当前位置: 仪器信息网 > 行业主题 > >

原子层石墨烯膜

仪器信息网原子层石墨烯膜专题为您整合原子层石墨烯膜相关的最新文章,在原子层石墨烯膜专题,您不仅可以免费浏览原子层石墨烯膜的资讯, 同时您还可以浏览原子层石墨烯膜的相关资料、解决方案,参与社区原子层石墨烯膜话题讨论。

原子层石墨烯膜相关的资讯

  • 单层石墨烯一维褶皱到扭转角可控的多层石墨烯的转变机理研究获进展
    近年来,转角石墨烯受到国内的关注。转角石墨烯所具有的大周期莫尔晶格(Moiré pattern)及其所带来的能带折叠效应可以诱导出丰富、新奇的电子结构。尤其是在一些特殊的小角度上,电子结构中所出现的平带会衍生出较多不寻常的现象,如超导、强关联、自发铁磁性等。       目前,多数研究采用机械剥离和逐层转移的物理方法对转角石墨烯样品进行制备,而该方法存在条件苛刻、产出率低、界面污染等问题。为发展更加高效的制备技术,科学家通过对化学气相沉积法中衬底的设计,陆续突破了几种类型的转角石墨烯的规模化制备难题。然而,关于多层石墨烯的转角周期的可控制备方面,尚无比较普适的解决办法。       近日,中国科学院深圳先进技术研究院、上海科技大学、中国科学院上海微系统与信息技术研究所、中国人民大学和德国慕尼黑工业大学,寻找到一种石墨烯的折纸方法,可实现高层间周期的转角石墨烯的可控制备。研究发现,铂金表面生长的石墨烯会形成一定的褶皱,褶皱长大后向两旁倒下,并在一些位置撕裂形成一个四重的螺旋位错中心。褶皱倒下时会折叠其一侧的石墨烯,带来与褶皱的“手性”角(也就是褶皱的方向与石墨烯晶向的夹角)具有两倍关系的单层转角。科学家称之为“一维手性到二维转角的转化关系”,并利用折纸模型对该现象进行了形象的演示。该研究进一步探讨了所形成的螺旋位错再生长带来的新奇现象,并发现各层石墨烯会随着再生长形成具有周期性的四层转角结构,其中第1、3层与原始石墨烯的晶向相同,而2、4层的晶向由褶皱手性角所决定。因此研究提出了一种新的周期转角多层石墨烯的制备方法,即通过控制石墨烯褶皱形成的方向,制备具有特殊层间转角周期的多层石墨烯。该方法可用于多种可以形成褶皱的其他二维材料。      相关研究成果以《通过石墨烯螺旋的一维到二维的生长将手性转化为转角》(Conversion of Chirality to Twisting via 1D-to-2D Growth of Graphene Spirals)为题,发表在《自然-材料》(Nature Materials)上。研究工作得到国家自然科学基金、中国科学院和国家重点研发计划等的支持。图1. 石墨烯折纸现象的记录与演示。(a-d)原位ESEM实验所记录的褶皱形成、倒下和再生长的过程;(e-h)相应过程的示意图;(i-l)利用折纸模型演示褶皱的形成、倒下和再生长。图2. 螺旋位错附近的再生长过程。(a-d)原位SEM实验所记录的多个反向螺旋位错附近的再生长过程;(e-h)动力学蒙特卡洛对该过程的模拟演示;(i)原子尺度分辨率STM所表征的石墨烯褶皱“手性”角;(j-l)利用折纸模型演示褶皱倒下时形成的螺旋位错及下层石墨烯出现的转角;(m-t)螺旋位错再生长所带来的四层周期转角结构示意图。图3. 石墨烯螺旋的再生长和合并。(a-f)原位ESEM实验所记录的褶皱出现到最终生长成多层转角石墨烯的全过程;(g)TEM表征下的多层转角石墨烯;(h)原子分辨率的多层转角石墨烯表征图;(i-k)动力学蒙特卡洛对该过程的模拟。      图4. 多层螺旋石墨烯和多层堆垛石墨输运性质的区别。(a)原子力显微镜观察到的螺旋位错中心;(b-d)输运性质检测时的实验设置;(e-g)多层螺旋石墨烯和多层堆垛石墨的电阻和磁阻随温度变化的关系。
  • 石墨烯“三防”涂层技术问世 填补市场空白
    p style=" text-indent: 2em " 在工业生产中,涂层最常起到抗腐蚀、抗热、抗氧化等功能。像海洋这种高盐高湿的恶劣环境,电化学腐蚀能在极短的时间内将钢铁船变成一块废铁,因此常采用阴极保护与防腐涂层结合的方法来保护船体及一些暴露在烟雾等腐蚀条件下的工件、设备或部分等。 /p p style=" text-indent: 2em " 但对于舰船燃气轮机等在高温环境下的部件来说,需要的涂层不仅要耐湿耐腐蚀,同时还要有优异的耐高温性能。最近,一种石墨烯“三防”涂层技术已在秦皇岛经济技术开发区研发成功,可应用于舰船燃气轮机、航空航天发动机高温部件保护以及舰船防盐雾及海生物腐蚀等,有力地填补了高温涂层技术应用在重盐雾地区的市场空白。 /p p style=" text-indent: 2em " 这种石墨烯“三防”涂层技术由远科秦皇岛节能环保科技开发有限公司历时3年多时间研发成功,相关涂层材料在南海、东海重盐雾地区的高温部件上挂件测试,通过6000小时连续工作验证,使原基材在不改变属性的情况下,增加3倍以上的使用寿命,经国家权威部门认定,该产品具有防霉菌、防盐雾腐蚀、抗高温氧化功效,完全可以满足高温条件下发动机热部件1500小时的应用,解决了我国在这一领域的技术难题。 /p p style=" text-indent: 2em " 据了解,这种石墨烯涂料主要是碳原子和稀土氧化物原子复合而成,这种复合性碳原子保护共性材料,使基础材料强度增强,形成了超保护薄膜,从而改变了隔热系数。 /p p style=" text-indent: 2em " 据远科秦皇岛节能环保科技开发有限公司总经理闫俊良透露,随着我国在石墨烯涂层技术上取得突破,它的应用领域会逐渐扩展,“三防”涂层技术除可应用于我国舰船燃气轮机、航空发动机领域外,还可在各种远洋运输船、游轮等民用船舶上使用。这种材料一旦得到应用,预计每年可为我国节省维护费用上百亿元,并使各类装备的使用寿命和强度大幅提升。 /p
  • 天然双层石墨烯内发现新奇量子效应
    由德国哥廷根大学领导的一个国际研究团队在最新一期《自然》杂志上发表论文称,他们在对天然双层石墨烯开展的高精度研究中,发现了新奇的量子效应,并从理论上对其进行了解释。这一系统制备简单,为载荷子和不同相之间的相互作用提供了新见解,有助于理解所涉及的过程,促进量子计算机的发展。2004年,两位英国科学家用一种非常简单的实验方法从石墨中剥离出石墨片,并借助特殊胶带得到仅由一层碳原子构成的石墨烯。石墨烯是强度最高的材料之一,具有很好的韧性、超强导热性与导电性,应用前景十分广阔。如果将两层石墨烯彼此以特定的角度偏转,所得到的系统甚至会表现出超导性和其他激发量子效应,如磁性。但迄今为止,很难制备出这种偏转的双层石墨烯。在最新研究中,科学家们使用了天然形成的双层石墨烯。他们首先使用简单的胶带从一块石墨中分离出石墨烯样品。为观察量子力学效应,施加了垂直于样品的高电场。他们发现,所得到系统的电子结构发生了变化,且拥有类似能量的电荷载流子出现强烈的累积效应。研究进一步发现,在略高于绝对零度(-273.15℃)下,石墨烯中的电子可相互作用,出现了各种意想不到且复杂的量子相。如相互作用导致电子自旋对齐,使材料在没有施加外部影响的情况下具有磁性。通过改变电场,研究人员也能不断改变双层石墨烯中载流子相互作用的强度。此外,电子运动的自由度在特定条件下会受限,形成电子晶格,且由于相互排斥作用,不再有助于传输电荷,导致系统对电绝缘。哥廷根大学物理系托马斯韦茨教授表示,新系统的主要优势之一在于材料制备非常简单,研究人员不需要像以前那样在高温下才能获得所需结果,可用于进一步研究各种量子态及量子计算机等。
  • 同是三层石墨烯结构 电学性质因何大相径庭?
    p style=" text-indent: 2em " 近日,日本科学家研制出两种新材料,它们都是三层石墨烯结构,但由于堆叠方式不同,却各具独特的电学性能,这项研究对于光传感器等新型电子器件的发展具有重要意义。 /p p style=" text-indent: 2em " 自从2004年,两位科学家首次利用清洁石墨晶体的透明胶带分离出了单层碳原子,石墨烯就因其迷人的特质吸引了无数研究者蜂拥而至。它的强度是钢的200倍,不仅非常柔韧,而且是一种极为优良的电导体。 /p p style=" text-indent: 2em " 石墨烯的碳原子呈六边形排列,构成了蜂窝状晶格。在单层石墨烯上再堆叠另一单层石墨烯,就可以形成双层石墨烯结构。有两种堆叠方法:让每层石墨烯结构的碳六边形中心彼此正对在一起,就构成了AA堆叠结构;而将其中一层向前移位,使得其碳原子六边形中心位于另一层石墨烯的碳原子之上,就构成了AB堆叠。AB堆叠的双层石墨烯材料在施加外部电场时,具有半导体的性质。 /p p style=" text-indent: 2em " 刻意堆叠三层石墨烯结构是非常困难的,但是这样做却可以帮助科学家们研究三层材料的物理性质是怎样随层与层间堆叠方式的不同而变化的,并从而对新型电学仪器设备的发展具有促进作用。现在,日本东京大学和名古屋大学的研究者已成功研制出两种具有不同电学性能的三层石墨烯结构。 /p p style=" text-indent: 2em " 他们采用了两种不同的方式加热碳化硅,一种是在加压氩气环境下将碳化硅加热到1510摄氏度,另一种是在高真空环境将碳化硅加热至1300摄氏度。随后用共价键已被破坏成单个氢原子的氢气喷涂两种材料,两种不同的三层石墨烯结构就大功告成了。在加压氩气下加热的碳化硅形成了ABA堆叠结构的三层石墨烯,其顶部和底层的碳原子六边形精确对齐,中间层稍有移位。高真空环境下加热的碳化硅则形成了ABC堆叠结构的三层石墨烯,每一层碳原子六边形都比其下面一层稍稍向前移位。 /p p style=" text-indent: 0em text-align: center " img src=" http://img1.17img.cn/17img/images/201805/insimg/fda047f2-d0aa-4cca-894b-6475b2f605a5.jpg" title=" 同是三层石墨烯结构 电学性质因何大相径庭?.jpg" / /p p /p p style=" text-indent: 2em text-align: center " span style=" color: rgb(127, 127, 127) font-size: 14px " ABA堆叠状三层石墨烯(图a)与ABC堆叠状三层石墨烯(图b)的晶体结构示意图 /span /p p style=" text-indent: 2em " 科学家们检测了这两种三层石墨烯结构的物理性质,发现他们电学性能差异显著。ABA型石墨烯与单层石墨烯类似,是十分优良的电导体,而ABC型石墨烯却更像AB型双层石墨烯结构,具有半导体的性质。 /p p style=" text-indent: 2em " “ABA型和ABC型两种不同三层石墨烯结构的成功制备,将从堆叠层数和堆叠序列的角度,拓宽石墨烯基纳米电子器件的研发可行性。” 相关研究人员在NPG Asia Materials杂志上发表的论文中这样总结道。 /p
  • 超显微镜观察到锂离子在双层石墨烯中迁移
    p   德国斯图加特马普固态研究所和乌尔姆大学的科学家使用超显微镜(SALVE),观察到以原子分辨率显示的锂离子在电化学充放电过程中的表现,证明了在单个纳米电池中双层石墨烯发生的可逆锂离子吸收。研究成果发表在最新一期的《自然》杂志上。 /p p   斯图加特马普固态研究所物理学家于尔根· 斯迈特介绍说,研究显示“纯碳化合物最适合用于锂基电化学存储系统,在此系统中,锂暂时储存在碳主体中”。 /p p   这一项目由巴符州基金会资助,目的是研究锂在二维碳化合物(如原子水平的石墨烯)中的储存和扩散。为此,斯迈特和他的博士生开发了一种由双层石墨烯组成的“微型电池”。石墨烯属于二维材料,由单个碳原子层组成。在只有0.3纳米薄的细长电化学微电池的一端,研究人员在顶部施加了溶解有锂盐的电解质液滴。为使电解质不干扰电子显微照片,实验必须精确定位和机械稳定,他们采用了一种技巧,即添加了在紫外线下固化的聚合物,使液滴成为凝胶状固体留在原处。 /p p   实验显示,当电压施加到纳米电池时,锂离子从电解质液滴迁移到石墨烯双层的间隙中,并在那里积聚 去除电位差时,累积储存的锂又溶解并迁移回到电解质液滴中。 /p p   在原子水平上,这种过程很难被“原位”观察。乌尔姆大学乌特· 凯瑟教授领导的团队利用超显微镜首次证明了石墨烯在原子水平上的嵌入。 /p p   实验结果让研究人员感到吃惊,传统的石墨基电池只有少数紧密堆积的锂在两层碳层之间,而在石墨烯纳米电池里发现非常密集的锂层。凯瑟教授称,超显微镜为理解纳米电池提供了独特的途径,能在石墨烯夹层中观察锂等轻元素的扩散是一项巨大的科学挑战,传统的透射电子显微镜(TEM)做不到。 /p
  • 世界首次!我国科学家实现原子级石墨烯可控折叠
    p style=" text-indent: 2em margin-bottom: 10px line-height: 1.5em " 经过多年的研究攻关,我国科学家在世界上首次实现了原子级精准控制的石墨烯折叠。这是目前世界上最小尺寸的石墨烯折叠,对构筑量子材料和量子器件等具有重要意义,这一成果今天(6日)在国际学术期刊《科学》上发表。 /p p style=" text-indent: 2em margin-bottom: 10px line-height: 1.5em " 探索新型低维碳纳米材料及其物性是世界前沿的科学问题之一,相关研究曾两次获得诺贝尔奖。目前在单原子层次上精准构筑和调控基于石墨烯的低维碳纳米结构仍存在巨大挑战。中国科学院物理研究所的研究团队首次实现了对石墨烯纳米结构的原子级精准按需定制的可控折叠,构筑出一种新型的准三维石墨烯纳米结构。 /p p style=" text-align: center" img style=" max-width: 100% max-height: 100% width: 500px height: 194px " src=" https://img1.17img.cn/17img/images/201909/uepic/6c45d639-a4af-4ecb-8ae2-315a94ab2409.jpg" title=" 11.png" alt=" 11.png" width=" 500" height=" 194" border=" 0" vspace=" 0" / /p p style=" text-align: center" img style=" max-width: 100% max-height: 100% width: 550px height: 125px " src=" https://img1.17img.cn/17img/images/201909/uepic/1ed31027-76c9-4f90-bfe0-2c48012aad5a.jpg" title=" 22.png" alt=" 22.png" width=" 550" height=" 125" border=" 0" vspace=" 0" / /p p style=" text-align: center" img style=" max-width: 100% max-height: 100% width: 500px height: 193px " src=" https://img1.17img.cn/17img/images/201909/uepic/be39c92a-43c7-4e00-831c-778c162810ab.jpg" title=" 33.png" alt=" 33.png" width=" 500" height=" 193" border=" 0" vspace=" 0" / /p p style=" text-indent: 2em margin-bottom: 10px line-height: 1.5em " 据了解,该研究成果是目前世界上最小尺寸的石墨烯可控折叠,高鸿钧院士讲到,经过折叠,这些新型的二维原子晶体材料,有可能由没有超导特性变为有超导特性,由无磁性变为有磁性,利用这些特性变化,可以去构造功能的量子器件,如量子计算等,对未来应用具有重要意义。 /p
  • 金属所在基于金刚石/膨胀垂直石墨烯的层状限域双电层电容行为的研究获进展
    多孔或层状电极材料具有丰富的纳米限域环境,表现出高效的电荷储存行为,被广泛应用于电化学电容器。而这些限域环境中形成的双电层(限域双电层)结构与建立在平面电极上的经典双电层之间存在差异,导致其储能机理尚不清晰。因此,解析限域双电层结构对探讨这类材料的电化学电容存储机理和优化电化学电容器件的性能具有重要意义。中国科学院金属研究所沈阳材料科学国家研究中心项目研究员黄楠团队与比利时哈塞尔特大学教授杨年俊合作,设计并制备了具有规则有序0.7 nm层状亚纳米通道的膨胀垂直石墨烯/金刚石复合薄膜电极。其中,金刚石与垂直膨胀石墨烯纳米片共价连接,作为机械增强相为构筑层状限域结构起到支撑作用。进一步,研究发现,该电极表现出离子筛分效应,离子部分脱溶等典型的限域电化学电容行为,是研究限域双电层的理想电极材料。基于该材料,科研人员利用原位电化学拉曼光谱和电化学石英晶体微天平技术分别监测充放电过程中电极材料一侧的响应行为和电解液一侧的离子通量发现,在阴极扫描过程中,电极材料一侧出现拉曼光谱   峰劈裂现象,溶液一侧为部分脱溶剂化阳离子主导的吸附过程。该研究综合以上实验结果并利用三维参考相互作用位点隐式溶剂模型的第一性原理计算方法,在原子尺度上评估了限域双电层中离子-碳宿主相互作用,揭示了在限域环境中增强的离子-碳宿主相互作用会诱导电极材料表面产生高密度的局域化图像电荷。该工作完善了限域双电层电容的电荷储存机理,为进一步探讨纳米多孔或层状材料在电化学储能中的功能奠定了基础。   8月9日,相关研究成果以Highly localized charges of confined electrical double-layers inside 0.7-nm layered channels为题,在线发表在《先进能源材料》(Advanced Energy Materials)上。研究工作得到国家自然科学基金和德国研究联合会基金的支持。图1. 层状限域双电层膨胀垂直石墨烯/金刚石薄膜电极的制备和表征:(A)制备流程示意图;(B)石墨插层化合物的拉曼光谱;(C-D)XRD图谱;(E)SEM和TEM图像。图2. 层状限域双电层膨胀垂直石墨烯/金刚石薄膜电极的电化学行为:(A)CV曲线;(B)微分电容-电极电势关系;(C)离子筛分效应;(D)EIS图谱;(E-F)动力学分析。图3. 层状限域双电层膨胀垂直石墨烯/金刚石薄膜电极的原位电化学拉曼光谱:(A-D)原位电化学拉曼光谱;(E-F)拉曼特征演变幅度分析。图4. 层状限域双电层电容的储能机理分析:(A)拉曼光谱中的G峰劈裂;(B)电化学石英晶体微天平分析;(C)电极质量变化和拉曼特征变化的关联性;(D)DFT-RISM计算获得的图像电荷分布。
  • 岛津原子力显微镜——模拟石墨负极的导电性分析
    锂离子电池是一种以嵌锂化合物为正负极材料的二次电池,在充放电过程中,锂离子在两个电极间往返脱嵌和嵌入。目前主流的锂离子电池负极材料是天然石墨与人造石墨。在锂离子电池研发与生产过程中,需要对石墨负极的导电性进行分析。 原子力显微镜可以在获得高分辨形貌图像的同时获得表面电流分布图,因此被广泛应用于分析石墨负极材料微观结构与导电性。对于原子力显微镜而言,传统的电流模式是基于接触模式进行的。当样品表面非常不规则,表面粘度高或者有较强的毛细力时,由于探针针尖此时受到与扫描方向相反的外力较大,探针无法保证垂直于样品表面,因此电流的测量会产生很大的误差。 岛津尝试用独特的ZXY扫描技术对电流分布进行测量,在每一个测试点,探针均处于垂直运动状态,因此它可避免那些影响其测试状态的外力的干扰。 因此,使用ZXY扫描技术对石墨负极进行表面电流分布测试,可以获得更真实更清晰的图像。制备模拟电池电极的石墨样品,该样品是将石墨和树脂用模具定型,然后加热烧结,最终用油浸制。这样制备的样品可以模拟真实的石墨负极。 用ZXY扫描技术同时获取石墨负极表面形貌图像和表面电流分布图像如下。左图为表面形貌图像,可清晰观察到石墨的鳞片状结构,右侧的表面电流分布图像可观察到同一区域的接触电流分布。在表面形貌图像中,可以观察到表面上分布着不规则的高约1.5 μm 的鳞片石墨。在以往的接触模式下,如果样品的表面起伏超过1μm,就很难测量电流,但使用ZXY扫描技术可以进行高分辨的观测。 而且在扫描技术下,除了可以同时获取表面形貌图像,还可以获得多种互不影响的表面属性分布。在对石墨电极进行测试时,可设定同时获得表面形貌图像,表面电流分布图像和表面力学属性分布。 扫描模拟石墨负极表面5 μm的区域,获得以下图像。4幅图像分别为表面形貌图(探针最初检测到力的形貌面)、表面形貌图(探针到达设定斥力的形貌面)、表面电流分布图像、表面吸附力分布图像。 在前2幅图中,虽然都是表面形貌图,但有明显不同。这是因为第1张图为探针接近样品表面刚刚获得力反馈信号时的位置,第2张图为探针达到设定的斥力时的位置。在两幅图相同位置的剖面线叠加分析。 从上图中可见,底部的黑色区域为样品的固体,白色虚线为表面形貌图(探针到达设定斥力的形貌面)的剖面线,也是石墨的真实表面。而蓝色虚线为表面形貌图(探针最初检测到力的形貌面)的剖面线。白色虚线和蓝色虚线中间区域内,探针检测到的力为吸引力,可判断产生的原因是样品表面的油。因此第1张图和第2张图的差别区域就是油吸附的区域。 更有趣的是,在电流分布图的剖面线中,发现电流也会因油层的存在随高度发生变化。如下图所示。电流的变化有些地方和油层的分布非常吻合,有些地方则不相同。 比较同一个点的力-距离曲线和电流-高度曲线,如下图。可见吸引力位置(油层区域)和电流高度变化区域间的相关性。 由以上数据可推断,电流的变化和油层的分布不吻合的区域,是因为表面覆盖有电阻很大的树脂,而电流的变化和油层的分布吻合的区域,则是因为油层的电阻小于树脂,提高了导电性。 综合本次测试的数据,可以发现,ZXY扫描技术不仅有效提高了对电流的检测分辨率,而且可对样品表面的各种属性进行统一分析,更有助于真实判断样品的性能及影响因素。 本文内容非商业广告,仅供专业人士参考。
  • 石墨炔与石墨烯,谁是超级材料?
