当前位置: 仪器信息网 > 行业主题 > >

原位热聚合制备

仪器信息网原位热聚合制备专题为您整合原位热聚合制备相关的最新文章,在原位热聚合制备专题,您不仅可以免费浏览原位热聚合制备的资讯, 同时您还可以浏览原位热聚合制备的相关资料、解决方案,参与社区原位热聚合制备话题讨论。

原位热聚合制备相关的论坛

  • 【原创大赛】聚合物整体柱的制备及其在蛋白质分离中的应用

    [align=center]聚合物整体柱的制备及其在蛋白质分离中的应用[/align][align=center]摘 要[/align][align=center][color=black] [/color][/align][align=left][color=black]整体柱作为第四代分离介质,具有制备简单、通透性好、传质快等优点,在生物分离分析中发挥的作用日益增加。多孔聚合物整体柱具有高通透性和高柱空间利用率,与填充柱相比优势明显。至今已成功地用于分离科学,特别是用于分离型生物分子。本文简要综述了聚合物整体柱的制备及其在蛋白质分离中的应用,并对其应用做了展望。[/color]关键词:[color=black]聚合物整体柱;蛋白质分离;综述[/color][b]1 引言[/b]蛋白质在人体生命过程中发挥着极其重要的作用,某些蛋白质在体内的含量水平严重影响着生命的质量,这就要求对其进行定量研究,而对其实现分离分析成为首要任务。对蛋白质进行分离鉴定通常使用电泳[color=black]—[/color][color=black]质谱、液相色谱[/color][color=black]—[/color][color=black]质谱联用技术,但这些方法并不能完全满足蛋白质分子对操作环境和分析方法要求较高的要求,并且费用较高。而聚合物单体种类繁多,且其上面的官能团可以有多种修饰方法从而对不同的生物分子具有不同的作用,从而对其实现快速分离。[/color]色谱柱是色谱分离的核心,整体柱代表了色谱柱技术发展的方向[sup][color=black][/color][/sup][color=black]。整体柱[/color][color=black]( Monolithiccolumn) [/color]又称连续床层( Continuous bed) [color=black],是一种用有机或无机聚合方法在色谱柱内进行原位聚合的连续床固定相[/color][sup][color=black][/color][/sup][color=black]。[/color][color=black]整体柱具有独特的双孔结构,具有灌注色谱的特点,比填充柱的通透性更好,可实现快速分离[/color][sup][color=black][/color][/sup][color=black]。根据整体材料基质的不同,整体柱分为硅胶整体柱、有机聚合物整体柱、有机[/color][color=black]-[/color][color=black]硅胶杂化整体柱。硅胶整体柱具有良好的稳定性和机械强度,通透性好,但制备周期长,需要柱后衍生[/color][sup][color=black][/color][/sup][color=black]。有机聚合物整体柱则制备简单、[/color][color=black]pH [/color][color=black]值适用范围广,具有良好的通透性、独特的比表面积和较好的化学稳定性,并且能在玻璃毛细管、不锈钢柱管、[/color][color=black]tip [/color][color=black]头甚至是微流控芯片的通道等多种模具中制备[/color][sup][color=black][/color][/sup][color=black]。[/color][b]2 聚合物整体柱的制备[/b]多孔聚合物整体柱出现在上世纪90年代初,继而在制备和应用中得到发展[sup][/sup]。与采用溶胶凝胶技术制备的无机硅胶整体柱相比,通过自由基聚合方式制备的聚合物整体柱更容易制备。除了传统的自由基聚合,其他方法预期制备一种具有均匀结构的新型聚合物整体柱。2006年,Hosoya等人报道了一种将环氧单体与二胺类开环聚合的高性能有机聚合物整体柱,在毛细管液相色谱上,其对苯的分离塔板高度(H)可以达到小于5μm[sup][/sup]。值得注意的是,相比链生长聚合(比如自由基聚合反应)产生的球状结构,逐步聚合方式导致整体柱有完全不同的形态。[b]3 聚合物整体柱的分类[/b]多种多样的功能单体使整体柱设计变得更容易,按单体不同,聚合物整体柱可分为聚丙烯酰胺类,聚甲基丙烯酸酯类和聚苯乙烯类[sup][/sup]。单体决定其适用范围,整体柱已被广泛用于不同的色谱模式,包括反相液相色谱(RPLC)、亲水相互作用色谱(HILIC)、离子交换色谱(IEC)等[sup][/sup]。而[color=black]从制备工艺上,聚合物整体柱可分为三类:后修饰整体柱、原位合成整体柱和结合微加工技术的整体柱。[/color]原位合成整体柱是一定温度或紫外光条件下,将交联剂、单体、引发剂、致孔剂,在不锈钢色谱柱管中充分反应,再冲洗除去致孔剂和残余未反应物得到。除研究可用单体外,新的制备方法和制备工艺和的研究也取得了很好发展。通过调节交联剂、单体、致孔剂之间的比例,可以较好地控制制备的整体柱的柱效和通透性[sup][color=black][/color][/sup][color=black]。原位聚合制备的整体柱并不能满足某些特定的分离需求。原位聚合时,很多功能团被包埋在颗粒内部,暴露在表面上的并不多,这导致聚合物整体柱的性能明显下降。后修饰整体柱则会改善这一问题。聚合物整体柱的后修饰方法使用最多的是在聚合物表面接枝[/color][sup][color=black][/color][/sup][color=black]。近年来,利用甲基丙烯酸缩水甘油酯[/color][color=black]( GMA) [/color][color=black]的环氧基团的接枝方法较为流行,并成功运用到离子交换色谱、亲和色谱等色谱柱的制备中[/color][sup][color=black][/color][/sup][color=black]。相对于接枝的方法,将功能化的纳米颗粒包被在聚合物的表面的方法较为简单,也常用于制备功能化的聚合物柱。作为固定相载体,微加工整体柱是芯片色谱柱所独有的。[/color]原位合成聚合物整体柱最为便捷,根据分离要求的不同,已经开发了各种各样的单体材料和制备工艺。对于一般分离需求,是很好的选择。采用后修饰的方法在固定相表面连接功能基团可以提高柱效,而微加工整体柱仅适用于芯片色谱。[b]4 聚合物整体柱的应用[/b]一般来说,多孔聚合物整体柱具有典型球状结构,其通孔之间的聚合微球显著有利于提高聚合物整体柱的通透性,并且使其在高流速下能够有效地分离蛋白质分子。然而,聚合物整体柱对小分子的分离通常表现为低的柱效,据研究是由于表面积较硅胶整体柱小造成的。为了解决这个问题,研究者提出了几种试图增加表面积的方法,如将纳米粒子引入聚合物整体柱和制备超交联整体柱[sup][/sup],分离能力在一定程度上得到了提高。此外,斯韦克系统地阐述了各种多孔聚合物整体柱的制备技术[sup][/sup]。例如,2,2,6,6-四甲基-1-哌啶(TEMPO)介导的活性自由基聚合。Kanamori等合成的聚合物(二乙烯基苯)单体具有明确的连续形态,高的比表面积[sup][/sup]。[b]5 展望[/b][color=black]实际有机分子样品结构复杂、种类众多,而且对操作环境和分析方法要求较高。不同色谱模式的液相色谱方法不仅对特定的生物分子具有较好的选择性,且制备方法简单易得,结构可控。此外,聚合物单体的种类繁多,且其上面的官能团可以有多种修饰方法从而对不同的生物分子具有不同的作用。因此,随着液相色谱固定相的发展,聚合物整体柱以其独有的优势也会在生物分子的分离与分析中得到越来越广泛的应用。[/color][color=black] [/color][color=black] [/color][color=black] [/color][color=black] [/color][color=black] [/color][color=black] [/color][color=black] [/color][color=black] [/color][b]参考文献[/b] 杨帆, 毛劼, 何锡文. 基于巯基-烯点击反应制备有机-无机杂化硼酸亲和整体柱用于糖蛋白的选择性富集. 色谱, 2013, 31(6): 531-536. 平贵臣, 袁湘林, 张维冰等. 整体柱的制备方法及其应用.分析化学,2001,29(12):464-469. Jing Liu, Fangjun Wang, Zhenbin Zhang. Reversed phasemonolithic column based enzymereactor for proteinanalysis. Chinese Journal of Analytical Chemistry,2013, 41(1):10-14. Motokawa M, Ohira M, Minakuchi H [i]et al[/i]. Performance ofoctadecylsilylated monolithic silica capillary columns of 530μm innerdiameterin HPLC. J.Sep Sci,2006, 29(9): 2471-2477. 王超然, 王彦, 高也等. 聚(4-乙烯基苯硼酸-季戊四醇三丙烯酸酯)亲和整体柱的制备与应用. 分析化学研究报告,2012, 40(8):1207-1212. 李晶, 周琰春, 张嘉捷等. 阴离子交换聚合物整体柱的制备及其在[url=https://insevent.instrument.com.cn/t/3p][color=#3333ff]离子色谱[/color][/url]中的应用.分析测试学报,2012, 31(9):1089-1094. 张振宾, 欧俊杰, 林辉等. 有机-硅胶杂化整体柱的制备及应用研究进展.高等学校化学学报,2013,34(9):2011-2019. 刘婵, 江茜, 陈蕾等. 金纳米粒子修饰的氨基硅胶整体柱的制备及超灵敏表面增强拉曼散射检测.高等学院化学学报,2013,34(11):2488-2492. Yongqin Lv, Zhixing Lin, Frantisek Svec. Thiol-ene clickchemistry: a facile and versatile route for the functionalization of porouspolymer monoliths.Analyst,2012,137(9):4114-4118. 吕仁江, 丁会敏, 李英杰. 丙烯酰胺-β-环糊精毛细管电色谱手性整体柱的制备及应.应用化学,2012,29,(5):604-607. Frantisek Svec, Yongqin Lv. Advances and recent trends in thefield of monolithic columns for chromatography. Analytical Chemistry,2014,87(9):250-273. Zhongshan Liu, Junjie Ou, Hui Lin. Preparation of monolithic polymercolumnswithhomogeneousstructure viaphotoinitiated thiol-yne click polymerization and their application inseparation of small molecules.Analytical Chemistry,2014,86,(105):12334-12340. Trojer L, Lubbad S H, Bisjak C [i]et al[/i]. Monolithicpoly( p-methylstyrene-co-1,2-bis(p-vinylphenyl) ethane) capillary columns as novel styrene stationary phases forbiopolymer separation.J. Chromatogr. A, 2006, 1117(1): 56-66. Luo Q Z, Zou H F, Xiao X Z [i]et al[/i]. Chromatographic separation of proteins on metal immobilizediminodiacetic acid-bound molded monolithic rods of macroporous poly( glycidylmethacrylate-co-ethylene dimethacrylate) . J. Chromatogr. A,2001,926(2):255-264. 郑晖, 李秋顺, 马耀宏等. 微流控芯片上电色谱聚合物整体柱研究进展.山东科学,2013,26(1):16-21. J. Zhang, HL. Zou, Q. Qing [i]et al[/i]. Effect of chemical oxidation on the structure of singlewalled carbon nanotubes. J. Phy. Chem. B, 2003, 107(16):3712-3718. Junjie Ou, Zhongshan Liu, Hongwei Wang. Recent development ofhybrid organic-silica monolithic columns in CEC and capillary LC.Electrophoresis ,2015, 36(9):62-75. 王玺, 何健, 季一兵. 聚甲基丙烯酸酯毛细管整体柱的制备及其性能考察.中国药科学学报,2012, 67(7):78-85.[/align]

  • 【分享】重要违禁兽药红霉素和氯丙嗪的分子印迹聚合物的制备、表征及在食品安全检测中的应用

    如何开发高效的前处理的材料和方法,提高样品前处理水平,已经成为目前食品分析化学的研究热点之一,由于分子印迹聚合物具有功能预定性、选择特异性、适用范围广等特点,基于分子印迹聚合物(Molecularly imprinted polymers, MIPs)的分子印迹固相萃取技术(Molecularly imprinted solid phase extraction, MISPE)已经成为食品安全检测技术发展的新趋势。本论文针对肉用家畜和水产品中应用广泛且危害严重的红霉素和氯丙嗪兽药制备了特异的分子印迹聚合物,对制备的聚合物的结合机理和识别特性进行了深入分析,并最终制备了这两类兽药的分子印迹固相萃取小柱,应用于实际样品中红霉素和氯丙嗪的残留分析。研究获得的主要结果如下:本课题采用本体聚合的分子印迹方法从制备的 6 组红霉素分子印迹聚合物中选取一组特异性较强的聚合物用于后续研究。该组合模板红霉素和单体 MAA(methacrylic acid)的比例为(1:2),交联剂为 EGDMA(ethylene glycol dimethacrylate),采用甲醇/乙腈(2:3, v/v)作为致孔剂,热聚合温度为 60℃。利用扫描电镜观察、孔径分析、热重分析、紫外光谱和红外光谱分析等方法对聚合物的物理特征进行了评价。同时通过对聚合物吸附能力的热力学和动力学特性以及高效液相色谱分析,对聚合物与红霉素之间可能的印迹机理和识别能力进行了研究,证明了制备的聚合物对模板的吸附能力主要来自于低亲和力和高亲和力两类结合位点,并计算出两个结合位点的最大结合量分别为 12.30 mg g1-和 72.09 mg g1-。课题以分子印迹聚合物为固相萃取的填料,制备了红霉素分子印迹固相萃取小柱并对小柱的萃取条件进行了优化。当红霉素分子印迹聚合物固相萃取条件采用的上样缓冲液为 40%甲醇,淋洗液为 2.5 mL80%甲醇,洗脱液为 3mL 的甲醇/PBS (0.5 M) (80:20, v/v)时,固相萃取柱对红霉素的回收率超过 80%,非印迹聚合物固相萃取小柱的回收率则小于 30%。采用优化后的固相萃取的方法,研究了聚合物的选择性,结果显示红霉素分子印迹聚合物对大环内酯类药物具有一定的交叉反应性。说明在印迹反应过程中模板的立体构型对特异性识别的建立起主要作用。试验中将制备的红霉素分子印迹固相萃取小柱用于猪肉样品中红霉素残留的前处理,结果显示经过 MIPs 净化的样品,基质对检测的干扰大大降低,同时极大提高了检测器的灵敏度。在选用的三个加标浓度下,红霉素的回收率都大于 79%。采用红霉素分子印迹固相萃取小柱从水中富集红霉素的实验,同时证明制备的聚合物在自来水中可以高效的富集红霉素。另外,我们制备了氯丙嗪的 MIPs,摸索了不同的合成方法和不同组成成分对产物的选择能力的影响。结果证明,通过本体法制备的聚合物,当使用 MAA 做为单体,模板单体的比例为 1:4,选用 TRIM(Trimethylolpropane trimethacrylate)作为交联剂时,得到的聚合物的选择性最高。试验通过色谱分析试验、红外光谱试验等研究了氯丙嗪与功能单体之间的自组装过程。选择性分析和容量分析的结果表明制备的氯丙嗪分子印迹聚合物相对于非印迹聚合物具有明显的选择性和吸附容量。当使用水溶液作为溶剂时,氯丙嗪分子印迹聚合物的最大特异吸附容量为 10mg mL1-。使用氯丙嗪分子印迹聚合物固相萃取柱对猪尿样品中该药残留的富集和净化相对于商业化的 C18 小柱的效果更明显。

  • 如何手工制备聚合物AFM观察样品,急!!!!

    如何手工制备聚合物AFM观察样品,急!!!!本实验室刚买一台AFM,可是如何应用它来观察注射成型的聚合物样品?有人说在低温切成平面,可是实在找不到地方去切,没有办法实现。也有人说用打磨和抛光的方法,可是具体操作大家都不清楚,各位大虾如果谁知道的话,请执教,谢谢!

