当前位置: 仪器信息网 > 行业主题 > >

原位微区

仪器信息网原位微区专题为您整合原位微区相关的最新文章,在原位微区专题,您不仅可以免费浏览原位微区的资讯, 同时您还可以浏览原位微区的相关资料、解决方案,参与社区原位微区话题讨论。

原位微区相关的论坛

  • 求找能做辰砂原位微区微量元素分析的机构

    各位大佬,本人目前有几个辰砂树脂靶样想利用LA-(MC)-[url=https://insevent.instrument.com.cn/t/yp][color=#3333ff]ICP-MS[/color][/url]做原位微区微量元素分析,辰砂的主要成分是硫化汞,我问了很多机构都说做不了,请问诸位大佬们知道哪里能做么?

  • 扫描显微环境下原位高温力学测量技术及其应用研究

    分享一篇关于原位高温SEM的文献,中国科学: 物理学 力学 天文学 ,[color=#ffffff] [/color]2018 年 第 48 卷 第 9 期扫描电子显微镜(Scanning Electron Microscope, SEM)是科学研究中的重要观察设备, 在过去的几十年, 人们一直致力于借助SEM从微尺度层面对热端部件所涉及的关键合金材料和构件的力学性能进行原位高温测量和表征. 这一研究对认识合金材料微结构损伤演化物理机制、 理解其高温失效和破坏机理、 提取力学表征参数和提高寿命预测方法的准确性等有重要的理论意义和工程价值. 本文首先介绍了SEM环境下原位高温力学实验的困难和挑战, 综述了近年来国内外在SEM环境下发展的原位高温变形测量技术, 涉及扫描环境下的原位高温测量设备、 高温成像技术、 高温变形测量方法等. 在此基础上, 介绍了作者近年来对镍基合金材料在高温变形、 蠕变、 以及疲劳与断裂方面的研究工作. 最后, 论文对该领域进一步的研究工作进行了展望.

  • TEM原位加热微栅选择

    大家好,我想做个TEM的原位加热实验,材料是500nm-1um的纳米片片,想看看其热稳定性和加热下晶格的变化。用的仪器是样品杆加热,然后通过铜网热传导过去,在仪器上实际上显示的温度是样品杆头的温度。目前的一个问题是,选择什么样的微栅可以导热好一点?之前用铜网微栅,被导师质疑说虽然铜可以很好导热,但微栅碳的导热不行,所以实际加到样品上的温度会很低。因此想请教,用什么微栅可以导热好一点,另外样品较小,要可以撑得住样品。二是类似的实验,是否有办法做个标样标定,比如用一个标样在我的微栅上,由其特定温度下的变化,标定用这种微栅的热传导大概差了多少。谢谢大家!