    据报道,美国科罗拉多大学研究人员日前成功合成出石墨炔,此项成果或为电子、光学和半导体材料研究开辟全新的途径。事实上,石墨炔的合成研究一直是科学家们孜孜以求的目标,早在2010年,我国的李玉良院士团队就在世界上首次合成石墨炔。我们很多人都听说过大名鼎鼎的石墨烯,也知道2010年的诺贝尔物理学奖就是颁发给了石墨烯材料的研发者。石墨炔与石墨烯,仅一字之差,它们之间是否存在某种联系?石墨炔能否和石墨烯媲美?这里我们就来深入了解一下。21世纪是石墨烯的世纪  让我们先从更早出世的石墨烯说起。  听上去,石墨烯和石墨似乎有着某种联系,事实也确实如此。石墨烯和石墨、金刚石、碳60、碳纳米管等都是碳元素的单质。它们都是碳家族的一员,互为同素异形体,含有碳元素但具有不同的排列方式,从而表现出不同的物理性质。  比如金刚石(钻石的原身),它呈正四面体空间网状立体结构,碳原子之间形成共价键;当切割或熔化时,需要克服碳原子之间的共价键,由于金刚石中所有的价电子都参与了共价键的形成,没有自由电子,所以金刚石不仅硬度大,熔点极高,而且不导电。  石墨是片层状结构,层内碳原子排列成平面六边形,每个碳原子以3个共价键与其它碳原子结合,而层与层之间的距离则比较大,层间作用力较弱,很容易互相剥离,形成薄薄的石墨片。天然石墨耐高温,热膨胀系数小,导热、导电性好,摩擦系数小。铅笔之所以在纸上轻轻一划就会留下痕迹,正是这种松散堆砌的结果。  石墨烯是由碳原子构成的只有一层原子厚度的二维晶体,可以说石墨烯一层层叠起来就是石墨,厚1毫米的石墨大约包含300万层石墨烯。铅笔在纸上轻轻划过,留下的痕迹就可能是几层甚至几十层的石墨烯。  换句话说,把石墨一层一层地剥下来就是石墨烯了。从力学性质上说,石墨烯同石墨一样,其各碳原子之间的连接非常柔韧,当施加外部机械力时,碳原子面就弯曲变形,从而使碳原子不必重新排列来适应外力,也就保持了结构稳定。  科学家已经证实了石墨烯是目前世界上已知的强度最高的材料,比钻石还坚硬,是世界上最硬的钢铁强度的100多倍。瑞典皇家科学院在颁发2010年诺贝尔物理学奖时曾这样比喻:“利用单层石墨烯制作的吊床可以承载一只4千克的兔子”。有人这样引申说,由于石墨烯厚度只有单层原子,透光率高达97.7%,因此如果真有那样的吊床,它不仅对于肉眼,甚至对于很多仪器来说都是不可见的,我们看到的将是一只悬停在半空中的兔子。还有估算显示,如果重叠石墨烯薄片,使其厚度与食品保鲜膜相同的话,便可承载2吨重的汽车。  从热电性质上来说,在石墨烯的“二维世界”里,电子运动具有很奇特的性质,即电子的质量仿佛是不存在的,其传导速度可达光速的1/300,远远超过了电子在一般导体中的运动速度。加上石墨烯结构在常温下的高度完美性,使得电子的传输及对外场的反应都超级迅速,这使得石墨烯具有超常的导电性和导热性。  而且更重要的是,石墨烯还可以用来制作晶体管,由于石墨烯结构的高度稳定性,这种晶体管在接近单个原子的线度上依然能稳定地工作。若是用石墨烯来替代硅生产超级计算机,计算机的运行速度将会比现在快数百倍。因此很多人相信,石墨烯将会成为硅的接班人,引领技术领域一个新的微缩时代的来临。  除了具有超高的强度和韧性外,石墨烯几乎是完全透明的,即使是最小的单分子原子(氦原子)也无法穿过,只吸收2.3%左右的光,还有不透水、不透气以及抵御强酸、强碱的能力,这使它有可能成为制作保护膜的理想材料。石墨烯既能导电又高度透明的特点,使得它非常适合作为透明电子产品的原料,例如触摸显示屏、太阳能电池板的原料等。  研究人员利用锂离子可在石墨烯表面和电极之间快速大量穿梭运动的特性,开发出一种新型储能设备——微型石墨烯超级电容器。这种装置的充电或放电速度比常规电池快100倍到1000倍,能在一分钟内给手机甚至汽车充满电。  正因如此,所以有人说,如果20世纪是硅的世纪,那么21世纪就是石墨烯的世纪。  2004年,英国曼彻斯特大学物理学家安德烈海姆和康斯坦丁诺沃肖洛夫,在实验中成功地从石墨中分离出石墨烯。2010年,两人因此共同获得了诺贝尔物理学奖。“下一代奇迹材料”石墨炔  石墨烯已经如此神奇了,那么石墨炔呢?它有什么不一样的神奇之处吗?  石墨炔和石墨烯一样,也是只由碳原子构成,也是只有一层原子厚度的二维晶体。不同的地方在于,石墨烯的平面原子结构是六边形,也被称为蜂巢晶格结构;而石墨炔的平面原子结构则能具有数种不同的二维结构,其理论上能以无数种形态存在,目前已经至少有6种石墨炔异构体被报道。  正是因为拥有异构体结构,石墨炔具有某些独特的电子传导、力学和光学特性。此外,石墨炔还天生具有电荷载子,不像石墨烯需要额外掺杂,因此能作为制作电子元件所需的半导体材料。  早在1968年,理论化学家鲍曼就通过理论计算证实了石墨炔结构的存在。但要想在实际中合成制备出石墨炔,还面临着很多巨大的困难。我们可以这样理解,石墨烯的平面碳原子结构和石墨的单层平面碳原子结构毕竟是相同的,因此合成制备石墨烯还可以以石墨为抓手,而合成石墨炔的难度显然是更大了。  科学家们一直在为此不懈努力。在2010年,中科院化学所李玉良院士团队在石墨炔研究方面取得了重要突破,在世界上首次合成了石墨炔,开辟了碳材料的新领域。李玉良和他的团队从20世纪90年代中期开始探索平面碳的合成化学研究。在石墨炔的合成中,他们从源头的分子设计开始进行研究,渐渐地试着合成一些分子的片段。直到有一天在阅读文献的过程中,李玉良研究员突然联想到了一种化学的方法有可能使石墨炔大面积成膜。他们在铜片表面上通过化学方法原位合成石墨炔并首次成功地获得了大面积(3.61平方厘米)碳的新的同素异形体——石墨炔薄膜。  今年5月9日发表在《自然合成》上的研究论文,则在石墨炔合成制备上提供了一个新的途径。此文通讯作者、科罗拉多大学波尔德分校化学教授张伟和他的团队,通过使用被称为炔烃换位反应的有机反应过程中,在热力学和动力学的控制下重新分割或切割和重组烷基化学键,也成功地制作出石墨炔。  石墨炔被誉为是最稳定的一种人工合成的二炔碳的同素异形体。由于其特殊的电子结构及类似硅的优异半导体性能,石墨炔有望广泛应用于电子、半导体领域。  锂在石墨中的扩散方式是面内扩散,也就是层间扩散。与石墨不同的是,石墨炔同时有二维平面结构和三维孔道结构,锂在其中有面内和面外两种扩散方式,这使得石墨炔在锂离子电池方面具有很好的应用潜力。石墨炔是一种理想的储锂材料,可以作为锂离子电池的高能量密度存储的负极材料。科学家也预测它在新能源领域将产生非比寻常的影响。  石墨炔这种材料或许还有一些令人意想不到的神奇功能。据2020年发表在《科技日报》上的一则报道,山东理工大学低维光电材料与器件团队发现,石墨炔具有优异的紫外非线性特性,可以“恰到好处”地吸收紫外线。相关成果发表在国际知名期刊《纳米尺度》上。所谓紫外非线性材料,就是能够在紫外线强度比较低的情况下允许其通过,但若紫外线强度高于某一阈值,那么该材料就会神奇地将超额的紫外线阻挡住,形成对生物细胞的保护,从而使其成为理想的紫外防护材料。  英国《纳米技术》杂志曾这样评价:“石墨炔是未来最具潜力和商业价值的材料之一,它将在诸多领域得到广泛的应用。”  在合成石墨炔领域,我国科学家有着开创性的成果。而要获得大规模工业制备石墨炔的方法,还需要全球科学家们付出更多艰苦的努力,前景令人期待。
  • 萃取富集-石墨炉原子吸收法测试工业废水中铊含量
    铊及铊化物都具有剧毒,铊对动植物的毒性远大于铅、镉、汞等其他重金属。《GB 31573-2015 无机化学工业污染物排放标准》中规定涉铊的无机化合物工业企业,其车间或生产设施废水排放口的铊总量限值为0.005 mg/L。现行水质中铊含量测定标准《HJ 748-2015 水质铊的测定石墨炉原子吸收分光光度法》中列出了两种测试方法:沉淀富集法和直接法。直接法对于基体复杂的废水样品而言,基体影响大,且灵敏度不足,准确性存疑;沉淀富集法则需要用到溴水(剧毒试剂)、离心机(额外的实验设备)等,对实验室管理体系要求较高,增加了企业的管理成本。珀金埃尔默开发了一种利用铁盐和溴化钾试剂对废水样品中的铊进行萃取富集处理的方法,有效去除碳酸锂生产企业排放废水中的复杂基质,并降低对石墨炉原子吸收光谱仪的灵敏度要求,大大简化了处理过程,节省企业的管理成本,结果准确可靠,是一种高性价比的企业内控检测方法。仪器和试剂本次实验使用的是PerkinElmer™ 900T型火焰-石墨炉一体式原子吸收光谱仪,配置铊元素无极放电灯(Tl-EDL)。样品处理用到的试剂有:硫酸、磷酸、盐酸、铁(III)盐(即硫酸铁或氯化铁)、溴化钾、甲基异丁基酮(MIBK),纯度要求在分析纯以上。前处理精确量取废水样品25mL于烧杯中,加入铁盐试剂,盐酸,混匀后置于150 ℃ 电热板上加热,待无气泡冒出后,提高加热温度使溶液近干。取下稍冷后,加入硫酸(1+4),加热数分钟,用水转移至50mL比色管中,加水定容至35mL,加入溴化钾试剂,摇匀。静置,加入磷酸,加水定容至50mL刻度,摇匀。向比色管中准确加入5 mL甲基异丁酮(MIBK),充分振摇数分钟,待静置分层后,取上层有机相测试。样品分析仪器测试参数石墨炉升温程序标准溶液与样品测试谱图如下图所示,峰型左右对称呈正态分布形状,出峰时间在1秒左右,表明石墨炉温度程序对样品合适。标准溶液和样品溶液Tl测试谱图标准曲线和样品测试结果见下图,萃取富集-石墨炉原子吸收法测试TI的结果与ICP-MS法一致,加标回收符合方法验证要求。通过萃取富集的处理方式,样品中低浓度Tl元素可以浓缩至有机相中,相应的限量指标也从原来0.005 mg /L转变为0.025 mg/L,同时原本干扰大的基体组分也去除干净,大大降低对仪器的灵敏度要求。萃取富集石墨炉法Tl标准曲线AAS和ICPMS测试结果想要了解更多测试细节,欢迎扫码下载应用报告。扫描上方二维码即可下载资料
  • 石墨炉原子吸收法分析高盐样品中的锑元素
    三价锑有毒性,对人体的危害极大,因此对于该成分的测定显得尤为重要。可以通过原子吸收分光光度法对可能含有锑元素的样品进行定量分析。但对于一些高盐且目标元素含量很低的样品,例如尿样,高盐背景会影响检测灵敏度。下面给大家介绍一种使用石墨炉原子吸收分光光度法测定高盐样品的方法:将60μL样品和20μL基体改进剂,共80μL试剂注入石墨管,测定样品中微量锑元素。即使大量注入样品,也可实现高灵敏度、高精度的定量分析。高盐样品中锑元素的条件设置■ 样品制备模拟尿液:参照JIS T 3214 膀胱留置用导尿管*模拟尿液中钠浓度:5.4 g /L*样品:将模拟尿液稀释2倍,并向其中加入锑元素(硝酸5%)■ 基体改进剂配置选择Pd1000 mg/L(硝酸10%)和Pd+Mg 1000 mg/L(硝酸10%)两种基体改进剂进行比较,如下图所示,Pd1000 mg/L(硝酸10%)作为基体改进剂的吸光度更高,因此选择Pd1000 mg/L(硝酸10%)作为基体改进剂。 ■ 加热后注入条件设置什么是加热后注入?对于大进样量的情况,可将石墨管加热至预设温度后再注入样品,这样可抑制样品散开,使样品停滞在石墨管中央,由此提高重现性,增加了进样量。通过优化,加热注入温度设置为80℃。 另外对于大量进样的情况,还可以选择日立DII型双注入技术热解石墨管来进行测试。■灰化、原子化温度设置—温度程序自动生成功能【灰化温度设置】背景吸收现象主要是由尿样中的钠元素(5000 mg/L左右)引起的。灰化温度≤1000℃时,背景吸收值偏高,以至于很难准确测定样品。通过温度程序自动生成功能可得到如下图所示的温度和吸光度关系图,由图可见灰化温度为1300℃时样品吸光度值最高,背景吸光值低,因此灰化温度设置为1300℃。【原子化温度设置】不同的原子化温度,原子吸收信号强度也不相同。通过温度程序自动生成功能可获得最佳原子化温度,如下图可见,原子化温度≤2500℃时,信号强度较弱。最终原子化温度设置为2800℃。分析高盐样品中的锑元素按JIS T 3214 膀胱留置用导尿管说明,配置模拟尿液样品。标准液是将关东化学社配置的原子吸光用标准液使用0.1%的硝酸稀释而成。■ 测定条件■ 测定结果上述是模拟尿样测定的结果:线性良好,回收率为97.3%,结果准确可靠。使用日立偏振塞曼原子吸收分光光度计ZA3000系列进行高盐度样品分析时,先加热石墨管再注入样品,不仅可以增加进样量(最多可注100μL),而且分析灵敏度高;配合日立原吸软件的温度程序自动生成功能,可方便快速地对干燥、灰化、原子化温度进行优化,得到最优的温度程序。
  • 石墨炉原子吸收法测定不同溶剂中的铜
    原子吸收分光光度计多用于测定水溶液样品,但有的时候也需要用有机溶剂来制备样品。下面就来介绍使用日立偏振塞曼原子吸收分光光度计ZA3000,测定不同溶剂中铜的实验。实验分别以水、甲醇、乙醇、丙酮、4-甲基-2-戊酮 (MIBK)为溶剂制备样品,采用石墨炉法测定样品中的铜(Cu)。u 样品处理向水溶液中加入0.5 %的硝酸溶液,得到待测样品。向有机溶液(甲醇、乙醇、丙酮、MIBK)中加入0.5 %的硝酸溶液,得到待测样品。加入0.5 %的硝酸溶液,目的是为了维持铜在溶液中的稳定性。u 实验条件使用有机溶剂时,干燥温度可以稍微设置低一些。使用有机溶剂时,洗涤液可以用有机溶液,但在测定完成后,应使用纯水清洗或更换石墨管。u 实验结果? 原子吸收曲线图? 标准曲线即使溶剂使用有机溶液,也可在与水溶液基本相同的测量条件下准确测定样品。五种溶剂的铜溶液在0μg/L~20μg/L浓度范围内r2 ≥0.9997, 线性关系良好。 从上面这个实验表明,日立偏振塞曼原子吸收分光光度计采用双检测器系统,即使测定有机溶剂样品,基线也十分稳定,可以得到高精度的测定数据。
  • Nature Nanotechnology :大面积可控单晶石墨烯多层堆垛制备技术新突破
