当前位置: 仪器信息网 > 行业主题 > >

圆柱形颗粒

仪器信息网圆柱形颗粒专题为您整合圆柱形颗粒相关的最新文章,在圆柱形颗粒专题,您不仅可以免费浏览圆柱形颗粒的资讯, 同时您还可以浏览圆柱形颗粒的相关资料、解决方案,参与社区圆柱形颗粒话题讨论。

圆柱形颗粒相关的论坛

  • 有圆柱形的可以高压灭菌的瓶子吗?

    做实验用的盐水和BPW量太大了,用三角瓶装不多少又占空间,请问一下大家有没有圆柱形的瓶子或者耐高温高压的袋子,可以大批量的灭菌又节省高压锅空间的?大神们有别的什么解决办法吗?

  • 【原创大赛】文献综述和评论:圆柱形锂电池各向异性导热系数测试技术

    【原创大赛】文献综述和评论:圆柱形锂电池各向异性导热系数测试技术

    [b][color=#999999]Literature Review and Comments: Measurement Technology for Anisotropic Thermal Conductivity of Cylindrical Lithium Battery[/color][/b][color=#cc0000]摘要:本文针对圆柱形锂离子电池整体导热系数测试方法,评论性概述了近些年的文献报道,研究分析了导热系数测试方法的特点,总结了圆柱形锂电池各向异性导热系数测试中存在的问题和面临的挑战,从热分析仪器市场化角度提出了迎接这些挑战的技术途径和新方法。[/color][hr/][size=18px][color=#cc0000]1. 问题的提出[/color][/size]  圆柱形锂离子电池是所有类型锂离子电池中功率密度最高的,在设计、制造、应用和质量及安全性管理中,圆柱形锂电池会涉及到多种规格形式,如图1-1所示。[align=center][img=,690,312]https://ng1.17img.cn/bbsfiles/images/2020/06/202006081757079468_491_3384_3.jpg!w690x312.jpg[/img][/align][align=center][color=#cc0000]图1-1 各种规格的圆柱形锂电池[/color][/align]  圆柱形锂电池通常采用螺旋电极组件,由于在径向传导路径中电极和电解质层之间存在大量轴向上没有的界面,这使得圆柱形锂离子电池导热系数在径向和轴向之间存在着近两个数量级的差异。导热系数作为锂离子电池重要的热物理性能参数之一,测试就需要覆盖上述不同规格电池和不同方向的导热系数,这使得准确测试评价圆柱形锂离子电池导热系数面临着以下几方面的严峻挑战:  (1)导热系数测试方法众多,但针对圆柱形锂离子电池的特殊外形特征,首先要需要找出合理的测试方法,以保证测量结果的准确性,这对锂离子电池的设计和热管理尤为重要。  (2)圆柱形锂离子电池一个显著特点就是明显的各向异性特征,这就要求导热系数测试方法和仪器还需具备各向异性的测试能力。同时,由于圆柱形锂电池一般都是密封结构,不允许在电池内插入温度传感器等探测器,测试只能采用无损形式。由此可见,圆柱形锂电池的各向异性和无损检测,明显增大了测试技术的复杂程度和技术难度,甚至还需开发有些新型测试技术,如圆柱形锂离子电池径向导热系数测试技术。  (3)由于圆柱形锂电池导热系数测试涉及到不同形状和方向,这就要涉及不同的导热系数测试方法和设备。但在实际工程应用中,还是希望能对测试方法进行优化和开发测试新技术,从而实现用尽可能少的测试方法和仪器设备以尽可能多的满足其他规格锂电池的导热系数测试需求。  (4)由于锂离子电池还涉及其他热性能参数和表征参数,如比热容和热失控等,这样就要求导热系数测试方法和仪器能与其他热性能参数测试仪器集成在一起,使得测试仪器具备多功能性,在一台测试仪器上可实现多个参数的测试。  本文将针对上述存在的问题和挑战,首先对近几年圆柱形锂离子电池导热系数测试技术进行评论性综述,然后在对这些技术进行分析研究的基础上,提出更适合圆柱形锂离子电池导热系数测量的实用方法。[size=18px][color=#cc0000]2. 圆柱形锂电池导热系数测试方法综述[/color][/size]  尽管有些文献针对圆柱形锂电池导热系数测试进行了研究和报道,但出于适用性和实用性等方面的考虑,我们只关注那些对整体圆柱形锂电池进行的非破坏性导热系数测试方法。圆柱形锂电池是标准的圆柱形结构,对于径向和轴向导热系数,目前比较有效的测试方法基本采用的都是圆柱形结构的准稳态法,测试模型如图2-1所示。[align=center][img=,400,291]https://ng1.17img.cn/bbsfiles/images/2020/06/202006081806399747_8057_3384_3.jpg!w690x502.jpg[/img][/align][align=center][color=#cc0000]图2-1(a)径向加热和(b)轴向加热情况的几何模型[/color][/align]  在上述测试模型中,假设圆柱形锂电池的成分均一,以简化操作和计算。径向测试模型是在圆柱形电池外表面加载恒定热流或加热电池使外表面温度呈线性变化,如图2-1(a)所示,在圆柱形电池的轴线上(z向)呈绝热状态。  同样,对于轴向导热系数测试,如图2-1(b)所示,只在圆柱形电池的顶部加载恒定热流或使顶部表面温度呈线性变化,而电池底部采取绝热措施,由此可以形成与图2-1(a)相同测试模型,而这个测试模型则是典型的一维准稳态测试模型。  为了实现图2-1所示的准稳态测试模型,径向导热系数测试装置的基本结构设计为如图2-2所示形式,并且整个装置放置在真空器皿中以减少热损失。[align=center][img=,690,221]https://ng1.17img.cn/bbsfiles/images/2020/06/202006081758104291_4532_3384_3.jpg!w690x221.jpg[/img][/align][align=center][color=#cc0000]图2-2带柔性加热器、薄膜热流计和测温热电偶的径向导热系数测量装置示意图[/color][/align]  为了减少附加热容的影响,加热器、热流计以及绝缘层尽可能采用薄膜形式,由此所有温度和热流测量都在电池外表面进行。无论是径向还是轴向导热系数测量,用低导热隔热材料包裹整个测量装置以避免热量散失,以尽可能满足测试模型无热损的假设。  实际上,图2-1所示的准稳态测试模型是一种传统的测试方法,常被用于测量柔性和颗粒状隔热材料的高温导热系数。在标准的准稳态法测试过程中,需要测试绝热面的温度(如圆柱形样品的轴心温度)。在恒定热流加热情况下,经过一段时间后,样品的加热面和绝热面温度将达到相同的升温速率,传热方向上样品内外温度差将趋于相同,这种状态称之为准稳态。通过温差测量,很容易获得不同温度下的导热系数。  但对于圆柱形锂电池,不允许在电池中心插入测温传感器,只能在电池的外表面进行各种测量,这就为测量带来了难题。[color=#cc0000]2.1. Jain团队的研究工作[/color]  为了解决上述难题,美国德克萨斯大学Jain团队的Drake在读博期间开展了专项研究[1],开发了一种新颖的测试技术并进行了报道,测量装置与图2-2结构基本相同,只是少了薄膜热流计。测试过程中,通电控制加热膜温度线性升温,经过一段时间后,整个电池的温度变化进入准稳态过程,热电偶测量的电池表面温度也逐渐呈线性升温,希望通过此升温曲线来测定相关热性能参数。  另外,Drake等人针对测试模型建立了相应的数学表达式,并采用有限元方法进行仿真模拟,报道了数学表达式与有限元模拟结果有很好的吻合,如图2-3所示,计算了电池外表面、轴心线和径向不同位置处的温度变化。[align=center][img=,690,304]https://ng1.17img.cn/bbsfiles/images/2020/06/202006081758273600_4573_3384_3.jpg!w690x304.jpg[/img][/align][align=center][color=#cc0000]图2-3 径向数学模型与有限元热模拟的比较[/color][/align]  通过对数学模型的分析,Drake等人认为在进入准稳态后,通过测量圆柱形电池外表面温度变化直线段的截距和斜率,来分别得到电池的导热系数和比热容。由此分别对26650和18650电池的径向和轴向导热系数以及比热容进行了测量,测试曲线如图2-4和图2-5所示,锂电池的导热系数和比热容测试结果如表2-1所示。[align=center][color=#cc0000]表2-1 26650和18650电池的测量热物理特性[/color][/align][align=center][color=#cc0000][img=,690,105]https://ng1.17img.cn/bbsfiles/images/2020/06/202006081758408130_440_3384_3.png!w690x105.jpg[/img][/color][/align][align=center][color=#cc0000][img=,500,389]https://ng1.17img.cn/bbsfiles/images/2020/06/202006081800067070_2731_3384_3.jpg!w690x538.jpg[/img][/color][/align][align=center][color=#cc0000]图2-4 26650锂电池径向和轴向热物理性能测量的实验数据和分析模型比较[/color][/align][align=center][color=#cc0000][img=,500,392]https://ng1.17img.cn/bbsfiles/images/2020/06/202006081800230306_5883_3384_3.jpg!w690x541.jpg[/img][/color][/align][align=center][color=#cc0000]图2-5 18650锂电池径向和轴向热物理性能测量的实验数据和分析模型比较[/color][/align]  按照Drake等人提出的测试方法,圆柱形锂电池的不同方向测量可以得到不同的导热系数和比热容。因为比热容没有方向性,所以不同方向测试得到的比热容应该相同,由此可以检验测试方法的准确性。而Drake等人报道了对于26650锂电池的测试结果,轴向试验测得的比热容为1605J/kgK,径向试验测定的比热容为1895J/kgK,相差将近15%。  