  • 干货 | 制备型GPC在聚合物分离制备中的探索

    [align=center][b][color=#000099]一、制备型GPC在聚合物分离制备中的探索[/color][/b][/align][align=center][b][color=#000099][/color][/b][/align][align=left] 作为材料与化学领域专业的综合型科技服务商,微谱技术拥有比较全面的样品分离与分析技术。随着样品组成的复杂度的提高,多种聚合物混合无法分离导致聚合物结构无法精确解析,而目前制备型色谱只能分离分子量较低的化合物,对于高分子聚合物的分离制备/纯化一直是分析领域的难点。微谱技术工程师就此难点借助制备型GPC对聚合物的分离制备进行了探索研究。(Fig.1)[/align][align=center][img=,690,584]http://ng1.17img.cn/bbsfiles/images/2018/07/201807020911077419_5995_2879355_3.jpg!w690x584.jpg[/img][/align][align=center][/align][align=center][b][color=#000099]二、制备型GPC对聚合物分离制备的基本原理[/color][/b][/align][align=left] 如 Fig. 2所示,制备型GPC的方法研发的基本原理:经过前处理的样品进入制备型GPC中,首先通过色谱柱将各组分进行分离,然后利用馏分收集器进行分段收集,达到分离纯化的目的,最后运用IR、PGC、NMR、分析型GPC等方法对收集好的纯度较高的组分进一步表征。[/align][align=center][/align][align=center][img=,690,460]http://ng1.17img.cn/bbsfiles/images/2018/07/201807020915235972_6501_2879355_3.jpg!w690x460.jpg[/img][/align][align=center][/align][align=center][b][color=#000099]三、分离制备方法演示[/color][/b][/align][align=left] 如 Fig. 3所示,万能胶样品进入制备型GPC中进行组分分割,然后分段收集各组分,得到如Fig. 4所示的组分分割收集图,达到分离纯化作用,接着运用其他分析仪器对收集到的各分离组分进行表征,如Fig. 5的分析型GPC得到了SBS混合物与松香树脂表征结果,Fig. 6的FTIR得到了松香甘油酯的表征结果。[/align][align=left][/align][align=center][img=,690,353]http://ng1.17img.cn/bbsfiles/images/2018/07/201807020917580739_7984_2879355_3.jpg!w690x353.jpg[/img][/align][align=center][/align][align=center][/align][align=center][img=,690,349]http://ng1.17img.cn/bbsfiles/images/2018/07/201807020919274139_446_2879355_3.jpg!w690x349.jpg[/img][/align][align=center][/align][align=center][img=,690,378]http://ng1.17img.cn/bbsfiles/images/2018/07/201807020919440615_178_2879355_3.jpg!w690x378.jpg[/img][/align][align=center][/align][align=center][img=,690,396]http://ng1.17img.cn/bbsfiles/images/2018/07/201807020919599491_648_2879355_3.jpg!w690x396.jpg[/img][/align][align=center][/align][align=center][b][color=#000099]四、分离制备效果对比案例—分子量相近的聚合物分离[/color][/b][/align][align=left] 如 Fig. 7所示,浓度为0.3mg/ml的SBS混合物在分析型GPC色谱图中10W和40W分子量的SBS出峰时间接近,两者在制备型GPC色谱图中的出峰更是完全重叠在一起(Fig. 8),通过增加切割段数的方式对其进行分离收集,得到了如Fig. 9所示的分析型GPC色谱图,10W和40W的SBS色谱峰明显分离。[/align][align=left][/align][align=center][img=,690,431]http://ng1.17img.cn/bbsfiles/images/2018/07/201807020921532884_4008_2879355_3.jpg!w690x431.jpg[/img][/align][align=center][/align][align=center][img=,690,477]http://ng1.17img.cn/bbsfiles/images/2018/07/201807020922095462_2132_2879355_3.jpg!w690x477.jpg[/img][/align][align=center][/align][align=center][img=,690,419]http://ng1.17img.cn/bbsfiles/images/2018/07/201807020922280682_203_2879355_3.jpg!w690x419.jpg[/img][/align][align=center][/align][align=center][color=black] 如 [/color][color=black]Fig. 10[/color][color=black]所示,浓度为[/color][color=black]0.2mg/ml[/color][color=black]的[/color][color=black]1K[/color][color=black]、[/color][color=black]2K[/color][color=black]和[/color][color=black]5K[/color][color=black]的聚醚混合物在分析型[/color][color=black]GPC[/color][color=black]色谱图中可以看到明显的三个色谱峰,三者在制备型[/color][color=black]GPC[/color][color=black]色谱图中也有三个色谱峰([/color][color=black]Fig. 11[/color][color=black]),通过制备分离后三者在分析型[/color][color=black]GPC[/color][color=black]色谱图中的显示如[/color][color=black]Fig. 12[/color][color=black]所示,三个色谱峰分离明显。[/color][color=black][img=,690,411]http://ng1.17img.cn/bbsfiles/images/2018/07/201807020923098322_3496_2879355_3.jpg!w690x411.jpg[/img][/color][/align][align=center][/align][align=center][img=,690,463]http://ng1.17img.cn/bbsfiles/images/2018/07/201807020923311722_3426_2879355_3.jpg!w690x463.jpg[/img][/align][align=center][/align][align=center][img=,690,410]http://ng1.17img.cn/bbsfiles/images/2018/07/201807020923434595_2705_2879355_3.jpg!w690x410.jpg[/img][/align][align=center][b][color=#000099]五、总结[/color][/b][/align][b] [/b]微谱技术制备型GPC在聚合物分离制备中的方法研发已取得较大进展,其可以对多种聚合物共混体系(SBS/SEBS/SIS/EVA,聚氨酯,丙烯酸酯/环氧/UV胶/混合聚醚等)的样品进行分离制备,并对制备出来的样品进行FTIR/NMR/MALDI-TOF等测试,从而得到各类聚合物的清晰的结构信息,可为高校的科学研究、企业产品研发及产品质量控制提供依据。[b]声明:本文资料为“上海微谱化工技术服务有限公司”原创,[color=#333333]未经允许不得私自转载。否则我司将保留追究其法律责任的权利。[/color][/b]

  • 干货 | 制备型GPC在聚合物分离制备中的探索

    干货 | 制备型GPC在聚合物分离制备中的探索

    [align=center][b][color=#000099]一、制备型GPC在聚合物分离制备中的探索[/color][/b][/align][align=center][b][color=#000099][/color][/b][/align][align=left] 作为材料与化学领域专业的综合型科技服务商,微谱集团拥有比较全面的样品分离与分析技术。随着样品组成的复杂度的提高,多种聚合物混合无法分离导致聚合物结构无法精确解析,而目前制备型色谱只能分离分子量较低的化合物,对于高分子聚合物的分离制备/纯化一直是分析领域的难点。微谱技术工程师就此难点借助制备型GPC对聚合物的分离制备进行了探索研究。(Fig.1)[/align][align=center][img=,690,584]http://ng1.17img.cn/bbsfiles/images/2018/07/201807020911077419_5995_2879355_3.jpg!w690x584.jpg[/img][/align][align=center][/align][align=center][b][color=#000099]二、制备型GPC对聚合物分离制备的基本原理[/color][/b][/align][align=left] 如 Fig. 2所示,制备型GPC的方法研发的基本原理:经过前处理的样品进入制备型GPC中,首先通过色谱柱将各组分进行分离,然后利用馏分收集器进行分段收集,达到分离纯化的目的,最后运用IR、PGC、NMR、分析型GPC等方法对收集好的纯度较高的组分进一步表征。[/align][align=center][/align][align=center][img=,690,460]http://ng1.17img.cn/bbsfiles/images/2018/07/201807020915235972_6501_2879355_3.jpg!w690x460.jpg[/img][/align][align=center][/align][align=center][b][color=#000099]三、分离制备方法演示[/color][/b][/align][align=left] 如 Fig. 3所示,万能胶样品进入制备型GPC中进行组分分割,然后分段收集各组分,得到如Fig. 4所示的组分分割收集图,达到分离纯化作用,接着运用其他分析仪器对收集到的各分离组分进行表征,如Fig. 5的分析型GPC得到了SBS混合物与松香树脂表征结果,Fig. 6的FTIR得到了松香甘油酯的表征结果。[/align][align=left][/align][align=center][img=,690,353]http://ng1.17img.cn/bbsfiles/images/2018/07/201807020917580739_7984_2879355_3.jpg!w690x353.jpg[/img][/align][align=center][/align][align=center][/align][align=center][img=,690,349]http://ng1.17img.cn/bbsfiles/images/2018/07/201807020919274139_446_2879355_3.jpg!w690x349.jpg[/img][/align][align=center][/align][align=center][img=,690,378]http://ng1.17img.cn/bbsfiles/images/2018/07/201807020919440615_178_2879355_3.jpg!w690x378.jpg[/img][/align][align=center][/align][align=center][img=,690,396]http://ng1.17img.cn/bbsfiles/images/2018/07/201807020919599491_648_2879355_3.jpg!w690x396.jpg[/img][/align][align=center][/align][align=center][b][color=#000099]四、分离制备效果对比案例—分子量相近的聚合物分离[/color][/b][/align][align=left] 如 Fig. 7所示,浓度为0.3mg/ml的SBS混合物在分析型GPC色谱图中10W和40W分子量的SBS出峰时间接近,两者在制备型GPC色谱图中的出峰更是完全重叠在一起(Fig. 8),通过增加切割段数的方式对其进行分离收集,得到了如Fig. 9所示的分析型GPC色谱图,10W和40W的SBS色谱峰明显分离。[/align][align=left][/align][align=center][img=,690,431]http://ng1.17img.cn/bbsfiles/images/2018/07/201807020921532884_4008_2879355_3.jpg!w690x431.jpg[/img][/align][align=center][/align][align=center][img=,690,477]http://ng1.17img.cn/bbsfiles/images/2018/07/201807020922095462_2132_2879355_3.jpg!w690x477.jpg[/img][/align][align=center][/align][align=center][img=,690,419]http://ng1.17img.cn/bbsfiles/images/2018/07/201807020922280682_203_2879355_3.jpg!w690x419.jpg[/img][/align][align=center][/align][align=center][color=black] 如 [/color][color=black]Fig. 10[/color][color=black]所示,浓度为[/color][color=black]0.2mg/ml[/color][color=black]的[/color][color=black]1K[/color][color=black]、[/color][color=black]2K[/color][color=black]和[/color][color=black]5K[/color][color=black]的聚醚混合物在分析型[/color][color=black]GPC[/color][color=black]色谱图中可以看到明显的三个色谱峰,三者在制备型[/color][color=black]GPC[/color][color=black]色谱图中也有三个色谱峰([/color][color=black]Fig. 11[/color][color=black]),通过制备分离后三者在分析型[/color][color=black]GPC[/color][color=black]色谱图中的显示如[/color][color=black]Fig. 12[/color][color=black]所示,三个色谱峰分离明显。[/color][color=black][img=,690,411]http://ng1.17img.cn/bbsfiles/images/2018/07/201807020923098322_3496_2879355_3.jpg!w690x411.jpg[/img][/color][/align][align=center][/align][align=center][img=,690,463]http://ng1.17img.cn/bbsfiles/images/2018/07/201807020923311722_3426_2879355_3.jpg!w690x463.jpg[/img][/align][align=center][/align][align=center][img=,690,410]http://ng1.17img.cn/bbsfiles/images/2018/07/201807020923434595_2705_2879355_3.jpg!w690x410.jpg[/img][/align][align=center][b][color=#000099]五、总结[/color][/b][/align][color=black][b] [/b]微谱技术制备型[/color][color=black]GPC[/color][color=black]在聚合物分离制备中的方法研发已取得较大进展,其可以对多种聚合物共混体系([/color][color=black]SBS/SEBS/SIS/EVA[/color][color=black],聚氨酯,丙烯酸酯[/color][color=black]/[/color][color=black]环氧[/color][color=black]/UV[/color][color=black]胶[/color][color=black]/[/color][color=black]混合聚醚等)的样品进行分离制备,并对制备出来的样品进行[/color][color=black]FTIR/NMR/MALDI-TOF[/color][color=black]等测试,从而得到各类聚合物的清晰的结构信息,可为高校的科学研究、企业产品研发及产品质量控制提供依据。[/color][b]声明:本文资料为“上海微谱化工技术服务有限公司”原创,[color=#333333]未经允许不得私自转载。否则我司将保留追究其法律责任的权利。[/color][color=#333333][/color][/b]

  • 【求助】(已应助)求《原位聚合法制备厌氧胶固化引发剂微胶囊》等3篇论文

    1.原位聚合法制备厌氧胶固化引发剂微胶囊【作者】 白若飞 傅相锴 龚永锋 邹旷东 富丹 【作者单位】 西南大学化学化工学院应用化学研究所 重庆市应用化学重点实验室 三峡库区生态环境教育部重点实验室重庆 【文献出处】 应用化学 , Chinese Journal of Applied Chemistry, 编辑部邮箱 2007年 06期 2.微胶囊增韧树脂基复合材料的研究【作者】 袁莉 【导师】 梁国正 【学位授予单位】 西北工业大学 【学科专业名称】 材料学 【学位年度】 2007 【论文级别】 博士 3 异丙苯过氧化氢微胶囊的制备 【会议录名称】 中国化学会第四届有机化学学术会议论文集(下册) , 2005 年 【作者】 龚永锋 傅相锴 张树鹏 【作者单位】 西南师范大学化学化工学院三峡库区生态环境教育部重点实验室 【会议名称】 中国化学会第四届有机化学学术会议 【会议地点】 中国云南昆明 【主办单位】 中国化学会、国家自然科学基金委员会 【学会名称】 中国化学会 【主编】 陈庆云

