当前位置: 仪器信息网 > 行业主题 > >

原子层石墨烯膜

仪器信息网原子层石墨烯膜专题为您整合原子层石墨烯膜相关的最新文章,在原子层石墨烯膜专题,您不仅可以免费浏览原子层石墨烯膜的资讯, 同时您还可以浏览原子层石墨烯膜的相关资料、解决方案,参与社区原子层石墨烯膜话题讨论。

原子层石墨烯膜相关的论坛

  • 原子吸收石墨炉应用-石墨管的使用事项

    石墨管使用须知1、目前石墨管按加热方式的不同,有纵向加热石墨管和横向加热石墨管之分。纵向加热石墨管有:标准石墨管——适用于原子化温度≤2000℃的元素,如Cd、Pb、Ag 等元素的测试。镀层石墨管——适用于低、中、高温原子化的元素。平台镀层管——适用于中、低温原子化的元素,优点是精度好,消除干扰能力强。横向加热石墨管有:带平台石墨管——适用于低、中、高温原子化的元素,精度好,消除干扰能力强。不带平台石墨管——适用于低、中、高原子化元素。2、当石墨锥已使用过,在装入石墨管之前应将石墨锥与石墨管接触处用挤去酒精的棉棒进行清洁处理,而后将石墨管装入石墨炉中,校正进样孔。3、启动仪器事先设计好的空烧程序,对石墨管进行空烧,使石墨管空烧的吸收值近似一个很小的吸收值或者为零。4、调节自动进样器毛细管插入石墨管内的深度。以空白液滴的下端刚刚接触到石墨管的内壁,而同时液滴上端也脱离进样毛细管,以此为准。5、石墨炉用的保护气体应该采用高纯度(≥99.99%)的惰性气体氩气而不采用氮气。因为氮气使极大多数金属元素的吸收值降低并在高温下与石墨管的碳生成有毒的CN 分子,产生严重的分子发射和背景吸收。同时石墨管的寿命也比使用氩气做保护气体时要短。6、换一批新石墨管测定时,必须先进行待测元素的烘干温度和时间、灰化温度和时间、原子化温度和时间的选择试验,求得待测元素的最佳温度和时间。因为每一批石墨管的电阻多少会有差别。7、请分析工作者切记:待测样品溶液绝对不能含有高氯酸、硫酸等强氧化性介质,否则对石墨管的破坏很快且严重。尤其是用氢氟酸分解样品,后用高氯酸赶去氢氟酸的操作,高氯酸必须清除干净,否则就会出现开始标准曲线测得很好,测样品溶液时很快就出现吸收值相差很大,测试数据无法采用,再测标准溶液时数据变坏。8、采用石墨炉测定元素时,吸收值最好采用峰面积形式而不采用峰高形式测量,这样带来较小的误差,而采用峰高测量时,影响因素太多,会带来较大的误差。9、测定时,烘干、灰化、除残阶段,石墨管内气路、外气路必须通氩气保护 原子化阶段时内气路停气,加热时间一般为2-3 秒 测定中高温原子化元素采用最大功率加热,低温原子化元素采用1 秒或0.X 秒加热。

  • 石墨烯的性质

    [font=&]石墨烯的化学性质与石墨类似,石墨烯可以吸附并脱附各种原子和分子。当这些原子或分子作为给体或受体时可以改变石墨烯载流子的浓度,而石墨烯本身却可以保持很好的导电性。但当吸附其他物质时,如H和OH时,会产生一些衍生物,使石墨烯的导电性变差,但并没有产生新的化合物。因此,可以利用石墨来推测石墨烯的性质。例如石墨烷的生成就是在二维石墨烯的基础上,每个碳原子多加上一个氢原子,从而使石墨烯中sp碳原子变成sp杂化。 可以在实验室中通过化学改性的石墨制备的石墨烯的可溶性片段。[/font][font=&]化合物[/font][font=&]氧化石墨烯(grapheneoxide,GO):一种通过氧化石墨得到的层状材料。体相石墨经发烟浓酸溶液处理后,石墨烯层被氧化成亲水的石墨烯氧化物,石墨层间距由氧化前的3.35?增加到7~10?,经加热或在水中超声剥离过程很容易形成分离的石墨烯氧化物片层结构。XPS、红外光谱(IR)、固体核磁共振谱(NMR)等表征结果显示石墨烯氧化物含有大量的含氧官能团,包括羟基、环氧官能团、羰基、羧基等。羟基和环氧官能团主要位于石墨的基面上,而羰基和羧基则处在石墨烯的边缘处。[/font][font=&]石墨烷(graphane):可通过石墨烯与氢气反应得到,是一种饱和的碳氢化合物,具有分子式(CH)n,其中所有的碳是sp杂化并形成六角网络结构,氢原子以交替形式从石墨烯平面的两端与碳成键,石墨烷表现出半导体性质,具有直接带隙。[/font][font=&]氮掺杂石墨烯或氮化碳(carbonnitride):在石墨烯晶格中引入氮原子后变成氮掺杂的石墨烯,生成的氮掺杂石墨烯表现出较纯石墨烯更多优异的性能,呈无序、透明、褶皱的薄纱状,部分薄片层叠在一起,形成多层结构,显示出较高的比电容和良好的循环寿命。[/font][font=&]生物相容性:羧基离子的植入可使石墨烯材料表面具有活性功能团,从而大幅度提高材料的细胞和生物反应活性。石墨烯呈薄纱状与碳纳米管的管状相比,更适合于生物材料方面的研究。并且石墨烯的边缘与碳纳米管相比,更长,更易于被掺杂以及化学改性,更易于接受功能团。[/font][font=&]氧化性:可与活泼金属反应。[/font][font=&]还原性:可在空气中或是被氧化性酸氧化,通过该方法可以将石墨烯裁成小碎片。 石墨烯氧化物是通过石墨氧化得到的层状材料,经加热或在水中超声剥离过程很容易形成分离的石墨烯氧化物片层结构。[/font][font=&]加成反应:利用石墨烯上的双键,可以通过加成反应,加入需要的基团。[/font][font=&]稳定性:石墨烯的结构非常稳定,碳碳键(carbon-carbon bond)仅为1.42。石墨烯内部的碳原子之间的连接很柔韧,当施加外力于石墨烯时,碳原子面会弯曲变形,使得碳原子不必重新排列来适应外力,从而保持结构稳定。这种稳定的晶格结构使石墨烯具有优秀的导热性。另外,石墨烯中的电子在轨道中移动时,不会因晶格缺陷或引入外来原子而发生散射。由于原子间作用力十分强,在常温下,即使周围碳原子发生挤撞,石墨烯内部电子受到的干扰也非常小。 同时,石墨烯有芳香性,具有芳烃的性质[/font]