  • 冷冻光电关联:让原位微观生命过程可视化

    冷冻光电关联:让原位微观生命过程可视化

    结构生物学是用物理学方法在原子水平阐明生物大分子的三维结构,进而诠释生物大分子的生物学功能及其分子机制的科学。近几年,冷冻电镜在生物物理,特别是结构生物学领域掀起了一轮新的革命。冷冻电镜技术包括单颗粒技术和原位冷冻电镜技术,2017年单颗粒技术已获得诺贝尔奖,放眼未来,冷冻电镜更多的是要应用于获取细胞和组织样品的原位信息,尤其是利用冷冻电镜电子断层扫描成像技术(Cryo-ET)获得三维图像,将细胞内的生命过程可视化,在原位对生物大分子的结构进行解析,并进一步分析其与所处周围环境之间的相互作用关系,进而阐明其发挥功能的分子机制。蛋白质聚集是许多神经退行性疾病的典型症状,包括帕金森病(Parkinson’sdisease)、亨廷顿病(Huntington’sdisease)、以及肌萎缩侧索硬化症(amyotrophiclateral sclerosis)等,至今为止还没有针对这类疾病的有效治疗方案,因此了解这类疾病的致病机理尤为重要。在细胞内表达这些疾病相关的蛋白会导致细胞毒性以及形成大的胞内包涵体,然而这些包涵体的具体致病机理还不清楚,而且这些包涵体的组成以及其精细的细胞原位结构信息也无人知晓。为了回答这一科学问题,德国马克斯普朗克生物化学研究所Baumeister教授组的研究人员利用先进的冷冻电镜光电关联技术(Cryo-CLEM)、冷冻聚焦离子束切割技术(Cryo-FIB)、以及冷冻电子断层扫描三维重构技术(Cryo-ET),在小鼠原代神经细胞原位解析了亨廷顿基因1号外显子中衍生的多聚谷氨酰胺(polyQ)所形成的包涵体及其微环境的原位精细结构,相关结果发表在2017年9月的Cell杂志。他们发现polyQ包涵体是由淀粉样肽的纤维构成,与细胞的内膜系统特别是内质网相互作用,使内质网膜发生形变并扰乱其组成,还改变了包涵体周围的内质网膜的动态性。该研究结果暗示淀粉样肽的纤维和内质网的异常相互作用导致了蛋白质聚集物所产生的细胞毒性。[align=center][img=,690,424]https://ng1.17img.cn/bbsfiles/images/2018/11/201811271518599236_8463_3224499_3.jpg!w690x424.jpg[/img][/align]2018年3月,该研究组在PNAS杂志发表在酵母系统内的polyQ原位分子的结构解析,他们发现在酵母细胞内polyQ蛋白聚集体形成了无定形的包涵体以及少量的纤维丝,并使线粒体和脂滴的形态发生变形。对比这两种不同的机体系统下的差异,我们可以看到同样的polyQ蛋白聚集体在不同的环境中采用了不同的构像并利用特定的机制来靶向不同的细胞结构,从而产生细胞毒性。[align=center][img=,690,770]https://ng1.17img.cn/bbsfiles/images/2018/11/201811271519325828_4209_3224499_3.jpg!w690x770.jpg[/img][/align]另外,2018年2月的Cell杂志报道了该研究组在大鼠神经细胞原位解析了一种重复短肽(poly-GA)蛋白聚集体及其微环境的结构,不同于polyQ形成的纤维状结构,poly-GA聚集体是由平面扭曲的长短不一的丝带状结构组成。poly-GA聚集体大量募集了26S蛋白酶体复合物,而其他生物大分子如核糖体或分子伴侣却被排除在聚集体外部。与poly-GA的直接相互作用使蛋白酶体处于失活状态,虽然在整体水平上细胞内的蛋白酶体表达量没有变化,但有功能的蛋白酶体的数量大幅减少,揭示了蛋白质聚集物所产生细胞毒性的另一原因。[align=center][img=,690,378]https://ng1.17img.cn/bbsfiles/images/2018/11/201811271519469883_8555_3224499_3.jpg!w690x378.jpg[/img][/align]Baumeister教授组是Cryo-CLEM、Cryo-FIB以及Cryo-ET等关键技术方法发展的开拓者和领航者。Cryo-CLEM-FIB-ET即是在整个细胞内定位荧光标记的特定目标分子,观察其动态变化并在感兴趣的时刻进行快速冷冻,然后转移到冷冻扫描电镜利用冷冻聚焦离子束进行光电关联匹配,精确定位目标分子位置并进行聚焦离子束切割产生一层100-200nm厚的切片,最后利用冷冻电子断层扫描成像从原子分辨率上解析其未被破坏的天然原位结构信息。目前冷冻光电关联的一大瓶颈是光镜的分辨率较低,虽然超分辨光电关联技术在飞速发展,但是其缺点如高强度激光照射可能使样品升温,成像速度慢等还需要一一克服。超分辨光电关联令人振奋的一大潜在应用是来精确指导冷冻聚焦离子束切割,使得大的细胞样品中的任何感兴趣目标分子都能被精确定位切割,进而进行高分辨率数据收集。另外,随着技术进一步发展,用高电子密度标签来标记目标分子并在电镜下直接成像也将会成为可能。结构生物学的终极目标是了解细胞生命过程中每一个分子的结构、功能以及它们之间的相互作用,Cryo-CLEM-FIB-ET则是在结构生物学与细胞生物学之间架起的一座桥梁,让细胞内的微观生命动态过程可视化![b]参考文献[/b]1. Bauerlein,F. J. B., et al. 2017. In Situ Architecture and Cellular Interactions of PolyQInclusions. Cell 171(1): 179-187.2. Guo, Q., etal. 2018. In Situ Structure of Neuronal C9orf72 Poly-GA Aggregates RevealsProteasome Recruitment. Cell 172(4): 696-705.3. Gruber, A.,et al. 2018. Molecular and structural architecture of polyQ aggregates inyeast. Proc Natl Acad Sci U S A. .4. Wolff, G.,et al. 2016. Towards correlative super-resolution fluorescence and electroncryo-microscopy. Biol Cell 108(9): 245-258.Oikonomou, C. M. 2017. Cellular ElectronCryotomography: Toward Structural Biology In Situ. Annu Rev Biochem 20(86):873-896.来源:【生物成像中心】