  • 铝灰制备聚合氯化铝工艺研究

    铝灰制备聚合氯化铝工艺研究

    [align=center][font=黑体]铝灰制备聚合氯化铝工艺研究[/font][/align][align=left][b][font=黑体]摘要[/font][/b][font=黑体]:[/font][font=黑体]铝灰作为电解铝行业生产加工过程中的重要固体废弃物,产生巨大,铝灰在存储、处理方面带来很多环境问题,因此铝灰无害化、资源化处理迫在眉睫。本文介绍了以铝灰为原料,采用酸溶法制备聚合氯化铝的工艺研究,通过对不同处理方法产生的铝灰进行试验,完善各项工艺参数的调整和验证,达到实验室条件下制备聚合氯化铝净水剂的最佳条件,从而探索出适合制备聚合氯化铝产品的前期处理方法及后期工艺技术。[/font][/align][b][font=黑体]关键词[/font][/b][font=黑体]:铝灰;氧化铝;变废为宝;聚合氯化铝;净水剂[/font][b][font=黑体]中图分类号:TQ314.2 文献编识码:B [/font][/b][align=left][b][font=黑体]前言[/font][/b][font=宋体]随着我国工业的发展以及科技的进步,人们在生活中对铝产品的需求量日益增加,而在铝生产加工过程中产生一种附加产物——铝灰,铝灰中含有大量具有经济价值的氧化铝、金属铝、氮化铝,是一种可再生的资源,但其本身也是含有一定量有毒金属元素的危废,已经列入《国家危险废弃物名录》,传统的填埋处理方式不仅会对环境造成极大的污染和破坏[sup][1][/sup],同时也造成了资源[sup][2][/sup]的浪费。我司是一个集电解铝、铝精深加工为一体的大型企业,每年会产生大量的铝灰,因此将铝灰“变废为宝”成为一个新的课题,也是为公司寻找新的利润增长点的一个方向,是资源最大化的必走之路,同时也符合“科学发展观”、“建设绿色环保生态工厂”的积极性倡导。[/font][font=宋体]由于全球环境的污染,人们的环保意识不断提高,污水处理以及饮用水的净化现在已经是一个全球共同关注的课题。中国作为一个发展中国家,上世纪以来工业发展迅猛,某种程度上忽略了对生态的影响,饮用水的质量通常得不到保障;在发达国家,由于长期使用化学净水剂,残留在水中的化学物质通过日积月累,可能对人体健康造成一些潜移默化的伤害,同时净水之后的残渣无法很好地处理,也造成了不容忽视的环境问题。聚合氯化铝是一种新型净水材料,是目前国内外广泛使用的无机高分子絮凝剂,具有用量少、产生污泥少、除浊效果好、对出水pH值影响小等优点。[/font][font=宋体]巩义周边分布较多化工企业,化工企业在生产过程中,会产生大量废酸,废盐酸是其中一种,对化工企业而言没有大的附加价值,且废酸处理成本较大,废盐酸易挥发且具有强烈腐蚀性,如果处理不当容易对周边环境造成污染和破坏,也会对周边居民的身体健康状况造成影响。我司可以较低价格购进废酸,用来与本公司铝加工过程中产生的铝灰反应制备净水剂,利用铝灰中的铝、硅等元素在水[/font][font=宋体]中可形成大量带电胶团的性质,制备聚合氯化铝絮凝剂[sup][3-4][/sup],从而实现将铝灰无害化、资源化处理[sup][5][/sup]。同时也解决了铝灰和废酸带来的生态环保等社会问题,体现我司在环境保护、建设绿色生态园林企业的社会担当。[/font][font=宋体]聚合氯化铝(PolyaluminumChoride,PAC)是一种无机高分子含有不同量羟基的多核高效混凝剂,是一种介于AlCl[sub]3[/sub]和Al(OH)[sub]3[/sub]之间的水溶性无机高分子聚合物,其分子通式为[Al[sub]2[/sub](OH)[sub]n[/sub] Cl[sub]6-n[/sub]x (H[sub]2[/sub]O)] [/font][sub][font=宋体]m[/font][/sub][font=宋体],其中m代表聚合程度,n代表聚合氯化铝氯化铝的中性程度。具有分子结构大、吸附能力强、凝聚力强、形成絮体大等优点[sup][6][/sup],对管道无腐蚀性,净水效果明显,能够有效去除水中有色物质及重金属离子,广泛应用于饮用水、污水处理等领域[sup][7][/sup]。[/font][font=宋体]制备聚合氯化铝原料按来源可以分为:含铝矿石(如铝土矿)、工业含铝废料(如铝灰)、含铝化工产品及中间体(如结晶氢氧化铝)。合成方法根据原料的不同又可以分为:金属铝法、活性氢氧化铝法、氧化铝法、氯化铝法等。按照生产工艺又分为:酸溶法、碱溶法、中合法。本文主要以火法、湿法处理后的铝灰为原料,采用酸溶法,开展实验,探索出何种铝灰处理工艺适合做聚氯化铝产品[sup][8][/sup]。[/font][/align][align=left][font=宋体][b][font=黑体]1 [/font][font=黑体]实验材料与方法[/font][/b][font=黑体]1.1[/font][font=黑体]主要原料与仪器设备[/font][font=宋体]1.1.1[/font][font=宋体]铝灰:我司铝灰来源为电解铝灰、铝加工1、8系铝灰、3系铝灰、5系铝灰、再生铝铝灰。本文采用三种不同的铝灰展开试验,1#经火法处理后的再生氧化铝铝灰、2#经湿法处理后的高铝料铝灰、3#未经处理的二次铝灰。[/font][font=宋体]1.1.2 [/font][font=宋体]主要设备:电子天平(AL204梅特勒-托利多(上海)有限公司);恒温磁力搅拌器(78HW-1江苏金坛市金城国胜实验仪器厂);抽滤装置(GG-17抽滤瓶1000ml);电热恒温鼓风干燥箱(DHG-9070A型上海一恒科学仪器有限公司)。[/font][font=黑体]1.2[/font][font=黑体]实验方法[/font][/font][/align][align=left][font=宋体][font=黑体][font=华文宋体]1.2.1 [/font][font=宋体]聚合氯化铝制备工艺[/font][font=宋体]聚合氯化铝在制备方法上,有不同的合成路径,按照同一种制备原料——铝灰渣和废盐酸的生产工艺,反应后的混合物可经长时间恒温熟化,从而提高产品的氧化铝浓度和盐基度,也可通过添加铝酸钙的生产工艺提高产品聚氯化铝的氧化铝浓度和盐基度,本文采用第二种生产工艺展开探究。[/font][font=宋体]分别称取1#、2#、3#样品40g,置于500ml烧杯中,一定量的废盐酸和水,置于恒温磁力搅拌器[/font][font=宋体]上于一定温度下反应若干小时,反应完全后冷却,使用抽滤装置进行抽滤,将上清液与残渣分离,残渣用来与青石粉制备偏铝酸钙,将制成的偏铝酸钙加入第一步分离的上清液中,继续恒温反应若干小时后,使用抽滤装置进行抽滤,将上清液与残渣分离,上清液即为PAC液体,将上清液至于电热恒温鼓风干燥箱中进行干燥,得到聚合氯化铝固体产品。其工艺流程图如图1所示:[/font][/font][/font][/align][align=center][font=宋体][font=黑体][font=宋体][img=,690,214]https://ng1.17img.cn/bbsfiles/images/2023/09/202309011537089487_9751_3237657_3.png!w690x214.jpg[/img][/font][/font][/font][/align][align=center][font=宋体][font=宋体][font=楷体]图1 制备聚合氯化铝工艺流程图[/font][/font][/font][/align][align=left][font=黑体][font=楷体][font=宋体]1.2.2 [/font][font=宋体]偏铝酸钙的制备工艺[/font][font=宋体]将一次过滤后的含水量约50%一次滤渣与青石粉按照6∶4的比例搅拌混匀,于1300℃高温煅烧2h,自然冷却后,研磨成粉。[/font][font=黑体]1.3 [/font][font=黑体]试验原理[/font][font=宋体] [/font][font=宋体] [/font][font=宋体]本实验选用了三种不同的铝灰, 1#经高温处理的再生氧化铝铝灰、2#经处理后的高铝料铝灰、3#未经处理的二次铝灰。氮化铝遇水后,发生水解反应,放出氨气:[/font][/font][/font][/align][align=left][font=宋体]AlN+3H[sub]2[/sub]O=Al(OH)[sub]3[/sub]+NH[sub]3[/sub] (1)[/font][/align][align=left][font=宋体]水洗滤渣在盐酸溶液中的溶出反应如下:[/font][/align][align=left][font=宋体]2Al+6HCl=2AlCl[sub]3[/sub]+3H[sub]2[/sub] (2)[/font][/align][align=left][font=宋体]Al[sub]2[/sub]O[sub]3[/sub]+6HCl=2AlCl[sub]3[/sub]+3H[sub]2[/sub]O (3)[/font][/align][align=left][font=宋体]Al(OH)[sub]3[/sub]+3HCl=AlCl[sub]3[/sub]+3H[sub]2[/sub]O (4)[/font][/align][align=left][font=宋体](2-n/4)AlCl[sub]3[/sub]+n/2H[sub]2[/sub]O+n/8Ca(AlO[sub]2[/sub])[sub]2[/sub]→Al[sub]2[/sub](OH)nCl[sub]6-n[/sub]+n/8CaCl[sub]2[/sub] (5)[/font][/align][font=黑体]1.4 [/font][font=黑体]分析方法[/font][font=宋体]本实验中液体或固体聚合氯化铝中氧化铝含量及盐基度的测定均采用GB/T 22627-2014分析标准进行。[/font][align=left][font=宋体][font=黑体]2[font='Times New Roman'] [/font][/font][font=黑体]实验过程及分析[/font][font=黑体]2.1 [/font][font=黑体]单因素优选实验[/font][font=宋体]2.1.1 [/font][font=宋体]原料配比的确定[/font][font=宋体]在反应温度为85℃,熟化聚合温度为70℃,反应时间为2h,熟化聚合时间为2h的条件下,综合试验了不同的原料配比,对PAC性能的影响结果如图2所示。[/font][font=宋体]由图2可见,随盐酸加入量的增多,产品中氧化铝质量分数随之增加,这是由于酸溶阶段主要是铝灰中的单质铝和氧化铝与废盐酸发生反应,当废盐酸的加入量增加时,有利于反应的正向进行;单一从理论上出发,盐酸用量在一定范围内越大,铝灰中单质铝与氧化铝的溶出率越高。但从实际生产而言,盐酸加入量越大,可能造成不能完全反应,浪费了生产成本,且盐酸是挥发性酸,高温下挥发的酸形成酸雾,会对实验工作环境造成危害,同时对现场操作人员的健康造成不利的影响。另外一方面,随着加入废盐酸的量的增多,H[sup]+[/sup]浓度会越大,游离酸越多,产品的盐基度逐渐下降;盐酸加入量过少时,产品浑浊,液渣分离操作难度大。因此选[font=宋体]择最佳的原料配比是尤为重要的,经过实验数据的对比,选定原料配比铝灰、盐酸、水的最佳配比为20∶60∶80。[/font][/font][/font][/align][align=center][font=宋体][font=宋体][font=宋体][img=,469,283]https://ng1.17img.cn/bbsfiles/images/2023/09/202309011540049329_4319_3237657_3.png!w469x283.jpg[/img][/font][/font][/font][/align][align=center][font=宋体][font=宋体][font=宋体][/font][/font][/font][/align][align=center][font=楷体]图2 原料配比对PAC性能的影响[/font][/align][font=楷体]m[/font][font=楷体](铝灰g)∶V1(盐酸ml)∶V2(水ml) 1 20∶30∶80 [/font][font=楷体]2 20∶40∶80 3 20∶50∶80 4 20∶60∶80 [/font][font=楷体]5 20∶70∶80[/font][font=宋体]2[/font][font=宋体].1.2 [/font][font=宋体]反应温度的确定[/font][font=宋体]在选定原料配比[/font][font=宋体]m∶V[/font][sub][font=宋体]1[/font][/sub][font=宋体]∶V[/font][sub][font=宋体]2[/font][/sub][font=宋体]=20[/font][font=宋体]∶6[/font][font=宋体]0[/font][font=宋体]∶8[/font][font=宋体]0[/font][font=宋体]条件下,反应时间为[/font][font=宋体]2h,[/font][font=宋体]熟化温度[/font][font=宋体]70[/font][font=宋体]℃,[/font][font=宋体][font=宋体]熟化聚合时间为[/font]2h[/font][font=宋体][font=宋体],单一调控反应温度进行实验,研究的反应温度对[/font]P[/font][font=宋体]AC[/font][font=宋体][font=宋体]的性能指标的影响,结果如图[/font]3所示:[/font] [align=center][img]file:///C:\Users\ADMINI~1\AppData\Local\Temp\ksohtml5444\wps3.jpg[/img][font=华文宋体] [img=,465,278]https://ng1.17img.cn/bbsfiles/images/2023/09/202309011532246174_1801_3237657_3.png!w465x278.jpg[/img][/font][/align][align=center][font=楷体]图[/font][font=楷体]3 [/font][font=楷体]反应温度[/font][font=楷体][font=楷体]对[/font]PAC性能的影响[/font][/align][font=宋体]由图[/font][font=宋体]3可见,随着反应温度的升高,产品中氧化铝质量分数和盐基度均随之上升,但结合实验的其他现象,反应温度超过90℃后,盐酸和水挥发较快,造成反应物损失,产品质量明显减少,[/font][font=宋体][font=宋体]产品[/font]P[/font][font=宋体]AC[/font][font=宋体]的性能将下降,也就是铝在水解过程中将会转化成更高聚合度的形态,[/font][font=宋体][font=宋体]且产品呈现粘性浑浊液体状态,难以将固液有效分离。综合考虑,本阶段反应温度以[/font]85℃为最佳反应温度。[/font][font=宋体]2[/font][font=宋体].1.3 [/font][font=宋体]反应时间的确定[/font][font=宋体] [/font][font=宋体] [/font][font=宋体]在选定原料配比[/font][font=宋体]m∶V[/font][sub][font=宋体]1[/font][/sub][font=宋体]∶V[/font][sub][font=宋体]2[/font][/sub][font=宋体]=20∶60∶80条件下,反应温度为85℃,熟化聚合时间为2h,[/font][font=宋体]熟化温度[/font][font=宋体]70℃,单一调控[/font][font=宋体]反应时间[/font][font=宋体]进行试验,[/font][font=宋体]研究反应时间的长短对[/font][font=宋体]PAC的性能指标的影响,结果如图4所示:[/font][align=center][img=,466,282]https://ng1.17img.cn/bbsfiles/images/2023/09/202309011532386484_1319_3237657_3.png!w466x282.jpg[/img][/align][align=center][font=楷体]图[/font][font=楷体]4 反应时间对PAC性能的影响[/font][/align][font=宋体]由图[/font][font=宋体]4可以看出,反[/font][font=宋体]应[/font][font=宋体]初期,盐酸浓度大,反应物充分,铝灰与盐酸反应速率较快,聚合氯化铝的氧化铝质量分数和盐基度呈正向增加趋势,此时,反应物浓度大,推动反应正向进行,反应速率快,随着反应的进行,反应物盐酸被不断[/font][font=宋体]地[/font][font=宋体][font=宋体]消耗,其浓度降低,反应产物浓度增加,抑制了正向进行速率,当反应时间达到[/font]2h时,反应物几乎最大程度被消耗完,盐基度也到达了最高。因此,综合考虑反应的能耗、时间成本等因素,[/font][font=宋体]本阶段[/font][font=宋体][font=宋体]最佳反应时间为[/font]2h。 [/font][font=宋体]2[/font][font=宋体].1.4 [/font][font=宋体]聚合温度的确定[/font][font=宋体]在选定原料配比[/font][font=宋体]m∶V[/font][sub][font=宋体]1[/font][/sub][font=宋体]∶V[/font][sub][font=宋体]2[/font][/sub][font=宋体]=20∶60∶80条件下,反应时间为2h,[/font][font=宋体][font=宋体]反应温度为[/font]8[/font][font=宋体]5[/font][font=宋体]℃,[/font][font=宋体][font=宋体]熟化聚合时间为[/font]2h[/font][font=宋体][font=宋体],单一调控熟化聚合温度进行试验,[/font][font=宋体]研究熟化聚合温度对[/font][/font][font=宋体]PAC的性能指标的影响,结果如图5所示:[/font][align=center][img]file:///C:\Users\ADMINI~1\AppData\Local\Temp\ksohtml5444\wps5.jpg[/img][font=华文宋体] [img=,465,278]https://ng1.17img.cn/bbsfiles/images/2023/09/202309011532486665_6908_3237657_3.png!w465x278.jpg[/img][/font][/align][align=center][font=楷体]图[/font][font=楷体]5 [/font][font=楷体]聚合温度对[/font][font=楷体]PAC性能的影响[/font][/align][font=宋体]由图[/font][font=宋体]5可以看出,随着熟化聚合温度的升高,产品聚合氯化铝中氧化铝质量分数与盐基度等参数呈现明显的先上升后下降的趋势,聚合温度过低,反应不充分,聚合程度低;聚合温度过高会破坏聚合态结构,导致部分聚合物分解,熟化聚合温度达到70℃时,产品聚合氯化铝中氧化铝含量和盐基度达到最高值,综合考虑,确定聚合温度70℃为[/font][font=宋体]本[/font][font=宋体]阶段最佳反应条件。[/font][font=宋体]2[/font][font=宋体].1.5 [/font][font=宋体]聚合时间的确定[/font][font=宋体]在选定原料配比[/font][font=宋体]m∶V[/font][sub][font=宋体]1[/font][/sub][font=宋体]∶V[/font][sub][font=宋体]2[/font][/sub][font=宋体]=20∶60∶80条件下,反应温度为85℃,[/font][font=宋体][font=宋体]反应时间[/font]2[/font][font=宋体]h[/font][font=宋体],[/font][font=宋体]熟化[/font][font=宋体]聚合[/font][font=宋体][font=宋体]温度[/font]70℃,[/font][font=宋体]单一调控熟化聚合时间变量,研究熟化聚合时间对[/font][font=宋体]PAC的性能指标的影响,结果如图6所示:[/font][font=宋体][font=宋体]由图[/font]6可以看出,随着聚合熟化时间的延长,产品中氧化铝含量和盐基度均呈上升趋势,当聚合时间达到2[/font][font=宋体]h[/font][font=宋体][font=宋体]后,产品氧化铝含量和盐基度指标均到达预期值,继续延长熟化聚合时间产品指标增幅不大,出于生产效率和成本的综合考虑,熟化聚合时间[/font]2[/font][font=宋体]h[/font][font=宋体]为本阶段最佳反应条件。[/font][align=center][img=,466,281]https://ng1.17img.cn/bbsfiles/images/2023/09/202309011533076037_6078_3237657_3.png!w466x281.jpg[/img][/align][align=center][font=楷体]图[/font][font=楷体]6 聚合[/font][font=楷体]时间[/font][font=楷体][font=楷体]对[/font]PAC性能的影响[/font][/align][font=黑体]2.1 [/font][font=黑体]经过不同处理方式的铝灰试验结果[/font][font=宋体]在选择最佳试验原料配比和试验条件下,原料配比[/font][font=宋体]m∶V[/font][sub][font=宋体]1[/font][/sub][font=宋体]∶V[/font][sub][font=宋体]2[/font][/sub][font=宋体]=20∶60∶80[/font][font=宋体][font=宋体],反应温度为[/font]8[/font][font=宋体]5[/font][font=宋体]℃,反应时间2[/font][font=宋体]h[/font][font=宋体][font=宋体],熟化聚合温度[/font]7[/font][font=宋体]0[/font][font=宋体]℃,熟化聚合时间2[/font][font=宋体]h[/font][font=宋体],将三种铝灰进行原料中氧化铝含量的分析测定和同种工艺制备聚合氯化铝[/font][font=宋体],与国标《水处理剂聚氯化铝》对比,产品均达到国标要求[/font][font=宋体][color=#ff0000]。[/color][/font][font=宋体][font=宋体]结果数据汇总如表[/font]1、表2:[/font][font=楷体][/font][align=center][font=楷体][font=楷体]表[/font]1[/font][font=楷体] [/font][font=楷体]三种不同原料实验数据对比[/font][/align][font=楷体][/font][table][tr][td=1,2][font=楷体]样品名称[/font][/td][td=4,1][font=楷体]氧化铝质量分数/[/font][font=楷体]%[/font][/td][td=1,2][font=楷体] [/font][font=楷体]可溶度/[/font][font=楷体]%[/font][/td][td=1,2][font=楷体] [/font][font=楷体]浸出率/[/font][font=楷体]%[/font][/td][/tr][tr][td][font=楷体]原料[/font][/td][td][font=楷体]P[/font][font=楷体]AC[/font][font=楷体]固体[/font][/td][td][font=楷体]滤渣[/font][/td][td][font=楷体]铝酸钙[/font][/td][/tr][tr][td][font=楷体]1[/font][font=楷体]#[/font][/td][td][font=楷体]6[/font][font=楷体]8.33[/font][/td][td][font=楷体]8[/font][font=楷体].5[/font][/td][td][font=楷体]6[/font][font=楷体]3.37[/font][/td][td][font=楷体]5[/font][font=楷体]7.78[/font][/td][td][font=楷体]6[/font][font=楷体].75[/font][/td][td][font=楷体]4[/font][font=楷体].8[/font][/td][/tr][tr][td][font=楷体]2[/font][font=楷体]#[/font][/td][td][font=楷体]6[/font][font=楷体]9.86[/font][/td][td][font=楷体]2[/font][font=楷体]1.03[/font][/td][td][font=楷体]5[/font][font=楷体]9.26[/font][/td][td][font=楷体]5[/font][font=楷体]9.26[/font][/td][td][font=楷体]3[/font][font=楷体]1.99[/font][/td][td][font=楷体]4[/font][font=楷体]9.17[/font][/td][/tr][tr][td][font=楷体]3[/font][font=楷体]#[/font][/td][td][font=楷体]7[/font][font=楷体]8.2[/font][/td][td][font=楷体]2[/font][font=楷体]0.76[/font][/td][td][font=楷体]4[/font][font=楷体]7.37[/font][/td][td][font=楷体]5[/font][font=楷体]9.83[/font][/td][td][font=楷体]5[/font][font=楷体]2.00[/font][/td][td][font=楷体]5[/font][font=楷体]4.00[/font][/td][/tr][/table][font=楷体][/font][font=楷体][/font][align=center][font=楷体][font=楷体]表[/font]2[/font][font=楷体] [/font][font=楷体][font=楷体]产品与国标[/font]GB/T 22627-2014对比[/font][/align][font=宋体][/font][table][tr][td][align=center][font=宋体]指标名称[/font][/align][/td][td][align=center][font=宋体]Al2O3/%[/font][/align][/td][td][align=center][font=宋体]水不容物含量/%[/font][/align][/td][td][align=center][font=宋体]PH值(10g/L水溶液)[/font][/align][/td][td][align=center][font=宋体]Fe含量/%[/font][/align][/td][td][align=center][font=宋体]Pb含量/%[/font][/align][/td][td][align=center][font=宋体]As含量/%[/font][/align][/td][/tr][tr][td][align=center][font=宋体]标准要求[/font][/align][/td][td][align=center][font=宋体]≥6[/font][/align][/td][td][align=center][font=宋体]≤0.4[/font][/align][/td][td][align=center][font=宋体]3.5-5.0[/font][/align][/td][td][align=center][font=宋体]≤3.5[/font][/align][/td][td][align=center][font=宋体]≤0.002[/font][/align][/td][td][align=center][font=宋体]≤0.0005[/font][/align][/td][/tr][tr][td][align=center][font=宋体]#1[/font][/align][/td][td][align=center][font=宋体]8.5[/font][/align][/td][td][align=center][font=宋体]0.25[/font][/align][/td][td][align=center][font=宋体]4.1[/font][/align][/td][td][align=center][font=宋体]0.7[/font][/align][/td][td][align=center][font=宋体]-[/font][/align][/td][td][align=center][font=宋体]-[/font][/align][/td][/tr][tr][td][align=center][font=宋体]#2[/font][/align][/td][td][align=center][font=宋体]21.03[/font][/align][/td][td][align=center][font=宋体]0.1[/font][/align][/td][td][align=center][font=宋体]4.05[/font][/align][/td][td][align=center][font=宋体]0.72[/font][/align][/td][td][align=center][font=宋体]-[/font][/align][/td][td][align=center][font=宋体]-[/font][/align][/td][/tr][tr][td][align=center][font=宋体]#3[/font][/align][/td][td][align=center][font=宋体]20.76[/font][/align][/td][td][align=center][font=宋体]0.1[/font][/align][/td][td][align=center][font=宋体]4.1[/font][/align][/td][td][align=center][font=宋体]0.65[/font][/align][/td][td][align=center][font=宋体]-[/font][/align][/td][td][align=center][font=宋体]-[/font][/align][/td][/tr][/table][font=宋体][/font][font=宋体][font=宋体]由表[/font]1看出,三种原料虽然固有氧化铝含量均很高,但是不同的处理工艺对铝灰中氧化铝的性能造成不同的影响,1[/font][font=宋体]#[/font][font=宋体][font=宋体]铝灰经火法处理后的铝灰在制备聚氯化铝时溶解度、浸出率都很低,产品率低,不适合作为制备聚合氯化铝的原料,[/font]2[/font][font=宋体]#[/font][font=宋体][font=宋体]和[/font]3[/font][font=宋体]#[/font][font=宋体]铝灰通过数据可以看出均适合作为制备聚合氯化铝的原料,但是[/font][font=宋体]3#[/font][font=宋体]铝灰是未经处理的铝灰,若直接进行酸溶反应,反应较为剧烈,具有很大的危险性,也不符合环保要求。必须经过湿法脱氨除氮处理后方可进行下一步的生产。[/font][font=宋体][font=宋体]根据表[/font]2数据显示,我司铝灰实验室制备聚合氯化铝产品各项产品指标均满足国家标准要求[/font][font=宋体][color=#ff0000]。[/color][/font][font=黑体]3 [/font][font=黑体]实验结论[/font][font=宋体]1、[/font][font=等线][font=等线]以铝灰和废盐酸为原料,采用酸溶法制备聚合氯化铝,通过单因素优选实验,得出铝灰和废盐酸反应制备聚合氯化铝的最佳工艺参数为:[/font][font=等线]原料配比[/font][/font][font=宋体]m∶V[/font][sub][font=宋体]1[/font][/sub][font=宋体]∶V[/font][sub][font=宋体]2[/font][/sub][font=宋体]=20∶60∶80[/font][font=宋体][font=宋体],反应温度为[/font]8[/font][font=宋体]5[/font][font=宋体]℃,反应时间2[/font][font=宋体]h[/font][font=宋体][font=宋体],熟化聚合温度[/font]7[/font][font=宋体]0[/font][font=宋体]℃,熟化聚合时间2[/font][font=宋体]h[/font][font=宋体][font=宋体],[/font][font=宋体]在该最佳条件下,采用[/font]2[/font][font=宋体]#[/font][font=宋体][font=宋体]铝灰制备,得到液体[/font]P[/font][font=宋体]AC[/font][font=宋体]氧化铝质量分数[/font][font=宋体]8.09%[/font][font=宋体],盐基度[/font][font=宋体]53.01%[/font][font=宋体]2、[/font][font=宋体]3#[/font][font=宋体][font=宋体]未经处理的二次铝灰,直接进行酸溶反应,由于[/font]A[/font][font=宋体]lN[/font][font=宋体]的水解行为,反应现象剧烈,操作上存在一定的危险性,应经前期湿法脱氨固氮处理后再进行酸溶反应。[/font][font=宋体]3、采用自制偏铝酸钙可高效、经济地调节铝灰及聚合氯化铝的盐基度,节约时间成本,提高生产效率,减少废渣产生。[/font]

