当前位置: 仪器信息网 > 行业主题 > >

有机金属三卤化物

仪器信息网有机金属三卤化物专题为您整合有机金属三卤化物相关的最新文章,在有机金属三卤化物专题,您不仅可以免费浏览有机金属三卤化物的资讯, 同时您还可以浏览有机金属三卤化物的相关资料、解决方案,参与社区有机金属三卤化物话题讨论。

有机金属三卤化物相关的资讯

  • 美国拟为金属卤化物灯设立最低能源效率标准
    目前,美国能源部有关金属卤化物灯的最低能源效率标准(MEPS)要求和测试程序要求还正在制定当中。金属卤化物灯的能效要求主要体现在能源之星规范中。   有关金属卤化物灯的能源之星规范主要是2011年7月5日发布的灯具能源之星规范V1.1版。该规范取代了原来4.2版的住宅照明设备和1.3版的固态照明灯具的能源之星规范,并于2011年4月1日开始生效。   根据灯具能源之星规范V1.1版的规定,金属卤化物灯在2013年9月1日之前,每个灯-镇流器系统的初始光效应大于等于65 lm/W,2013年9月1日后,每个灯-镇流器系统的初始光效应大于等于70 lm/W。同时,每个灯-镇流器系统应能提供最小800 lm的初始光输出。   金属卤化物灯的光效和光输出按照IES LM-51-11进行测试。   2013年8月20日,能源部发布了有关金属卤化物灯具的节能标准的技术规则提案(78 FR 51463)。2013年9月27日,美国能源部将就金属卤化物灯的MEPS标准举行公共会议并征集公众意见。意见征询的截止日期为2013年10月21日。能源部在一份技术规则提案中称,用于室内外的400W的金属卤化物灯具的平均寿命周期可节约的成本约为30美元 1000W的金属卤钨灯具可节约的寿命周期成本约为400-500美元。根据能源部的估算,在30年间,设立的金属卤化物灯的MEPS标准将节约0.80-1.1夸特的能源。同时,MEPS标准还将减少4900-6500万公吨的二氧化碳、21.4-28.9万吨甲烷、890-3000吨一氧化二氮、6.5-8.7万吨二氧化硫、6.6-9.0万吨氧化氮和0.11-0.15吨水银的排放。   详情参见:http://www.gpo.gov/fdsys/granule/FR-2013-08-20/2013-20006/content-detail.html
  • HORIBA前沿用户动态|吉大邹勃教授Adv. Sci.:二维金属卤化物钙钛矿在高压下的光学性质及结构
    本文授权转载自公众号“研之成理”,原作者邹勃教授课题组今天非常荣幸邀请到吉林大学王凯、邹勃教授课题组来对他们新发表在Advanced Science上的文章进行解析。本文由作者张龙倾情打造,内容非常翔实,推荐大家细细品味!在此,感谢王凯、邹勃教授和张龙的大力支持和无私分享。金属卤化物钙钛矿作为一类新型的半导体材料具有许多优异的光电特性:可调的带隙宽度、高效光捕获能力、宽吸收光谱、高光致荧光量子效率等,因而获得了广泛的研究兴趣和美好的光伏、LED应用前景。短短的几年内,钙钛矿太阳能电池的能量转化效率从初的3.8%快速地增加到了当前的23.2%,薄膜的荧光量子效率也已达到70%,因此其已经成为当今能源材料领域具潜力的和竞争力的一枚新星。压力是独立于温度、化学组分的第三个物理学参量,可以非常有效地使原子间距离缩短、相邻电子的轨道重叠增加,进而改变物质的晶体结构、电子结构和分子间的相互作用,使之达到高压平衡态,形成全新的物质状态。研究发现,对金属卤素钙钛矿材料进行的高压研究证实体积压缩可以有效地调控晶体结构和电子状态,同时还能够发现新奇的结构和性质(例如:我们近报道的压力诱导Cs3Bi2I9金属化在大约28 GPa,Angew. Chem. Int. Ed. 57 (2018),11213;Cs4PbBr6在大约3 GPa压力诱导发光,Nature Commun. 9 (2018), 4506;CsPbBr3高压下结构相变和带隙调控,J.Am. Chem. Soc. 139 (2017), 10087),为合成常规条件无法得到的新型功能材料提供了重要源泉。近几年,人们发现了几种二维的白光发射的钙钛矿材料,从而发展出了一个新兴的光电材料领域。不同源于自由激子复合的窄发射,研究表明白光宽发射主要归因于激子自陷。这种白光宽发射常见于二维的层状的Pb-Br或Pb-Cl钙钛矿。由于大体积的有机分子的存在,从而导致层状的无机骨架发生扭曲。激子和扭曲的无机晶格产生强的耦合,从而形成处于不同能级的稳定的自陷激子。在常温常压下,二维的(PEA)2PbCl4(PEA+= C6H5C2H4NH3+)表现出宽的白光发射由于激子自陷的存在。然而,二维的(PEA)2PbBr4只表现出了源于自由激子的窄发射,尽管它们拥有相同的结构。我们课题组设想能否通过晶格收缩提高Pb-Br无机骨架的扭曲,提高激子-晶格耦合形成稳定的自陷激子,从而激活(PEA)2PbBr4的宽发射?另外通过减小原子间的距离,可以提高原子间的轨道耦合,实现带隙窄化,促进其在光伏领域的应用。因此我们对其实施了高压光学和结构研究,来证实我们的合理预测。我们通过高压技术调控了二维金属卤化物钙钛矿的光学性质和结构,观察到了我们初设想的宽发射现象。这一研究结果扩展了人们对二维钙钛矿材料的认识,证实了其性质存在强的调控性以及深入探索的必要性和潜力,为合理设计和开发高性能的宽发射二维金属卤化物钙钛矿光电材料提供了一种新的策略。首先,我们研究了(PEA)2PbBr4的高压光致发光性质(Figure 1)。随着压力的增加,窄的自由激子发射逐渐地减弱。当压力增加到约5 GPa 时,出现了处于可见区的宽发射,且伴有大的斯托克斯移动。这是典型的自陷激子发射特征。这种压力诱导的宽发射现象初步证实了我们开始的推测。Figure 1. Emission property and broadband emission mechanism. a) PL spectra of (PEA)2PbBr4as a function of pressure at room temperature. The illustrations are PL micrographs upon compression. b) Pressure-induced PL intensity evolution of(PEA)2PbBr4. c) Schematic illustrations of emission evolutions upon compression. Ground state (GS), free-carrier state (FC), free-exciton state (FE), and various self-trapped exciton state (STE).在12 GPa以前,(PEA)2PbBr4的带隙持续地窄化,窄化了大约0.5 eV, 从而对应着更宽的光子吸收范围(Figure 2)。随着压力的进一步增加,我们观察到了带隙的蓝移和再次红移。材料的压致变色也体现出了其电子结构的变化。这一结果证实了压力对这种材料具有显著的带隙调控性。Figure 2. (a) Optical absorption spectra of (PEA)2PbBr4 under high pressure. (b) Optical micrograph of (PEA)2PbBr4 in a DAC upon compression. (c) Band gap evolutions of (PEA)2PbBr4 under high pressure. The illustration shows selected band gap Tauc plots for (PEA)2PbBr4 at 1 atm. 结构分析表明,随着压力的增加,Pb-Br无机骨架的扭曲是逐渐加剧的。无机骨架较大的扭曲,提高了激子-晶格耦合,从而形成了稳定的自陷激子,终导致宽发射的出现。Figure 3. Schematic diagram of Pb-Brinorganic layer distortion in (PEA)2PbBr4 upon compression. Gray ball: Pb, green ball: Br.邹勃,吉林大学教授、博士生导师,教育部长江学者特聘教授、国家杰出青年科学基金获得者。主要研究方向为高压化学和高压物理。已在Nat. Commun., Angew. Chem. Int. Ed, J. Am. Chem.Soc., Adv. Mater.等国际期刊(SCI)发表研究论文270余篇。王凯,吉林大学副教授、博士生导师。师从邹广田院士和邹勃教授,研究方向为高压化学和高压物理,主持自然科学基金委面上项目和青年基金等多个科研项目。已在J. Am. Chem. Soc., Angew. Chem. Int. Ed, Adv. Sci.等国际期刊(SCI)发表研究论文百余篇。免责说明HORIBA Scientific公众号所发布内容(含图片)来源于文章原创作者提供或互联网转载。文章版权、数据及所述观点归原作者原出处所有,HORIBA Scientific 发布及转载目的在于传递更多信息及用于网络分享,供读者自行参考及评述。如果您认为本文存在侵权之处,请与我们取得联系,我们会及进行处理。HORIBA Scientific 力求数据严谨准确,如有任何失误失实,敬请读者不吝赐教批评指正。我们也热忱欢迎您投稿并发表您的观点和见解。HORIBA科学仪器事业部结合旗下具有近 200 年发展历史的 Jobin Yvon 光学光谱技术,HORIBA Scientific 致力于为科研及工业用户提供先进的检测和分析工具及解决方案。如:光学光谱、分子光谱、元素分析、材料表征及表面分析等先进检测技术。今天HORIBA 的高品质科学仪器已经成为全球科研、各行业研发及质量控制的首选。
  • 仪器情报,科学家制备表征新型卤化物钙钛矿/2D半导体混合异质结构!!