  • 为刻蚀终点探测进行原位测量

    作者:泛林集团 Semiverse Solutions 部门软件应用工程师 Pradeep Nanja介绍半导体行业一直专注于使用先进的刻蚀设备和技术来实现图形的微缩与先进技术的开发。随着半导体器件尺寸缩减、工艺复杂程度提升,制造工艺中刻蚀工艺波动的影响将变得明显。刻蚀终点探测用于确定刻蚀工艺是否完成、且没有剩余材料可供刻蚀。这类终点探测有助于最大限度地减少刻蚀速率波动的影响。刻蚀终点探测需要在刻蚀工艺中进行传感器和计量学测量。当出现特定的传感器测量结果或阈值时,可指示刻蚀设备停止刻蚀操作。如果已无材料可供刻蚀,底层材料(甚至整个器件或晶圆)就会遭受损坏,从而极大影响良率[1],因此可靠的终点探测在刻蚀工艺中十分重要。半导体行业需要可以在刻蚀工艺中为工艺监测和控制提供关键信息的测量设备。目前,为了提升良率,晶圆刻蚀工艺使用独立测量设备和原位(内置)传感器测量。相比独立测量,原位测量可对刻蚀相关工艺(如刻蚀终点探测)进行实时监测和控制。使用 SEMulator3D工艺步骤进行刻蚀终点探测通过构建一系列包含虚拟刻蚀步骤、变量、流程和循环的“虚拟”工艺,可使用 SEMulator3D 模拟原位刻蚀终点探测。流程循环用于在固定时间内重复工艺步骤,加强工艺流程控制(如自动工艺控制)的灵活性[2]。为模拟控制流程,可使用 "For Loop" 或 "Until Loop"(就像计算机编程)设置一定数量的循环。在刻蚀终点探测中,可使用 "Until Loop",因为它满足“已无材料可供刻蚀”的条件。在循环中,用户可以在循环索引的帮助下确认完成的循环数量。此外,SEMulator3D 能进行“虚拟测量”,帮助追踪并实时更新刻蚀工艺循环中的材料厚度。通过结合虚拟测量薄膜厚度估测和流程循环索引,用户可以在每个循环后准确获取原位材料刻蚀深度的测量结果。用 SEMulator3D 模拟刻蚀终点探测的示例初始设定在一个简单示例中,我们的布局图像显示处于密集区的四个鳍片和密集区右侧的隔离区(见图1)。我们想测量隔离区的材料完成刻蚀时密集区的刻蚀深度。我们将用于建模的区域用蓝框显示,其中有四个鳍片(红色显示)需要制造。此外,我们框出了黄色和绿色的测量区域,将在其中分别测量隔离区的薄膜厚度 (MEA_ISO_FT) 和沟槽区的刻蚀深度 (MEA_TRENCH_FT)。工艺流程的第一步是使用 20nm 厚的硅晶体层(红色)、30nm 的氧化物(浅蓝色)和 10nm 的光刻胶(紫色)进行晶圆设定(图2)。我们曝光鳍片图形,并对使用基本模型刻蚀对光刻胶进行刻蚀,使用特定等离子体角度分布的可视性刻蚀对氧化物材料进行刻蚀。氧化物对光刻胶的选择比是100比1。我们在 SEMulator3D 中使用可视性刻蚀模型来观察隔离区和有鳍片的密集区之间是否有厚度上的差异。[img]https://img1.17img.cn/17img/images/202401/uepic/a41bec0f-535e-420a-8a19-ed4282cd5c66.jpg[/img]图1:模型边界区域(蓝色),其中包含四个鳍片(红色)和用于测量隔离区(黄色)和沟槽区(绿色)薄膜厚度的两个测量区域[img]https://img1.17img.cn/17img/images/202401/uepic/630f2367-a619-4bc9-8608-09c532bef68f.jpg[/img]图2:SEMulator3D 模型,硅晶体(红色)、氧化物(浅蓝色)和在光刻胶中显影的四个鳍片(紫色)SEMulator3D 刻蚀终点探测循环SEMulator3D 的工艺流程使用 Until Loop 循环流程。我们将测量隔离区的材料厚度,并在隔离氧化物薄膜耗尽、即厚度为0时 (MEA_ISO_FT==0) 停止该工艺。在这个循环中,每个循环我们每隔 1nm 对氧化物材料进行1秒的刻蚀,并同时测量此时隔离区氧化物薄膜厚度。此外,我们将在每次循环后追踪两个鳍片间沟槽区的刻蚀深度。这个循环索引有助于追踪刻蚀循环的重复次数(图3)。[img]https://img1.17img.cn/17img/images/202401/uepic/5041079a-7da3-459f-907c-f62f1b6ac8c1.jpg[/img]图3:SEMulator3D 刻蚀终点探测模拟中的循环流程结果对隔离薄膜进行刻蚀,直至其剩余 20nm、10nm 和 0nm 深度的模拟结果如图4所示。模型中计算出隔离薄膜厚度的测量结果,以及两个鳍片间沟槽区的刻蚀深度。[img]https://img1.17img.cn/17img/images/202401/uepic/b5d9d13c-68e2-4389-80d1-b974c07afe99.jpg[/img]图4:隔离区薄膜厚度剩余 20nm、10nm 和 0nm 的工艺模拟流程,及相应从光刻胶底部开始的沟槽刻蚀深度我们对循环模型进行近30次重复后,观察到隔离区的薄膜厚度已经达到0,并能追踪到沟槽区氧化物的刻蚀深度(当隔离区被完全刻蚀时,密集区 30nm 的氧化物已被刻蚀 28.4nm)。结论SEMulator3D 可用来创建刻蚀终点探测工艺的虚拟模型。这项技术可用来确定哪些材料在刻蚀工艺中被完全去除,也可测量刻蚀后剩下的材料(取决于刻蚀类型)。使用这一方法可成功模拟原位刻蚀深度控制。使用类似方法,也可以进行其他类型的自动工艺控制,例如深度反应离子刻蚀 (DRIE) 或高密度等离子体化学[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相[/color][/url]沉积 (HDP-CVD) 工艺控制。参考资料:[1] Derbyshire, Katherine. In Situ Metrology for Real-Time Process Control, Semiconductor Online, 10 July 1998, https://www.semiconductoronline.com/doc/in-situ-metrology-for-real-time-process-contr-0001.[2] SEMulator3D V10 Documentation: Sequences, Loops, Variables, etc.[来源:大半导体产业网][align=right][/align]

  • 【原创大赛】金属原位分析仪分析应用情况

    【原创大赛】金属原位分析仪分析应用情况

    北京纳克的原位分析仪已经使用了有一段时间了,给大家介绍一下最近的应用情况: 目前,该设备主要用在测定钢板的偏析,听纳克他们宣传说是能做夹杂、疏松什么的,好像比较费劲,现在是没什么应用。 介绍下应用原位分析仪检测某钢板横截面上C、Si、Mn、P、S、Ni、Cr、Mo等元素的偏析状况,: http://ng1.17img.cn/bbsfiles/images/2011/08/201108161615_310568_2246918_3.jpg 原位分析激发斑点图 以碳元素为例吧,要不然图就太多了,碳元素的偏析分析结果如下图: http://ng1.17img.cn/bbsfiles/images/2011/08/201108161616_310569_2246918_3.jpg C元素的二维分布图 从图中可以看到碳元素含量的在中心线区域存在一个高含量分布区,该区域由于在同一元素的分布上含量明显高于周围其它区域而呈灰色显示。这个特殊的分布特点说明C元素在该厚钢板横截面的中心线区域有明显的正偏析,偏析位置与钢板的中心线区域较一致并呈连续的带状分布。 同时采用红外碳硫仪对该样品的相同区域进行取点分析的检测结果与原位分析的结果进行了对比如下: http://ng1.17img.cn/bbsfiles/images/2011/08/201108161616_310570_2246918_3.jpg 红外测定取点位置对比分析结果如下: 红外法原位法10.140.13~0.20偏析度1.52

  • 《Science》大子刊:原位电子显微学用芯片厚度的重大突破!

