当前位置: 仪器信息网 > 行业主题 > >

有机氯硫丹硫酸酯

仪器信息网有机氯硫丹硫酸酯专题为您整合有机氯硫丹硫酸酯相关的最新文章,在有机氯硫丹硫酸酯专题,您不仅可以免费浏览有机氯硫丹硫酸酯的资讯, 同时您还可以浏览有机氯硫丹硫酸酯的相关资料、解决方案,参与社区有机氯硫丹硫酸酯话题讨论。

有机氯硫丹硫酸酯相关的论坛

  • 求助:废硫酸中的有机硫酸酯的检测方法

    新年好!最近客户送来一个废酸样品,“这个样品叫废酸:黑色粘稠,有臭味。硫酸浓度约60%左右,剩下的有硫酸酯(可能是硫酸C8酯、硫酸C12酯等),烃类,SO2,水(约2%左右)”,请问一般的GC/MS能进行其中有机硫酸酯的定性分析吗?样品该怎么处理比较稳妥?求助!

  • 【讨论】土壤有机质测定中的硫酸银

    土壤有机质含量的测定时,需有一步是加入硫酸银。但一般在含氯化物的盐渍土中,测定结果较高,因氯离子被氧化成氯分子,加入硫酸银,为的是使氯离子沉淀为氯化银,避免氯离子的干扰作用。那么,在土壤有机质的测定时,是否无论什么土壤都有加入硫酸银的必要呢?大家知道,硫酸银有毒,价格还比较贵。。。欢迎讨论。。。

  • 总氮 过硫酸钾

    我们测总氮用的过硫酸钾是西格玛的,经常出现275nm吸光度为负的情况;请问大家总氮专用过硫酸钾是不是用的默克的优级纯或科密欧的优级纯?

  • 十二水硫酸铝钾的制备方法

    1、天然明矾石加工法将明矾石破碎、经焙烧、脱水、风化、蒸汽浸取、沉降、结晶、粉碎,制得硫酸铝钾成品。   2、铝矾土法用硫酸分解铝矾土矿生成硫酸铝溶液,再加硫酸钾反应,经过滤、结晶、离心脱水、干燥制得硫酸铝钾产品。   3、重结晶法粗明矾加水煮沸、蒸发、结晶、分离、干燥制得硫酸铝钾成品。   4、氢氧化铝法将氢氧化铝溶于硫酸,再加入计量的硫酸钾溶液加热反应、经过滤、浓缩、结晶、离心分离、干燥、制得硫酸铝钾成品。   5、将18.37g硫酸钾溶于70g 100℃的水中,另将70.24g十八水硫酸铝Al2(SO4)318H2O溶于60g 100℃的水中。趁热将这两种溶液混合,在不停的搅拌下使混合液慢慢冷却。当溶液冷却到20℃时,可获得约85g十二水硫酸铝钾的结晶。   6、采用重结晶法。将工业品硫酸铝钾加水溶解,然后经净化、除杂质、过滤、浓缩、结晶、离心脱水、干燥,制得硫酸铝钾

  • 十二水硫酸铝钾的制备方法

    1、天然明矾石加工法将明矾石破碎、经焙烧、脱水、风化、蒸汽浸取、沉降、结晶、粉碎,制得硫酸铝钾成品。   2、铝矾土法用硫酸分解铝矾土矿生成硫酸铝溶液,再加硫酸钾反应,经过滤、结晶、离心脱水、干燥制得硫酸铝钾产品。   3、重结晶法粗明矾加水煮沸、蒸发、结晶、分离、干燥制得硫酸铝钾成品。   4、氢氧化铝法将氢氧化铝溶于硫酸,再加入计量的硫酸钾溶液加热反应、经过滤、浓缩、结晶、离心分离、干燥、制得硫酸铝钾成品。   5、将18.37g硫酸钾溶于70g 100℃的水中,另将70.24g十八水硫酸铝Al2(SO4)318H2O溶于60g 100℃的水中。趁热将这两种溶液混合,在不停的搅拌下使混合液慢慢冷却。当溶液冷却到20℃时,可获得约85g十二水硫酸铝钾的结晶。   6、采用重结晶法。将工业品硫酸铝钾加水溶解,然后经净化、除杂质、过滤、浓缩、结晶、离心脱水、干燥,制得硫酸铝钾。

  • 关于总氮试验中过硫酸钾空白值偏高---过硫酸钾的采购经历!