  • 【求助】聚合物薄膜 截面样品 制备方法求教!!!

    小弟初来乍到,有一个问题想求教各位:我的样品是聚合物薄片上的有机薄膜,总厚度可能有毫米级了,上面的薄膜样品约有几十个微米,想观察基地上薄膜的断面形貌。所以整个样品就是很韧的聚合物膜(包括基底),不像成在硅片上这个好制备。用液氮脆断似乎也很困难,而使用超薄切片似乎也不合适。如果想做出一个不破坏基材结构的断面的话,大家有什么建议呢???十分感谢回复及关注的XDJM~

  • 求助一本电子书:聚酰亚胺:单体合成、聚合方法及材料制备

    [b][[color=green]求助[/color]] 聚酰亚胺:单体合成、聚合方法及材料制备 丁孟贤 [url=http://muchong.com/bbs/search.php?_f=xgztss&wd=%BE%DB%F5%A3%D1%C7%B0%B7%A3%BA%B5%A5%CC%E5%BA%CF%B3%C9%A1%A2%BE%DB%BA%CF%B7%BD%B7%A8%BC%B0%B2%C4%C1%CF%D6%C6%B1%B8+%B6%A1%C3%CF%CF%CD][img=,absmiddle]http://muchongimg.xmcimg.com/data/emuch_bbs_images/gofind.gif[/img][/url][/b][table=100%][tr][td][table=100%][tr][td][b]图书作者:[/b][/td][/tr][tr][td]丁孟贤[/td][/tr][tr][td][b]图书标题:[/b][/td][/tr][tr][td]聚酰亚胺:单体合成、聚合方法及材料制备[/td][/tr][tr][td][b]出版社:[/b][/td][/tr][tr][td]科学出版社发行部[/td][/tr][tr][td][b]出版日期:[/b][/td][/tr][tr][td]2011年6月1日[/td][/tr][tr][td][b]书籍页数:[/b][/td][/tr][tr][td]983[/td][/tr][tr][td][b]书籍格式要求:[/b][/td][/tr][tr][td]格式不限[/td][/tr][tr][td][b]ISBN码:[/b][/td][/tr][tr][td]978-7-03-031080-4[/td][/tr][/table][/td][/tr][/table]

  • 请教一下关于聚合物囊泡TEM样品制备的一些问题

    请教一下关于聚合物囊泡TEM样品制备的一些问题

    本人在水溶液中合成了一批聚合物囊泡,滴铜网,吸干,液氮生冷,油泵抽真空,去拍电镜发现没东西,不知道是不是纳米粒子被泵抽走了?而使用自然挥发的样品,能看出囊泡结构,但不清晰,囊泡壁糊的且囊泡之间有粘连。之后采用磷钨酸染色2 min,液氮生冷抽真空的方法拍出的样品清晰(正染),粒子之间无粘连,但和自然挥发的比较,囊泡壁变厚,初步怀疑是磷钨酸和囊泡亲水段上的酰胺键发生作用。目前以探索多种制样手段,发现效果不理想,且学校没有Cryo-TEM,请教一下各位同仁, 不知道该如何制备样品最能体现其本征形貌?

  • 化学法制备微囊和微球

    [font=微软雅黑][size=10.5000pt][font=微软雅黑]化学法是建立在化学反应基础上的微胶囊制备技术,主要利用单位小分子发生聚合反应生成高分子或膜材料并将芯材包覆。许多合成高分子的聚合反应都可利用到微胶囊制备上,通常使用的主要方法是界面聚合、原位聚合以及其它一些高分子化合物的反应。[/font] [/size][/font][font=微软雅黑][size=10.5pt][font=微软雅黑](一)界面缩聚法[/font] [/size][/font][font=微软雅黑][size=10.5000pt]当亲水性的单体和亲脂性单体在囊心物的界面处由于引发剂和表面活性剂的作用瞬间发生聚合反应而生成聚合物包裹在囊心物的表层周围,形成了半透性膜层的微囊。[/size][/font][font=微软雅黑][size=10.5000pt](二)[/size][/font][font=微软雅黑][size=10.5pt][font=微软雅黑]辐射化学法[/font] [/size][/font][font=微软雅黑][size=10.5000pt][font=微软雅黑]是用明胶或[/font]PVA为囊材,用γ射线照射使囊材在乳剂状态下发生交联,再经过处理得到球型镶嵌型的微囊,然后将微囊浸泡于药物的水溶液中,使其吸收,干燥水分即得含有药物的微囊。[/size][/font]

  • 基于迈克尔加成含哌嗪结构的交联聚合物制备及其与金属离子络合的功能研究

    【序号】:1【作者】: 刘家麟【题名】:基于迈克尔加成含哌嗪结构的交联聚合物制备及其与金属离子络合的功能研究【期刊】:北京化工大学【年、卷、期、起止页码】:2022【全文链接】:https://kns.cnki.net/kcms/detail/detail.aspx?dbcode=CMFD&dbname=CMFD202201&filename=1022005132.nh&uniplatform=NZKPT&v=hxJv3NMhuDHY-jj4l0AX3Nzwz8LzS540BpAmeGTIX14YK0KG0XqVG210VP0so7Kz

  • 化学法制备微囊和微球

    [font=微软雅黑][size=10.5000pt][font=微软雅黑]化学法是建立在化学反应基础上的微胶囊制备技术,主要利用单位小分子发生聚合反应生成高分子或膜材料并将芯材包覆。许多合成高分子的聚合反应都可利用到微胶囊制备上,通常使用的主要方法是界面聚合、原位聚合以及其它一些高分子化合物的反应。[/font] [/size][/font][font=微软雅黑][size=10.5pt][font=微软雅黑](一)界面缩聚法[/font] [/size][/font][font=微软雅黑][size=10.5000pt]当亲水性的单体和亲脂性单体在囊心物的界面处由于引发剂和表面活性剂的作用瞬间发生聚合反应而生成聚合物包裹在囊心物的表层周围,形成了半透性膜层的微囊。[/size][/font][font=微软雅黑][size=10.5000pt](二)[/size][/font][font=微软雅黑][size=10.5pt][font=微软雅黑]辐射化学法[/font] [/size][/font][font=微软雅黑][size=10.5000pt][font=微软雅黑]是用明胶或[/font]PVA为囊材,用γ射线照射使囊材在乳剂状态下发生交联,再经过处理得到球型镶嵌型的微囊,然后将微囊浸泡于药物的水溶液中,使其吸收,干燥水分即得含有药物的微囊。[/size][/font]