    【科学背景】二维(2D)半导体和范德瓦尔斯(vdW)异质结构是新兴的纳米材料,因其在设计纳米电子学、光电子学和纳米光子学方面的巨大潜力而成为了研究热点。在众多混合维度异质结构中,卤化物钙钛矿/2D半导体异质结构因其独特的光电和光子特性而脱颖而出。卤化物钙钛矿具有大的吸收系数和折射率、低陷阱密度、高光致发光量子产率、可调节的带隙等优点,这些特性为2D光电和光子器件提供了有效的补救措施。然而,实现高质量单晶卤化物钙钛矿/2D半导体混合维度异质结构仍然具有挑战性,主要问题包括材料结构在外部应力下的超敏感性和碘的复杂反应性。为了应对这些挑战,湖南大学段曦东教授团队提出了一种通用的范德瓦尔斯异质外延策略,通过这一方法成功合成了一系列高质量的单晶卤化物钙钛矿/2D半导体异质结构。通过选择特定的钙钛矿外延层和2D半导体,可以按需调整异质结构,涵盖从全无机到有机-无机混合类型的钙钛矿以及不同的2D半导体。这种方法展示了高晶面和对齐选择性,实验结果表明,这些异质结构具有显著降低的缺陷密度和均匀的能量景观,从而提供了增强的光增益特性和超低阈值且稳定的单模激光。此项研究拓展了范德瓦尔斯异质结构的应用前景,为片上光源和集成光电设备的发展提供了新的思路和方法。【科学亮点】(1)实验首次展示了通用的范德瓦尔斯异质外延策略,用于合成一系列晶面特异性的单晶卤化物钙钛矿/二维(2D)半导体(多重)异质结构。通过这种方法,可以在不同维度和成分的基础上,灵活地定制异质结构,包括从全无机到有机-无机混合的钙钛矿,以及单独的过渡金属二硫化物或2D异质结。(2)实验通过以下步骤和方法取得了一系列显著结果:&bull 方法:采用了范德瓦尔斯异质外延方法,将特定的钙钛矿外延层与2D半导体耦合,实现了高质量单晶异质结构的合成。该方法对CMOS兼容基板(如SiO2/Si)和光子兼容平台(如Si和LiNbO3)具有普遍适用性。&bull 结果一:通过选择不同的耦合层,可以广泛调整所获得的异质结构,从而实现可编程的异质结构,优化材料特性和设备性能。&bull 结果二:实验发现,外延的钙钛矿表现出高晶面和对齐选择性,这可能归因于热力学上有利的界面形成能及其在底层单层半导体的三重对称下形成的简并态。&bull 结果三:由于弱的范德瓦尔斯相互作用在异质界面产生不共晶/非相干的平面内晶格,实现了无键集成,最小化了失配引起的应变和缺陷。&bull 结果四:范德瓦尔斯外延钙钛矿半导体表现出显著降低的缺陷密度和均匀的能量景观,从而提供了增强的光增益特性和超低阈值且稳定的单模激光。&bull 结果五:实验合成的CsPbI2Br/WSe2异质结构展示了超高的光增益系数、降低的增益阈值和延长的增益寿命,归因于降低的能量无序。【科学图文】图1:卤化物钙钛矿/二维半导体异质结构的外延生长。图2:外延异质结构的界面能量。图3:单层WSe2和外延CsPbI3的原子结构图案。图4:晶面选择性外延生长的机制。图5:能量无序景观。图6:光增益响应。图7:卤化物钙钛矿/二维半导体异质结构的增强激光能力。【科学启迪】以上文章展示了通过范德瓦尔斯异质外延方法成功合成高质量的卤化物钙钛矿/二维半导体异质结构,并在光子学领域取得显著进展。这一研究不仅为开发新型光电子和光子器件提供了创新的材料平台,还突破了传统材料集成的限制。通过优化材料的光学性能和结构设计,实现了具有超低阈值和稳定性的单模激光器,为光通信和传感等领域的应用提供了新的解决方案。特别是,引入的单层半导体在促进钙钛矿的选择性外延生长和作为传输层方面发挥了关键作用,为电驱动片上激光器的实现奠定了基础。这项研究不仅推动了光子学领域的技术进步,还为理解和利用材料的光电特性提供了深刻见解,为未来量子光子学和光电子一体化系统的发展开辟了新的研究方向。原文详情:Zhang, L., Wang, Y., Chu, A. et al. Facet-selective growth of halide perovskite/2D semiconductor van der Waals heterostructures for improved optical gain and lasing. Nat Commun 15, 5484 (2024). https://doi.org/10.1038/s41467-024-49364-0
  • 卤化物可调性如何提升无铅Cs2SnX6-PVDF复合材料在生物力学能量收集?
    印度理工学院甘地纳加尔校区(IIT Gandhinagar)的Rupak Banerjee教授带领Tufan Paul组成的研究团队,于2023年7月13日在ACS Appl. Mater. Interfaces上发表了一项最新研究成果。该研究的主要目标是开发一种无铅的有机-无机卤化物钙钛矿材料,用于生物力学能量收集和压力感应应用。传统的有机-无机卤化物钙钛矿材料,如CH3NH3PbI3,具有优异的光电性能,但也存在长期稳定性差和铅污染的问题。因此,该团队探索了Cs2SnX6(X = Cl、Br和I)化合物作为一种环境友好和可持续的替代方案。这些化合物不含铅,并具有良好的环境稳定性和光电性能。此外,它们还可以与压电聚合物聚偏氟乙烯(PVDF)结合,制备自供电的压电纳米发电器(PENGs)。该研究使用了Enlitech的QE-R量子效率测量系统,进行了紫外可见反射光谱响应测量,QE-R量子效率系统可提供各种太阳能电池精准的EQE检测数据。搭配光焱(Enlitech)配套开发的自动化检查软件,使其IPCE、IQE和光谱响应数据的检测准确快速,QE-R量子效率光学仪的检测量子效率结果被高影响因子期刊广泛采用和引用。Rupak Banerjee教授团队使用溶剂热法合成了Cs2SnX6纳米结构,并与PVDF混合制成复合薄膜。他们发现,Cs2SnX6的加入可以增强PVDF中的电活性相,从而提高复合薄膜的压电性能。他们还使用第一原理密度泛函理论(DFT)计算来分析Cs2SnX6和PVDF之间的界面作用,揭示了钙钛矿和PVDF之间存在物理吸附作用,导致压电反应增强的机制。他们系统地改变了无机Cs2SnX6钙钛矿中的卤素离子,并研究了相应的PENGs的压电行为。此外,他们还测量了这些卤素钙钛矿基混合物的介电性质、压电反应幅度、压电输出信号和充电容量。在众多制备的薄膜中,最优化的Cs2SnI6_PVDF薄膜表现出最高的压电系数(d33)值,约为200 pm V–1,并且从压电力显微镜和极化滞回曲线测量中得到了约0.74 μC cm–2的剩余极化。最优化的Cs2SnI6_PVDF基设备在受到周期性垂直压缩时产生了约167 V的瞬时输出电压,约5.0 μA的电流和约835 μW的功率。该设备的输出电压用于对一个10 μF的电容器充电,充到2.2 V后,可以驱动一些商业LED。除了用作压力传感器,该设备还用于监测人体生理活动。该设备在环境中展示了出色的操作耐久性,证明了它在机械能量收集和压力感应应用方面的卓越潜力。这项研究为开发无铅卤化物钙钛矿材料提供了一种新的思路,并为利用生物力学能量驱动可穿戴设备和自供电系统提供了一种有效的方法。该研究团队表示,他们将继续优化这些材料和设备的性能,并探索更多的应用场景。
  • RoHS起草人表示不会禁止卤化物质