    [size=4] 在进行总氮实验时候,由于国标的要求:“当测定在接近检测限时,必须控制空白试验的吸光度A[sub]0[/sub]不超过0.03。”空白值偏高往往是总氮测定中不符合要求的一大难题。然而,影响总氮空白值偏高的原因,除了用水、器皿之外,过硫酸钾试剂就是最主要因素了。之前,我们也采购过不同几家试剂厂生产的过硫酸钾试剂,都做了试验,结果几乎都不尽人意,进口试剂也尝试使用过,但成本太高,没有选择。[/size][color=#DC143C]1.关于总氮试验中过硫酸钾空白值偏高,你们是怎么样选择的,能否说说你们的选择经历?2.你们购买哪家试剂厂生产的过硫酸钾,空白值可以达到多少?[/color]

  • 【资料】了解化学硫酸铜!

    基本概况  硫酸铜(Copper sulphate)  硫酸铜及其溶液硫酸铜CuSO4(硫酸铜晶体:CuSO45H2O)分子量249.68  深蓝色大颗粒状结晶体或蓝色颗粒状结晶粉末。有毒,无臭,带有金属涩味。密度2.2844g/cm3。干燥空气中会缓慢风化。溶于水,水溶液呈弱酸性,不溶于乙醇。150℃以上将失去全部水结晶成为白色粉末状无水硫酸铜,650℃则分解成氧化铜和三氧化硫。无水硫酸铜有极强的吸水性,把它投入95%乙醇成含水有机物(即吸收水分)而恢复为蓝色结晶体。硫酸铜中的铜离子能破坏蛋白质的立体结构,使之变性。测定蛋白质浓度时常在蛋白质中加入碱,再加入硫酸铜溶液,此时溶液会变为紫色,这个反应被称为双缩脲反应。  应用领域 无机工业用于制造其他饲盐如氯化亚铜、氯化铜、焦磷酸铜、氧化亚铜、醋酸铜、碳酸铜等。染料和颜料工业用于制造含铜单偶氮染料如活性艳蓝、活性紫等。有机工业用作合成香料和染料中间体的催化剂,甲基丙烯酸甲酯的阻聚剂。涂料工业用作生产船底防污漆的杀菌剂。电镀工业用作全光亮酸性镀铜主盐和铜离子添加剂。印染工业用作媒染剂和精染布的助氧剂。农业上作为杀菌剂。

  • 有近半年采购过总氮用的过硫酸钾的么?

    有近半年采购过总氮用的过硫酸钾的么?你们采购的是哪一家的试剂,空白值又没有达到要求?进口的价格太高了,不考虑买进口的!以前实验室我们是采购广州试剂厂的,但是97以后的广试过硫酸钾空白就达不到要求了,现在准备采购总氮用的过硫酸钾,西南地区的最好,有谁能提供一下那个厂家的好?

  • 高氯COD硫酸汞配置问题,大神帮帮答疑解惑

    HJ/T70-2001氯气校正法中30%硫酸汞的配置问题,我都是根据国标,硫酸汞300g+1000ml(1+9)硫酸。但是硫酸汞难容的,放很长时间还有很多不溶解,我们这做高氯低COD实验,氯化物接近两万,但COD实际值好像不大,我感觉硫酸汞不完全溶解,是否对结果有大的影响,需要多加吗。还有就是如何让硫酸汞完全溶解呢?

  • 过硫酸钾 总氮

    大家都是用那个厂家的过硫酸钾啊?现在做总氮用国药AR500g的过硫酸钾在275nm处的吸光度在0.052左右。是试剂的问题吗?如果是,大家都是用的哪家的?联系方式什么的以前做没出现过类似问题,近段时间出现的。急!!!!求支招。现在做总氮的那个过硫酸钾的含氮要求在0.0005%内(国标要求的)。好像现在的试剂都达不到。如果要重结晶的话要怎么做呢?之前另外一个同事做过重结晶,效果不好。(一直用的国药的试剂)

  • 【心得】过硫酸钾的精制方法

    现在市场买到的过硫酸钾质量实在是差,纯度不够,杂质也多.用来做总氮分析,根本不行.过硫酸钾在0℃时的溶解度仅为1.75g:100mL,用重结晶的方法可以很好的精制.1.80℃下溶解80g过硫酸钾于400mL重蒸馏水中, 将烧杯放到冰水中,过滤。2.再重结晶一次.3.放到干燥器中干燥.