    多层石墨烯及其堆垛顺序具有特的物理特性及全新的工程应用,可以将材料从金属调控为半导体甚至具有超导特性。石墨烯薄膜的性质相对于层数及其晶体堆垛顺序有很大变化。例如,单层石墨烯表现出高的载流子迁移率,对于超高速晶体管尤为重要。相比之下,AB堆垛的双层或菱面体堆垛的多层石墨烯在横向电场中显示出可调的带隙,从而产生了高效的电子和光子学器件。此外,有趣的量子霍尔效应现象也主要取决于其层数和堆垛顺序。因此,对于大面积制备而言,能够控制石墨烯的层数以及晶体堆垛顺序是非常重要的。 近日,韩国基础科学研究所(IBS)Young Hee Lee教授和釜山国立大学Se-Young Jeong教授在期刊《Nature Nanotechnology》以“Layer-controlled single-crystalline graphene film with stacking order via Cu-Si alloy formation” 为题报道了采用化学气相沉积的方法来实现大面积层数及堆垛方式可控的石墨烯薄膜的突破性工作。为石墨烯和其他2D材料层数的可控生长迈出了非常重要的一步。 文章提出了一种基于扩散至升华(DTS)的生长理论,实现层数可控生长的关键是在铜箔基底上先可控生长SiC合金,具体来讲(如图1所示),先在CVD石英腔室内原位形成Cu-Si合金,之后将CH4气体引入反应室并催化成C自由基,形成SiC,随后温度升高至1075℃以分解Si-C键,由于蒸气压使Si原子升华。因此,C原子被留下来形成多层石墨烯晶种,在升华过程中,这些晶种横向扩展到岛中(步骤III),并扩展致边缘。在给定的Si含量下注入不同浓度稀释的CH4气体,可以控制Si-Cu合金中石墨烯的层数。图1e显示了在步骤II中引入不同稀释浓度CH4气体时C含量的SIMS曲线,在较高CH4气体浓度下,C原子更深地扩散到Cu-Si薄膜中,形成较厚的SiC层,然后生长较厚的石墨烯薄膜。由此实现可控的调节超低限CH4浓度引入C原子以形成SiC层,在Si升华后以晶圆尺寸生长1-4层石墨烯晶体。   图1. 不同生长过程中的光学显微镜结果,生长示意图及XPS能谱和不同生长步骤中Si和C含量的二次离子质谱SIMS曲线 随后,为了可视化堆垛顺序并揭示晶体取向的特电子结构,进行了nano-ARPES光谱表征,系统研究了单层,双层,三层和四层石墨烯的能带结构(图2a-d),随着石墨烯层数增加,上移的费米能逐渐下移。另外,分别根据G和2D峰之间的IG/I2D强度比和拉曼光谱二维模式的线形来确定石墨烯薄膜的层数和堆垛顺序。IG/I2D随着层数增加而增加(从0.25到1.5),并且2D峰发生红移(从2676 cm-1到2699 cm-1)。后,双层、三层和四层石墨烯的堆垛顺序通过双栅器件的电学测量得到了确认(图2i-k)。在双层石墨烯(图2i)中,沟道电阻(在电荷中性点处)在高位移场下达到大值,从而允许使用垂直偶电场实现带隙可调性。在三层器件上进行了类似的测量(图2j),与AB堆垛的双层相反,由于导带和价带之间的重叠,沟道电阻随着位移增加而减小,这可以通过改变电场来控制,从而确认了无带隙的ABA-三层石墨烯。在四层器件中也观察到了类似的带隙调制(图2k),确认了ABCA堆垛顺序。 图2. 不同层数的石墨烯样品的nano-ARPES,拉曼及电学输运表征 本文通过在Cu衬底表面上使用SiC合金实现了可控的多层石墨烯,其厚度达到了四层,并具有确定的晶体堆垛顺序。略显遗憾的是本文并没有对制备的不同层数的石墨烯样品进行电导率,载流子浓度及载流子迁移率的标准测试。值得指出的是,近期,西班牙Das-Nano公司基于THz-TDS技术研发推出了一款可以实现大面积(8英寸wafer)石墨烯和其他二维材料100%全区域无损非接触快速电学测量系统-ONYX。ONYX采用一体化的反射式太赫兹时域光谱技术(THz-TDS)弥补了传统接触测量方法(如四探针法- Four-probe Method,范德堡法-Van Der Pauw和电阻层析成像法-Electrical Resistance Tomography)及显微方法(原子力显微镜-AFM, 共聚焦拉曼-Raman,扫描电子显微镜-SEM以及透射电子显微镜-TEM)之间的不足和空白。ONYX可以快速测量从0.5 mm2到~m2的石墨烯及其他二维材料的电学特性,为科研和工业化提供了一种颠覆性的检测手段。ONYX主要功能:→ 直流电导率(σDC)→ 载流子迁移率, μdrift→ 直流电阻率, RDC→ 载流子浓度, Ns→ 载流子散射时间,τsc→ 表面均匀性ONYX应用方向:石墨烯光伏薄膜材料半导体薄膜电子器件PEDOT钨纳米线GaN颗粒Ag 纳米线
  • 上海光谱全自动石墨炉火焰原子吸收通过鉴定
    上海光谱仪器有限公司“全自动石墨炉火焰原子吸收一体机的研制”项目顺利通过科委专家验收   2009年3月30日,由上海光谱仪器有限公司承担,复旦大学参加完成的上海市科研条件支撑项目“全自动石墨炉火焰原子吸收一体机的研制”项目顺利通过科委专家组验收。项目验收由中国工程院方家熊院士、庄松林院士主持,科研院所、大专院校、国家技术监督局的专家以及用户代表等参加验收鉴定会议。 鉴定会现场   全自动石墨炉火焰原子吸收一体机采用全反射双原子化器串联光学结构、开关型石墨炉直流加热电源、交流塞曼直流塞曼背景校正一体化等技术填补了国内外原子吸收光谱仪空白,解决了因石墨管电阻变化影响测定结果、横向加热石墨炉大功率快速升温、在同一系统中进行交流塞曼与直流塞曼背景校正结果对比等业界多年来一直未能解决的难题。   该项目在实施过程攻克了多项难题,形成了多项具有创新性和自主知识产权的关键技术,申请了七项发明专利、三项实用新型技术专利,还有多项技术正在申请专利当中。   该项目在实施过程中,把符合国际标准作为产品设计的考核目标,在项目实施过程中,及时地将部分技术应用到现有的产品和外销的OEM、ODM产品当中,提高了现有产品的性能、部分部件符合欧盟的标准,并通过了欧盟认证机构的认可。   该项目在开发过程中,坚持产品设计“系列化、通用化、标准化”和部件功能模块化的原则,形成了全自动的交流/直流塞曼背景校正原子吸收光谱仪,交流塞曼背景校正原子吸收光谱仪,自吸效应/氘灯背景校正原子吸收光谱仪等系列产品,可满足不同使用目的和应用领域的需求。   全自动石墨炉火焰原子吸收一体机的研制成功,标志着我国原子吸收光谱仪向着国际先进水平跨出了一大步,上海光谱将在此基础上,在强化产品可靠性、提高产品产量作进一步的开发投入,以提升产品的制造能力。同时,上海光谱也希望以此为平台,加强与国内外同行的合作和交流,共同推动原子光谱开发、制造、应用技术的发展,为建设人类共同的安全、洁净、祥和的家园提供先进的检测技术和可靠的与产品。   经过严格的测评和考核、与会的专家和用户一致认为该产品的部分技术为国际首创和国内首创,综合技术已经处于国内领先,并达到国际先进水平。
  • 明察秋毫丨SPM带您揭秘抗菌黑科技石墨烯的片层厚度表征
    导读近年来,人们越来越关注健康防护类产品,比如,具有抗菌功能的高附加值纺织品等,越来越受到大众的青睐。最近小编在网上购物时发现,一些纺织品(如被子、衣服、口罩、手套等)宣称其面料中添加了石墨烯材料,自带抗菌功能。小编很是疑惑,经过一番查询,发现早在2010年,中国科学院上海应用物理研究所就报道了石墨烯材料的抗菌性能。石墨烯是一种片层的二维纳米粒子,不存在类似于高聚物的分子链,直接制备石墨烯存在一定的难度,因而在实际应用中多以氧化石墨烯为主。在氧化石墨烯的制备和研究中,其物理特性的精确表征技术和方法是关注的重点之一。不同氧化程度的氧化石墨烯的厚度不同,其性能也不同,因此厚度测量是表征氧化石墨烯的首要核心指标。石墨烯小科普石墨烯具有优异的光学、电学、力学特性,在材料学、能源、生物医学等方面具有重要的应用前景,被认为是一种未来革 命性的材料。石墨烯的抗菌机理之一是边缘切割理论,即石墨烯因片层结构而具有锋利的边缘,可对细菌进行物理切割,破坏细菌的细胞膜,降低膜电位或使电解质泄露从而抑制细菌生长。氧化石墨烯作为石墨烯的氧化物,其结构与石墨烯相似,都为单层原子层状结构。将活性含氧基团引入石墨烯上,经过处理后得到经过修饰的石墨烯薄片,这样可以增加活性反应位点,使得氧化石墨烯变得更容易进行表面改性,丰富了功能化的手段,可以有效提高改性氧化石墨烯与溶剂、聚合物的相容性,使其在有机以及无机复合材料领域有着更为广阔的应用。岛津SPM,助您从容应对科研难题目前,国内外对氧化石墨烯的厚度测量手段主要是原子力显微镜,将氧化石墨烯平铺在具有良好平整度的基底表面,借助原子力显微镜测量氧化石墨烯与基底间的高度差来确定氧化石墨烯的厚度。为了使氧化石墨烯的厚度测量方法规范化,国家标准化管理委员会发布了GB/T 40066-2021《纳米技术 氧化石墨烯厚度测量 原子力显微镜法》,这意味着氧化石墨烯厚度的主要测试手段——原子力显微镜开始逐步被标准化工作认可和接受。岛津扫描探针显微镜SPM具有快速响应的高速扫描器、独特的头部滑移结构以及丰富的测量模式,除了普通的形貌扫描,还可拓展电流、电势、磁力以及纳米力学测量等功能。氧化石墨烯厚度表征随机选取样品的两个区域,使用岛津扫描探针显微镜SPM-9700HT的动态模式对氧化石墨烯样品进行表面形貌扫描测试,获取了5 μm x 5 μm的两个区域的样品表面形貌,并在每个区域内随机选取3个样品进行剖面分析(见图1和图2),随机选取的剖面线分别为A-B、C-D和E-F。图1. 区域1内氧化石墨烯的表面形貌(左)和剖面分析(右)图2. 区域2内氧化石墨烯的表面形貌(左)和剖面分析(右)将获取的剖面线中的上、下台阶的各坐标进行线性拟合,得到两条拟合直线和对应的拟合参数:a1, b1, a2, b2。通过公式(1)计算上、下台阶的高度差H,即为上直线和下直线在xT点的距离(样品的厚度)。式中:H——样品厚度值,单位为纳米(nm);xT——两条拟合直线相邻端点中心位置的x坐标;a1, b1——上台阶拟合直线对应的参数值;a2, b2——下台阶拟合直线对应的参数值。注:拟合的两条直线应具有相同的长度和点数,长度不小于14 nm,点数不少于20个点,且这两条直线的b1和b2斜率应小于0.1,否则弃用该轮廓线。将上述形貌图中的选取的剖面线数据导入Origin软件中进行分段线性拟合,获取的上、下台阶拟合直线参数。以区域1中的剖面线A-B为例,上、下台阶拟合直线参数见图3。两个区域内的氧化石墨烯样品的厚度值见表1。图3. 氧化石墨烯样品的剖面线拟合图表1. 剖面线拟合计算的厚度值结语氧化石墨烯作为石墨烯的一类重要衍生物,具有优异的光学、电学、力学以及良好的生物相容性,被广泛应用于材料学、生物医学以及药物传递等诸多领域。岛津SPM可简单、快速地表征氧化石墨烯的表面形貌,并准确获取氧化石墨烯的厚度值,这也体现了岛津SPM具有精确表征纳米级及以下样品厚度的能力。本文内容非商业广告,仅供专业人士参考。
  • 天才少年曹原再发Nature:三层扭转石墨烯诞生,具备更稳定超导性
    近日 ,美国麻省理工学院 Jeong Min Park、曹原等人在《自然》发文,报告三层扭转石墨烯能够表现出超导性。这个“三明治”比双层的“魔角” 石墨烯更加稳定,并且能够通过两种相互独立的方式进行调节。这样的结构或有助于理解实现高温超导需要的条件。图片来源:Pixabay当两片石墨烯 以 1.1° 的扭转角度交错排列,这个双层结构就会转变为非常规的超导体,从而使电流无阻通过,而不会浪费能量。这种“魔角”石墨烯结构及其超导效应由美国麻省理工学院 (MIT)物理学教授 Pablo Jarillo-Herrero 团队在 2018 年首次发现。这项研究也让中科大少年班毕业生、当时年仅 21 岁的曹原“一战成名”: 他以共同第一作者/共同通讯作者 的身份首次在同一天发表了两篇《自然》 (Nature )论文,随后他 成为了 《自然》2018 年十大科学人物中最年轻的学者 。扭转电子学 (twistronics)领域从此兴起。此后,科学家一直在寻找其他可以经过扭转而表现出超导性质的材料。但是到目前为止,除了最初的双层“魔角”石墨烯以外,没有发现其他材料具备相似的特性。近日,已经成为博士后的曹原再次以共同第一作者身份 在《自然》发文报告,在三层石墨烯组成的“三明治”中观察到超导性。 在新的三层结构中,中间一层石墨烯相对于外层以新的角度扭转,其超导性比双层结构更稳定。该论文 2 月 1 日在《自然》发表, Jeong Min Park 和曹原为共同一作,此外曹原还与他的导师、Pablo Jarillo-Herrero 共同担任论文通讯作者。日本国立材料科学研究所(National Institute of Materials Science)的渡边贤司(Kenji Watanabe)和谷口尚(Takashi Taniguchi)也参与了这项研究。研究人员还可以通过施加和改变外部电场的强度来调节结构的超导性。而通过调节三层结构,研究人员能够产生超强耦合超导性,这是一种奇特的电学行为,在其他所有材料中很少见。Jarillo-Herrero 说:“目前尚不清楚魔角双层石墨烯是不是特例,但现在我们知道它并不孤单,它有一个三层表亲。这种超可调(hypertunable)超导体的发现将转角电子学领域扩展到了全新的方向,在量子信息和传感技术中具有潜在的应用。”打开新型超导体研究的大门在 Jarillo-Herrero 和同事们发现扭转双层石墨烯中可能产生超导性之后不久,理论物理学家提出,在三层或更多层石墨烯中也可能看到相同的现象。石墨烯就是厚度仅有一层原子的石墨,它完全由排列成蜂窝状晶格的碳原子组成,如同纤细却坚固的金属网格。理论物理学家提出,如果将三层石墨烯像三明治一样堆叠, 中间层相对于两个外层扭转 1.56 度,那么这种扭曲构型将产生一种对称性,从而促使材料中的电子配对,形成无阻力的电流,即超导的标志。Jarillo-Herrero 说:“我们就想,为什么不尝试检验一下这个想法?”为此,Park 和曹原设计了三层石墨烯结构。他们将单层石墨烯小心地切成三个部分,并将其按照理论预测的角度精确堆叠。他们制造了几个这样的三层结构,每个结构的尺寸仅有几微米,大约相当于人类头发的直径的 1/100,高度则为三个原子。Jarillo-Herrero 称之为 “纳米三明治”。接下来,研究小组将电极连接到结构的两端,并通过电流,同时测量材料中损失或耗散的能量。“我们没有观察到能量耗散,这意味着它是超导体。”Jarillo-Herrero 说,“我们必须肯定理论物理学家的贡献,他们算出了正确的夹角。”但他补充说, 这种结构具备超导性能的确切原因仍然有待确认,目前还不确定这是不是因为理论物理学家所提出的对称性。这也是他们计划在未来的实验中进行检验的内容。 他说:“目前我们只能确认相关性,而无法确认因果关系。但现在我们至少有了一条途径,可以根据这种对称性思想探索一大批新型超导体。”“ 最强大的耦合超导体”在探索新的三层石墨烯结构时,研究团队发现,可以通过两种方式控制其超导性。对于团队此前提出的双层石墨烯,可以通过施加外部 门电压来改变流过材料的电子数量,从而调节其超导性。研究团队上下调节门电压,同时测量材料停止耗散能量、转变为超导体时的临界温度。通过这种方式,团队能够像调节晶体管一样打开和关闭双层石墨烯的超导性。团队使用相同的方法来调节三层石墨烯,同时还发现了控制材料超导性的第二种方法,这在双层石墨烯和其他扭转角结构中是不可能的。这种方式就是使用附加电极对材料施加 电场,这能够改变三层结构之间的电子分布,同时不改变结构的整体电子密度。Park 说:“现在,这两个相互独立的‘旋钮’能为我们提供大量有关超导电性出现条件的信息,帮助我们理解这种不寻常的超导状态背后至关重要的物理学原理。”通过同时使用这两种方法调整三层结构,研究小组在一定条件下观察到了超导性,包括在相对较高的 3 开尔文临界温度下,即使此时材料的电子密度很低。相比之下,量子计算领域正在研究使用铝制作超导体,铝具有更高的电子密度,而它仅在约 1 开尔文的温度下才具备超导性。Jarillo-Herrero 说:“我们发现魔角三层石墨烯可以成为最强大的耦合超导体,这意味着在给定的电子数量很少的情况下,它也能在相对较高的温度下进行超导。它能带来最大的收益。”研究人员计划制造三层以上的转角石墨烯结构,以了解具有更高电子密度的此类构型是否可以在更高的温度下表现出超导性,甚至实现室温超导。“如果能够工业化大规模生产这些结构,那么我们就可以制造用于量子计算的超导比特,或者低温超导电子器件、光子探测器等。不过我们还不知道如何一次制造数十亿个这样的结构,”Jarillo-Herrrero 说。Park 说:“我们的主要目标是理解强耦合超导的基本性质。三层石墨烯不仅是有史以来最强大的强耦合超导体,它还具备最大的调节空间。借助这种可调谐性,我们能够真正实现在相空间的任何位置探索超导电性。”论文信息:Park, J.M., Cao, Y., Watanabe, K. et al. Tunable strongly coupled superconductivity in magic-angle twisted trilayer graphene. Nature (2021).