    近日,欧洲议会对RoHS的改写发表意见,表示不会同意议员Jill Evans的建议,即禁止所有的溴化和氯化阻燃剂、聚氯乙烯(PVC)、氯化增塑剂和三种邻苯二甲酸盐:邻苯二甲酸二己酯(DEHP), 邻苯二甲酸丁苄酯(BBP)和邻苯二甲酸二丁酯(DBP)。   议会环境委员会将于下周对欧盟委员会关于修改电器和电子设备有害物质限制的指令(RoHS)进行投票表决。   虽然看起来卤化物质和邻苯二甲酸盐能够不被列入禁止名单中,但是委员会可能会在禁止名单中增加纳米银(nanosilver)和多壁式奈米碳管(multi-walled carbon nanotubes)。   在现有指令下,汞、铅、镉、六价铬、溴化阻燃剂家族中的邻苯二甲酸丁苄酯和多溴二苯醚仍然是被禁止的。   第二组物质中的砷化合物、铍及其化合物、三氧化二锑、三氧化二砷、双酚A、有机氯、阻燃剂等则可能不被列入优先名单中,而是列入新的附件三中。   欧洲化学工业理事会(CEFIC)同时还持续关注新的立法中出现的纳米材料,并表示REACH中已包含该内容。欧盟委员会还要求经营者在电子和电气设备中使用纳米材料的声明,基于环境和人体健康,需要提供所有相关材料。欧盟委员会也将发出在这些设备中的纳米材料的安全评估和调查结果并提交议会和理事会。经营者需在设备上标注“可能对消费者有暴露风险”(that could lead to exposure of consumers)的标签。   委员会将于6月2号进行投票是否对RoHS指令进行改写。
  • 化学所有机连续波激光研究取得进展
    激光在光子芯片、激光显示、车载雷达等领域具有重要作用。有机材料具有分子多样性、能级丰富性、异质相容性、易加工性等优点,在高性能、多功能激光器构筑方面具有显著优势,有望进一步革新激光技术与应用。目前,有机激光器依赖大尺寸脉冲泵浦源,不利于功能器件集成,限制了有机激光的应用范围。因此,发展有机连续波激光器具有重要的科学意义和应用价值,而有机连续波激光材料是这一领域的关键。 近年来,中国科学院化学研究所光化学院重点实验室赵永生课题组致力于有机激光材料方面的研究,在低阈值激光材料设计、高品质微腔合成、准连续波激光器件构筑等方面开展了系统性的研究工作。近日,化学所赵永生课题组和董海云课题组开发出金属键连有机二聚体提高有机分子的拉曼增益的策略,基于有机微晶受激拉曼散射,实现了连续波激光出射。 目前,鲜有关于有机材料在连续波拉曼激光方面的研究。有机分子的可设计性为增强拉曼增益系数进而实现连续波拉曼激光提供了机遇。该研究开发出金属-有机配位合成有机二聚体的策略,诱导有机官能团的寡聚效应和刚性效应,可超线性地提高有机分子在金属连接体附近振动模式的拉曼增益系数,为实现有机连续波拉曼激光提供了可能。科研人员选择具有拉曼活性和孤对电子配位位点的三苯基氧化膦(TPPO)作为模型有机化合物,以二价金属卤化物——氯化锌(ZnCl2)作为金属连接体,通过金属-有机配位反应合成有机二聚体(ZnCl2(TPPO)2)。科研人员发展了一种热饱和溶液分子自组装的方法,制备了高质量有机单体和二聚体微晶。相比于有机单体微晶,金属键连有机二聚体微晶展现出显著增强的自发拉曼散射,对应于大幅提高的拉曼增益系数。不同于有机单体微晶,金属键连有机二聚体微晶支持低阈值连续波拉曼激光。同时,相比于有机单体微晶,金属键连有机二聚体微晶具有更高的稳定性,可确保连续波拉曼激光器长时间稳定运行。受激拉曼散射作为一种三阶非线性效应本身支持激光波长调谐。且有机二聚体微晶具有大的光学带隙,展现出非常宽的透明窗口(360~1580nm)。因此,科研人员通过调控激发光波长,在有机二聚体微晶中实现了可见-近红外范围内多个波长的激光出射(422、465、562、678、852、1190nm)。金属键连有机二聚体策略可显著提升有机分子拉曼增益系数和有机微晶材料稳定性,为探索有机连续波微纳激光器提供了新平台。 相关研究成果发表在《德国应用化学》上。研究工作得到国家自然科学基金委员会、科学技术部和中国科学院的支持。化学所有机连续波激光研究取得进展
  • 如何将卤化铅钙钛矿太阳能电池的环境风险降至最低?南京大学陈辉与国际专家携手研究
    1:铅在钙钛矿器件中的难以被取代的原因 针对钙钛矿的毒性问题,一个关键问题是,在不含铅的情况下是否能够实现优异的钙钛矿光电性能。尽管在这方面已经取得了一些进展,但无铅钙钛矿太阳能电池的功率转换效率和稳定性仍然远低于含铅的钙钛矿光伏电池。这是因为含铅的钙钛矿具有一种特殊的轨道混合构型,有助于其出色的光电性能。因此,研究人员尝试使用具有类似轨道构型的其他金属来替代铅,其中被泛研究的材料是锡(Sn)基钙钛矿。 锡的离子半径(118&thinsp pm)与铅(119&thinsp pm)相似,并且具有孤对的5s和空的5p轨道,其有效核电荷(Zeff)分别为10.63和9.10。然而,锡离子Sn2+有被氧化为Sn4+的趋势(Sn2+/Sn4+的标准还原电势E0&thinsp =&thinsp 0.15 V,而Pb2+/Pb4+的E0=&thinsp 1.67 V)。这可能是因为缺乏镧系元素的影响,导致锡离子5s孤对电子的Zeff比铅离子中的6s孤对电子较小。因此,在钙钛矿薄膜中产生的Sn4+会意外地导致高缺陷密度,从而降低了光电性能。此外,据认为,SnI2的急性毒性比PbI2更高。 除了锡,还有另一种具有相同价电子构型的IV族元素,即锗(Ge)。然而,由于锗离子的较小离子半径(73&thinsp pm)和更高的氧化倾向(Ge2+/Ge4+的E0&thinsp =&thinsp 0&thinsp V),导致锗基钙钛矿的光电特性和稳定性较差。为了寻找稳定的无铅钙钛矿材料,研究人员还尝试了其他组合物,其中包括含有Bi3+和Sb3+的ns2元素。然而,这些组合物形成的晶体结构具有相对较宽的带隙和较差的电荷传输能力,限制了它们的光电特性。目前来看,就钙钛矿晶体的光电性能、热力学和环境稳定性而言,铅仍然是最有前景的元素。(见方框1表)方框1表:铅和其他替代离子以及含有这些离子的卤化物钙钛矿(相关)化合物的典型性质O、可实现的;X、无法实现。数据来源于参考文献中。2:PSCs对环境的影响为了评估PSCs对环境的影响,人们采用了生命周期评估的方法,考虑了从提取、纯化和制备铅相关原材料,到PSCs的制造、安装、维护,以及产品寿命结束时的处理等所有阶段。对PSC生命周期的评估得出了一些积极的结论,认为PSCs比其他技术(如商用硅太阳能电池)更具可持续性。然而,PSCs中铅的泄漏仍然是一个令人担忧的问题。一旦安装完成,面板的大部分寿命将受到不受控制的大气条件的影响,而面板的损坏可能导致铅溶解和扩散。通过生命周期分析和浸出研究,可以确定潜在的暴露浓度,但其对人类健康或环境的影响取决于有机物可生物利用总铅的量以及生物可利用部分是否具有毒性问题。在土壤中,铅的生物利用程度取决于水中铅的形态、土壤的化学成分(如离子强度、pH值、天然有机物)以及土壤类型(如粘土、壤土等)。钙钛矿中的有机阳离子会改变土壤的pH值,并影响植物对铅的吸收能力。图1 PSC的铅泄漏途径及其潜在环境影响的评估因此,在评估环境或人类健康风险时,应考虑铅的形式、化学转化以及周围的化学基质。人类每周铅摄入量(LWI)被视为衡量铅暴露的健康指标,联合国粮农组织将其上限设定为0.025 mg/kg。通过假设损坏的PSC面板中的所有铅将在有限的时间内泄漏并进入环境,可以估计在不同百分比的分散和环境扩散情况下的LWI水平。图1所示的方案是在考虑不同可能情况的基础上进行计算的,以估计LWI的潜在水平。从这些结果可以推断出,只有一小部分总铅可能对人类构成风险,因为在许多情况下,LWI将高于人类3000-5000年前的估计水平以及2010年取消的成人LWI限额。3:PSC中的铅固定化策略1)晶粒封装 通过将钙钛矿颗粒包裹在疏水性有机物(如聚苯乙烯)、防水氧化物(如TiO2、SiO2、Al2O3)或不溶性铅盐(如PbS、PbSO4、Pb(OH)2)中,可以有效地阻断水进入和离子流出的通道。选择透水性较低的覆盖层材料,确保覆盖层具有强疏水性、高致密性并完全覆盖钙钛矿晶粒。例如,通过在钙钛矿结晶前或后处理过程中引入小分子的缩合物,或在钙钛矿层的顶部沉积疏水分子或功能盐(如磺基、硫酸盐、硫化物),可以实现对晶界和表面的原位封装。良好粒径分布的含铅钙钛矿显示出出色的水稳定性,并在作为生物成像闪烁体时表现出潜在的应用前景,而对目标动物没有显著的细胞毒性,这表明生物利用度降低。另外,将防水层插入用于内部或外部封装的PSC中,也可以防止水分渗透。