  • 石墨烯化学性质

    石墨烯的化学性质与石墨类似,石墨烯可以吸附并脱附各种原子和分子。当这些原子或分子作为给体或受体时可以改变石墨烯载流子的浓度,而石墨烯本身却可以保持很好的导电性。但当吸附其他物质时,如H和OH时,会产生一些衍生物,使石墨烯的导电性变差,但并没有产生新的化合物。因此,可以利用石墨来推测石墨烯的性质。例如石墨烷的生成就是在二维石墨烯的基础上,每个碳原子多加上一个氢原子,从而使石墨烯中sp碳原子变成sp杂化。 可以在实验室中通过化学改性的石墨制备的石墨烯的可溶性片段。化合物氧化石墨烯(grapheneoxide,GO):一种通过氧化石墨得到的层状材料。体相石墨经发烟浓酸溶液处理后,石墨烯层被氧化成亲水的石墨烯氧化物,石墨层间距由氧化前的3.35Å 增加到7~10Å ,经加热或在水中超声剥离过程很容易形成分离的石墨烯氧化物片层结构。XPS、红外光谱(IR)、固体核磁共振谱(NMR)等表征结果显示石墨烯氧化物含有大量的含氧官能团,包括羟基、环氧官能团、羰基、羧基等。羟基和环氧官能团主要位于石墨的基面上,而羰基和羧基则处在石墨烯的边缘处。石墨烷(graphane):可通过石墨烯与氢气反应得到,是一种饱和的碳氢化合物,具有分子式(CH)n,其中所有的碳是sp杂化并形成六角网络结构,氢原子以交替形式从石墨烯平面的两端与碳成键,石墨烷表现出半导体性质,具有直接带隙。氮掺杂石墨烯或氮化碳(carbonnitride):在石墨烯晶格中引入氮原子后变成氮掺杂的石墨烯,生成的氮掺杂石墨烯表现出较纯石墨烯更多优异的性能,呈无序、透明、褶皱的薄纱状,部分薄片层叠在一起,形成多层结构,显示出较高的比电容和良好的循环寿命。生物相容性:羧基离子的植入可使石墨烯材料表面具有活性功能团,从而大幅度提高材料的细胞和生物反应活性。石墨烯呈薄纱状与碳纳米管的管状相比,更适合于生物材料方面的研究。并且石墨烯的边缘与碳纳米管相比,更长,更易于被掺杂以及化学改性,更易于接受功能团。氧化性:可与活泼金属反应。还原性:可在空气中或是被氧化性酸氧化,通过该方法可以将石墨烯裁成小碎片。 石墨烯氧化物是通过石墨氧化得到的层状材料,经加热或在水中超声剥离过程很容易形成分离的石墨烯氧化物片层结构。加成反应:利用石墨烯上的双键,可以通过加成反应,加入需要的基团。稳定性:石墨烯的结构非常稳定,碳碳键(carbon-carbon bond)仅为1.42。石墨烯内部的碳原子之间的连接很柔韧,当施加外力于石墨烯时,碳原子面会弯曲变形,使得碳原子不必重新排列来适应外力,从而保持结构稳定。这种稳定的晶格结构使石墨烯具有优秀的导热性。另外,石墨烯中的电子在轨道中移动时,不会因晶格缺陷或引入外来原子而发生散射。由于原子间作用力十分强,在常温下,即使周围碳原子发生挤撞,石墨烯内部电子受到的干扰也非常小。 同时,石墨烯有芳香性,具有芳烃的性质

  • 求一种石墨管,配热电原子吸收的,求推荐

    我们购买的热电石墨炉原子吸收,买仪器时附赠的石墨管用完了,据了解他们的石墨管要卖2000左右,我们想自己找家便宜的,但是同样要进口的,最好是德国的,石墨管规格是长28mm,外径7mm,内径5mm。长寿命涂层石墨管,求大家介绍一下,我们剩下的石墨管已经不超过15根了,消耗速度比较快。

  • 【求助】热解涂层石墨管与平台石墨管在使用上的区别?

    【求助】热解涂层石墨管与平台石墨管在使用上的区别?

    对于热解涂层石墨管和平台石墨管,只知道它们结构上的区别,但对于它们的使用上的区别不是很清楚,所以向各位高手请教:一、热解涂层石墨管和平台石墨管是不是可以互换使用?二、热解涂层石墨管和平台石墨管对于同一样品,灰化及原子化温度、灵敏度、记忆效应是否存在区别?三、热解涂层石墨管和平台石墨管使用时是否有针对性的元素?[img]http://ng1.17img.cn/bbsfiles/images/2008/06/200806041958_91938_1630080_3.jpg[/img][img]http://ng1.17img.cn/bbsfiles/images/2008/06/200806041958_91939_1630080_3.jpg[/img]

  • 求助:石墨炉原子吸收光谱使用中遇到的问题

    求助:用石墨炉法测定痕量铁(3微克/升、6微克/升、9微克/升)时,标样空白的吸光度值很高,而标液的吸光度值反而是负值,不知是何原因?后来换了新的石墨管,还是有上述现象,但是总的来说,随着测定次数的增加,吸光度值在减少。请问是因为新石墨管不稳定,需要很多次老化吗?石墨管的老化和空烧的区别是什么?分别在什么情况下使用?瓦里安的石墨管的涂层是什么的?要是测痕量钙、铁、铜时会对测定产生影响吗?我们使用的是瓦里安的石墨炉原子吸收光谱。

  • 石墨管涂层

    哪位前辈能了解[url=https://insevent.instrument.com.cn/t/Wp][color=#3333ff]原子吸收[/color][/url]仪石墨管涂层方面的技术,望不吝告之。

  • 石墨烯主要分类

    主要分类 [b]折叠单层石墨烯[/b] 单层石墨烯(Graphene):指由一层以苯环结构(即六角形蜂巢结构)周期性紧密堆积的碳原子构成的一种二维碳材料。 [b]折叠双层石墨烯[/b] 双层石墨烯(Bilayer or double-layer graphene):指由两层以苯环结构(即六角形蜂巢结构)周期性紧密堆积的碳原子以不同堆垛方式(包括AB堆垛,AA堆垛等)堆垛构成的一种二维碳材料。 [b]折叠少层石墨烯[/b] 少层石墨烯(Few-layer):指由3-10层以苯环结构(即六角形蜂巢结构)周期性紧密堆积的碳原子以不同堆垛方式(包括ABC堆垛,ABA堆垛等)堆垛构成的一种二维碳材料。 [b]折叠多层石墨烯[/b] 多层石墨烯又叫厚层石墨烯(multi-layer graphene):指厚度在10层以上10nm以下苯环结构(即六角形蜂巢结构)周期性紧密堆积的碳原子以不同堆垛方式(包括ABC堆垛,ABA堆垛等)堆垛构成的一种二维碳材料。

