当前位置: 仪器信息网 > 行业主题 > >

有机氯类农药化合物

仪器信息网有机氯类农药化合物专题为您整合有机氯类农药化合物相关的最新文章,在有机氯类农药化合物专题,您不仅可以免费浏览有机氯类农药化合物的资讯, 同时您还可以浏览有机氯类农药化合物的相关资料、解决方案,参与社区有机氯类农药化合物话题讨论。

有机氯类农药化合物相关的资讯

  • 水质中有机氯农药和氯苯类化合物测定的前处理方案
    有机氯农药是用于防治植物病、虫害的组成成分中含有有机氯元素的有机化合物。具有成本低,效率高,杀虫谱广等特点,使用最早、应用最广的杀虫剂有DDT、六六六,三氯杀螨醇、七氯、艾氏剂等。这一类农药性质稳定,难于降解,积存在动、植物体内的有机氯农药分子消失缓慢,其通过地表径流、喷洒残留、渗透或残留在粮食作物上而逃逸到环境中,包括我们赖以生存的水环境,而后经过生物富集和食物链的作用,最后进入人体,在肝、肾、心脏等组织中蓄积,影响人类健康。 尽管有机氯类农药在我国已经禁用多年,但是目前的水环境中还是存在着不同程度的污染。参考:HJ-699-2014 《水质 有机氯农药和氯苯类化合物的测定 气相色谱-质谱法》Detelogy推出水质中有机氯农药和氯苯类化合物测定的高效智能前处理方案。实验步骤取样:量取100.0mL水样,加入20.0μL替代物标准溶液(四氯间二甲苯、十氯联苯),用MultiVortex多样品涡旋混合器混匀。液液萃取:加入10g氯化钠(用于破乳,若样品含盐量较高,可适当减少用量),振荡至完全溶解后,加入15mL正己烷,剧烈振荡15min(注意放气),静置15min分层;再重复萃取一次,合并萃取液待干燥。干燥:将无水硫酸钠干燥柱固定于iSPE-864全自动智能固相萃取仪中,将上述洗脱液以2mL/min的速率过干燥柱进行干燥,少量正己烷洗涤洗脱液盛装器皿,一并过无水硫酸钠干燥柱,收集滤液于浓缩管中,用FV32Plus全自动高通量智能平行浓缩仪浓缩至近干(水浴温度设置为45℃以下),正己烷定容3mL。净化:将弗罗里硅土固相萃取小柱置于iSPE-864全自动智能固相萃取仪按下述条件净化。注:1、上样前需保证整个活化过程萃取柱是湿润的,否则需重新活化。 2、对于较为干净的地下水、地表水、海水样品,可以省略净化步骤。浓缩定容:将洗脱液置于FV32Plus全自动高通量智能平行浓缩仪浓缩至小于1mL,加入5.0μL内标使用液,用正己烷定容至1.0mL,用MultiVortex多样品涡旋混合器混匀,移入自动进样小瓶,待测。实验方案中涉及到的仪器MultiVortex多样品涡旋混合器▣ 高通量,兼容多种规格样品管,包括玻璃试管。▣ 底盘低重心设计,噪声小,动力强劲,最高转速可达3000rpm。▣ 可预设多个方法,每个方法可设6段自动变速,方便随时调用。iSPE-864全自动智能固相萃取仪▣ 8通道,连续批量处理64个样品。▣ 自动完成活化、上样、淋洗、氮吹、洗脱等全流程。▣ 柱塞杆密封过柱技术,有效避免失速和堵柱。▣ 智能溶剂管理系统,废液分类收集,省时环保。▣ 标配氮气吹扫功能,氮吹压力和时长可自由设定。▣ 智能控制终端和主机一体化设计,节省实验空间。FV32Plus全自动高通量智能平行浓缩仪▣ 可同时处理32位样品,兼容2-80mL多规格样品管。▣ 兼容针追随式氮吹和涡旋式氮吹,多路供气保障平行性。▣ 各通道独立控制,可自动定容至1.0mL、0.5mL或近干状态。▣ 三面水浴可视窗具备声光提醒功能,标配智能快插排水口。▣ 13.3寸超大彩色触屏控制,保存多种预设方法随时调用。
  • 34种有机氯农药和氯苯类混标全新上市(HJ 699-2014)
    迪马科技根据《HJ 699-2014 水质 有机氯农药和氯苯类化合物的测定 气相色谱-质谱法》标准定制了34种有机氯农药和氯苯类混标。 产品信息:DIKMA NO:46904DESC:Custom Mixed OCPs & Chlorobenzene (34 Analytes) 100 μg/mL in Acetone 1mL中文名称:HJ699-2014 水质有机氯农药和氯苯类化合物的测定34种混标 适用于《HJ 699-2014 水质 有机氯农药和氯苯类化合物的测定 气相色谱-质谱法》,100 μg/mL在丙酮中,1 mL/安瓿,Cat. No.: 46904序号化合物英文名CAS11,3,5-三氯苯1,3,5-Trichlorobenzene108-70-321,2,4-三氯苯1,2,4-Trichlorobenzene120-82-131,2,3-三氯苯1,2,3-Trichlorobenzene87-61-641,2,4,5-四氯苯1,2,4,5-Tetrachlorobenzene95-94-351,2,3,5-四氯苯1,2,3,5-Tetrachlorobenzene634-90-261,2,3,4-四氯苯1,2,3,4-Tetrachlorobenzene634-66-27五氯苯Pentachlorobenzene608-93-58六氯苯Hexachlorobenzene118-74-19α-六六六alpha-BHC319-84-610五氯硝基苯Pentachloronitrobenzene82-68-811β-六六六beta-BHC 319-85-712γ-六六六gamma-BHC58-89-913七氯Heptachlor76-44-814δ-六六六 delta-BHC319-86-815艾氏剂Aldrin309-00-216外环氧七氯heptachlor epoxide - isomer A28044-83-917环氧七氯heptachlor epoxide - isomer B1024-57-318γ-氯丹Trans-chlordane5103-74-219o,p’-滴滴伊o,p’-DDE3424-82-620α-氯丹Cis-chlordane5103-71-921α-硫丹Endosulfan I 959-98-822p,p’-滴滴伊p,p’-DDE72-55-923狄氏剂Dieldrin60-57-124o,p’-滴滴滴o,p’-DDD53-19-025异狄氏剂Endrin72-20-826p,p’-滴滴滴p,p’-DDD72-54-827o,p’-滴滴涕o,p’-DDT789-02-628β-硫丹endosulfan II33213-65-929p,p’-滴滴涕p,p’-DDT50-29-330异狄氏剂醛Endrin Aldehyde7421-93-431硫丹硫酸酯Endosulfan sulfate1031-07-832甲氧滴滴涕Methoxychlor72-43-533异狄氏剂酮Endrin-ketone53494-70-534三氯杀螨醇dicofol115-32-2
  • 人参、黄芪、甘草配方颗粒“其他有机氯类农药残留量”应对方案上线
    10月31日,国家药品监督管理局发布公告“批准颁布第二批中药配方颗粒国家药品标准”。11月2日,国家药典委发布公告,转发第二批36个配方颗粒国家标准文件。 经岛津技术人员查询和整理,2020版药典“人参、黄芪、甘草”药材在【检查】项目处对“其他有机氯类农药残留量”有检测规定,两批配方颗粒国家标准中对“人参(第二批品种)、黄芪(蒙古黄芪)、甘草(甘草)”也有“其他有机氯类农药残留量”检测要求,同品种检测方法、项目、限量要求保持一致。 中药“其他有机氯类农药残留量”检测解决方案 面对配方颗粒国家标准和2020版药典中人参、黄芪、甘草“其他有机氯类农药残留量”检测要求,岛津向广大用户提供全整体解决方案,包括分析仪器、色谱柱和应用方案。 分析仪器和色谱柱ECD-2010 Exceed 电子捕获检测器全新设计的内部结构带来更持久的耐用性、更优异的灵敏度、更宽泛的线性范围,实现良好的ECD性能。ECD池的结构优化,达到卓越的灵敏度。 人参“其他有机氯类农药残留量”应用实例 岛津按照人参品种“其他有机氯类农药残留量”检测标准建立了应用方案,结果如下:9种有机氯混合对照品溶液(100ppb)色谱图9种有机氯混合对照品溶液(1ppb)色谱图 参照《中国药典》的分析方法,采用色谱柱SH-1701 (30 m, 0.32 mm × 0.25 μm )分析 9 种有机氯类农药残留,两个相邻色谱峰的分离度均大于1.5,峰形和重现性良好,且在低浓度下(1 ppb)也能得到较好的峰形,满足《中国药典》需求。此方法可为9 种有机氯类农药残留测定提供参考。 六六六(BHC)(α-BHC,β-BHC,γ-BHC, δ-BHC)、滴滴涕(DDT)(p,p' -DDE,p,p' -DDD,o,p' -DDT,p,p' -DDT)八个化合物属于禁用农药,可使用本方案对植物类药材和饮片中8个禁用农药化合物做初步筛查。 “12 种有机磷类农药残留量” 和“22 种有机氯类农药残留量”测定应用方案 岛津(上海)实验器材有限公司同时参照《中国药典》四部2341通则“第二法 有机磷类农药残留量测定法(色谱法)”、“22种有机氯类农药残留量测定法”分别建立了应用方案,为广大客户检测相应项目提供参考。12 种有机磷类农药混合对照溶液(1ppm)色谱图22 种有机氯类农药混合对照溶液(100ppb)色谱图
  • 傅若农:珠联璧合功能尽显的金属有机框架化合物(MOFs)吸附剂
    往期讲座内容见:傅若农老师讲气相色谱技术发展    金属有机框架化合物(Metal Orgaic Framework)(MOFs)是由无机金属离子和有机配体,通过共价键或离子共价键自组装络合形成的具有周期性网络结构的晶体材料,其中,金属为顶点,有机配体为桥链。MOFs结构中的金属离子几乎包含了所有过渡金属离子。配体,通常分为含氮杂环有机配体、含羧基有机配体、含氮杂环与羧酸混合配体三种类型。MOFs具有独特的孔道,可设计和调控它的尺寸和几何形状,并在孔道内存在开放式不饱和金属配位点,使其可用于吸附或分辨不同的气体或离子,MOFs非常适合于辨识特定的小分子或离子,在多相催化、气体分离和储存等方面有着广泛的应用。由于MOFs具有优异的性质,如比表面高、热稳定性好、纳米级孔道结构均一、内孔具有功能性、外表面可修饰等,在分析化学领域有广泛的应用前景。  在20世纪前,多孔材料一般有两种类型:无机材料和碳质材料。无机材料中以沸石分子筛为代表,而活性炭是在1900年之后才发现的,因其优良的吸附功能,在20世纪后半叶广泛用于各个领域。但是在多种多样的要求下。这些材料已经不能满足人们的需要,于是就有新型的无机-有机杂化金属有机骨架材料的诞生。  1995年亚希(Yaghi)研究组在Nature上报道了第一个MOFs的材料,它是具有二维结构的配位化合物,由刚性的有机配体均苯三甲酸与过渡金属 Co 形成,成为这类化合物发展史上的一个里程碑(Yaghi O M,et al,,Nature,1995,378:703-706)。图1是Yaghi 研究组合成的MOFs。图1 Yaghi 研究组合成的MOFs  1999年,Yaghi研究组在Science 杂志上报道了在原有的基础上进行的改进、以刚性有机配体对苯二甲酸和过渡金属Zn合成的具有简单立方结构的三维 MOF 材料(Li H,et al, Nature,1999,402:276- 279)。2002年,Yaghi研究组通过拓展有机配体的长度合成了一系列与M0F-5具有相同拓扑网络结构的金属-有机骨架多孔材料IRMOF( Isoreticular Metal-organic Framework ),IRM0F-8(N. L. Rosi, et al, Science,2003,300:1127-1129。 这一系列晶态孔材料的合成,成为有纳米孔洞MOF材料的第二次飞跃。  2004年,Yaghi研究组又以三节点有机羧酸配体BTB构筑了MOFs材料MOF-177, 因相对于传统材料的大分子骨架和高比表面积使它的应用范围和吸附性大大增加(Chae H K,Nature,2004,427:523-527)。  2005年法国Férey 研究组在Science发表具有超大孔特征的类分子筛型MOFs 材料——MIL-101。  2006年,Yaghi 研究组合成出了十二种类分子的咪唑骨架(ZeoliticImidazolate Frameworks,ZIFs)材料 (Férey G ,et al, Science,2005,309:2040-2042)。ZIFs具有与沸石相似的拓扑结构,它所展现出的永久孔性质和高的热化学稳定性引起了人们很大的注意,ZIFs的优越性能使其成为气体分离和储存的一类新型材料。2010年,又在 Science杂志上提出了一个新的概念——多变功能化金属有机骨架(MVT-MOFs)材料,即在同一个晶体结构的孔道表面同时修饰上不同种类功能团的 MOFs 材料,并报道了十八种MVT-MOF-5材料。  2013年Yaghi研究组在Science 上以“金属-有机骨架材料的化学和应用”为题总结了金属-有机骨架材料在化学及应用反面的发展,他们涉及了图2所列的材料(SCIENCE, 2013,341:1230444-1-1230444-12)。图 2 MOFs 分子中的无机单元(A)和有机配体(B)的结构  图中颜色:黑—C,红—O,黄—S ,紫—P,浅绿—Cl, 氯—N,蓝--多面体,金属离子,  AIPA, 三(4-(1H-咪唑-1- )苯基)胺 ADP, 脂肪酸 TTFTB4– --4,4′ ,4′ ′ ,4′ ′ ′ -([2,2′ bis(1,3- dithiolylidene)] -4,4′ ,5,5′ -tetrayl)tetrabenzoate.  1. MOFs 在吸附剂中的应用  MOFs 已经有众多应用领域,在分析化学中的应用如下图所示。在分析化学的应用中,很多过程都涉及使用吸附剂(如样品收集、贮存、固相萃取、固相微萃取、色谱分离等)。Zhi-Yuan Gu, Cheng-Xiong Yang, Na Chang, and Xiu-Ping Yan*Acc. Chem. Res., 2012, 45 (5):734–745图 3 MOFs 在分析化学中的应用  MOFs材料分为微孔、介孔、和大孔。介孔材料在有腔尺寸范围2-50 nm,这一尺寸相当于典型有机物分子大小(除了聚合物)。因此,介孔材料是特别有前途的吸附剂,用于许多领域。图3是2002-2015年间发表的有关MOFs介孔材料的文章数据(Chem. Eur. J. 2015, 21:16726 – 16742)。近年发表的有关MOFs介孔材料的文章急剧上升,到2014年后大顶峰,如图3所示。图3 2002-2015年间发表的有关MOFs介孔材料的文章数据  MOFs 比一般吸附剂具有更大的比表面和可调的孔径,图 4是近年合成的MOFs材料比表面和孔径逐年提高的情况。图 4 近年合成的MOFs材料比表面和孔径逐年提高的情况(括号中的数据是孔容(cm3/g)  2010年 A Samokhvalov 的综述“溶液中芳烃和杂环芳烃在介孔金属-有机框架化合物上的吸附”(Adsorption on Mesoporous Metal–Organic Frameworks in Solution: Aromatic and Heterocyclic Compounds)。系统地分析了在溶液中介孔材料的吸附/解吸研究的化学机制,讨论了介孔材料在水中稳定性、吸附容量和选择性。((Chem. Eur. J. 2015, 21:16726-16742)  2012年,中科院大连化学物理研究所孙立贤应邀为Energy & Environmental Science杂志撰写了题为:介孔金有机框架化合物:设计和应用(Mesoporous Metal Organic Frameworks: Design and Applications)的综述文章,详细介绍了介孔金属有机骨架材料的设计合成、研究进展及其在气体储存、催化、传感、VOC吸附和药物释放等领域的潜在应用。介孔MOFs的设计合成方法主要包括:(1)通过延长配体的长度,调节次级结构单元大小,从而提高MOFs孔径 (2)采用混合配体,构筑新型次级结构单元,获得介孔MOFs (3)利用表面活性剂作为模板,合成介孔MOFs材料 (4)设计合成次级结构配体,构建中孔MOF材料。  (http://www.cas.cn/ky/kyjz/201203/t20120331_3547949.shtml)(Energy Environ. Sci. 2012, 5:7508–7520.)  同年上海交通大学崔勇等也发表了” 介孔MOFs材料“(Mesoporous metal–organic framework materials)的总综述章,讨论了介孔材料的设计与合成,孔隙率、活化和表面改性,以及在贮存与分离,催化,药物输送及影像学的应用。其特性是依赖于笼形或通道的孔形状、大小和化学环境。(Chem Soc Rev , 2012, 41:1677–1695)。  2 典型的介孔MOFs材料  MOFs材料有很多很多,有代表性的介孔MOFs见下表1.  表1 有代表性的介孔MOFs介孔MOFs/分子式比表面积/ (m2 /g)窗口或孔道/?