  • 改性石墨烯增强有机硅涂层及其性能研究
    HS-DSC-101差示扫描量热仪是一种测量参比端与样品端的热流差与温度参数关系的热分析仪器,主要应用于测量物质加热或冷却过程中的各种特征参数:玻璃化转变温度Tg、氧化诱导期OIT、熔融温度、结晶温度、比热容及热焓等。改性石墨烯增强有机硅涂层及其性能研究【齐鲁工业大学 姚凯 】改性石墨烯增强有机硅涂层及其性能研究上海和晟 HS-DSC-101 差示扫描量热仪
  • 半导体所在多层石墨烯边界的拉曼光谱研究方面获进展
    单层石墨烯(SLG)因为其近弹道输运和高迁移率等独特性质以及在纳米电子和光电子器件方面所具有的潜在应用而受到了广泛的研究和关注。每个SLG样品都存在边界,且SLG与边界相关的物理性质强烈地依赖于其边界的取向。在本征SLG边界的拉曼光谱中能观察到一阶声子模-D模,而在远离边界的位置却观察不到。研究发现边界对D模的贡献存在一临界距离hc,约为3.5纳米。但D模的倍频模-2D模在本征SLG边界和远离边界处都能被观察到。因此,D模成为研究SLG的晶畴边界、边界取向和双共振拉曼散射过程的有力光谱手段。   SLG具有两种基本的边界取向:&ldquo 扶手椅&rdquo 型和&ldquo 之&rdquo 字型。与SLG不同,多层石墨烯(MLG)中每一石墨烯层都具有各自的边界以及相应的边界取向。对于实际的MLG样品,其相邻两石墨烯层的边界都存在一个对齐距离h。h可以长到数微米以上,也可短到只有几个纳米的尺度。当MLG的所有相邻两石墨烯层的h等于0时,我们称之为MLG的完美边界情况。MLG边界复杂的堆垛方式以及存在不同h和取向可显著影响其边界的输运性质、纳米带的电子结构和边界局域态的自旋极化等性质。尽管SLG边界的拉曼光谱已经被系统地研究,但由于MLG边界复杂的堆垛方式,学界对其拉曼光谱的研究还非常少。   最近,中国科学院半导体研究所博士生张昕、厉巧巧和研究员谭平恒等人,对MLG边界的拉曼散射进行了系统研究。他们首先对MLG边界进行了归类,发现N层石墨烯(NLG)的基本边界类型为NLGjE,即具有完美边界的jLG置于(N-j) LG上。因此,双层石墨烯(BLG)的边界情况可分为BLG1E+SLG1E和BLG2E两种情况。研究发现:(1)NLG1E边界与具有缺陷结构的NLG的D模峰形相似,其2D模则为NLG和(N-1)LG的2D模的叠加。(2)在激光斑所覆盖区域的多层石墨烯边界附近,相应层数石墨烯的2D模强度与其面积成正比,而相应的D模强度则与在临界距离内的对齐距离(如果h
  • 吉林大学在嫦娥五号月壤样品中首次发现月球天然形成的少层石墨烯,TESCAN联用电镜发挥关键作用
    吉林大学在嫦娥五号月壤样品中首次发现月球天然形成的少层石墨烯,TESCAN联用电镜发挥关键作用2024年6月23日,吉林大学在嫦娥五号月壤样品中首次发现月球天然形成的少层石墨烯,成为国内外媒体关注的焦点。TESCAN公司向其合作伙伴吉林大学电子显微镜中心表示诚挚祝贺。此次研究中,TESCAN ALL-IN-ONE 综合微分析系统发挥了关键作用,展现了TESCAN以先进设备助力科研,推动科技进步的坚定承诺。----------以下文章来源于人民网 - 吉林频道。----------人民网长春6月23日电 近日,吉林大学邹猛教授、张伟教授、李秀娟正高级工程师及中国科学院金属研究所任文才研究员等,通过对嫦娥五号钻采岩屑月壤(No. CE5Z0806YJYX004)的观察分析,首次发现天然形成的少层石墨烯。相关研究为月球的地质活动和演变历史以及月球的环境特点提供了新见解,拓宽了人们对月壤复杂矿物组成的认知,为月球的原位资源利用提供了重要信息及线索。研究成果以“Discovery of Natural Few-Layer Graphene on the Moon”为题,于6月17日发表在National Science Review期刊上。CE-5月壤样品中天然石墨烯的先进电子显微结构表征和谱学分析。(图片来源:吉林大学)过往报道指出,通过观测月球的全球碳离子通量,科研人员认为月球上存在原生碳,利用月球样品的表征研究来揭示原生碳相的晶体结构是可行的。石墨烯以其新奇的物理现象和非凡的特性,在包括行星和空间科学在内的广泛领域发挥着越来越重要的作用。据估计,星际碳总量中约1.9%是以石墨烯的形式存在,其形态和性质由特定的形成过程决定,因此天然石墨烯的组成和结构特征将为星体的地质演化和月球的原位资源利用提供重要的参考和信息。少层石墨烯在月球上可能形成过程(图片来源:吉林大学)在该项研究中,科研团队采用电镜—拉曼联用技术,在月壤样品含碳量相对较高的位置采集了拉曼光谱,确认了月壤样品中石墨碳的结晶质量相对较高。值得注意的是,月壤样品中存在碳的区域含有铁化合物,这与石墨烯的形成密切相关。通过扫描电子显微成像、透射电子显微成像、冷冻条件下球差电镜的高角环形暗场像和高分辨像、能谱和电子能量损失谱、飞行二次质谱等多种表征技术的综合运用及测试结果的多方面严谨比对分析,探究并证实了月壤样品中检测到的石墨碳是少层石墨烯(2—7层),并提出少层石墨烯和石墨碳的形成可能源于太阳风和月球早期的火山喷发共同诱导的矿物催化进程。(曲家伟)(责编:李洋、谢龙)-------- 原文完 ---------吉林大学电子显微镜中心-TESCAN中国联合实验室简介该实验室于2021年3月31日正式揭牌,配备了TESCAN公司提供的高端电子显微镜设备,旨在推动科学研究和技术创新。目前已配备TESCAN各类电镜有:ALL-IN-ONE综合为分析系统、AMBER X 氙离子双束电镜、CLARA超高分辨扫描电镜、MIRA 场发射扫描电镜、VEGA 钨灯丝扫描电镜。作为东北地区首个此类实验室,它不仅为吉林大学的科研人员提供了先进的研究工具,也成为促进地区科技发展的重要平台。联合实验室的成立,体现了校企合作的深度与广度,为双方在电子显微镜领域的研究与应用开辟了新的篇章。● 校企合作再添新篇章 | 吉林大学电子显微镜中心-TESCAN中国联合实验室成立 点击阅读● 【喜报】东北首台“ALL IN ONE” 综合微分析系统落户吉林大学电镜中心 ► 点击阅读TESCAN 联用技术TESCAN ALL-IN-ONE 综合为分析系统,在常规的SEM系统上,增加电镜与拉曼(Raman)、飞行时间二次离子质谱仪(TOF-SIMS)和原子力显微镜(AFM)等多种表征系统,可以极大的提升扫描电镜系统的原位综合分析能力,做到所见即所得。随着国际和国内客户科研成果的不断涌现,ALL-IN-ONE的理念已经被广大老师认同,应用前景越来越广泛。更多案例更多ALL-IN-ONE案例, 6月26日上午10点在第十届电子显微学网络会(iCEM 2024)上, 由TESCAN应用专家李景为您分享《TESCAN电镜在材料领域的最新应用》。长按识码 免费报名扫码直接报名,或点击下方邀请函了解详情:● 网络会议 | 提升原位综合分析能力,TESCAN联用电镜应用分享@iCEM2024 ► 点击阅读
  • 石墨烯前沿最新综述精选(内附石墨烯网络研讨会参会福利)
    石墨烯具备超强导热性与导电性、以及轻质高强、柔性、透明等无比伦比的特性,被誉为“新材料之王”,应用前景十分广阔。自2004 年问世以来,关于石墨烯的研究热度持续不减,新兴研究领域不断被开拓。本文对近期石墨烯领域的部分综述进行盘点汇总,以此总结该领域最新前沿科研成果,以飨读者。(鉴于篇幅的原因不能面面俱到,如有遗漏,欢迎大家留言补充。)宁波材料所在石墨烯复合硅碳负极材料及其高能量密度锂离子电池方面取得进展动力电池、消费类电池等终端产品对高能量密度锂离子电池需求越来越强。目前,产业界主要采取硅碳复合路线来提升硅基负极应用水平,但高比容量的硅碳负极材料嵌/脱锂过程体积膨胀巨大,循环过程中活性材料会发生结构失效导致电接触变差,表面固体电解质膜反复破裂/再生导致电解液快速消耗,锂离子电池可逆容量迅速衰减。针对硅碳负极材料的体积膨胀问题,中国科学院宁波材料技术与工程研究所刘兆平研究团队从源头出发,创新性地构筑了高机械稳定的自机械抑制石墨烯复合硅碳负极材料。刘兆平团队将氧化亚硅和石墨烯浆料在液相体系混合均匀,其中沥青作为添加剂,通过喷雾干燥、高温热处理和化学气相沉积等一系列工艺,制备类球形的石墨烯/沥青裂解碳封装硅氧化物复合负极材料(SiOx/Graphene/C,简称SGC),SGC复合负极材料可维持石墨烯宏观结构的完整性和机械稳定性。自机械抑制石墨烯复合硅碳负极材料制备研究表明,SGC复合负极材料可抑制SiOx摄锂量,降低体积膨胀,提升循环稳定性。该高性能石墨烯复合硅碳负极材料已成功实现产业化,研制出能量密度达350-400Wh/kg的系列新型高能量密度锂离子电池。俄罗斯借石墨烯涂层开发出新材料:用“微电厂”取代电池技术俄罗斯国立研究型技术大学与俄罗斯科学院微电子技术问题研究所科研人员,通过沉积石墨烯涂层技术开发出一种独特的硅纳米复合材料,这一研发成果将加速直接放置在电子产品印刷电路板上的“微电厂”技术的发展。俄罗斯国立研究型技术大学半导体与电介质材料科学系副教授叶卡捷琳娜戈斯捷娃解释说:“我们提出了独一无二的方法,在硅结构整个深度的孔道内壁上沉积多层石墨烯涂层。目前没有其他方法可以生产用于高效微燃料电池的电极。这种电源不仅可以为设备提供长期备用电源,而且可能会随着时间的推移取代电池。”郑大《ACS Nano》:MXene/石墨烯气凝胶实现超强电磁波吸收!郑州大学申长雨院士和刘春太教授课题组通过定向冷冻法和肼蒸汽还原法制备得到一种新型的含有磁性Ni纳米链锚定的三维MXene/石墨烯复合气凝胶(命名为NiMR-H)。特殊的取向结构和介电/磁性组分的异质界面有利于获得优异的吸波性能,具有良好的阻抗匹配、多重极化和电/磁耦合效应。NiMR-H气凝胶制备示意图及结构形貌表征图中国科大实现二维石墨烯室温铁磁性中国科学技术大学国家同步辐射实验室教授闫文盛研究组与副研究员孙治湖合作,通过磁性金属原子精确可控掺杂策略,实现二维石墨烯的室温铁磁性。该研究组利用两步浸渍—热解的方法,在氮原子辅助下,将钴原子掺杂在石墨烯晶格中,样品在室温下饱和磁化强度为0.11emu/g,居里温度达到400K。通过同步辐射软、硬X射线谱学技术和多种X射线谱学解析方法,研究人员证实样品中的钴是以平面四边形四氮化钴结构单元原子级分散于石墨烯晶格中的,排除了磁性起源于钴相关第二相的可能,四氮化钴结构单元是室温铁磁性的主要来源。精确可控的钴原子掺杂激活石墨烯室温铁磁性曹原一周连发两篇《Nature》:魔角石墨烯再次突破021年4月1日,来自美国麻省理工学院的曹原(通讯兼第一作者)&Pablo Jarillo-Herrero等研究者,通过进行热力学和输运测量,研究了魔角扭曲双层石墨烯(MATBG)的对称性破缺多体基态和非平凡拓扑现象。同时,也使魔角石墨烯的理论和实验都更趋近于一个统一的框架,为我们开发新型的量子材料,带来了更多可能。4月7日,曹原再发《Nature》,本文是关于魔角石墨烯中的Pomeranchuk效应的熵证据。当前相关态的杂化特性和能量尺度的大分离对于双层扭曲石墨烯中相关态的热力学和输运性质具有重要意义。山西大学:利用OAT法实现超高垂直石墨烯薄膜生长山西大学激光光谱研究所陈旭远教授团队在三维竖直石墨烯制备及储能应用领域取得突破性进展,研究成果近日发表在《ACS Appl. Mater. Interfaces》上。该团队开发了一种氧辅助“修正”(OAT)工艺以消除过密的石墨烯片层,阻止片层随时间增长而聚集,克服了生长过程中竖直石墨烯厚度饱和的现象。未聚合的竖直石墨烯陈旭远团队利用这种方法合成了高达80微米的超高竖直石墨烯,并应用于超级电容器中,获得了241.35mF cm–2的面积比电容,展现出了优越的电化学性能及储能能力。值得注意的是,80微米的高度并非该合成技术所能达到的最大值,通过氧辅助“修正”工艺可以获得任意高度的竖直石墨烯。这项工作对于高负载竖直石墨烯的合成具有重要的指导意义。与IC兼容的制造工艺和出色的储能能力使得OAT竖直石墨烯在集成芯片、器件领域中具有非常大的应用潜力。 《ACS Macro Letter》3D打印明胶氧化石墨烯墨水实现自发成肌分化釜山国立大学Dong-Wook Han与韩国亚洲大学Ki Dong Park教授团队在高分子领域顶刊《ACS Macro Letters》上发表了其最新研究成果,由富含酚的明胶(GHPA)和氧化石墨烯(GO)组成的3D可打印生物墨水,是诱导肌发生的材料的组成部分,可通过双重酶介导的交联反应原位形成水凝胶网络。原位可固化的GO/GHPA水凝胶可以成功地用作3D可打印的生物墨水,以提供合适的细胞微环境,并促进C2C12骨骼肌成肌细胞的成肌分化。总体而言,研究团队建议功能性生物墨水可能在肌肉组织工程和再生医学中有用。GO/GHPA水凝胶基质的3D生物打印和理化特性“石墨烯检测技术及应用进展”主题网络研讨会随着业界对石墨烯的高度关注,我国石墨烯研发和产业化得到了快速发展,但其产业化仍然面临诸多挑战和问题。石墨烯的“杀手锏”级应用仍在探索中,石墨烯标准、检测体系不完善,产品鱼龙混杂,市场亟需标准化。基于此,仪器信息网联合国家石墨烯产品质量监督检验中心、全国纳米技术标准化技术委员会低维纳米结构与性能工作组,将于2021年5月11日举办 “石墨烯检测技术及应用进展”主题网络会议。邀请业内专家以及厂商技术人员就石墨烯最新应用研究进展、检测技术、检测方法、质量评价体系及标准化等展开探讨,推动我国石墨烯产业健康发展。会议日程报告主题报告人单位绝缘衬底表面石墨烯晶圆生长研究进展王浩敏中国科学院上海微系统与信息技术研究所待定刘峥国家石墨烯产品质量监督检验中心待定谭平恒中国科学院半导体研究所石墨烯导热增强复合材料与热界面材料林正得中国科学院宁波材料技术与工程研究所二维半导体及异质结的生长与光电性能调控肖少庆江南大学石墨烯等低维纳米材料的标准化动态和展望丁荣全国纳米技术标准化技术委员会低维纳米结构与性能工作组更多报告邀请中……报名方式扫描下方二维码或点击以下链接即可进入报名页面。(会议链接:https://www.instrument.com.cn/webinar/meetings/Graphene2021/) 报名参会加入会议交流群,随时掌握会议动态
  • 新型石墨烯材料问世
    近日,中科院等离子体所低温等离子体应用研究室研究员王祥科和中科院化学所研究员胡文平合作,成功制备出分散性均匀的功能化石墨烯材料,并对该材料进行磺酸化处理,实现了对持久性有机污染物的有效去除。相关研究论文日前在材料领域的顶级期刊《先进材料》发表。   石墨烯材料具有独特的物理化学性质,近年来引起国际上的广泛关注。石墨烯与有机污染物之间可以产生非常强的络合反应,从而对有机污染物有很强的吸附能力。但在溶液中,石墨烯易于团聚,从而会降低自身的吸附能力。   王祥科、胡文平等通过大量的实验研究表明,在石墨烯表面进行磺酸基功能化处理,不但可以提高石墨烯的分散性,而且可以提高石墨烯的吸附能力。研究结果显示,这种功能化石墨烯对萘和萘酚的吸附能力达到了每克2.4毫摩尔,是目前吸附能力最高的材料。目前,该种材料的制备成本较高,但随着技术的发展,将有望实现低成本、规模化制备,因此在未来的环境污染治理中有非常重要的应用前景。   王祥科介绍说,研究发现,对石墨烯进行氧化处理,在其表面修饰含氧功能基团后,氧化石墨烯对金属离子也具有很好的吸附效果。此外,课题组在等离子体技术制备石墨烯纳米材料研究中,利用等离子体技术可以直接在石墨表面剥离制备石墨烯,不需要化学试剂,简化了制备过程,并且该过程是环境友好的。   据介绍,常见的石墨是由一层层以蜂窝状有序排列的平面碳原子堆叠而形成的,石墨的层间作用力较弱,很容易互相剥离,形成薄薄的石墨片。当把石墨片剥成单层之后,这种只有一个碳原子厚度的单层就是石墨烯。
  • 石墨烯高端产业应用“石墨烯表面波探测技术”全球首发