  • 【求助】热电原子吸收石墨管的问题

    我用的是热电M6[url=https://insevent.instrument.com.cn/t/Wp][color=#3333ff]原子吸收[/color][/url],石墨管是涂层石墨管,进口的。以前,一只新管可以用1200次左右,最近新买了一批管,用到700次左右时,仪器会出现“石墨管与炉头接触不好”的提示,然后仪器自动停止运作,请问是什么原因?补充下,样品的种类没发生变化,仪器出现问题前做出的标准曲线的线性可达两个9,灵敏度也还算高。谢谢各位了

  • 石墨烯制备方法

    [b]机械剥离法[/b]机械剥离法是利用物体与石墨烯之间的摩擦和相对运动,得到石墨烯薄层材料的方法。这种方法操作简单,得到的石墨烯通常保持着完整的晶体结构。2004年,英国两位科学使用透明胶带对天然石墨进行层层剥离取得石墨烯的方法,也归为机械剥离法,这种方法一度被认为生产效率低,无法工业化量产。 虽然这种方法可以制备微米大小的石墨烯,但是其可控性较低,难以实现大规模合成。[b]氧化还原法[/b]氧化还原法是通过使用硫酸、硝酸等化学试剂及高锰酸钾、双氧水等氧化剂将天然石墨氧化,增大石墨层之间的间距,在石墨层与层之间插入氧化物,制得氧化石墨(Graphite Oxide)。然后将反应物进行水洗,并对洗净后的固体进行低温干燥,制得氧化石墨粉体。通过物理剥离、高温膨胀等方法对氧化石墨粉体进行剥离,制得氧化石墨烯。最后通过化学法将氧化石墨烯还原,得到石墨烯(RGO)。这种方法操作简单,产量高,但是产品质量较低。氧化还原法使用硫酸、硝酸等强酸,存在较大的危险性,又须使用大量的水进行清洗,带大较大的环境污染。使用氧化还原法制备的石墨烯,含有较丰富的含氧官能团,易于改性。但由于在对氧化石墨烯进行还原时,较难控制还原后石墨烯的氧含量,同时氧化石墨烯在阳光照射、运输时车厢内高温等外界每件影响下会不断的还原,因此氧化还原法生产的石墨烯逐批产品的品质往往不一致,难以控制品质。[b]取向附生法[/b]取向附生法是利用生长基质原子结构"种"出石墨烯,首先让碳原子在1150℃下渗入钌,然后冷却,冷却到850℃后,之前吸收的大量碳原子就会浮到钌表面,最终镜片形状的单层的碳原子会长成完整的一层石墨烯。第一层覆盖后,第二层开始生长。底层的石墨烯会与钌产生强烈的相互作用,而第二层后就几乎与钌完全分离,只剩下弱电耦合。但采用这种方法生产的石墨烯薄片往往厚度不均匀,且石墨烯和基质之间的黏合会影响碳层的特性。[b]碳化硅外延法[/b]SiC外延法是通过在超高真空的高温环境下,使硅原子升华脱离材料,剩下的C原子通过自组形式重构,从而得到基于SiC衬底的石墨烯。这种方法可以获得高质量的石墨烯,但是这种方法对设备要求较高。[b]赫默法[/b]通过Hummer法制备氧化石墨 将氧化石墨放入水中超声分散,形成均匀分散、质量浓度为0.25g/L~1g/L的氧化石墨烯溶液,再向所述的氧化石墨烯溶液中滴加质量浓度为28%的氨水 将还原剂溶于水中,形成质量浓度为0.25g/L~2g/L的水溶液 将配制的氧化石墨烯溶液和还原剂水溶液混合均匀,将所得混合溶液置于油浴条件下搅拌,反应完毕后,将混合物过滤洗涤、烘干后得到石墨烯。[b]化学[url=https://insevent.instrument.com.cn/t/Mp]气相[/url]沉积法[/b]化学[url=https://insevent.instrument.com.cn/t/Mp]气相[/url]沉积法即(CVD)是使用含碳有机气体为原料进行[url=https://insevent.instrument.com.cn/t/Mp]气相[/url]沉积制得石墨烯薄膜的方法。这是目前生产石墨烯薄膜最有效的方法。这种方法制备的石墨烯具有面积大和质量高的特点,但现阶段成本较高,工艺条件还需进一步完善。由于石墨烯薄膜的厚度很薄,因此大面积的石墨烯薄膜无法单独使用,必须附着在宏观器件中才有使用价值,例如触摸屏、加热器件等。[b]低压[url=https://insevent.instrument.com.cn/t/Mp]气相[/url]沉积法[/b]是部分学者使用的,其将单层石墨烯在Ir表面上生成,通过进一步研究可知,这种石墨烯结构可以跨越金属台阶,连续性的和微米尺度的单层碳结构逐渐在Ir表面上形成。 毫米量级的单晶石墨烯是利用表面偏析的方法得到的。厘米量级的石墨烯和在多晶Ni薄膜上外延生长石墨烯是由部分学者发现的,在1000℃下加热300纳米厚的Ni 膜表面,同时在CH4气氛中进行暴露,经过一段时间的反应后,大面积的少数层石墨烯薄膜会在金属表面形成。