孔容/(cm3 /g)结构类型拓扑的符号g文献BETLangmuirCd-MOF/Cd(NH2BDC)? (4,4,-bpy)?4.5H2O?3DMF——18x23—3D通道kagJ. Am. Chem. Soc.,2010, 132:5586CMOF-2/[Zn4O(L4)3] ?22DEF?4H2O——26,20x16—3D通道pcu J. Am. Chem. Soc., 2010, 132:15390.CMOF-3/[Zn4O(L5)3] ?42DMF——20,15x7—3D通道pcu同上CMOF-4/[Zn4O(L5)3] ?37DMF?23EtOH?4H2O——32,25x23—3D通道pcu同上CMOF-2a/Cu2L1a(H2O)2?15 DMF?11 H2O0—22x15—3D通道{43 62 8}n Nat. Chem., 2010,2: 838CMOF-3a/Cu2L2a(H2O)2?12 DEF?16 H2O240—30x20—3D通道{43 62 8}同上CMOF-4a/Cu2L3a(H2O)2?10 DEF?14 DMF?5 H2O0—32x24—3D通道{43 62 8}同上CMOF-2b/Cu2L1b (H2O)2?11 DEF?3 H2O0—22x15—3D通道{43 62 8}同上CMOF-3b/Cu2(L2b) (H2O)2?13 DMF?11iPrOH?4.5 H2O0—30x20—3D通道{43 62 8}同上CMOF-4b/Cu2(L3b) (H2O)2?6.5 DEF?19DMF?8.5iPrOH?2 H2O0—32x24—3D通道{43 62 8}同上IRMOF-12/Zn4O(HPD)3?10DEF?H2O—175024.5 0.613D通道pcuScience, 2002, 295, 469.IRMOF-14/Zn4O(HPD)3?6DEF?5H2O—193624.50.693D通道pcu同上IRMOF-16/Zn4O(HPD)317DEF?2H2O1910—28.8—3D通道pcu同上JUC-48/[Cd3(BPDC)3(DMF)] ?5DMF?18H2O62988021.1x24.90.191D通道etbAngew. Chem., Int. Ed., 2007, 46: 6638mesoMOF-1/Cu3(TATAB)2(H2O)38DMF?9H2O729—22.5x26.13D通道borJ. Chem. Soc., 2006, 128:16474.MIL-100(Cr)/Cr3FO(H2O)3(BTC)2?nH2O(n=28)—310025,291.16笼型MTNAngew. Chem., Int. Ed., 2004, 43: 6296.MIL-101(Cr)/Cr3F(H2O)2(BDC)3?25H2O4200b, 2800-4230c5900 b 4000-5900 c29,34 b2.01笼型MTN16, Science, 2005, 309, 2040;49MOF-180/Zn4O(BTE)2(H2O)3?H2O15x231.37-2.15笼型qomScience, 2010, 329, 424MOF-200/Zn4O(BBC)2(H2O)3?H2O45301040018x283.59笼型qom同上MOF-210/Zn4O(BTE)4/3(BPDC)62401040026.9x48.33.9笼型toz同上NOTT-116(PCN-68)/Cu3(PTEI)(H2O)3?16DMF?26H2O4664d 5109c6033c12.0,14.8,23.2e2.13d,2.17笼型rhtJ. Am. Chem. Soc., 2010,132:409219NU-100(PCN-610)/Cu3(H2O)3(TTEI)?19H2O?22DMFa6143f—13.4,15.4,27.4f 12.0,18.6,26c28.2 f笼型rhtAngew. Chem., Int. Ed.,2010, 49:535720PCN-100/Zn4O(TATAB)2?17DEF?3H2O—86027.30.58笼型pyrInorg. Chem., 2010, 49:11637PCN-101/Zn4O(BTATB)2?16DEF?5H2O—11400.75笼型pyr同上UMCM-1/Zn4O(BDC) (BTB)4/34160650024x291D通道—Angew. Chem., Int. Ed.,2008, 47:677ZIF-95/Zn(5-氯代苯并咪唑)21050124025.1x14.3 30.1x200.43笼型pozNature, 2008, 453:207ZIF-100/Zn20(5-氯代苯并咪唑)39 OH59578035.60.37笼型moz同上Cu6O(TZI)3(H2O)9(NO3)?15H2O2847322312.088 13.077 20.2471.01笼型rthJ. Am. Chem. Soc., 2008, 130: 1833Cu2(L7)(H2O)2?14DMF?5H2O1020112721.2x3.5—3D通道ptsAngew. Chem., Int. Ed., 2009, 48: 9905.JT-1/{Cu7(OH)2(L6)3}{Cu6(OH)2(SO4)-(S3O10)2}?10H2O375—23.6—笼型f—Angew. Chem., Int. Ed., 2011,50:1154JT-2/{Cu7(OH)2(L6)3}2{Cu6(OH)2- (SO4)6 (S2O7)}{Cu3(SO4)(H2O)6} ?18H2O421—18.23—笼型f—同上  a --同一化合物会有不同的名称 b --数据源于文献:Science, 2005, 309: 2040 c--数据源于文献Angew.Chem., Int. Ed., 2006, 45: 8227 d--数据源于文献: J. Am. Chem. Soc., 2010,132:4092 e--数据源于文献: Angew.Chem., Int. Ed.,2010, 49:5357 f--数据源于文献:20 Nat. Chem., 2010, 2: 944 g—要理解拓扑符号参阅 http://rcsr.anu.edu.au/ and http://www.iza-structure.org/databases/ h—Schlafli 符号 i—手性MOF  2. 介孔MOFs材料在水中的稳定性  MOFs材料常用于吸附水中的物质,所以它在水中的稳定性至关重要。许多MOFs在水中是不稳定的,这是由于金属和配体的连接的配合物遇水会水解。在水中稳定的MOFs可用于水的净化,表2是这类MOFs。  表2 MIL-101 家族在水中的稳定性MOF后改性液体/蒸汽液相测试条件a吸附的表征结构文献MIL-100(Cr)(F)无蒸汽--变温T, RHXRD24h元素分析,滴定,XRD, N2吸附稳定25,Adv Mater, 2011, 23:3294–3297MIL-101(Cr)(F)无蒸汽-40–140℃ , 5.6 kPaH2O and N2吸附稳定21,Eur. J. Inorg. Chem, 2011, 471–474MIL-101(Cr)(F)无液体NaOH 或 HCl水中RTXRD, ζ -电位在pH 2-10稳定,pH 12不稳定22,Chem Eng J, 2012, 183: 60–67MIL-101(Cr)-X X=-H X=-NO2 X=-NH2 X=-SO3H 无 无 还原 无蒸汽--25℃同步辐射XRD,吸附水, TGA稳定26,Microporous Mesoporous Mater,2012, 157: 89–93MIL-101(Cr)(F) MIL-101(Cr)无蒸汽--100℃XRD, TGA,吸附稳定24,Energy Fuels 2013, 27: 7612–7618MIL-101(Cr)(F) MIL-101(Cr)-NO2 MIL-101(Cr)-NH2无HNO3/H2SO4 还原蒸汽--40–140℃TGA, DSC, XRD, BET反复40次,稳定15,Chem Mater,2013, 25:790–798MIL-101(Fe)-NH2无液体水RT,24 hXRD--33,Chem Commun,2013, 49:143–145.MIL-101(Al)-NH2无液体水液体水RTXRD,NMR, AAS稳定 7天30,Chem Eur J, 2015, 21:314–323  4 MOFs 用作分离富集吸附剂  MOFs具有比表面积大、孔道和性质可调等的特点,非常适合于气态样品的采样和预富集。Yaghi研究较早合成的的MOF-5其比表面积约为3 000 m2/g,2004年,他们合成报的MOF-177,比表面积可达到4 500 m2/g,而2010年合成出MOF-210,以BET法测定比表面积可达6 240 m2/g,这为从混合物中分离富集微量目标物提供了很好的条件。  2007年 Ji Woong Yoon 等合成了 [Co3(2,4-pdc)2(μ 3-OH)2]?9H2O (2,4-pdc =嘧啶-2,4-二羧酸二价阴离子, NC5H3- (CO2)2-2,4) (CUK-1),以CUK-1作填充气相色谱柱,可以很好地分离几种永久气体组成(氢、氧、氮、甲烷和二氧化碳)[B-4],这样要比无机分子筛要优越多了(二氧化碳不会在低温下永久吸附)。  2010年严秀平研究组就研究了 MOF-5[ Zn4O(BDC)3, BDC =对苯二甲酸]和MOF-5单斜(沸石咪唑酯骨架结构材料ZIF-8 的吸附性能,用脉冲气相色谱、静态蒸气吸附、穿透吸附方法研究二了甲苯位置异构体和乙苯混合物在这两种金属框架配位化合物上的吸附行为。他们合成MOF-5的方法: Zn(NO3)26H2O(600 mg,2mmol)和对苯二甲酸(170mg,1mmol)溶解在DMF(20mL) 混合转移到一个聚四氟乙烯衬里的小反应釜中,密封后在120℃烘箱中加热21 h后,冷却至温,过滤得到的混合物为无色立方晶体。用DMF洗涤合成的MOF-5,在室温下干燥后再在减压下于250℃烘干, MOF-5在真空下储存以免受潮水解破坏结构,BET法测得比表面积773 m2/g。他们测得MOF-5吸附剂对乙苯、二甲苯异构体的漏出曲线,见图 5.图 5 MOF-5吸附剂对乙苯、二甲苯异构体的漏出曲线  2010年年严秀平研究组利用MOF-5吸附剂现场对大气中的甲醛进行吸附取样预浓缩,然后直接热脱附,用GC-MS进行分析。这一吸附剂比Tenax TA(有机聚合物)吸收效率高53-73倍。 取样和分析过程如图5所示(Anal Chem,2010,82:1365-1370)。图6用MOF-5吸附剂现场取样分析大气中的甲醛  2012年扬州大学曾勇平研究组用巨正则蒙特卡罗模拟法考察金属有机框架IRMOF-1和Cu-BTC吸附噻吩和苯的问题,仿真结果表明,吸附质与之间的静电相互作用主导吸附机制。结果表明,噻吩分子优先被吸附 IRMOF-1比Cu-BTC[ BTC =均苯三甲酸]有较高的吸附容量(Sep Pur Tech,2012,95:149–156)。  2013年同济大学乔俊莲研究组合成了MOF MIL-53(Al){Al(OH)[O2C-C6H4-CO2]}和MIL-53(Al)-F127{Al(OH)[O2C-C6H4-CO2]} 用作吸附剂去除水样品中双酚A(BPA)。BPA的吸附动力学数据符合拟二级动力学模型,二者对BPA的平衡吸附量达到329.2± 16.5和472.7± 23.6mg/g,远高于活性炭(从129.6到263.1 mg/g),可以快速去除水中的BPA,所需的接触达到平衡的时间约 90 min (J Colloid Interface Sci,2013,405:157–163)。双酚A吸附情况如图7所示。图 7 在MIL-53(A)上吸附双酚A的示意图 2014年江苏大学的刘春波和南京师大的张继双研究组用Cu-BTC [ BTC =均苯三甲酸](MOF HKUST-1)去除染料废水中的亚甲基蓝,Cu-BTC具有中孔,高表面积和大孔隙体积,具有很好的吸附能力(Micropor Mesopor Mater,2014,193 :27–34)。Cu-BTC的晶体结构如图6所示。Cu-BTC能用乙醇溶液再生,并保留吸附能力。因此,作者们认为这些Cu-BTC MOFs材料为载体可以成为最有前途的分离污染物的吸附剂,其晶体结构如图8。图8 Cu-BTC的晶体结构  4 小结  MOFs具有优异的性质,比如比表面高、热稳定性好、纳米级孔道结构均一、内孔具有功能性、外表面可修饰等,在吸附剂应用领域有广泛的应用前景。MOFs在固相萃取中的应用下一篇讨论。
  • HJ 699-2014 水质 有机氯农药和氯苯类化合物的测定
  • 能合成任何有机化合物的机器有望重塑化学
    我认为,建造一台合成机器完全可行,能够制造出需要的小分子。 图片来源:Ryan Snook   在拍摄自上世纪60年代的一张褪色相片中,有机化学实验室看上去就像炼金术的天堂。架子上有成排的试剂瓶 玻璃器皿被摆放在木头货架上 科学家俯在案边忙碌地制造着分子。   经过50年的快速发展,该场景在逐步改变。2014年的实验室拥有一连串通风橱和分析仪器。但是研究人员工作的真谛是一样的。有机化学家通常在纸上计划自己的工作,不断描绘六边形和碳链直到他们想出合成给定分子所需要的反应顺序。然后,他们试着遵循这一顺序用手进行操作:煞费苦心地混合、过滤和蒸馏,以及缝合分子。   不过,化学家目前正试图通过创造能自动制造有机分子的设备,将双手从该领域中解放出来。&ldquo 我认为,建造一台合成机器完全可行,能够制造出需要的小分子。&rdquo 英国南安普顿大学化学家Richard Whitby说。《自然》杂志报道称,确实,这样一台机器能提供惊人的多样化合物,以便研究人员开发药物、农药或物质。   &ldquo 一台合成机器将是变革性的。&rdquo 美国麻省理工学院(MIT)化学家Tim Jamison说,&ldquo 我可以看到每一个领域的挑战,但我不认为这不可能做到。&rdquo   一个名为&ldquo 呼叫分子&rdquo 的英国项目正在为此奠定基础。Whitby领衔的该项目耗资70万英镑,始于2010年,目前运营会持续到2015年5月。到目前为止,该项目主要致力于找出这台设备所需要的组件,并集合450多位研究人员和60家企业帮助实现这个点子。Whitby表示,大家希望这个平台能够帮助团队成员吸引完成该任务所需要的长期支持。   项目成员也认为,即便这些努力有可能功亏一篑,合成机器的早期工作也仍将改变化学研究。它将能在持续过程中完成大量化学反应,而非一次一步 计算能预测将分子编织在一起的最佳方式等。或许最重要的是,它能通过鼓励化学家记录和分享更多化学反应数据触发文化的彻底改变。   &ldquo 如果拥有充足资金,5年,我们能做到。&rdquo 也拥有自己的合成机器建造计划的美国西北大学化学家Bartosz Grzybowski说。   电气梦   如果化学家有机会建成他们的梦想设备,那必须将3个核心能力结合在一起。首先,机器必须能够访问有关分子如何被建造的现有知识数据库。第二,它必须能将这种知识反馈给一种算法,以便规划合成步骤。最后,它必须能自动按顺序使用机器反应器中的试剂。   最后一步的技术进步最快。许多实验室已经拥有生产DNA和多肽的专用机器,在过去10年间,适应性强的机器人化学家在商业药学研究中变得越来越重。但现存的机器能力有限:DNA或蛋白质序列生成机器通常只能结合少数分子,少于6个反应使用的分子。更多样化的合成机器对大多数学术团体而言太过昂贵&mdash &mdash 花费从3万英镑到5万多英镑,并仍趋向于制造化学特性狭窄的分子。   现在,一些化学家在试着开发连续流动合成机器。这能提高速度和产量,并更适合自动化。   例如,Jamison目前在诺华&mdash MIT连续生产中心研发流动化学系统,他也是去年首次报告端对端、完全连续的合成和制药规划(阿利克仑半富马酸盐,用于治疗高血压)研究小组的成员。Jamison和同事建造了一台7米多长、2.5米高和深的机器。&ldquo 在4年的时间里,&lsquo 所有会出错的东西最终都会出错&rsquo 。&rdquo MIT 中心主任、该项目负责人Bernhardt Trout说。   他表示,在进行了反复试验后,研究人员意识到自己需要做的只是扳动开关,以及填入新鲜的试剂和原料。这台机器在精疲力竭地搅拌化学品的时候,会像大型空调设备那样发出嗡嗡声,过滤装置进行滴水和挤压,螺旋输送器会将固体送过2米长的干燥管进行注塑。最后,在经历了14道工序和47小时后,完成的药片会掉落到斜槽上。   Jamison认为,这在适应连续流动反应方面会有巨大潜力:&ldquo 我认为这最终将实现(所有反应的)50%,可能甚至75%。&rdquo   化学脑   &ldquo 呼叫分子&rdquo 合作成员、葛兰素史克公司(英国制药公司)自动化专家Yuichi Tateno提到,尽管自动化设备正变得更万能,但教导一台计算机设计自己的合成工序仍然是个大问题。&ldquo 硬件一直在那里,但软件和数据是问题。&rdquo 他说。   化学家在规划一个合成体,趋向于使用一种名为逆向合成分析的方法。他们画出最终的分子,然后将其分离。这将让他们得以确定需要从原料中获得的化学拼图碎片,然后在实验室里设计出策略将碎片结合起来。   如果有需要的话,他们也能从SciFinder和Reaxys等商业数据库中寻求灵感。将一个分子结构或一个反应输入数据库中,就能生成文献上的案例。但Tateno表示,即便有在线帮助,人们的合成工作也经常会失败。&ldquo 在那里,没有人能无所不知。&rdquo   Whitby提到,人们希望一台合成机器终有一天能做到更好,尤其是因为计算机能更快速地扫描兆兆字节的化学数据,以确定明确的化学反应。他补充道,更大的挑战是计算机更难计算出该反应是否将在合成过程中真正起作用,当目标物质之前从未制造时尤为困难。   这个问题让哈佛大学化学家Elias Corey十分困惑。Corey于上世纪60年代确定了逆向合成规则。在接下来的10年间,Corey开发出LHASA软件(应用于综合分析的逻辑和启发式方法),该软件能使用这些规则提示合成步骤的顺序。   但LHASA和后续者都未能成功,Grzybowski提到,数据库包括的反应太少而错误太多,或者算法无法适当评估推荐反应能否与分子内的所有功能团和谐共处。&ldquo 如果我们一次只能制造一个化学键,那化学将微不足道。&rdquo 他说。于是Grzybowski花费10年时间创建了Chematica系统来解决这些问题。   更强、更快、更便宜   当Grzybowski在2005年首次公开Chematica背后的网络后,&ldquo 人们说那是胡说八道&rdquo 。他笑道。但到2012年,情况发生了变化,他与同事发表了3篇里程碑式的文章,展示Chematica的效用。例如,该项目发现大量的&ldquo one pot&rdquo 合成体,在这里,试剂能够从一个容器进入另一个容器,不用在每一步之后进行麻烦的分离和净化。该研究小组测试了Chematica的建议,结果显示许多建议比传统方法更有效。   Chematica还能查阅初始材料的成本信息,以及评估每个反应的劳动力,以便预测最便宜的方法。Grzybowski实验室检测了该系统推荐的51个廉价合成法,结果将成本降低了45%。   Grzybowski希望该系统能够商业化,而且他向波兰政府出价230万美元,将Chematica用作合成机器的大脑,以证明其能自动计划和执行至少3种重要药物分子的合成工作。   但也有人对此表示怀疑。CatScI 公司商业总监Simon Tyler提到,对于可预知的未来,&ldquo 总有对人为干预的重要需要&rdquo 。要建造一台合成机器,&ldquo 我们需要预测一个反应何时能起作用,但更重要的是我们需要预测何时会失败&rdquo 。   另一方面,资金也是一大障碍。自动化机器的费用意味着很少有学者能熟悉它们。当有大量的研究生劳动力时,实验室也没有动力使用这些设备。Whitby正在游说相关方面主持建造最先进的自动合成设备和软件。在目标实现之前,他希望&ldquo 呼叫分子&rdquo 能让新一代化学家信奉数据共享和自动化操作。
  • 环境LCMSMS新标准来袭,水质中有机磷农药检测无忧应对
    导读有机磷农药是一类高效广谱的杀虫剂,也是目前农业生产活动中使用最多的农药种类之一,其大量使用已对环境水体造成污染。水体中残留的有机磷农药,通过食物链富集后,可对人畜健康构成潜在危害。在检测低含量环境污染物方面,液质联用系统凭借其高灵敏度、高准确度、高通量等特点,在环境监测领域得到越来越广泛的应用。近期,生态环境部发布了《HJ 1183-2021 水质 氧化乐果、甲胺磷、乙酰甲胺磷、辛硫磷的测定 液相色谱-三重四极杆质谱法》,并将于2021年12月15日起正式实施。 有机磷杀虫剂类化合物的危害有机磷杀虫剂是一类常用的含磷有机合成杀虫剂,品种繁多,药效高,使用浓度低,广泛用于防治植物病、虫害,但容易造成人、畜急性中毒,毒性主要来自抑制乙酰胆碱酯酶引起的神经毒性。大多数品种对光、热不稳定,在碱性条件下会迅速分解而失效。目前,广泛使用的有机磷杀虫剂品种主要有氧化乐果、甲胺磷、乙酰甲胺磷、辛硫磷、对硫磷、甲基对硫磷、敌敌畏、马拉硫磷、敌百虫等。图1 4种常见有机磷杀虫剂类化合物 由于农药会随地表径流进入地表水,通过不断积累和浓缩,必然影响生态系统本身的种类组成和群体数量,破坏生态平衡。另一方面,地下水生物量少,无光解作用,一旦污染,难以治理,对人体生命健康造成极大威胁。因此,水质中有机磷农残污染也随之成为水环境研究的热点问题。 新标准来袭,岛津方案助您从容应对参考HJ1183-2021标准,使用岛津液相色谱仪 LC-40 与三重四极杆质谱仪 LCMS-8040,建立了一种LC-MS/MS法快速准确测定水质中4种有机磷杀虫剂含量的方法,同位素内标定量,助您及时应对新标准! 图2 岛津液相色谱质谱联用仪(LCMS-8040) • 分析条件 表1 MRM优化参数注:*表示定量离子 • 标准曲线与检出限氧化乐果、乙酰甲胺磷在2~100 µg/L浓度范围内,甲胺磷、辛硫磷在2~200 µg/L浓度范围内,均具有较好的线性关系,线性相关系数均≥0.997,各校准点准确度在85.4~116.8%之间。 表2 校准曲线参数图3 4种化合物的校准曲线 • 样品测试结果及加标回收率对某地表水样品进行分析,未检测出上述4种有机磷杀虫剂类化合物。2 µg/L样品加标平均回收率分布在88.17~116.62%之间,满足标准要求,方法可靠。 图4 地表水样品色谱图图5 加标样品回收色谱图(2 µg/L) 表3 回收率结果(n=3) 结语水质安全是环境安全的重要一环,也关系到千家万户的用水安全与身体健康。HJ1183-2021新标准即将实施,岛津提供“交钥匙”全流程培训指导,经验丰富的工程师将在您的实验室提供全流程解决方案的现场培训服务,助您轻松掌握从样品前处理到分析报告生成的整个流程。