    12月6日,中国最早从事石墨烯技术研发的企业北京碳世纪科技有限公司召开技术发布会,发布全球首个石墨烯高端产业应用——“石墨烯表面波探测技术”。这一技术的问世将掀起全球探测技术革命。  石墨烯是一种碳原子以sp² 杂化轨道组成的六角形呈蜂窝巢晶格状,只有一个碳原子厚度的二维材料,被称作是“新材料之王”。  石墨烯表面波探测技术是指石墨烯表面形成的波在探测技术方面的应用。这一技术的优势在于具有超高的灵敏度和超快的响应速度,无论是科学还是技术领域均在世界上处于领先水平,将发挥出巨大商业与社会价值,引领全球探测技术革命。  该技术可以替代基于传统SPR技术的探测系统,远高于SPR的响应速度和灵敏度,为科学研究提供更加准确、快捷的数据信息,能够极大地提高探测技术在科技、医疗、安防等行业中的应用效果,甚至帮助特殊人群完成“不可能完成的任务”。碳世纪CTO徐亭博士做石墨烯表面波探测技术演示  石墨烯表面波探测技术的具体应用包含气态应用、液态应用和固态应用。  在气态应用方面,可提供超快、高灵湿度探测与气体特异性检测。可应用到非接触、无声人机交互系统 非接触、无声安防系统 聋哑人“说话”系统 重症监护系统(呼吸监测) 毒气、易爆气体监测 即时、无痛疾病诊断 工业用气体监测系统等。 例如聋哑人“说话”系统,这一技术可以探测到聋哑人口腔湿度细微的变化,将湿度频率数据转换成语言信息,借助音响设备发声,帮助聋哑人用常人的声音表达自己。在非接触、无声安防系统的应用上,可以针对每一个人不同的气场信息订制安防方案,提高人身、财产安全保障。  在液态应用方面,可提供超快、高灵敏分子探测和单细胞检测,应用到蛋白质工程、制药工程、癌症预防、血液检测、疫苗研发、抗癌药物筛选、抗癌药物机理研究等。运用这一技术,可以即时探测到癌症细胞的一举一动,为医生提供准确、快捷的病理信息,提高对患者用药量的准确度,达到更有效的治疗效果。  在固态应用方面,可提供超快的二维材料厚度测量和二维材料品质鉴定,应用到石墨烯测量与鉴定、其他二维材料测量与鉴定和单分子层、膜材料测量与鉴定。碳世纪董事长闫立群与碳世纪科学家本色出演话剧《烯芯有声》,以话剧形式分享石墨烯表面波探测技术  发布会上,业界人士对石墨烯表面波探测技术给予了很高的评价。“这在石墨烯领域是非常高端的技术,同时给探测技术带来的是颠覆性的变革,”一参会嘉宾表示。  碳世纪董事长闫立群表示,科学指发现与突破,技术是要转为生产力,改变人们的生活。碳世纪始终坚持并践行的一份梦想就是运用石墨烯把科学发现转化为生产力,真正的实现“科学与技术让人们的生活更美好”。碳世纪董事长闫立群在发布会上讲解公司石墨烯技术与应用  碳世纪作为一家专精于石墨烯工业化生产和石墨烯下游应用技术及产品研发与产业实践的高新技术企业,具备极强的创新性与创新精神。目前已建成全球首条石墨烯(单层碳原子)吨级生产线,成功研制了石墨烯光致电推动技术、石墨烯发动机油节能改进剂、超级电容器用石墨烯改性活性炭、石墨烯改性塑料、石墨烯空气净化系列产品和技术等。
  • 综述 | 石墨烯导热研究进展
    摘要:石墨烯具有目前已知材料中最高的热导率,在电子器件、信息技术、国防军工等领域具有良好的应用前景。石墨烯导热的理论和实验研究具有重要意义,在最近十年间取得了长足的发展。本文综述了石墨烯本征热导率的研究进展及应用现状。首先介绍应用于石墨烯热导率测量的微纳尺度传热技术,包括拉曼光谱法、悬空热桥法和时域热反射法。然后展示了石墨烯热导率的理论研究成果,并总结了石墨烯本征热导率的影响因素。随后介绍石墨烯在导热材料中的应用,包括高导热石墨烯膜、石墨烯纤维及石墨烯在热界面材料中的应用。最后对石墨烯导热研究的成果进行总结,提出目前石墨烯热传导研究中存在的机遇与挑战,并展望未来可能的发展方向。关键词:石墨烯;热导率;声子;热界面材料;悬空热桥法;尺寸效应1 引言石墨烯是具有单原子层厚度的二维材料,因为其独特的电学、光学、力学、热学性能而备受关注。相对于电学性质的研究,石墨烯的热学性质研究起步较晚。2008年,Balandin课题组用拉曼光谱法第一次测量了单层石墨烯的热导率,观察发现石墨烯热导率最高可达5300 W∙m−1∙K−1,高于石墨块体和金刚石,是已知材料中热导率的最高值,吸引了研究者的广泛关注。随着理论研究的深入和测量技术的进步,研究发现单层石墨烯具有高于石墨块体的热导率与其特殊的声子散射机制有关,成为验证和发展声子导热理论的重要研究对象。对石墨烯热导率的研究很快对石墨烯在导热领域的应用有所启发。随着石墨烯大规模制备技术的发展,基于氧化石墨烯方法制备的高导热石墨烯膜热导率可达~2000 W∙m−1∙K−1。高导热石墨烯膜的热导率与工业应用的高质量石墨化聚酰亚胺膜相当,且具有更低成本和更好的厚度可控性。另一方面,石墨烯作为二维导热填料,易于在高分子基体中构建三维导热网络,在热界面材料中具有良好应用前景。通过提高石墨烯在高分子基体中的分散性、构建三维石墨烯导热网络等方法,石墨烯填充的热界面复合材料热导率比聚合物产生数倍提高,并且填料比低于传统导热填料。石墨烯无论作为自支撑导热膜,还是作为热界面材料的导热填料,都将在下一代电子元件散热应用中发挥重要价值。本文综述了石墨烯热导率的测量方法、石墨烯热导率的研究结果以及石墨烯导热的应用。首先介绍石墨烯的三种测量方法:拉曼光谱法、悬空热桥法和时域热反射法。然后介绍石墨烯热导率的测量结果,包括其热导率的尺寸依赖、厚度依赖以及通过缺陷、晶粒大小等热导率调控方法。随后介绍石墨烯导热的应用,主要包括高导热石墨烯膜、石墨烯纤维及石墨烯导热填料在热界面材料中的应用。最后对石墨烯导热研究的发展进行展望。2 石墨烯热导率的测量方法由于石墨烯的厚度为纳米尺度,商用的测量设备(激光闪光法、平板热源法等)无法准确测量其热导率,需要采用微纳尺度热测量方法。常见的微纳尺度传热测量技术包括拉曼光谱法、悬空热桥法、3𝜔法、时域热反射法等几种。下面将重点介绍适用于石墨烯的热导率测量方法。2.1 拉曼光谱法单层石墨烯热导率是研究者最感兴趣的话题。2008年,Balandin课题组最早用拉曼光谱法测量了单层石墨烯的热导率。单层石墨烯由高定向热解石墨(HOPG)经过机械剥离法得到,悬空于刻有沟槽的SiNx/SiO2基底上,悬空长度为3 μm。测量时,选用拉曼光谱仪中波长为488 nm的激光同时作为热源和探测器,光斑大小为0.5–1 μm。激光对石墨烯产生加热作用导致石墨烯温度升高,而石墨烯拉曼光谱的G峰和2D峰随温度产生线性偏移,从而可以得到石墨烯的升温。利用热量在平面内径向扩散的傅里叶传热方程,可以得到石墨烯的平面方向内热导率。通过这一方法,测得石墨烯热导率测量结果为(5300 ± 480) W∙m−1∙K−1,是已知材料中热导率的最高值。拉曼光谱法第一次实现了单层石墨烯热导率的测量,但是其测量过程中存在较大的误差,导致不同测量结果存在差异:材料热导率由傅里叶传热方程计算得到,其中材料的吸收热量Q和升温ΔT两个参数都难以准确测量。首先,测量过程中采用了石墨块体的光吸收6%作为吸热计算的依据,与单层石墨烯在550 nm的光吸收率2.3%存在较大差异,导致测量结果可能被高估一倍左右。其次,升温ΔT通过石墨烯拉曼光谱G峰和2D峰的红移或反斯托克斯/斯托克斯峰强比计算得到,两者随温度变化率较小,需要较高的升温(ΔT ~ 50 K),导致难以准确测量特定温度下的热导率。基于拉曼光谱法,研究者不断改进测量技术,降低实验误差。在早期测量中由于石墨烯下方的SiNx基底热导率较低,约为5 W∙m−1∙K−1,在传热模型中将SiNx视为热沉存在一定误差。后来,Cai等通过在带孔的SiNx/SiO2薄膜表面蒸镀Au的方式,提高了石墨烯的接触热导,满足了热沉的边界条件,同时用功率计实时测量了石墨烯的吸收功率。同时,由于石墨烯覆盖在SiNx/SiO2薄膜上有孔和无孔的区域,可以分别测量悬空石墨烯和支撑石墨烯的热导率。张兴课题组使用双波长闪光拉曼方法,引入两束脉冲激光,周期性地加热样品并改变加热光与探测光的时间差,这样做可以将加热光和探测光的拉曼信号分开,为准确测量样品温度提供了新思路。在后续的研究中,拉曼光谱法也被应用于h-BN、MoS2、WS2等二维材料热导率的测量。2.2 悬空热桥法悬空热桥法是利用微纳加工方法制备微器件并测量纳米材料一维热输运的常用方法,多用于纳米线、纳米带、纳米管热导率的测量。微器件由两个SiNx薄膜组成,每个SiNx薄膜连接在6个SiNx悬臂上,并且沉积有Pt电极用作温度计,两个薄膜分别作为加热器(Heater)和传感器(Sensor),样品悬空加载薄膜上,电极通电后加热样品,通过电极电阻的变化测量样品的升温,从而计算热导率。Seol等最早将这一方法应用在石墨烯热导率的测量中,石墨烯被制备成宽度为1.5–3.2 μm,长度为9.5–12.5 μm的条带,覆盖在厚度为300 nm的SiO2悬臂上,两端连接在四个Au/Cr电极上作为温度计,测量得到SiO2衬底上的单层石墨烯热导率为600W∙m−1∙K−1。SiO2衬底上石墨烯热导率低于悬空石墨烯热导率及石墨热导率,是因为ZA声子和衬底间存在较强的声子散射。悬空热桥法的挑战在于如何将石墨烯悬空于微器件上,避免转移过程中出现石墨烯脱落、破碎的问题 。Li 课题组通过聚甲基丙烯酸甲酯(PMMA)保护转移法首先实现了少层石墨烯热导率的测量:首先将机械剥离法得到的少层石墨烯转移到SiO2/Si衬底上,然后旋涂PMMA作为保护层,用KOH溶液刻蚀SiO2并将PMMA/石墨烯转移至悬空热桥微器件上,再利用PMMA作为电子束光刻的掩膜版,通过O2等离子体将石墨烯刻蚀成指定大小的矩形进行测量。Shi课题组利用异丙醇提高了石墨烯的转移效率,测量了悬空双层石墨烯的热导率。Xu等进一步改良了实验工艺,通过“先转移,后制备悬空器件”的方法实现了单层石墨烯热导率的测量:首先将化学气相沉积(CVD)生长的单层石墨烯转移到SiNx衬底上,再利用电子束光刻和O2等离子体将石墨烯刻蚀成长度和宽度已知的条带,然后沉积Cr/Au在石墨烯两端作为电极,最后用KOH溶液刻蚀使其悬空。这一方法的优势在于避免了PMMA造成污染,但是对操作和工艺都提出了很高的要求。悬空热桥法也被应用于h-BN、MoS2、黑磷等二维材料热导率的测量。基于悬空热桥法,李保文课题组进一步发展了电子束自加热法,利用电子束照射样品产生加热,消除通电加热体系中界面热阻造成的误差。2.3 时域热反射法时域热反射法(Time-domain thermoreflectance,TDTR)是一种以飞秒激光为基础的泵浦-探测(pump-probe)技术,由Cahill课题组于2004年基于瞬态热反射方法提出,常用来测量材料的热导率和界面热导。在时域热反射法测量中,一束脉冲飞秒激光被偏振分束镜分为泵浦光和探测光,泵浦光对待测材料进行加热,探测光测量材料表面温度的变化。泵浦光和探测光之间的光程差通过位移台精确控制,并在每一个不同光程差的位置进行采样,得到材料表面温度随时间变化的曲线,这一曲线与材料的热性质有关。通过Feldman多层传热模型进行拟合,得到材料的热导率。实际测量中 通 常 在 材 料 表 面 沉 积 一 层 金 属 作 为 传 热 层(transducer),利用金属反射率(R)随温度(T)的变化关系(dR/dT),通过探测金属反射率的变化检测材料表面温度变化。时域热反射方法的优点在于能够同时测量材料沿c轴和平面方向的热导率,并且能够得到不同平均自由程声子对于热导率的贡献。Zhang等利用这一方法同时测量了石墨烯沿ab平面和c轴方向的热导率,发现石墨烯沿c轴方向的声子平均自由程在常温下可达100–200 nm,远高于分子动力学预测的结果。测量不同厚度的石墨烯(d = 24–410nm)表现出c轴方向热导率随厚度增加而增加的现象,常温下的热导率为0.5–6 W∙m−1∙K−1,并且随着厚度增加而趋近于石墨块体的c轴热导率(8 W∙m−1∙K−1) 。这一现象反映出,在常温下石墨烯c轴方向热导率是由声子-声子散射主导,为探讨石墨烯的传热机理提供了实验支撑。时域热反射方法的局限在于难以测量厚度较小的样品,这是因为当热流在穿透样品后到达基底,需要将基底与样品之间的界面热阻、基底的热导率作为未知数在传热模型中进行拟合,造成误差较大。对于块体石墨,时域热反射方法测量平面方向热导率为1900 ± 100 W∙m−1∙K−1,与Klemens的预测结果一致。对于厚度为194 nm的薄层石墨,测量热导率为1930 ± 1400 W∙m−1∙K−1,误差明显增大。Feser等通过调控光斑尺寸改变传热模型对石墨平面方向传热的敏感度,利用beam offset方法测量了HOPG热导率。Rodin等将频域热反射(FDTR)与beamoffset的方法结合起来,同时准确测量了HOPG的纵向和横向热导率。Chen课题组发展了无传热层(transducer less)的二维材料热导率测量方法,这种方法既可以采取FDTR频域扫描的测量方式,也可以与beam-offset方法结合,提高对平面方向热导率测量的准确度。这些测量方法为薄层材料热导率测量提供了可能的技术路径,即通过对待测样品的物理结构设计(transducerless)和传热模型设计(调控光斑尺寸与测量频率),选择性地增加对平面方向热导率的敏感度,使得即便在样品很薄、热流穿透的情况下,多引入的未知数在传热模型内具有较小的敏感度,从而实现少层/单层石墨烯平面方向热导率的测量。时域热反射法也被应用于黑磷、MoS2、WSe2等二维材料热导率的测量。基于时域热反射方法发展出频域热反射(FDTR)、two-tint、时间分辨磁光克尔效应(TR-MOKE)等测量方法以提高测量准确度。以上主要总结了石墨烯热导率的常用微纳尺度测量技术,包括拉曼光谱法、悬空热桥法和时域热反射法,不同方法的主要测量结果汇总于表1。表 1 石墨烯热导率测量主要研究结果值得注意的是,部分悬空热桥法测量的热导率显著偏低,是由于PMMA污染抑制了石墨烯声子散射。当样品厚度在微米尺度时,可通过激光闪光法进行测量,这种方法常用于块体石墨和湿化学方法制备的石墨烯薄膜,对于经过热处理还原和石墨化的石墨烯薄膜,激光闪光法测量热导率在1100–1940 W∙m−1∙K−1,热导率的差别主要来自石墨烯薄膜的制备工艺。受限于篇幅,我们将四种测量方法的示意图及主要原理汇总于图1,关于微纳尺度热测量的详细总结可参考相应综述文章。图 1 常见热测量方法示意图3 石墨烯热导率的研究进展石墨烯的热传导主要由声子贡献。和金刚石类似,石墨烯在平面方向由强化学键C―C键构成,并且由于碳原子较轻,具有极高的声速,从而在平面方向具有和金刚石相当的热导率(~2000W∙m−1∙K−1) 。关于石墨烯热传导的主要声子贡献来源,学界的认知随着研究的更新而发生变化。最早,人们预期石墨烯传热主要由纵向声学支(LA)和横向声学支(TA)贡献,这两支声子的振动平面都是沿石墨的ab平面方向。这样的预期是合理的,因为另一支横向声学支(ZA)声子的振动平面垂直于ab平面,而石墨烯作为单原子层材料,垂直平面的振动困难。而且ZA声子的色散关系是~ω2,在q →0时声速迅速减小为0,因而对石墨烯热导率几乎不产生贡献。后来,Lindsay等7通过对玻尔兹曼方程进行数值求解发现,由于单层石墨烯的二维材料特性,三声子散射中与ZA声子关联的过程受到抑制,这一规则被称为“选择定则(Selection rule)”。基于这一原因,ZA声子散射的相空间减小了60%;同时,考虑到ZA声子的数量较多,ZA声子实际成为了单层石墨烯中热导贡献最大的一支,占比约为70%。随着计算方法的进步,研究者对石墨烯中声子传导的理解逐步加深。Ruan课题组在考虑四声子散射的条件下计算了单层石墨烯的热导率,由于ZA声子数量多,导致由ZA声子参与的四声子散射过程多,通过求解玻尔兹曼输运方程(BTE)发现,ZA声子对于单层石墨烯热导率的贡献实际约为30%。Cao等通过分子动力学计算发现,考虑高阶声子散射时ZA声子对石墨烯热导率的贡献将降低。另外,第一性原理计算表明石墨烯中存在水动力学热输运和第二声现象,以及实验测量和分子动力学计算中发现石墨烯存在的热整流现象,都使得石墨烯的声子输运研究不断更新。下面针对理想的单层石墨烯单晶材料讨论其热导率的依赖关系。3.1 石墨烯热导率的厚度依赖石墨烯作为单原子层材料,表现出不同于石墨块体的声子学特征。很自然地产生一个问题,随着石墨烯的原子层数增加,石墨烯会以何种形式、在何种厚度表现出接近石墨块体的热学性质。