  • 导电材料--石墨烯

    石墨烯是一种二维晶体,最大的特性是其中电子的运动速度达到了光速的1/300,远远超过了电子在一般导体中的运动速度。这使得石墨烯中的电子,或更准确地,应称为“载荷子”(electric charge carrier),的性质和相对论性的中微子非常相似。人们常见的石墨是由一层层以蜂窝状有序排列的平面碳原子堆叠而形成的,石墨的层间作用力较弱,很容易互相剥离,形成薄薄的石墨片。当把石墨片剥成单层之后,这种只有一个碳原子厚度的单层就是石墨烯。 发展简史。第一:石墨烯是迄今为止世界上强度最大的材料,据测算如果用石墨烯制成厚度相当于普通食品塑料包装袋厚度的薄膜(厚度约100 纳米),那么它将能承受大约两吨重物品的压力,而不至于断裂;第二:石墨烯是世界上导电性最好的材料,电子在其中的运动速度达到了光速的1/300,远远超过了电子在一般导体中的运动速度。 石墨烯的应用范围广阔。根据石墨烯超薄,强度超大的特性,石墨烯可被广泛应用于各领域,比如超轻防弹衣,超薄超轻型飞机材料等。根据其优异的导电性,使它在微电子领域也具有巨大的应用潜力。石墨烯有可能会成为硅的替代品,制造超微型晶体管,用来生产未来的超级计算机,碳元素更高的电子迁移率可以使未来的计算机获得更高的速度。另外石墨烯材料还是一种优良的改性剂,在新能源领域如超级电容器、锂离子电池方面,由于其高传导性、高比表面积,可适用于作为电极材料助剂 石墨烯出现在实验室中是在2004年,当时,英国曼彻斯特大学的两位科学家安德烈·杰姆和克斯特亚·诺沃消洛夫发现他们能用一种非常简单的方法得到越来越薄的石墨薄片。他们从石墨中剥离出石墨片,然后将薄片的两面粘在一种特殊的胶带上,撕开胶带,就能把石墨片一分为二。不断地这样操作,于是薄片越来越薄,最后,他们得到了仅由一层碳原子构成的薄片,这就是石墨烯。这以后,制备石墨烯的新方法层出不穷,经过5年的发展,人们发现,将石墨烯带入工业化生产的领域已为时不远了。 因此,两人在2010年获得诺贝尔物理学奖。 石墨烯是由碳六元环组成的两维(2D)周期蜂窝状点阵结构, 它可以翘曲成零维(0D)的富勒烯(fullerene),卷成一维(1D)的碳纳米管(carbon nano-tube, CNT)或者堆垛成三维(3D)的石墨(graphite), 因此石墨烯是构成其他石墨材料的基本单元。石墨烯的基本结构单元为有机材料中最稳定的苯六元环, 是目前最理想的二维纳米材料.。理想的石墨烯结构是平面六边形点阵,可以看作是一层被剥离的石墨分子,每个碳原子均为sp2杂化,并贡献剩余一个p轨道上的电子形成大π键,π电子可以自由移动,赋予石墨烯良好的导电性。二维石墨烯结构可以看是形成所有sp2杂化碳质材料的基本组成单元。

  • 石墨烯的化学性质及特点

    石墨烯的化学性质与石墨类似,石墨烯可以吸附并脱附各种原子和分子。当这些原子或分子作为给体或受体时可以改变石墨烯载流子的浓度,而石墨烯本身却可以保持很好的导电性。但当吸附其他物质时,如H和OH时,会产生一些衍生物,使石墨烯的导电性变差,但并没有产生新的化合物。因此,可以利用石墨来推测石墨烯的性质。例如石墨烷的生成就是在二维石墨烯的基础上,每个碳原子多加上一个氢原子,从而使石墨烯中sp碳原子变成sp杂化。 可以在实验室中通过化学改性的石墨制备的石墨烯的可溶性片段。化合物氧化石墨烯(grapheneoxide,GO):一种通过氧化石墨得到的层状材料。体相石墨经发烟浓酸溶液处理后,石墨烯层被氧化成亲水的石墨烯氧化物,石墨层间距由氧化前的3.35?增加到7~10?,经加热或在水中超声剥离过程很容易形成分离的石墨烯氧化物片层结构。XPS、红外光谱(IR)、固体核磁共振谱(NMR)等表征结果显示石墨烯氧化物含有大量的含氧官能团,包括羟基、环氧官能团、羰基、羧基等。羟基和环氧官能团主要位于石墨的基面上,而羰基和羧基则处在石墨烯的边缘处。石墨烷(graphane):可通过石墨烯与氢气反应得到,是一种饱和的碳氢化合物,具有分子式(CH)n,其中所有的碳是sp杂化并形成六角网络结构,氢原子以交替形式从石墨烯平面的两端与碳成键,石墨烷表现出半导体性质,具有直接带隙。氮掺杂石墨烯或氮化碳(carbonnitride):在石墨烯晶格中引入氮原子后变成氮掺杂的石墨烯,生成的氮掺杂石墨烯表现出较纯石墨烯更多优异的性能,呈无序、透明、褶皱的薄纱状,部分薄片层叠在一起,形成多层结构,显示出较高的比电容和良好的循环寿命。生物相容性:羧基离子的植入可使石墨烯材料表面具有活性功能团,从而大幅度提高材料的细胞和生物反应活性。石墨烯呈薄纱状与碳纳米管的管状相比,更适合于生物材料方面的研究。并且石墨烯的边缘与碳纳米管相比,更长,更易于被掺杂以及化学改性,更易于接受功能团。氧化性:可与活泼金属反应。还原性:可在空气中或是被氧化性酸氧化,通过该方法可以将石墨烯裁成小碎片。 石墨烯氧化物是通过石墨氧化得到的层状材料,经加热或在水中超声剥离过程很容易形成分离的石墨烯氧化物片层结构。加成反应:利用石墨烯上的双键,可以通过加成反应,加入需要的基团。稳定性:石墨烯的结构非常稳定,碳碳键(carbon-carbon bond)仅为1.42。石墨烯内部的碳原子之间的连接很柔韧,当施加外力于石墨烯时,碳原子面会弯曲变形,使得碳原子不必重新排列来适应外力,从而保持结构稳定。这种稳定的晶格结构使石墨烯具有优秀的导热性。另外,石墨烯中的电子在轨道中移动时,不会因晶格缺陷或引入外来原子而发生散射。由于原子间作用力十分强,在常温下,即使周围碳原子发生挤撞,石墨烯内部电子受到的干扰也非常小。 同时,石墨烯有芳香性,具有芳烃的性质

  • 中国攻克技术难题,石墨烯制备进入了“膜时代”

    中航工业航材院宣布,已突破制备大尺寸、高质量石墨烯薄膜的技术难题,掌握了衬底材料表面晶粒定向受控生长和化学气相沉积(CVD)反应气体分压配比等关键专利技术,在铜箔表面制备出超过12英寸的石墨烯薄膜;更大尺寸的石墨烯薄膜制备技术也已突破,近期将批量生产,使大尺寸、高质量石墨烯薄膜的工程化制备成为现实,标志着石墨烯制备进入了“膜时代”。石墨烯是由碳原子构成的单层片状结构新材料,厚度仅为一个碳原子,是目前已知的世界上最薄的材料,也是迄今被证实的最坚硬的材料,其强度是钢的100多倍。同时石墨烯也是已知材料中电子传导速率最快的材料,其还具有97.7%的透光率,并具有优良的热导率。由于制备困难,目前石墨烯比黄金还贵15~20倍。航材院投资数千万元,通过集智攻关,解决了反应源气体与载气分压配比、CVD反应室炉温均匀性、转移介质和载体匹配性、目标物与石墨烯薄膜兼容性等四大难题,有效提高了石墨烯膜的完整性、洁净度和产品性能,并能对石墨烯薄膜层数进行单层、多层或混合层的结构控制,实现了大尺寸、高质量石墨烯薄膜批量化生产。石墨烯薄膜产能每天可达数百片,航材院在大尺寸、高质量石墨烯制备方面已处于国内领先地位。

  • 【讨论】单层石墨烯有没有晶格条纹

    石墨烯越来越热,对于其的电镜表征也成为大家关注的焦点,最近也做了几个类似的样品,对于单层石墨烯片,看不到晶格条纹,不知有没有理论可以证实. 还有一个问题就是:晶面间距和层间距是不是一个概念,大部分人认为不是一个概念,我也赞同,但具体到石墨烯中,如何区分,我们知道每层石墨烯层厚是0.34nm,那么石墨烯的晶面间距和层间距各是多少呢,与0.34nm由于什么关系,还望高手指教!