    [color=#000000]原位电镜(in situ transmission electron microscopy)是一种在电子显微镜下实时高空间分辨率观察和记录材料或样品在不同条件下变化的技术,这种技术的应用涵盖了多个领域,包括材料科学、纳米科技、生物学等。特别是得益于气体和液体环境的引入,大大的拓展了原位电镜技术的应用范畴,如腐蚀科学和催化反应等。电子显微镜本身具有非常高的真空工作环境,因此,[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相[/color][/url]和[url=https://insevent.instrument.com.cn/t/5p][color=#3333ff]液相[/color][/url]反应介质通常被密封在一个非常小的纳米反应器里面。由于氮化硅(SiNx)具有易于微纳米制造且在一定厚度下仍有可靠的力学特性及适度的电子透明度等优点,被广泛应用于原位电镜中芯片用的密封膜材料。[/color][color=#000000]在过去20年,基于像差校正器、单色器及直接探测器等硬件技术的发展,电子显微镜本身的性能包括空间和能量分辨率都得到显著提升。但是原位电子显微学直到目前为止,在空间分辨率上并无显著突破。关键原因是作为密封的SiNx膜材料限制了电镜本身及原位实验的品质因子。目前商用的SiNx膜的厚度一般为50 nm,而[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相[/color][/url]和[url=https://insevent.instrument.com.cn/t/5p][color=#3333ff]液相[/color][/url]电子显微学一般需要用两个原位芯片,这样仅密封膜的厚度就高达100 nm。如此厚的密封膜会造成非常高的有害电子散射,大大降低了原位电子显微学实验中采集的各种数据的信噪比。在原位电子显微学领域,学者们都一直认为降低SiNx膜的厚度非常必要,但是直到目前仍很难实现,因为仅通过刻蚀降低SiNx膜厚度,会造成力学性能的显著恶化。[/color][color=#000000]针对此问题,[b]美国西北大学的Xiaobing Hu[/b]和[b]Vinayak Dravid教授[/b]研究团队从自然界蜂窝结构稳定性获得灵感,巧妙利用[b]掺杂浓度对Si的刻蚀速率影响,在观察窗口区域引入了额外的微米尺度Si支撑图案,成功的将SiNx膜的厚度从50 nm降至10 nm以下。[/b]这种在窗口区域具有支撑图案的超薄原位芯片具有很多优点,如优异的力学性能、耐电子束辐照、充分大的可观察区域,保证了该超薄芯片在原位电子显微学上的广泛应用。基于Pd的储氢特性,作者系统了探索了超薄芯片对原位实验测量品质因子的影响,及Pd纳米颗粒的吸/析氢行为。[/color][align=center][img]https://img1.17img.cn/17img/images/202401/uepic/c12df4c5-8db9-4fce-8ddf-16d17cfd42fd.jpg[/img][/align][align=center][size=14px][color=#7f7f7f]图1. 超薄原位电镜用芯片的制备及其优异的力学稳定性和电子束耐辐照性能,插图A、C中标尺分别为10 mm, 100 μm[/color][/size][/align][color=#000000]图1A显示超薄芯片的制备过程,图1B显示了具有不同厚度的SiNx窗口的原位芯片。图1C的扫描透射模式下的暗场和明场像显示出超薄芯片窗口区域的蜂窝状特征。图1D显示出这种超薄芯片优异的力学特性,即使在5 nm厚的情况下,仍能承受1个大气压,完全满足绝大多数的[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相[/color][/url]原位实验。图1E显示出超薄芯片非常好的耐电子束辐照特性,当厚度从50 nm降到10 nm时,临界电子束剂量几乎没有改变。图1E为用光学方法和电子能量损失谱测量的不同厚度的SiNx膜数据。[/color][align=center][img]https://img1.17img.cn/17img/images/202401/uepic/6f3b49eb-f7b1-4f8f-8a5f-362aa1e61846.jpg[/img][/align][align=center][size=14px][color=#7f7f7f]图2. 基于超薄原位芯片的[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相[/color][/url]电子显微学实验品质因数的显著提升[/color][/size][/align][color=#000000]图2A为理论模拟不同厚度的SiNx对Au纳米颗粒明场像信噪比的影响,对于超薄原位芯片而言,即使在电子剂量比较低的情况下,仍可以拥有很好的信噪比,成像质量比较高。图2B、C显示出在一个大气压的Ar环境不同SiNx膜厚度下的高分辨像对比。可以看出与常规50 nm厚的原位芯片相比,超薄芯片的应用不仅提高了图像的信噪比,分辨率也从2.3 ?提高到1.0 ?。图2C显示出了能谱对比结果,可以看出在一个大气压的Ar环境下,当原位芯片窗口区域膜厚度从50 nm 降低到10 nm时,Ar/Si峰值比从0.59%升到8.3%,提高了14倍以上。图2E-G数据显示了超薄原位芯片显著提高了电子能量损失谱分析的灵敏度。[/color][align=center][img]https://img1.17img.cn/17img/images/202401/uepic/6d6e2657-12c9-4711-80d5-725e65b1eeb9.jpg[/img][/align][align=center][size=14px][color=#7f7f7f]图3. 基于超薄原位芯片电子显微学在储氢材料中应用[/color][/size][/align][color=#000000]图3A、3B为在不同支撑载体下纳米Pd颗粒的电子衍射对比图,可以看出超薄芯片显著压制了膜材料本身的有害电子散射,提高的电子衍射的信噪比。而这也允许研究人员在原位[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相[/color][/url]实验中进行定量衍射分析。图3C-D的原位电子衍射,显示出Pd纳米颗粒在原位充氢、放氢过程中的相变行为。图3E的电子能量损失谱分析确认了相变产物PdHx的产生。[/color][color=#000000]基于[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相[/color][/url]超薄原位芯片的设计与探索实验,作者提出这种超薄芯片的设计策略可大规模推广到[url=https://insevent.instrument.com.cn/t/5p][color=#3333ff]液相[/color][/url]原位及其它基于SiNx的原位芯片上,大大提高原位电子显微学实验的品质因子,从而允许研究人员在原位实验过程中不单单观察形貌变化,可将其它先进电子显微学方法应用到原位实验上来。更进一步,这种超薄芯片也可拓展到原位X射线领域。可以说,超薄芯片的概念提出,将大大的影响整个原位实验领域。[/color][color=#000000]这一成果近期发表在[b][i]Science Advances[/i][/b]上,美国西北大学[b]胡肖兵研究副教授[/b],[/color][color=#000000][b]Vinayak Dravid讲席教授[/b][/color][color=#000000]为文章的通讯作者,[b]Kunmo Koo博士[/b]为文章的第一作者。[/color][来源:材料学网][align=right][/align]