  • 岛津应用:柱后衍生系统测定固体废物中的氨基甲酸酯类农药
    氨基甲酸酯类农药是在有机磷酸酯之后发展起来的合成农药,其在酸性环境下稳定,遇碱分解,暴露在空气和阳光下易分解,在土壤中的半衰期为数天至数周。氨基甲酸酯类农药并不是剧毒化合物,但具有致癌性。氨基甲酸酯类农药具有选择性强、高效、广谱、对人畜低毒、易分解和残毒少的特点,在农业、林业和牧业等方面得到了广泛的应用。 Prominence氨基甲酸酯分析系统为柱后衍生系统,该系统利用衍生反应使被测物与相应试剂进行反应,改变被测物的物理或化学性质,使其被检测到。柱后衍生系统常用在农药残留、黄曲霉毒素、氨基酸等检测中,具有检测灵敏度高的特点。 本实验使用岛津 Prominence氨基甲酸酯分析系统,参考《固体废物 氨基甲酸酯类农药的测定 柱后衍生液相色谱法》(征求意见稿)建立测定固体废物中的氨基甲酸酯类农药的分析方法。岛津 Prominence氨基甲酸酯分析系统具有选择性高,检测灵敏度高、重复性好等特点,适合用于固体废物农药残留的检测分析。 了解详情,敬请点击《柱后衍生系统测定固体废物中的氨基甲酸酯类农药》关于岛津岛津企业管理(中国)有限公司是(株)岛津制作所于1999年100%出资,在中国设立的现地法人公司,在中国全境拥有13个分公司,事业规模不断扩大。其下设有北京、上海、广州、沈阳、成都分析中心,并拥有覆盖全国30个省的销售代理商网络以及60多个技术服务站,已构筑起为广大用户提供良好服务的完整体系。本公司以“为了人类和地球的健康”为经营理念,始终致力于为用户提供更加先进的产品和更加满意的服务,为中国社会的进步贡献力量。
  • POPs2016上的“明星”—全氟化合物
    仪器信息网讯 谈起POPs,人们首先想到的就是垃圾焚烧厂排放的二噁英,然而最近在西安举办的第十一届持久性有机污染物国际学术研讨会上,全氟化合物(PFASs)受到了与会专家的诸多关注,成为报告者讨论最多的化合物。会议现场  全氟化合物是碳氢化合物(及其衍生物)中的氢原子全部被氟原子取代后所形成的一类化合物,具有持久稳定性、生物累积性等特点。2009年5月,斯德哥尔摩公约第四次缔约方大会决定将全氟辛烷磺酸及其盐类(PFOS)与全氟辛烷磺酰氟(PFOSF)列入公约附件B(限制类),并于2013年8月在我国得到全国人大常委会批准。2015年,斯德哥尔摩缔约方大会通过了全氟辛酸(PFOA)及其盐类和相关化合物的附件D审查(POPs特性筛选),认为PFOA符合附件D筛选标准,决定在其附件E审查时应纳入可降解为PFOA的盐类和相关化合物。为适应新的履约需求,在我国近期更新的中国履行《斯德哥尔摩公约》国家实施计划中,也将PFOS纳入了计划中,并将动用2400万美金来实现其在重点行业的淘汰和替代。这也许就是全氟化合物受到大家广泛关注的原因。  除了大会报告和各分会场中有多个涉及全氟化合物的报告外,为了集中讨论全氟化合物的问题,本次研讨会特设了“PFOS履约与安全替代”专场,邀请国内外专家共同探讨全氟化合物的危害和替代品。“PFOS履约与安全替代”专场  各位专家主要围绕全氟化合物的分布、危害和替代品三方面进行了报告。  POPs Environmental Consulting 的Roland Weber博士讲解了PFOS引起的水污染问题以及针对此问题的管理策略和成本。中科院生态环境研究中心王亚韡研究员以我国最大的全氟磺酸盐生产工厂为例,研究了周边地下水、表层土壤、职业工人、周边居民和周边母鸡中全氟化合物的分布、迁移、暴露以及消除规律,并根据研究成果提出了相应的安全防护措施。南开大学祝凌燕教授介绍了其团队在环境中全氟化合物的研究,主要结论包括河流输入是太湖水体中PFAFs的主要来源 直接排放是城市大气中PFOS和PFOA的主要来源 PFASs可以通过与气溶胶或颗粒物结合的形式在大气中传输 我国人体血清中以PFOS为主,短链化合物如PFHxS等有升高的趋势。  农业部环境保护科研监测所耿岳博士以“母亲全血中全氟化合物水平同胎儿先心病发生的相关性”为题,讲解了其在母亲全血中检出的全氟化合物浓度及种类,频率最高的是PFOS和PFOA,并且病例组和对照组之间没有显著性的差异。  中国民用航空飞行学院贾旭宏博士的团队成员为大家讲解了其团队开发的一种PFOS替代品——以短氟碳链(≤ C4)为基础的阴阳碳氟-碳氟表面活性剂复配体系, 并详细介绍了其在水成膜泡沫灭火剂中替代C8基氟表面活性剂的潜力。科慕化学(上海)有限公司Kai-Volker Schuber 博士介绍了其公司产品短链Capstone 含氟表面活性剂作为灭火剂原材料的风险,分别从原材料、产品以及降解产品三个方面,进行了环境、毒理、生态等方面的评估,论证了此种产品的环境友好性。中科院动物研究所戴家银研究员从分布特征和迁移转化规律、内分泌干扰与生殖毒性、复合毒性效应的表征、毒性效应的分子机制等四方面对全氟化合物进行研究,此次报告主要讲解了F-53B的研究成果,认为其各种效应仅次于PFOS和PFOA,不能作为PFASs的替代品。  在会议的茶歇期间,“PFOS履约与安全替代”专场主持人清华大学黄俊副教授接受了仪器信息网的采访,为我们系统介绍了全氟化合物的使用和研究情况。  仪器信息网:我国PFOS的应用情况如何?  黄俊:根据公约和我国的批准,总体来说,用于电镀、农药等特定豁免用途的PFOS将在五年之后全部淘汰,用于消防和全封闭体系电镀等可接受用途的PFOS将可继续使用。与无意产生的二噁英不同,PFOS是一种化工品。在消防领域,PFOS被认为是一种很好的灭火剂生产原料,由于我国石化基地比较多,可以说火灾防不胜防,如果不能找到效果良好的替代品,将对我国消防安全产生较大的影响。”  仪器信息网:PFOS是斯德哥尔摩公约新增列物质,这是否意味着PFOS的毒性小于二噁英等第一批列入公约的物质?  黄俊:这不一定,是否列入公约主要取决于科学认知和国家提名。一种物质如果产量较小,没有引起关注,但因为偶然原因发生危害并被证明毒性较大,可能就会被马上列入公约。再有一个是国家提名,不管一种物质的危害性如何,如果没有任何国家提名的话,也是不会列入公约的。  目前全氟化合物的很多毒理学性质还不清楚,虽然目前公约主要考虑PFOS和PFOA,但是研究者普遍认为应该有更多种类的全氟化合物属于POPs。现在的问题在于,研究众多,但是还没有一个公认的结论。就像阻燃剂一样,刚开始的时候,五溴二苯醚和八溴二苯醚被列入公约,对于十溴二苯醚大家经过了很长时间的争论,最终也列入了公约,这是一个科学证据完善的过程。  仪器信息网:全氟化合物的分析技术是否成熟?  黄俊:全氟化合物是表面活性剂,有阴离子型和阳离子型两种,种类非常复杂,且带有电性,有疏水性的,也有亲水性的,并且物质性质比较特别,所以在用液质联用同时分析多种全氟化合物时,就需要找到一个兼顾所有分析需求的方法。总之,多种全氟化合物的同时分析并不容易。  另外一个就是排除干扰。仪器中的很多密封件是采样特氟龙材质,这种材质会溶出全氟化合物从而形成干扰,目前的解决方法包括更换材质、增加预柱消除干扰、采用同位素稀释方法消除干扰。还有就是实验室的本底控制也很重要,像冲锋衣、地毯、涂料之类的,都会释放出干扰物质。编辑:李学雷
  • 让您的科学亮点更加闪耀 “花式”解读有机化合物(下篇)
    话接上回,小编给大家介绍了面对复杂样品,如何用液相色谱的黑科技做“花式”分离。有了前端的“花式”分离,更要有“花式”检测,话说什么变形金刚呀,什么恐龙战队呀,都是花式+组合以后变得更强。所以这期呢,小编跟大家谈谈“花式”分离的组合“花式检测”——多重质谱技术如何对化合物进行“花式”剖析。作为有着50年质谱技术的积淀,赛默飞的质谱从有机质谱到无机质谱,从液质到气质,从单四极杆到串联四极杆,从离子阱、高分辨磁质谱再到高分辨Orbitrap;从单四极杆ICP-MS到串联四极杆ICP-MS,从高分辨ICP-MS再到特色的无机同位素系列质谱。众多的质谱技术以及获得的专利满满的挂了好几面墙,若是一一道来,怕是小编几天几夜也合不了眼了。在这里,针对“花式”解读有机化合物,小编先给大家介绍一下有机质谱中“航母”级别的神器——Orbitrap Fusion。Orbitrap Fusion™ Lumos™ Tribrid™ 三合一质谱仪作为神器,Orbitrap Fusion系列质谱搭载了满满的黑科技,仅质量分析器就搭载了3种:Orbitrap静电场轨道阱、双压线性离子阱和双曲面四极杆。Orbitrap静电场轨道阱高分辨质谱技术兼具超高分辨率、高质量精度、高灵敏度等优点,目前已经可以达到1百万的超高分辨率。这么高的分辨率有什么用呢?小编举个例子,用一般分辨率的质谱和超高分辨率质谱做实验,就好像在污染严重的雾霾天里和阳光普照空气清洁的环境里走路一样(如果你生活在空气良好的地区,请想象眼镜充满雾气和镜片干净时看东西的区别,如果你也不近视,小编只能请你自行发挥一下想象力?)。↑一般分辨率的质谱↑超高分辨率的质谱超高分辨率可以帮助我们更清晰的看到复杂样品里面的信息,即使色谱水平上没有分离的成分也能让他们“无所遁形”。再举个例子(如下图),在复杂基质中,12万的分辨率,我们发现了噻吗洛尔的信息,但是当分辨率升高到50万以上时,我们发现原本认为的一个成分中,还包含了另一个成分乙基苯酰芽子碱。所以高分辨率能帮助我们更真实地发现更多的科学。再来说说双压线性离子阱。离子阱的优势在于可以做多级质谱,得到更精细的化合物结构信息,所以当我们遇到复杂结构的成分时,就可以用离子阱技术对化合物结构进行全面剖析。赛默飞在离子阱技术上也是real“资深”。双压线性离子阱由高压阱和低压阱组成,高压阱中的高氦气压力能更好的进行离子的捕获、冷却和碎裂,低压阱中的低氦气压力对质量扫描有更好的分辨率或更快速度,双离子阱每个阱可设置最佳的氦气压力得到最优的捕获、隔离、碎裂和扫描效果。为了得到更多的化合物结构信息,Orbitrap Fusion上不仅有双压线性离子阱这种“高x格”的离子阱技术,也具有多种碎裂方式,如CID、HCD、ETD、UVPD等等。不同的碎裂方式可以提供化合物不同的结构碎片信息,这些碎裂方式还可以在做多级质谱时灵活组合,对化合物“花式”锻打,不愁化合物不显露“真相”。最后我们说说双曲面四极杆。双曲面四极杆比圆柱形四极杆加工难度要大,可以做到更高的分辨率,对离子的选择能力会更好,尤其在做复杂样品分析时会有更明显的优势。这项技术同样也被用于赛默飞的三重四极杆质谱中,使得三重四极杆质谱也可以实现高分辨的SRM(H-SRM)模式,对复杂基质样品中目标化合物的定量具有更好的灵敏度。 在Orbitrap Fusion上,不同的质量分析器、不同的碎裂方式可以灵活“花式”组合,协同运作,实现突破想象力的更多工作方式,为科研用户前沿研究实现更多可能性。下面就以其中的一种简单的工作模式为例,来感受一下离子在Orbitrap Fusion的“花式”运动吧。“黑科技”实在太多,小编今天暂时先说到这里了。想要了解更多神秘技术,还请关注“赛默飞色谱与质谱中国”微信公众号,移步到我们的高校科研全国巡演的现场聆听和感受。小编在这里再爆个料,我们每场高校科研巡演都会邀请知名学者大咖前来助阵,想要赢得与学界大咖近距离接触的机会,还请关注我们的微信。到底是哪位大咖呢?小编一期一期给你们爆料! 点击查看往期秘籍让您的科学亮点更加闪耀 教你如何“佛系”小白飞升“魔系”战神让您的科学亮点更闪耀 “花式”解读有机化合物(上篇)
  • 让您的科学亮点更加闪耀 “花式”解读有机化合物(下篇)
    话接上回,小编给大家介绍了面对复杂样品,如何用液相色谱的黑科技做“花式”分离。有了前端的“花式”分离,更要有“花式”检测,话说什么变形金刚呀,什么恐龙战队呀,都是花式+组合以后变得更强大̷ 所以这期呢,小编跟大家谈谈“花式”分离的组合“花式检测”——多重质谱技术如何对化合物进行“花式”剖析。 作为有着50年质谱技术的积淀,赛默飞的质谱从有机质谱到无机质谱,从液质到气质,从单四极杆到串联四极杆,从离子阱、高分辨磁质谱再到高分辨Orbitrap;从单四极杆ICP-MS到串联四极杆ICP-MS,从高分辨ICP-MS再到特色的无机同位素系列质谱。众多的质谱技术以及获得的专利满满的挂了好几面墙,若是一一道来,怕是小编几天几夜也合不了眼了。在这里,针对“花式”解读有机化合物,小编先给大家介绍一下有机质谱中“航母”级别的神器——Orbitrap Fusion。Orbitrap Fusion™ Lumos™ Tribrid™ 三合一质谱仪 作为神器,Orbitrap Fusion系列质谱搭载了满满的黑科技,仅质量分析器就搭载了3种:Orbitrap静电场轨道阱、双压线性离子阱和双曲面四极杆。Orbitrap静电场轨道阱高分辨质谱技术兼具超高分辨率、高质量精度、高灵敏度等优点,目前已经可以达到1百万的超高分辨率。这么高的分辨率有什么用呢?小编举个例子,用一般分辨率的质谱和超高分辨率质谱做实验,就好像在污染严重的雾霾天里和阳光普照空气清洁的环境里走路一样(如果你生活在空气良好的地区,请想象眼镜充满雾气和镜片干净时看东西的区别,如果你也不近视,小编只能请你自行发挥一下想象力̷)。↑一般分辨率的质谱↑超高分辨率的质谱 超高分辨率可以帮助我们更清晰的看到复杂样品里面的信息,即使色谱水平上没有分离的成分也能让他们“无所遁形”。再举个例子(如下图),在复杂基质中,12万的分辨率,我们发现了噻吗洛尔的信息,但是当分辨率升高到50万以上时,我们发现原本认为的一个成分中,还包含了另一个成分乙基苯酰芽子碱。所以高分辨率能帮助我们更真实地发现更多的科学。再来说说双压线性离子阱。离子阱的优势在于可以做多级质谱,得到更精细的化合物结构信息,所以当我们遇到复杂结构的成分时,就可以用离子阱技术对化合物结构进行全面剖析。赛默飞在离子阱技术上也是real“资深”。双压线性离子阱由高压阱和低压阱组成,高压阱中的高氦气压力能更好的进行离子的捕获、冷却和碎裂,低压阱中的低氦气压力对质量扫描有更好的分辨率或更快速度,双离子阱每个阱可设置最佳的氦气压力得到最优的捕获、隔离、碎裂和扫描效果。为了得到更多的化合物结构信息,Orbitrap Fusion上不仅有双压线性离子阱这种“高x格”的离子阱技术,也具有多种碎裂方式,如CID、HCD、ETD、UVPD等等。不同的碎裂方式可以提供化合物不同的结构碎片信息,这些碎裂方式还可以在做多级质谱时灵活组合,对化合物“花式”锻打,不愁化合物不显露“真相”。 最后我们说说双曲面四极杆。双曲面四极杆比圆柱形四极杆加工难度要大,可以做到更高的分辨率,对离子的选择能力会更好,尤其在做复杂样品分析时会有更明显的优势。这项技术同样也被用于赛默飞的三重四极杆质谱中,使得三重四极杆质谱也可以实现高分辨的SRM(H-SRM)模式,对复杂基质样品中目标化合物的定量具有更好的灵敏度。 在Orbitrap Fusion上,不同的质量分析器、不同的碎裂方式可以灵活“花式”组合,协同运作,实现突破想象力的更多工作方式,为科研用户前沿研究实现更多可能性。下面就以其中的一种简单的工作模式为例,来感受一下离子在Orbitrap Fusion的“花式”运动吧。“黑科技”实在太多,小编今天暂时先说到这里了。想要了解更多神秘技术,还请关注“赛默飞色谱与质谱中国”微信公众号,移步到我们的高校科研全国巡演的现场聆听和感受。 小编在这里再爆个料,我们每场高校科研巡演都会邀请知名学者大咖前来助阵,想要赢得与学界大咖近距离接触的机会,还请关注我们的微信。到底是哪位大咖呢?小编一期一期给你们爆料! 点击查看往期秘籍让您的科学亮点更加闪耀 教你如何“佛系”小白飞升“魔系”战神让您的科学亮点更闪耀 “花式”解读有机化合物(上篇)
  • 分析STERIS清洁剂中的非导电性有机化合物的TOC与电导率
    研究目的本研究旨在证明Sievers® M9 TOC分析仪能够通过分析TOC浓度来有效检测和量化STERIS生命科学公司(STERIS Life Sciences)生产的清洁剂中的非导电性化合物的含量。背景信息很多行业在转换产品之前都会用STERIS清洁剂来清洗生产设备。在清洁验证时,必须确定生产设备的最后冲洗液中没有残留的清洁剂或药物。残留的清洁剂、污染物、或其它化合物既可能是有机物,也可能是无机物,而在检测有机物和无机物时,需要采用不同的分析方法。人们用电导率来检测普通清洁剂,但残留的清洁剂中常有痕量的有机物,而人们无法用电导率来检测有机物。如果不能将生产设备清洗干净,就会影响产品质量。因此,检测清洁剂中残留的碳污垢,就成为综合评估清洁工艺的重要环节。本研究中的M9 分析仪数据表明,TOC分析能用来有效地检测导电性和非导电性有机化合物,对评估清洁工艺起到了补充作用。样品制备选择STERIS生命科学公司生产的以下4种清洁剂,进行初步比对和分析:CIP 100(基本清洁剂)CIP 220(酸性清洁剂)ProKlenz NpH(中性清洁剂)Spor-Klenz RTU(酸性清洁剂)将以上各种清洁剂稀释到0.01%,然后确定其碳含量(质量比)。基于稀释到0.01%的清洁剂溶液所提供的碳含量,分别将各清洁剂制备成5 ppm TOC溶液。向5 ppm TOC清洁剂溶液中分别加入1 ppm、10 ppm、25 ppm 、 50 ppm的非导电性有机化合物,再用Sievers M9分析仪分析其TOC和电导率。所有清洁剂溶液均在干净的低TOC玻璃器皿中制备,然后立即移到Sievers认证的电导率和TOC双用途(DUCT)样品瓶中。M9分析仪的自动加试剂功能(Autoreagent)能够确定分析所需的最佳试剂流量。对所有样品重复测量5次,不舍弃任何一次测量结果。CIP 100分析CIP 220分析ProKlenz NpH分析Spor-Klenz RTU分析总结对于以上4种情况,在0.5 - 20 ppm范围内,残留清洁剂和有机混合物的TOC响应都是线性的。在相同的TOC范围内,关于来自非导电性有机化合物对电导率的影响,正如预期,电导率响应是水平的。在1.5 -150 μS/cm范围内,电导率能有效检测清洁剂,却无法检测非导电性有机污垢。清洁剂基体不会妨碍痕量TOC的检测。结论在清洁验证时,电导率用来检测残留的清洁剂,但本研究中的数据表明,如果仅用电导率来评估对有机碳的清洁程度,则远远不够。尤其是当生产设备上沾有非导电性有机化合物时,如果仅靠电导率来评估清洁程度,就会使人们误以为生产设备很干净。TOC分析能有效地检测导电性和非导电性有机化合物,对评估清洁工艺起到补充作用,因此用TOC和电导率双管齐下就能克服上述局限性。Sievers M9分析仪能够同时测量TOC和电导率,提供准确和精确的有机和无机污染物信息,作为全面评估清洁工艺的依据。◆ ◆ ◆联系我们,了解更多!