Drake等人的报道称这一“微小”差异归因于这样一个事实,即由于径向实验中的温度测量是在电池的中心位置进行,因此它没有考虑电池端部存在的金属接线片。当在轴向测试中考虑金属突片时,由于与构成电池电解质的有机溶剂相比,金属的比热容较低,所以测得的比热容稍低。所以报道认为轴向测量的比热容被认为更准确,因为考虑了翼片。  另外,Drake等人的报道还进行了简单的不确定度分析,结论是导热系数和比热容的总测量不确定度估计为5%左右。  在Drake博士的研究工作基础上,Jain团队又开展了研究改进工作[2]。Drake博士的圆柱形锂电池径向导热系数测试模型是进入电池的是不随时间变化恒定热流,但由于包裹的隔热材料以及薄膜形式的加热器等对热量吸收,使得真正进入电池的热流实际上可能会随时间发生变化,因此新的研究修改了解析模型以解决这些热量损失,得出了更广义的可变加热热流条件下的电池表面温升表达式,并重新定义的径向导热系数测试方法,以提高径向导热系数测量准确性。  此次研究分别对两种均质材料delrin和丙烯酸树脂和26650锂离子电池进行了测试,重新定义的导热系数测试方法并未沿用前期Drake博士报道的测试方法,而是采用试验得到的样品表面温升曲线,并结合灵敏度分析和参数估计方法来计算得到导热系数。  此次研究采用了如图2-2所示的测量装置,即在Drake博士的测试装置中加入了薄膜热流计,以检测加载恒定热流后真正进入圆柱形锂电池中的热流大小,测试结果如图2-6所示,从测试结果可以看出有随时间变化的明显热损。[align=center][img=,690,263]https://ng1.17img.cn/bbsfiles/images/2020/06/202006081800415554_2764_3384_3.jpg!w690x263.jpg[/img][/align][align=center][color=#cc0000]图2-6(a)输入电池热流随时间的变化;(b)输入电池热流、热损及其总和随时间的变化,虚线表示加载给薄膜加热器的恒定热流[/color][/align]  为了真正有效的评价改进后的测试方法,采用了瞬态平面热源法对delrin和丙烯酸样品的导热系数进行单独测量并进行的对比测试,测试结果如表2-2所示。[align=center][color=#cc0000]表2-2两种测量方法的结果比较[/color][/align][align=center][img=,500,109]https://ng1.17img.cn/bbsfiles/images/2020/06/202006081807306073_4151_3384_3.png!w690x151.jpg[/img][/align]  在Jain团队的这次改进性研究中,参数估计计算中只估计了导热系数这一个参数,并未对比热容进行参数估计,理由是参数估计过程中要先计算出比热容,然后再根据此比热容来估计导热系数,而比热容的误差会对导热系数带来较大影响。因此,此次研究中电池比热容数据采用了量热计独立测量结果,delrin和丙烯酸树脂比热容则由瞬态平面热源法测得。  Jain团队的这次改进性研究报道了径向导热系数测量的不确定度为7%,从表2-2所示测量结果来看,两种方法相差了9~15%,导热系数越小则测量误差越大。[color=#cc0000]2.2. Spinner等人的研究工作[/color]  为了对圆柱形锂电池做更深入的研究,美国海军研究实验室的Spinner等人分别采用了解析、量热测量、数值和试验四种方法对商用18650锂离子电池的热物理性能进行了测试研究[3]:  (1)第一种方法是根据随时间变化的导热方程式得出的径向导热系数的解析表达式,然后依据自然对流加热和冷却锂电池的实验测量值,采用参数估计方法得到锂电池径向导热系数和比热容。  (2)第二种方法是采用自制的简易量热仪测试出锂电池的比热容。  (3)第三种方法是采用径向导热方程解析表达式,结合图2-2所示的恒定热流试验测量结果,采用数值差分和参考估计方法得到径向导热系数和比热容。  (4)第四种方法完全采用了Drake等人的轴向导热系数测试方法[1]。根据电池表面温度准稳态变化曲线,通过截距和斜率计算得到轴向导热系数和比热容。  在第一种径向导热系数测试中,将一个表面粘贴有热电偶的锂电池放置在一个具有初始温度的密闭腔室内,等锂电池和腔室初始温度都达到稳定后,使腔室温度阶越升高或降低到一个新的温度,通过表面对流传热形式对锂电池进行加热或冷却,测温热电偶在整个过程中检测电池表面温度随时间的变化。这是一个典型的圆柱形样品侧面对流热交换模型,Spinner等人根据此传热模型建立了电池表面温度变化解析表达式,然后采用参数估计技术并结合试验测试得到的表面温度变化数据,计算得到锂电池径向导热系数和比热容,分别为0.55±0.23W/mK和972±92J/kgK。  为了评估测量准确性,在第二种方法中采用了量热法分别测量18650锂电池、铝和特氟隆的比热容作为对比,每次测量都将选取四个样品捆绑在一起以增加总热容来提高测量精度,测量结果如表2-3所示。[align=center][color=#cc0000]表2-3通过量热法获得的比热容与文献报道的铝(6061型)、特富龙和18650 LiCoO2电池的比热容值进行比较[/color][/align][align=center][img=,690,136]https://ng1.17img.cn/bbsfiles/images/2020/06/202006081800568202_6586_3384_3.png!w690x136.jpg[/img][/align]  在第三种径向导热系数测试中,首先对照测试了具有与18650电池相似几何形状的特富龙圆柱体,导热系数和比热容分别为0.232±0.003W/mK和1203±8J/kgK。然后对18650电池进行了九次不同恒定热流测试,九次测量结果有较好的一致性,导热系数和比热容的平均值分别为0.300±0.015W/mK和814±19J/kgK。  从第三种技术得到的结果可以看出,得到的比热容数据814±19J/kgK要比量热计测量结果896±31J/kgK低了近9%。因此,Spinner等人放弃了比热容测量,直接采用量热计的比热容测量结果,而直接参数估计径向导热系数这一个参数,这样得到的导热系数为0.219±0.020W/mK,认为此结果是最佳估计。但对于这个结论是否正确,并没有进行进一步的考核,如采用其他方法准确测量特富龙的导热系数,然后再进行比较。  在第四种轴向导热系数测试中,测得的轴向导热系数为21.9±1.7W/mK,但并未给出比热容测量结果。  将Spinner等人的结果与Drake等人的结果相比可以看出,除径向导热系数测量结果相近之外,轴向导热系数和比热容测量结果相差巨大。[color=#cc0000]2.3. Murashko团队的研究工作[/color]  为了对运行期间圆柱形锂电池的热性能(热扩散系数和发热量)实现在线测量,Murashko团队提出了另外一种测试方法并开展了研究[4][5]。  测试模型如图2-7(b)所示,圆柱形电池应视为无限长圆柱。为了这个目的,如图2-7(a)所示在圆柱形电池的两个端部都使用了纤维棉进行隔热。分别通过使用PT100温度传感器和热流传感器(GHFS)对电池表面的温度和热流进行测量。[align=center][color=#cc0000][img=,690,358]https://ng1.17img.cn/bbsfiles/images/2020/06/202006081801134074_869_3384_3.jpg!w690x358.jpg[/img][/color][/align][align=center][color=#cc0000]图2-7 (a)具有隔热、GHFS和PT100传感器的圆柱形电池;(b)无限长的圆柱体[/color][/align]  对于圆柱形锂电池的热性能的测量,是将圆柱形电池当作有内热源的圆柱体样品来对待,针对内热源圆柱体传热模型,建立了表面温度和表面热流的解析表达式,通过测试获得的电池表面温度和热流,采用参数估计的方法逆向求解出径向导热系数、径向热扩散系数、比热容和电池发热量。分别进行了两次不同的测试,连个测试结果如表2-4和表2-5所示:[align=center][color=#cc0000]表2-4 首次测试后的热参数计算结果[/color][/align][align=center][color=#cc0000][img=,690,137]https://ng1.17img.cn/bbsfiles/images/2020/06/202006081801256908_6402_3384_3.png!w690x137.jpg[/img][/color][/align][align=center][color=#cc0000]表2-5 第二次测试后的热参数计算结果[/color][/align][align=center][img=,690,135]https://ng1.17img.cn/bbsfiles/images/2020/06/202006081801383511_9614_3384_3.png!w690x135.jpg[/img][/align]  从上述两次测试结果可以看出,所采用的方法很难同时测定比热容和径向导热系数,径向导热系数和热扩散率的误差巨大,但可以用于测量圆柱型电池的比热容。[color=#cc0000]2.4. 其他研究工作[/color]  厦门大学的黄键等人在2020年报道了他们针对18650圆柱形锂离子电池导热系数各向异性测试的研究工作[6],测试方法是ASTM D5470稳态恒定热流法和CFD仿真模拟相结合,通过不同尺寸和形状的上下热流计来测试夹持在上下热流计之间不同摆放形式的圆柱形锂电池。对于圆柱形锂电池的轴向导热系数测试,如图2-8所示,采用了小直径的铜棒热流计,上下结构的铜棒热流计将直立放置的圆柱形锂电池夹持在中间,电池上下顶面分别控制在不同温度以在电池轴向形成稳定的温度梯度,由此来测量轴向导热系数。[align=center][color=#cc0000][img=,690,317]https://ng1.17img.cn/bbsfiles/images/2020/06/202006081801511307_5360_3384_3.png!w690x317.jpg[/img][/color][/align][align=center][color=#cc0000]图2-8 轴向导热系数测试;(a)测量装置,(b)装置结构示意图[/color][/align]  如图 2-9所示,对于电池径向导热系数测量,还是采用稳态法,只是加大了上下铜棒热流计的尺寸,并是上下热流计的端面形状与圆弧形电池外表面贴合,以保证在电池的直径方向上性能稳定的温度梯度。