  • 【原创大赛】记一Gatan 652双倾原位加热杆维修

    【原创大赛】记一Gatan 652双倾原位加热杆维修

    [align=center][b][font='Times New Roman',serif]Gatan 652[/font][font=宋体]双倾原位加热杆倾转机构损坏维修[/font][/b][/align][align=left][font=宋体] 原位透射电镜技术虽然上世纪六七十年代就已经被研发出来,但近些年却有越发热门的趋势,近年材料科学领域不少优秀的成果都来自原位透射观察。相比现在比较热门的原位气氛、液相等技术,原位加热则是一个比较老的技术,最早的[/font][font='times new',serif]TEM[/font][font=宋体]原位主要就是原位加热观察。尽管[/font][font='times new',serif]TEM[/font][font=宋体]原位加热并不是新技术,但也有不少新的成果出自原位加热,仍然是值得研究的一个方向。[/font][/align][font=宋体][font='times new',serif][/font][/font][align=left][font='times new',serif] Gatan652[/font][font=宋体]原位加热样品杆(如图[/font][font='times new',serif]1[/font][font=宋体])采用的是较为传统的炉式加热方案,虽然不如现在的芯片加热精确度高,但优点是可以直接对常规φ[/font][font='times new',serif]3[/font][font=宋体]透射样品进行加热观察,不需要高成本的[/font][font='times new',serif]FIB[/font][font=宋体]制样,实验和操作成本都比较低。实验室的这个样品杆在角落里放了五年,拿出来仔细检查了一番,发现是倾转部件损坏,这种状态下加热炉没有得到良好固定,使得加热的样品高温下更容易漂移,也无法作为单倾使用。既然五年无人问津,预计没人愿意出这个高昂的原厂维修费用,遂自行捉摸进行了“粗糙的”维修尝试。[/font][/align][align=center][font=宋体][img=Gatan 652双倾原位加热样品杆,690,518]https://ng1.17img.cn/bbsfiles/images/2021/09/202109081358350679_4529_3002960_3.jpg!w690x518.jpg[/img][/font][/align][align=center][font=宋体]图1 [font='times new',serif]Gatan652[/font][font=宋体]双倾加热样品杆[/font][/font][/align][align=center][font=宋体][font=宋体][/font][/font][/align][align=left][font=宋体][font=宋体][font=宋体] 如图[/font][font='times new',serif]2[/font][font=宋体]所示,样品杆β角的倾转是通过电机驱动中心轴的齿轮转动,撬动加热炉倾转的。经过检测加热线路及测温电偶部分均正常,因此只要修复倾转功能就可以正常使用了。由于需要高稳定性,使用说明书上说了连接加热炉的部件为低膨胀材料,加上目测推断带动加热炉倾转的这个部件最可能是氧化锆陶瓷。通过与同期的的[/font][font='times new',serif]Gatan 636[/font][font=宋体]低温样品杆进行对比,可以发现是倾转带动杆(不知道该叫啥,暂且这么叫吧)前端断裂,球状部分已经不见了(见图[/font][font='times new',serif]3[/font][font=宋体])。试过直接将剩余部分怼在加热炉上,但是无法正常倾转,因为没有那个球状前端,与炉体的接触就是个大问题,而且这样极不稳定,不利于原位现象的捕捉。我们也可以参考低温杆画出这个带动杆来,如果能找到人给我加工出来就是最好不过了。[/font][/font][/font][/align][align=left][font=宋体][font=宋体][font=宋体][/font][/font][/font][/align][align=center][font=宋体][font=宋体][font=宋体][img=倾转原理,690,307]https://ng1.17img.cn/bbsfiles/images/2021/09/202109081401559935_217_3002960_3.jpg!w690x307.jpg[/img][/font][/font][/font][/align][align=center][font=宋体][font=宋体]图2 [font='times new',serif]Gatan652[/font][font=宋体]样品杆倾转原理[/font][/font][/font][/align][align=center][font=宋体][font=宋体][font=宋体][/font][/font][/font][/align][align=center][font=宋体][font=宋体][font=宋体][img=,690,501]https://ng1.17img.cn/bbsfiles/images/2021/09/202109081403065651_9515_3002960_3.jpg!w690x501.jpg[/img][/font][/font][/font][/align][align=center][font=宋体][font=宋体]图3 [font=宋体]倾转带动杆损坏及参考图[/font][/font][/font][/align][align=center][font=宋体][font=宋体][font=宋体][/font][/font][/font][/align][align=left][font=宋体][font=宋体][font=宋体] 然而,在万能的某宝各种询问之后,得到的答复都是加工不了,都说这玩意儿太小了,搞不了。难道就此罢手,当然是不可能的,还没能感受到折腾成功之后的喜悦,不能轻易放弃。既然没人能够给我加工,那我可不可能自己加工呢,于是开始尝试。[/font][font=宋体]首先尝试自己烧结无果,因为模具我做不出来,确实太小了。然后开始尝试用陶瓷棒加工成接近的形状。某宝购买材料及工具:[/font][font='times new',serif]0.8*100 mm[/font][font=宋体]氧化锆陶瓷棒一根(花费[/font][font='times new',serif]35[/font][font=宋体]元钱),[/font][font='times new',serif]18 mm[/font][font=宋体]金刚砂切割片(连杆带[/font][font='times new',serif]10[/font][font=宋体]片锯片花费[/font][font='times new',serif]10[/font][font=宋体]元钱),[/font][font='times new',serif]775[/font][font=宋体]型小台钻(记得是[/font][font='times new',serif]70[/font][font=宋体]元,电源都没带,拿笔记本电源插上用了)。经过三天的努力,成功打磨出一个接近尺寸的部件,并成功装到了样品杆上。[/font][/font][/font][/align][align=center][font=宋体][font=宋体][font=宋体][img=,690,230]https://ng1.17img.cn/bbsfiles/images/2021/09/202109081404584392_2182_3002960_3.jpg!w690x230.jpg[/img][/font][/font][/font][/align][align=center][font=宋体][font=宋体][font=宋体]图 4 简单粗糙维修材料及工具(实图忘拍了)[/font][/font][/font][/align][align=center][font=宋体][font=宋体][font=宋体][/font][/font][/font][/align][align=center][font=宋体][font=宋体][font=宋体][img=,690,461]https://ng1.17img.cn/bbsfiles/images/2021/09/202109081423107367_4334_3002960_3.jpg!w690x461.jpg[/img][/font][/font][/font][/align][align=center][font=宋体]图5 维修完成效果(手工打磨陶瓷棒过程及成品也忘记拍摄,测温电偶丝也被我搞的有点变形)[/font][/align][align=left][font=宋体] 尽管过程是比较折腾的,但是利用自行修复的样品杆,发出了个人的第一篇一区论文,而且能够让角落吃灰五六年的样品杆重新被利用起来,也算是感受到了折腾后的喜悦。通过这次维修也发现,其实真正敢于动手,愿意动手,不少看起来比较精密的仪器也并非多么的神秘。像这种动辄百万的原位样品杆,如果官方原厂维修可能数万刀的费用,别看就是一小个部件,垄断的价值就是高昂的。[/font][/align]