然而,这些方法在器件损坏的情况下可能会失效。尽管通过将可固化材料与密封剂混合赋予了一些自修复特性,但由于受损密封剂的固化通常需要外部刺激(如紫外线辐射、加热),其保护效果可能存在问题。2)铅络合 通过添加适当的添加剂,形成与铅离子(Pb2+)形成低溶解度复合物的策略,降低钙钛矿中铅化合物的溶解度。典型的添加剂应具备两个供电子的路易斯碱官能团(如羰基、硫醇、磺基、硫化物、卟啉环、冠醚),通过酸碱相互作用与路易斯酸性的Pb2+离子配位。添加剂的疏水主链或侧链应具有疏水性部分(如长烷基链、氟基团、碳纳米管),使得在络合后形成的络合物在水中沉淀。因此,形成的络合物在配体与Pb2+离子螯合之后变得疏水。例如,在钙钛矿前体中加入聚丙烯酸接枝的碳纳米管(CNT-PAA),可以有效抑制相应PSCs中的铅泄漏。3)结构集成 通过提高组成元素之间的结合强度、集成体的连接性和界面内聚力,钙钛矿结构在器件内的集成可以增加水渗透、结构碎裂和分层的能垒,从而提高结构的稳定性,防止水溶解和铅泄漏。例如,通过引入具有强配位能力或偶极-偶极相互作用的界面/集成桥,可以增强器件的互连性。已证明,钙钛矿顶表面的化学相互作用增强对抗晶体坍塌和延缓铅释放的效果是有效的,但在器件损坏的情况下可能会失效。因此,需要将整个结构集成,包括钙钛矿层的表面、本体和界面。通过在钙钛矿层中引入可聚合单体,构建钙钛矿/聚合物基质,可以实现钙钛矿晶粒的整合。例如,丙烯酰胺单体作为钙钛矿膜的添加剂,可以在原位聚合过程中形成聚酰胺,并与钙钛矿发生转化。聚酰胺中的-C=O基团可以在晶界和钙钛矿表面与过配位的Pb2+发生相互作用,形成坚固的螯合结构在沉积的薄膜中。此外,聚酰胺在暴露于水中时易形成水凝胶,这进一步防止了Pb2+从器件溶解和扩散到水中。此外,。聚合过程中单体的团聚效应可以在钙钛矿层内引起压缩应变,从而增加离子迁移的活化能和水渗透的势垒,提高高湿度条件下的晶体稳定性此外,将钙钛矿渗透到刚性和介孔结构中,也有望防止结构坍塌。4)泄漏铅的吸附 由于铅固存效率(SQE)与吸附位点的密度直接相关,因此需要充足的负载材料,以确保足够的铅吸附能力。因此,在装置的内层中实施Pb吸附剂可能是不够的,因为逐层清除的能力有限。过多的绝缘材料会降低电极的导电性。此外,电荷传输层的厚度通常只有几百/几十纳米,这限制了捕获钙钛矿膜中所有Pb2+的能力。因此,更好的选择是将铅吸附材料嵌入外部封装中,这样可以避免负载量的限制,保持器件性能。例如,Li等人提出了一个优秀的方法,通过在前玻璃顶部沉积高透明度的Pb吸附剂,而不需要过滤入射光,并将聚合物密封剂与Pb2+结合材料的混合物插入后电极和封装盖之间。由于两侧都具有显著的铅吸附能力,这种化学方法可以显著减少铅泄漏达到96%。此外,应在不同的温度和pH条件下组合使用具有不同活性的铅吸附材料。例如,利用膦酸和亚甲基膦酸基团组成的铅吸附剂,由于其温度依赖的去质子化效应,可以在较大温度范围内保持较高的铅固存效率(SQE)。图2:PSC中的铅固定化方法4:PSC中的铅固定化策略对比及铅泄漏测量方案设计对上述四种铅固定策略从工作机理、保护效果及对器件性能的影响等方面进行了系统比较。值得注意的是,内部铅固定策略(即分离、络合、整合)表现出高选择性和快速响应性,因为在泄漏之前Pb2+离子得到了预先保护,但其铅固存效率(SQE)相对较低(约60-80%)。铅的固定能力与嵌入添加剂中功能位点的密度有关,尤其对于络合方法。然而,添加剂中的大多数是绝缘的,在某些情况下是光吸收的,这会破坏电荷传输和光子捕获,并且添加剂与Pb前体之间的相互作用会影响钙钛矿结晶。因此,在添加剂浓度超过钙钛矿材料的容忍度时,可能会在PCE和SQE之间存在权衡。然而,适量的Pb固定添加剂可以有利地提高PCE和寿命,分别通过最佳优化器件与原始器件的PCE和寿命比来定义。晶粒封装和化学络合的方法由于晶粒的惰性和形成的铅络合物的不溶性,在铅回收过程中可能面临挑战,因为铅回收依赖于从器件中提取铅的容易性。此外,在大规模制造中,在钙钛矿层中形成均匀覆盖层可能存在问题,因为难以控制层厚度,这限制了PSC的升级。在这些方面,结构集成似乎更具潜力,其中铅的固定能力与添加剂的结构稳定性相关,而不是与螯合位点有关,从而实现相对较高的SQE(约80%)。相比之下,在SQE接近100%的情况下,外部实施铅吸附剂在抑制铅泄漏方面更为有效,因为可以加载大量材料而不影响器件性能。然而,这种方法仍然存在一些缺点,可能会降低其有效性。值得注意的是,PSC的铅泄漏及其吸附在很大程度上取决于测试条件,如温度、pH值、暴露水的体积以及设备的损坏方式。然而,表2中报告的SQE值是在完全不同的条件下测量的。为了定量评估PSC的铅泄漏并比较全球各实验室使用不同铅固定技术的情况,需要建立一个由计算模型支持的标准铅泄漏测试方法。此外,建议采用标准方式测量一些指标,如总泄漏铅浓度(cLL)、泄漏率(LR)和SQE,并模拟钙钛矿在恶劣天气条件(酸性和大雨)下的两种暴露情况(浸水和滴水),如表2和图3a所示。此外,应使用老化的钙钛矿膜进行铅泄漏测量,而不是完整器件,包括有或没有分层封装剂,以模拟钙钛矿层完全暴露于水的情况。此外,可以进行生物测试,评估泄漏铅对植物或动物生长的影响。图3:建议的铅泄漏测量和铅固定器件结构四、小结铅基PSCs的研究在效率和稳定性方面取得了快速进展。现在是时候进一步研究如何在考虑可持续性的情况下,在大规模工业规模上实施这一有前景的技术的下一阶段,以避免从前体制备到太阳能电池板的长期工作寿命中可能发生的铅泄漏。同时,在实际部署基于卤化铅钙钛矿的光电器件时,需要进行深入的职业和当地人口风险评估,以确保在其运行过程中和使用寿命结束时防止铅泄漏,这不仅是法律要求,也是道德义务。有关铅使用的具体立法可以推动铅固定化和设备回收战略的创新。同时,应制定紧急应对措施计划,以减少发生火灾事故时空气中无意排放的铅对土壤的污染。此外,在将PSCs投放市场之前,应进行标准测试,以评估潜在的铅泄漏风险。参考文献Zhang, H., Lee, JW., Nasti, G.et al. Lead immobilization for environmentally sustainable perovskite solar cells. Nature 617, 687–695 (2023).Doi: 10.1038/s41586-023-05938-4
  • 制药企业总有机碳TOC分析仪选型的三步比较法
    总有机碳(TOC)分析仪的选型是制药企业使用人员和采购人员需要开展的一项重要工作,通常主要从使用功能、价格、售后服务等多方面进行比较。但制药企业使用的TOC分析仪与普通设备有所不同,在使用过程中更要兼顾其合规性和准确性。美国药典委员会(USP)建立和制定制药(其他相关)公司所需遵守的质量标准和准则,而美国食品药品监督管理局(FDA)通过检查,强制药企执行这些标准。其中涉及到USP ,要求检测制药用水的电导率;USP 要求检测制药用水的TOC。《中国药典》自2010年起也开始向美国药典看齐,要求检测制药用水的TOC,其中对注射用水(WFI)强制要求检测TOC,纯化水则为建议检测TOC。2020年新版《中国药典》自2020年12月30日起开始实施,其分为4个部分,分别为中药、化学药、生物制品以及通则与药用辅料。新版《中国药典》第二部分的“注射用水”项目下,关于“总有机碳TOC”检测项目的规定没有发生变化,规定注射用水中TOC含量不得超过0.50 mg/L。“纯化水”检测项目中,TOC与易氧化物检测任选其一。为了兼顾TOC检测的合规性和准确性,可以从以下3个步骤进行比较选择。第一步了解法律法规药典法规对TOC测定技术的部分具体要求如下:1TOC测定技术应能区分无机碳(溶于水中的CO2和碳酸氢盐分解所产生的CO2)与有机碳(有机物被氧化产生的CO2),并能排除无机碳对有机碳测定的干扰。2应满足系统适用性试验的要求。