从图 2-9可以看出,这种仪器结构测试的并不是真正意义上的径向导热系数。[align=center][color=#cc0000][img=,690,240]https://ng1.17img.cn/bbsfiles/images/2020/06/202006081802037589_4119_3384_3.png!w690x240.jpg[/img][/color][/align][align=center][color=#cc0000]图2-9 径向导热系数测试;(a)测量装置,(b)装置结构正视图,(c)侧视图[/color][/align]  采用瞬态平面热源法测量了316不锈钢导热系数(14.494W/mK),然后将316不锈钢制成18650圆柱形锂离子电池形状,再放置到上述两台测试仪器进行测试以考核测量精度。轴向测试结果偏差为-0.649%,径向测试结果偏差为2.394%。  在随后的18650圆柱形锂离子电池轴向导热系数测试中,电池顶部温度控制在125.7℃,底部温度控制在31.3℃,在温差近94.4℃情况下测得的轴向导热系数为11.5W/mK。在径向导热系数测试中,测得结果为4.324W/mK。  这种测试方法能否准确测量圆柱形锂电池的各向异性导热系数非常值得商榷,主要问题是在测试径向导热系数过程中,上下铜热流计和圆柱状电池的布置结构非常容易使热量寻找最短路径进行传递,如从电池外壳传热,这势必一方面增大了传热量,另一方面缩短了热传递路径,这两方面的作用都会使得导热系数测试增大。而且,这种上下形式的传热结构,并不是真正的电池径向传热,所得到的导热系数也不是真正的点尺寸径向导热系数。  加州理工学院的Bhundiya等人针对18650和26650圆柱形锂离子电池也开展了测试研究[7]。测试前先将被测电池拆解,使用镍铬合金线通电加热柱状电池中心轴线来测量锂电池的径向导热系数,对于18650锂电池导热系数的测量结果为0.43±0.07WmK,对于22650锂电池导热系数的测量结果为0.20±0.04W/mK。明显可以看出他们的两个测量结果均远大于Drake等人的报告值(0.20±0.01W/mK和0.15±0.01W/mK)[1],而且整个测试装置非常简陋,被测电池外围并没有采取热防护而存在对流热损,测量结果的重复性基本在10%以上,最重要的一是测量接触压力与实际不符而带来较大热阻,二是没有采用已知导热系数材料进行考核验证。尽管测试结果对比相差较大,但至少又一次证明了圆柱形锂离子电池中层间接触热阻的影响非常明显,也可能证明了不同厂家锂电池因不同制造工艺不同而使得径向导热系数出现较大差别。[size=18px][color=#cc0000]3. 分析和评论[/color][/size]  纵观上述国内外对圆柱形锂离子电池各向异性导热系数的测试研究,呈现出十分混乱的局面,研究思路不是十分清晰和有效,存在的诸多问题主要表现如下:  (1)最直观的表现是导热系数各向异性测量结果非常差,稍微有点作用的是对比热容的测量,由此反而说明了比热容测量对各种误差影响因素并不敏感。  (2)对圆柱形锂离子电池的径向导热系数测试,已经建立了恒定热流法测试模型,也推导出了非常漂亮的相应数学表达式,但在具体试验中并没有很好的应用。可能是各种边界条件的影响太大,使得无法直接使用相应的数学表达式来获得准确的测量结果,采用的各种参数估计方法并没有提高测量精度。  (3)在热性能测试过程中,数学模型并不能准确描述实际测量装置的各种变化和边界条件,因此在热性能测试中最要的一个环境就是对测试方法进行仿真模拟计算,验证测试模型的准确性和量化各种边界条件的影响,并建立相应的校准方法。这是保证测量准确性的关键,而上述国内外的研究都没有涉及,由此使得现有的国内外研究对提高测量精度显着无能为力,从而盲目的采取了更多的其他方法做着努力,但基本没有效果。  (4)在上述国外的测试研究中,出现了很多常识性错误。最典型的错误就是热性能参数测量绝对不能在真空环境下进行,企图用真空条件来降低对流和辐射热损的影响,其效果往往会被真空下空隙型接触热阻同时增大的负面影响给覆盖掉,真空下测试势必会增加加热膜、薄膜热流计和热电偶之间的接触热阻,这也是上述国外研究中测量误差巨大的主要原因之一。另外,如果真空度控制不稳定或者不控制,孔隙型接触热阻的变化也会给测量带来较大的波动。  综上所述,尽管国内外研究还存在很多问题,但总体有以下两点收获:  (1)针对圆柱形锂离子电池各向异性热性能的测试,做了有效的尝试。特别是针对非破坏式的测试方法方面,证明了只测量电池表面温度变化来确定各向异性导热系数和比热容的可能性,这种证明对后续研究工作的开展和解决锂离子电池热性能测试难题有着重大意义。  (2)通过近些年的努力,针对电池热性能的测试,基本形成了一个共识,就是不管使用什么测试方法和技术手段,最终都需要一是符合工程要求进行非破坏性检测,二是最终测量的准确性都需要采用可比较的测试方法和手段进行对比考核。[size=18px][color=#cc0000]4. 新方法的提出和研究[/color][/size]  通过上述针对圆柱形锂离子电池径向导热系数各种测试方法的综述和分析,可以看出真正有实际工程意义的测试方法具有以下几方面的特征:  (1)非破坏式测量,即不能拆解锂电池来进行测量,否则会改变电池的各种性能特征和边界条件。  (2)表面测量方式,即所有测试加载都发生在圆柱形电池的外表面,目前报道相对成功的是在电池表面加载恒定热流。  在材料热物理性能测试中,边界条件分为三类,即第一类边界条件是恒定温度,第二类边界条件是恒定热流,第三类边界条件是交变温度或热流。由此可见,对于不能拆解的圆柱形锂离子电池,完全可以可以采用这三种边界条件测试模型进行径向导热系数测量。上述综述中常用的方式是第二类边界条件,这也就是说还可以采用第一和第三类边界条件对锂电池径向导热系数进行测量。  由此,上海依阳实业有限公司采用第一类边界条件的测试方法对径向导热系数测试技术开展了研究,建立恒温测试模型,推导了相应的表面温度解析表达式,并用有限元仿真模拟验证了测试模型的准确性,同时也验证了恒定热流测试模型的准确性。  通过研究发现,采用第一类边界条件的恒温测试方法能更准确的测量锂电池径向导热系数,并同时能测量得到比热容和径向热扩散系数。更重要的是恒温测量方法可以很容易的推广应用到棱柱形和袋装锂离子电池的热性能和热失控测试,可以作为目前常用的加速量热计测试技术的一种重要补充。[size=18px][color=#cc0000]5. 参考文献[/color][/size][1] Drake, S. J., et al. “Measurement of Anisotropic Thermophysical Properties of Cylindrical Li-Ion Cells.” Journal of Power Sources, vol. 252, 2014, pp. 298–304.[2] Ahmed M B , Shaik S , Jain A . Measurement of radial thermal conductivity of a cylinder using a time-varying heat flux method[J]. International Journal of Thermal Sciences, 2018, 129:301-308.[3] Spinner, Neil S., Ryan Mazurick, Andrew Brandon, Susan L. Rose-Pehrsson, and Steven G. Tuttle. 2015. “Analytical, Numerical and Experimental Determination of Thermophysical Properties of Commercial 18650 LiCoO2 Lithium-Ion Battery.” Journal of The Electrochemical Society 162 (14).[4] Murashko K A , Mityakov A V , Mityakov V Y , et al. Determination of the entropy change profile of a cylindrical lithium-ion battery by heat flux measurements[J]. Journal of power sources, 2016, 330(oct.31):61-69.[5] Murashko K , Mityakov A V , Mityakov V Y , et al. Heat flux based method for determination of thermal parameters of the cylindrical Li-ion battery: Uncertainty analysis[C]// Power Electronics and Applications (EPE'17 ECCE Europe), 2017 19th European Conference on. 2017.[6] Huang, Jian, et al. “Experimental Measurement of Anisotropic Thermal Conductivity of 18650 Lithium Battery.” Journal of Physics: Conference Series, vol. 1509, 2020, p. 12013.[7] Harsh Bhundiya, Melany Hunt, and Bruce Drolen, “ Measurement of the Effective Radial Thermal Conductivities of 18650 and 26650 Lithium-Ion Battery Cells”, The Thermal and Fluids Analysis Workshop (TFAWS) 2018 Proceedings.[align=center]~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~[/align]