  • 【求助】什么是原位和非原位?

    文献上看到这么一句话:地尔硫卓原位生成盐酸地尔硫卓(英文原文是Diltialzem base is converted in situ into Diltiazem hydrochloride.)请问“原位”(in situ)和“非原位”(ex situ)是什么意思?谢谢!补充一下:这是某个药物生产工艺中的一句话,应该属于有机合成的范围。不知道该在哪里发,就发到这里来了。版主觉得哪个版面合适的话请帮我转一下,谢谢。

  • 原位铅同位素示踪技术揭示东汉金银箔珠来源

    近期,我国河南省南阳市的考古发掘出土了一批东汉时期制作工艺独特的金银箔珠。国家地质实验测试中心与中国科学院大学开展合作研究,[b]利用地球化学原位铅同位素示踪技术揭示了东汉金银箔珠来源[/b]。铅同位素分析表明,金银箔珠中黄金的来源不同,可能来自中国南方和东南亚地区,而白银和玻璃材料来自于中原地区。结合已有研究推断,金珠最初可能是外来的,但我国本土匠人很快掌握了该工艺,制作出高质量仿品。此项进展强调了正确的科学分析对于古代珠饰来源研究的重要性,有助于古代珠饰流通网络的进一步研究,显示了微区原位分析技术在考古等交叉学科领域的广阔应用前景。相关成果发表于SSCI一区期刊《考古科学杂志》。[来源:中国地质调查局][align=right][/align]

  • 【求助】(已应助)求《原位聚合法制备厌氧胶固化引发剂微胶囊》等3篇论文

    1.原位聚合法制备厌氧胶固化引发剂微胶囊【作者】 白若飞 傅相锴 龚永锋 邹旷东 富丹 【作者单位】 西南大学化学化工学院应用化学研究所 重庆市应用化学重点实验室 三峡库区生态环境教育部重点实验室重庆 【文献出处】 应用化学 , Chinese Journal of Applied Chemistry, 编辑部邮箱 2007年 06期 2.微胶囊增韧树脂基复合材料的研究【作者】 袁莉 【导师】 梁国正 【学位授予单位】 西北工业大学 【学科专业名称】 材料学 【学位年度】 2007 【论文级别】 博士 3 异丙苯过氧化氢微胶囊的制备 【会议录名称】 中国化学会第四届有机化学学术会议论文集(下册) , 2005 年 【作者】 龚永锋 傅相锴 张树鹏 【作者单位】 西南师范大学化学化工学院三峡库区生态环境教育部重点实验室 【会议名称】 中国化学会第四届有机化学学术会议 【会议地点】 中国云南昆明 【主办单位】 中国化学会、国家自然科学基金委员会 【学会名称】 中国化学会 【主编】 陈庆云

  • 【讨论】原位高温X衍射,峰位左移如何解释?

    我做样品的原位高温X衍射,随着温度的升高,衍射峰出现左移。这是一个含金属成分的样品,如是说热膨胀,衍射峰右移还差不多,左移这怎么解释呢?我做无机物的样品,一般峰位不变,只是强度增加,是否可以说随着温度增加,结晶度变好呢?若从物理学上说,温度增加,无序度增加,正好反过来。请各位提出自己的观点。

  • 复纳科学仪器(上海)有限公司正在寻找应用专家(原位透射-材料/微电子)-上海市职位,坐标上海市,谈钱不伤感情!