  • 【天瑞论文奖】+【第三届原创】烟嘧磺隆分子印迹聚合物识别特性的光谱研究

    维权声明:本文为sibianjing原创作品,本作者与仪器信息网是该作品合法使用者,该作品暂不对外授权转载。其他任何网站、组织、单位或个人等将该作品在本站以外的任何媒体任何形式出现均属侵权违法行为,我们将追究法律责任。摘要:用紫外及红外分光光度法研究了印迹分子和单体之间的作用力, 结果表明随着甲基丙烯酸浓度的增加, 紫外吸收曲线的最大吸收波长发生红移, 说明两者之间存在氢键作用力; 经红外光谱分析进一步表明烟嘧磺隆的—NH、-S=O 和C=O 可以氢键和甲基丙烯酸的—COOH 之间有氢键作用。采用原位聚合法制备烟嘧磺隆分子印迹棒状聚合物, 除去印迹分子的聚合物留下了对印迹分子特异识别的结合位点。此聚合物可用来做吸附填料, 固相微萃取涂层材料,用以分离富集环境样品中的烟嘧磺隆。关键词:分子印迹;烟嘧磺隆;分子识别

  • 聚合物刷及其接枝方法

    [align=center][font='times new roman'][size=16px]聚合物刷[/size][/font][font='times new roman'][size=16px]及其[/size][/font][font='times new roman'][size=16px]接枝方法[/size][/font][/align] 聚合物刷是由聚合物链组成的超薄聚合物涂层,其一端拴在材料基底上,具有较高的接枝密度和厚度,呈现刷型构象。聚合物刷修饰改性是当前最有效的材料改性技术之一。其优势在于既可以保留材料的原有理化性质,同时由于聚合物刷自身可控的化学结构、密度和厚度,又可以赋予材料其它优异的性能,比如摩擦力、粘附力、生物相容性、润湿性和亲疏水性等。根据聚合物刷链所连接的基底类型,聚合物刷可形成一维(1D)、二维(2D)和三维(3D)聚合物刷(图1)。目前,聚合物刷型材料已大量应用于组织工程、生物医学、分离科学等领域。 [align=center][img]https://ng1.17img.cn/bbsfiles/images/2024/08/202408191733098007_7856_5389809_3.jpeg[/img][/align][align=center][size=13px]图[/size][size=13px]1 [/size][size=13px]聚合物刷的类型[/size][/align][align=center][size=13px]Fig.[/size][size=13px] [/size][size=13px]1 Types[/size][size=13px] of polymer brushes[/size][/align][align=center] [/align][align=center][font='times new roman'][size=16px]聚合物刷的接枝方法[/size][/font][/align] 聚合物刷的接枝方法主要包括“Grafting to”、“Grafting through”和“Grafting from”法(图2)。 [align=center][img]https://ng1.17img.cn/bbsfiles/images/2024/08/202408191733099453_2127_5389809_3.png[/img][/align][align=center][size=13px]图[/size][size=13px]2[/size][size=13px] [/size][size=13px]聚合物刷的接枝策略[/size][size=13px]:[/size][size=13px]([/size][size=13px]A[/size][size=13px])[/size][size=13px]“grafting-to”[/size][size=13px] [/size][size=13px]([/size][size=13px]B[/size][size=13px])[/size][size=13px]“grafting-from”[/size][size=13px] [/size][size=13px]([/size][size=13px]C[/size][size=13px])[/size][size=13px]“grafting-[/size][/align][align=center][size=13px]through”[/size][font='times new roman'][sup][size=13px][54][/size][/sup][/font][/align][align=center][size=13px]Fig.[/size][size=13px] [/size][size=13px]2[/size][size=13px] The grafting strategy of polymer brushes[/size][size=13px]:[/size][size=13px] [/size][size=13px](A) “grafting-to”[/size][size=13px] [/size][size=13px] [/size][size=13px]([/size][size=13px]B) “grafting-from”[/size][size=13px] [/size][size=13px] [/size][size=13px]([/size][size=13px]C) “grafting-through”[/size][/align]“Grafting to”是通过将已合成的聚合物与材料表面互补基团进行反应进而得到聚合物刷材料的接枝方法,这种方法的优点是可以在反应之前对所合成的聚合物进行全面精确的表征,可以制备具有明确分子量和分子量分布的聚合物,是制备聚合物刷的传统方法,但是该法的缺点是随着反应的进行,由于聚合物自身空间位阻的影响,会导致接枝率降低以及聚合物刷层的密度和厚度不均匀等问题。虽然通过加大聚合物的投料量可以提高接枝率,但是这也会导致反应后处理变得困难,因此“Grafting to”法应用相对较少。 “Grafting through”是基于材料表面附着的单体基团,与溶液中生成的聚合链进行共聚合的一种接枝方法,通常是溶液中的聚合物链先开始生长,然后在此过程中,表面附着单体基团也参与聚合,最终形成聚合物刷层。该方法的优点在于改变了聚合反应期间溶液中单体浓度总是大于材料表面附近单体浓度的问题,一定程度上解决了长链更长、短链更短的问题,从而可获得低分散性和高接枝密度的聚合物刷。其缺点在于该法的接枝机理尚未完全明确,有待进一步的研究。 “Grafting from”是将引发剂固定于材料表面,之后原位生成聚合物刷的方法,也叫做表面引发聚合法。该方法的优点在于可以很好地控制聚合物刷的密度、厚度和结构,缺点在于需要先将引发剂固定于材料表面以及表征存在一定的难度。“Grafting from”法克服了“Grafting to”和“Grafting through”法共同的空间位阻问题,因此当前材料表面接枝聚合物刷应用最为广泛的是“Grafting from”法。

  • 悬浮聚合法制备甲基丙烯酸丁酯类吸油树脂及其性能的研究

    1 题目:悬浮聚合法制备甲基丙烯酸丁酯类吸油树脂及其性能的研究[color=#999999]作者:[/color][color=#333333]王良[/color]链接:[color=#333333]http://d.wanfangdata.com.cn/Thesis/Y2972479[/color][color=#333333]来源:[color=#005cd9]黑龙江大学 , [/color][color=#005cd9]2015[/color][/color]