  • 不同颜色的安捷伦管线,两端的圆柱形接头尺寸是否相同

    不同颜色的安捷伦管线,两端的圆柱形接头尺寸是否相同

    机器型号:Agilent 1260,标准配置昨天想换根柱子,由安捷伦的测试柱换为伯乐的色谱柱,管线接头由Swagelok变为Parker,两者都是前端管线伸出长度为0.09英寸。每次看资料不同的管线接头,给出的参数都是前端管线伸出的长度,比如waters的是0.130英寸,Rheodyne的是0.170英寸,那么除了前端深入的长短外,管线的接头处的外径都是一样的吗?我查看了一下目前有的管线,无论是哪包,管线两端都有一个圆柱形不锈钢似的末端,如下图(除了那个垫),似乎尺寸是一样的,那么是不是无论我使用哪家的接头,哪种颜色的管线(即内径不同的管线)这个圆柱形的部件尺寸都是一样的,所以不存在由于管线粗细不同而漏液的问题,每次换不同的色谱柱,只需要考虑前端深入的长度即可?http://ng1.17img.cn/bbsfiles/images/2015/06/201506090913_549220_1654762_3.jpg非常感谢!

  • 【原创大赛】圆柱形锂离子电池径向导热系数测试:传热模型的有限元仿真和验证

    【原创大赛】圆柱形锂离子电池径向导热系数测试:传热模型的有限元仿真和验证

    [color=#cc0000][size=18px]摘要:本文特别针对圆柱形锂离子电池的径向导热系数,开展了测试方法研究。在不破坏电池和只有电池圆周外表面的边界条件下,分别采用了恒温和恒流两种测试方法建立了相应的测试模型和解析表达式,并通过有限元仿真来验证了测试模型和解析表达式的准确性,为测试仪器的设计提供了有效指导,为在其他规格锂电池热性能测试中的推广有重大意义。[/size][/color][hr/][size=24px][color=#cc0000]1. 问题的提出[/color][/size][size=18px]  锂离子电池有多种规格和外形尺寸,所以锂电池的热性能参数测量会涉及多种测试方法和测试仪器设备。我们首先选择圆柱形锂离子电池的热性能测试开展研究,特别是针对圆柱形锂离子电池径向导热系数测试技术开展研究,主要出于以下几方面的考虑:[/size][size=18px]  (1)圆柱形锂离子电池是目前最常见的电池类型之一,应用十分广泛,而圆柱形锂电池径向导热系数测试技术并未成熟,国内外都还处于阶段,所报道的各种测试方法误差较大,无法满足电池热模型和热管理的需求。[/size][size=18px]  (2)锂电池的圆柱形结构非常特殊,特别在径向方向上只有一个圆周面,在不破坏电池条件下进行热性能测试,则只有一个圆周外表面能用来进行产生相应的测试边界条件,这往往是热性能参数测试技术中难度最大的测试。如果能够在圆柱形电池径向方向实现热性能参数测试,并能够达到满足的测量精度,则可以将测试技术很容易推广应用到棱柱形和袋装电池。[/size][size=18px]  (3)圆柱形锂离子电池中的自热热量通常是最低的,要低于棱柱形和袋装电池中的热量。同样,所研究的测试方法如果能够在热量较低的圆柱形锂电池上获得满意的测量精度,则可以在棱柱形和袋装电池的高热量测量中得到更高的测量精度。[/size][size=18px]  (4)另外,通过圆柱形锂离子电池径向导热系数测试技术的研究,可以尝试实现锂电池热性能测试仪器的多功能化、模块化、快速化和低造价。[/size][size=18px]  本文将特别针对圆柱形锂离子电池的径向导热系数,开展测试方法研究。在无损电池和只有电池圆周外表面的边界条件下,建立相应恒温和恒流两种测试模型和解析表达式,并通过有限元仿真来验证测试模型和解释表达式的准确性,预期为测试仪器的设计提供有效指导。[/size][size=24px][color=#cc0000]2. 圆柱形锂电池径向导热系数测试解析模型[/color][/size][size=18px]  根据圆柱形锂电池的内部结构和传热方向,圆柱形锂电池的径向传热方式都是一个典型的径向圆周四散方式,因此采用柱坐标形式来描述圆柱形电池的测试模型,如图2-1所示,而其他形式的测试模型都无法准确描述圆柱形电池的传热方式。对于一个半径为R、高度为H的圆柱形锂电池,其径向导热系数测试的边界条件只能产生在r = R处的圆周外表面上。[/size][align=center][size=18px][img=,250,311]https://ng1.17img.cn/bbsfiles/images/2020/06/202006070846574960_9557_3384_3.png!w533x664.jpg[/img][/size][/align][align=center][size=18px][color=#cc0000]图2-1 圆柱形锂电池径向导热系数测试模型[/color][/size][/align][size=18px]  如果假设圆柱形电池的上下两个端面为绝热面,那么电池外表面上的边界条件无外乎传热学中的三类边界条件,即恒定温度、线性升温和交变温度。由于被测电池尺寸相对较大,而且交变温度这种第三类边界条件的较难实现和解析模型非常复杂,因此我们只针对恒定温度和线性升温这第一和第二类边界条件开展相应的测试方法研究。[/size][size=18px]  对于图2-1所示的柱坐标径向加热情况,热量仅沿径向流动。因此,温度分布在空间上是一维的,热流也是一维热流,并假设径向导热系数是均匀的,并且在较小的温度区间内与温度无关。[/size][size=18px][color=#cc0000][b]2.1. 第一类边界条件:恒温测试解析模型[/b][/color][/size][size=18px]  第一类边界条件是表面温度恒定,也就是在测试过程中,起始温度为T0的电池突然放置在温度Ts的环境中,而且此环境温度要高于起始温度T0,并保持恒定不变,由此热量通过电池径向进行传递,而在电池两个端部处于绝热状态。[/size][size=18px]  以第一类边界条件进行的恒温测试,这里假设圆柱形电池是一个无限长棒传热模型,电池内的热传导方程为:[/size][align=center][size=18px][img=,690,128]https://ng1.17img.cn/bbsfiles/images/2020/06/202006070851382180_6133_3384_3.png!w690x128.jpg[/img][/size][/align][size=18px]  其中T(r,t)是电池内坐标r处在时刻的温度,ρ、kr和Cp分别是电池的密度、径向导热系数和比热容。那么方程(1)的解为:[/size][align=center][size=18px][img=,690,100]https://ng1.17img.cn/bbsfiles/images/2020/06/202006070852022891_578_3384_3.png!w690x100.jpg[/img][/size][/align][size=18px]  特征值λn由方程J0(λn)的根获得,J0表示第一类0阶贝塞尔函数。[/size][size=18px]  当加热时间足够长之后,方程(2)可以简化为:[/size][align=center][size=18px][img=,690,75]https://ng1.17img.cn/bbsfiles/images/2020/06/202006070852313819_8684_3384_3.png!w690x75.jpg[/img][/size][/align][size=18px]  其中αr=kr/(ρCp)为径向热扩散系数。对方程(3)两端去对数后,得:[/size][align=center][size=18px][img=,690,69]https://ng1.17img.cn/bbsfiles/images/2020/06/202006070853086401_7706_3384_3.png!w690x69.jpg[/img][/size][/align][size=18px]  由此可见,方程(4)是一个随时间变化的线性方程,通过其斜率m中包含着感兴趣的径向热扩散系数。对于圆柱形电池这种柱状坐标内的热传递,此时A1=1.6021,λ1=2.4048,那么方程(4)的斜率为:[/size][align=center][size=18px][img=,690,53]https://ng1.17img.cn/bbsfiles/images/2020/06/202006070853455432_5404_3384_3.png!w690x53.jpg[/img][/size][/align][size=18px]  由此,可以通过测量获得内部温升变化数据,经过对数转换后得到一条直线,由此直线的斜率就可以通过方程(5)计算得到电池的径向热扩散系数。[/size][size=18px]  在测试过程中不允许破坏圆柱形锂电池,因此在实际测试中并不能在电池内部上插入温度传感器获得T(r,t)测量值,但可以采用热流传感器在电池外表面获得热流随时间变化曲线。同样,通过对此恒温加热过程中的热流密度变化曲线取对数,其对数随时间的变化曲线也是一条斜率为方程(5)的直线。具体推导过程不再详述。[/size][size=18px]  在此恒温测试过程中,电池比热容随温度的变化为:[/size][align=center][size=18px][img=,690,39]https://ng1.17img.cn/bbsfiles/images/2020/06/202006070854129544_7533_3384_3.png!w690x39.jpg[/img][/size][/align][size=18px]  其中A代表电池圆周侧面受热面积,q(t)代表热流计检测的热流密度,m代表圆柱形电池的质量,dT/dt代表升温速率。[/size][size=18px]  假设在此温度变化范围内比热容是一个与温度无关的常数,那么在圆柱形电池从起始温度投入到环境温度T0中并最终达到稳定,则有:[/size][align=center][size=18px][img=,690,58]https://ng1.17img.cn/bbsfiles/images/2020/06/202006070854434347_7090_3384_3.png!w690x58.jpg[/img][/size][/align][size=18px]  这样,通过得到的径向热扩散系数和比热容,结合圆柱形电池密度ρ的单独测量值,则可以计算得到径向导热系数kr:[/size][align=center][size=18px][img=,690,39]https://ng1.17img.cn/bbsfiles/images/2020/06/202006070854588515_1777_3384_3.png!w690x39.jpg[/img][/size][/align][size=18px][color=#cc0000][b]2.2. 第二类边界条件:线性升温测试解析模型[/b][/color][/size][size=18px]  第二类边界条件是表面温度线性升温,也就是在测试过程中,电池外表面加载恒定热量来加热电池,并假设在整个加热过程中恒定热量不会随时间发生损失。另外由于圆柱形电池是轴心对称结构,电池四周侧面加热形式会使得电池轴心线上是一个绝热状态。由此,电池内的热传导方程和相应的边界条件为:[/size][align=center][size=18px][img=,690,209]https://ng1.17img.cn/bbsfiles/images/2020/06/202006070855152111_5660_3384_3.png!w690x209.jpg[/img][/size][/align][size=18px]  其中θ(r,t)是高于起始温度T0的温升θ(r,t)=T(r,t)-T0,T(r,t)是电池内坐标r处在时刻t的温度,ρ、kr和Cp分别是电池的密度、径向导热系数和比热容。[/size][size=18px]  由于只有恒定热流进入系统,没有任何热损失,这个测试模型并没有一个稳定的解,从理论上讲,电池温度会随着时间不断上升。实际上,随着加热时间的增大,辐射等效应会限制电池温度的无限升高,而电池的热性能测试只在相对较低的温度范围内进行,辐射等效应可以忽略不计。因此,θ(r,t)的表达式可以通过电池的平均温度(用θm(t)表示)必须随时间线性上升而导出。已经证明,对于这种表面温度线性变化的瞬态问题,由θ(r,t)减去θm(t)得到的子问题有一个解,该解包括稳态分量s(r)和指数衰减瞬态分量w(r,t)。[/size][size=18px]  平均温升θm(t)可通过考虑电池质量的总比热容来确定。