  • 石墨炉原子吸收,影响灵敏度的主要因素

    对于石墨炉[url=https://insevent.instrument.com.cn/t/Wp][color=#3333ff]原子吸收[/color][/url],影响灵敏度的主要有以下几个因素:(1) 分析波长。(2) 光谱通带。(3)灯电流。(4)进样量 石墨炉[url=https://insevent.instrument.com.cn/t/Wp][color=#3333ff]原子吸收[/color][/url]的进样量一般为10~40mL,不同的进样量可获得不同的灵敏度。(5)石墨管的类型和状态 对于许多元素,使用石墨炉平台可显著提高灵敏度;当石墨管已接近报废明显老化,灵敏度较快的下降。另外,对于热解涂层石墨管,不同厂家、同一厂家不同批次的石墨管灵敏度都有较大区别。(6)石墨炉工作条件 干燥温度和时间、灰化温度和时间、原子化温度和时间以及内气流都可影响灵敏度。原子化步骤升温速度太慢,原子化缓慢,灵敏度降低。原子化阶段停气,可延长原子蒸气在石墨管内的停留时间,从而提高灵敏度。(7)基体改进技术 选择合适的基体改进技术,可以防止一些易挥发元素在灰化阶段的损失,从而提高灵敏度。

  • 原子吸收石墨炉参数

    石墨管:最好是热解涂层:涂层本身是30um的某些低分子量的碳氢化合物,如甲烷(在它的蒸汽状态)的热分解完成. 要求:质密少孔,化学惰性,金属杂质含量低,有良好的导热导电性,成本低,高熔点,良好的机械加工性能,热膨胀小. 碳在高温氧化,最好用氩气做保护气 一:干燥:NaCl在干燥时易膨胀,迸水.(用牙医镜观察干燥情况,并调节温度和时间,如干燥过程中 样品起沫或起泡说明温度太高了. 二:灰化:以氯化物形式存在的易挥发元素如:Cd,Zn,Pb,等低温灰化就容易损失,当它们处于氢化物或氧化物时即使在高的多的温度下也很稳定. 如:PbCl2在500℃时挥发,而PbNO3在800℃时还是稳定的. BaCl2在900℃时挥发,BaO最高灰化温度为1500℃ 三:原子化:绝大多数元素在2000℃/秒速率下得到最高灵敏度.有些元素如Pb采用其一半的速率将得到更好的效果. 理想:选择最低的温度而得到良的灵敏度 高温会加速石墨管的表面氧化,同样原子化保留时间要有所考虑,高温时不必要求的过长的保留时间会减少石墨管寿命 四:测量方法:采用峰面积方式最容易得到更好的校正曲线 元素 HNO3中最大灰化温度℃ 原子化温度℃ 特征量pg 进样20ul产生0.3Abs时的浓度ng/ml 适用曲线范围ng/ml 实测 ng/ml:Abs 进样10ul 元素 HNO3中最大灰化温度℃ 原子化温度℃ 特征量pg 进样20ul产生0.3Abs时的浓度ng/ml 适用曲线范围ng/ml 实测 ng/ml:Abs 进样10ul铝Al 1400 2500 5 20 5--80 锰Mn 700 2400 0.7 2.5 0.1--10 4//0.044锑Sb 600 2000 9 35 5--200 汞Hg 100/300# 1600 350 1250 10--200 砷As 300/800* 2300 6 25 5--100 500//0.130 钼Mo 1200 2700 8 3 2--80 钡Ba 1400 2500 12 45 5--100 镍Ni 900 2400 5 20 2--100 铍Be 900 2300 12 45 0.1--10 钯Pd 1000 2500 12 45 铋Bi 500 2300 0.7 2.5 0.1--11 磷P 700 2700 2000 7000 硼B 800 2900 1000 3500 0.1--12 铂Pt 1100 2800 90 320

  • 【转帖】再来谈谈“石墨烯”

    石墨烯—改变世界的新材料 我们每个人都有使用铅笔的经历,但几乎没有人意识到当我们用铅笔在纸上留下字迹的同时也不知不觉地制造出了很有可能在不久的将来改变人类生活的新材料。这种目前在科学界最热门的材料就是石墨烯。顾名思义,石墨烯与石墨有紧密的联系。我们知道,石墨是一类层状的材料,它是由一层又一层的二维平面碳原子网络有序堆叠而形成的。由于层间的作用力较弱,因此石墨层间很容易互相剥离,形成薄的石墨片,这也正是铅笔能在纸上留下痕迹的原因。这样的剥离存在一个最小的极限,那就是单层的剥离,即形成厚度只有一个碳原子的单层石墨,这就是石墨烯。但长久以来,科学家们从理论上一直认为这种纯粹的二维晶体材料是无法稳定存在的,一些试图制备石墨烯的工作也均以失败而告终。直到2004年,英国曼彻斯特大学的A. Geim教授及其合作人员凭借极大的耐心与一点点运气终于如大海捞针般首次发现了石墨烯。他们采取的手段与铅笔写字有异曲同工之妙,即通过透明胶带对石墨进行反复的粘贴与撕开使得石墨片的厚度逐渐减小,最终通过显微镜在大量的薄片中寻找到了理论厚度只有0.34纳米(约为头发直径的二十万分之一)的石墨烯。这一发现在科学界引起了巨大的轰动,不仅是因为它打破了二维晶体无法真实存在的理论预言,更为重要的是石墨烯的出现带来了众多出乎人们意料的新奇特性,使它成为继富勒烯和碳纳米管后又一个里程碑式的新材料。而Geim教授也凭借这一发现获得了2008年诺贝尔物理学奖的提名。 石墨烯这一目前世界上最薄的物质首先让凝聚态物理学家们惊喜不已。由于碳原子间的作用力很强,因此即使经过多次的剥离,石墨烯的晶体结构依然相当完整,这就保证了电子能在石墨烯平面上畅通无阻的迁移,其迁移速率为传统半导体硅材料的数十至上百倍。这一优势使得石墨烯很有可能取代硅成为下一代超高频率晶体管的基础材料而广泛应用于高性能集成电路和新型纳米电子器件中。目前科学家们已经研制出了石墨烯晶体管的原型,并且乐观地预计不久就会出现全由石墨烯构成的全碳电路并广泛应用于人们的日常生活中。此外,二维石墨烯材料中的电子行为与三维材料截然不同,无法用传统的量子力学加以解释,而必须运用更为复杂的相对论量子力学来阐释。因此石墨烯为相对论量子力学的研究提供了很好的平台,而在这之前科学家们只能在高能宇宙射线或高能加速器中对该理论进行验证,如今终于可以在普通环境下轻松开展研究了。 石墨烯还具有超高的强度,碳原子间的强大作用力使其成为目前已知的力学强度最高的材料,并有可能作为添加剂广泛应用于新型高强度复合材料之中。石墨烯良好的导电性及其对光的高透过性又让它在透明导电薄膜的应用中独具优势,而这类薄膜在液晶显示以及太阳能电池等领域至关重要。另外,石墨烯在高灵敏度传感器和高性能储能器件方面也已经展示出诱人的应用前景。可以说,石墨烯的出现不仅给科学家们提供了一个充满魅力与无限可能的研究对象,更让我们对其充满了期待,也许在不久的将来,石墨烯就会为我们搭建起更加便捷与美好的生活。 看了以上的介绍,如果你对石墨烯产生了兴趣的话,不妨也可以尝试着DIY一下。其实很简单,只要你一点石墨、有一卷胶带和一台显微镜就可以了,当然还要加上足够的耐心。好了,现在你就可以像Geim教授一样开始在科学世界中的探索了。原文转自http://www.nimte.cas.cn/kxcb/kpwz/200908/t20090821_2430423.html编写人:周旭峰