  • 硫酸二甲酯的主要用途

    硫酸二甲酯是农药、染料、医药、香料工业等有机合成中广泛应用的甲基化剂。用以制造甲酯、甲醚、甲胺等。是二甲基亚砜、咖啡因、可待因、安乃近、氨基吡啉、甲氧苄氨嘧啶、香草醛以及农药乙酰甲胺磷等的原料。还可用作提取芳香烃类的溶剂。曾被用作战争毒剂。农药制造业硫酸二甲酯可用于有机磷杀虫剂、其他杀菌剂、其他除草剂等农药合成等。因为硫酸二甲酯作为一种重要的烷基化剂,在有机合成中常用于代替卤代烃作为甲基化试剂,进行O-甲基化反应和N-甲基化反应,可以用于诸如农药甲胺磷、乙酰甲胺磷、抗蚜威、氟蚜螨等杀虫杀螨剂的合成。但是硫酸二甲酯在高度高残留农药方面的应用市场处于相对萎缩的趋势,中国于2007年1月1日全面禁止甲胺磷等5种有机磷农药在国内农业上的使用,氟蚜螨等新型高效农药新品种,需要在技术上降低产品生产成本,而且需要做好登记产品上的推广应用工作。有机化工原料硫酸二甲酯可以用于醚类、醛类等有机化工原料的合成。例如重要的有机化工原料、溶剂和有机合成中间体——芳香醚,其最基本的制备方法是通过威廉姆逊合成法,其中硫酸二甲酯可作为甲基化试剂与苯酚反应合成芳香醚,主要反应历程分两步,首先苯酚与碱反应得到苯酚钠,生成的苯酚钠盐再与硫酸二甲酯反应合成苯甲醚。该反应为非均相反应。该过程的优点是硫酸二甲酯的价格相对其他甲基化试剂价格低廉,缺点是硫酸二甲酯的甲基化反应工业上采用低温间歇操作法生产,导致生产效率低、能耗高、劳动强度大,而且硫酸二甲酯有较强的毒性且致癌,对人的身体健康带来了隐患,再加上生产过程中产生大量工业废水,对环境污染严重。染料制造业硫酸二甲酯可用于阳离子染料、活性染料合成等。例如以硫酸二甲酯为甲基化试剂合成间甲基苯甲醚,间甲基苯甲醚主要用于以2-苯氨基-3-甲基-6-二丁氨基荧烷(ODB-2)为代表的荧烷类热敏染料的合成。催化剂及助剂硫酸二甲酯可以用于合成光稳定剂等助剂和催化剂。例如在50℃左右的环境下,往硬脂酸和三乙醇胺为原料合成的双长链酯胺有机溶液中,以一定速度滴加甲基化试剂硫酸二甲酯,可以合成酯基季铵盐,这是一种阳离子柔软剂,这种阳离子柔软剂有优良的柔软性能和较好的抗静电性,而且能够在环境中生物降解,比传统的双十八烷基二甲基氯化铵柔软剂环保。用硫酸二甲酯合成产物色泽乳白,处理织物后白度良好,织物柔软性能良好,只是硫酸二甲酯有剧毒,合成时候需要控制好用量,避免未反应的硫酸二甲酯残留在织物上对人造成损害。塑料制造业硫酸二甲酯在高分子领域可用于聚砜单体合成。也可用于塑料改性,例如硫酸二甲酯可以将三聚氰胺-甲醛树脂分子中的叔胺季铵化,从而在大分子链上引入离子,这样可以使高分子具有一定的导电性,从而制得结构型抗静电塑料。日用化学产品硫酸二甲酯在日化领域可用于照相乳剂制备、溶化,感光材料涂布,酚类、醚类、醛类香料合成,硝基麝香合成等。例如以氯仿为溶剂,缓慢往邻苯二酚中滴加碱性硫酸二甲酯,水浴加热一段时间,可以使邻苯二酚高效转化为愈创木酚,愈创木酚是香料香兰素的合成原料。医药工业硫酸二甲酯可用于合成药烃化、酰化、醚化等。 例如可以用于丙酮肟在碱性条件下甲基化为O-甲基丙酮肟,最后生成甲氧胺盐酸盐,这是一种重要的化工和药物中间体。可以用于杀菌剂苯氧菌酯的生成;在药物合成中,它可用于生产头孢地尼、头孢呋辛等药物。DNA甲基化硫酸二甲酯可以特异性使DNA中的G甲基化,实现DNA的化学修饰,而不影响其他的,也不影响RNA,DNA甲基化以后会导致基因表达被抑制,同时会导致被修饰的DNA在甲基化的位置断裂,实现DNA的化学裂解 ,传统的DNA测序方法之一:Maxam-Gilbert DNA化学降解法,就是利用DNA化学裂解后产生一系列片段,通过判断断裂位置的碱基或碱基类型,从而实现DNA的测序。

  • 硫酸铜泡皮蛋,您还敢吃吗?