  • 【金秋计划】负载胡桃醌的白及多糖-维生素E琥珀酸酯聚合物胶束的制备及表征

    青龙衣green walnut husks来源于胡桃科胡桃属植物胡桃和胡桃楸的未成熟果实的干燥外果皮。胡桃醌是青龙衣中的萘醌类化合物,也是主要活性成分[1]。现代药理研究表明,胡桃醌具有抗炎、抗菌、抗肿瘤等作用[2-5],对多种肿瘤细胞增殖均有抑制作用。目前,已证实胡桃醌能抑制宫颈癌细胞生长,并诱导其凋亡、抑制细胞迁移、侵袭[6-7]。其对肝癌HepG2细胞的体内外抑制活性显著,能够上调死亡受体5(death receptor 5,DR5)表达,通过ROS介导的p53信号通路激活,促进自噬体形成,诱导细胞的凋亡与自噬[8]。胡桃醌对人乳腺癌MCF-7细胞抑制生长效果明显,与时间和浓度呈正相关,同时使Bcl-2相关X蛋白/B淋巴细胞瘤-2(Bcl-2 associated X protein/B-cell lymphoma-2,Bax/Bcl-2)比值升高,半胱氨酸天冬氨酸蛋白酶-3(cystein- asparate protease-3,Caspase-3)、Caspase-9被激活,诱导细胞凋亡[9]。但胡桃醌水溶性差,易升华,能随水蒸汽挥发,长期存放易发生氧化分解,限制了其在新药开发和在临床上的应用[10],因此,针对其药理活性及潜在应用,设计一种可有效提高胡桃醌稳定性的递药体系具有重要意义。 两亲性嵌段共聚物是在自组装过程中将疏水性药物包覆或键合在聚合物中形成的载药纳米胶束,其能够弥补传统药物水溶性差、吸收率低等不足,可提高药物生物利用度,实现靶向控制释放,在抗癌药物递送中被广泛应用[11]。白及多糖(Bletilla striata polysaccharide,BSP)是从兰科白及属植物白及Bletilla striata (Thunb.) Reichb. f.的干燥块茎中提取得到的一类水溶性多糖,作为天然高分子材料,具有结构稳定、生物可降解、生物安全性高、易于修饰改造等特点,逐渐成为一种纳米药物递送系统的新型优良载体材料[12]。维生素E琥珀酸酯(vitamin E succinate,VES)是维生素E的类似物,因具有较长的脂肪链而疏水性较强,将其和白及多糖连接可提高包载药物的稳定性。VES还能够抑制肿瘤细胞生长和诱导肿瘤细胞凋亡,且只对肿瘤细胞有抑制作用,对正常的组织细胞无任何不良反应,因此VES具有药物和载体的双重作用[13-14],在递送药物的同时达到辅助治疗的效果。 本实验以白及多糖为亲水端,VES为疏水端,合成两亲性嵌段共聚物BSP-VES,将其作为载体制备胡桃醌载药胶束(Jug/BSP-VES),同时考察制备过程中各因素对包封率和载药量的影响,采用星点设计-效应面法(central composite design-response surface methodology,CCD-RSM)优化Jug/BSP-VES胶束的处方和工艺,并进行质量评价,为传统中药青龙衣及其活性成分胡桃醌的开发及临床应用提供参考。 1 仪器与材料 1.1 仪器 Agilent 1260 Series型高效[url=https://insevent.instrument.com.cn/t/5p][color=#3333ff]液相色谱仪[/color][/url],美国安捷伦有限公司;DF-101S型集热式恒温加热磁力搅拌器,上海秋佐科学仪器有限公司;KQ-200KDB型超声波清洗器,昆山市超声仪器有限公司;UV-765型紫外-可见分光光度计,上海精密科学仪器有限公司;Advantage型台式托盘冻干机,美国VirTis公司;80-2型电动离心机,上海浦东物理光学仪器厂;Zetasizer Nano ZSE型纳米粒度电位仪,英国马尔文公司;FTIR-650型傅里叶变换红外光谱仪,天津港东科技股份有限公司;970CRT型荧光分光光度计,北京恒奥德仪器有限公司;Hula Dancer Digital型涡旋混合器,德国IKA公司;Talos F200S G2型透射电子显微镜(TEM),赛默飞仪器公司。 1.2 试药 胡桃醌原料药(批号A2007171,质量分数≥97%)、1-乙基-(3-二甲基氨基丙基)碳二亚胺盐酸盐(EDC)、4-二甲氨基吡啶(DMAP),上海阿拉丁试剂有限公司;白及多糖,批号GH210721,西安国豪生物科技有限公司;胡桃醌对照品,批号RFS-H07511804026,质量分数>98%,成都瑞芬思生物科技有限公司;VES,批号VS1210200734,西安海斯夫生物科技有限公司;芘,分析纯,上海九鼎化学有限公司。 2 方法与结果 2.1 BSP-VES聚合物的合成 称取3.2 g BSP超声溶解于30 mL DMSO中。另称取适量VES、DMAP和EDC(nVES∶nDMAP∶nEDC=1∶1∶1.2)溶于DMSO后磁力搅拌活化1 h,BSP溶液缓慢滴入,密封圆底烧瓶,38 ℃水浴搅拌下反应48 h,室温冷却后移至透析袋(截留相对分子质量3 500)中用纯化水透析2 d以除去未反应试剂。将溶液3 500 r/min离心(离心半径10 cm)15 min取上清液,?20 ℃冰箱中预冻,随后进行冷冻干燥,得到棕色絮状疏松固体,置于4 ℃冰箱中冷藏备用,反应式见图1。 图片 2.2 BSP-VES的表征及结果 2.2.1 核磁共振氢谱(1H-NMR)检测 以D2O为溶剂,对BSP-VES合成产物进行1H-NMR分析。结果如图2所示,δ 3.0~4.0处宽峰为白及多糖上甘露糖和葡萄糖单元中的亚甲基和次甲基(CH2-O和CH-O)的质子峰,δ 0.8~1.0附近为VES中甲基(e)、亚甲基信号峰,δ 5.31处为白及多糖(1,6)糖苷键(a)的质子化学位移。以上结果表明合成产物为BSP-VES[15]。 图片 2.2.2 红外光谱(IR)检测 采用IR法分别对BSP、VES、BSP-VES进行表征,红外扫描范围为4 000~500 cm?1,结果如图3所示。BSP的结果图(图3-a)中,3 384.56、2 921.63 cm?1为O-H和C-H的伸缩振动峰,1 149.37、1 076.08、1 025.94 cm?1为吡喃糖苷构型的特征峰。VES的结果图(图3-b)中,2 923.56 cm?1为-CH2、-CH的伸缩振动峰,1 749.12、1 710.55 cm?1为羧基和酯基中C=O伸缩振动峰,1 373.07、1 157.08 cm?1为-CH3和C-O的伸缩振动峰。BSP-VES的结果图(图3-c),其中2 921.63 cm?1处的C-H伸缩振动峰增强,说明有VES中大量-CH2、-CH3的引入,1 739.48 cm?1为酯基中C=O伸缩振动峰,1 567.84 cm?1为VES中苯环骨架振动峰,揭示了VES的引入[16]。 图片 2.3 Jug/BSP-VES胶束的制备 采用溶剂挥发法制备Jug/BSP-VES胶束[17]。称取20 mg的BSP-VES于15 mL水中,称取2 mg胡桃醌溶于3 mL无水乙醇中,在搅拌下将含药溶液滴加至水相中,在30 ℃下搅拌6 h,有机溶剂挥发完全后即得Jug/BSP-VES胶束溶液。预冻后,置于冻干机中,取出即得冻干粉。 2.4 Jug/BSP-VES中胡桃醌含量测定方法 2.4.1 色谱条件 色谱柱为依利特Kromasil(250 mm×4.6 mm,5 μm);流动相为甲醇-水(70∶30);检测波长248 nm;柱温25 ℃;体积流量1.0 mL/min;进样量10 μL。 2.4.2 溶液的配制 (1)对照品溶液的配制:精密称取胡桃醌对照品5.0 mg,置于25 mL量瓶中,甲醇溶解并定容,得质量浓度为200 μg/mL的对照品储备液。 (2)供试品溶液的配制:精密吸取Jug/BSP-VES胶束溶液0.5 mL至10 mL量瓶中,甲醇破乳并定容至刻度,摇匀,即得Jug/BSP-VES供试品溶液。空白胶束供试品溶液同法操作。 2.4.3 专属性考察 分别取适量空白胶束供试液、适当浓度的胡桃醌对照品溶液及Jug/BSP-VES供试品溶液各10 μL,注入[url=https://insevent.instrument.com.cn/t/5p][color=#3333ff]液相色谱仪[/color][/url],按“2.4.1”项下色谱条件测定,记录色谱图。结果见图4,空白胶束在胡桃醌处无干扰,专属性良好。 图片 2.4.4 线性关系考察 取“2.4.2”项下对照品溶液适量,加甲醇稀释,得到系列质量浓度为1、5、10、30、50、70、100 μg/mL的对照品溶液,按“2.4.1”项下色谱条件进样测定,记录峰面积,以峰面积(Y)对质量浓度(X)进行线性方程拟合,得回归方程为Y=44.786 X-38.423,r=0.999 8,结果表明胡桃醌在1~100 μg/mL线性关系良好。 2.4.5 精密度试验 取“2.4.4”项下低、中、高3个质量浓度(分别为5、30、70 μg/mL)胡桃醌对照品溶液,同1 d内各质量浓度分别进样5次,计算日内精密度;各质量浓度连续进样5 d,计算日间精密度。日内与日间精密度RSD均小于2.0%,表明仪器的精密度良好。 2.4.6 稳定性试验 精密吸取同一供试品溶液在0、2、4、8、12、24 h下,按照“2.4.1”项下色谱条件进行测定,结果峰面积的RSD值为0.596%,表明供试品溶液在24 h内稳定性良好。 2.4.7 重复性试验 取同一批Jug/BSP-VES 6份,按“2.4.2”项方法制备供试品溶液,按照“2.4.1”项下色谱条件进行测定,计算胡桃醌质量浓度的RSD值为1.03%,表明测定方法的重复性良好。 2.4.8 加样回收率试验 精密量取200 μg/mL胡桃醌对照品溶液0.25、1.50、3.50 mL各3份于10 mL量瓶中,加入BSP-VES聚合物,用甲醇定容,分别得到胡桃醌质量浓度为5、30、70 μg/mL的溶液,按“2.4.1”项下色谱条件测定胡桃醌的含量,测得加样回收率均在99%~102%,RSD均小于2.0%,表明检测结果准确可靠。 2.5 胡桃醌包封率、载药量的测定 采用离心法进行聚合物胶束药物包封率和载药量的测定[18]。精密吸取Jug/BSP-VES胶束溶液1 mL至1.5 mL离心管中,3 000 r/min离心(离心半径8 cm)10 min,除去游离药物,吸取0.5 mL上清液,甲醇破乳并定容至刻度,摇匀,按“2.4.1”项下色谱条件进样分析。另取Jug/BSP-VES胶束溶液0.5 mL至10 mL量瓶中,甲醇破乳并定容至刻度,摇匀,按“2.4.1”项下色谱条件进样分析。将所得峰面积带入线性方程计算胡桃醌的包封率和载药量。 包封率=W胶束中药物量/W总药量 载药量=W胶束中药物量/W胶束质量 2.6 单因素考察 2.6.1 有机溶剂种类考察 固定其他条件不变,即有机溶剂用量为3 mL,挥发时间为6 h,制备温度为30 ℃,载药比为10∶1,水相用量为15 mL,分别加入有机溶剂氯仿、丙酮、甲醇、无水乙醇,考察不同有机溶剂种类对载药量和包封率的影响。结果(表1)显示,以无水乙醇为溶剂时,制备的胶束溶液包封率和载药量最高,因此,选择无水乙醇作为溶剂来制备Jug/BSP-VES胶束。 图片 2.6.2 有机溶剂用量考察 固定其他条件不变,即有机溶剂为无水乙醇,挥发时间为6 h,制备温度为30 ℃,载药比为10,水相用量为15 mL,加入一定量的BSP-VES和胡桃醌分别溶解于1、2、3、4、5 mL无水乙醇中,考察不同有机溶剂用量对载药量和包封率的影响。结果(表2)显示,当有机溶剂用量为3 mL时胡桃醌的载药量和包封率最高,因此,选择3 mL作为有机溶剂用量。 图片 2.6.3 挥发时间考察 固定其他条件不变,即有机溶剂为无水乙醇,用量为3 mL,制备温度为30 ℃,载药比为10,水相用量为15 mL,考察挥发时间在4、5、6、7、8 h时,不同挥发时间对载药量和包封率的影响。结果(表3)显示,当挥发时间为6 h时胡桃醌的载药量和包封率最高,因此,选择6 h作为挥发时间来制备Jug/BSP-VES胶束。 图片 2.6.4 制备温度考察 固定其他条件不变,即有机溶剂为无水乙醇,用量为3 mL,挥发时间为6 h,载药比为10,水相用量为15 mL,考察制备温度在25、30、35、40、45 ℃时,不同制备温度对载药量和包封率的影响。结果(表4)显示,随着制备温度的增加,胡桃醌的载药量与包封率先升高后降低,因此将25~35 ℃的制备温度作为待优化项进行CCD-RSM实验。 图片 2.6.5 载药比考察 固定其他条件不变,即有机溶剂为无水乙醇,用量为3 mL,挥发时间为6 h,制备温度为30 ℃,水相用量为15 mL,精密称取药物2 mg,加入不同质量的载体,即载药比分别为6、8、10、12、14时,考察不同载药比对载药量和包封率的影响。结果(表5)显示,随着载体量的增加,胡桃醌的包封率先升高后降低,因此将8、10、12的载药比作为待优化项进行CCD-RSM实验。 图片 2.6.6 水相用量考察 固定其他条件不变,即有机溶剂为无水乙醇,用量为3 mL,挥发时间为6 h,制备温度为30 ℃,载药比为10,考察水相用量在5、10、15、20、25 mL时,不同水相用量对载药量和包封率的影响。结果(表6)显示,随着水相用量的增加,胡桃醌的载药量与包封率先升高后降低,因此将10~20 mL的水相用量作为待优化项进行CCD-RSM实验。 图片 2.7 CCD-RSM优化处方 在单因素考察实验基础上,进一步采用CCD- RSM优化制剂工艺。选取载药比(X1)、水相体积(X2)、制备温度(X3)3个因素,每个因素设定5个水平(?1.682、?1、0、+1、+1.682)。以胡桃醌包封率(Y1)和胡桃醌载药量(Y2)为考察指标进行3因素,5水平的CCD-RSM实验,结果见表7。采用Design-Expert统计软件对表7数据进行统计处理,并获得Y1、Y2值对自变量X1、X2、X3的多元线性回归方程,各考察指标的2项式拟合方程如下Y1=90.010+0.165 9 X1+0.700 4 X2-0.1071 X3-0.656 4 X1X2-1.020 X1X3-0.516 1 X2X3-4.430 X12-3.520 X22-4.100 X32;Y2=6.430-0.408 3 X1+0.288 5 X2-0.210 6 X3+0.251 8 X1X2-0.380 1 X1X3-0.374 7 X2X3-0.004 7 X12-0.057 7 X22-0.111 9 X32。各方程的方差分析结果见表8,结果表明该模型与实际试验拟合程度良好,且各因素影响显著用该模型分析和预测胶束的制备工艺是合适的。 图片 图片 利用Design-Expert统计软件绘制自变量对因变量的效应面和等高线图,结果见图5。最终确定最佳条件范围得到的最优处方:BSP-VES与胡桃醌的投药量分别为20 mg和2 mg,水相用量15 mL,制备温度30 ℃。预测在此条件下制备Jug/BSP-VES的包封率和载药量分别为90.047%、6.559%。 图片 2.8 最优处方的验证试验 按最优处方平行制备3批Jug/BSP-VES胶束溶液,测定其中胡桃醌的包封率、载药量。胡桃醌的平均包封率为(88.44±1.24)%、RSD值为1.79%,胡桃醌平均载药量为(6.54±0.02)%、RSD值为1.90%,RSD值均<3%,表明模型预测可靠,工艺重现性较好。 2.9 Jug/BSP-VES胶束的表征 2.9.1 Jug/BSP-VES胶束溶液外观及形态观察 取制备好的Jug/BSP-VES溶液,观察外观及丁达尔现象;取适量Jug/BSP-VES溶液纯水稀释,滴加至专用铜网上,待风干后,通过透射电子显微镜(TEM)观察形态并拍照。结果如图6所示,Jug/BSP-VES胶束溶液为黄色澄清溶液,丁达尔效应明显;在TEM下观察到Jug/BSP-VES胶束呈类球形,分散均匀。 图片 2.9.2 BSP-VES临界聚集浓度(critical aggregation concentration,CAC)的测定 采用芘荧光探针法检测聚合物的CAC。配制质量浓度为1 mg/mL的芘溶液和1 mg/mL的BSP-VES母液。取9个西林瓶,各加入0.25 mL芘溶液,氮气吹干后各加入不同质量浓度的1 mL BSP-VES溶液。稀释后BSP-VES溶液的质量浓度分别为100.00、50.00、10.00、5.00、1.00、0.50、0.10、0.05、0.01 μg/mL。涡旋5 min后超声30 min,室温避光静置24 h。荧光分光光度计的激发波长为330 nm,测定各溶液中芘的荧光吸收,以373、384 nm处样品的荧光光度值之比(I373/I384)对质量浓度的对数作图,两条切线的交点为CAC值。结果如图7所示,当BSP-VES质量浓度较低时,I373/I384值较小,当BSP-VES质量浓度增大时,I373/I384值增大,取图中两直线相交处为BSP-VES的CAC值,经计算,CAC值为5.95 μg/mL。 图片 2.9.3 包封率和载药量的测定 按最优处方制备Jug/BSP-VES胶束溶液,测定其包封率和载药量,方法同“2.5”项。结果发现Jug/BSP-VES胶束溶液的包封率为(89.140±1.163)%(n=3),载药量为(6.493±0.087)%(n=3)。 2.9.4 粒径及ζ电位测定 按最优处方制备Jug/ BSP-VES胶束溶液,Zetasizer Nano ZSE纳米粒度电位仪测定其粒径、粒度分布及ζ电位。结果如图8所示,测得Jug/BSP-VES胶束溶液的平均粒径为(120.30±2.80)nm,PDI为0.169±0.014,ζ电位为(?27.00±1.25)mV。 图片 2.9.5 差示扫描量热法(differential scanning calorimetry,DSC) 分别称取适量胡桃醌、BSP- VES、胡桃醌原料药物理混合物和Jug/BSP-VES胶束样品置于铝制样品盘中压制,氮气为保护气,扫描范围25~350 ℃,加热速率10 ℃/min。结果如图9所示。胡桃醌的特征吸收峰在156 ℃,BSP-VES的特征吸收峰为184 ℃,与胡桃醌的特征峰不重叠;物理混合物中,二者特征峰均出现,而Jug/ BSP-VES胶束的热量曲线上无胡桃醌的特征峰,说明胡桃醌已被成功包载进载体,特征吸收峰消失。 图片 2.9.6 储存稳定性考察 按最优处方制备Jug/ BSP-VES胶束溶液,在pH 4.5,4 ℃和25 ℃条件下测定其在第1、3、7、15 d的粒径和包封率。结果如表9所示,在4 ℃下,Jug/BSP-VES的粒径和包封率无较大变化,说明储存稳定性较好;在25 ℃下储存效果相对较差,随时间增加,胶束溶液粒径变大,包封率降低,因此4 ℃为Jug/BSP-VES胶束溶液的最优储存条件。 图片 2.9.7 体外释放考察 采用透析法考察胡桃醌和Jug/BSP-VES胶束溶液的体外释药情况。分别将胡桃醌、Jug/BSP-VES胶束溶液置于透析袋(截留相对分子质量3 500)中,透析袋两端夹紧,分别浸没在含有0.5%聚山梨酯-80的醋酸-醋酸钠缓冲液(Ph 4.5)中;恒温水浴(37.0±0.5)℃,转速100 r/min,每组平行进行3组试验,分别于选定的时间点收集5 mL样品,收集后补加等量同温的释放介质,所得到的样品经微孔滤膜滤过后进行HPLC分析,体外释药曲线如图10所示。胡桃醌溶液在6 h时释放到80%左右,Jug/BSP-VES胶束在48 h时的释放率为(82.13±2.51)%,达到了明显的缓释作用,表明将原料药制备成胶束可减缓药物的释放速度。 图片 3 讨论 胡桃醌作为抗肿瘤活性成分具有一定的毒性,对金鱼的半数致死量(median lethal dose,LD50)为1.3 mg/L,对小鼠ig给药、ip的LD50值分别为2.5、25.0 mg/kg[19-20]。此外,胡桃醌及其代谢产物能与肾脏细胞溶质蛋白共价结合,造成肾脏毒性[21]。研究表明,酒精能使胡桃醌中的毒性成分转变为其他物质[22],以酒精作为溶剂的胡桃醌制剂通常不显毒性。本研究通过BSP与VES发生酯化反应成功制备了BSP-VES胶束,以胡桃醌为模型药物,通过溶剂挥发法制备了Jug/BSP-VES载药胶束。Jug/ BSP-VES载药胶束外观呈类球型,粒度测定结果显示,Jug/BSP-VES胶束溶液的粒径图显示峰形呈单峰,分布范围较窄,说明胶束溶液粒径均一。TEM下观察到的Jug/BSP-VES胶束,其粒径比粒度仪测定结果较小,可能是由于在制样过程中胶束水分的挥干导致粒子发生皱缩所致。BSP-VES作为两亲性高分子材料,在水相中的浓度超过临界胶束浓度后可形成胶束,制备方法简便。 本实验设计了一种可提高胡桃醌稳定性的载药胶束,拟制成温敏凝胶剂、采用阴道给药的方式,用于治疗阴道炎症、宫颈癌术后等。正常人体阴道pH值范围在3.5~4.8[23],因此,体外释放实验采用的是pH 4.5并含有0.5%聚山梨酯-80的醋酸-醋酸盐缓冲液[24],来模拟阴道中的酸性环境。在稳定性研究中,也重点考察了上述条件下载药胶束的储存稳定性,而并未采用通常的PBS(0.01 mol/L,pH 7.4)缓冲体系和含10% FBS的PBS(0.01 mol/L,pH 7.4)缓冲体系。另外,本实验所制备的Jug/BSP-VES载药胶束处方中尽可能减少了辅料种类,以避免腔道用药过程中的副作用及不良反应。 在单因素实验中,本实验考察各因素对处方工艺的影响。制备温度的高低主要影响有机溶剂除去的速度,温度过高或过低,引起有机溶剂挥发速度过快或过慢,均不利于胶束对药物的包载[25]。因考虑到温度对制备的影响较大,在25~35 ℃时Jug/ BSP-VES胶束中的胡桃醌含量不稳定,因此,对制备温度作进一步实验。 对有机溶剂用量的考察中,有机溶剂用量过少时,容易造成药物不能完全溶解,随着有机溶剂用量的增加,药物在溶剂中均匀分散,能与胶束较好地结合,当有机溶剂用量过多时,在有限的时间内,容易造成挥发不完全导致包封率降低[25],因此选择3 mL作为有机溶剂用量。 综上所述,本研究制备的Jug/BSP-VES胶束,通过单因素实验与CCD-RSM优化后,包封率好,粒径均一,稳定性良好,为胡桃醌制剂的应用开发奠定了基础。

  • 活性硅酸聚合中顶置搅拌器的应用

    活性硅酸是制备硅酸助凝剂及新型含金属离子的聚硅酸系无机高分子絮凝剂的重要原料, 活性硅酸的聚合速度受搅拌速度的影响显著。有实验证明采用激光光散射、浊度、黏度等多种表征方法对活性硅酸在聚合过程中的形态变化进行了监测及表征, 结果表明: 搅拌速度越快, 硅酸的聚合速度越快, 但形成的有效粒径反而越小; 选择在静置条件下制备活性硅酸, 有利于形成高分子量、高黏度、高浊度的聚硅酸, 更有利于聚硅酸吸附架桥作用的发挥, 这为制备高效混凝剂提供了实验依据。 众所周知, 在化学实验中经常以搅拌来加速某个化学反应速度, 因为搅拌可以使反应物粒子之间发生更多有效的碰撞从而加速整个反应的进程。然而在硅酸聚合这一复杂过程中, 搅拌所起的作用将不同于一般化学反应过程中所起的作用, 它将起到两方面的作用: 1)破坏单分子硅酸聚合时产生的硅氧烷键, 结果将使硅酸聚合速度显著降低, 从而延长聚硅酸的成冻时间; 2)搅拌将加速单分子硅酸颗粒之间的有效碰撞, 这将加速聚合反应, 缩短聚硅酸的成冻时间。 在活性硅酸聚合实验中,选择一款性能稳定的搅拌器非常重要。目前行业内广泛使用的搅拌器是意大利VELP 生产的顶置式搅拌器。VELP顶置式搅拌器采用防腐蚀材料, 环氧涂层金属结构。VELP顶置式搅拌器搅拌最大粘度可达50000mPa*s。VELP顶置搅拌器有两个清晰、易读的显示器展示当前速度和设定的速度。VELP顶置式搅拌器具备恒速控制,当样品的粘度发生变化,VELP顶置式搅拌器的搅拌速度始终保持恒定。当搅拌器发生错误运行时,系统会阻止操作继续运行,从而确保仪器的安全。

  • 【求助】如何刻蚀我制备的聚合物复合物

    制备了环氧树脂、聚己内酯及in situ生成的SiO2复合物,想通过SEM看清楚三者的分布情况,请问该如何使用化学刻蚀?需要指出的是,三者之间都有化学键作用。 或者介绍我其他表征方法也行。谢谢!