  • 11种除草剂类农药检测及Xevo TQ新功能的使用
    11种除草剂类农药检测及Xevo TQ新功能的使用 赵淑军 袁汉成(沃特世科技有限公司 北京) 关键词:UPLC-Xevo TQ、除草剂、农药、PICS、ScanWave、Quanpedia 前言: 建立用Waters UPLC-Xevo系统检测11种除草剂类农药的检测方法。这11种农药属于季铵盐类强极性化合物,采用Waters ACQUITY BEH HILIC色谱柱,实现检测物质的良好保留,并实现这几种化合物的较好分离。本方法应用Xevo TQ的IntelliStart功能快速方便建立质谱方法,并使用PICS功能辅助定性,对于低浓度或低响应化合物,应用ScanWave功能有效增强离子强度,并应用Quanpedia库自动导入和导出生成MRM方法及液相方法,实现多农残检测方法的快速建立。 实验方法 1、材料、试剂和仪器 乙腈为色谱纯,实验用水为超纯水(18M&Omega ,TOC 3ppb),乙酸铵为优级纯,甲酸为优级纯,ACQUITY UPLC® 超高效液相色谱系统,Xevo TQ质谱系统 2、实验条件 2.1 UPLC方法 液相系统:Waters ACQUITY UPLC® 色谱柱:Acquity UPLCTM BEH HILIC 1.7  m,2.1 50mm, P/N: 186003460 柱温:35˚ C 检测周期 :4 min 进样量:10ul 流动相:A:250m mol NH4AC +1.4%FA H2O pH=3.7 B:CH3CN 梯度洗脱 弱洗溶剂:乙腈/水=90/10,900ul 强洗溶剂:乙腈/水=10/90,300ul 梯度方法见下表: 2.2 质谱方法 MS系统:Xevo TQ 离子化模式:ESI+ 毛细管电压:0.55KV 源温度:150 C 雾化气温度: 450 C 雾化气流速:950L/h 锥孔气流速:10 L/h 质谱检测参数见表2。 3、数据处理系统 Masslynx 4.1 SCN729 结果与讨论 1. 标准品 、样品配制 11种除草剂的混标用1/9水-乙腈溶液稀释配制。0.05ug/ml基质标准直接进样检测。 2、11种除草剂的提取离子色谱图及重叠色谱图 图1 11种除草剂农药MRM检测定量离子色谱图 图2 11种除草剂农药总离子重叠色谱图 3、11种除草剂农药检测灵敏度,进样量10ul。 采用开发的UPLC-MS/MS方法,配制11种农药的混标,11种农药具有不同的灵敏度响应,因此可得到其最低定量限 (LOQ=10:1信噪比)的检测浓度各有不同,各个农药在其相应检测浓度下的PtP信噪比,以及化学式等见表2所示。 4、产物离子确认扫描-PICS功能-扩展定性能力: 在采集MRM数据时,设定基线噪音背景(Background noise level)的阈值(Threshold),当目标化合物响应强度超过此阈值,即可开启此目标离子的MS Scan,Daughter Scan,ScanWave MS Scan或ScanWave Daughter Scan。在得到MRM定量色谱峰的同时得到离子确认扫描结果,扩展定性能力! 在各个农药标准品的MRM图中,得到在过峰顶点处的PICS扫描图,根据分析物的母离子和子离子,很容易定性判断所对应的峰为何种农药。 另外,对于只有单个离子对的化合物,无法进行双离子对定性,PICS功能在定性方面的优势就更显著。 下图3中,是维库溴铵515.5356.4离子对采集的MRM PICS扫描色谱图,在该MRM色谱图中提取了1.36min时间处的PICS质谱图(下图4),与维库溴铵标准品PICS质谱图或MRM方法比对,即可判断该峰为维库溴铵。 应用MassLynx 4.1中的TargetLynx软件,可以对采集实际样品得到的PICS质谱图和标准PICS Reference质谱图进行比较,通过软件计算的Forward Fit和Reverse Fit数值,可以较为量化的判断样品和标准品中分析物的匹配度。 取一11种农药混标做为未知样品,图5是样品中维库溴铵PICS质谱图和标准品Reference 质谱图的匹配结果,样品一次进样即可得到分析物定性匹配和MRM定量结果,图6列出了11种农药在MRM检测中得到的PICS质谱图。 图5 维库溴铵PICS质谱图和标准品Reference 质谱图的匹配 图6 11种农药在MRM检测中得到的PICS质谱图 5、ScanWave信号增强功能 ScanWave 能够根据荷质比(m/z),使离子在碰撞池富集和释放,显著提高SIR 和MS扫描时的灵敏度,在低含量分析物的扫描中具有很好的应用效果;同时在MRM检测过程中,能够和PICS功能同时使用,显著增强PICS MS质谱信号或子离子质谱信号。 应用实例1,仍以维库溴铵(浓度为20ppb)为例,分别进行Daughter Scan和ScanWave Daughter Scan两种扫描实验, 图7 Daughter Scan和ScanWave Daughter Scan两种扫描方法 从得到的子离子扫描色谱图上,可以看到ScanWave Daughter Scan信号比Daughter Scan信号增强5倍多(见图8);同时,从两种扫描方式得到的质谱图上,也可以看到ScanWave Daughter Scan的质谱信号也要高出5倍(见图9)。 应用实例2,在MRM检测的同时,和MRM检测、PICS功能同时使用,明显增强PICS子离子扫描的灵敏度,提高了7倍多(见图10);同时,由于Xevo TQ超快的扫描速率,在MRM中,ScanWave不影响MRM信号强度,不会影响MRM定量的准确度。 该功能还可应用于全扫描功能中的信号增强, 7、Quanpedia方法库 Quanpedia是一个方法库,从数据库中基于化合物名称或化合物类别选择感兴趣的物质,可自动建立现成的LC方法(包括流动相、梯度方法、色谱柱等信息)、MRM方法、定量方法和进样序列方法。同样可以实现用户已有的UPLC-MS/MS方法的自行导入,补充和充实数据库的数据量,用于感兴趣化合物的快速筛查。 这里,对于建立的这11种农药UPLC-MS/MS检测方法,导入到数据库中,在不同的UPLC-Xevo TQ系统上可以传递通用。通过数据库生成UPLC-MS/MS检测方法,不需要标准品,即可方便的进行化合物快速筛查。 在Waters现在的UPLC-Xevo TQ系统的Quanpedia数据库中已经具有大约910多种常见化合物的检测方法。 结论: 本文建立了用Waters UPLC-Xevo系统检测11种除草剂类农药的定量分析方法。方法的检出限:有5种化合物达到pg/ml级检测。通过Xevo TQ的PICS功能,对每个化合物在MRM检测同时,施加PICS功能辅助定性。 在低含量或低灵敏度分析物中,ScanWave 能够根据荷质比(m/z),使离子在碰撞池富集和释放,显著提高MS扫描和Daughter扫描时的灵敏度;同时在MRM扫描中,能够和PICS功能同时使用,显著增强PICS MS质谱信号或Daughter质谱信号,而不会影响定量结果。 应用Quanpedia库自动生成UPLC-MS/MS检测的MRM方法,无需标准品即可进行感兴趣化合物的快速筛查。
  • 输欧消费品禁含特定有机锡化合物
    自今年7月起,欧盟执行2009/425/EC指令,从而正式开始限制对消费产品中特定有机锡化合物的使用。指令2009/425/EC中规定:自2010年7月1日起,欧盟在所有消费品中限制使用三丁基锡和三苯基锡化合物,其限量要求为商品中锡含量的质量百分比浓度小于0.1%,如若检出超标,则该批消费品将遭到退货乃至严厉的召回处罚。   本项指令中关注的有机锡化合物包括三丁基锡、三苯基锡化合物及二丁基锡、二辛基锡化合物,其中前两者的正式开始限制时间为2010年7月1日,而后两者的时间则为2012年1月1日。以上四种有机锡化合物被广泛地应用于消费品中,例如鞋的内底,袜子和运动衣的抗菌整理,聚氨酯泡沫生产过程中的添加剂,PVC生产过程中的稳定剂或硅橡胶生产过程中的催化剂等。据统计,在现实生产过程中,全世界的锡产量中的10%~20%是用于合成有机锡化合物的,由此可见该物质应用的广泛程度。并且有机锡化合物对生物体的危害严重,会引起糖尿病和高血脂病等。   据统计,2010年上半年,宁波口岸出口至欧盟的商品共计62413批次,合15.72亿美元,相比2009年同期,分别提高了27.0%和26.6%,呈现出良好的上升态势,其中主打的拳头产品包括纺织品、玩具产品、食品接触类材料等,这些物品在生产加工过程中都有可能会添加有机锡化合物,如果这些潜在含有有机锡化合物的产品未通过检测贸然输往欧盟,可能会导致大规模的退货乃至召回的后果,这将会严重影响“中国制造”在欧盟的声誉,最终会对正处在逐渐回暖过程中的中欧贸易造成不可预计的恶性后果。   为此,检验检疫部门提醒:第一,输欧消费类产品的生产企业要加强原辅材料和生产过程的管理,要求原辅材料供应商提供不含有机锡化合物的检测报告,同时积极改进加工工艺,确保整个生产过程不添加有机锡化合物 第二,相关企业应积极通过与政府职能部门的配合,获取更多的有毒有害物质检测技术和检测标准知识,稳固企业技术储备工作 第三,检验检疫部门应加大对相关商品的有机锡化合物的抽样检测工作力度,以保证起到切实有效的监管作用 此外,检验检疫部门还可以考虑在国际层面上加强与欧盟在有毒有害物质管理方面的信息交换和有效配合,掌握国外有毒有害物质最新标准的发展趋势,以利于企业进行各项技术创新和管理变革。
  • 输欧消费品禁含特定有机锡化合物
    自今年7月起,欧盟执行2009/425/EC指令,从而正式开始限制对消费产品中特定有机锡化合物的使用。指令2009/425/EC中规定:自2010年7月1日起,欧盟在所有消费品中限制使用三丁基锡和三苯基锡化合物,其限量要求为商品中锡含量的质量百分比浓度小于0.1%,如若检出超标,则该批消费品将遭到退货乃至严厉的召回处罚。   本项指令中关注的有机锡化合物包括三丁基锡、三苯基锡化合物及二丁基锡、二辛基锡化合物,其中前两者的正式开始限制时间为2010年7月1日,而后两者的时间则为2012年1月1日。以上四种有机锡化合物被广泛地应用于消费品中,例如鞋的内底,袜子和运动衣的抗菌整理,聚氨酯泡沫生产过程中的添加剂,PVC生产过程中的稳定剂或硅橡胶生产过程中的催化剂等。据统计,在现实生产过程中,全世界的锡产量中的10%~20%是用于合成有机锡化合物的,由此可见该物质应用的广泛程度。并且有机锡化合物对生物体的危害严重,会引起糖尿病和高血脂病等。   据统计,2010年上半年,宁波口岸出口至欧盟的商品共计62413批次,合15.72亿美元,相比2009年同期,分别提高了27.0%和26.6%,呈现出良好的上升态势,其中主打的拳头产品包括纺织品、玩具产品、食品接触类材料等,这些物品在生产加工过程中都有可能会添加有机锡化合物,如果这些潜在含有有机锡化合物的产品未通过检测贸然输往欧盟,可能会导致大规模的退货乃至召回的后果,这将会严重影响“中国制造”在欧盟的声誉,最终会对正处在逐渐回暖过程中的中欧贸易造成不可预计的恶性后果。   为此,检验检疫部门提醒:第一,输欧消费类产品的生产企业要加强原辅材料和生产过程的管理,要求原辅材料供应商提供不含有机锡化合物的检测报告,同时积极改进加工工艺,确保整个生产过程不添加有机锡化合物 第二,相关企业应积极通过与政府职能部门的配合,获取更多的有毒有害物质检测技术和检测标准知识,稳固企业技术储备工作 第三,检验检疫部门应加大对相关商品的有机锡化合物的抽样检测工作力度,以保证起到切实有效的监管作用 此外,检验检疫部门还可以考虑在国际层面上加强与欧盟在有毒有害物质管理方面的信息交换和有效配合,掌握国外有毒有害物质最新标准的发展趋势,以利于企业进行各项技术创新和管理变革。
  • 建筑类涂料与胶粘剂挥发性有机化合物含量限值标准(全文)
    p   为减少VOCs排放,推动京津冀区域大气环境质量改善,北京、天津、河北三地共同制定了《建筑类涂料与胶粘剂挥发性有机化合物含量限值标准》。据悉,该《标准》已于4月12日在三地同步发布,并将于9月1日起同步实施。这是京津冀三地在环保领域发布的首个统一标准。全文如下: /p p style=" TEXT-ALIGN: center" img title=" 111.jpg" src=" http://img1.17img.cn/17img/images/201704/noimg/e0c70e09-2e8d-4d5f-94fd-161c105241e3.jpg" / /p p style=" TEXT-ALIGN: center" img title=" 112.jpg" src=" http://img1.17img.cn/17img/images/201704/noimg/c8fd4e48-1ddd-4f61-9861-758c36c2fdb7.jpg" / /p p style=" TEXT-ALIGN: left" strong 前言 /strong /p p & nbsp & nbsp & nbsp & nbsp 为推进京津冀协同发展战略实施,北京市环境保护局、天津市环境环保局、河北省环境保护厅、北京市质量技术监督局、天津市市场和质量监督管理委员会、河北省质量技术监督局共同组织制定本地方标准,在京津冀区域内适用,现予发布。 /p p & nbsp & nbsp & nbsp & nbsp 本标准为全文强制。 /p p & nbsp & nbsp & nbsp & nbsp 本标准依据GB/T1.1-2009给出的规则起草。 /p p & nbsp & nbsp & nbsp & nbsp 本标准由河北省环境保护厅提出并归口。 /p p & nbsp & nbsp & nbsp & nbsp 本标准起草单位:(北京组)北京市环境保护科学研究院、北京建筑材料检验研究院有限公司、北京建筑大学。(天津组)天津市环境监测中心、北京市环境保护科学研究院。(河北组)河北海航企业管理咨询有限公司、河北安亿环境科技有限公司、河北环学环保科技有限公司、河北省环境科学学会、北京市环境保护科学研究院、河北润峰环境检测服务有限公司、河北晨阳工贸集团有限公司、衡水新光化工有限责任公司、石家庄市油漆厂、河北省粘接与涂料协会、北京惠盟创洁环保科技有限公司。 /p p & nbsp & nbsp & nbsp & nbsp 本标准主要起草人: /p p & nbsp & nbsp & nbsp & nbsp (北京组)聂磊、高美平、袁勋、高喜超、檀春丽、闫磊、张澜夕、杜晓丽、申前进、邢可欣。 /p p & nbsp & nbsp & nbsp & nbsp (天津组)邓小文、关玉春、吴宇峰、聂磊、崔连喜、张肇元、王效国、杨虹、王琳、刘琨。 /p p & nbsp & nbsp & nbsp & nbsp (河北组)李占广、马贵宝、于海、程娜、聂磊、耿耀宗、耿树行、于欣沛、胡中源、田海宁、凌芹、吴唐健、马瑞兰、贾小芳、刘芳萍、柳坤然。 /p p & nbsp & nbsp & nbsp & nbsp 本标准由河北省质量技术监督局、河北省工商行政管理局、河北省环境保护厅共同组织实施。 /p p 引言 /p p & nbsp & nbsp & nbsp & nbsp 为贯彻《河北省大气污染防治条例》,降低建筑类涂料与胶粘剂使用过程挥发性有机化合物的排放,改善区域大气环境质量,制定本标准。 /p p style=" TEXT-ALIGN: center"    strong 建筑类涂料与胶粘剂挥发性有机化合物含量限值标准 /strong /p p 1范围 /p p & nbsp & nbsp & nbsp & nbsp 本标准规定了建筑类涂料与胶粘剂中挥发性有机化合物含量限值要求、检验方法、检验规则、包装标志等内容。本标准适用于京津冀区域内生产、销售和使用的各类建筑类涂料与胶粘剂。 /p p 2规范性引用文件 /p p style=" TEXT-ALIGN: left" & nbsp & nbsp & nbsp & nbsp 下列文件对于本标准的应用是必不可少的。凡是注日期的引用文件,仅注日期的版本适用于本标准。凡是不注日期的引用文件,其最新版本(包括所有的修改单)适用于本文件。& nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp /p p & nbsp & nbsp & nbsp GB/T3186-2006色漆、清漆和色漆与清漆用原材料取样 /p p & nbsp & nbsp & nbsp GB/T6750-2007色漆和清漆密度的测定比重瓶法(ISO2811-1:1997,Panitsandvarnishes-Determinationofdensity-Part1:Pyknometermethod,IDT) /p p & nbsp & nbsp & nbsp & nbsp GB/T9754-2007色漆和清漆不含金属颜料的色漆漆膜的20° 、60° 和85° 镜面光泽的测定(ISO2813:1994,IDT) /p p & nbsp & nbsp & nbsp & nbsp GB24408-2009建筑用外墙涂料中有害物质限量GB18582-2008室内装饰装修材料内墙涂料中有害物质限量 /p p & nbsp & nbsp & nbsp & nbsp GB/T22374-2008地坪涂装材料 /p p & nbsp & nbsp & nbsp & nbsp GB/T23986-2009色漆和清漆挥发性有机化合物(VOC)含量的测定气相色谱法 /p p & nbsp & nbsp & nbsp & nbsp GB/T8170-2008数值修约规则与极限数值的表示和判定 /p p & nbsp & nbsp & nbsp & nbsp GB30981-2014建筑钢结构防腐涂料中有害物质限量 /p p & nbsp & nbsp & nbsp & nbsp GB18583-2008室内装饰装修材料胶粘剂中有害物质限量 /p p & nbsp & nbsp & nbsp & nbsp JC1066-2008建筑防水涂料中有害物质限量 /p p 3术语和定义 /p p & nbsp & nbsp & nbsp & nbsp 下列术语和定义适用于本文件。 /p p & nbsp & nbsp & nbsp & nbsp 3.1挥发性有机化合物(VOC)volatileorganiccompounds /p p & nbsp & nbsp & nbsp & nbsp 在101.3kPa标准大气压下,任何初沸点低于或等于250℃的有机化合物。 /p p & nbsp & nbsp & nbsp & nbsp 3.2挥发性有机化合物含量(VOC含量)volatileorganiccompoundscontent /p p & nbsp & nbsp & nbsp & nbsp 按规定的测试方法测试产品所得到的挥发性有机化合物的含量。 /p p & nbsp & nbsp & nbsp & nbsp 注1:外墙涂料、内墙涂料、挥发固化型防水涂料、水性地坪涂料、水性建筑防腐涂料、水基型胶粘剂为产品扣除水分后的挥发性有机化合物的含量,以克每升(g/L)表示。DB13/3005—20172 /p p & nbsp & nbsp & nbsp & nbsp 注2:反应固化型防水涂料、溶剂型地坪涂料、无溶剂型地坪涂料、溶溶剂型建筑防腐涂料、溶剂型胶粘剂为产品不扣除水分的挥发性有机化合物的含量,以克每升(g/L)表示。 /p p & nbsp & nbsp & nbsp & nbsp 注3:外墙与内墙腻子为产品不扣除水分的挥发性有机化合物含量,以克每千克(g/kg)表示。 /p p & nbsp & nbsp & nbsp & nbsp 3.3建筑类涂料architecturalcoatings /p p & nbsp & nbsp & nbsp & nbsp 用于建筑行业及相关领域,起保护、装饰作用的涂料。本标准包括外墙涂料、内墙涂料、防水涂料、地坪涂料与建筑防腐涂料。 /p p & nbsp & nbsp & nbsp & nbsp 3.4建筑类胶粘剂architecturaladhesives /p p & nbsp & nbsp & nbsp & nbsp 用于建筑行业及相关领域,通过粘和作用,使被粘物结合在一起的胶粘剂。本标准包括溶剂型胶粘剂、水基型胶粘剂与本体型胶粘剂。 /p p & nbsp & nbsp & nbsp & nbsp 3.5重防腐涂料heavy-dutycoatings /p p & nbsp & nbsp & nbsp & nbsp 能在严酷的腐蚀环境下应用,并具有长效使用寿命的涂料。 /p p 4限值要求 /p p & nbsp & nbsp & nbsp & nbsp 产品中挥发性有机化合物含量应符合表1的要求。 /p p style=" TEXT-ALIGN: center" img title=" 113.jpg" src=" http://img1.17img.cn/17img/images/201704/noimg/38c32925-55b1-430b-b02d-34a5722ba347.jpg" / /p p style=" TEXT-ALIGN: center" img title=" 114.jpg" src=" http://img1.17img.cn/17img/images/201704/noimg/ca104c90-a330-4a59-ae13-4163b35b2556.jpg" / /p p style=" TEXT-ALIGN: left" 5检验方法 /p p & nbsp & nbsp & nbsp & nbsp 5.1取样产品 /p p & nbsp & nbsp & nbsp & nbsp 取样按照GB/T3186-2006的规定进行。 /p p & nbsp & nbsp & nbsp & nbsp 5.2试验方法 /p p & nbsp & nbsp & nbsp & nbsp 5.2.1外墙涂料中挥发性有机化合物(VOC)的检测按照GB24408-2009附录A的规定进行,其中水分含量的检测按照GB24408-2009附录B进行,密度的检测按照GB/T6750-2007进行。底漆和面漆产品测试结果的计算按照GB24408-2009附录A中A.7.2进行,腻子产品测试结果的计算按GB24408-2009附录A中A.7.1进行。 /p p & nbsp & nbsp & nbsp & nbsp 注:所有腻子样品不做水分含量和密度的测试。 /p p & nbsp & nbsp & nbsp & nbsp 5.2.2内墙涂料与挥发固化型防水涂料中挥发性有机化合物(VOC)的检测按照GB18582-2008附录A的规定进行,其中水分含量的检测按照GB18582-2008附录B进行,密度的检测按照GB/T6750-2007进行。底漆和面漆产品测试结果的计算按照GB18582-2008附录A中A.7.2进行,腻子产品测试结果的计算按照GB18582-2008附录A中A.7.1进行。 /p p & nbsp & nbsp & nbsp & nbsp 注:所有腻子样品不做水分含量和密度的测试。 /p p & nbsp & nbsp & nbsp & nbsp 5.2.3内墙涂料涂膜光泽的检测按照GB/T9754-2007进行,测试条件为(105± 2)℃,烘干2小时。 /p p & nbsp & nbsp & nbsp & nbsp 5.2.4反应固化型防水涂料中挥发性有机化合物(VOC)的检测按照JC1066-2008附录A的规定进行。 /p p & nbsp & nbsp & nbsp & nbsp 5.2.5地坪涂料中挥发性有机化合物(VOC)的检测按照GB/T22374-2008的规定进行。 /p p & nbsp & nbsp & nbsp & nbsp 5.2.6水性建筑防腐涂料中挥发性有机化合物(VOC)的检测按照GB/T23986-2009的规定进行,其中水分含量的检测按照GB18582-2008附录B进行,密度的检测按照GB/T6750-2007进行。涂料产品测试结果的计算按照GB/T23986-2009中10.4进行。 /p p & nbsp & nbsp & nbsp & nbsp 5.2.7溶剂型建筑防腐涂料中挥发性有机化合物(VOC)的检测按照GB30981-2014附录A的规定进行。 /p p & nbsp & nbsp & nbsp & nbsp 5.2.8胶粘剂中挥发性有机化合物(VOC)的检测按照GB18583-2008附录F的规定进行。 /p p 6检验规则 /p p & nbsp & nbsp & nbsp & nbsp 6.1检验项目 /p p & nbsp & nbsp & nbsp & nbsp 6.1.1本标准所列的全部要求均为型式检验项目。 /p p & nbsp & nbsp & nbsp & nbsp 6.1.2在正常生产情况下,每年至少进行一次型式检验。 /p p & nbsp & nbsp & nbsp & nbsp 6.1.3有下列情况之一时应随时进行型式检验:——新产品最初定型时 ——生产配方、工艺、关键原材料来源及产品施工配比有较大改变时 ——停产三个月后又恢复生产时。 /p p & nbsp & nbsp & nbsp & nbsp 6.1.4销售单位在京津冀区域内销售本标准规定的产品,销售单位应能提供有效的型式检验报告。 /p p & nbsp & nbsp & nbsp & nbsp 6.2检验结果 /p p & nbsp & nbsp & nbsp & nbsp 6.2.1检验结果的判定按照GB/T8170-2008中修约值比较法进行。 /p p & nbsp & nbsp & nbsp & nbsp 6.2.2粉状腻子、反应固化型防水涂料、溶剂型地坪涂料、溶剂型建筑防腐涂料、溶剂型胶粘剂产品报出检验结果时应同时注明产品明示的施工配比。 /p p & nbsp & nbsp & nbsp & nbsp 6.2.3检验结果达到本标准表1的要求时,产品为符合本标准要求。 /p p 7包装标志 /p p & nbsp & nbsp & nbsp & nbsp 7.1 2017年9月1日起,在京津冀区域内生产、销售本标准规定的产品,除原有产品说明外,需要在包装标志上补充标明以下内容(示例参见附录A): /p p & nbsp & nbsp & nbsp & nbsp a)本标准规定的产品类型和用途。 /p p & nbsp & nbsp & nbsp & nbsp b)产品所含挥发性有机化合物含量,可以选用以下两种形式之一表述:1)挥发性有机化合物含量值 2)挥发性有机化合物含量不超过表1规定的限值。 /p p & nbsp & nbsp & nbsp & nbsp c)对于施工时需要稀释的产品,则须显示推荐的稀释溶剂和稀释比例(对于用水稀释的建筑类涂料或胶粘剂无需说明)。对于由双组分或多组分配套组成的产品,则须显示各组分的施工配比。 /p p style=" TEXT-ALIGN: center" & nbsp img title=" 115.jpg" src=" http://img1.17img.cn/17img/images/201704/noimg/05f2ca36-5a8e-407e-aa41-9ab3d9f036e3.jpg" / /p
  • “超有机”不存在:消灭农药残留是作假
    三安超有机食品专卖店货架上的超有机大米。   一种打着“超有机”旗号的食品,正以强大的宣传攻势,考验着消费者脆弱的判断力。事实上,根据南都记者调查,无论是在质量认证还是在学术体系上,“超有机”概念都不存在,在国际专业学术期刊上也找不到一篇相关论文。然而,4年来,“超有机”食品却一路绿灯横扫北京及至全国市场。   这种吊诡局面展现了中国食品安全问题面临的多重困境:商人的夸夸其谈和误导,食品专家的推波助澜,主管部门的监管空白,以及缺乏食品安全知识的普通消费者的无所适从。   3月的一天,北京市民王旭买鸡蛋的时候充满了困惑。在位于西大望路的三安超有机专卖店,促销员告诉他,“超有机”鸡蛋是目前最安全的无激素的鸡蛋。这种“超有机”鸡蛋价格不菲。一个礼盒装60枚鸡蛋66元,平均10元一斤,而普通鸡蛋平均价格不过3.5元一斤。他买回家吃了之后,感觉并无特别之处。现在他有点怀疑:超有机和有机是一回事吗,超有机如何能保证绝对安全?   王旭的困惑折射了中国消费者对于食品安全普遍存在的某种担心。不合理使用人工合成化肥和农药,造成土壤污染、水污染、食品农药残留,已是农业生产公开的秘密。现在越来越多号称无公害无农残的有机产品的出现,不仅没有减轻消费者的疑惑,反而让很多人愈发无所适从。   王旭说:“我非常想弄清楚,有机产品真的无农残吗?超有机比有机更安全吗?”   “超有机”旋风   号称“当今世界最安全的食品”   带着王旭的疑问,3月9日,记者来到位于北京长椿街地铁边的金隅大厦15层,三安公司总部即在此间。风靡市场的“超有机”食品就是这家公司生产的。   公司入口的书架上,摆满三安总裁张令玉所著“三安超有机标准化农业系列丛书”,作序者为中国工程院院士陈君石,售价158元。“三安超有机食品,是目前世界上唯一的无化学残留、无农药残留、无兽药残留即‘三无残留’的安全食品之极品,是真正意义上的安全食品。”这样的宣传语,充斥着三安的每个角落。   公司客服人员称,三安“超有机”产品主要包括大米、牛奶、鸡蛋,此外还有应季蔬果。目前在北京金融界和西大望路两处昂贵地段拥有专卖店,近40家超市出售三安超有机食品。销售范围遍布北京、天津、河北、江苏、上海、杭州多个省市,全国有100多个代理商。截至2008年底,已在全国22个省(市)、56个县市、91个示范点展开,近百万人购买和品尝了三安超有机产品。客服人员所言不虚。随后几天,记者发现北京市场随处可见三安超有机产品的身影。   三安刮起的“超有机”旋风,在北京其他的有机农场中间掀起了波澜。大兴青圃园有机农场总经理张希庆去年慕名前去三安总部参观,当时三安董事长张令玉的儿子、三安副总张程,现场为张希庆一行讲解,张程的口若悬河令张希庆十分折服,“他们告诉我,只要用他们生产的试剂一擦,就检验不出任何农药残留了。”而有30年种植经验的青圃园总园艺师贾延贺则不以为然,“消完毒了再去检验,我也能保证无农残。不过,那还叫有机蔬菜吗?”   三安公司客服魏经理称,“三安生物技术主要应用在生产全过程,有机农业标准有30项,而三安超有机标准达到300多项。”他说,在达到300多项严格标准之后,三安超有机产品“全面超越日本、欧盟和中国有机食品标准,是当今世界最安全的食品”,但具体技术则“涉及到企业秘密,无可奉告”。   “未检出”背后   媒体送检证实三安有机米有化学残留   事实上,早在2008年11月,三安超有机食品“无农残”的宣传,就引起了媒体的质疑。生命时报记者在北京市场随机抽取了三安超有机精品米、金豚泰国香米、华藤小站米、日本新澙县米4种大米,送交北京市理化分析测试中心进行营养及安全性检验。该检测中心是北京奥组委定点食品检测机构之一。   检测涉及到的营养指标共有水分、碳水化合物、蛋白质、钙、硒5项。结果,水分、碳水化合物、蛋白质,4种大米不相上下,但是钙和硒,三安超有机精品米含量均为最低。   最关键的安全性指标检测,共涉及重金属汞、铅等,以及农药残留六六六、滴滴涕等23个检测。   结果表明,三安有机米虽然号称“三无”:“无化学残留、无农药残留、无兽药残留”,但在实际检测中,铅含量为0.022mg/kg,根本不是其宣传单页上声称的“未检出” 铜含量为1.65mg/kg,也远大于其自称的0.5mg/kg,其他指标它也未占优势,和其近20元/斤的高价实在难以匹配。   三安宣称拥有108项自主知识产权。记者通过世界知识产权组织(WIPO)PCT专利文献检索入口,在发明人一项中输入ZhangLingyu,只能检索到3项专利。通过中国国家知识产权局,以申请(专利权)人查询,只有8项 以发明(设计)人查询,是25项。知识产权人士称,这些都不是PCT专利,并且其中许多专利都已被视为主动撤回。   三安生物科学院副院长魏刚说:“‘超有机’全面超越有机,我们有检测报告作证。”他所说的检测报告,被印制成册页夹带在出售的产品中。在安全性指标测试中,多数检测均显示“未检出”或“零含量”,这几乎成为“超有机”无毒的最有力证据。   三安牛奶的检测报告显示为北京出入境检验疫局食品安全检测中心出具。但是10日该检测中心人士声明:只对来样负责检测,对企业生产的真实性并不负责。该人士说:“去年给三安做过检测。我们只是接受委托。来样检测无农残,并不代表认同企业生产的所有东西都是安全的。”   三安大桃和葡萄的检验报告,显示为国家食品质量安全监督检验中心出具。该中心工作人员亦表示,只对来样负责。   农业部绿色食品管理办公室人士表示,超有机这个概念就是对有机的混淆。据了解,有机食品产业在中国的发展仍处于起步阶段,直到2005年国家才出台有机产品标准。南京国环有机产品认证中心颁证委员会主任俞开锦认为,有机产品的标准只有一个国家标准,三安宣传的“超有机”是夸大,很容易误导消费者。“超有机再怎么号称安全,也不可能超过有机产品的标准。”   专家批驳“超有机”   使用生物制剂“消灭”农药残留是“作假”   学术界打假明星、新语丝网站的方舟子,看到张令玉声称“自1974年致力于生命科学信息调控技术(BioinformationAdjustmentTechnology,简称Tech-BIA)平台的研究,于1983年基本创建成功Tech-BIA平台”,不禁哑然失笑。   “调控的规范英语不是Adjust-ment,而是regulation。专业英语根本没这个说法!这明显是查汉英辞典东拼西凑自己翻译的。在上世纪90年代以后基因组学兴起后,才有生物信息学(bioinformatics)、生物信息(bioinformation)这些说法。张令玉说1974年就开始研究简直是笑话。”方舟子说。   “张令玉号称有108项技术专利,似乎在说明产品有多么高科技。其实专利说明不了任何问题。专利只考察独创性,对是不是真能运用,并不在考察范围之内。”方说。   超有机宣称的“零农残”在方舟子看来不值得一驳。因为,“空气中、土壤中、水中,本来就都含有种种有害的化学物质能被作物吸收,根本不可能保证‘零农残’,只是量多量少的区别,绝不可能像三安宣称的‘三无残留’。”   “无论是国际学术界,还是实际生产中,根本没有所谓的‘超有机’存在。”3月10日,中国农业大学教授、农业部质量安全中心评审专家曹志平在接受采访时说。   三安超有机声称,之所以能做到无农残是因为用生物制剂净化被污染的土壤和水,实现了种植环境无害,并且在生产过程中用生物制剂取代各种化学肥料和农药杀虫剂。再经过三安自己拟定的标准进行认证,达到了完全安全。   “这种技术没什么新东西,大家都在用。”曹志平认为,使用生物制剂就是降解,称之为恢复,这样做的目的也仅是达到有机的要求而已,并不能超越。另外,如果是使用生物制剂擦拭,使得产品检测不出农药残留,则是“作假”。她强调,有机其实是一种生产方式,检测结果“未检出”,并不代表生产方式就是有机的。   顺风顺水的“超有机”   “一是舍得宣传,另外背后有人”   在农业和生物界人士看来,不难识破“超有机”的破绽。对于普通消费者而言则不容易。随机采访的多位消费者多表示“听说过超有机食品”、“它的概念就是超越有机”。   在持续的宣传攻势下,4年来三安超有机一直顺风顺水,占据了不小的市场份额。中国农科院一位不愿具名的教授称:“张令玉的能量很大,一是舍得宣传,另外好像中国工程院、农科院都有领导专家在关照,背后有人支持。”   其中,中国工程院院士陈君石对于超有机的追捧,尤为引人关注。陈君石院士同时还是中国疾病预防控制中心营养与食品安全所研究员。   据三安网页上的宣传,陈君石曾亲自写信给领导推荐三安模式。2008年3月,张令玉教授编著的《三安超有机标准化农业系列丛书》由中国农业科学技术出版社出版。陈君石在序言中欣然写道:“食品生产的源头环境污染是一个世界性的顽症,即便是世界上科技和经济最发达的国家和地区,也还不能有效地解决这些问题。难以置信的是,张令玉先生创建的三安标准和农业系统从根本上解决了以上危害。”   陈君石说:“从我接触三安开始,已经有三个年头了,作为一个专业人士,我可以告诉大家,三安农业能够保证农产品源头不受污染,从效果来讲,已经有几十个县的种植结果来证明了。我一方面要强调三安的技术是很先进的,它的生物制剂是很安全很见效,而且是很管用的 进一步讲,三安也解决了我们国家现在十分关心的三农问题。”   南都记者致电陈君石,陈院士说“不谈这个问题”,拒绝对此置评。   方舟子对院士为企业出头炒作现象提出了批评。方舟子认为,商人喜欢找院士,因为可以增加可信度。而院士参与这种商业炒作,带给消费者的误导会十分严重,虽然这些不检点的行为均违背了院士自律和道德准则,但是没有一个部门对此进行处罚和规范。   “超有机”发明人、董事长张令玉被三安公司宣传描绘成一个划时代的科技奇才。虽然还有一个名为三安生物科技院的机构存在,但是看不到研发的迹象,常见的状态就是客服人员接听热线,推广宣读“超有机”理念。工作人员显然训练有素,对于“超有机”之外的话题都保持警惕。   似乎没有一个员工能知道张令玉的去向。在三安生物科学院副院长魏刚以到基地视察为由拒绝了南都记者的采访之后,这处神秘的公司总部就被越来越厚的迷雾包裹起来。   “三安超有机食品,是目前世界上唯一的无化学残留、无农药残留、无兽药残留即‘三无残留’的安全食品之极品,是真正意义上的安全食品。”   ———三安宣传语   “无论是国际学术界,还是实际生产中,根本没有所谓的‘超有机’存在。”   ———中国农业大学教授、农业部质量安全中心评审专家曹志平   “消完毒了再去检验,我也能保证无农残。不过,那还叫有机蔬菜吗?”   认证混乱监管缺席产销萎靡   有机菜,有尴尬   2009年11月13日,在广州火车东站旁的超市里,顾客在有机蔬菜专区认真选购。实习生 陈文才 本报记者 冯宙锋 摄   有机食品认证本代表着农产品供应方面国家最高级别的认证,但这道原本最难跨越的关口如今却在利益驱动下日渐形同虚设,认证机构如雨后春笋,企业过关也就难免蜕化成了“交钱拿证” 而过关后的监管,也“主要靠企业自律”。安全难放心,叫消费者如何拿出数倍的价钱,去买内有“玄机”的有机菜?   价高不是问题,消费者安全信心疲软,才是位于新鲜蔬菜金字塔尖有机蔬菜的致命伤。   “产前、产中、产后各个环节都缺乏足够的安全保障,消费者犹豫,生产商放不开,所以做不大”,2005年曾就食品安全提出议案的广东省人大代表万洪富认为,与全国有机菜现状一样,这一行业虽前景可观,但眼下普遍亏损,谈不上暴利,亏就亏在“体制性不安全”。   “叫好不叫座”   有机蔬菜虽比普通蔬菜贵上5-10倍,但销量只有2%-3%   3月12日上午,广州从化吕田镇水埔村狮象岩段山雨欲来,空气里似乎随时能拧得出水来。   东升农场场长刘真云在田埂上巡视,两侧地里刚种了20多天的芥兰苗和奶白菜,已经青青葱葱连成了一片,长势喜人。   “老板要求很严,绝不允许使用化肥、农药,谁敢用就开(掉)谁”,刘真云说,因广州气候湿润,种植叶菜特别容易长跳甲,一种似乎怎么灭也灭不尽的小虫,但农场还是坚持用植物性农药来防治,仅农药成本一项,就要比种植普通蔬菜贵上5-6倍。   此外,由于生长过程中绝不允许使用化肥,有机蔬菜一般要比普通蔬菜长得慢得多、产量也低。   东升农场的老板区景泰原籍番禺,早年去了香港,曾靠手推车卖菜为生。上世纪80年代初,内地市场放开,区景泰回到番禺承包下成片土地搞农场种植。由于供港蔬菜要求一直比内地严格,从未丢掉新鲜蔬菜供港业务的东升农场,在内地有机蔬菜兴起后,也于2003年前后开始试水种植有机蔬菜。   目前,作为广州地区唯一一家通过认证、能生产有机蔬菜的公司,东升公司在云南、江西、四川等国内5省已分布有8大农场共2万多亩菜地,其中仅珠三角的种菜面积就已达6000多亩。但在如此大面积的蔬菜基地中,东升公司绝大部分国内农场种植的都是安全质量要求稍低的无公害蔬菜和绿色食品蔬菜,仅从化水埔村的1500亩菜地能生产有机蔬菜。   水埔村狮象岩段依山傍水,多是坡地山田。村里菜地边,随处可见大大小小的堆肥池,一些塑料菜棚内,还悬挂有专门的蜂箱。