3应具有足够的检测灵敏度(最低检出限为每升含碳≤0.05 mg/L)。从上述第1条可以看出如果一台TOC分析仪无法区分无机碳和有机碳,无法排除干扰,仅仅是检测氧化前和氧化后有机物引起的差异,在法规的符合性上是存在瑕疵的,其易受有机卤化物的干扰,无法作为检测的标准方法。第二步了解验证文件《中华人民共和国药品管理法》第四十三条:从事药品生产活动,应当遵守药品生产质量管理规范,建立健全药品生产质量管理体系,保证药品生产全过程持续符合法定要求。《药品生产质量管理规范》第一百四十条:应当建立确认与验证的文件和记录,并能以文件和记录证明达到以下预定的目标:(一)设计确认应当证明厂房、设施、设备的设计符合预定用途和本规范要求;(二)安装确认应当证明厂房、设施、设备的建造和安装符合设计标准;(三)运行确认应当证明厂房、设施、设备的运行符合设计标准;(四)性能确认应当证明厂房、设施、设备在正常操作方法和工艺条件下能够持续符合标准。分析仪器属于检验设备,属于上述(四)中的设备范畴,而PQ(Performance Qualification)的含义属于性能确认,一台没有做性能确认,或者虽然做了性能确认,但所作项目并不完整的仪器设备是不符合法规要求的。使用这样的仪器设备存在法律风险。药企质量管理部门的工作职责就是评估风险并将其降到最低,因此IQ/OQ/PQ是否资料齐全且全面认证,是制药企业选择TOC分析仪时要考虑的一个非常重要的因素。第三步了解工作原理如果从TOC工作原理中的检测方法上进行分析,主流机型分为Non-Dispersive InfraRed(NDIR)非色散红外传感器和电导率检测法两种。其中NDIR是以非散布法来测量红外线的吸收,其光源所发出的红外线是两道平行的光线,一道通过样品池,另一道通过参比池。样品池内的气体来自于样品气体,红外线通过时会被样品气体中的CO2吸收;而参比池内的气体为高纯氮气,红外线可以完全通过,不被吸收。其工作原理如图1所示。该方法的工作原理来自于朗伯-比尔定律,是描述物质对某一波长光吸收的强弱与吸光物质的浓度及其液层厚度间的关系,即吸光度A与吸收层厚度B和吸光物质的浓度C成正比,即A=KBC。其中符号A表示吸光度;K表示吸光系数;B表示吸收层厚度;C表示吸光物质的浓度。朗伯-比尔定律在使用稀溶液(低浓度)时,吸光度A和浓度C才呈现线性关系,而使用高浓度溶液时,吸收成分之间与平均浓度之间的距离会减少,使得临近质点间电荷分布相互受到影响,改变了其对特定辐射的吸收能力,最后使得A-C的线性关系产生偏离。浓度越高则偏差越大。尽管有些制药企业用NDIR方法的仪器来检测低浓度的样品,但到了极低浓度时,红外法载气的纯度不够,其背景值会影响CO2的检测,因此,NDIR方法并不适用于极低浓度CO2的检测。电导率检测法另一种检测方法是电导率检测法。该技术能够通过测量水中的CO2,使用UV灯将水样中的有机物转化成CO2,CO2溶解在水中形成碳酸根离子,由于电导率传感器能检测到离子,从而间接检测了TOC。因为是物理检测,其速度既快,测量又准。电导率检测法又分为两种方法:直接电导率法和薄膜电导率检测法(又称选择性膜电导率法)。采用两种电导率法的TOC分析仪校验结果都很稳定,检测精度高。这两种技术主要的区别在于,直接电导率法比较容易受杂酸性、卤化有机物等的干扰;而薄膜电导率检测技术抗干扰性更佳。其中电导部分的工作原理如图2所示。 图3 薄膜电导率检测法,可区分有机碳与无机碳一般而言,制药企业制水系统的注射用水通常只有几十个ppb, 纯化水通常在100多个ppb左右, 所以只要电导率的传感器精度足够高,加之卓越的软件算法,就能确保在极低浓度的情况下测量TOC的准确性,而NDIR由于其工作原理的天然特性,无法准确测量极低浓度的TOC。综上所述,随着我国制药行业的快速发展,GMP检查也越来越严格,三步比较法是制药企业TOC分析仪选型的理想方法。原文刊登于《流程工业 制药业》杂志2021年第6期作者:扬子江药业集团江苏海慈药业有限公司 陈雅男 于小琴苏伊士Sievers分析仪 王欣了解更多!
  • 大连化物所开发出金属辅助氮化合成宽光谱捕光催化材料新方法
    近日,大连化物所太阳能研究部太阳能制储氢材料与催化研究组(DNL1621组)章福祥研究员团队开发了一种低功函金属粉末(Mg、Al、Zr等)辅助氮化的合成新方法,实现了在低温、短时间内高效氮化合成基于d0区金属元素(Ta、Zr、Ti等)的窄带隙金属氮氧化物半导体材料。基于该合成路线,团队有效降低了大部分金属氮氧化物的缺陷密度,并提升了相应材料的光催化性能;此外,采用该氮化路线实现了对SrTiO3和Y2Zr2O7等材料的高浓度氮掺杂,大幅减小其带隙,拓展了氮氧化物半导体光催化材料的开发边界。宽光谱捕光催化材料设计合成是实现太阳能高效光—化学转化基础,其吸收带边越宽则太阳能转化理论效率越高。大连化物所太阳能研究部长期致力于具有较宽可见光利用的新光催化材料开发,先后设计合成了氮氧化物(Adv. Mater.,2019;Adv. Mater.,2021;J. Energy Chem.,2021等)、含氧酸盐(Adv. Energy Mater.,2018)、金属有机框架类(Adv. Mater.,2018;Sci. China Chem.,2020;J. Am. Chem. Soc.,2022)和金属氮卤化物半导体材料(Angew. Chem.,2023;J.Mater. Chem. A,2023)等20余例不同类型、具有我国自主知识产权的新材料,在光催化分解水制氢方面展现了良好潜力。   在团队前期氮氧化物设计合成基础上,为解决传统氮化路线氮化动力学慢、氮化产物缺陷密度高等问题,本工作以低功函金属粉末为辅助氮化剂,将金属粉与金属氧化物前驱体进行简单的机械混合,利用氮化过程中金属粉末向金属氧化物的供电子效应,有效促进了金属—氧键的活化,并降低氮原子取代的能垒,从而大幅提升氮化动力学;该创新路线不仅实现了系列金属氮氧化物在低温、短时间内的高效合成,部分抑制了氮氧化物中缺陷的生成,显著提升了金属氮氧化物基光催化剂水分解性能,而且合成了多个以往传统氮化合成路线无法制备的新材料。该低功函金属辅助增强外源阴离子植入策略有望拓展至含硫、含碳等混合阴离子或非氧阴离子半导体的设计合成和开发。   上述工作以“Metallic powder promotes nitridation kinetics for facile synthesis of (oxy)nitride photocatalysts”为题,于近日发表在《先进材料》(Advanced Materials)上。该工作的共同第一作者为我所DNL1621组毕业生鲍云锋博士、博士研究生邹海、博士后杜仕文,以上工作得到了国家科技部、国家自然科学基金等项目资助。
  • Angew:近红外有机电致发光(NIR-OLED)新突破