  • 高临界温度温敏聚合物(UCST)的TEM制样

    最近制备了一批UCST型温敏聚合物,想要通过TEM拍高于UCST温度和低于UCST温度的不同形态,我是第一次拍TEM,不知如何制样,还请大家给点建议,谢谢!注:UCST型温敏聚合物水溶液在高于UCST温度时,呈现溶解状态,低于UCST温度时,呈现收缩状态,形成类似于核壳结构

  • ⊙↓⊙怎样用电聚法制备分子印迹膜?€€€€€€λλλλλ

    已制备出了IF达到3以上的estradiol-MIP,还想进一步制成具有电化学响应的膜材料,以便作为传感器的敏感元件,文献介绍用电聚法伏安法或电极电位法能获得mim,但是estradiol是非极性的材料,必须要求电极的选择与所选单体能结合吗?如邻氨基硫醇与金电极。。。 能否用MAA或tfmaa与玻璃电极或其它电极进行电聚合呢,其中的原理是什么?另外,聚合体系必须是电解质溶液体系,怎么选取支持电解质呢? zqj

  • 【原创大赛】pH 响应聚合物研究进展

    【原创大赛】pH 响应聚合物研究进展

    [font=宋体] pH [/font][font=宋体]响应聚合物研究进展[/font][font=宋体]1. pH [/font][font=宋体]响应聚合物概述[/font][font=宋体]一般而言,外界 pH 值的变化会导致生物大分子的水溶性或构象发生变化,因此具有类似结构的聚合物也能对环境的 pH 值变化做出相应的响应。该类聚合物具有 pH 响应的关键因素是一般主链上都含有大量对 pH 敏感的基团(弱电解质基团)如羧酸基、氨基、吡啶、咪唑基等。当外界环境的 pH 或离子浓度发生变化时,这些基团可以接受或释放质子来响应外界环境中 pH 的变化[76]。聚合物通过接受或给予质子导致其分子解离程度发生改变,造成聚合物分子的质子化或去质子化平衡发生移动,从而影响聚合物链的溶解性[77-78]。[/font][font=宋体]按照 pH 响应聚合物分子链中含有基团的性质 pH 响应聚合物可分为两大类:弱有机酸类和弱有机碱类[79]。弱有机酸类聚合物(如羧酸基)能在较低的 pH 值时接收质子呈正电性,而 pH 值较高时变成负电性,因为同种电荷间存在相互排斥作用使水与分子链之间的相互作用加强,进而提高了聚合物的亲水性,呈聚电解质状态,如聚甲基丙烯酸(PMAA)等[80-81];弱有机碱类聚合物则一般带有弱有机碱取代基,它能在低 pH 值件下得到质子变成亲水性基团,聚合物链之间因库仑排斥力而展开,而高 pH 条件下则是亲油性的,如聚甲基丙烯酸二甲氨基乙酯(PDMAEMA)、聚乙烯基吡啶等[82-84]。[/font][font=宋体]目前关于 pH 响应聚合物合成的研究不断被报道,其中大部分是利用含有乙烯基的单体为原料进行聚合。常见的聚合方法主要包括:自由基聚合、原子转移自由基聚合(ATRP)、基团转移聚合(GTP)、可逆加成-断裂链转移聚合(RAFT)等。自由基聚合是最常见的聚合方法,聚合产物通常为线性的高分子聚合物,相较于其它方法其合成条件相对简单,通常为一步反应,所得产物多为无规则共聚物。例如,Fan 等人[85]通过自由基聚合制备了一系列具有良好 pH 响应特性的聚合物,在低 pH 条件下,由于质子化叔胺单元的静电相互作用和亲水性,共聚物在水溶液中表现为溶解状态。而在高 pH 条件下,由于烷基上去质子化胺具有较强的疏水性,导致共聚物在水溶液中聚集沉淀。[/font][font=宋体]2 [/font][font=宋体]、pH 响应聚合物在分离富集领域的应用[/font][font=宋体]近年来,pH 响应聚合物在分离富集领域的应用潜力开始被众多研究者关注。基于pH 响应聚合物具有的溶解-沉淀 pH 响应特性,可以将目标物固定或吸附在 pH 响应聚合物上,通过调节环境的 pH 值使其形成共沉淀,实现对目标物的分离纯化。[/font][font=宋体]Bai [/font][font=宋体]等[86]开发了一种具有 pH 响应特性的聚合物,该聚合物是由 pH 反应型单体与糖基反应型单体共聚而成。所得的线性共聚物链与糖蛋白/糖肽样品在弱酸性 pH 条件下在水溶液中形成均相反应混合物,促进了聚合物基体与目标糖蛋白质/糖肽之间的偶联。只需降低体系 pH 值,即可使聚合物糖蛋白质/糖肽迅速自组装从溶液中析出大颗粒的团聚体,从而实现快速高效的样品回收。[/font][font=宋体]Ding[/font][font=宋体]等[87]以丙烯酸类化合物为功能单体通过自由基聚合制备了具有pH响应特性的聚合物,进一步将染料配基 Cibacron Blue 固定到聚合物上,利用 Cibacron Blue 和纤维素酶的亲和性使 pH 响应聚合物与纤维素酶共沉淀,实现了对纤维素酶的分离[/font]

  • 高校科研院所招聘联盟刚刚发布了华南理工大学-基于三键单体的高分子合成化学及功能聚合物材料制备方向职位,坐标广东,敢不敢来试试?

    [b]职位名称:[/b]华南理工大学-基于三键单体的高分子合成化学及功能聚合物材料制备方向[b]职位描述/要求:[/b]合作导师:唐本忠(tangbenz@ust.hk)秦安军(msqinaj@scut.edu.cn)胡蓉蓉(msrrhu@scut.edu.cn) 要求: 1) 熟悉高分子合成、高分子物理、高分子功能材料等领域相关基础理论知识和实验技能;有较强有机合成功底,有机合成方法学研究背景者优先; 2) 中英文写作能力较好,发表SCI论文2篇以上; 3) 遵守科研学术道德,身心健康,有团队精神和责任心,执行力强。 [b]公司介绍:[/b] 仪器信息网仪器直聘栏目针对高校科研院所的免费职位发布平台,汇集了全国数十所高校科研院所的招聘信息。发布信息请联系010-51654077...[url=https://www.instrument.com.cn/job/user/job/position/58798]查看全部[/url]