  • 原子吸收石墨炉

    原子吸收石墨炉在做胶囊的时候,在进第一次样的时候石墨炉燃烧了两次……这是什么原因?

  • 关于石墨层间化合物的红外分析

    以前做课题的时候,制备一种石墨层间化合物,由于石墨是层状结构,所以层间键合较弱,容易插层而产生层间化合物,需要用红外证实这些插入的异类分子是否和石墨产生新的键合。但是在做红外分析的时候,由于石墨对红外吸收比较强,所以一直无法得到较好的谱图!不知道老师们有没有什么好的方法和建议!我以前做的时候是用传统的透射,将插层处理后的石墨(原粒度约80目左右)研磨后进行红外分析。

  • 9个因素影响石墨炉原子吸收实验结果

    1化学试剂和实验用水的选择选择化学试剂和实验用水是做好[url=https://insevent.instrument.com.cn/t/Wp][color=#3333ff]原子吸收光谱[/color][/url]法的良好开端。分析测定时,试剂空白的大小直接影响测定结果的准确性和复现性。所以在[url=https://insevent.instrument.com.cn/t/Wp][color=#3333ff]原子吸收[/color][/url]实验中,在条件允许下,选择超纯水;其次,无机酸的纯度也是试剂空白的一个重要因素,尽量使用优质酸或纯酸。曾在实验中发现消化出的食品样品的铅含量均很高,随即对样品进行复测,但结果仍然很高。因为是所有的样品铅含量均高,对分析结果产生怀疑,开始认真查找原因。最后发现是我们所用的硝酸的空白值过高所致。通过此次事例,表明理化检测在日常工作中应特别注意对化学试剂的验收工作,以确保检测质量。2器皿、容器的选择洁净的容器是做好[url=https://insevent.instrument.com.cn/t/Wp][color=#3333ff]原子吸收光谱[/color][/url]法的重要条件。其次,容器对分析结果的影响主要为表面吸附。因此,实验应选用合适的容器,特别对痕量分析,有条件的实验室应选用特隆,聚乙烯材料的容器。对选用石英玻璃管要注意内壁是否有磨损。通常国内实验室为硝酸(1+5)泡一次后,纯水清洗就使用。也有部分实验室一般先用硝酸(1+5)泡24小时,直接用纯水清洗后晾干,再用硝酸(1+5)泡24小时,直接用纯水清洗后晾干后使用。容器经过这样处理后,实验取得良好的效果。同时注意所用的硝酸溶液要及时更新。3标准溶液的配制样品的测定值应该落在标准曲线的线性上。标准溶液的吸光度值为0.1-0.6之间.标准曲线为4-6个点,重复读数2次以上.标准溶液使用液应现配现用,选择溶剂应与样品溶剂匹配。根据不同的元素应选用不同的曲线校准方法。例如,做镉的标准曲线时,吸光度大于0.3A后,标准曲线向X轴方向弯曲,这时,不必强用线性校准,而是选用二次曲线或其他方法校准。4样品制备样品的取量要合适,取样量根据样品的含量来定。一般情况通过预实验知道样品的大概含量后确定样品的取量和定容体积。在考核中,一般控制样品的吸光度值在0.2A左右,这个吸光度值稳定,精密度高,测量容易。样品的酸度一般控制在0.1mol/L(0.6%)以下。酸度过大,会影响检测的灵敏度。5仪器条件(1)石墨管的选用石墨炉法需要根据待测元素及样品选择适合的石墨管。石墨管一般有三种,普通石墨管、涂层石墨管,平台石墨管。普通石墨管适用于一些原子化温度底的元素测定。涂层石墨管适用于一些原子化温度高的元素。平台石墨管使用于一些基体复杂的样品如生物样品。在测定一些元素,往往要在石墨管外表面添加一层膜,来达到很好的灵敏度和检出限,同时延长了石墨管的使用寿命。在我们日常工作中常用到的石墨管是普通石墨管和涂层石墨管。普通石墨管在测定一般食品和生活饮用水中的铅和镉,都能达到良好的灵敏度和精密度,但对于灰化温度高的元素,如测定生活饮用水中的铝,铜时,灵敏度会差很多和精密度不能达到良好的要求。(2)升温参数的选择在石墨炉分析中,石墨炉的升温参数在整个分析中起着极为重要的作用。做好灰化温度和吸光度关系曲线图,原子化温度和吸光度关系图及背景吸收和吸光度关系图尤为重要,从中可以找到最佳的升温参数。在处理一些基体复杂的样品时选好升温参数更为重要。(3)仪器进样石墨炉[url=https://insevent.instrument.com.cn/t/Wp][color=#3333ff]原子吸收光谱仪[/color][/url]一般都是自动进样。在实验过程中要控制好进样的质量,包括进样量的大小和进样管的进样深度。进样要保证进样完全和灵敏度,所以在进样量为20uL时,一般建议进样深度为离石墨管内壁底部剩三分之一左右。具体的进样深度由进样量来决定。有时,因为进样管不够干净,测定粘稠大的样品时常使样品沾在进样管上而使进样不完全,吸光度下降;所以我们要注意清洁进样管的内外壁。在直接测定尿中铅时,我们常常遇到这种情况,影响测定结果。6平行测定由于测定过程中无法避免随机误差,而随机误差大又会导致成为大的测定误差。要减少测定中的随机误差,增加同一份样品的测定次数是非常有效的措施。7加标回收加标回收是指向样品中加入一定量的待测物质,然后与样品同时进行前处理和测定,观察加入的待测物能否定量回收。考核样品分析中加标回收尽量接近100%。加标回收的作用是样品前处理是否合格,测定中是否存在干扰。加标回收接近100%也不能代表考核结果完全准确无误。它不能检查标准物质本身所带来的误差,不能检查加和性干扰,如背景吸收。所以,作好加标回收的同时还要采用其他质量控制手段才能更好地做好样品检测。8标准加入法标准加入法是一种消除干扰的一种方法。本法不足之处是不能消除背景干扰,所以只要消除背景干扰才能得到待测样品的真实含量,否则结果会偏高。当样品中基体含量高而成分不详或变化不定时,很难配制成与样品基体相似的标准,这是必须采用标准加入法。将试液的标准曲线斜率和待测元素的工作曲线斜率比较,可知基体效应是否存在。一是试液的标准曲线斜率大于待测元素的工作曲线斜率,表明基体存在增敏效应;二是试液的标准曲线斜率小于待测元素的工作曲线斜率,表明基体存在抑制效应;三是试液的标准曲线斜率等于待测元素的工作曲线斜率,表明无基体效应。使用标准加入法要注意几个问题:(1)该方法仅适用于吸光度和浓度成线形的区域,校准曲线应是通过原点的直线。为了得到较好的外推结果,至少采用四个点。(2)首次加入的浓度最好与待测元素的浓度大致一样。(3)标准加入法只能消除物理干扰和轻微的与化学无关的化学干扰,因为这两种干扰只影响校准曲线的斜率而不会使校准曲线弯曲,与浓度有关的化学干扰,电离干扰、光谱干扰以及背景吸收干扰,利用标准加入法是不能克服的。(4)一般生物材料的检测都用到标准加入法。9标准样品的选择选择基体和浓度相似的标准参考物质同步进行分析,这是最好的质量控制方法。所以我们要通过多种途径去了解标准样品,购买标准样品,选择好标准样品。

