包裹着大量尺寸为2-10纳米的金属Fe颗粒。目前,关于金属Fe的形成机理存在争议,主要存在两种观点即铁橄榄石受微陨石等轰击直接热分解和带电离子辅助下的分步还原。  本研究发现的FeO纳米晶粒和分层的边缘微结构表明所研究的铁橄榄石可能处于热分解的中间阶段,支持了铁橄榄石在太阳风化作用下发生分步还原的观点。此外,化学元素和形貌分析发现辉石和长石的表面不包含非晶层和易挥发的外来元素(如硫、氯等),样品内部也没有出现太阳耀斑穿过的痕迹,表明所研究的样品可能处于太阳风化的中早期阶段。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制