    皮蛋,又叫松花蛋或者变蛋,它不仅能增进食欲,促进营养的消化吸收,还有清凉、降压等功效,因此受到不少人喜爱。近日,江西南昌一位业内人士向记者爆料,当地生产的皮蛋大多存在食品安全隐患。调查时了解到,南昌县很多厂家在制作皮蛋时都会选择添加硫酸铜。而且还是工业级的,据专家介绍,工业用硫酸铜和食用级硫酸铜最大区别在于,工业硫酸铜往往含有铅、砷、镉等有毒有害元素,因而不能用于食品加工。滥用硫酸铜 缩短加工周期据了解,如果使用工业硫酸铜浸泡皮蛋,往往是皮蛋制作时间越短,加硫酸铜的成分就越多,对人体的危害就越大。硫酸铜泡皮蛋,您还敢吃吗?

  • 【求助】硫酸铝的测定

    这几天在做硫酸铝,做出来的数据比厂家的要高很多,请问在座有没有做过硫酸铝的测定的,有的话,可以介绍一下经验吗,

  • 【求助】硫酸铝的测定

    这几天在做硫酸铝,做出来的数据比厂家的要高很多,请问在座有没有做过硫酸铝的测定的,有的话,可以介绍一下经验吗,

  • 【求助】荧光量子产率的问题,硫酸奎宁的配制?

    哎!还是荧光量子产率的问题,看了不少文献,说的还是很模糊,请大家多帮忙啊文献一般是用硫酸奎宁做标准物,[size=4][color=#DC143C]为什么用的酸的量各不相同[/color][/size]呢有的文献是,硫酸奎宁 in 0.1N H[sub]2[/sub]SO[sub]4[/sub], 有的是in 1.0N H[sub]2[/sub]SO[sub]4[/sub]还有一篇中文的文献竟然是in 0.5N H[sub]2[/sub]SO[sub]4[/sub]我真是晕啊,请大家指教另外,我[size=4][color=#DC143C]是否可以用 奎宁 代替 硫酸奎宁[/color][/size](因为没有硫酸盐),直接溶在稀硫酸中呢0.1 M,或者是1.0M 的[size=4][color=#DC143C]硫酸 是否需要准确的配制[/color][/size]呢,我看文献直接就是取的浓硫酸溶在水里了最后就是,我的被测物的浓度是10E-5,那么标准物硫酸奎宁是否也应该配成10E-5的浓度呢?[size=4][color=#DC143C]浓度是否要相同?[/color][/size]

  • 【求助】荧光量子产率的问题,硫酸奎宁的配制?

    哎!还是荧光量子产率的问题,看了不少文献,说的还是很模糊,请大家多帮忙啊文献一般是用硫酸奎宁做标准物,[size=4][color=#DC143C]为什么用的酸的量各不相同[/color][/size]呢有的文献是,硫酸奎宁 in 0.1N H[sub]2[/sub]SO[sub]4[/sub], 有的是in 1.0N H[sub]2[/sub]SO[sub]4[/sub]还有一篇中文的文献竟然是in 0.5N H[sub]2[/sub]SO[sub]4[/sub]我真是晕啊,请大家指教另外,我[size=4][color=#DC143C]是否可以用 奎宁 代替 硫酸奎宁[/color][/size](因为没有硫酸盐),直接溶在稀硫酸中呢0.1 M,或者是1.0M 的[size=4][color=#DC143C]硫酸 是否需要准确的配制[/color][/size]呢,我看文献直接就是取的浓硫酸溶在水里了最后就是,我的被测物的浓度是10E-5,那么标准物硫酸奎宁是否也应该配成10E-5的浓度呢?[size=4][color=#DC143C]浓度是否要相同?[/color][/size]

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制