  • 【原创大赛】聚(Hemin-co-GMA-co-EDMA)整体柱的制备及其 在蛋白质分离中的应用

    【原创大赛】聚(Hemin-co-GMA-co-EDMA)整体柱的制备及其 在蛋白质分离中的应用

    摘要:本文通过原位自由基聚合方式,以卟啉铁([color=black]Hemin[/color])和甲基丙烯酸缩水甘油酯([color=black]GMA[/color][color=black])[/color]作为二元单体,二甲基丙烯酸乙二醇酯([color=black]EDMA[/color][color=black])作为交联剂,[/color][color=black]1,4-[/color][color=black]丁二醇、聚乙二醇[/color][color=black]200[/color][color=black]和[/color][color=black]N,N-[/color][color=black]二甲基甲酰胺作为致孔剂,[/color]偶氮二异丁腈作为引发剂,经一锅法制备了聚([color=black]Hemin-co-GMA-co-EDMA[/color][color=black])整体柱。并通过扫描电子显微镜、压汞法、氮吸附法对其性能进行了表征。最后,将其作为高效液相色谱的固定相,对多种蛋白质样品进行了分离。结果表明基于卟啉铁的整体柱具有颗粒堆积的多孔结构,通透性好,柱背压低,对蛋白质具有良好的选择性。[/color]关键词:[color=black]卟啉铁;整体柱;蛋白质;高效液相色谱[/color][b]1  绪论1.1 引言[/b]蛋白质是人体的物质基础,某些蛋白质的表达水平的改变与疾病直接相关。这就要求对这些蛋白质进行细致研究,而将其从复杂的生物基质中分离出来是首要任务。对蛋白质进行分离鉴定通常使用电泳—质谱、液相色谱—质谱联用技术,但这些方法并不能完全满足蛋白质大分子对操作环境和分析方法要求较高的要求,并且费用较高。聚合物整体柱由于具有较大孔径和良好的生物兼容性,其在蛋白质大分子分离中的应用已经展现了特有的优势。此外,聚合物单体种类繁多,且其表面的官能团可以有多种修饰方法,对不同的蛋白质具有不同的选择性,从而实现分离[sup][color=black][/color][/sup][color=black]。[/color][b]1.2 聚合物整体柱[/b]整体柱又称连续床层,是一种在色谱柱管内制备的连续床固定相[sup][color=black][/color][/sup][color=black]。整体柱比颗粒填充柱的通透性更好,更易于实现快速分离[/color][sup][color=black][/color][/sup][color=black]。整体柱分为无机硅胶整体柱、有机聚合物整体柱、有机无机杂化整体柱(一般是基于硅胶的杂化整体柱)。硅胶整体柱和有机无机杂化整体柱具有良好的稳定性和机械强度,通透性好,但溶胶凝胶技术制备周期长,操作复杂,重复性差[/color][sup][color=black] [/color][/sup][color=black]。有机聚合物整体柱制备简单、适用[/color][color=black]pH[/color][color=black]范围广([/color][color=black]pH1-14[/color][color=black])。[/color]聚合物整体柱出现在上世纪90年代初,继而在制备和应用中得到发展[sup][/sup],至今已成功地用于分离科学,特别是用于分离生物大分子[sup][/sup]。多种多样的功能单体使整体柱设计变得更容易。聚合物整体柱适用范围广,已被用于不同的色谱模式,包括反相液相色谱(RPLC)、亲水相互作用色谱(HILIC)、离子交换色谱(IEC)等[sup][/sup]。多孔聚合物整体柱通常具有球形颗粒堆积结构,其大型通孔之间的聚合微球有利于显著提高聚合物整体柱的通透性,降低涡流扩散项,使其在高流速下能够有效地分离大分子。斯韦克系统地阐述了各种多孔聚合物整体柱的制备技术[sup][/sup],例如,2,2,6,6-四甲基-1-哌啶(TEMPO)介导的活性自由基聚合。Kanamori等以二乙烯基苯为单体,合成了具有明确的连续形态,高的比表面积的大孔聚合物整体柱[sup][/sup]。除了传统的自由基聚合,Hosoya等[sup][/sup]报道了一种将环氧单体与二胺类开环聚合的高性能有机聚合物整体柱,在毛细管液相色谱上,其对苯的分离塔板高度(H)可以达到小于5μm。值得注意的是,相比链生长聚合(比如自由基聚合反应)产生的球状结构,逐步聚合方式导致整体柱具有完全不同的形态[sup][color=black][/color][/sup]。[b]1.3 聚合物整体柱在生物大分子分离中的应用[/b]生物大分子样品结构复杂、种类繁多,而且需要在比较温和的条件下进行分离分析。而聚合物整体柱制备简单,分离迅速,且更易被后修饰为多种色谱模式的整体柱,对蛋白实际样品中的多种蛋白质有不同的选择性。因此,随着聚合物整体柱的进一步发展,其在大分子复杂生物样品的分离分析中将具有更为广泛的应用[sup][color=black][/color][/sup][color=black]。[/color][b]1.4 本文目的[/b][color=black]本实验欲制备一种新型液相色谱聚合物整体柱,用于蛋白质样品的分离分析。由于蛋白样品结构复杂,其中各种蛋白含量相差很大,这就要求液相色谱的固定相必须具有良好的选择性。因此,选择对目标蛋白质分子具有特异分子识别功能的材料,将其作为液相色谱固定相将会提高整体柱对蛋白质的选择性[/color][sup][color=black][/color][/sup]。[color=black]卟啉,是一类由四个吡咯环组成的吡咯衍生物,属于大分子。其母体为卟吩,卟吩被取代后称为卟啉。一定条件下,金属卟啉与某些蛋白质分子之间能够形成超分子,从而对这些蛋白质具有特异分子识别作用。正是由于金属卟啉对这些蛋白质具有特异分子识别作用,本实验以卟啉铁和甲基丙烯酸缩水甘油酯([/color][color=black]GMA[/color][color=black])作为二元单体,制备了一种新型聚合物整体柱。实验结果表明,该柱对蛋白质大分子具有分离能力。[/color][b]2  实验部分2.1 仪器与试剂[/b]Agilent 1100型高效液相色谱仪([color=black]Agilent[/color][color=black],美国);[/color][color=black]HWS-24[/color][color=black]电热恒温水浴锅(上海齐欣科学仪器有限公司);[/color][color=black]UPT- II -5T[/color][color=black]型优普系列超纯水器(成都超纯科技有限公司);[/color][color=black]BT25S[/color][color=black]型分析天平(北京赛多利斯科学仪器有限公司);[/color][color=black]KQ-500DE[/color][color=black]型超声波清洗器(昆山市超声仪器有限公司);[/color][color=black]S-430[/color][color=black]扫描型电子显微镜([/color][color=black]Hitachi[/color][color=black],日本);[/color][color=black]TriStar II3020[/color]型全自动比表面积和孔径分析仪([color=black]Micromeritics[/color][color=black],美国);[/color][color=black]AutoPore II9220 V3.04[/color]型压汞仪( Micromeritics[color=black],美国)。[/color]氯化血红素(卟啉铁,[color=black]Hemin[/color][color=black])(阿拉丁试剂有限公司);二甲基丙烯酸乙二醇酯([/color][color=black]EDMA[/color][color=black])(抚顺安信化学有限公司);甲基丙烯酸缩水甘油酯([/color][color=black]GMA[/color][color=black])、偶氮二异丁腈([/color][color=black]AIBN[/color][color=black])、[/color][color=black]N,N-[/color][color=black]二甲基甲酰胺([/color][color=black]DMF[/color][color=black])(天津市科密欧化学试剂有限公司,分析纯);[/color][color=black]1,4-[/color][color=black]丁二醇、磷酸二氢钠、磷酸氢二钠、聚乙二醇[/color][color=black]200[/color][color=black]([/color][color=black]PEG200[/color][color=black])(天津市光复精细化工研究所,分析纯);甲醇(上海星可高纯溶剂有限公司,液相色谱纯);实验用水为超纯水,进入高效液相色谱仪的所有流动相及样品均经规格为[/color][color=black]0.45μm[/color][color=black]的微孔滤膜过滤。[/color][b]2.2 聚(Hemin-co-GMA-co-EDMA)整体柱的制备[/b]按照表2-1中所[color=black]列柱[/color][color=black]C[sub]1[/sub]-C[sub]8[/sub][/color][color=black]的比例,在试管中加入[/color][color=black]Hemin[/color][color=black]、[/color][color=black]GMA[/color][color=black]、[/color][color=black]EDMA[/color][color=black]、[/color][color=black]1,4-[/color][color=black]丁二醇、[/color][color=black]PEG200[/color][color=black]、[/color][color=black]DMF[/color][color=black]、[/color][color=black]AIBN[/color][color=black],超声[/color][color=black]15min[/color][color=black]使完全溶解并混匀,通氮气。分别将预聚溶液装入一端封口的不锈钢柱管中([/color]50mm[color=black]×4.6mmi.d.[/color]),然后密封另一端,使其在[color=black]60[/color]℃[color=black]反应[/color][color=black]10[/color][color=black]小时。反应完成后,将整体柱连接于高效液相色谱系统,以甲醇在线冲洗除去整体柱中的致孔剂和其他未反应物。[/color]通过调整单体、交联剂、致孔剂的比例来考察各因素对整体柱柱压、孔径大小、通透性等的影响,最终得到优化的整体柱。[img=,690,305]https://ng1.17img.cn/bbsfiles/images/2019/07/201907241110575843_2573_3964321_3.png!w690x305.jpg[/img][b]2.3 色谱条件[/b]为了达到最佳分离效果,调节流动相磷酸盐溶液/水的比例,寻找对混合蛋白质样品具有最佳分离能力的流动相比例。[color=black]高效液相色谱仪为安捷伦[/color][color=black]1100[/color][color=black]系列,整体柱在不锈钢空色谱管柱[/color][color=black]([/color]50mm[color=black]×4.6mmi.d[/color])制得。流动相为[color=black]0.02mol/L[/color][color=black]磷酸盐溶液([/color][color=black]NaH[sub]2[/sub]PO[sub]4[/sub]+Na[sub]2[/sub]HPO[sub]4[/sub][/color][color=black])[/color][color=black]/[/color][color=black]水,流速为[/color][color=black]1.0mL/min[/color][color=black]。柱温为室温,紫外检测波长为[/color][color=black]280nm[/color][color=black]。[/color][b]3  结果与讨论3.1 聚(Hemin-co-GMA-co-EDMA)整体柱制备条件的优化[/b]以[color=black]Hemin[/color]和[color=black]GMA[/color]作为功能单体,[color=black] EDMA[/color][color=black]作为交联剂,[/color][color=black]1,4-[/color][color=black]丁二醇,[/color][color=black]PEG200[/color][color=black],[/color][color=black]DMF[/color][color=black]作为致孔剂,[/color]AIBN[color=black]作为引发剂,聚合方式为热引发的原位自由基聚合,制备[/color]聚(Hemin-co-GMA-co-EDMA)整体柱。通过改变整体柱各组分的比例,可以得到对蛋白质分离能力较好的整体柱。观察并比较整体柱各组分不同比例下制备的各聚合物整体柱的外观均匀度、贴壁情况、硬度、机械强度等,综合分析,从中获得最为理想的聚合物整体柱。[b]3.1.1致孔剂比例对聚合物整体柱制备的影响[/b]整体柱的机械强度和渗透性与致孔剂的种类及用量有很大的关系。单体用量一定的条件下,致孔剂的量越多,整体柱的背压越低而渗透性越大。选择致孔剂时,应注意所选致孔剂既要有良好的占位能力,又不至残留于柱体内而不能被冲洗溶剂洗脱出来。[color=black]Hemin[/color][color=black]在[/color][color=black]DMF[/color][color=black]中溶解性好,因此[/color][color=black]DMF[/color][color=black]被选为制备聚([/color][color=black]Hemin-co-GMA-co-EDMA[/color][color=black])整体柱的良致孔剂,与[/color][color=black]1,4[/color][color=black]丁二醇和[/color][color=black]PEG200[/color][color=black]组成致孔剂体系。表[/color][color=black]2-1[/color][color=black]中列出了典型的优化比例的过程,其中[/color][color=black]C[sub]1[/sub]-C[sub]4[/sub][/color][color=black]为采用不同比例致孔剂得到的整体柱,增[/color]加1,4丁二醇的比例,能够提高整体柱的渗透率。[color=black]结果表明:柱[/color][color=black]C[sub]2[/sub][/color][color=black]所采用的三元致孔体系比例能够得到同时具有低背压和高渗透率的整体柱。[/color][b]3.1.2单体与交联剂比例不同对聚合物整体柱制备的影响[/b]制备聚合物整体柱时,若单体与交联剂的用量占聚合物总量比例过大,则聚合物背压升高,导致渗透性下降;反之,则会导致聚合物整体柱渗透性过高,无法达到对样品的分离效果。此外,交联剂的用量比例增大则聚合物交联度增大,将致使制备的聚合物整体柱孔径减小,结构密实,在比表面积增大的同时,却会使柱压增高,通透性下降。表[color=black]2-1[/color][color=black]中,柱[/color][color=black]C[sub]5[/sub]-C[sub]8[/sub][/color][color=black]相比较,改变单体与交联剂的比例,结果表明柱[/color][color=black]C[sub]8[/sub][/color][color=black]性能最佳,机械强度适宜,渗透性良好,后续的分析分离实验均用[/color][color=black]C[sub]8[/sub][/color][color=black]号整体柱完成。[/color][b]3.2 聚(Hemin-co-GMA-co-EDMA)整体柱的表征[/b]用甲醇为流动相在线冲洗聚合物整体柱,以冲去致孔剂和未反应的单体,并以高流速将整体柱从色谱柱管内冲出,放入真空干燥箱内干燥24小时,分别用扫描电镜法、氮吸附法、压汞法对该聚合物整体柱进行表征。3.2.1聚(Hemin-co-GMA-co-EDMA)整体柱的扫描电镜图[img=,690,315]https://ng1.17img.cn/bbsfiles/images/2019/07/201907241114548185_7773_3964321_3.png!w690x315.jpg[/img]图3-1分别为柱C[sub]8[/sub]放大3,000倍和30,000倍的扫描电镜图。由图可知:整体柱内部为多孔颗粒堆积结构。[b]3.2.2聚(Hemin-co-GMA-co-EDMA)整体柱的氮吸附-脱附等温线[/b][img=,690,480]https://ng1.17img.cn/bbsfiles/images/2019/07/201907241116349175_9784_3964321_3.png!w690x480.jpg[/img][color=black]通过氮吸附法对该聚合物整体柱的孔类型进行分析,结果如图[/color][color=black]3-2[/color]所示。该等温线符合Ⅲ型等温线,[color=black]在低压区[/color][color=black]([/color]p/p[sub]0[/sub]<[color=black]0.1[/color][color=black]),[/color][color=black]曲线偏向[/color][color=black] X [/color]轴且没有拐点,氮气和柱材料之间的吸附作用很弱,且在中压段不存在回滞环,表明该材料孔结构中几乎不存在微孔和介孔;在相对压力较高时[color=black]([/color]p/p[sub]0[/sub]>[color=black]0.9[/color][color=black]),[/color][color=black]氮气和柱材料之间的吸附作用很强,吸附量呈较大上升趋势,表明该材料含有大孔结构。[/color][b]3.2.3聚(Hemin-co-GMA-co-EDMA)整体柱的压汞法分析图[/b][img=,690,350]https://ng1.17img.cn/bbsfiles/images/2019/07/201907241117438633_8238_3964321_3.png!w690x350.jpg[/img]由于该柱材料含大孔结构,故通过压汞法对其大孔结构进行了表征。由图3-3可知,整体柱的孔尺寸分布范围较窄,表明孔结构较均匀。其孔体积、众数孔径、孔隙率分别为1.40mL/g、3497 nm、57.32 %。[b]3.2.4聚(Hemin-co-GMA-co-EDMA)整体柱的机械稳定性[/b]图3-4为分别以磷酸盐缓冲液(NaH[sub]2[/sub]PO[sub]4[/sub]+Na[sub]2[/sub]HPO[sub]4[/sub])和水为流动相时柱C[sub]8[/sub]的[color=black]柱背压与流速的关系图。以磷酸盐缓冲液和水为流动相时,其相关系数[/color][color=black]r[/color][color=black]值分别为[/color][color=black]0.9992[/color][color=black]和[/color][color=black]0.9991[/color][color=black],表明柱压与流速有良好的线性关系,[/color]且高流速下整体柱稳定性依然良好,表明柱材料具有良好的机械稳定性。[img=,690,375]https://ng1.17img.cn/bbsfiles/images/2019/07/201907241119324545_1492_3964321_3.png!w690x375.jpg[/img][b]3.3 聚(Hemin-co-GMA-co-EDMA) 整体柱的色谱性能考察3.3.1整体柱对人血浆的色谱分离[/b]人血浆预处理:取新鲜人血,于4℃,4500r/min的条件下离心15min,取上清液冷藏保存,备用。以整体柱C[sub]8[/sub][color=black]为[/color][color=black]HPLC[/color][color=black]固定相,以[/color][color=black]0.02mol/L[/color]磷酸盐溶液(NaH[sub]2[/sub]PO[sub]4[/sub]+Na[sub]2[/sub]HPO[sub]4[/sub])[color=black]/[/color][color=black]水为流动相,流速为[/color][color=black]1.0mL/min[/color],对人血浆样品进行pH[color=black]和离子强度梯度洗脱,结果如图[/color]3-5[color=black]所示。表明整体柱[/color][color=black]C[sub]8[/sub][/color][color=black]对人血浆中的蛋白质具有良好的选择性和较高的分离效能。这是由于整体柱中的卟啉铁结构易于与蛋白质之间形成多种作用力,从而达到特异识别。[/color][img=,690,444]https://ng1.17img.cn/bbsfiles/images/2019/07/201907241124228955_449_3964321_3.png!w690x444.jpg[/img][b]3.3.2 整体柱对鸡卵清的色谱分离[/b][color=red] [/color]鸡卵清预处理:取市售的新鲜鸡蛋一枚,取其蛋清液并用磷酸盐缓冲液(50mmol/L,pH7.0)稀释一倍(V/V)。将稀释后的蛋清液混合均匀于4℃,4500r/min的条件下离心15min,取其上清液冷藏保存,备用。图[color=black]3-6[/color][color=black]为整体柱[/color][color=black]C[sub]8[/sub][/color][color=black]对鸡卵清的色谱分离图。结果表明,整体柱[/color][color=black]C[sub]8[/sub][/color][color=black]对鸡卵清中的多种蛋白质具有良好选择性。[/color][img=,690,407]https://ng1.17img.cn/bbsfiles/images/2019/07/201907241125286053_9665_3964321_3.png!w690x407.jpg[/img][b]3.3.3 整体柱对蜗牛酶的色谱分离[/b]蜗牛酶是一种含有[color=black]20[/color][color=black]多种酶的混合物,其主要成分有[/color][color=black]9[/color][color=black]种。图[/color][color=black]3-7[/color][color=black]为整体柱[/color][color=black]C[sub]8[/sub][/color][color=black]对蜗牛酶的色谱分离图。由图可知,整体柱[/color][color=black]C[sub]8[/sub][/color][color=black]对其中的一些酶有良好的选择性。[/color][img=,690,407]https://ng1.17img.cn/bbsfiles/images/2019/07/201907241126464743_5894_3964321_3.png!w690x407.jpg[/img]尽管聚(Hemin-co-GMA-co-EDMA)整体柱[color=black]C[sub]8[/sub][/color]对三种实际样品中的某些蛋白质有较好的选择性,但色谱峰普遍存在拖尾情况,这可能是由于卟啉铁能够与蛋白质之间形成配位从而造成拖尾。此外,分离后的蛋白质分析和鉴定工作还未完成,后续的研究需要通过色谱-质谱联用技术对蛋白质进行定性分析。[b]4  结论与展望[/b][align=left]本实验引入新的功能单体卟啉铁(Hemin),制备了聚(Hemin-co-GMA-co-EDMA)整体柱,并将其用于蛋白质的分离。该整体柱具有均匀的内部结构,高通透性和良好机械性能。其对蛋白质的色谱分离结果表明:卟啉铁的引入,能够从复杂的生物样品中分离较多数量的蛋白质,表明整体柱对蛋白质具有良好选择性。[/align]生物样品中蛋白质的分离是一项十分复杂的工作,本文中的方法还需要进一步完善分离机理,改善柱选择性,更有待续的蛋白质鉴定工作需要研究。通过本实验中的方法对蛋白质进行分离和后续的鉴定研究工作的完成将为蛋白质组学的分类、分级研究提供重要的数据支持。参考文献 Pellati F, Calo S, Benvenuti S. [color=black]High-performancechromatography analysis of polyacety and polyenes in echinacea pallida by usinga monolithic reversed-phase silica column[/color] . J. Chromatogr. A, 2007,1149(5): 56-65. Nonaka S, TsunodM, Aoyama C[i] et al[/i]. Determinationof N,N-dimethyl-arginine in rat plasmaand dimethylarginine dimethylaminohydrolase activity in rat kidney using amonolithic silica column . J. Chromatogr. B, 2006, 843(19): 170-174. Motokawa M, Ohira M, Minakuchi H[i] et al[/i].Performance of octadecylsilylated monolithic silica capillarycolumns of 530μm innerdiameter in HPLC . J. Sep Sci, 2006, 29(9):2471-2477. 王超然,王彦,高也等.聚(4-乙烯基苯硼酸-季戊四醇三丙烯酸酯)亲和整体柱的制备与应用.分析化学研究报告, 2012, 40(8): 1207-1212. 李晶, 周琰春,张嘉捷等.阴离子交换聚合物整体柱的制备及其在[url=https://insevent.instrument.com.cn/t/3p][color=#3333ff]离子色谱[/color][/url]中的应用.分析测试学报, 2012, 31(9):1089-1094. 张振宾, 欧俊杰, 林辉等.有机-硅胶杂化整体柱的制备及应用研究进展.高等学校化学学报,2013, 34(9): 2011-2019. Lv Y, Lin Z, Svec F. Thiol-ene click chemistry: a facile and versatileroute for the functionalization of porous polymer monoliths . Analyst, 2012,137(9): 4114-4118. 平贵臣, 袁湘林, 张维冰等.整体柱的制备方法及其应用.分析化学, 2001, 29(12): 464-469. Lin Z, Huang H, Sun X [i]etal[/i]. Monolithic column based on a poly(glycidylmethacrylate-co-4-vinylphenylboronic acid-co-ethylene dimetharylate) copolymerfor capillary liquid chromatography of small molecules and proteins . J.Chromatogr. A, 2012, 1246(13): 90-97. Akira N, TakeshiS. Advancein monolithic materials for sample preparation in drug and pharmaceuticalanalysis . TrAC, 2013, 45(9): 182-196. Liu J, Wang F, Zhang Z. Reversed phase monolithic column based enzymereactor for protein analysis. Chin. J. Anal. Chem, 2013, 41(1): 10-14. Frantisek S, Lv Y. Advances andrecent trends in the field of monolithic columns for chromatography. Anal. Chem,2014, 87(9): 250-273. Liu Z, Ou J, LinH. Preparation of monolithic polymercolumnswithhomogeneousstructurevia photoinitiated thiol-yne click polymerization and their application inseparation of small molecules . Anal. Chem, 2014, 86(105): 12334-12340. Jin Zhang, Huilin Zou, Qin Qing [i]et al[/i]. Effect of chemical oxidation on the structure of singlewalled carbon nanotubes . J. Phy. Chem. B, 2003, 107(16): 3712-3718. Ou J, Liu Z, Wang H. Recentdevelopment of hybrid organic-silica monolithic columns in CEC and capillary LC. Electrophoresis, 2015, 36(9): 62-75. 王玺, 何健, 季一兵.聚甲基丙烯酸酯毛细管整体柱的制备及其性能考察.中国药科大学学报,2012, 67(7): 78-85. 吕仁江, 丁会敏, 李英杰.丙烯酰胺-β-环糊精毛细管电色谱手性整体柱的制备及应.应用化学,2012, 29(5): 604-607. Trojer L, Lubbad S H, Bisjak C [i]et al[/i]. Monolithicpoly( p-methylstyrene-co-1,2-bis( p-vinylphenyl)ethane) capillary columns as novel styrene stationary phases for biopolymerseparation . J. Chromatogr. A, 2006, 1117(1): 56-66. 白立改,牛文敬,杨更亮.聚合物整体柱在生物大分子分离中的应用.色谱,2013, 9(4): 303-309. Zuo L, Zou H, Zhang X [i]et al[/i]. Chromatographicseparation of proteins on metal immobilized iminodiacetic acid-bound moldedmonolithic rods of macroporous poly(glycidyl methacrylate-co-ethylenedimethacrylate) . J. Chromatogr. A, 2001, 926(2): 255-264. 郑晖,李秋顺,马耀宏等. 微流控芯片上电色谱聚合物整体柱研究进展.山东科学,2013, 26(1): 16-21.

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制