    近年来,高效率近红外发光材料因其在生物成像、医疗、光通信和夜视器件等方面的重要应用而备受关注。除了无机近红外量子点和卤化物钙钛矿等材料外,各种有机近红外材料包括传统的荧光小分子材料、共轭聚合物、稳定的发光自由基、热激活延迟荧光(TADF)材料和金属有机配合物磷光材料等因其具有化学结构可调、稳定性好、便于制备近红外有机电致发光器件(NIR-OLED)的优势而得到迅速的发展。在这些有机近红外材料中,后三种材料在OLED中对单线态和三线态激子的利用率能够达到100%,从而提高了器件的效率。尽管如此,受制于能隙法则 (energy gap law),即随着激发态和基态之间的能隙差减小,非辐射跃迁速率常数呈指数增加,导致开发高效率的有机近红外发光材料( 700 nm)一直是一个巨大的挑战,从而严重限制了相关器件电致发光效率的提升。目前,扩展π-共轭和增强发光分子的电荷转移(CT)是红移材料发光波长的两种常见方法,通常需要将两种方法相结合才能获得近红外区的发光。因此,以前报道的近红外发光材料由于具有很强的CT性质,发光光谱半峰宽(FWHM)通常高达70-150 nm。当最大发光波长小于770 nm时会有部分光谱覆盖可见光区域,严重降低近红外光的纯度,这种情况不利于高性能纯近红外发光或夜视器件的制备。如若为了提高近红外光纯度,将材料的最大发光波长红移至超过770 nm,则发光效率将进一步显著降低。因此,到目前为止,尽管已有极少量性能较好的NIR-OLED获得超过15%的外量子效率,但表现出纯近红外发光的OLED电致发光效率通常低于5%。近日,西安交通大学化学学院杨晓龙、孙源慧、周桂江等人与五邑大学陈钊合作报道了电致发光效率达到16.43%的纯近红外发光NIR-OLED。作者通过优化Ir(III)配合物的分子结构设计降低金属中心到配体电荷转移跃迁,提高三线态激发态中的基于配体的ππ跃迁成分,成功地将发光光谱半峰宽降低至43 nm,因此获得了最大发射峰位于730 nm附近的纯近红外发光材料 (图1)。图1. 近红外Ir(III)配合物的分子设计策略和发光性质。与其他纯近红外材料相比,由于具有相对较短的发射波长,因此可以缓解能隙法则的不利影响。此外,理论计算表明论文报道的配合物激发态形变非常小,因而最终获得了优异的近红外发光效率。作者采用溶液法制备了具有传统结构的电致发光器件(图2),选取的功能层材料具有合适的能级,能够有效地促进从主体到客体之间的能量传递,并将激子限制在发光层内,因此,器件的电致发光光谱与其对应的光致发光光谱近乎一致。基于BIqThIr和BIqThIrO的器件电致发光波长分别为737 nm和733 nm,半峰宽仅有47 nm和44 nm,这使整个光谱中近红外成分超过98%,实现了纯近红外发光。图2. (a) 器件结构。(b) 电致发光光谱。(c) 电流密度(J)-电压(V)-辐射度(R)曲线。(d) 电致发光效率与电流密度的特性关系。由于具有优异的近红外发光性能,溶液法制备的NIR OLED最高电致发光效率分别高达15.00%和16.43%,显著超过了已报道的基于近红外Ir(III)配合物的器件最高电致发光效率,也显著超过了采用溶液旋涂法制备的基于不同有机近红外发光材料的器件最高电致发光效率 (图3)。图3. (a) 基于Ir(III)配合物的溶液旋涂法和真空沉积法NIR-OLED发光峰在700-900 nm范围内的最大电致发光效率。(b) 基于不同有机发光材料溶液旋涂法NIR-OLED发光峰值在700-900 nm范围内的最大电致发光效率。综上所述,作者提出了一种开发高效率纯近红外发光材料的新策略。通过合理地设计分子结构来调控三线态性质,减少能隙定律的不利影响,为如何改善近红外材料发光性能提供了新的思路。这一成果近期发表在Angewandte Chemie International Edition 上,该论文第一作者为西安交通大学化学学院杨晓龙副教授,通讯作者为西安交通大学化学学院孙源慧副教授、周桂江教授与五邑大学陈钊博士。原文(扫描或长按二维码,识别后直达原文页面): Narrowband Pure Near-Infrared (NIR) Ir(III) Complexes for Solution-Processed Organic Light-Emitting Diode (OLED) with External Quantum Efficiency Over 16 %Xiaolong Yang, Shipan Xu, Yan Zhang, Chengyun Zhu, Linsong Cui, Guijiang Zhou, Zhao Chen, Yuanhui SunAngew. Chem. Int. Ed., 2023, DOI: 10.1002/anie.202309739
  • 江桂斌院士团队ES&T | 口罩中细颗粒物/有机污染物的识别与风险评估
    在新冠肺炎(COVID-19) 疫情爆发期间,一次性聚丙烯口罩为我们提供了有效保护。据相关统计及估计,疫情大流行期间欧美有超过60%的人在公共场所佩戴口罩,在我国这一比例达到了90%;2020年全球每月消耗约1290亿个口罩。考虑到口罩中的添加剂及副产物,以及大量微纳米级的颗粒物,大量废弃口罩导致的污染物的环境释放以及长期佩戴口罩可能造成的健康影响引起了广泛关注。中国科学院生态环境研究中心环境分析与毒理研究组在口罩中污染物分析与识别方面开展了系统工作,取得重要进展。研究成果以“Disposable Polypropylene Face Masks: A Potential Source of Micro/Nanoparticles and Organic Contaminates in Humans"为题,发表于环境领域顶级期刊Environ Sci & Technol (2023, 57, 5739-5750)上(文末阅读原文可查看)。选取一次性医用口罩(DMM)、外科口罩(MSM)和 (K)N95 口罩为研究对象 表征了口罩中微纳米颗粒的形状、尺寸、数量以及化学组成;使用GC-Orbitrap/MS,通过非靶向分析技术,在口罩中鉴定出了79种有机化合物,在口罩纺粘无纺布和熔喷布脱落的微纳米颗粒上鉴定出了18种化合物; 开展了初步健康风险评估。△ 研究内容示意图(点击查看大图)01口罩中有机化合物的筛查 针对佩戴口罩中的有机化合物,研究者首先提取了完整口罩中的有机化学物质。同时,收集口罩生产原材料(散装纺粘无纺布和熔喷无纺布)中的微纳米颗粒,提取颗粒上的有机化学物质。利用GC-Orbitrap/MS,在60,000分辨率下全扫描获得高分辨数据。基于TraceFinder 5.0和Deconvolution软件,结合保留指数进行非靶向分析,在整体口罩中初步检测到79种化合物,包括苯衍生物16种、烷烃20种、酚类10种、卤化物11种、萘类5种、酯类5种、联苯类2种、酮类3种、醚类3种。在颗粒物检出的18种化合物中,有 10种与口罩中检出物重合。 TraceFinder软件非靶向分析中,数据过滤条件包括精确质量偏差、信噪比、峰强度、离子重叠窗口、谱匹配参数、保留指数差值、标准品确认等。图1以随机样品为例,展示了筛选过程中化合物数量的变化情况。△图1. 随机抽取DMM、MSM 和 (K)N95 口罩中化合物数量随过滤条件的变化(点击查看大图)△图 2.口罩中二丁基羟基甲苯(BHT)、2,4-二叔丁基苯酚(DTBP)和三(2,4-二叔丁基苯基)亚磷酸酯(TMS)在Tracefinder 数据处理软件的光谱解卷积结果 (上图)与其分析标准品的 EI质谱图匹配(下图)(点击查看大图)02去除背景 从采样到测试整个过程都可能引入分析伪影。由于完全物理去除污染物无法实现,尤其是当背景和伪影峰重叠时。有效解决办法是在分析过程始终正确采用程序空白。基于程序空白,数据处理过程中出现的任何背景可有效去除。 本文所有分析数据均附有程序空白。其中,从口罩原材料的颗粒中提取有机化合物的程序空白是对铝箔进行清洗、提取的提取液。GC-Orbitrap/MS配套的数据处理软件可自动扣除背景空白,当样品中色谱峰的响应比空白中峰响应高一定倍数时,便计入特征。 03定性识别的置信度 在非靶向和疑似靶向分析中,即使是 HRMS,仍存在假阳性率高的问题。因此,定义报告化学注释置信度的框架尤为重要。本研究基于Koelmel等人提出的置信框架(图3)对所识别化合物结构的可信度进行注释。口罩中共筛选出79种化合物,其中置信度为1的化合物4种,置信度为2的化合物70种,置信度为3的化合5种。置信度1有标准品。且在实验室内部用相同方法测试,对比保留时间、EI 质谱和参考质量一致。置信度2没有标准品,通过外部质谱库检索匹配到的唯一可能结构或母核相同的异构体,△RI、分子离子、EI谱图匹配。置信度3没有标准品,通过外部质谱库检索匹配到的暂定侯选物,△RI或分子离子或EI谱图匹配。置信度4没有标准品,外部谱库无匹配结果,可得到唯一化学式或化学系列类别。