  • 原子吸收石墨管使用寿命太短

    参考[color=#333333]GB 5009.12,用石墨炉来检测铅的含量[/color][color=#333333]一根新的石墨管,只能使用100次左右,超过了之后,检测结果就会偏高,重新更换石墨管之后,检测就恢复正常了。[/color]石墨炉的升温程序是 温度 升温时间 保持时间 干燥 150 20S 40S 灰化 650 5S 15S 原子化 1900 0S 4S 净化 2000 1S 1S按照厂家的说法,正常石墨管可以使用300次左右,这边测铅使用的温度也比较低,不应该寿命这么短啊?个人感觉是石墨管的涂层烧坏了,溶液里的铅渗入到石墨管里,导致净化不了,结果就一直偏高。

  • 【原创大赛】氧化石墨烯层间距的增加与表征

    【原创大赛】氧化石墨烯层间距的增加与表征

    石墨烯本身由于性质结构非常稳定,所以很难直接参与反应,因此,制备石墨烯系列复合材料,须先对石墨烯进行改性。目前,实验室流行的石墨烯相关的实验都是先增大石墨层间距,弱化石墨层间作用力,使其反应活性增加。通常是强氧化后再通过还原的方法,除去含氧官能团,制备石墨烯系列产物。以下仅验证强酸扩大石墨层间距的方法进行论证。实验原料:浓硫酸、浓磷酸、鳞片石墨、高锰酸钾、浓盐酸、过氧化氢、乙醇实验步骤:通过强酸对石墨进行氧化,再通过超声、离心等方式对其进行剥离,进而制备氧化石墨烯。具体步骤如下:1、取3g鳞片石墨、360ml浓硫酸、40ml浓磷酸于1L三口烧瓶中,常温下搅拌10h。2、在冰浴条件下,分批加入18g高锰酸钾,并持续搅拌4h。3、水浴升温至50℃,持续搅拌12h。4、将反应物倒入盛有500ml冰块的1L烧杯中,搅拌下加入10ml、浓度为10%的过氧化氢溶液,至反应液体变为亮黄色。5、通过离心机高速离心,弃去上层清液,配置1L质量分数5%的盐酸溶液,持续离心洗涤。6、再通过去离子水离心洗涤至分层絮状物出现,烘干,得氧化石墨烯。表征与讨论:http://ng1.17img.cn/bbsfiles/images/2015/09/201509221609_567141_3028526_3.jpg从图中可以看出,a曲线代表鳞片石墨的XRD曲线,石墨的特征衍射峰在26°;b曲线代表氧化石墨烯的XRD曲线,11°左右的强峰是氧化石墨烯的XRD特征衍射峰,而26°附近的石墨XRD峰没有出现,说明石墨结构已经被破坏。结论:通过强酸氧化的方法,成功扩大了石墨的层间距。PS:本结论仅针对石墨层间距进行验证,具体还可以通过红外、高倍透射电镜等对制备的产品进行表征分析。

  • 石墨烯:新材料王者之路有多长?