“等一些蔬菜开花时,再放进蜜蜂箱,助其传粉采蜜,有些蜂还可以杀虫”,东升公司工作人员统计,由于有机蔬菜生产程序严格,目前该农场蔬菜产量并不大:每天除一半供港外,能供应整个珠三角市场的有机菜每天仅3-4吨,其中广州约1吨,多销往了超市和高档酒楼。   在广州五羊新城万家、家乐福万国店等大型超市内,记者发现包装精致的有机蔬菜虽十分抢眼,但与普通蔬菜柜台前熙熙攘攘的人群比,仍颇显冷落。单纯从售价上看,无公害小黄瓜4.8元/公斤,有机小黄瓜29.7元/公斤,有机菜是普通蔬菜的6倍多。而差价最大的一款有机白萝卜,要30元/公斤,比普通白萝卜贵了近17倍。   从广州其它超市现场调查来看,有机蔬菜一般都要比普通蔬菜贵上5-10倍,名为“天价蔬菜”也不为过。但奇怪的是,如此价高的单品蔬菜,在进入市场十多年间,却一直未能让为数寥寥的生产供应商眉开眼笑过,更不用说坊间猜测的“暴利”了。   东升公司采购经理伍尚锦看好有机蔬菜的前景,他承认,截至目前,东升公司的有机蔬菜生产仍无法赢利,还要靠平均每天销售量是其200-300倍的无公害蔬菜和绿色食品蔬菜来弥补亏空。同样,另一家生产有机蔬菜的广东公司也大抵如此,要靠销售大量有机茶叶来弥补。   广州家乐福万国店负责人证实,有机蔬菜虽然高档、高贵,但好看不叫座,如今在该店设有专柜的广东河源另一有机蔬菜品牌,过年期间每天的销售量仅占超市同类产品销售量的5%-8%,平时更只有2%-3%,“如此少的销售量,根本谈不上赢利,超市愿意卖这个产品,更重要的意义是为了产品线齐全,毕竟社会上已经出现了少量的这个高消费群体”。   有机认证乱象   合法认证机构20多家 “这家不过那家过” “交钱就能拿到证”   对我国农产品供应商而言,有机食品认证是国家最高级别认证,也往往是把关最严、最难过的关口。然而这道原本最难跨越的关口如今却认证混乱,变得让消费者难以放心。   “有机蔬菜认证不容易通过”,3月上旬,作为农业部下属最早一批获得有机认证资格的中绿华夏广东分中心介绍,按照国家颁布的《有机产品生产和加工认证规范》,对生产有机蔬菜的大气、水和土壤等,都必须严格检测,要求绝对“纯天然”、“无污染”。   但对于申请认证企业而言,最难过关的显然还不是自然条件,而是“在生产过程中绝对不能使用任何人工合成的化学性农药和化肥”,以及对每一件售出的有机蔬菜产品都必须建有全套溯源台账这两条。   由于国家规定严格,中绿华夏广东省分中心成立7年来,全省仅通过了9家有机食品认证。“首先要由企业提出申请,然后认证机构会辅导企业按国家要求建立、落实一系列规范管理文件,尤其是从选种,到种植收割、储运加工等一系列溯源体系的建立”,中绿华夏介绍,有机蔬菜通常需要两三年才能完成全部认证,而进入种植期,还将根据土地状况,设有1-3年不等的有机菜生产转换期。   但这些由繁杂文件和严苛程序所垒就的高门槛,在利益驱动下,如今竟日渐形同虚设。据了解,上世纪90年代未期,我国刚试行有机食品认证时,认证主要由国家环保局下属机构负责。2004年5月,有机食品认证转归国家认监委下属机构。其中,2003年前后,国家农业部也对有机食品认证成立了专门的认证机构。如今,10多年间,得到国家认监委认可的合法认证机构已发展到20多家。   “这家通不过,另外一家可能就通过了”,让中绿华夏广东省分中心负责人马细兰印象深刻的是:去年夏天,她所在中心正对一家省内申请有机认证的企业进行认证前辅导,并要求其按规定做出一定整改,不料两个月后,这家企业却将通过另一机构获得认证的有机食品证书,“有意无意”传回到了中绿办公室。   近些年,与国家级认证机构对应,在国内各省市,除了各国家级认证机构的地方外派机构外,越来越多的外围商业机构也开始搭便车挤入认证行列,使得有机食品认证市场,一度出现“凡咨询必能通过”、“凡交钱就能拿到证”的行内怪现象。   在广东地区,公开声称自己能办理有机食品认证的机构多达近十家。经南都记者调查,其中一半以上为各种认证机构的代理商,或者自称“与认证机构关系很铁”、“保证能帮助企业拿到认证”。位于广州天河体育西路的一家公司,承认该单位是受有机认证单位委托,专门对需要认证企业提供管理咨询,“如果包括办证,总费用一次5万-6万元”,对于第二年、第三年的协助复查,费用还可以打8折或8.5折。而广东省内一些省、市级农业科研单位,虽也纷纷宣称自己能够进行有机食品认证,但据记者了解,事实上他们也只是对部分有机认证指标负责检测,并不能直接进行认证。   珠海一家认证机构则表现强势,自称是“中南五省唯一的官方认定机构,只要企业需要申请,一个月内就可以派人去实地调查,对申报资料也可以进行辅导,整个程序认证下来,估计约2-3个月,而且第一年认证过关收费、加上做资料费用,总共4万-5万元”。该认证机构工作人员强调,与其它国内有机食品认证机构不同,“通过该机构认证的资格证书,目前已经获得了欧盟、日本等国际互认,其它机构认证的有机证书则只能在国内使用”。   但这一说法被农业部下属的中绿华夏广东省分中心否定。该中心透露,目前国内有机食品认证,由于各国贸易间绿色壁垒存在,尚不能与欧盟、日本等国互认,“如果说能够与国外通行,那肯定是假的”。   对眼下国内有机食品认证市场的混乱现状,中绿华夏广东分中心也深感无奈,该中心肯定,广东目前只有三家有机蔬菜企业通过了认证,且大多处于河源、梅州、粤东等偏远山区,其中一家还处于有机生产转换期,至于其它认证机构发证,“我们只认南京国环的,其它机构都不认”。   监管主要靠自律   “这是一个诚信行业” “认证通过后,一般不会出现大漏洞”   家住广州天河区的白领Suling,家庭收入绝对属于金领一列。Suling平时对食材挑选十分精细,但对超市普遍昂贵的有机蔬菜,她却也不经常买。“不是嫌价格高,就是不放心,担心不值得”。   “消费者对有机菜安全没信心,这是个死穴,结果越贵越没人买,越没人买企业越不敢放开种植,造成有机蔬菜市场长期萎靡难振”,关注有机蔬菜市场的华南农业大学园艺学教授陈日远,对近十年广东有机蔬菜的发展大有恨其不争之感。但他也无法否认,有机蔬菜在突破认证第一关之后,进入市场流通环节之后,与国内众多普通蔬菜一样,也同样是在多重监管的缝隙中游刃有余,甚至余地更大。   与国外蔬菜瓜果的生产与流通不一样,国外凡是合格上市者,均要求质量安全达标,但我国蔬菜瓜果等农鲜产品,通常有四个管理层级,即最基本的是普通果蔬,其次是无公害果蔬,再往上才是只有国家才能认定的绿色食品和顶尖级有机食品。   “按国家标准,绿色食品允许有少量农药残留,而有机蔬菜则要求农药残留必须在国标基础的5%以内,相当于是5‰,几乎不存在农药残留”,中绿华夏广东分中心解释,通常情况下,无公害蔬菜的管理尺度相对要宽些,通常各省自行就可以认定,而有机蔬菜和绿色食品的认证权在国家层面。   3月12日中午,从化东升农场一处包装车间内,场部技术人员正将当天收割的菜心、波菜和芹菜封进一个个透明包装袋,除了部分留在农场自检外,其余样品将一一送到从化市、广州市等农业部门进行检查。“企业自己对有机蔬菜要求是批批检,市区各农业部门则通常每个月送检1-2次”,农场一技术人员反映,有机蔬菜质量监测这一块,目前主要还是靠企业自律,“不要说省、市监管部门,就是区里现在也少有下到农场办公的了”。   此外,按照有机食品认证规定,有机食品在完成认证后,负责认证的机构还应对其产品生产和管理进行监督。而且有机认证证书的有效期只有一年,过完一年企业还须重新认证。但据记者调查,这相较于其它新鲜蔬菜产品,原本更多一道的安全阀,竟在众多认证机构混杂竞争的情形下再度轻易失守。   在广东,即使是有国家认定资质的有机食品认证机构,在企业通过认证后,也基本不再监管企业行为,事后取消企业资格认证的情形更等同于零。“我们着重是帮助企业在认证前建立一整套完整的管理程序,这样认证通过后,落实起来一般不会出现大漏洞”,广东一认证机构认为,目前对包括有机蔬菜在内有机食品的安全监管,更多责任应该归于企业。“这是一个诚信行业,不诚信者不应进入”,“国外也主要由生产企业负责,生产企业一般会宣誓,一旦产品出现问题,首先倒掉的就是品牌企业,尽管认证机构声誉也会受到一定影响”。   负责粤东某市农产品认证的政府工作人员证实,不仅国家认证级别最高的有机蔬菜,就是级别稍低的绿色食品,一般须三年重新认证一次,但一旦通过认证,也极少有被取消的,“除非企业经营不善自己倒掉”。几年前,该市一获绿色食品称号的米粉样品,被送到湛江一国家级检测中心检测,结果发现送检样品水质不合格。于是该市农业部门重新通知生产企业,允许生产企业不采用日常生产所用的山溪水,而是单独改用干净的自来水重新制作了一批样品,重新送检过关。“这不是秘密,行业内大多如此”,该工作人员称。   广东省农业部门反映,上世纪90年代中后期,农产品认证刚刚兴起时,省内生产企业一度曾热情很高,不少企业纷纷向政府申请认证。但后来品牌认证渐渐变成了“你有我有全都有”,品牌信誉度直线下降,对企业的吸引力衰减。“尤其是三鹿奶粉事件后,不仅消费者,就是行业内部对品牌认证也很受打击”,一工作人员强调:“三鹿奶粉不仅是绿色食品,还是国家免检产品,几乎什么认证都拿到了”。   按照国家规定,省市农业部门对所有上市农产品都有抽检任务,“有时还是相邻省份互检”,但广东省农业部门相关人员承认:平时对高端有机蔬菜抽查较少。“因为有机蔬菜大不了是不合格,质量再差也差不过普通蔬菜,不会出大问题,所以在监查人力物力不充裕的情形下,通常不抽检有机这一块”。   “最关键是认证和监管这两个环节,这两个环节扎实硬朗了,消费终端的价格不是问题”,陈日远信心满满:“要知道目前广州每天销售1吨有机菜,仅相当于正常估算量的1/400”。   “每个月多出300-500块钱菜金,相信广深等珠三角大多数家庭都能接受,但如果质不抵价,因此而多买了一份不放心或闹心,那还是少些麻烦好”。尽管不知不觉中,不用刻意去大超市就已经能够在社区方便买到有机蔬菜了,身边也渐渐有了越来越多尝鲜的邻居加入,但Suling依然不愿意更多地选购有机蔬菜。显然,在始终不够坚挺的安全面前,高价有机蔬菜还有较长的路要走。
  • 绿色农药:食品安全首道防线
    随着人们环保意识的增强以及为克服传统农药缺陷而推陈出新的要求,设计开发绿色农药已经成为当前国际农药研究的发展潮流。   在国家自然科学基金项目的连续资助下,华中师范大学教授杨光富及其合作者在农药分子设计方法学研究方面取得了重要进展。日前,相关研究成果发表在《美国化学会志》(JACS)上。   绿色农药保世博蔬菜安全   中国是世界上最大的农药生产国,农药使用面积也居世界前列。   中国工程院院士李正名说,每年全世界有10亿吨左右的庄稼毁灭于病虫害,由于病虫害造成的庄稼减产幅度达20%~30%。因此,农药自发明以来就在农业发展史中扮演重要角色。直到今天,农药的作用仍然不可替代。   同时,大量使用高毒农药造成的问题也不断暴露。首先是消费者对农药毒性、农药残留的关注度越来越高,人们对食品安全的担忧有增无减。近段时间,海南“毒豇豆事件”,青岛“毒韭菜事件”,一次次触动公众敏感的神经。其次,公众对农药造成环境污染的关注度也越来越高,人们担心大量使用农药会导致环境系统的污染。   人们把对人类健康安全无害、对环境友好、超低用量、高选择性,以及通过绿色工艺流程生产出来的农药通俗地称作“绿色农药”。在上海世博会期间,为满足数千万游客的需要,上海市在郊区设立了158家世博蔬菜特供基地,生产面积总计6万多亩,可日供蔬菜1.4万吨,力图在源头上建立上海世博会期间供应食品的安全保障。   据介绍,上海世博蔬菜特供基地除用药程序细化,特供基地用药品种也以“绿色”与否进行区分。为鼓励蔬菜生产者使用低残留农药,上海对绿色农药进行全程补贴,在给特供基地下发的用药品种目录中,绿色农药已占很大比例。   绿色农药受关注   绿色农药多由从生物体内提取的有效物质、活性物质组成,或是生物源的合成农药。其具有毒性低、选择性强和残留少的优点,但不少绿色农药也因杀虫谱窄、杀虫速率低,害虫有抗药性等缺陷,导致推广应用效果并不佳。   近年来,为加强粮食安全和环境保护的需要,我国高度重视绿色农药的设计与合成,国家自然科学基金委员会曾立项资助过多个绿色农药方面的重点项目。科技部也先后立项资助了两个绿色农药方面的“973”计划项目。杨光富曾先后参加过两个绿色农药方面的国家自然科学基金重点项目,都取得了不错的成果。   因为有了很好的研究基础,他又得到了科技部第一个绿色农药方面的“973”计划项目——“绿色化学农药先导结构及作用靶标的发现与研究”。该项目在结题验收时被评为优秀,课题组的研究成果也被选为结题验收时的三项代表性成果之一。因为研究成绩突出,杨光富又被选为绿色农药方面第二个“973”计划项目的负责人。   杨光富的研究工作主要集中在农药分子设计与合成方面,围绕农药活性分子与靶标间的选择性相互作用,以活性构象为核心,利用有机合成技术、分子模拟技术、分子生物学技术,针对绿色农药的高效性、高选择性和反抗性,分别发展了三条农药分子设计策略,以此三条策略为指导,设计出了系列绿色农药先导结构和化合物,并创制出一种新型绿色杀菌剂“苯噻菌酯”。   为农药先导结构优化提供新思路   发展绿色化学农药是新农药创制研究的必然趋势。农药分子要实现绿色化,除了低毒、低残留以及环境相容性好等特征之外,还必须要求达到超高效,即用量低(亩用量通常在10克以下)。因此,提高农药分子(化学小分子)的生物活性强度是降低农药使用量、使农药实现绿色化的一个重要前提。而如何提高农药分子的生物活性强度则是农药分子设计学家所面临的一个重要挑战。   杨光富领导的研究组与清华大学教授吴嘉伟研究组、美国肯塔基大学教授湛昌国研究组合作,发展了一种通过优化化学小分子与生物大分子活性腔中的构象柔性残基之间相互作用来提高农药分子生物活性强度的分子设计策略,针对细胞色素bc1复合物(生物大分子)成功设计得到了一种活性强度比母体化合物提高520多倍的抑制剂(化学小分子)。该化合物不仅具有高活性,而且还具有解离速率慢的特点,因此,可作为一种高活性探针分子用于深入研究细胞色素bc1复合物的生物学功能,同时也可以作为开发农药和药物的新先导化合物。   该项研究为从化学小分子与生物大分子选择性相互作用的角度开展农药先导结构优化提供了新的思路,对药物分子设计也具有较好的借鉴意义。此外,该项研究中化学小分子与靶标的结合自由能理论计算结果与实验结果之间表现出高度线性相关,表明其分子模拟研究具有较高的精度。   《美国化学会志》审稿人认为,这是一项非常有意义的研究工作,也是第一次通过基于结构的合理化途径设计获得活性达到亚纳摩尔级别的bc1复合物抑制剂。论文发表后受到国际同行的关注,细胞色素bc1复合物研究领域的著名结构生物学家美国SUNY Upstate Medical University的Edward A. Berry教授以及美国NIH国家癌症研究所的Xia Di教授均来信索要样品,希望开展合作研究。
  • 快速灵敏,坚实可靠 | QSight LC-MS/MS轻松应对土壤和沉积物中苯胺类和联苯胺类化合物的测定
    GB 36600-2018《土壤环境质量建设用地土壤污染风险管控标准(试行)》于2018年正式实施,是我国开展土壤污染防治的重要支撑技术文件。该标准规定了保护人体健康的建设用地土壤污染风险筛选值和管制值,以及监测、实施与监督要求。其中苯胺作为45项基本项目之一,是建设用地初步调查阶段土壤污染风险筛选的必测项目。Tips:苯胺类化合物是指苯胺分子中的氢原子被其它功能团取代后形成的一类化合物。环境中苯胺类及其衍生物的排放源主要来源于印染染料、油墨、制药、橡胶、炸药、涂料、农药和塑料等工业废水。苯胺类化合物具有很高的毒性,其中一些具有明显的致癌作用,是我国规定的优先控制污染物。关于苯胺的标准测定问题按照GB36600-2018土壤环境质量标准表3推荐的检测方法,土壤中苯胺按照《土壤和沉积物半挥发性有机物的测定气相色谱-质谱法》(HJ834)来进行检测,而HJ834方法中并没有“苯胺”参数,给检测工作带来一定困扰。据权威解释:实验室按《合格评定化学分析方法确认和验证指南》(GB/T27417-2017)、《环境监测分析方法标准制修订技术导则》(HJ168-2010)和《土壤和沉积物半挥发性有机物的测定气相色谱-质谱法》(HJ 834-2017)相关要求做好方法验证,确保方法检出限、测定下限、选择性、线性范围、测量范围、基体效应影响、准确度、精密度和测量不确定度等满足GB36600-2018苯胺风险筛选值和管制值要求的基础上,可以使用HJ 834-2017开展土壤中苯胺的监测工作。HJ 1210-2021《土壤和沉积物13种苯胺类和2种联苯胺类化合物的测定液相色谱-三重四极杆质谱法》首次发布,明确规范了土壤和沉积物中苯胺类和联苯胺类化合物的测定方法,并将自2022年6月1日起实施。“土壤或沉积物中苯胺类和联苯胺类目标化合物,在碱性条件下提取,经净化、浓缩、定容后,用液相色谱-三重四极杆质谱仪分离检测。根据保留时间和特征离子定性,内标法定量。”土壤样品成份复杂、基体干扰因素多、调查样品量大,与常规环境样品分析相比更具挑战。珀金埃尔默QSight三重四极杆液质联用仪,灵敏稳定、坚实可靠,该系统具有独特专利的HSID自清洁技术,应对各种复杂的土壤和沉积物基质样品分析时,无需清洗维护,不损失灵敏度,即可完成大量样品的分析,节省维护时间及成本。PerkinElmer LX50 UHPLC-QSight系列三重四级杆质谱仪灵敏稳定,不惧污染同轴高温加热离子源,提高离子化效率创新的加热诱导脱溶剂和层流离子传输技术,提高灵敏度的同时免于维护超快正负模式切换时间,大幅提高工作效率新立式三重四级杆质谱仪,极大节省空间QSight LC-MS/MS应对土壤和沉积物中苯胺和联苯胺类化合物的测定分析解决方案采用QSight LC-MS/MS液质联用系统,成功建立了土壤和沉积物中15种苯胺类和联苯胺类化合物的分析方案,根据保留时间及离子比率进行快速准确定性,其检出限完全满足HJ1210-2021标准中的检测限量要求,轻松应对日常检测分析要求。PerkinElmer LX50 UHPLC参数色谱柱:Quasar SPP C18,2.1×100mm,2.6μm柱温:35℃流速:0.3mL/min进样量:10μLTime/minA/%B/%水(0.01%甲酸)甲醇(0.01%甲酸)0.09552.09555.070307.05959.05959.295512.0955表1 苯胺类和联苯胺类化合物液相色谱梯度洗脱表质谱参数采用PerkinElmer QSight 210三重四极杆液质联用系统进行分析,离子源参数见表2。离子源ESI+喷雾电压120雾化气
  • 国家质检总局:输欧消费品禁含特定有机锡化合物
    自今年7月起,欧盟执行2009/425/EC指令,从而正式开始限制对消费产品中特定有机锡化合物的使用。指令2009/425/EC中规定:自2010年7月1日起,欧盟在所有消费品中限制使用三丁基锡和三苯基锡化合物,其限量要求为商品中锡含量的质量百分比浓度小于0.1%,如若检出超标,则该批消费品将遭到退货乃至严厉的召回处罚。   本项指令中关注的有机锡化合物包括三丁基锡、三苯基锡化合物及二丁基锡、二辛基锡化合物,其中前两者的正式开始限制时间为2010年7月1日,而后两者的时间则为2012年1月1日。以上四种有机锡化合物被广泛地应用于消费品中,例如鞋的内底,袜子和运动衣的抗菌整理,聚氨酯泡沫生产过程中的添加剂,PVC生产过程中的稳定剂或硅橡胶生产过程中的催化剂等。据统计,在现实生产过程中,全世界的锡产量中的10%~20%是用于合成有机锡化合物的,由此可见该物质应用的广泛程度。并且有机锡化合物对生物体的危害严重,会引起糖尿病和高血脂病等。   据统计,2010年上半年,宁波口岸出口至欧盟的商品共计62413批次,合15.72亿美元,相比2009年同期,分别提高了27.0%和26.6%,呈现出良好的上升态势,其中主打的拳头产品包括纺织品、玩具产品、食品接触类材料等,这些物品在生产加工过程中都有可能会添加有机锡化合物,如果这些潜在含有有机锡化合物的产品未通过检测贸然输往欧盟,可能会导致大规模的退货乃至召回的后果,这将会严重影响“中国制造”在欧盟的声誉,最终会对正处在逐渐回暖过程中的中欧贸易造成不可预计的恶性后果。   为此,检验检疫部门提醒: 第一,输欧消费类产品的生产企业要加强原辅材料和生产过程的管理,要求原辅材料供应商提供不含有机锡化合物的检测报告,同时积极改进加工工艺,确保整个生产过程不添加有机锡化合物; 第二,相关企业应积极通过与政府职能部门的配合,获取更多的有毒有害物质检测技术和检测标准知识,稳固企业技术储备工作; 第三,检验检疫部门应加大对相关商品的有机锡化合物的抽样检测工作力度,以保证起到切实有效的监管作用; 此外,检验检疫部门还可以考虑在国际层面上加强与欧盟在有毒有害物质管理方面的信息交换和有效配合,掌握国外有毒有害物质最新标准的发展趋势,以利于企业进行各项技术创新和管理变革。