置信度5没有标准品。不能识别,但具有可重现的质谱图。△图3. GC-HRMS非靶向分析的置信度框架 04稳定性 在整个仪器分析过程中,每间隔 6-7 个样品注入质控混标溶液(含10个浓度均为10 ng/mL的目标物和1个内标)对 GC-HRMS 仪器的稳定性进行监测,总共测试 11 次质控样。计算每种化学品的绝对峰面积和内标校正峰面积的标准偏差,绝对峰面积RSD小于10% ,IS 校正峰面积RSD小于 4%,表明仪器的稳定性满足分析要求。△图 4. 质控混标10 种化学品的绝对峰面积 (a) 和 IS 校正峰面积 (b)(点击查看大图)05检出率 鉴定出的79种化合物中,18 种化合物的检出频率≥80%,44 种化合物的检测率低于20%,该特征在三类口罩中类似。低检出频率的化学品可能与个性化设计、制造、包装和储存条件有关,例如,在仅有的2个印刷口罩样本中检测到了5种着色剂。高检出频率的化合物反映了口罩生产中原材料和标准工艺流程相关的风险。例如,香兰素和二苯甲酮在口罩中的检出率较高,它们分别被用作塑料生产中的光引发剂,这表明口罩中存在有意添加的化学物质(IASs);此外,萘的高检出频率也说明非有意添加物(NIASs)的存在。这些有害物质或与工艺相关的未知化合物显然不属于常规检测的清单化合物,其发现依赖于非靶向分析。GC-Orbitrap/MS具备高灵敏度、高选择性、宽线性范围、完善的工作流,非常适用于此类分析。 06健康风险评估 以3种置信度为1的酚类为例进行初步的健康风险评估,发现计算出的暴露水平处于总允许暴露限值的1%以下,提示戴口罩造成的这些化合物相关的健康风险较低。当然,有些化学品即使在低暴露水平下也可能毒性很大,并且可能会发生复合暴露,因此需要进行详细的健康风险评估。GC-Orbitrap/MS实力非凡,对口罩这类重要的日用品开展非靶向分析,鉴定出79种置信度较高的化合物,发现了与原材料和生产工艺相关的添加剂和副产物。结语中科院生态环境研究中心江桂斌课题组主要开展新污染物的环境转化过程、毒理与健康效应研究,发展分析新技术、新仪器与新方法。研究成果发表在Nat Nanotechnol、Nat Commun、Chem Rev、Chem Soc Rev、Angew Chem Int Ed、Environ Health Perspect、 Environ Sci Technol等期刊。2021年课题组研制成功国际首台高通量多功能成组毒理学分析系统,为环境中未知有毒污染物的筛查及复合效应等的研究提供了全新的技术手段和通用平台。课题组成员包括多名杰青、优青,曾获得国家自然科学奖、美国化学会ES&T杰出成就奖、长江学者成就奖、科学探索奖、中国分析测试协会科学技术奖、 国家环保总局科学技术奖、中国科学院杰出科技成就奖等。
  • 精彩持续中 | 第五届“逐梦光电”国产光电分析仪器和核心技术研制与应用研讨会暨怀柔光电产业发展论坛
    2024年8月15日,由北京卓立汉光仪器有限公司、北京怀柔仪器和传感器有限公司、先锋科技(香港)股份有限公司、无锡中镭光电科技有限公司联合举办的第五届“逐梦光电”国产光电分析仪器和核心技术研制与应用研讨会暨怀柔光电产业发展论坛的精彩报告继续进行。来自全国各大知名高校及研究院的近百名专家学者出席了本次会议。8月14日至15日,线上直播观众人数突破9.3万人,明日精彩继续,欢迎预约直播。▲昨日精彩回顾(点击查看)本次研讨会聚焦荧光、拉曼、条纹、分幅、iCMOS、成像光谱仪、2μm激光器、光机、自动化,磁光,压电,仪器联用等10余类产品以及钙钛矿,太阳能,二维材料,燃烧诊断,等离子体诊断,LIBS,半导体,激光物理等八大应用方向。会议期间,共进行了多场精彩纷呈的学术报告和专题研讨。今日,17位来自光电探测、磁光、荧光及超快等领域的专家学者分别就各自的研究领域作了深入的阐述,分享了最新的研究成果和经验。▲华中科技大学研究员——韩俊波华中科技大学韩俊波研究员做二维本征铁磁体的磁性调控及应用探索报告,二维磁性材料是基础磁学和新型存储器件研究重要平台,其宏观性质和微观磁畴密切相关。深入研究其微观磁畴的调控方法及其与宏观性质间的内在联系,对提升材料性能、优化器件结构、诱发新奇量子物性至关重要。韩老师课题组以二维Fe3GeTe2(Fe3GaTe2)为载体,采用低温显微磁光克尔技术,系统研究了二维Fe3GeTe2在界面、电流及磁场调控下铁磁增强特性。获得如下有趣实验结果:(1)在二维反铁磁/铁磁异质结中观测到“非局域”铁磁增强效应;(2)在二维Gr/ Fe3GeTe2/Gr中观测到电流诱导的拓扑磁光效应;(3)在二维单个Fe3GeTe2中同时实现了非易失性和易失性磁光存储。这些研究成果不仅增进了对二维磁性材料微观机制的理解,也为未来磁存储技术和自旋电子学的发展开辟了新方向。▲Clemson University Assistant Professor——Lianfeng Zhao 远在美国克莱姆森大学赵连锋助理教授通过国际直播平台,为国内外科研工作者做Metal Halide Perovskite Laser Diodes英文报告,赵老师聚焦于金属卤化物钙钛矿半导体这一多功能的杂化材料,该材料在推动下一代光伏与发光技术革新中展现出巨大潜力。报告重点阐述了团队在电泵浦钙钛矿激光二极管领域的最新突破,包括钙钛矿内光增益机制的深入研究,以及在极端电流条件下器件性能的优化策略。这些成果不仅增进了对该领域关键技术的理解,还为克服技术障碍、推动该技术变革性发展提供了宝贵见解。▲北京交通大学教授——梁春军北京交通大学梁春军教授做一种新型光伏发电技术_钙钛矿太阳能电池报告,介绍钙钛矿太阳能电池的基本器件结构,进展情况和未来趋势。▲北京大学研究员——康佳昊北京大学康佳昊研究员做显示器件的频率色散和集约模型报告,介绍了北京大学碳基电子学研究中心在显示器件建模方面的部分研究。报告核心内容涵盖三大方面:首先,简要介绍了碳基电子学的基本概念及碳基显示在未来显示技术中的潜力;其次,深入剖析了薄膜晶体管(TFT)的关键性能特征,包括界面态现象、偏压稳定性以及电容的频率色散行为,并据此构建了相应的集约模型,为TFT性能预测与优化提供了理论支持;最后,探讨了微型发光二极管(Micro-LED)在微缩化过程中的尺寸效应,详细分析了其电学与光学性能的频散特性,并建立了集约模型以准确描述这些特性,为Micro-LED显示技术的发展奠定了坚实基础。▲湖北众韦光电科技有限公司研发经理——戴宏伟湖北众韦光电科技有限公司戴宏伟博士做低温磁场下的微区磁光克尔及光谱测试报告,报告从磁性二维材料的磁光克尔研究出发,探讨低温磁场下的微区光谱测试面临的问题与解决方案,如设备稳定性、磁场干扰及高精度要求等,并随后提出了针对不同磁体和低温环境的定制化解决方案。这些方案旨在提升测试平台的易用性和稳定性,为磁光学研究提供强有力的技术支持。▲北京交通大学教授——张福俊北京交通大学张福俊教授做倍增型有机光电探测器报告,重点介绍倍增型有机光电探测器的工作。张老师课题组在2013开始探索全新机理的倍增型有机光电探测器,2015年报道了基于单载流子有源层制备出界面附近受陷电荷诱导能带弯曲的倍增型有机光电探测器,并通过器件工程实现响应范围可调、正、反向偏压下都能工作且响应范围可调的器件。并从有源层中载流子传输通道的调控入手,率先报道了一种具有单载流子传输特性的低暗电流、倍增型有机光电探测器。课题组还通过多元化的策略,包括三元材料体系、厚膜策略调控光场分布、精细的界面工程以及电极优化等,成功制备出响应范围更加灵活、支持双向偏压操作、具备双探测窗口及功能集成化特性的倍增型有机光电探测器。这些创新不仅丰富了倍增型有机光电探测器的设计思路,也为未来高性能光电探测技术的发展提供了宝贵的经验和启示。▲中国科学院半导体研究所青年研究员——郝宏玥中国科学院半导体研究所郝宏玥青年研究员做超表面锑化物红外探测器研究报告,锑化物红外探测材料体系晶格失配度低,能带结构灵活可调,是实现高性能红外探测的优选材料。