    石墨烯:新材料王者之路有多长?去年,华为掌门人任正非曾表示,未来10~20年,将迎来石墨烯颠覆硅的时代。随后,有西方媒体报道,西班牙研发出石墨烯电池,充电8分钟可续航1000公里。近年来,石墨烯似乎已成为无所不能的新材料之王。  中国科学院长春应用化学研究所(以下简称长春应化所)研究员牛利等人近日在石墨烯材料的制备及应用研究方面取得重要进展,该成果获得2015年吉林省自然科学奖一等奖。  牛利在接受《中国科学报》记者采访时表示:“虽然石墨烯材料具有相当特殊的物理及化学属性,但距离真正的实际应用还有很长的路要走。”  超级材料  石墨烯存在于自然界,只是难以剥离出单层结构,厚1毫米的石墨大约包含300万层石墨烯。  2004年,英国曼彻斯特大学的两位科学家安德烈·盖姆和康斯坦丁·诺沃肖洛夫从高定向热解石墨中剥离出石墨片,然后将薄片的两面粘在一种特殊的胶带上,撕开胶带,就能把石墨片一分为二。  他们不断地这样操作,于是薄片越来越薄,最后,他们得到了仅由一层碳原子构成的薄片,这就是石墨烯。两人也因此获得2010年度诺贝尔物理学奖。  据牛利介绍,石墨烯是碳原子紧密堆积成单层二维蜂窝状结构的一种碳质新材料,具有极好的电学、力学、热学以及光学性能。  常温下,石墨烯电阻率比铜或银更低,是世界上电阻率最小的材料。石墨烯因电阻率低、电子迁移的速度快,有望用来发展更薄、导电速度更快的新一代电子元件或晶体管。  石墨烯既是最薄的材料,也是最韧的材料。曾有实验证实,如果用一块面积1平方米的石墨烯做成吊床,本身重量不足1毫克,却可以承受一只一千克的猫。  另外,石墨烯几乎是完全透明的,只吸收2.3%的光,即使是最小的气体原子(氦原子)也无法穿透。这些特征使得它非常适合作为透明电子产品的原料,如透明的触摸显示屏、发光板和太阳能电池板。  石墨烯的特殊性能使其迅速成为国际先进材料研发的新热点,引发了国内外科研人员的跟踪研究,牛利团队就是其中之一。http://img1.17img.cn/17img/images/201512/insimg/397ad04f-a6c9-4ae0-b410-480666e616ca.jpg诺沃肖洛夫团队捐赠给斯德哥尔摩的石墨、石墨烯和胶带  性能改良  这些年,牛利带领长春应化所现代分析技术工程实验室材料电化学课题组,密切关注国际石墨烯材料研发发展的最新趋势,围绕二维石墨烯材料理论设计、制备合成、性质表征以及其在电分析化学领域的应用开展了系列研究工作。  由于石墨烯片层之间具有强烈的相互作用,使其非常难以剥离。牛利告诉记者:“传统的氧化剥离方法是通过强氧化剂,让石墨烯边缘发生氧化作用,出现片层结构扭曲。这种方法由于使用大量的强氧化剂,如高锰酸钾、浓硫酸等试剂,制备的石墨烯材料结构可控性差,缺陷多,产率也较低。”此外,该方法直接产生的是石墨烯氧化物,还需要进一步的还原处理才能得到最终的石墨烯材料。  牛利团队利用微波能量辅助,同时辅以有机小分子插层剂,在石墨片层间通过微波逐渐渗透插层剂,使石墨烯片层逐渐剥离。“这项技术方法无需经过石墨烯氧化阶段,不仅可以直接制得高度还原性的石墨烯材料,还可以低成本、大批量制备高品质的石墨烯材料。”  当前,国际上制备石墨烯薄膜多采用昂贵的CVD(化学气相沉积)方法,牛利团队发现,这种方法很难控制薄膜的厚度,特别是难以进行复杂的图案化设计。另外,化学还原剂无论是液态还是气相的,都会导致二次化学试剂的使用。  “我们采用电化学技术,仅仅通过界面的电子转移过程,就可以控制石墨烯氧化物在界面的电化学还原沉积程度,这种方法技术简单、成本低廉、绿色环保,同时结构厚度、性状可控。”牛利说。  牛利团队还探索了新型石墨烯及其杂化材料在电极界面修饰、分析传感及其他相关领域的应用。http://img1.17img.cn/17img/images/201512/insimg/f7e4c11e-2c48-4aa2-93bd-047c011cbc1e.jpg显微镜下的石墨烯“单晶”  目标驱动  他们设计制备了石墨烯片层、薄膜和石墨烯杂化材料,并进一步探索了石墨烯及其杂化材料的化学结构特征和反应机理,将石墨烯及其杂化材料应用在传感分析、复合材料以及能源环境领域。  “作为工业技术,石墨烯要实现产业化,仍有许多未能克服的困难。”牛利指出,尽管国际上已经发布一些研究结果,将石墨烯用于电池电极材料、电容器器件构造、力学增强材料、导热薄膜等应用领域中,但这些领域的研究还有诸多的科学及工程技术问题亟待解决。  因为石墨烯的制备方式目前在技术上还存在缺陷,通过实验室内研制的石墨烯成本居高不下。曾有研究人员计算出目前的石墨烯价格高达5000元/克,比黄金还贵十几倍。  围绕化学制备石墨烯材料,低成本、大批量制备高品质石墨烯是个值得关注的技术问题。围绕微电子学及器件领域,科研人员还需要解决如何降低器件材料的制备成本、提高器件结构的均一性,如何将微观操作及纳米构造技术用于石墨烯器件中等问题。  目前在石墨烯材料的一些应用领域,如储能器件、导热材料、透明薄膜等方面,虽然已经有围绕需求的、具有应用前景的研究工作报道,但由于缺乏明显的直接应用领域及工程技术方法的结合应用,导致研究工作与应用需求还存在一定的距离。  牛利告诉记者:“将基础研究与工程技术方法有机结合,特别是与应用目标驱动结合,将会使石墨烯材料研究成果更好地投入到实际应用中。”

  • 追本溯源,热解涂层石墨管原理是什么?(答案已经公布)

    问题:热解涂层石墨管比普通石墨管好,那么它的制作原理是什么呢?(答案已经在11楼公布,几个老师的答案都接近,所以每人奖励10积分)!PS:介绍:普通石墨管升华点低(3200℃)、容易氧化、使用温度低,平时工作的时候原子化温度必须低于2700℃;热解涂层石墨管具有很好的耐氧化性,生化温度高,可达到3700℃,平时原子化温度顾名思义可以高于2700℃,具有较高低机械强度,寿命明显优于普通石墨管。

  • 石墨炉原子吸收石墨锥积碳严重

    各位老师: 实验室目前使用岛津AA7000的[url=https://insevent.instrument.com.cn/t/Wp][color=#3333ff]原子吸收[/color][/url]。最近一段时间发现在实验过程中石墨锥附近积碳很严重。而且连续几次有石墨管被烧断的现象。询问过其他使用同类型设备的实验室暂时没遇到过这种情况。工程师给的建议是更换石墨锥。这台仪器是17年6月份开始使用的,使用频率不算特别高的。有没有可能是其他原因导致的这种情况了?

  • 【求助】原子吸收石墨炉

    咨询一下,就是原子吸收石墨炉使用的时候,吧氩气打开,冷却水也打开,空烧石墨管,显示窗口“石墨炉保护气已断开,不能加热升温”,检查气路是通的,这是什么情况,有遇到过得吗?

  • 【资料】石墨炉原子化器

    常用的非火焰原子化器是管式石墨炉原子化器,管式石墨炉是用石墨管做成,是将样品用进样器定量注入到石墨管中,并以石墨管作为电阻发热体,通电后迅速升温,使试样达到原子化的目的。它由加热电源、保护气控制系统和石墨管状炉组成。外电源加于石墨管两端,供给原子化器能量,电流通过石墨管产生高达3000℃的温度,使置于石墨管中被测元素变为基态原子蒸气。保护气控制系统是控制保护气的,仪器启动,保护气Ar气流通,空烧完毕,切断Ar气流。外气路中的Ar气沿石墨管外壁流动,以保护石墨管不被烧蚀,内路的Ar气从管两端流向管中心,由管中心孔流出,以有效地除去在干燥和灰化过程中产生的基体蒸气,同时保护已经原子化了的原子不再被氧化。在原子化阶段,停止通气,以延长原子在吸收区内的平均停留时间,避免对原子蒸气的稀释。

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制