  • 【知识分享】有关有机胺类化合物的HPLC方法开发
    有机胺类化合物1.有机胺类化合物氮元素最外层有5个电子,3个成单电子和一对孤电子对。不同于碳的最外层就4个成单电子,成键后就没有多余的了,就只能老老实实的呆着。比如甲烷CH4已经圆满,不会有再给出电子和获得电子的动力。氮元素的3个成单电子成键后,多出了一对孤电子对,如果NH3其中的一个或者以上的氢换成有机基团变成了有机胺类化合物。氮元素中多出的孤电子对,也造就了我们HPLC方法开发最常见的碱性有机化合物。2.有机胺分类有机胺类化合物分为3类:碱性化合物、中性化合物和酸性化合物。酸性化合物:如果N连接的是吸电子基团,比如羰基,化合物对电子的约束增强,它们就会安分很多,即碱性减弱,如果连接的吸电子基团继续增多或者增强,N上的电子被被这些强盗抢走了,那么它甚至不但不会有多余的电子出去浪,它还要抢别人的电子,即华丽变身为路易斯酸。比如邻苯二甲酰亚胺,它N上的氢有很强的电离倾向,化合物显酸性。常见吸电子基团有:硝基(-NO2)、三卤甲基(-CX3)X=F、Cl、氰基(-CN)、磺酸基(-SO3H)、甲酰基(-CHO)、酰基(-COR)、羧基(-COOH)。在有机胺类化合物中不饱和建可以和N的孤电子对形成p-π共轭效应,也表现出吸电子基团的现象,如苯胺的碱性弱于氨水,就是因为N上的孤电子对跑到苯的大π键上去浪了,整个化合物给电子的倾向减弱。中性化合物:有机胺类化合物呈中性的状态,可以理解为N上连着吸电子基团,强度刚好满足约束N上的多余的想要出去浪的电子,于是N即没有给电子的倾向,也没有获得电子的倾向。当然需要说明的是这是一个区间,在这个区间内有机胺类化合物电离倾向非常弱,我们可以认为是中性化合物,例如苯并嘧啶。3. 胺类的合成:(1)硝基还原:最干净和简便的方法是采用Pd/C或Raney Ni加氢还原硝基。当分子内存在对加氢敏感的官能团时,如卤素,双键,三键等,催化加氢不适用。其它化学还原方法,包括Fe,SnCl2, Na2S2O4等。一般而言,硝基化合物不用LiAlH4还原,因其无法将硝基彻底还原,从而得到混合物。(2)酰胺还原:一般将酰胺还原到胺最常见的方法就是通 过LiAlH4在加热回流下进行。但当分子内有对LiAlH4还原敏感的官能团存在时,如芳环上有卤原子存在时,容易造成脱卤。一些温和的还原条件:BH3原,NaBH4-Lewis酸体系还原,DIBAL-H还原等。(3)腈基还原: 一般腈基还是较为容易还原为相应的伯胺, 催化加氢或化学试剂还原都可以用于这类还原。催化加氢的方法最为常用的催化剂为RaneyNi, 在使用RaneyNi 做催化剂加氢成胺时,若用乙醇作溶剂,一般需要加入氨水,主要由于在此条件下,有时有微量的乙醇会氧化为乙醛,其与产品发 生还原胺化得乙基化的产物,加入氨水或液氨可抑制该副反应。其它方法则以LiAlH4和硼烷较为多用。(4)叠氮还原:催化加氢和化学还原法均可用于叠氮的还原。催化加氢常用的催化剂为Pd/C,Raney Ni, 当分子内有对氢化敏感的卤素时,可用PtO2作催化剂。化学还原最温和的条件是使用三苯基膦在湿的四氢呋喃中还原,当然LiAlH4也可用于该还原。(5)还原胺化:由醛或酮与胺反应形成亚胺,再通过硼氢化钠或三乙酰氧基硼氢化钠还原,得到烷基取代的胺类结构。HPLC方法开发有机胺类化合物并不是都显碱性,有可能是中性也可能显酸性,需要根据结构式进行综合判断其性质并拟定适合的色谱条件。1. 中性有机胺类化合物该类化合物的HPLC方法开发和普通中性有机物并无区别,因其电离倾向很弱,所以无需使用缓冲盐,流动相用水-有机相系统即可,色谱柱可以根据保留情况使用纳谱分析ChromCore C18或者ChromCore C8液相色谱柱。2. 酸性有机胺类化合物该类化合物因具有较强的电离倾向,需要使用缓冲盐,一般来说酸性化合物对缓冲盐的缓冲能力要求都不是太高,所以缓冲盐的浓度可以略低,如0.01-0.02mol/L,在特定情况下,缓冲盐的pH值也可以偏离pka±1的范围,如0.02mol/L磷酸二氢钾溶液(不调节pH,约为4.6)。缓冲盐的pH值需要偏离待测化合物pka±2的范围外,以获得较好的pH值耐用性,因此如果酸性有机胺类化合物酸性较弱,即pka较大(5以上)推荐使用较低pH值缓冲盐抑制其解离,如果使用高pH值缓冲盐,pH值需要在7以上,不利于色谱柱寿命。如果酸性有机胺类化合物酸性较强,即pka较小(4以下)可能难以使用低pH值缓冲盐抑制其解离,如果极性较小可以尝试高pH值缓冲盐;但是一般这种情况该化合物极性都非常强,保留非常弱,使用高pH值很可能无法获得适当的保留时间,在这种情况可能需要用到离子对试剂如四丁基铵盐或者采用HILIC、离子交换柱等方法。如纳谱分析ChromCore HILIC-Amide色谱柱。3. 碱性有机胺类化合物碱性有机胺类化合物是反相HPLC方法开发中最常见又最让人痛苦的一类化合物,有相关经历的读者应该立刻心领神会心有戚戚。最常见的是这类化合物的峰拖尾、很宽,然后和相邻峰分离非常差。所以该类化合物的HPLC方法开发是本文中重点阐述的内容。首先要说明的是开发该类化合物反相HPLC方法所使用的色谱柱强烈建议使用封尾处理过的色谱柱,尽量选择封尾处理比较好的品牌与型号。一般来说,说明书上说明了采用二次封尾或者三次封尾的色谱柱,在碱性化合物峰拖尾上表现较好,如纳谱分析ChromCore 120 C18色谱柱。同上文的酸性有机胺类化合物,碱性有机胺类化合物因具有较强的电离倾向,需要使用缓冲盐。碱性化合物对缓冲盐的缓冲能力要求较高,一般来说缓冲盐浓度建议0.02mol/L以上。缓冲盐的pH值需要偏离待测化合物pka±2的范围外,以获得较好的pH值耐用性,因此如果碱性有机胺类化合物碱性较弱,即pka较小(4以下)推荐使用较高pH值缓冲盐抑制其解离,如果使用低pH值缓冲盐,pH值需要在2以下,不利于色谱柱寿命。如果碱性有机胺类化合物碱性较强,即pka较大(5以上)可能难以使用高pH值缓冲盐抑制其解离;一般这种情况该化合物极性都非常强,保留非常弱,使用低pH值很可能无法获得适当的保留时间,在这种情况可能需要用到离子对试剂如烷基磺酸钠或者采用HILIC、离子交换柱等方法,如纳谱分析ChromCore HILIC-Amide色谱柱。分享一个可以查询化合物pKa:https://www2.chem.wisc.edu/areas/reich/pkatable/index.htm
  • 让您的科学亮点更闪耀 “花式”解读有机化合物(上篇)
    液质联用技术。您可能会说,这2种分析方法很成熟哦,那接下来就请看我们是怎么玩出新层次,达到新高度的,哈哈。 各位看官,还记得上回小编说的千辛万苦终于找到了记载满满黑科技的秘籍么,当时带大家进行了匆匆一览,想必各位看官也不是很解馋。接下来将由小编带领大家慢慢解读、仔细品味。今天且听小编分解第一章——“花式”解读有机化合物。话说这朵花,不是这朵也不是这朵,而是告诉你怎样花式百出地解决复杂样品的分析问题。话不多说,开整~面对蕴含成千上万化合物的复杂样品,最为常用的分析方法即为液相色谱及液质联用技术。您可能会说,这2种分析方法很成熟哦,那接下来就请看我们是怎么玩出新层次,达到新高度的,哈哈。本期咱们先来谈谈液相色谱,在这里暂且不说能消除进样压力波动,延长色谱柱寿命的smart inject智能进样技术,也且不说能让化合物无所遁形的高灵敏度通用型cad电雾式检测器̷咱们要谈的是买1台赚不止10台,液相色谱中的“变形金刚”——双三元液相色谱。为什么说买1台赚不止10台呢?因为除了满足日常检测的需求外,双三元液相色谱还能实现很多额外的功能,咱们且来看看:串联色谱、并联色谱、在线固相萃取(spe)、在线除盐、柱后衍生、柱后补偿、中心切割、二维液相̷双三元液相色谱功能“花式变形”图解复杂样品的前处理,经历过的小伙伴想必头上定会出现“三条线”,步骤繁琐,耗时长,操作复杂̷尤其是面对成百上千的复杂样品要前处理的时候̷利用在线spe技术,我们可以灵活配置适合需要的切换系统(正冲,反冲,柱上浓缩等),实现样品的在线富集净化,全面达成前处理的自动化,减少总分析时间。而且,与把大象放进冰箱一样,我们只需要三步就能实现,并且这三步全部由仪器自动完成,从此妈妈再也不用担心我的样品前处理̷双三元液相色谱在线spe工作步骤图解对于复杂样品,我们希望在色谱分离上将各个组分尽量分开,而传统一维液相分离中,很多组分集中在一个色谱峰中,会损失掉很多样品中的信息。利用全二维液相色谱,我们能够将复杂样品真正做到“条分缕析”,进一步挖掘复杂样品中的信息。想想将复杂样品的“混沌之初”,变成“峰峦起伏”的万千世界,让我们一起来感谢双三元液相色谱的“黑科技”神秘力量吧̷全二维液相色谱图示刺五加水提物全二维液相色谱图“黑科技”实在太多,小编只能暂时先说到这里了。除了“花式”分离,小编下期将祭出“航母级神器”,继续“花式”解说。想要了解更多双三元神秘技术,点击阅读原文,移步到我们全国的高校科研巡演,现场感受一下。小编在这里再爆个料,我们每场高校科研巡演都会邀请知名学者大咖前来助阵,想要赢得与学界大咖近距离接触的机会,还请关注我们的微信。到底是哪位大咖呢?小编一期一期给你们爆料!点击查看往期秘籍让您的科学亮点更加闪耀 教你如何“佛系”小白飞升“魔系”战神
  • 综述 l 芳香化合物连续硝化应用进展(一)
    综述 l 芳香化合物连续硝化应用进展(一)康宁用“心"做反应让阅读成为习惯,让灵魂拥有温度芳香化合物的硝化是常用的生产工艺,目前化工领域普遍采用的硝化方法是以混合酸作硝化剂、在釜式反应器中进行间歇式反应,在生产的各个环节都存在着资源、环境、安全、能源等问题。微通道反应器相对于釜式反应器拥有持液量少,换热效率高,传质效率好,过程可控等诸多优势,能有效解决硝化反应中的传质,换热,安全性等问题。随着微化工技术的发展,越来越多地被用于芳香化合物的硝化反应。小编将分两部分向读者介绍微通道反应器在芳香化合物硝化反应中应用进展的综述[1],希望可以对您有所启发和帮助。微通道反应器在以苯型芳香烃为底物的硝化反应中的应用1以一取代苯型芳香烃为底物的硝化反应氯苯的硝化氯苯的硝化为快速强放热反应,在传统釜式反应器中,反应液搅拌不均匀、反应放出的热量无法及时导出、反应温度不能精确控制,导致副反应发生,不能保障生产安全。微通道反应器具有良好的传热、传质能力,可以有效解决上述问题。余武斌等[2]利用微通道反应器研究了反应温度、原料配比、体积流速等主要因素对氯苯硝化(图1)的选择性、转化率的影响。结果:在最佳条件下单硝化产物n(对硝基氯苯)∶n(邻硝基氯苯)=1:0.56,与釜式反应器相比,副产物明显减少,转化率明显提高,生产能力提高了4个数量级,并且可以实现工艺的连续化操作苯甲醇硝化合成邻硝基C7H6O和间硝基C7H6O硝基C7H6O是许多精细化学品的重要中间体。Russo等[3]采用微通道反应器在高温和强酸条件下,由苯甲醇合成邻硝基C7H6O和间硝基C7H6O(图2);并将动力学模型应用在该工艺开发过程,通过优化反应条件来提高反应选择性。结果:在最佳条件下反应温度提高到68℃,邻硝基C7H6O和间硝基C7H6O的收率分别提高到42%和96%,这是传统釜式反应器不可能达到的,该方法为硝基C7H6O的工业化生产提供了一个很好的选择。三氟甲氧基苯的硝化4-(三氟甲氧基)硝基苯(NFBM)是三氟甲氧基苯胺的原料,是农药、药品和液晶材料的中间体。在用混合酸硝化三氟甲氧基苯的反应(图3)中, Wen等[4]应用微通道反应器进行工艺开发,基于其优异的传热性能和低滞留率,提出了一个准均相反应动力学模型,用于研究三氟甲氧基苯连续硝化的动力学和传质特性;并应用动力学模型对高硫酸强度下的反应进行了预测。结果:实验收率与模型预测值吻合较好。表明在未来的数字化生产中,微通道反应器有着广阔的发展前景。2以二取代苯型芳香烃为底物的硝化反应3-氟三氟甲苯硝化Chen等[5]在连续流微通道反应器中,以3-氟三氟甲苯为反应物、混合酸为硝化剂合成了5-氟-2-硝基三氟甲苯(图4);通过建立传热平衡模型来探索反应条件。结果:在最佳条件下的收率可达96.4%。该方法具有工艺安全性高、合成过程中杂质可控等优点,对促进未来微通道反应器在工业上的应用具有重要意义。连续安全合成邻硝基对叔丁基苯酚邻硝基对叔丁基苯酚是一种重要的有机化工中间体和化工原料。传统工艺是以对叔丁基苯酚为原料,在搪瓷反应釜中与稀硝酸进行硝化反应得到。该工艺反应剧烈放热,反应时间长,生产安全性较差。尚朝辉等[6]针对上述问题开发了一种在微通道反应器中连续安全合成邻硝基对叔丁基苯酚的方法(图5),通过加热柱塞泵实现对叔丁基苯酚的连续进料,在微通道反应器中实现对叔丁基苯酚和高浓度硝酸连续快速硝化。结果:在最佳条件下,对叔丁基苯酚的转化率达到98.7%,邻硝基对叔丁基苯酚的收率达到79.9%。在提高反应选择性的同时也提高了反应安全性。选择性快速硝化1-甲基-4-(甲基磺酰基)苯1-甲基-4-(甲基磺酰基)-2-硝基苯是合成除草剂甲基磺草酮的重要原料。Yu等[7]采用微通道反应器选择性快速硝化1-甲基-4-(甲基磺酰基)苯(图6)。结果:如果您想要了解更多硝化应用案例,欢迎您直接留言
  • 农残检测新进展|新型多孔复合材料可有效提高有机磷农药残留分析的准确性
    有机磷农药,是指含磷元素的有机化合物农药。主要用于防治植物病、虫、草害,在农业生产中的广泛使用,导致农作物中发生不同程度的残留。有机磷农药对人体的危害以急性毒性为主,多发生于大剂量或反复接触之后,会出现一系列神经中毒症状,如出汗、震颤、精神错乱、语言失常,严重者会出现呼吸麻痹,甚至死亡。虽然在蔬菜上应用的剧毒、高毒有机磷农药大多已被列入禁限用范围,但实际生产中仍存在有机磷农药违法违规使用现象。因此,建立有机磷农药高效前处理和精准检测技术,严格控制其残留水平,对于保障蔬菜产品质量安全具有重要意义。近日,中国农业科学院蔬菜花卉研究所质量安全课题组探索出新型多孔复合材料(3DGA@COFs)的制备方法,并成功应用于蔬菜有机磷农药残留分析,为有效提高有机磷农药残留定量准确度和检测效率提供了新路径。相关研究成果发表在《食品化学(Food Chemistry)》上。据徐东辉研究员介绍,该团队创造性地通过三维石墨烯水凝胶(3DGA)的柔性表面引导COFs自组装生长,成功制备了3DGA@COFs复合材料,证实了该材料可有效吸附富集蔬菜中的马拉硫磷、喹硫磷和三唑磷等有机磷农药残留,并具有优异的再生性能。结合固相萃取技术,该研究成功地建立了一种灵敏度高、选择性强、重现性好的有机磷农药检测方法。在最优条件下,方法的最低检测限为0.01微克/升-0.14微克/升,线性范围检测覆盖了0.50微克/升-100微克/升,显著提高了有机磷农药残留前处理方法的准确性和稳定性。该研究得到国家自然科学基金、国家重点研发计划、国家大宗蔬菜产业技术体系及中国农科院科技创新工程等项目的资助和农业农村部蔬菜质量安全控制重点实验室的支持。
  • 稳定同位素标记化合物产业化基地建设进展-阿尔塔
    阿尔塔科技有限公司参加由中国计量科学研究院牵头的十三五“食品安全关键技术研发”重点专项,并承担了“食品检测稳定性同位素标记RM研制及产业化”任务,旨在利用阿尔塔标准品和稳定同位素标记物研发平台的优势,开发多系列食品安全检测用有机稳定同位素标记物的制备共性关键技术,研制农兽药及禁限用食品添加剂等有害物的稳定同位素标记物,建设世界一流的国产稳定同位素标记物产业化基地,为食品安全检测提供长期可靠的保障。在食品与环境安全问题中,农药和兽药等有害化学品的污染引起了世界各国的广泛关注。WHO/FAO—CAC(世界卫生组织食品法典委员会)、GB2761、GB2762、GB2763、GB31650等国际和国家标准中对食品中有害物质最高残留限量(MRL) 作了相应的规定。有些发达国家利用食品中有害物质残留限量标准及其检测技术作为对我国食品国际贸易的技术壁垒,极大地削弱了我国农产品在国际市场上的竞争力。面对当前的国际国内形势,消除此项壁垒并开发出适应新要求的食品安全检测技术变得更加迫在眉睫。近几年发布的食品检验农药残留和兽药残留方面的国家标准及行业标准中越来越多的采用了稳定同位素内标法作为规范的检测方法。在质谱的检测方法中,使用稳定性同位素标记物作为内标可以提高目标化合物的回收率和方法稳定性,有效避免基质效应、前处理和质谱检测器等因素对分析方法测定结果的影响,保证了检出结果的准确性。但是,由于我国稳定同位素标记产品短缺,在以往的国标、行标中普遍使用进口的稳定性同位素标记物,遭遇“买到什么用什么”的困境,严重影响和制约了我国食品安全分析方法开发和痕量危害物检测的发展。因此,发展具有自主知识产权的稳定同位素制备共性关键技术和产品研究,建立独立自主的产业化基地,为我国的科技创新和食品环境安全检测提供大量、可靠、经济、新型的稳定同位素内标物,摆脱“买到什么用什么”的困境,实现“想用什么买什么”,既是科研创新发展必不可少的组成部分,也符合国家发展战略的根本要求。阿尔塔科技致力于高质量标准品和稳定同位素标记化合物的开发和全套解决方案的提供,公司的标准品开发平台基于公司创始人张磊博士及分析检测和标准品领域内多名专家的广泛深入合作。此次承担“国家食品安全重大专项-食品检测稳定性同位素标记标准物质研制及产业化”项目,阿尔塔科技依托公司研发平台的优势,从现行标准中常检出农兽药及禁限用添加剂入手,开发稳定同位素标记物的制备共性关键技术,制备具有自主知识产权的稳定性同位素标记物系列产品,建成世界一流的稳定同位素标记物生产技术示范应用产业化基地,以实现对进口产品的全面替代和超越。经过阿尔塔技术专家两年来的攻坚克难,已经成功开发了有机磷类、磺胺类、喹诺酮类、瘦肉精类、塑化剂类等多系列内标物的关键共性技术,实现了上百种稳定同位素标记的量产和持续供应能力,并将在未来5年内完成五百余种稳定同位素标记标内标物的研发和稳定供应,基本扭转食品检测用稳定同位素标记物严重依赖进口的局面,初步达到让检测人员“想用什么买什么”、“需要什么能做什么”。目前,阿尔塔科技自主品牌的稳定同位素标记化合物超过1500种,已成为国内稳定同位素标记化合物品种最多的自主研发和持续供应企业。另外,阿尔塔科技设立了博士后科研工作站和院士创新工作站,通过引进和培养更多高端专业人才完成更多标准品和稳定同位素标记物的研制、新方法开发和标准制定,为我国食品安全检测行业由“跟随”到“引领”的转变提供强有力的产品及技术支持。*阿尔塔申请专利:CN 109574868A,一种四环素类及其差向异构体氘代内标物的制备方法CN 110746445A,一种头孢哌酮氘代内标物的制备方法CN 112358446A,一种稳定同位素标记的盐酸曲托喹酚的制备方法CN 112409257A,一种氘标记的去甲乌药碱稳定性同位素化合物的制备方法CN 113061096A,一种新的稳定同位素标记的克伦丙罗的制备方法CN 113149851A,一种新的稳定同位素标记氯丙那林的制备方法CN 113061094A,一种新型盐酸莱克多巴胺-D6的制备方法CN 113061070A,一种氘标记的美替诺龙稳定性同位素标记化合物 *阿尔塔发表文章:秦爽等. 稳定同位素标记化合物盐酸曲托喹酚-D9的合成与表征. 审稿中刘晓佳等. 稳定同位素氘标记的盐酸莱克多巴胺的合成与表征. 审稿中曹炜东等. 稳定同位素氘标记克伦丙罗-D7新的合成方法研究与结构表征. 审稿中韩世磊等. 稳定同位素氘标记去甲乌药碱的合成与表征. 同位素, 2021, 34(4), 317-324.韩世磊等. 稳定同位素标记化合物二氢吡啶-13C4的合成与表征. 食品安全质量检测学报, 2020, 11(18), 6372-6377.