前文Lindsay等的工作从计算角度给出了解释,在多层石墨烯和石墨中,三声子散射与原子间力常数的关系不同于单层石墨烯,导致选择定则不再适用,ZA声子的散射变大,热导率下降。这一趋势可以从图2a中明显观察到,当石墨烯的厚度从单原子变为双原子层时,ZA声子贡献的热导率大幅下降,石墨烯整体热导率降低。随着原子层数目增加,热导率持续下降。对于原子层数在5层及以上的石墨烯,其热导率已十分接近石墨块体。这一趋势也与Ghosh等对悬空石墨烯热导率的测量结果一致,在原子层数超过4层之后,石墨烯热导率接近块体石墨(图2c)。而对于放置在基底上的支撑石墨烯和上下均有基底的夹层石墨烯(Encased),热导率随层数变化没有明显规律,这主要是因为ZA声子与基底相互作用,对热导率的贡献低于悬空石墨烯,而ZA声子与基底相互作用的强度随原子层数增加而变化,导致热导率随层数变化表现出不同规律(不变或增大) 。研究石墨烯本征热导率仍需对少层及单层石墨烯热导率进行测量,对样品制备和实验测量都具有很大挑战。图 2 石墨烯热导率的尺寸效应3.2 石墨烯热导率的横向尺寸依赖由傅里叶传热定律,材料热导率,其中Cv为材料体积比热容,v为声子群速度,l为声子平均自由程。对于给定的温度,热容与声速均为定值,因而材料热导率主要由声子平均自由程决定。通常情况下,块体材料在三个维度上的尺寸都远大于声子平均自由程,声子为扩散输运,声子平均自由程主要由声子-声子散射确定,是材料固有的性质,表现出热导率与横向尺寸无关。但是对于石墨烯而言,由于制备待测样品的长度在微米级,与平面内声子平均自由程相当,存在弹道输运现象,表现出石墨烯的热导率与横向尺寸存在依赖关系。石墨烯平面方向声子平均自由程可通过计算得到。Nika等通过第一性原理计算分别对LA和TA声子求得Gruneisen参数,得到石墨烯平面方向声子平均自由程在10 μm左右,即石墨烯尺寸小于10 μm时会表现出明显的热导率随尺寸增加而增加现象(图2b)。后续计算表明,在考虑三声子过程和声子-边界散射角度的情况下,石墨烯热导率在横向尺寸L小于30 μm时遵循log(L)增加的规律,在横向尺寸为30 μm左右时达到最大值,并随横向尺寸增加而下降。检验计算结果需要对不同尺寸的单层石墨烯进行热导率测量,这对实验操作的精细度提出了极高要求。Xu等利用悬空热桥法测量了不同长度(300–9 μm)的单层石墨烯热导率,观察到其热导率随长度增加而单调增加。测量结果与分子动力学预测的热导率随长度以log(L)趋势增加的结果相符,证明了石墨烯作为二维材料的热性质(图2d)。但是作者也没有排除另外两种可能:(1)低频声子随尺寸增加而被激发,对传热贡献较大;(2)石墨烯尺寸增加改变三声子散射的相空间,影响选择定则7。由于石墨烯作为二维材料的特性,以及声子平均自由程较大、热导率较高,仍然需要进一步的理论和实验探究以深入挖掘石墨烯热导率随横向尺寸变化的物理原因。在实际应用的单晶及多晶石墨烯材料中,热导率的影响因素还包括晶粒尺寸、缺陷、同位素、化学修饰等,相关研究及综述已有报道。4 石墨烯导热的应用上一节中介绍了石墨烯具有本征的高热导率,从理论计算和实验测量中均得到了验证。上述实验测量中,研究者往往采用机械剥离法和CVD法制备石墨烯,这两种方法制备的样品具有质量高、可控性强的特点,适用于研究石墨烯的本征性质。但是,由于机械剥离法和CVD法制备石墨烯具有产量低、制备周期长、难以规模化等特点,不适用于石墨烯的宏量制备。相对应地,通过还原氧化石墨烯、电化学剥离等湿化学方法可以大批量制备石墨烯片,石墨烯片通过片层间的化学键作用可形成石墨烯膜、石墨烯纤维、石墨烯宏观体等三维结构,从而可实际应用于导热场景。4.1 高导热石墨烯膜的应用石墨烯薄膜可用作电子元件中的散热器,散热器通常贴合在易发热的电子元件表面,将热源产生的热量均匀分散。散热器通常由高热导率的材料制成,常见散热器有铜片、铝片、石墨片等。其中热导率最高、散热效果最好的是由聚酰亚胺薄膜经石墨化工艺得到的人工石墨导热膜,平面方向热导率可达700~1950 W∙m−1∙K−1, 厚度为10~100 μm,具有良好的导热效果,在过去很长一段时间内都是导热膜的最理想选择。在此背景之下,研究高导热石墨烯膜有两个重要意义,其一,是由于人工石墨膜成本较高,且高质量聚酰亚胺薄膜制备困难,业界希望高导热石墨烯膜能够作为替代方案。其二,是由于电子产品散热需求不断增加,新的散热方案不仅要求导热膜具有较高的热导率,也要求导热膜具有一定厚度,以提高平面方向的导热通量。在人工石墨膜中,由于聚酰亚胺分子取向度的原因,石墨化聚酰亚胺导热膜只有在厚度较小时才具有较高的热导率。而石墨烯导热膜则易于做成厚度较大的导热膜(~100 μm),在新型电子器件热管理系统中具有良好的应用前景。因此,石墨烯导热膜的研究也主要沿着两个方向,其一,是提高石墨烯导热膜的面内方向热导率,以接近或超过人工石墨膜的水平。其二,是提高石墨烯导热膜的厚度,扩大导热通量,同时保持良好的热传导性能。以下将从这两方面分别讨论。4.1.1 提高石墨烯膜热导率的关键技术高导热石墨烯薄膜的常见制备方法是还原氧化石墨烯。首先通过Hummers法得到氧化石墨烯(GO,graphene oxide)分散液,然后通过自然干燥、真空抽滤、电喷雾等方法得到自支撑的氧化石墨烯薄膜,并通过化学还原、热处理等方法得到还原氧化石墨烯(rGO)薄膜,最后通过高温石墨化提高结晶度,得到高导热石墨烯薄膜。影响高导热石墨烯膜热导率最重要的因素是组装成膜的石墨烯片的热导率,主要由氧化石墨烯的还原工艺决定。由于氧化石墨烯分散液的制备通常在强酸条件下进行,破坏石墨烯的平面结构,同时引入了环氧官能团,造成声子散射增加。氧化石墨烯的还原工艺对还原产物的结构、性能影响较大,因而需要选择合适的还原工艺制备石墨烯导热膜。氧化石墨烯膜在1000 ℃热处理后可以除去环氧、羟基、羰基等环氧官能团,但是石墨烯晶格缺陷的修复仍需更高温度。Shen等通过自然蒸干的方式制备了氧化石墨烯薄膜,并通过2000 ℃热处理的方式对氧化石墨烯薄膜进行石墨化,C/O原子比由石墨烯薄膜的2.9提高到石墨化后的73.1,X射线衍射(XRD)图谱上石墨烯薄膜11.1°峰完全消失,26.5°的峰宽缩窄,对应石墨(002)方向上原子层间距为0.33 nm,测量热导率为1100 W∙m−1∙K−1,热导率优于由膨胀石墨制备的石墨导热片。Xin等用电喷雾方法制备大尺寸氧化石墨烯薄膜并在2200 ℃下高温还原,得到热导率为1283 W∙m−1∙K−1的石墨烯导热膜,通过SEM截面图观察发现具有紧密的片层排列结构,且具有较好的柔性。通过拉曼光谱、XPS和XRD表征可以看出,2200 ℃为氧化石墨烯还原的最适宜温度,当还原温度更高时,石墨烯的电导率和热导率提升不再显著(图3)。4.1.2 提高石墨烯膜厚度的关键技术制备较厚的石墨烯导热膜也是研究者关心的课题。理论上讲,增加石墨烯膜的厚度只需刮涂较厚的氧化石墨烯薄膜即可。但实际操作中存在如下问题:(1)刮涂厚膜的成膜质量不高。由于氧化石墨烯分散液的浓度较低(低于10% (w)),除氧化石墨烯外其余部分均为水,需要长时间蒸发。氧化石墨烯片层与水分子以氢键相互作用,蒸发时水分子逸出,使得氧化石墨烯片层之间通过氢键形成交联,在表面形成一层“奶皮”状的薄膜。这层薄膜使氧化石墨烯分散液内部的水分蒸发减慢,且导致氧化石墨烯片层取向不一致,降低成膜质量。(2)难以通过一步法得到厚膜。由于氧化石墨烯分散液浓度较低,无论刮涂、旋涂还是喷雾等方法都无法一次制备厚度为~100 μm的氧化石墨烯薄膜。Luo等研究发现,氧化石墨烯薄膜在蒸干成形后仍然可以在去离子水浸润的情况下相互粘接,出现这种现象是因为氧化石墨烯片层在水的作用下通过氢键彼此连接,使得氧化石墨烯薄膜可以像纸一样进行粘贴起来。Zhang等利用类似的方法将制备好的氧化石墨烯薄膜在水中溶胀并逐层粘贴,经过干燥、热压、石墨化、冷压之后,得到厚度为200 μm的超厚石墨烯薄膜,热导率为1224 W∙m−1∙K−1,通过红外摄像机实测散热效果优于铜、铝及薄层石墨烯导热膜(图4)。目前制备百微米厚度高导热石墨烯薄膜的研究相对较少,除了溶胀粘接的方法之外,还可以通过电加热、金属离子键合等方法实现氧化石墨烯薄膜的搭接,有望为制备百微米厚度高导热石墨烯膜提供新思路。石墨烯导热膜的部分研究成果总结于表2中。图 4 百微米厚度石墨烯导热膜的制备、表征与热性能测试
  • 皖仪“高性能石墨炉原子吸收分光光度计”荣获国家重点新产品
    热烈祝贺安徽皖仪&ldquo 高性能石墨炉原子吸收分光光度计&rdquo 荣获国家重点新产品 近日,由国家科学技术部等相关部门组织的&ldquo 2012年国家重点新产品评选&rdquo 结果揭晓,我公司申报的《高性能石墨炉原子吸收分光光度计》项目荣获&ldquo 国家重点新产品证书&rdquo 荣誉称号。 &ldquo 石墨炉原子吸收分光光度计&rdquo 是由安徽皖仪科技有限公司自主研发、自主设计、自主生产的一种高档分析仪器,它是指通过石墨炉高温使待测元素原子蒸汽化,利用待测元素原子的共振吸收,通过测定蒸汽化原子吸光度来实现对待测元素的定性与定量分析。它主要用于痕量元素的分析,具有灵敏度高及选择性好两大主要优点。石墨炉原子吸收分光光度计,是现代重要的元素定量分析仪器之一,可直接测定金属和类金属的元素达70多种,是一种高档分析仪器。可广泛应用与生物、食品、地质、冶金、建筑、材料、医药、环境、石油、化工、机械等各个分析领域。 此款原子吸收分光光度计具有6灯座同时工作或者预热、先进的元素灯切换装置、新型双灯双原子化器一体化、高可靠性自动进样器、快速波长扫描机构、高精密度、高安全性能等产品特性。它作为国内自主研发、生产的原子吸收光度计的升级换代产品,将解决国内产品在石墨炉固体进样技术方面和国外产品的差距,也将进一步打破外国仪器及分析技术的技术壁垒,提升国产分析仪器的核心竞争力。同时将改变我国此类产品长期依赖进口的现状,实现国产科学仪器设备市场份额大幅度提升,对提高我国的科研水平以及中小企业的产品工艺水平和产品质量有着深远意义。
  • 石墨烯:新材料王者之路有多长?
    p   去年,华为掌门人任正非曾表示,未来10~20年,将迎来石墨烯颠覆硅的时代。随后,有西方媒体报道,西班牙研发出石墨烯电池,充电8分钟可续航1000公里。近年来,石墨烯似乎已成为无所不能的新材料之王。 /p p   中国科学院长春应用化学研究所(以下简称长春应化所)研究员牛利等人近日在石墨烯材料的制备及应用研究方面取得重要进展,该成果获得2015年吉林省自然科学奖一等奖。 /p p   牛利在接受《中国科学报》记者采访时表示:“虽然石墨烯材料具有相当特殊的物理及化学属性,但距离真正的实际应用还有很长的路要走。” /p p    strong 超级材料 /strong /p p   石墨烯存在于自然界,只是难以剥离出单层结构,厚1毫米的石墨大约包含300万层石墨烯。 /p p   2004年,英国曼彻斯特大学的两位科学家安德烈· 盖姆和康斯坦丁· 诺沃肖洛夫从高定向热解石墨中剥离出石墨片,然后将薄片的两面粘在一种特殊的胶带上,撕开胶带,就能把石墨片一分为二。 /p p   他们不断地这样操作,于是薄片越来越薄,最后,他们得到了仅由一层碳原子构成的薄片,这就是石墨烯。两人也因此获得2010年度诺贝尔物理学奖。 /p p   据牛利介绍,石墨烯是碳原子紧密堆积成单层二维蜂窝状结构的一种碳质新材料,具有极好的电学、力学、热学以及光学性能。 /p p   常温下,石墨烯电阻率比铜或银更低,是世界上电阻率最小的材料。石墨烯因电阻率低、电子迁移的速度快,有望用来发展更薄、导电速度更快的新一代电子元件或晶体管。 /p p   石墨烯既是最薄的材料,也是最韧的材料。曾有实验证实,如果用一块面积1平方米的石墨烯做成吊床,本身重量不足1毫克,却可以承受一只一千克的猫。 /p p   另外,石墨烯几乎是完全透明的,只吸收2.3%的光,即使是最小的气体原子(氦原子)也无法穿透。这些特征使得它非常适合作为透明电子产品的原料,如透明的触摸显示屏、发光板和太阳能电池板。 /p p   石墨烯的特殊性能使其迅速成为国际先进材料研发的新热点,引发了国内外科研人员的跟踪研究,牛利团队就是其中之一。 /p p style=" text-align: center " img title=" untitled1.png" src=" http://img1.17img.cn/17img/images/201512/insimg/397ad04f-a6c9-4ae0-b410-480666e616ca.jpg" / /p p style=" text-align: center " 诺沃肖洛夫团队捐赠给斯德哥尔摩的石墨、石墨烯和胶带 /p p    strong 性能改良 /strong /p p   这些年,牛利带领长春应化所现代分析技术工程实验室材料电化学课题组,密切关注国际石墨烯材料研发发展的最新趋势,围绕二维石墨烯材料理论设计、制备合成、性质表征以及其在电分析化学领域的应用开展了系列研究工作。 /p p   由于石墨烯片层之间具有强烈的相互作用,使其非常难以剥离。牛利告诉记者:“传统的氧化剥离方法是通过强氧化剂,让石墨烯边缘发生氧化作用,出现片层结构扭曲。这种方法由于使用大量的强氧化剂,如高锰酸钾、浓硫酸等试剂,制备的石墨烯材料结构可控性差,缺陷多,产率也较低。”此外,该方法直接产生的是石墨烯氧化物,还需要进一步的还原处理才能得到最终的石墨烯材料。 /p p   牛利团队利用微波能量辅助,同时辅以有机小分子插层剂,在石墨片层间通过微波逐渐渗透插层剂,使石墨烯片层逐渐剥离。“这项技术方法无需经过石墨烯氧化阶段,不仅可以直接制得高度还原性的石墨烯材料,还可以低成本、大批量制备高品质的石墨烯材料。” /p p   当前,国际上制备石墨烯薄膜多采用昂贵的CVD(化学气相沉积)方法,牛利团队发现,这种方法很难控制薄膜的厚度,特别是难以进行复杂的图案化设计。另外,化学还原剂无论是液态还是气相的,都会导致二次化学试剂的使用。 /p p   “我们采用电化学技术,仅仅通过界面的电子转移过程,就可以控制石墨烯氧化物在界面的电化学还原沉积程度,这种方法技术简单、成本低廉、绿色环保,同时结构厚度、性状可控。”牛利说。 /p p   牛利团队还探索了新型石墨烯及其杂化材料在电极界面修饰、分析传感及其他相关领域的应用。 /p p style=" text-align: center " img style=" width: 499px height: 420px " title=" untitled2.png" src=" http://img1.17img.cn/17img/images/201512/insimg/f7e4c11e-2c48-4aa2-93bd-047c011cbc1e.jpg" width=" 499" height=" 509" / /p p style=" text-align: center " 显微镜下的石墨烯“单晶” /p p    strong 目标驱动 /strong /p p   他们设计制备了石墨烯片层、薄膜和石墨烯杂化材料,并进一步探索了石墨烯及其杂化材料的化学结构特征和反应机理,将石墨烯及其杂化材料应用在传感分析、复合材料以及能源环境领域。 /p p   “作为工业技术,石墨烯要实现产业化,仍有许多未能克服的困难。”牛利指出,尽管国际上已经发布一些研究结果,将石墨烯用于电池电极材料、电容器器件构造、力学增强材料、导热薄膜等应用领域中,但这些领域的研究还有诸多的科学及工程技术问题亟待解决。 /p p   因为石墨烯的制备方式目前在技术上还存在缺陷,通过实验室内研制的石墨烯成本居高不下。曾有研究人员计算出目前的石墨烯价格高达5000元/克,比黄金还贵十几倍。 /p p   围绕化学制备石墨烯材料,低成本、大批量制备高品质石墨烯是个值得关注的技术问题。围绕微电子学及器件领域,科研人员还需要解决如何降低器件材料的制备成本、提高器件结构的均一性,如何将微观操作及纳米构造技术用于石墨烯器件中等问题。 /p p   目前在石墨烯材料的一些应用领域,如储能器件、导热材料、透明薄膜等方面,虽然已经有围绕需求的、具有应用前景的研究工作报道,但由于缺乏明显的直接应用领域及工程技术方法的结合应用,导致研究工作与应用需求还存在一定的距离。 /p p   牛利告诉记者:“将基础研究与工程技术方法有机结合,特别是与应用目标驱动结合,将会使石墨烯材料研究成果更好地投入到实际应用中。” /p