通过使用线性叠加和特征函数展开来解决剩余的子问题,最终的解被导出为:[/size][align=center][size=18px][img=,690,155]https://ng1.17img.cn/bbsfiles/images/2020/06/202006070855468233_8537_3384_3.png!w690x155.jpg[/img][/size][/align][size=18px]  方程(10)表明,在电池中任意处的温升有三个分量:第一即随时间线性增加的分量,其斜率与比热容成反比;第二是一个随时间不变的空间变化项,与径向导热系数成反比;第三是指数衰减项,其时间常数与径向热扩散系数成反比,当时间常数足够大之后,也就是说加热时间足够长,第三项的指数衰减项可以忽略不计,也就是说此时电池内部温度变化进入了准稳态过程。一般来说,对于第二类边界条件的传热问题,基本上都是一个准稳态问题。[/size][size=18px]  在测试过程中探测的是电池表面(r=R)温度,在进入准稳态过程后,那么方程(10)可以改写为:[/size][align=center][size=18px][img=,690,63]https://ng1.17img.cn/bbsfiles/images/2020/06/202006070856126333_2457_3384_3.png!w690x63.jpg[/img][/size][/align][size=18px]  由此可见,在进入准稳态过程后,电池表面的温升随时间变化将是一个以时间为变量的线性函数。对于这种恒定热流径向加热的测量方法,如果电池密度可以单独测量,并假设在小的温度范围内密度不随温度发生变化,那么就可以利用此线性温升函数的斜率和截距同时测定电池的比热容和径向导热系数。[/size][size=24px][color=#cc0000]3. 有限元仿真模拟[/color][/size][size=18px]  从上述获得的不同边界条件时的表面温度解析表达式,可以采用恒温和恒流两种不同测试方法来实现对电池径向导热系数和比热容的测量。依据测试方法进行测试仪器设计和实施具体测试试验前,还需进行有限元仿真模拟计算,一方面是验证测试模型的准确性,另一方面是确定被测电池样品之外其他辅助测量部件对测试模型的影响,由此对测试仪器设计、具体试验方法和校准修正进行指导。[/size][size=18px]  在有限元仿真模拟中,选择了与电池热性能相近的各向同性塑料类材料。这样做的目的一方面是有准确和可溯源的材料,另一方面是可以采用其他测试方法(如瞬态平面热源法和热流计法等)对这些材料进行准确测量以便于对比。所选材料为ABS塑料,其密度为1020kg/m3,导热系数为0.2256W/mK,比热容为1386J/kgK。有限元仿真为随时间变化的瞬态形式,起始温度为20℃,总加热时间为600s。[/size][size=18px][color=#cc0000][b]3.1. 恒温加热测试方法的模拟[/b][/color][/size][size=18px]  在恒温加热测试的仿真模拟中,为缩小瞬态仿真的计算量,根据圆柱形电池的轴对称性取圆柱形电池的四分之一进行仿真。仿真对象完全按照18650圆柱形电池尺寸设计(直径26mm,高度65mm),考虑到要在电池表面安装薄膜热流计,设计了一个厚度为0.1mm的纯铜圆筒来代表实际测试中紧贴电池表面的绝缘膜和薄膜热流计等,最终设计的测试仿真模型如图3-1所示。[/size][align=center][size=18px][img=,200,442]https://ng1.17img.cn/bbsfiles/images/2020/06/202006070848153976_8892_3384_3.png!w323x715.jpg[/img][/size][/align][align=center][size=18px][color=#cc0000]图3-1 有限元仿真模型[/color][/size][/align][size=18px]  当圆柱形电池从起始温度20℃开始在表面温度突然提升至25℃后,在电池整体达到温度稳定后降温至20℃。对于这个完整的加热过程,仿真结果如图3-2所示,显示了仿真计算得到的电池轴心温度和电池表面热流密度随时间变化曲线。图3-3显示了表面热流密度变化曲线及其对数形式的对比。[/size][align=center][size=18px][img=,690,407]https://ng1.17img.cn/bbsfiles/images/2020/06/202006070848451495_7520_3384_3.png!w690x407.jpg[/img][/size][/align][align=center][size=18px][color=#cc0000]图3-2 恒温加热方法有限元仿真结果:电池轴心温度和表面热流密度变化曲线[/color][/size][/align][align=center][size=18px][color=#cc0000][img=,690,407]https://ng1.17img.cn/bbsfiles/images/2020/06/202006070849029885_9003_3384_3.png!w690x407.jpg[/img][/color][/size][/align][align=center][size=18px][color=#cc0000]图3-3 恒温加热方法有限元仿真结果:表面热流密度变化曲线及其对数形式[/color][/size][/align][size=18px]  从图3-3可以看出,电池表面热流密度曲线的对数形式是一条直线,其斜率为0.005323。根据方程(5),则可以计算得到径向热扩散系数为1.556×10-7m2/s,与仿真计算的理论值1.596×10-7m2/s相差了2.5%。同样,对获得的表面热流密度按照时间进行积分,根据方程(7),则可以计算得到比热容为1378J/kgK,与仿真计算的理论值1386J/kgK相差了0.6%。根据仿真得到的热扩散系数和比热容,则可以计算的电池径向导热系数为0.2186W/mK,与理论值0.2256W/mK相差了3.1%。[/size][size=18px]  从上述仿真结果可以明显看出,电池径向导热系数测量结果的误差主要来自径向热扩散系数,这是因为在仿真计算的测试模型中考虑了铜制薄膜所带来的影响。如果不考虑铜制薄膜而只对电池本身进行仿真,径向热扩散系数的相对误差为1.3%,比热容的相对误差为0.1%,径向导热系数的相对误差为1.3%。[/size][size=18px]  通过以上恒定温度测试方法的仿真模拟,可以得到以下结论:[/size][size=18px]  (1)证明了恒定温度测试方法的有效性,证明了用方程(5)可测量径向热扩散系数,用方程(7)可测量比热容,以及最终准确得到径向导热系数,并具有很高精度。由此可以实现只需检测圆柱形电池表面热流变化就可以同时测量电池的径向热扩散系数、径向导热系数和比热容。[/size][size=18px]  (2)恒定温度测试方法的一个显著特点是加热温度可以任意设定,即可以在一个较窄的温度区间内(如1℃范围)测试相应的导热系数和比热容,并通过温度的台阶式不断升高来覆盖较大温度范围导热系数和比热容的测量。另外,这个能力一方面可以用来测量整个被测样品内部相变过程中的热性能,另一方面可用来代替绝热量热计进行电池热失控测量。[/size][size=18px]  (3)通过仿真发现,在测试仪器设计和实际测试过程中,要考虑除电池之外的其他部件(如薄膜热流计、加热膜、均热膜和绝缘膜等)对测量的影响。因此,在实际测试过程中,要进行修正和校准,以最大限度消除这些影响。[/size][size=18px]  (4)恒定温度测试方法中,测量径向热扩散系数的误差较比热容的误差略大,虽然都可以获得较高的测量精度,而比热容的测量精度更高。[/size][size=18px]  (5)这种恒定温度测试方法的另一个特点是测试时间较长,一个温度步长的测量就需要近40分钟,如果采用多温度步长来覆盖较宽的温度区间,则需要更长测试时间。[/size][size=18px][color=#cc0000][b]3.2. 恒流加热测试方法的模拟[/b][/color][/size][size=18px]  在恒流加热测试方法的仿真模拟中,同样采用图3-1所示的仿真模型,但边界条件是恒流加热方式。当设定加热功率为0.3W时,仿真结果如图3-4所示。[/size][align=center][size=18px][color=#cc0000][img=,690,468]https://ng1.17img.cn/bbsfiles/images/2020/06/202006070849223050_1234_3384_3.png!w690x468.jpg[/img][/color][/size][/align][align=center][size=18px][color=#cc0000]图3-4 恒流加热方式有限元仿真结果[/color][/size][/align][size=18px]  图3-4所示的仿真结果显示了电池中心轴线和外表面温度随时间的变化,为了便于观察还显示了内外温度差。从内外温差曲线可以看出,在开始加热的400s后,温差曲线开始保持恒定不再变化,完全进入了准稳态过程,400s以后的外表面温度随时间变化呈现出线性状态。线性拟合400s后的表面温升曲线,得到一个标准的线性方程θ(R,t)=0.0237t+3.0094。由方程(11)可以得到:[/size][align=center][size=18px][img=,690,66]https://ng1.17img.cn/bbsfiles/images/2020/06/202006070856479346_3131_3384_3.png!w690x66.jpg[/img][/size][/align][size=18px]  根据已知的热流密度Q、电池半径R和密度ρ,则可以同时获得电池的径向导热系数和比热容,分别为0.2376W/mK和1400J/kgK。[/size][size=18px]  将仿真模拟的计算结果与设定值比较可以发现,仿真结果得到的导热系数偏差约5%,比热容则偏差约1%。这种偏差主要是由于代入计算的0.3W加热功率并没有完全用来加热电池,部分功率用于加热了铜膜。[/size][size=18px]  对仿真测试模型进行更改,去掉铜膜,使0.3W加热功率完全作用在电池上,此时得到的径向导热系数和比热容分别为0.2269W/mK和1380J/kgK,与设定值相比误差在0.5%左右,完全与设定值吻合。[/size][size=18px]  通过上述恒定热流测试方法的仿真模拟,可以得到以下结论:[/size][size=18px]  (1)证明了用方程(11)描述准稳态过程中电池表面温升是合理的,由此实现了只需检测电池表面温度变化就可以同时测量电池的径向导热系数和比热容。[/size][size=18px]  (2)需要注意的是,用方程(11)得到的径向导热系数和比热容,是整个温升范围内的平均导热系数和平均比热容,并不是某一个温度点下的热性能数值。由于整个温升区间较小,认为在此温度区间内导热系数和比热容是常数。[/size][size=18px]  (3)测试仪器设计和实际测试过程中,要考虑除电池之外的其他部件(如加热膜、均热膜和绝缘膜等)对测量的影响,这些部件因自身热容会损耗掉一部分加热功率。因此,在实际测试过程中,要进行修正和校准,以最大限度消除这些影响。[/size][size=18px]  (4)径向导热系数测试对上述其他部件的影响最为敏感,比热容测试则并不敏感,这就是径向导热系数准确测量的难度所在。[/size][size=24px][color=#cc0000]4. 结论[/color][/size][size=18px]  特别针对圆柱形锂离子电池径向导热系数测试技术开展了研究,建立了简单易操作的测试方法,并用有限元仿真对测试方法进行了验证,整个研究工作得出以下结论:[/size][size=18px]  (1)针对圆柱形锂离子电池径向导热系数,建立了恒温和恒流两种测试时模型和相应的测试方法。有限元仿真模拟证明了这两种测试方法都具有很高的测量精度,完全可以应用在实际测试中,这对锂离子电池的热性能测试有着重要意义。[/size][size=18px]  (2)建立的两种测试方法,都可以通过一次升温试验就可以获得径向导热系数、径向热扩散系数和比热容数值。特别是恒温测试方法还可以进行宽温区范围的热性能参数随温度变化的测量,甚至可进行整个相变过程中的热性能测量。[/size][size=18px]  (3)建立的等温测试方法,已经基本具有了常用的加速绝热量热仪的功能,可代替和补充加速绝热量热仪进行电池的热失控检测。[/size][size=18px]  (4)建立的两种测试方法简单且易于实现,试验操作方便,非常适合电池性能考核中其他变量的加载,如电池充放电过程中的热性能检测。[/size][size=18px]  (5)圆柱形锂电池径向导热系数测试方法上的突破,可将恒温和恒流两种测试方法推广应用到其它规格锂离子电池的热性能测试中,可进行各种加载条件和各个方向上的锂电池热性能测试。[/size][size=18px]  (6)所研究的恒温和恒流两种测试方法原理简单,边界条件易于实现,非常有利于低价仪器化和模块化,以及与其他测试仪器的集成。[/size][align=center]~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~[/align]