    [size=16px][color=#ff0000][b][url=https://www.instrument.com.cn/job/position-82811.html]立即投递该职位[/url][/b][/color][/size][b]职位名称:[/b]应用专家(原位透射-材料/微电子)-上海市[b]职位描述/要求:[/b]一、岗位职责:1、结合产品特点与客户的应用需求,提供高质量的产品展示和测试服务,作为产品技术专家在销售环节中协助销售团队;2、在仪器安装后,为客户进行支持和应用培训;3、开发高质量的原位材料TEM[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相[/color][/url]及热电产品应用,展示我们的技术在生命的应用;不断开发新技术和新方法,支持客户在生命科学领域中的研究和应用;协助产品经理和研发人员,将客户需求转化为可执行的解决方案,使客户从产品/解决方案中获得的最大价值/收益。4、作为客户在原位样品操控领域的对接人员,在具体的仪器及应用方面,解释技术细节、提供技术演示,协助应用开发。与客户建立并培养长久积极的关系。二、任职资格1、理工科专业背景的硕士及以上学历(博士最佳),高校电镜中心就读或工作经验,材料/化学/微电子器件等相关科研经验。2、不少于2年的TEM操作经验,不少于1年的原位TEM操作经验;熟练掌握原位TEM的原理及原位透射类产品的操作工序,可独立开展demo,指导客户进行操作。3、适应商业和科研环境,具备较强的专业沟通和谈判能力;目标驱动的态度和获得成功的毅力;4、具备专业的英语口语和书写能力,掌握除英语外的欧洲国家语言优先;5、出色的材料、化学理论知识以及相关材料合成制备经验,掌握[url=https://insevent.instrument.com.cn/t/5p][color=#3333ff]液相[/color][/url]合成等合成方法,了解学术界较为主流的研究方向和动态[b]公司介绍:[/b] 聚焦台式电镜,致力电镜普及为研发工作者赋能,让我们一起 Free to Achieve复纳科学仪器(上海)有限公司于2012年成立,为高校、科研院所、政府和企业提供荷兰飞纳Phenom(现所属Thermo Fisher Scientific 赛默飞世尔科技)台式扫描电子显微镜(SEM)。该产品技术先进,市场占有率达80%,目前在中国拥有1000多家用户。2017年起,复纳与荷兰 S...[url=https://www.instrument.com.cn/job/position-82811.html]查看全部[/url][align=center][img=,178,176]https://ng1.17img.cn/bbsfiles/images/2021/08/202108160948175602_3528_5026484_3.png!w178x176.jpg[/img][/align][align=center]扫描二维码,关注[b][color=#ff0000]“仪职派”[/color][/b]公众号[/align][align=center][b]即可获取高薪职位[/b][/align]

  • 【原创大赛】原位拉伸试样制备

    【原创大赛】原位拉伸试样制备

    SEM原位拉伸是在扫描电子显微镜下动态的观察试样破坏和断裂的整个过程。从而得到试样破坏和断裂过程中的动态信息。原位拉伸能够及时的观察材料的动态破坏过程。拉伸之后的静态观察很难分析材料破坏过程中的薄弱区,很难真实准确的寻找到材料的裂纹源。因此,试验采用在SEM上架设的拉伸台上动态的观察拉伸过程中材料变形和破坏的过程。这样得到的结果真实可信。首先,用电火花线切割机切割成如下的尺寸(如图1所示):用502胶将试样片粘在一定厚度的模型钢块上(如图2所示),粘牢固后依次用400#、600#、800#、1000#、1200#、1500#、2000#的水砂纸处理式样表面,再用抛光布抛光至表面光洁无划痕程度。抛光处理结束后,将试件浸入并丙酮溶液中5小时朝上,直至式样与基座分离,将试样取下,使用酒精清洗试样。清洗后的试样用电吹风吹干,保存在干燥瓶中。之后,用4%的硝酸酒精溶液侵蚀式样。[b][/b][align=center][b] [img=,690,251]http://ng1.17img.cn/bbsfiles/images/2017/07/201707061650_02_3009082_3.png[/img][/b][/align][align=center][b]图1 常温原位拉伸试样尺寸[/b][/align](说明:试验机最大载荷1KN,因此试件中部横截面积应根据材料的强度做适当调整——试件中部宽度可变细,小于5mm,如图所示;试件厚度可增厚、变薄,但是不要小于0.7mm。抛磨后小于0.7mm的试件两端必须要加工直径为5的孔;大于0.7mm的试件不需要加工此孔。此外,试件的长度以及两端的尺寸不要随意改动。)[align=center][img=,438,163]http://ng1.17img.cn/bbsfiles/images/2017/07/201707061651_01_3009082_3.png[/img][/align][b][/b][align=center][b]图2 试样加工过程:a 镶嵌试样;b取下试样[/b][/align]

  • 原位拉曼 信噪比问题

    原位拉曼  信噪比问题

    我最近在做原位拉曼,原位池是陶瓷杯,放在样品腔内,上面一层一层玻璃,拉曼仪器是法国 HORIBA JOBIN YVONS.A.S公司的LABRAM ARAMIS 激光共焦显微拉曼光谱仪但是信噪比很差,基本没有峰。参数:532nm激光器,无衰减,Hole:500,光栅2400(600,1200,,1800,2400),扫描时间:1*20*20http://ng1.17img.cn/bbsfiles/images/2014/01/201401081909_487171_2296681_3.jpg请问如何加强信噪比??

  • 原位红外购买比较

    [font=微软雅黑][color=#444444]赛默飞的IS-20测原位漫反射性能如何,靠不靠谱呢。 看着设备相比布鲁克的INVENIO便宜点,如果买的话,哪个性价比高呢[/color][/font]

  • 【讨论】金属原位分析仪的应用情况

    各位大侠:我们公司购买的OPA-100金属原位分析仪已经使用两年了,可以获得金属材料较大尺度范围内各成分的位置分布、状态分布及定量分布的准确信息。主要用于成分偏析的测试。众所周知,原位分析仪的内部核心就是直读光谱。在使用过程中,感觉光谱不是很好,漂移严重,标准化需要频繁做,并且原位分析仪可以参考的标样实在太少。不知其他兄弟单位对这种仪器的使用情况怎么样?同时建议斑竹能否开个专栏(也许有,但我没找到),供大家讨论。

  • 【求助】怎样做好原位

    我想知道怎样用原飞利蒲的X射线衍射仪做原位分析,它的样品架是陶瓷做的,好象没说明书,谁能提供,我现在遇到困难做不下去了. 我做不下去了,原位样品架有孔,粉末根本就不能放的怎么做粉末的原位啊????