  • 生态环境部发布《水质 28种有机磷农药的测定 气相色谱-质谱法》等5项国家生态环境标准
    为支撑相关水环境质量标准和水污染物排放标准实施,近期,生态环境部发布《水质 28种有机磷农药的测定 气相色谱-质谱法》(HJ 1189-2021)、《水质 灭菌生物指示物(枯草芽孢杆菌黑色变种)的鉴定 生物学检测法》(HJ 1190-2021)、《水质 叠氮化物的测定 分光光度法》(HJ 1191-2021)、《水质 9种烷基酚类化合物和双酚A的测定 固相萃取/高效液相色谱法》(HJ 1192-2021)、《水质 铟的测定 石墨炉原子吸收分光光度法》(HJ 1193-2021)等5项国家生态环境标准。《水质 28种有机磷农药的测定 气相色谱-质谱法》(HJ 1189-2021)为首次发布,适用于地表水、地下水、海水、生活污水和工业废水中28种有机磷农药的测定。本标准适用分析对象多,分离效果好,可支撑《地表水环境质量标准》(GB 3838-2002)、《地下水质量标准》(GB/T 14848-2017)等水环境质量标准实施,为农药行业水污染物排放标准的制修订、企业污染物排放的精细化管理提供监测技术支撑。《水质 灭菌生物指示物(枯草芽孢杆菌黑色变种)的鉴定 生物学检测法》(HJ 1190-2021)为首次发布,适用于微生物实验室废水灭菌效果的评价。本标准的发布实施可支撑微生物实验室废水灭菌效果的生物学检测,有利于贯彻落实《生物安全法》,加强生物安全风险防范,保护生态环境。《水质 叠氮化物的测定 分光光度法》(HJ 1191-2021)为首次发布,适用于地表水、地下水、生活污水和工业废水中叠氮化物的测定。叠氮化物毒性强,危险性大。本标准的发布实施有利于相关工业排放叠氮化物的水污染物精细化管控,对保护生态环境和保障人体健康具有重要作用。《水质 9种烷基酚类化合物和双酚A的测定 固相萃取/高效液相色谱法》(HJ 1192-2021)为首次发布,适用于地表水、地下水、生活污水和工业废水中9种烷基酚类化合物和双酚A的测定,可支撑《石油化学工业污染物排放标准》(GB 31571-2015)等水污染物排放标准实施。烷基酚类化合物和双酚A是典型的内分泌干扰物,具有毒性、持久性及生物累积性,我国已在相关产品的生产中禁用并在相关行业污染物排放标准中设置了限制指标。本标准的发布实施,有助于加强水污染物排放管控,为烷基酚类化合物和双酚A污染治理提供监测方法支撑。《水质 铟的测定 石墨炉原子吸收分光光度法》(HJ 1193-2021)为首次发布,适用于地表水、地下水、工业废水中铟的测定。随着高新技术产业发展,铟的使用日益广泛,需关注含铟污染物对生态环境的影响。本标准选择性强、灵敏度高,所用仪器设备价格和分析成本相对较低。本标准的发布实施可为水环境及相关行业水污染物中铟的测定提供技术支撑。上述五项标准的发布实施,对于进一步完善生态环境监测标准体系,规范生态环境监测行为,提高环境监测数据质量,服务生态环境监管执法,促进生态环境保护和保障人体健康具有重要意义。
  • 土壤中氨基甲酸酯类致癌农药检测 | 谱育科技LC-MS/MS解决方案来助力
    前言 2022年2月16日,国务院发布第三次全国土壤普查文件,规定具有致癌性的氨基甲酸酯类农药纳入本次普查监管范畴。本文依据最新标准《HJ 961-2018土壤和沉积物 氨基甲酸酯类农药的测定 高效液相色谱-三重四极杆质谱法》,使用谱育科技的超高效液相色谱-三重四极杆串联质谱仪,测定土壤中15种氨基甲酸酯类农药残留,检出限,定量限,灵敏度等符合标准要求,为普查开展提供强力的国产三重四极杆质谱产品支持。 /仪器部分参照国标《HJ 961-2018土壤和沉积物 氨基甲酸酯类农药的测定 高效液相色谱-三重四极杆质谱法》使用加压流体萃取仪和氮吹平行浓缩仪进行前处理。1EXPEC 5210 LC-MS/MS 搭载UHPLC 510超高效液相色谱仪的EXPEC 5210 LC-MS/MS 是谱育科技在“国家重大科学仪器设备开发专项”支持下,创新研制的三重四极杆串联质谱仪。具有卓越的灵敏度,优异的稳定性,集高性价比与可扩展性于一身,广泛应用于食品安全,医学司法检测,生物医药和环境领域。2EXPEC 550 加压流体萃取仪EXPEC 550 加压流体萃取仪是一台通过加压、加温技术从各种固体或半固体样品萃取有机组分的自动化仪器。3EXPEC 520 氮吹平行浓缩仪EXPEC 520 氮吹平行浓缩仪是通过水浴加热及利用氮气的快速流动打破液体上空的气液平衡,从而使液体挥发速度加快,达到快速浓缩溶剂的效果。实验部分液相和质谱条件典型谱图与标准曲线:6分钟即可获得十五种氨基甲酸酯类农药的色谱图。十五种氨基甲酸酯类农药混标的色谱图(20ng/ml)十五种氨基甲酸酯类农药的线性系数R均在0.999以上,部分物质标准曲线图如下:灭多威肟标准曲线灭多威标准曲线抗蚜威标准曲线3-羟基克百威标准曲线以标准曲线最低点计算所得各目标物检出限和定量限,均优于标准检出限要求约20倍。氨基甲酸酯类化合物检出限和定量限总结EXPEC 5210 LC-MS/MS充分发挥高灵敏度,抗污染等优质特性,配合谱育科技高效前处理设备,实现了6分钟快速分析15种土壤中氨基甲酸酯类农药残留,检出限,定量限,灵敏度等满足环境标准要求。
  • 三招教你如何科学应对不同食品农药残留风险
    农药残留,是农药使用后一个时期内没有被分解而残留于生物体、收获物、土壤、水体、大气中的微量农药原体、有毒代谢物、 降解物和杂质的总称。施用于作物上的农药,其中一部分附着于作物上,一部分散落在土壤、大气和水等环境中,环境残存的农药中的一部分又会被植物吸收。残留农药直接通过植物果实或水、大气到达人、畜体内,或通过环境、食物链最终传递给人、畜。男人正在菜地里喷洒农药,图片来自网络农药残留关系着食品安全,是重要的食品检测的项目,现阶段食品中农残的检测方法多种多样,除了最常用的色谱质谱联用外,还有波谱、毛细管电泳、免疫分析和酶抑制法等多种检测技术。本次优质解决方案推荐聚焦食品农药残留检测,方案分别来自于知名品牌岛津、赛默飞和安捷伦。优质解决方案一:GC-MS/MS法测定牛奶中30种有机氯农药残留量(点击标题可直接跳转至详细方案)奶牛场正在挤牛奶,图片来源网络方案来源:岛津方案摘要:本文使用岛津三重四级杆气质联用仪建立了牛奶中30种有机氯农药残留量的检测方法。在0.01-0.2μg/mL浓度范围内,30种农药标准曲线线性相关系数均大于0.998.取浓度为0.01μg/mL标准溶液连续进样6针,目标物峰面积RSD均小于6.0%。在加标回收实验中,加标浓度0.01mg/kg,30种农药加标回收率分布在66.8%-122%之间。实验结果证明:该方法准确,灵敏度高,为牛奶中30种有机氯农药残留量测定提供可靠的参考。关键词:三重四级杆气相色谱质谱联用仪 农药残留 牛奶 有机氯技术特点:1、采用合适的色谱条件,30种有机氯农药获得良好的分离效果;2、牛奶样品采用固相萃取净化、GC-MS/MS测定,有效抑制基质干扰,结果可靠。完整方案链接:https://www.instrument.com.cn/application/Solution-951131.html优质解决方案二:气相色谱-三重四级杆联用技术筛查黄瓜中有机磷肥、有机氯及拟除虫菊酯类农药残留应用(点击标题可直接跳转至详细方案)工作人员正在批量采摘黄瓜,图片来自网络方案来源:赛默飞方案摘要:有机磷、有机氯、拟除虫菊酯类农药是常用农药,包括多种高毒、剧毒农药及我国禁用农药。本实验参照标准GB NY/T 761-2008《蔬菜和水果中有机磷、有机氯、拟除虫菊酯和氨基甲酸酯类农药多残留的测定》,采用赛默飞全新一代三重四极杆气相色谱质谱联用仪(TSQ 8000 Evo)结合对应的农药残留筛查方法包(含670 种化合物质谱信息),对样品中含有的有机磷、有机氯、拟除虫菊酯类农药残留进行筛查,进而对其中含有的相应农药进行确证和定量。关键词:三重四极杆气相色谱质谱联用仪 农药残留筛查方法包 有机磷、有机氯、拟除虫菊酯类农药残留技术特点:1、农药残留筛查方法包含有 670 种农药化合物信息,筛查方法快速简便,真实可靠;高选择性、高灵敏度、高稳定性和高通量,定性、定量结果良好,完全能够胜任监管部门要求的实际样品中不确定农药的低浓度筛查、确认和定量分析的要求。完整方案链接:https://www.instrument.com.cn/application/Solution-870379.html优质解决方案三:有机番茄、橙子和红茶样品中250多种农药残留检测方案 (点击标题可直接跳转至详细方案) 菜农正在地里收获成熟的番茄,图片来源网络方案来源:安捷伦方案摘要:基于 UHPLC-MS/MS 的多残留分析法开发出一种用于测定250 多种农药及农药代谢物的方法。该方法可应用于包括红茶在内的复杂基质中的农药分析,方法的更高灵敏度允许对样品进行适当的稀释,由此不仅可减小基质效应,而且能够改善方法的稳定性、提升仪器正常运行时间和实验室的分析效率。关键词:UHPLC-MS/MS Agilent 6470三重四极杆质谱仪 基质效应技术特点:更高的色谱分离度,高灵敏度,喷射流离子源具有久经考验的电离增强功能;通过样品稀释提高方法稳定性并最大程度减小基质效应。完整方案链接:https://www.instrument.com.cn/application/Solution-888314.html 更多食品农药残留检测方案及相关仪器应用请浏览行业应用栏目:https://www.instrument.com.cn/application/══════════▼▼▼══════════【行业应用】是仪器信息网专业的行业技术解析和应用拓展平台,聚焦食品农产品、传统制药、生命科学、环境保护、医疗卫生、化工生产、新能源等不同行业,以相关国家标准为依据,依托国内外主流厂商的仪器设备和优质解决方案,为用户进行全方位的检测方法和具体应用方案解读,旨在解决每一位用户的科学实验需求。
  • 超短链全氟烷基化合物“三氟乙酸”分析利器——超临界流体色谱质谱联用技术
    近年来,以三氟乙酸(TFA)为代表的超短链全氟烷基化合物(超短链PFAS)大量赋存于城市河水中这一问题已对城市生态及饮用水生产带来了巨大挑战,监测和精确定量饮用水源中的超短链PFAS已经迫在眉睫。针对高极性的超短链PFAS,高效环保的超临界流体色谱质谱联用技术可以提供良好保留和高灵敏度检测结果。背景介绍PFAS是一类广泛用于消费品和工业生产的含氟有机化合物。全氟辛烷磺酸(PFOS)和全氟辛酸(PFOA)是两种含八个碳的全氟烷基酸类化合物(PFAA),因具有较高的环境持久性和毒性,已在全球范围内逐步淘汰。然而,取而代之的是一些超短链(C1&minus C3)(图1)和短链(C4&minus C7)PFAA,其在环境、血液及尿液样本中正在被广泛检出【1,2】,引发了人们对健康影响的担忧。图1 超短链(C1&minus C3)全氟烷基化合物特别是含量较高的三氟乙酸被认为含有损坏生育能力和儿童发育毒性,正在全球范围内引起广泛关注。据欧洲新闻网报道,欧洲农药行动网络(PAN Europe)及其成员于5月27日联合发布了一项研究报告,对来自10个欧盟国家的23个地表水样本和6个地下水样本的联合调查发现,所有检测的水样中均检测到PFAS,其中23个样本(79%)的TFA浓度超过了欧盟饮用水指令中“PFAS总量”的拟议限值;而在检测到的总PFAS中,TFA占总量的98%以上【3】。TFA是含有两个碳的全氟羧酸,属于超短链(C1&minus C3)全氟烷基化合物。其在环境中普遍存在,主要来源包括PFAS农药、氢氟碳化物制冷剂、污水处理和工业污染(图2)。尽管目前对TFA的生物毒性效应研究有限,考虑到其持久性和全球传播特性,正在引起全球多国的密切关注【4,5】。图2 杀虫剂、杀菌剂和药品中的碳键全氟甲基在环境条件下通过氧化裂解转化为TFA特色应用方案使用高效环保的超临界流体色谱(SFC)分离技术,结合超高灵敏度三重四级杆质谱检测器,岛津中国创新中心开发了包括TFA在内的五种超短链PFAS快速分析方法。与反相液相色谱不同,SFC可以充分保留仅有一到三个碳的超短链PFAS,有效降低基质的干扰(图3)。图3 SFC-MS/MS和LC-MS/MS分析超短链PFAS色谱对比图(1ng/mL标液)使用SFC-MS/MS对纯水配置的系列标准溶液进行分析,可得到良好线性和较低检测限(见表1),进一步,对不同地表水样品进行检测,结果发现,均检测到一定量TFA,使用内标法定量,分别为几百个到几千个ppt,说明TFA在城市水体都存在较为严重的污染(图4、图5)。图4 SFC-MS/MS分析地表水样品1中超短链PFAS图5 SFC-MS/MS分析地表水样品2中超短链PFAS表1 SFC-MS/MS分析水样中超短链PFAS线性和检出限总结采用超临界流体色谱串联三重四极杆质谱仪(SFC-MS/MS)建立超短链(C1&minus C3)全氟烷基化合物的快速分析方法。由于超临界流体色谱独特的分离选择性,使用SFC-MS/MS分析种类繁多的PFAS,可以得到与反相色谱截然不同的溶出顺序和出峰行为。SFC-MS/MS可作为反相液相色谱质谱联用技术一种有力补充,对超短链PFAS进行更准确定量。随着对PFAS及其降解产物(TFA等)认识的不断深入,全球各国需要加强对这些持久性化学品的监管和限制, 旨在减少PFAS污染,保护生态系统和人类健康。超临界流体色谱串联三重四极杆质谱仪(SFC-MS/MS)注解*:超临界流体色谱(SFC):使用超临界流体作为流动相的色谱分离技术。以超临界流体CO2为流动相的SFC分离技术不仅高效而且节能环保,作为一种绿色分离技术在制药、食品和石油领域得到越来越广泛的应用。参考文献1. Guomao Zheng, Stephanie M. Eic, Amina Salamova. Elevated Levels of Ultrashort- and Short-Chain Perfluoroalkyl Acids in US Homes and People. Environ. Sci. Technol. 2023, 57, 42, 15782–15793.2. Isabelle J. N., Daniel H., Hanna L. W., Vassil V., Ulrich B., Karsten N., Marco S., Sarah E. H, Hans P. H. A., and Daniel Z., Ultra-Short-Chain PFASs in the Sources of German Drinking Water: Prevalent, Overlooked, Difficult to Remove, and Unregulated. Environ. Sci. Technol. 2022 56, 10, 6380-6390.3. 欧洲水体中的PFAS污染引发关注:塞纳河等河流中令人惊讶的三氟乙酸浓度.【微信公众号:新污染物监测与分析】4. Cahill, T. M. Increases in Trifluoroacetate Concentrations in Surface Waters over Two Decades. Environmental Science & Technology, 2022, 56,9428-9434.5. Thomas M. Cahill. Assessment of Potential Accumulation of Trifluoroacetate in Terminal Lakes. Environ. Sci. Technol. 2024, 58, 6, 2966–2972.本文内容非商业广告,仅供专业人士参考。
  • 环境LCMSMS新标准|水中氯酚类化合物分析
    广东省分析测试协会发布了T/GAIA 005-2020《水中 2,4-二氯酚、2,4,6-三氯酚和五氯酚的测定 高效液相色谱-串联质谱法》团体标准,标准规定了水体中3种氯酚类化合物的前处理及仪器分析方法,为水体中氯酚类化合物的检测提供了重要的技术支持和法规依据。 氯酚类化合物危害氯酚类化合物(CPs)是一类广泛存在于水环境中的有机污染物。这类物质曾长期在世界范围内被作为杀虫剂、除草剂、防腐剂、消毒剂广泛使用,性质比较稳定,能够在环境中相对持久地存在,会对人类和野生动物的健康造成不利影响,包括慢性毒性、致癌性、致突变性等。美国国家环保局(U.S. EPA) 和中国国家环保部均已将多种氯酚类化合物列入优先控制的毒性污染物名单。 目前,研究中普遍关注的CPs化合物主要包括2,4-二氯酚(2,4-dichlorophenol, 2,4-DCP)、2,4,6-三氯酚(2,4,6-trichlorophenol, 2,4,6-TCP)和五氯酚(pentachlorophenol, PCP)。新标准来袭,岛津助您从容应对与现有标准的气相色谱法相比,液相色谱质谱法灵敏度更好,且无需衍生化等复杂的前处理步骤,可直接用于水样的分析,操作简便快捷。 1 分析条件分析仪器:岛津超高效液相色谱-质谱联用仪MRM参数*定量离子对 2分析结果MRM色谱图3种目标物可得到良好的色谱峰形和质谱响应。标准溶液的MRM色谱图见图1。图1. 标准溶液MRM色谱图 方法检出限与测定下限按照《环境监测分析方法标准值修订技术导则》(HJ168-2010)中空白实验中未检出目标物质的检出限测定方法。以高纯水为空白基质,配制低浓度(2, 4-二氯酚和2, 4, 6-三氯酚4 μg/L,五氯酚0.25 μg/L)加标样品,进行7次重复检测,计算其实测浓度的标准偏差(SD),其方法检出限(MDL)=3.143*SD,测定下限为4倍的MDL。 表1. 方法检出限、测定下限计算结果(μg/L) 标准曲线根据测定下限以及实际测定需要,配制三种化合物的混标,标准浓度如表2所示。标准曲线分别如图2所示。 表2. 氯酚标准曲线浓度 (μg/L)图2. 三种氯酚的标准曲线 方法精密度分别以表2中STD 3、STD 5和STD 7为低、中、高浓度进行加标,重复6次测定,计算相对标准偏差(RSD)。结果显示,三种化合物、三个浓度水平RSD均小于11%。 表3. 不同浓度空白加标精密度结果(n=6) 方法准确度选取生活饮用水、地表水、地下水样品,0.22 μm滤膜过滤后上机分析,三种氯酚浓度均低于方法检出限。分别以表2中STD 3、STD 5和STD 7浓度为低、中、高浓度进行加标,平行配制6份分别进行测定,分别计算加标回收率,如表4所示。 表4. 不同水体加标回收结果(μg/L)结语使用岛津超高效液相色谱仪LC-30A和三重四极杆质谱仪LCMS-8045联用系统可轻松测定水体样品中3种氯酚类化合物,轻松应对《水中 2,4-二氯酚、2,4,6-三氯酚和五氯酚的测定 高效液相色谱-串联质谱法》(T/GAIA 005—2020)新标准的要求。环境水体安全监测刻不容缓,岛津方案助您从容应对。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制