  • 【资料】千克原器神秘变轻 科学家提议重新定义千克标准

    国际千克原器是一个圆柱形铸件,高39毫米,底面直径39毫米,由90%的铂和10%的铱混合铸造而成   据国外媒体报道,在118年前,人们做成了一个用铂和铱混合铸造的圆柱形铸件,即众所周知的国际千克原器,然而时至今日,研究人员在最近的一项检查中发现这个国际千克原器减轻了大约50微克。目前研究人员将其保存在巴黎附近的一个设施里,尽管小心存放,但它质量减轻的趋势仍在继续。  这种改变未必是一件好事,因为全世界是依靠它来确定质量标准的。美国有两位教授,一位物理学家和一位数学家表示,现在是时候用一种更好的新方法来定义千克了,将保证它能在现在、未来和118年后不会发生任何变化。 国际千克原器是一个圆柱形铸件,高39毫米,底面直径39毫米,由90%的铂和10%的铱混合铸造而成

  • 【资料】金属材料圆形截面试样

    【资料】金属材料圆形截面试样

    直径通常为3-25mm,试样又分为单肩夹头和双肩夹头两种。一般仲裁试验采用双肩夹头试样单、双肩试样夹头可为圆柱形或螺牙形。[img]http://ng1.17img.cn/bbsfiles/images/2009/08/200908192245_166876_1622447_3.jpg[/img]

  • 岛津GC-2030里面一个圆柱形状的东西是安在哪里的

    进样口卡杯子了,拆开取出来装回去多了一个这个东西求大神帮忙看下是装那里的[img=,690,920]https://ng1.17img.cn/bbsfiles/images/2022/06/202206090942463509_9165_5615193_3.png[/img][img=,690,388]https://ng1.17img.cn/bbsfiles/images/2022/06/202206090944155561_9333_5615193_3.png[/img]

  • 中药冬虫夏草的鉴别要点

    为麦角菌科真菌冬虫夏草寄生在蝙蝠蛾科昆虫蝙蝠蛾幼虫体上的子座及幼虫尸体的复合体。虫体似蚕,长3-5cm,直径0.3-0.8cm,表面深黄色至黄棕色,全体有环纹20-30个,近头部环纹较细,头部红棕色。腹面有足8对,近头部有3对,中部4对较明显,近尾部1对。质脆,断面内心充实,白色或发黄,周边显深黄色。子座(草)长圆柱形,弯曲,上部稍膨大,长4-7cm,直径约0.3cm。表面深棕色至棕褐色,有细纵皱纹,折断面粉白色。气微腥,味微酸。伪品:亚香棒虫草:虫体长2-4cm,子座(草)由虫体头部单生或有分枝,长4-8cm。顶部膨大,折断面可见辐射排列的子囊壳。气微香,味微咸或淡。香棒虫草:虫体呈长圆柱形或弯曲或扁肾形,长1.5-2cm,直径约0.5cm。头部小,棕褐色,具一对螯牙。全体有环节。足上密生棕褐色细毛,子座(草)从幼虫头部下方长出,长2-6cm。凉山虫草:虫体肥大,似蚕弯曲,长3-6cm,直径0.6-1cm。虫体暗红棕色。子座(草)细长,10-30cm,圆柱形,不分枝或上部分枝,不规则弯曲或扭曲。尼泊尔虫草:虫体3-6cm,直径0.4-0.9cm,表面深黄色至黄棕色,腹部环节不明显,平坦,无明显足。子座(草)长5-8cm,单或有分枝,顶部膨大。地蚕(广西虫草):块茎呈纺锤形,两头略尖,淡黄色或棕黄色,长1.5-4cm,表面略皱缩而扭曲。有环节4-15个,节上有须根痕。质脆,断面略平坦,呈白色颗粒状。形似扬州宝塔菜,无子座(草)。本品放水中浸泡易膨胀,呈明显结节状。人工伪制虫草:用黄豆粉或淀粉经模具压制后,染色而成的人工伪制品。这些伪制品虫草因用模具压制,故样品大小、色泽均基本一致,有差异也为人工伪造所致。

  • 【分享】美研制水下隐形材料问世 可骗过声呐探测(组图)

    【分享】美研制水下隐形材料问世 可骗过声呐探测(组图)

    http://ng1.17img.cn/bbsfiles/images/2011/01/201101112331_273515_2193245_3.jpg伊利诺斯大学研究人员设计了一个二维的圆柱形外罩,这种外罩由16个声音线路构成的同心环组成,每个环拥有不同的折射指数,可以引导声波的方向http://ng1.17img.cn/bbsfiles/images/2011/01/201101112331_273516_2193245_3.jpg伊利诺斯大学方教授发明了一种二维声学隐形外罩,可以让物体在声呐或其他超声波探测中销声匿迹

  • 2016新品-LSR4(哈曼法/赛贝克效应/电阻率)

    2016新品-LSR4(哈曼法/赛贝克效应/电阻率)

    LSR4(哈曼法/赛贝克效应/电阻率)http://ng1.17img.cn/bbsfiles/images/2016/01/201601151419_581968_3060548_3.jpg特点、直接测量ZT值+ 可用以计算热传导系+ 高准确度 (使用双样品校正模式)赛贝克系数:静态直流法电阻:四端法ZT:哈曼法用哈曼法测定热电优值是通过样品上(在直流电和绝热条件下)的热电压与欧姆电势降的比值来实现的。在样品中通直流电则相应的“欧姆”压降可直接测得。因为珀尔贴效应,样品一端会被加热而另一端会被冷却,即在样品中产生温度梯度。通过测量产生的压降和热电压,ZT值便可直接得到。LSR—4测试系统可以同时测量塞贝克系数和电阻(电阻率)可以测量圆柱形或棱柱形的样品,长度6——23毫米利用独特的测量适配器可以测量线状和薄片状样品通过三种可更换的炉体,测量温度范围可以覆盖-100到1500 ℃样品架的设计保证了极好的测量重复性最先进的32位软件可以通过程序实现自动测量测量数据导出测量原理:圆柱形或棱柱形的试样垂直放置的两个电极之间,下部电极块包含一个加热器。整个测量装置放置在炉体中。将整个炉体和样品加热到特定的温度,在此温度下利用电极块中的二级加热器建立一组温度梯度,然后两个接触热电偶测量温度梯度T1和T2。独特的热电偶接触机制保证了以最高的温度精度测量每个热电偶上每条导线电动势dE。