  • 28万!台山市中医院石墨炉原子吸收分光光度计采购
    项目概况台山市中医院石墨炉原子吸收分光光度计项目 招标项目的潜在投标人应在江门市深联招标有限公司会议室(地址:江门市华园路21号101)获取招标文件,并于2022年02月18日 10点00分(北京时间)前递交投标文件。一、项目基本情况项目编号:JMSL2022-002项目名称:台山市中医院石墨炉原子吸收分光光度计项目预算金额:28.0000000 万元(人民币)最高限价(如有):28.0000000 万元(人民币)采购需求:合同包1(台山市中医院石墨炉原子吸收分光光度计采购):合同包预算金额:280000.00元品目号品目名称采购标的数量(单位)技术规格、参数及要求品目预算(元)最高限价(元)1-1其他货物石墨炉原子吸收分光光度计一套详见采购文件280000.00280000.00 合同履行期限:合同签订生效后30个工作日内完成交货及安装调试本项目( 不接受 )联合体投标。二、申请人的资格要求:1.满足《中华人民共和国政府采购法》第二十二条规定;2.落实政府采购政策需满足的资格要求:本项目不属于专门面向中小企业采购的项目3.本项目的特定资格要求:合同包1(台山市中医院石墨炉原子吸收分光光度计采购)特定资格要求如下:(1)投标人应当具备《中华人民共和国政府采购法》第二十二条规定的条件;1)投标人应当是具有独立承担民事责任能力的在中华人民共和国境内注册的法人、其他组织或者自然人;(提供有效的营业执照或相关单位登记证书复印件(若法人或者其他组织投标的),自然人有效的身份证明复印件(若自然人投标的)。若分支机构投标的,应当取得总公司(总所)出具给分支机构的有效授权,并同时提供总公司(总所)的营业执照、总公司(总所)出具给分支机构的有效授权书及分支机构的营业执照复印件)2)投标人应当具有良好的商业信誉和健全的财务会计制度;(提供2020年度或2021年1月至今任意1个月的财务状况报告或银行出具的资信证明复印件)3)投标人应当具有履行合同所必需的设备和专业技术能力;(提供《关于资格的声明函》)4)投标人应当有依法缴纳税收和社会保障资金的良好记录;(提供2021年1月至今任意1个月的依法缴纳税收和社会保障资金的相关材料复印件;如依法免税或不需要缴纳社会保障资金的,应当提供相应证明文件复印件)5)投标人参加招标采购活动前三年内,在经营活动中没有重大违法记录;重大违法记录是指供应商因违法经营受到刑事处罚或者责令停产停业、吊销许可证或者执照、较大数额罚款等行政处罚,较大数额罚款按照发出行政处罚决定书部门所在省级政府,或实行垂直领导的国务院有关行政主管部门制定的较大数额罚款标准,或罚款决定之前需要举行听证会的金额标准来认定;(提供《关于资格的声明函》)6)投标人应当符合法律、行政法规规定的其他条件。(提供《关于资格的声明函》)(2)投标人未被列入“信用中国”网站(www.creditchina.gov.cn)“记录失信被执行人或重大税收违法案件当事人名单或政府采购严重违法失信行为”记录名单;不处于中国政府采购网(www.ccgp.gov.cn)“政府采购严重违法失信行为信息记录”中的禁止参加政府采购活动期间;(以开标当日采购代理机构通过“信用中国”网站(www.creditchina.gov.cn)、中国政府采购网(www.ccgp.gov.cn)查询投标人信用记录为准,如相关失信记录已失效,应当提供相应证明文件复印件)(3)单位负责人为同一人或者存在直接控股、管理关系的不同供应商,不得参加同一合同包项下的招标采购活动;(提供《关于资格的声明函》)(4)为本项目提供整体设计、规范编制或者项目管理、监理、检测等服务的供应商,不得再参加该采购项目的其他采购活动;(提供《关于资格的声明函》)(5)本合同包不接受联合体投标。(提供《关于资格的声明函》)三、获取招标文件时间:2022年01月20日 至 2022年01月26日,每天上午9:00至12:00,下午14:30至17:30。(北京时间,法定节假日除外)地点:江门市深联招标有限公司会议室(地址:江门市华园路21号101)方式:现场购买或邮购(详见其他补充事宜)售价:¥300.0 元,本公告包含的招标文件售价总和四、提交投标文件截止时间、开标时间和地点提交投标文件截止时间:2022年02月18日 10点00分(北京时间)开标时间:2022年02月18日 10点00分(北京时间)地点:江门市深联招标有限公司会议室(地址:江门市华园路21号101)五、公告期限自本公告发布之日起5个工作日。六、其他补充事宜(一)本次招标采购内容中的核心产品为石墨炉原子吸收分光光度计,同一品牌的核心产品可有多家投标人参与竞争,但只作为一个投标人计算。投标人所投报的产品必须是本国产品,本项目不接受所投报产品为进口产品的投标。(本招标文件中所称进口产品是指通过中国海关报关验放进入中国境内且产自关境外的产品)(二)购买招标文件时需核对以下文件:1、营业执照或相关单位登记证书(若法人或者其他组织投标的),自然人的身份证明(若自然人投标的);2、总公司(总所)的营业执照及总公司(总所)出具给分支机构的有效授权书(若分支机构投标的);3、法定代表人/负责人证明书或授权委托书。供应商购买招标文件时应当将前2项的复印件和第3项(法定代表人/负责人证明书或授权委托书)的原件交我单位核对。我单位在核对后会收取前2项的复印件和第3项(法定代表人/负责人证明书或授权委托书)的原件。所有复印件应当加盖供应商的单位公章。(三)接收投标文件时间:2022年2月18日9时30分至10时00分(北京时间)。提前、逾期递交或不符合规定的投标文件恕不接受。(四)需落实政府采购政策为:促进中小企业发展政策、支持监狱企业发展政策、支持残疾人福利性单位发展政策、采购节能产品、环境标志产品、商品包装政府采购需求标准、快递包装政府采购需求标准等相关政策。七、对本次招标提出询问,请按以下方式联系。1.采购人信息名 称:台山市中医院     地址:广东省台山市沙岗湖路100号        联系方式:罗先生;0750-5559676      2.采购代理机构信息名 称:江门市深联招标有限公司            地 址:江门市蓬江区华园路21号101            联系方式:吴燕玲,0750-3503829            3.项目联系方式项目联系人:吴燕玲电 话:  0750-3503829
  • 北京海光推出石墨炉原子吸收新品——BCEIA 2011视频采访系列
    仪器信息网讯 2011年10月12-15日,第十四届北京分析测试学术报告会及展览会(BCEIA 2011)在北京展览馆隆重举行。为让广大网友及仪器用户深入了解BCEIA 2011仪器新品动态,仪器信息网特别开展了以“盘点行业新品 聚焦最新技术”为主题大型视频采访活动,力争将科学仪器行业最新创新产品、最新技术进展及最具有代表性应用解决方案直观地呈现给业内人士。以下是仪器信息网编辑采访北京海光仪器公司总经理张雪松先生。   北京海光仪器公司成立于1988年,坐落于中关村电子城科技园区,是以原子荧光光度计、原子吸收分光光度计、等离子体发射光谱等分析仪器为主要产品,集研发、制造、销售和售后服务为一体的高新技术企业,隶属于中国地质装备总公司北京地质仪器厂,具有近四十年光谱分析仪器研发、制造历史,是中国知名的光谱分析仪器制造厂商。北京海光仪器公司总经理张雪松先生在视频中为网友介绍了最新推出的石墨炉原子吸收光谱仪及辐射监测仪。   “GGX-700石墨炉原子吸收分光光度计是根据用户的需求推出的产品,使用简单方便,原子化器的更换采用前后推拉的方式,把电源放在了主机的旁边,对仪器的软件进行了改观,减轻使用者的劳动强度。”   张雪松先生也谈到了海光未来的发展思路:“我们今后进一步加强新产品基础性的研发,在产品的耐用性、便利性、持久性等方面缩小与国际高端产品的差距,提升服务质量,想用户之所想,急用户之所急,为广大用户排忧解难。”
  • 电镜等表征技术助力吉大团队在月壤样本中首次发现少层石墨烯
    近日,吉林大学邹猛教授、张伟教授、李秀娟正高级工程师及中国科学院金属研究所任文才研究员等,通过对嫦娥五号钻采岩屑月壤(No. CE5Z0806YJYX004)的观察分析,首次发现天然形成的少层石墨烯。相关研究为月球的地质活动和演变历史以及月球的环境特点提供了新见解,拓宽了人们对月壤复杂矿物组成的认知,为月球的原位资源利用提供了重要信息及线索。研究成果以“Discovery of Natural Few-Layer Graphene on the Moon”为题,于6月17日发表在National Science Review期刊上。 CE-5月壤样品中天然石墨烯的先进电子显微结构表征和谱学分析。(图片来源:吉林大学)过往报道指出,通过观测月球的全球碳离子通量,科研人员认为月球上存在原生碳,利用月球样品的表征研究来揭示原生碳相的晶体结构是可行的。石墨烯以其新奇的物理现象和非凡的特性,在包括行星和空间科学在内的广泛领域发挥着越来越重要的作用。据估计,星际碳总量中约1.9%是以石墨烯的形式存在,其形态和性质由特定的形成过程决定,因此天然石墨烯的组成和结构特征将为星体的地质演化和月球的原位资源利用提供重要的参考和信息。少层石墨烯在月球上可能形成过程。(图片来源:吉林大学)在该项研究中,科研团队采用电镜—拉曼联用技术,在月壤样品含碳量相对较高的位置采集了拉曼光谱,确认了月壤样品中石墨碳的结晶质量相对较高。值得注意的是,月壤样品中存在碳的区域含有铁化合物,这与石墨烯的形成密切相关。通过扫描电子显微成像、透射电子显微成像、冷冻条件下球差电镜的高角环形暗场像和高分辨像、能谱和电子能量损失谱、飞行二次质谱等多种表征技术的综合运用及测试结果的多方面严谨比对分析,探究并证实了月壤样品中检测到的石墨碳是少层石墨烯(2—7层),并提出少层石墨烯和石墨碳的形成可能源于太阳风和月球早期的火山喷发共同诱导的矿物催化进程。
  • 超级蒙烯材料:石墨烯家族的新成员
    引言石墨烯是由sp2杂化的单层碳原子构成的蜂窝状二维原子晶体材料,是古老的碳材料家族的新成员,拥有无与伦比的物理化学性质。石墨烯有两种基本形态。一种是石墨烯粉体,通常由数十纳米到数十微米的微小石墨烯片堆积而成;另一种是通过碳源高温裂解反应生成的连续态石墨烯薄膜。存在形态不同,性质差异很大,用途也完全不同。石墨烯纤维是近年来发展起来的新的石墨烯形态,通常从氧化石墨烯粉体出发,经有序组装、 化学还原、高温处理等工艺制得。石墨烯纤维的结构比较复杂,作为初始结构单元的氧化石墨烯微片通过化学还原和高温化学反应形成准连续的石墨烯薄膜,其片层间的堆垛结构依处理工艺差别很大。从堆垛结构上看,石墨烯纤维接近传统石墨;而从宏观形态上看,它类似于碳纤维。石墨烯粉体通过与高分子复合,可在一定程度上改善高分子材料的力学、电学乃至热学性能,派生出一类石墨烯/高分子复合材料。 理论上讲,高温外延生长而成的连续态单晶石墨烯薄膜最能体现石墨烯的本征优异特性,如超高载流子迁移率、极高的热导率以及超强的力学强度等。这种连续态石墨烯薄膜通常生长在铜、镍等金属表面,金属的作用是降低碳源裂解温度和石墨化温度。金属材料具有很好的导电性和导热性,原子级厚度的石墨烯的优良导电、导热特性会淹没在宏观厚度的金属生长衬底贡献的电子汪洋大海背景中。因此,在实际应用中,需要将石墨烯从金属生长衬底表面剥离下来,转移到目标支撑衬底上。实现单原子层厚度的石墨烯剥离转移无疑是一个巨大的技术挑战,从某种意义上讲,决定着连续态石墨烯薄膜的发展未来,这是制约石墨烯薄膜应用的瓶颈所在。超级蒙烯材料是本研究团队提出的新概念,为破解连续态石墨烯薄膜应用的剥离转移瓶颈提供了一个全新的解决方案。通过高温生长过程和巧妙的工艺设计,在传统材料表面沉积连续态石墨烯薄膜。借助高性能石墨烯“蒙皮”,赋予传统材料全新的功能,让原子级厚度的石墨烯薄膜搭乘传统材料载体走进市场(图1)。不同于石墨烯涂料在材料表面的物理涂敷,这种直接生长的连续态石墨烯“蒙皮”最大程度地保存了石墨烯的本征特性,是普通石墨烯微片材料所无法比拟的。这也是冠之以“超级”的原因所在。需要强调指出的是,超级蒙烯材料体现了连续态石墨烯薄膜应用的新理念,借助传统材料衬底,解决了超薄石墨烯薄膜的无法自支撑问题,同时回避了金属衬底上薄膜生长的剥离转移难题。超级蒙烯材料是一类新型石墨烯复合材料,通过高温工艺实现石墨烯与传统材料的直接复合。例如,利用特殊设计的化学气相沉积工艺,在广泛应用的传统玻璃纤维表面生长石墨烯,即可得到新型“蒙烯玻璃纤维”材料。石墨烯蒙皮的存在赋予蒙烯玻璃纤维优良的导电性和导热性,为传统玻璃纤维带来全新的性能。尤其重要的是,纳米级到亚微米厚度的石墨烯蒙皮基本上不改变衬底材料的宏观形态,因此超级蒙烯材料具有工艺兼容性强的巨大优势,在不改变现役工程材料加工工艺的前提下发挥其独特的功能,可借力现役工程材料的广阔应用市场,将石墨烯薄膜推向实际应用。超级蒙烯材料是石墨烯家族的新成员,拥有丰富的内涵和广阔的发展空间。生长衬底材料的选择是发展超级蒙烯材料的关键所在。原理上讲,衬底材料需要耐受石墨烯生长所需要的高温条件,确保其本征特性不发生显著的改变。另一个重要条件是,能够找到可行的工艺路线实现石墨烯的直接生长。高品质连续态石墨烯的可控生长是实现其优异性能的重要前提。此外,衬底材料在工程领域已经获得广泛应用,以便为超级蒙烯材料提供更多可选择的应用场景。超级蒙烯材料可分为蒙烯非金属材料和蒙烯金属材料(图2)。蒙烯玻璃纤维是典型的蒙烯非金属材料。蒙烯氧化铝、蒙烯碳化硅以及蒙烯氮化硼等都是蒙烯非金属材料家族的重要成员。蒙烯金属材料通过在金属衬底上生长石墨烯获得,包括蒙烯铜、蒙烯镍、蒙烯铟、蒙烯锡、蒙烯钢等诸多种类。按照衬底材料的形态分类,超级蒙烯材料又可以细分为蒙烯箔材、蒙烯纤维、蒙烯粉体以及蒙烯泡沫等多种形态,构成琳琅满目的超级蒙烯材料家族。不同形态的超级蒙烯材料进行后加工处理或者与其他材料复合,将进一步丰富超级蒙烯材料家族的内涵。蒙烯玻璃纤维蒙烯玻璃纤维是超级蒙烯材料概念的第一个具体实例。通过高温化学气相沉积过程,在传统玻璃纤维表面生长连续态石墨烯薄膜,实现石墨烯与玻璃纤维的有机结合,是一类全新的石墨烯/玻璃纤维复合材料。玻璃纤维是广泛应用的传统工程材料,2019 年全球玻璃纤维产量约800万吨。我国是玻璃纤维生产大国,全球占比达65%以上。玻璃纤维兼具轻质、高强、耐高温、柔性等诸多优异性能,是国防军工、航空航天、风能发电、工程建筑等领域的重要基材,如飞机机身、火箭和导弹外壳、雷达罩等都采用玻璃纤维作为主要的复合材料增强体。蒙烯玻璃纤维继承了玻璃纤维的本征特性,同时赋予其高导电、高导热等新的性能(图3)。原子级厚度的石墨烯薄膜可搭乘传统玻璃纤维载体,走向实际应用,从而开辟出石墨烯材料应用的新天地。制备蒙烯玻璃纤维材料存在着诸多技术挑战。通常情况下,石墨烯的CVD生长会选择以铜、镍为代表的金属衬底。金属衬底具有催化活性,对于碳源前驱体的裂解、石墨烯成核、外延生长等基元过程有着良好的促进作用,有助于提升石墨烯的结晶质量、生长速率以及层数可控性。然而,玻璃纤维是非金属材料,催化活性很弱,因此碳源前驱体的裂解过程主要是热裂解。为了确保碳源前驱体充分裂解,CVD生长温度通常很高,这就要求玻璃纤维材料具有优异的高温稳定性。事实上,除石英纤维以外,普通玻璃纤维材料很难满足这 一苛刻的生长条件。在由C―O四面体骨架构成的非晶态玻璃纤维表面,活性碳物种的扩散势垒非常高,导致生长的石墨烯畴区尺寸很小,且取向不可控。通常情况下,玻璃纤维上生长的石墨烯 存在畴区尺寸小、缺陷密度高、层数可控性差、均匀性差、生长速率慢等问题。此外,与平面衬底上的CVD生长不同,玻璃纤维丝束及其织物的特殊结构形态也给传质和传热过程设计带来新的挑战。