  • 【分享】高效薄层色谱-原位免疫分析

    随着生命科学研究的深入发展,生物组织或体液中一些微量的物质越来越引起科学家们的浓厚兴趣。对于这些物质的分离分析常采用柱色谱、薄层色谱、液相色谱和质谱技术。但是对于那些具有重要生物功能而含量甚低(低于十万分之一)的物质,即使经过反复富集的浓缩,仍然得不到供研究所需要的纯品量。高效薄层色谱(HPTLC)除了与其它色谱技术一样具有分离能力之外,它独有的优点是能够在HPTLC板上进行原位反应和原位检测。即从生物组织中提取的混合物经HPTLC分离后,利用免疫反应具有的高度特异性,在HPTLC板上直接与给体(抗体或毒素)进行原位免疫反应,再与酶标记或同位素标记的第二抗体进行原位反应,最后与酶的底物反应使之生成有色物质以其定性。使用TLC扫描仪测定光密度进行定量。这是一种综合利用HPTLC的高分离效率,免疫反应的高度特异性,以及酶联显色的高灵敏性的原位分析方法。把传统的HPTLC和酶联免疫反应测定技术发展到一个崭新的水平。省去了纯化纯品的复杂步骤。为微量生化物质的研究提供了一种有用的检测方法。1 实验方法1.1 HPTLC分离 用于HPTLC-原位免疫分析的硅胶板除了具有好的分离性能之外,硅胶涂的必须牢固,以防止在实验中经多次洗涤硅胶脱落。Nagel(德国)公司的以塑料片或铝片为支持体的硅胶板具备这些性能。硅胶板的尺寸一般用10×0cm, 硅胶涂层厚度为0.5mm。对于展开剂的要求除了对要鉴定的物质有分离能力之外,要呈中性(pH6.8-7.2), 并且挥发性要好,在温和的条件下易于除去。目的是使HPTLC板上的物质保持免疫活性。1.2 HPTLC板的处理   在每一步原位免疫反应之前,都要对HPTLC板进行处理。目的是避免非特异性反应。将完成样品分离的HPTLC板经干燥后,放入一个塑料盒子中,用滴管缓慢加入0.1ml/cm2的含1%鸡清蛋白和1%的聚乙烯吡咯啉酮的磷酸盐缓冲溶液(pH 7.2)。在室温下浸泡2h后移出浸泡液,用滴管沿塑料盒子壁缓慢加入磷酸盐缓冲溶液,轻轻摇动盒子2min后,用滴管吸出洗涤液。重复洗HPTLC板3-5次。1.3 原位免疫反应 将处理好的HPTLC板放入盛有反应介质和反应物的塑料盒子中,反应条件要根据实验内容而确定。例如检测糖脂抗原时,盒子中加入0.1ml/cm2含特异性糖脂抗体的缓冲溶液,HPTLC板上的糖脂与抗体在4°C下反应2h。又如检测病毒与受体结合能力时,盒子中加入含有病毒的缓冲溶液,HPTLC板上的受体物质与病毒在4°C下至少反应9h。移出反应液,HPTLC板经洗涤后,再与抗病毒抗体反应2h。1.4 免疫反应的鉴定 酶联抗体市场上有售。酶是作为免疫反应的示踪物,最常用的是辣根过氧化酶。最后将已形成抗原抗体复合物的HPTLC板,置于含有酶联抗体的塑料盒子中,在4°C下反应2h

  • 【求助】什么是原位in vivo?

    向大家请教:什么是原位in vivo?诸如原位拉曼测量,原位红外光谱甚至In vivo tumor targeting and spectroscopic detection等等?能给出可靠的解释和来源吗?谢谢

  • 【求助】原位红外样品池的价格

    最近有组样品要做原位条件下的红外表征,做材料气体吸附情况,需要高温,不同气氛,需要一个什么样的反应池呢?大概要多少钱?如果做高温的话会对红外仪器本身有损伤么?对原位红外没接触过,请高手们多多指教哈

  • 【求助】原位XPS测试

    请问哪位知道国内哪里可以做原位XPS测试,就是样品转移过程能不接触空气或能在惰性气体保护下转移样品的。样品是密封在玻璃管里的不能打开见空气。询问过厦门大学,可以原位转移,但XPS仪器本身性能已经不行了。谢谢大家了!

  • 【求助】关于原位紫外漫反射池

    我们实验室刚买了台紫外,Perkin Elmer公司的,型号是Lambda 650S可以做吸收和漫反射,测量时为双光路检测,沿着光路,仪器的中央放样品池和参比池,右边为固体漫反射装置,有两个白板(BaSO4片),做漫反射时将其中一个白板换成样品即可,另外样品池和参比池中不要加任何东西。测吸收时则利用仪器中间部分,样品池中加入样品即可,但要保证漫反射装置两个白板不变。不知道说清楚了没有,呵呵。话说正题,我们实验室做催化方面的研究,希望能做些原位的表征,例如利用原位紫外漫反射研究反应过程中样品的变化。这就要求装样品的装置中能通气,能加热,最好能抽真空。想问下大家有没这样的原位漫反射池,主要是积分球以及密闭体系的设计。先谢谢大家了。有好的文献或资料的话发邮件给我吧huanghua@pku.edu.cn

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制