  • 用于激光颗粒测试技术的非球形颗粒的椭圆衍射模型

    用于激光颗粒测试技术的非球形颗粒的椭圆衍射模型

    用于激光颗粒测试技术的非球形颗粒的椭圆衍射模型任中京 王少清( 山东建材学院科研处 济南250022)提要:激光颗粒大小测试的结果与颗粒形状密切相关。通过对椭圆衍射谱的研究, 提出在激光粒度分析中以椭圆谱代替球形颗粒谱。计算机模拟计算与对金刚砂实测的结果表明椭圆衍射模型可以有效地抑制粒度反演结果的展宽, 更准确地获得非球形颗粒群的粒度分布。关键词 激光衍射, 椭圆模型, 颗粒大小分析, 颗粒形状, 反演1 引言  由于颗粒大小对粉末材料的重要影响, 颗粒粒度测试在建材、化工、石油等许多领域已经成为一种不可缺少的检测技术。由于颗粒形状的多样性, 无论何种测量方法, 均需要颗粒模型。通常假定颗粒为球体, 与被测颗粒等体积的球体直径称为粒径, 或称等效粒径 。然而球体模型在激光衍射(散射) 粒度分析技术中却遇到严重困难—对非球形颗粒测试常常产生较大误差, 表现为所测得的粒度分布较真实分布有展宽且偏小。来自日本和美国的颗粒测试报告也有相同的倾向 。从光学原理上看,激光粒度分析技术是通过检测颗粒群的衍射谱来反演颗粒群的尺寸分布的。非球形颗粒的衍射谱与球体有很大不同: 前者是非圆对称的, 而后者是圆对称的。欲使二者具有可比性需要新的物理模型, 新的模型应满足: 1) 更加逼近真实颗粒;2)对一系列颗粒有普遍的适用性;3)可给出衍射谱解析式;4)在激光测粒技术中能校正颗粒形状引起的测量误差;5)能函盖球体模型。本文将证明椭圆衍射模型是满足以上条件的最佳选择。2 非球形颗粒衍射模型的椭圆屏逼近颗粒虽然是三维物体, 但是在激光测粒技术中其横截面是使光波发生衍射的主要几何因素, 因此只需研究与入射光垂直的颗粒横截面。球体衍射模型即是取颗粒的体积等效球的投影圆作为该颗粒的衍射模型。如图1 所示, 将形状任意颗粒的横截面视为一衍射屏。可分别做出其轮廓的最大内接圆和最小外接圆。设外圆直径为2b, 内圆直径为2a。分别以2a, 2b 为长短轴做椭圆。下面将证明该椭圆屏即为与图1 所示的颗粒横截面等效的非圆屏的最佳解析逼近。2. 1非圆屏与椭圆屏的几何关系由图1 可见,与非球颗粒相对应的椭圆屏的面积S e 恰好为其横截面外接圆与内接圆面积的几何中值,而与该椭圆屏面积相等的圆( 面积等效圆) 的直径Do 恰好为其长短轴2a 与2b 的几何中值。http://ng1.17img.cn/bbsfiles/images/2013/05/201305281105_441929_388_3.jpg此颗粒对球体的偏离可用形状系数K 表示, K 定义为:K=b/a[fon

  • 【求助】压缩强度怎么测

    塑性材料的压缩强度怎么测,主要是制样的形状,我找了几个标准,不知道现在测试单位都是怎么执行的。1. GB-T 8489-2006 精细陶瓷压缩强度试验方法试样形状为圆柱形或横截面为正方形的方棱柱。圆柱形试样底面直径为5mm±0.1mm,高度为12.5mm±0.1mm;横截面为正方形的方棱柱试样截面边长为5mm±0.1mm,高度为12.5mm±0.1mm。2. ASTM F451 -08 Standard Specification for Acrylic Bone Cement生物陶瓷样品测试的规格为圆柱形,圆柱的高度是底面自径的2倍。测定时每组采用多个样品进行测试,去掉最大值和最小值后,取平均值为其抗压强度。3. GB/T 6525-1986 烧结金属材料室温压缩强度的测定(分脆性材料和塑性材料) 采用实心圆柱形试样,试样的直径(d0)为13±0.2mm,高度(h0)由长径比确定,h0/ d0=1±0.05。

  • 图片中试剂的玻璃器皿问题?

    图片中试剂的玻璃器皿问题?

    哈希试剂UV专用的试剂玻璃器皿应该叫什么名字呢?比色皿or比色管,还是有其他的名称?这样圆柱形会对测试有影响吗?http://ng1.17img.cn/bbsfiles/images/2017/01/201701191700_667334_3022508_3.jpg

  • 【求购】耐高温的带金属盖子的玻璃瓶

    请问到哪里去买耐高温、带有马口铁盖子、内径约为75毫米、高约100毫米、容积约为475毫升的直边圆柱形带螺纹口的的玻璃容器?有哪位知道麻烦告诉一声。我在这里先谢谢了!

  • 中药标本用玻璃瓶

    想做一批中药浸制标本,可是没有合适的标本瓶。能提供相关确实可靠线索者重奖。要求:圆柱形玻璃标本瓶,高度1.5米;内径0.5米(至少要求0.45米),下底要一次成型,上口要能带盖密封。要能承重一定的重量,能耐甲醛等液体腐蚀。

  • 家中防盗栏,有质量标准吗?

    装了铝合金防盗栏,特意要了最厚的铝材,但安装时才发现栏杆脆弱不堪手掰可弯,因为里头没有内衬钢筋。现在回想,觉得厚铝材仅用在了框架上,而圆柱形的栏杆肯定还是薄的。不知像这种建材,有标准要求的吗?

  • 生物质颗粒检测

    点击链接查看更多:[url]https://www.woyaoce.cn/service/info-15811.html[/url]生物质颗粒检测机构哪里有?专业生物质颗粒检测机构,国联质检,为您提供准确的生物质颗粒燃料检测报告,具有CMA检测资质,是陕西一家上市检测机构,高新技术企业,值得信赖,全国范围上百家联盟实验室,位于山西,河南,安徽,浙江,四川,重庆,北京,上海,广东,山东等,快速匹配实验室,周期短,欢迎咨询了解。生物质颗粒燃料的介绍: 生物质颗粒燃料是以木屑、竹屑、树枝等为原料,经过专业机械、特殊工艺,无任何化学添加剂,高压低温压缩成型的颗粒状燃料。其主要来源于农业、畜牧业、食品加工业、林业及林业加工等行业的固体生物质或挤压成型的固体颗粒,主要包括木炭、燃料木和成型燃料等几种产品,目前发展最快的当属固体成型燃料。生物质颗粒燃料发热量高,清洁无污染,是替代化石能源的高科技环保产品。 生物质颗粒燃料在燃烧时所释放出的CO2大体上相当于其生长时通过光合作用所吸收的CO2,所以生物质颗粒的温室气体CO2为零排放。生物质燃料属于可再生能源。只要有阳光存在,绿色植物的光合作用就不会停止,生物质能源就不会枯竭,温室气体保持动态平衡。检测产品: 农林废弃物(如秸秆、锯末、甘蔗渣、稻糠等)、秸秆、稻草、稻壳、花生壳、玉米芯、油茶壳、棉籽壳原材料:农作物、农作物废弃物、木材、木材废弃物和动物粪便、秸秆、树木、木质纤维素、农产品加工业下脚料等。其他:生物质颗粒、生物质燃料、生物质炭、生物质压块、生物质油、生物质灰渣等。检测项目及指标:项目 生物质木屑指标热值 >4000Kcal/kg密度 >1.1t/立方米外观 呈淡黄色圆柱型6mm灰分 <=1.1%燃烧率 >=95%热效率 >=81%排尘浓度 <=80mg/立方米排烟黑度(林格曼级 <1)其他指标:水分检测,灰分检测,燃烧值检测,热效率检测,挥发分检测、固定碳检测、热值检测,退税检测,成分含量检测,成分分析等。相关参考标准GB/T 21923-2008 固体生物质燃料检验通则GB/T 28730-2012 固体生物质燃料样品制备GB/T 28731-2012 固体生物质燃料工业分析GB/T 28732-2012 固体生物质燃料全硫测定GB/T 28733-2012 固体生物质燃料全水分测定GB/T 28734-2012 固体生物质燃料中碳氢测定GB/T 30725-2014 固体生物质燃料灰成分测定GB/T 30726-2014 固体生物质燃料灰熔融性的测定GB/T 30727-2014 固体生物质燃料发热量测定GB/T 30728-2014 固体生物质燃料中氮的测定GB/T 30729-2014 固体生物质燃料中氯的测定GB/T 31741-2015 林业生物质能源名词术语GB/T 35564-2017 生物质清洁炊事炉具GB/T 35808-2018 林业生物质原料分析 纤维素酶活性测定GB/T 35809-2018 林业生物质原料分析 蛋白质含量测定GB/T 35811-2018 林业生物质原料分析 淀粉测定GB/T 35812-2018 林业生物质原料分析 预处理后不溶固体含量测定GB/T 35816-2018 林业生物质原料分析 抽提物含量的测定GB/T 35818-2018 林业生物质原料分析 多糖及木质素含量的测定GB/T 35820-2018 林业生物质原料分析 取样GB/T 35821-2018 生物质/塑料复合材料生物质含量测定GB/T 35905-2018 林业生物质原料分析 总固体含量测定GB/T 36055-2018 林业生物质原料分析 含水率的测定GB/T 36056-2018 林业生物质原料分析 可溶性糖的测定GB/T 36057-2018 林业生物质原料分析 灰分的测定GB/T 36058-2018 林业生物质原料分析 不可溶性糖测定国联质检,环境检测领域具有丰富的检测经验,针对农业固体废弃物,工业固体废弃物等综合利用领域提供专业的数据分析。欢迎咨询。[align=center][/align]