2013年以来,本研究团队一直致力于传统玻璃表面石墨烯的生长方法研究,发展了一系列创新性的高质量石墨烯生长方法,材料体系从平面玻璃到石英光纤,进一步拓展到玻璃(石英)纤维。针对玻璃纤维上的石墨烯生长问题,通过空间限域生长、生长助剂引入、碳源前驱体设计、衬底表面调控以及流场设计等手段,打破了玻璃纤维衬底在碳源裂解、石墨烯成核、层数控制、结晶质量以及均匀性等方面的局限性,实现了高质量蒙烯玻璃纤维丝束和织物的可控制备(图4)。例如,针对玻璃纤维织物表面上石墨烯大面积生长均匀性差的难题,发明了“互补性碳源生长法”,通过不同裂解温度的混合碳源设计,调控活性碳物种沿流场方向的浓度分布,制备出大面积均匀的蒙烯玻璃纤维织物。 蒙烯玻璃纤维的低成本和规模化制备是走向实际应用的前提。在放大的CVD生长系统中,大腔体内流场与热场的均匀性控制难度大幅增加,直接影响着石墨烯在玻璃纤维表面的生长质量、速 率、均匀性等关键指标,最终制约着材料生产的品质、产能与成本。在利用静态CVD系统制备大面积蒙烯玻璃纤维织物的过程中,活性碳物种沿流场方向的不均匀分布直接导致石墨烯的生长均匀度下降,进而造成生产良率的降低。同时,由于玻璃纤维的催化惰性,石墨烯的生长速率通常很低,因此成为制约产能提升和生产成本降低的关键因素。利用玻璃纤维织物轻质、柔性、高强度的特点,本团队设计了动态“卷对卷”规模化CVD生长系统,并对气体流场、生长区热场、温度控制系统、进料控制系统等关键模块进行了系统集成,研制出第一代蒙烯玻璃纤维织物规模化制备装备。在该系统中,玻璃纤维织物以均匀的速度连续传入CVD腔室内完成石墨烯的高温沉积生长,最大可能地保障织物表面不同位置都经历相同的流场与热场环境,从而大幅提升生长均匀性。目前,本团队已成功突破蒙烯玻璃纤维织物的放量制备工艺,建成了年产能10000平方米的中试生产示范线(图5)。需要指出的是,目前蒙烯玻璃纤维的生产成本仍然较高,尺寸、良率受限于装备制造技术与材料制备工艺,这也是蒙烯玻璃纤维材料制备领域的未来攻关重点。图5 蒙烯玻璃纤维织物的规模化制备。(a–c)动态“卷对卷”规模化制备系统;(d)蒙烯玻璃纤维织物实物照片Fig 5 Mass production of graphene-skinned glass fiber fabric. (a–c) Roll to roll growth system (d) Photographs of graphene-skinned glass fiber fabric.与物理涂覆方法制备的石墨烯/玻璃纤维复合材料不同,高温生长工艺既保证了石墨烯薄膜的连续性和高性能,又保证了石墨烯与玻璃纤维之间的强附着力。通过调控石墨烯的厚度,蒙烯玻璃纤维的面电阻可在1–5000Ω∙sq−1范围内调控。蒙烯玻璃纤维完美地结合了石墨烯和玻璃纤维的优良特性,是一种全新的柔性导电导热材料,有望成为电热转换领域的杀手锏级材料。研究表明,蒙烯玻 璃纤维织物拥有极为出色的电加热性能,在~9.3 Wꞏcm−2功率密度下,升温速率达~190 °C∙s−1,且达到饱和温度后的温度不均匀性 3% (20 cm × 15 cm)(图6) 。蒙烯玻璃纤维还具有优异的红外辐射性能,表现出良好的灰体辐射特性,红外发射率高达~0.92 35,36。与铁铬合金、镍铬合金等传统电加热材料相比,蒙烯玻璃纤维拥有超高的电热转换效率,实测数据高~94%。因此,作为新一代轻质、柔性的电热转换材料,蒙烯玻璃纤维在电加热、辐射热管理等领域拥有巨大的应用潜力。众所周知,高性能复合材料大量用于空天飞行器、武器装备、风机叶片等制造过程中,玻璃纤维则是其中重要的构成单元,已经形成成熟的复材加工和成型工艺。原理上讲,纳米级到亚微米级厚度的石墨烯薄膜的引入基本不会改变相关工艺流程,也不会影响玻璃纤维制件的内部结构与力学性能(图7)。因此,蒙烯玻璃纤维材料的一大优势是其良好的体系兼容性和工艺兼容性,这是其走向实际应用的巨大推力。 蒙烯玻璃纤维材料在飞行器的防除冰领域取得了巨大成功,显示出不可替代的独特优势。飞行器高速飞行过程中,机翼前缘、发动机进气道等关键位置的结冰一直是困扰航空领域的难题。目前,金属基电加热技术是实现防除冰的有效手段,其防冰效果好,除冰效率高,性能稳定。但是,传统金属基电热材料面临着高功耗、低柔性、不耐极端环境等问题。同时,基于飞行器轻量化的发展趋势,复合材料的使用比例不断攀升,玻璃纤维作为重要的复合材料基材在飞行器中已得到大量应用,随之而来的是金属基电加热防除冰材料与复合材料之间的结合强度和稳定性问题。蒙烯玻璃纤维的问世完美地解决了这一技术难题,尤其其良好的透波性能使其成为特种应用领域的杀手锏材料。蒙烯玻璃纤维是第一个实现实际应用的超级蒙烯材料,展示了超级蒙烯材料的巨大理论价值和广阔应用前景,为原子级厚度的石墨烯走向应用开辟了全新的路径,也为新型石墨烯基复合材料设计提供了新的思路。展望正如前述蒙烯玻璃纤维的具体案例,我们可以通过巧妙的载体选择和材料设计,架起连接理想的单层石墨烯基元到实用宏观材料的桥梁,实现石墨烯的优异特性向宏观实用场景的有效传递。在超级蒙烯材料设计和制备过程中,衬底材料的选择和预处理、石墨烯的可控生长、石墨烯—衬底的界面调控、后加工成型以及批量制备工艺与装备等极为关键,也是超级蒙烯材料走向应用的基础。由于超级蒙烯材料的多样性和复杂的电子声子耦合,这一全新的复合材料领域有可能孕育新的物理发现,催生新的技术创新,甚至引发新的产业革命。支撑衬底的选择是超级蒙烯材料设计的关键所在,决定着制备可行性、材料性能以及应用前景。支撑衬底可分为非金属和金属两大类别。上文详细介绍了蒙烯玻璃(石英)纤维材料。实际上,很多常见的非金属材料(如氧化铝、氮化硼、碳化硅等)表面,都有直接高温生长石墨烯的研究报道,这说明以这些材料为衬底的超级蒙烯材料制备具有可行性。尤其是在蓝宝石(α-Al2O3)表面,通过甚高温方法生长得到的石墨烯薄膜质量很高,层数和结构的控制性也很好;而氧化铝纤维作为一类新型氧化物纤维材料,具有优异的力学强度、耐高温、机械柔性、化学稳定性以及绝缘性,已逐渐成为新材料领域的翘楚。在超级蒙烯材料设计理念指导下诞生的蒙烯氧化铝纤维集石墨烯和氧化铝纤维的优异特性于一身,有望成为新一代轻质高强、高导电、高导热复合材料。大多数过渡金属因具有部分填充的d轨道,或者能形成可吸附和活化反应介质的中间产物而表现出良好的催化活性,是高品质石墨烯生长的良好衬底。而以铜、铝、铟、锡等金属材料为代表的导电、导热材料,被广泛应用于国民经济和国防军工的各个领域,例如输配电网络、雷达微波管、电磁屏蔽、电子芯片封装等。随着这些领域的迅速发展,对金属材料提出了更高的要求,具有轻质、高强、高导电、高导热、耐腐蚀、抗电磁屏蔽 等特性的金属基复合材料成为众多高端装备的亟需材料。已有研究表明,石墨烯蒙皮的引入可显著改善金属材料的性能。例如,以铜箔、铜丝、铜网、铜粉等不同形态的金属铜材作为支撑衬底生长石墨烯,再经过热压复合等工艺处理,可得到具有高导电、高导热、高载流量的蒙烯铜材料;利用化学气相沉积方法在铜、铝表面生长少层石墨烯或垂直石墨烯纳米片,可显著提升金属材料的电磁屏蔽效能,增强抗腐蚀能力。这种全新的金属基蒙烯材料有望促进飞行器电缆、电机、电触头、隐身涂层基板、雷达微波行波管等结构功能部件的升级换代,在飞行器减重、防雷击以及电磁对抗、电磁防护领域具有广阔的应用前景。在超级蒙烯材料中,作为支撑衬底的体相材料仍发挥着重要作用,石墨烯通过蒙皮或以复合 界面的形式介入其中,带来新的功能(如导电、导热增强等)。由于石墨烯“蒙皮”很薄,从单原子层到亚微米厚度可调,而支撑衬底材料的特征尺寸通常都在微米到毫米量级,因此如何有效提高石墨烯的相对比重、构筑连续的石墨烯网络、调控石墨烯与衬底材料的耦合强度,以最大化地发挥石墨烯的性能,成为超级蒙烯材料设计与制备的关键科学问题。后加工工艺可为超级蒙烯材料的微观结构与性能改善提供新的调控空间。各种蒙烯金属材料基元的进一步复合成型可制造出丰富的界面结构。可以想象,在此类新型复合材料体系中,石墨烯会带来更多的导电、导热通道,而金属为石墨烯提供更多的载流子。需指出的是,高温生长过程、后加工工艺以及石墨烯与金属衬底的相互作用可能导致金属衬底的体相结构重构,进而带来新的调控空间或需要解决的技术挑战。此外,对于超级蒙烯纤维材料来说,不同的编制结构和图案化设计也会影响其力学、热学和电磁学性能。近年来,粉末冶金、增材制造、复材加工成型等相关领域的快速技术进步也为超级蒙烯材料的发展提供了良好的技术依托。应当指出的是,超级蒙烯材料研究尚处于起步阶段,在材料设计、高温生长、物性测量和应用探索方面空间巨大。例如,蒙烯粉体材料比表面积大,易于加工,有利于发挥石墨烯的优异性能,但高温生长过程面临着难以分散、易于团聚、不易工程放大等难题。对蒙烯金属粉体制备来说尤其如此,有效控制高温生长过程中的金属粉体团聚和碳源前驱体传质至关重要。针对这些问题,人们发展了鼓泡化学气相沉积生长方法,但生长效率和粉体质量的控制仍有很大的提升空间。对于蒙烯非金属材料,由于缺乏催化活性,通常石墨烯的质量和生长速率较低。为解决这些问题,人们发展了限域空间法、助催化法、甚高温法等特殊生长方法,与金属表面催化生长的石墨烯相比仍有显著的差距。此外,目前所报道的蒙烯金属仅限于铜和铝,其导电性和导热性提升的物理机制尚不清晰,石墨烯与金属界面结构的调控方法 和规模化制备工艺还远未成熟。在应用探索方面,石墨烯的导热性和导电性为人们所青睐,超级蒙烯材料的问世有望促进电力电缆、信号传输、导热散热等结构功能器件的升级换代。需要关注的是,具体应用场景下超级蒙烯材料的短板,如高温生长工艺带来的载体结构和力学性能变化等。有针对性地发展超级蒙烯材料的生长方法、规模化工艺和装备是这一新兴领域发展的关键。毋庸置疑,这一新概念材料的提出将有力推动石墨烯与传统材料的融合,为破解连续态石墨烯薄膜材料的实用化开辟新路,为加快石墨烯材料的产业落地提供新的动力。
  • 后摩尔时代石墨烯面临的挑战与机遇
    从“买不到”到“买不起”,自2020年底开始的全球范围内的“缺芯荒”,有着愈演愈烈之势,芯片价格飙涨至5倍仍不见停。全球性芯片荒似乎没有经过多少时日,就如多米诺骨牌一样,冲击着全球百余行业,从汽车、钢铁产品、混凝土生产到空调制造,甚至包括肥皂生产,都或多或少受之影响,多位业内专家表示,至少要到2022年全球芯片供应链才能恢复正常化。随着5G通讯、智能汽车及线上化办公的发展,仿佛一夜之间人们对芯片的需求就提升了数个级别。芯片产业的发展,对单晶晶圆及单晶硅材料的需求也一夜暴涨。众所周知,单晶晶圆及单晶硅材料是制造半导体芯片的基本材料,也是集成电路产业的基石。目前最广泛使用的半导体晶圆材料为单晶硅晶圆,此外还有以砷化镓(GaAs)、磷化铟(InP)为代表的第二代半导体材料,以及以碳化硅(SiC)、氮化镓(GaN)等为代表的第三代半导体材料。1975年,Intel创始人之一的戈登摩尔提出摩尔定律后,集成电路一直沿着“当价格不变,每18个月晶体管的密度增加一倍、性能提升一倍”的路径发展。单晶硅作为芯片产业中最为关键的基础材料已发展了数十年,在晶体管尺寸接近物理极限、经济成本越来越高的当下,集成电路发展遇到了挑战,产业发展进入“后摩尔时代”,如何在摩尔定律之外进行材料创新,更显得尤为重要。6月9日,世界半导体大会在南京召开,中国科学院院士、上海交通大学党委常委、副校长毛军发在主题演讲中表示,集成电路的发展有可能会绕开摩尔定律,往异质集成电路上发展。所谓异质集成电路,即是将不同工艺节点的化合物半导体高性能器件(芯片)、硅基低成本高集成器件/芯片(都含光电子器件或芯片),与无源元件或天线,通过异质键合成或外延生长等方式集成而实现。而在这个过程中,单晶化石墨烯无论是作为外延生长衬底材料,还是新型器件材料,都拥有广阔的发展空间。石墨烯是由碳原子组成的六角蜂窝状二维原子晶体材料,具有线性色散的狄拉克锥形能带结构,载流子有效质量为零,迁移率极高,拥有非常优异的物理性能。而石墨烯薄膜材料又有单晶和多晶之分。与传统的多晶石墨烯相比,单晶化石墨烯具有多种优势。多晶石墨烯晶粒畴区小且不均一,晶粒尺寸通常为5-20 µm,但单晶的晶粒最大可达厘米级。单晶石墨烯的载流子迁移率室温下约为 300000 cm2/Vs,远高于多晶石墨烯由于存在晶界限制的1000-3000 cm2/Vs。此外,多晶石墨烯层数调控性差,且存在大量的本征缺陷,这导致了其电学、力学、热学等诸多优良性质的降低。相比之下,单晶石墨烯性能优异,可构筑高性能的电子器件或光电子器件,逐渐成为硅基电子学器件的有力竞争者和补充者。石墨烯材料想要进入芯片、光电等高精尖领域,类比于基于硅晶圆的硅电子器件,基础则是单晶化石墨烯材料的批量制备。图1 北京石墨烯研究院单晶石墨烯晶圆(左)与多晶石墨烯(右)光镜图像对比欧盟石墨烯旗舰计划(Graphene Flagship)提供了一种新颖的单晶石墨烯生长技术,即通过光刻技术在衬底表面打上用于石墨烯单晶晶体生长的“晶种”,随即通过调控生长技术,控制石墨烯晶体在指定位置的晶种上生长,最后形成约100 μm级的单晶石墨烯晶体。这种方法可以自由控制晶体生长位置,便于在制备光电子器件前期妥善排布材料空间,同时降低了各类生长耗材的使用。然而,这种制备方式虽然技术可控,但工艺难度较高,生长效率低,不便进行产业化放大,难以满足市场中日渐增长的产业需求。图2 a-d为欧盟旗舰计划“晶种”技术单晶石墨烯生长及转移过程;e为单晶石墨烯阵列SEM图像;f为单晶石墨烯在铜箔上的光镜图像;g为转移至SiO2/Si后的光镜图像高品质单晶石墨烯是目前全球范围内对石墨烯材料性能和品质最极致的追求。市场数据表明,欧盟石墨烯旗舰计划目前最大单晶石墨烯尺寸在4厘米级,且仍旧处于科研研发状态,欧洲最大CVD石墨烯生产商Graphenea也仅能产业化制备晶畴为20 μm的多晶石墨烯材料,远低于集成电路产业的要求。我国虽然是石墨烯制备的产业大国,无论在企业数量还是石墨烯产能上,都傲居全球榜首,但主要集中在粉体材料或低品质多晶薄膜材料,而高品质石墨烯薄膜的批量制备技术依然是当前石墨烯产业发展的瓶颈。根据CGIA公开数据显示,截至20年底,中国拥有约1.7万家石墨烯相关注册企业,但据统计,真正开展业务的仅3000余家,而粉体制备及相关应用企业占据绝大多数。同时,由于缺少稳定的生长工艺和可靠的制造装备等原因,传统CVD制备方式批量生产的单层石墨烯薄膜材料多为多晶石墨烯,从事高端单晶化CVD石墨烯薄膜的企业更是寥寥无几。毫无疑问,单晶石墨烯生长工艺更加复杂,处理技术更加困难,但单晶石墨烯没有晶界,具有更高的平整度、机械性能、均一性及光电性能,是石墨烯应用于高性能电子及光电器件集成的理想材料。尤其是在异质集成、生物传感器、第三代半导体及其外延材料的生长上,对单晶化石墨烯材料有着更高品质的要求。北京石墨烯研究院(BGI)及刘忠范院士团队深耕石墨烯产业十数年,在单晶化大尺寸石墨烯薄膜生长上突破了产业化的技术壁垒,通过特殊的衬底处理工艺,可实现A3尺寸衬底上高品质石墨烯薄膜的宏量制备,年产能15000片/年,以及10x10 cm2铜基单晶石墨烯薄膜的制备,年产能90000片/年。无论在产品尺寸、晶粒畴区还是质量上,北京石墨烯研究院单晶化石墨烯产品都拥有无可比拟的优势。表1 北京石墨烯研究院单晶石墨烯产品参数尺寸通过短短五个月的市场化试运行,北京石墨烯研究院的单晶石墨烯产品已收获包含军方、中车集团、新加坡国立大学等国内外50余家一流高校科研院所与企业的订单,其中超半成和异质结构、半导体材料、光电器件相关。北京石墨烯研究院的单晶化石墨烯产品,逐渐在异质集成领域崭露头角。基于强大的市场需求及核心基础地位,伴随疫情带给社会生活的巨大改变,全球都在加码发展半导体产业。“未来的变化是产业‘赛道’可能会变,新材料和新架构的颠覆性技术将成为后摩尔时代集成电路产业的主要选择。”赛迪顾问股份有限公司副总裁李珂在2021世界半导体大会上如是表示。后摩尔时代,异质集成作为绕道摩尔定律创新的途径之一,结合石墨烯等新兴光电新材料,开辟石墨烯颠覆性应用技术,为我国早日实现“中国芯”具有重要意义。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制