  • 标准解读:T/ZJTSS 012-2023《颗粒形绿茶》

    [align=center][img=绿茶1.jpg]https://img1.17img.cn/17img/images/202403/uepic/6634f9a1-f750-47f2-9c12-8846615a978b.jpg[/img][/align]2023年12月19日,浙江省茶叶学会团体标准T/ZJTSS 012-2023《颗粒形绿茶》正式发布,该标准由中华全国供销合作总社杭州茶叶研究所牵头、浙江省农业技术推广中心、浙江大学等科研院校、农技中心和生产企业16家参与制定。文件规定了颗粒形绿茶产品的术语和定义、产品分类分级、产品要求、试验方法、检验规则、标志、标签、包装、运输和贮存等内容。[align=center][img=团体标准.jpg]https://img1.17img.cn/17img/images/202403/uepic/4eee7ef9-501c-4656-8d67-d72d2a9f6c5e.jpg[/img][/align]一、什么是“颗粒形绿茶”?颗粒形绿茶(granular green tea)是指以适制绿茶的中小叶种茶树品种鲜叶为原料,按照特定工艺加工而成的,具有“勾曲”、“盘花”或“圆珠”等颗粒形特征的炒青或烘炒结合绿茶。二、“颗粒形绿茶”有哪些分类?[align=center][img=颗粒形绿茶分类.jpg,529,213]https://img1.17img.cn/17img/images/202403/uepic/5b838099-3e64-4a55-ba4c-4146afdf2b5a.jpg[/img][/align]三、“颗粒形绿茶”有哪些级别?[align=center][img=颗粒形绿茶的级别.jpg]https://img1.17img.cn/17img/images/202403/uepic/d86beb19-c500-4c50-b556-2b48f75ab58d.jpg[/img][/align]四、“颗粒形绿茶”的感官要求?01清香型颗粒绿茶感官指标[align=center][img=清香型颗粒绿茶感官指标.jpg,529,243]https://img1.17img.cn/17img/images/202403/uepic/783b4861-74a0-4d7a-b384-3a09a5c09b1b.jpg[/img][/align]02浓香型颗粒绿茶感官指标[align=center][img=浓香型颗粒绿茶感官指标.jpg,529,248]https://img1.17img.cn/17img/images/202403/uepic/a516d42c-6872-4c25-b4c6-19c60b1a532c.jpg[/img][/align]五、浙江省颗粒形绿茶代表性样品[align=center][img=浙江省颗粒形绿茶代表性样品.png,529,539]https://img1.17img.cn/17img/images/202403/uepic/f3b36cd8-5624-4d07-a3d4-a831e3c1d451.jpg[/img][/align]绿茶是我省最有特色、最具产业优势和资源禀赋的茶类之一,颗粒形绿茶是我省绿茶的重要品类,平水日铸、羊岩勾青、前岗辉白、上虞翠茗、天姥云雾、临海蟠毫、奉化曲毫等都是我省颗粒形绿茶的典型代表。本标准发布实施后,将进一步精细化分类指导浙江省颗粒形绿茶的生产、加工、和贮藏保鲜,更好促进浙江绿茶的高质量发展。[size=14px][color=#707d8a][ 来源:浙江省茶叶学会公众号 ][/color][/size]

  • 【转帖】国际标准“1千克”神秘变轻

    有118年历史的标准砝码复制品中国日报网环球在线消息:存放于法国的国际标准砝码神秘变轻,这个1千克铂铱合金圆柱形砝码质量比原来少了50微克,将给科研和数据统计等精密工作带来不少麻烦。尚未找出“变轻”原因标准砝码由铂铱合金制成,直径和高度均为3.9厘米,在1889年第一届国际计量大会上被定为1千克的标准,并沿用至今,所有使用公制计量单位的国家全都要依它来制定1千克的质量。标准砝码被安放在巴黎塞夫尔一个城堡中的三层锁保险箱中,极少见光,但与众多复制品的平均质量相比,它现在轻了50微克,而这些复制品的质地和它一样,许多是同时制造出来并于同一条件下保存,但它们的质量却慢慢有了差异。国际质量和测量局的物理学家里查德戴维斯12日说,科学家尚未找出原因,还不能确定是标准砝码材料变轻了,还是现行通用砝码变重了。科学家共商改革预案50微克仅相当于一个指纹的质量,对日常生活的影响微乎其微,但对科学工作者而言好像是灭顶之灾,直接影响到发电等领域的数据统计。鉴于以上原因,世界各地科学家将于11月齐聚巴黎,商讨基本度量单位的改革预案,最终由专业人士决定任何度量单位的变化。一些不使用公制计量单位的国家代表也将参加这次会议,因为公制与其他单位系统之间的换算间接影响到其他国家的单位计量。硅晶体取代合金更好?自古以来,各国采用过不少质量单位,1971年,法国为了改变质量单位混乱局面,规定了1立方分米纯水在4摄氏度下的质量为1千克。对于1千克标准确定方法的未来,有人建议说,可以制造一种硅-28的球状晶体的新型国际标准砝码,取代原有的铂铱合金圆柱形砝码。新砝码的质地单一,可以避免两种元素配比过程中由于比率差错而产生的问题,使科学家能够精确确定其中的原子类型和数量。(来源:信息时报 编辑:肖亭)

  • 硒化锌如何腐蚀

    需要测硒化锌的晶粒尺寸,样品是圆柱形的硒化锌晶体,请问硒化锌如何腐蚀才能看清楚它的晶粒尺寸?

  • 指针式频率表的构成

    指针式频率表应用磁电原理工作,驱动指针运动,依靠指针在面板上停留位置来 的频率大小的表,用于显示被测物体的频率度数。磁电系电工仪表的测量机构是由固定的磁路系统和可动部分组成的。仪、的磁路系统包括永久磁铁1,固定在磁铁两极的极掌2以及处于两个极掌之间的圆柱形铁芯3。圆柱形铁芯固定在仪表支架上,用来减小磁阻,并使极掌和铁芯间的空气隙中产生均匀的辐射形磁场。处在这个磁场中的可动线圈4绕转轴偏转时,两个有效边上的磁场也总是大小相等,并且方向是与线圈边相互垂直的。可动线圈绕在铝框上。转轴分成前后两部分,每个半轴的一端固定在动圈铝框上,另一端则通过轴尖支撑于轴承中。在前半轴还装有指针,当可动部分偏转时,用来指示被测频率的大小。

  • 【求购】大家的显色喷瓶都是在哪买的

    好用不好用,用嘴喷的就不用推荐了,我见到的是两个较细的玻璃管基本成90度,套在一个圆柱形的口,另外一头拿椭圆形橡胶球捏,效果很好,我只知道是在上海买的,但不知道是哪家有的卖。各位有用的好的类型的介绍一下。

  • 瓷坩埚哪家做得好?

    最近做灰分,那些瓷坩埚损失不少。不管是圆柱形,还是方形的,在马弗炉里都容易裂,有些是拿出来的时候裂掉。

  • 带螺纹的拉力测试

    在测试螺栓类零件时,如把夹持端加工为圆柱形,那么,螺栓上的螺纹在试验过程中,是否在拉伸过程中受到了力的作用呢

  • 压缩空气过滤器滤芯

    压缩空气过滤器滤芯

    [b]压缩空气过滤器滤芯[/b]特点:  1、防腐滤芯端盖注塑成型,内有尼龙增强层,用甲酸乙酯树脂快速粘贴在滤芯上;  2、不锈钢骨架打孔圆柱形设计,强度远远大于电镀钢材,双向7bar耐压;  3、硼硅纤维滤材,耐高温、耐化学腐蚀,同时有很高的孔隙比,保证高效过滤和最小压力损失;  4、不锈钢螺旋弹簧支撑额外应用在除尘滤芯上,保证压缩空气由外向内流动时,不造成破损;  5、深层螺旋缠绕技术应用在滤材制作过程中,这样形成的过滤材料压差损失小,除油效率高,并且提高滤芯寿命;  6、橡胶密封圈保证绝对密封同时耐高温到120℃  7、质量控制,按照ISO9001认证要求每个滤芯都有自己的生产批次号;  8、聚酯纤维集液层,有20年应用经验,已经成为行业标准。这种材料可以捕捉过滤层形成的小油滴,并使之快速沉降到过滤器下部,避免随气流流动。更显著区别于泡沫材料的是,聚酯材料有更强的韧性,避免造成损坏,污染下游空气;  9、颗粒预过滤层,缠绕在过滤材料两侧,保证颗粒过滤的同时,增加滤材强度[img=压缩空气过滤器滤芯,690,690]http://ng1.17img.cn/bbsfiles/images/2018/04/201804081455019197_4718_3251553_3.jpg!w690x690.jpg[/img]

  • 身边的道地药材—玄参

    玄参,别名:元参、乌元参、黑参、重台、鬼藏、正马、鹿肠、玄台、逐马、馥草、野脂麻、山当归、水萝卜多年生草本。根长圆柱形或纺锤形。茎具四棱,有沟纹。下部叶对生,上部叶有的互生,卵形至披针形,长10~15cm,边缘具细锯齿,齿缘反卷,骨质,并有突尖。聚伞圆锥花序大而疏散,轴上有腺毛;花萼5裂,裂片边缘膜片;花冠褐紫色,上唇长于下唇;退化雄蕊近圆形。蒴果卵形。花期7~8月,果期8~9月。根类圆柱形,中间略粗或上粗下细,有的微弯曲,长6~20cm,直径1~3cm。表面灰黄色或灰褐色,有不规则的纵沟、横向皮孔及稀疏的横裂纹和须根痕。质坚实,不易折断,断面黑色,微有光泽。气特异似焦糖,味甘、微苦、咸。

  • PE900T空压机问题请教

    培训回来,老师说空压机要定期放水,至少一周一次。可回来却找不到空压机从哪里放水,是空压机的圆柱形上面的阀门吗?我找了整个空压机,只有这个地方有阀门。从这个阀门放出来的是水气,而没有什么明显的水流。这对不?而开完这个阀门之后,如果再开电源,总要先有一段气流声才恢复正常,这样对不?顺便问一下,冷却水装置需要什么维护吗?我们好像从来没动过,包括开机的时候。

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制