郝老师课题组聚焦于超表面结构在锑化物红外探测器领域的研究进展,并展望相关技术在焦平面成像领域的应用。通过在单波段锑化物红外探测其基础上,通过超表面结构设计及高精度图形转移技术,实现波长调制型可见-红外探测器制备,及片上集成多谱段红外探测芯片制备,为新一代宽光谱、多谱段红外焦平面探测阵列提供技术基础。▲浙江大学教授——何海平浙江大学何海平教授做钙钛矿发光:材料、器件及应用报告,全面概述了卤化物钙钛矿材料因其优异的光电特性,在新型显示、照明等领域具有潜在的广阔应用情况。何教授课题组聚焦于钙钛矿的发光性质,介绍课题组在钙钛矿光致发光、电致发光、激光等三个方面的研究工作,以及近期在钙钛矿量子点显示应用方面的进展。▲中国人民大学教授——龙峰中国人民大学龙峰教授做全光纤倏逝波荧光生物传感仪器及检测新污染物的应用报告,介绍了新污染物治理在美丽中国建设中具有重要的战略定位。新污染物具有“新”“多”“广”“低”等特点,其快速精准识别和监测是构建新污染物治理体系的重点和难点。传统监测技术存在前处理繁琐、成本高、难以满足现场快速检测需求等不足。龙教授团队通过建立全光纤倏逝波荧光生物传感新理论并突破系列关键核心技术,创制了具有完全自主知识产权的全光纤倏逝波荧光生物传感系列仪器,结合多样化生物靶向识别材料和生物传感机制,建立了新污染物多指标现场快速检测新方法,为新污染物监测提供精准化、即时化、智能化、集成化技术支撑。▲华北电力大学讲师——仇恒伟华北电力大学仇恒伟讲师做钙钛矿纳米晶的表界面调控和光电应用报告,全无机CsPbBr3钙钛矿纳米晶(PNCs)稳定性不足等诸多问题,无损晶格外延核壳纳米晶有望彻底攻克该问题并最小化界面电荷积累。仇老师从PNCs单晶面S系半导体外延生长出发,辅以合适的表面配体钝化晶面以降低结合能垒,实现晶格外延CsPbBr3/PbS核壳纳米晶可控合成,这一创新方法不仅增强了纳米晶的稳定性,还优化了其光电性能。进一步地,报告介绍了结合普适性纳米晶图案化和3D打印工艺的最新进展,成功构建了集成式光电探测阵列。这一技术突破不仅提升了光电探测器的性能和分辨率,还为其在更广泛领域的应用开辟了新途径。仇老师所做的一系列工作旨在推动PNCs稳定性和光电性能方面的发展,并极大拓展其应用。▲RMITUniversity研究员——Xiaoming Wen远在澳大利亚皇家墨尔本理工大学的文小明研究员通过国际直播平台,为国内外科研工作者做Time dependent steady-state and time-resolved photoluminescence under light bias in halide perovskites英文报告,文老师首先介绍了稳态光致发光 (PL) 和时间分辨光致发光 (TRPL) 技术发展现状。然而,当对表现出光照诱导的 PL 光谱、效率和寿命变化的材料(如卤化物钙钛矿)进行测量时,这些技术面临一些问题。在过去十年中,卤化物钙钛矿因其优异的光电特性和出色的器件性能(如高效太阳能电池、光电探测器和 LED)而引起了极大的研究兴趣。使用标准 PL/TRPL 测量时,可能会忽略和遗漏关键信息,并可能导致误解。本次报告文老师重点介绍一些光照诱导 PL 效率和载流子寿命增加的应用案例。使用专门设计的时间相关 PL/TRPL,有/没有光照偏置,进行探索异常的光电特性,并利用其团队最近提出的晶格能量库理论对该现象做了很好地解释。文老师作为卓立汉光产品的使用者,也在演讲中感谢卓立汉光的协助,其团队在RIMT大学定制了多功能PL-TRPL光谱系统,该系统能够完成上述大部分功能,并且功能大大扩展,包括激发、检测范围。可以预期该系统将能为其团队的光物理研究提供重要的技术支持。▲华北电力大学讲师——贾东霖华北电力大学贾东霖讲师做钙钛矿量子点表面特性调控研究及其光伏应用报告,钙钛矿量子点(PQD)凭借出色的光电性能和化学加工性,被视为下一代光伏器件的潜力材料,然而其表面高密度的长链绝缘油酸油胺配体成为电荷传输的障碍。贾去除这些原始配体会引发一系列问题,如表面缺陷增加、载流子捕获、钙钛矿晶格畸变以及水氧渗透通道的形成,从而影响光伏性能。为解决这些问题,研究团队开发了一系列创新策略,包括表面缺陷钝化、表面配体取代和表面晶格锚定等,以优化PQD的表面状态。通过这些策略,贾老师有效改善了太阳能电池的载流子提取效率,使无机CsPbI3-与混合FAxCs1-xPbI3-PQD太阳能电池的光电转换效率分别提升至16.64%与17.29%,为改善量子点光伏性能的表面调控策略提供了全新见解。▲香港城市大学教授——雷党愿香港城市大学雷党愿教授做微纳光腔与低维半导体相互作用及功能器件研究报告,首先分享了微纳光腔这类具有电磁场极端局域化和增强的超构光学体系,是发展多功能、小型化、低功耗、超快响应光学器件的基本模块。雷教授介绍了耦合光学微腔与钙钛矿量子点,构建高稳定性、低量子缺陷和超低阈值的微腔激光器(Nature Communications 2020, 11, 1192 Advanced Functional Materials 2024, 2401247);接着展示集成自组装等离激元纳腔阵列与无铅钙钛矿量子点,实现宽带高探测灵敏度和响应度的柔性光电探测器(Nano Letters 2021, 21, 9195);最后介绍近场耦合等离激元纳腔偶极共振模式与过渡金属硫族化合物自旋禁阻暗激子或其异质结中层间激子,获得室温下暗激子(Nano Letters 2022, 22, 1915)或层间激子的可观测发光(ACS Nano 2024, 18, 13599)。这些研究成果不仅展示了微纳光腔与低维半导体相互作用的独特优势,也为未来高性能光学器件的设计与开发提供了重要的科学依据和技术支撑。▲中国科学院长春应用化学研究所研究员——秦川江中国科学院长春应用化学研究所秦川江研究员做准二维钙钛矿发光机理与高性能器件报告,首先强调了有机/无机杂化钙钛矿半导体材料的显著优势,包括高吸收截面、高载流子迁移率和低成本溶液加工等特性,使其成为新一代半导体发光材料和激光器增益介质的理想选择。然而,这类新型材料的发光和激射原理尚未完全阐明,成为国际研究难题。针对这一挑战,秦老师课题组利用瞬态光谱技术取得了重要突破,不仅证实了Rashba自旋效应和暗态三线态激子的存在,还首次提出了准二维钙钛矿中长寿命暗态三线态激子的概念,并深入探讨了其对光电性能的影响。通过创新的维度和组分工程策略,团队成功调控了钙钛矿中的三线态激子行为和发光特性,进而实现了系列高性能发光器件的制备,和具有低激发阈值的室温连续光泵浦准二维钙钛矿激光。▲北京卓立汉光仪器有限公司应用专家——覃冰北京卓立汉光仪器有限公司应用专家覃冰做超快分子光谱探测技术及解决方案报告,介绍卓立汉光超快光谱探测方案在飞秒及皮秒时空中对超快物理化学及生物过程进行监测的应用,如太阳能电池、低维材料、量子器件、超导材料、新型半导体、纳米催化、生物传感等材料中载流子时空演化,载流子的激发动力学,钙钛矿中的放大自发辐射测试等。▲北京理工大学教授——王卓然北京理工大学王卓然教授做多元硫硒化物半导体光电器件报告,在立足于信息技术领域对新一代光电子器件与集成技术的重大需求基础上,报告聚焦半导体光电材料与器件领域关键问题,重点介绍以Cu2ZnSn(S,Se)4和AgBiS2为代表的环境友好型多元硫硒化物半导体在薄膜光伏与光电探测领域的应用,并就未来面向短波至中波红外应用的多维度硫硒化物材料体系与高维度集成光电传感系统展开讨论。▲北京金竟科技有限责任公司应用经理——李洋北京金竟科技有限责任公司李洋做阴极荧光成像及光谱采集系统及其在半导体领域的应用报告,报告内容涵盖其公司简介、阴极荧光含义及其原理、阴极荧光相关产品介绍及应用案例分享、 电子束曝光简介及产品介绍及应用案例分享、合作用户单位等,整个报告展示了北京金竟科技有限责任公司在阴极荧光成像及光谱采集系统、电子束曝光技术方面的深厚积累和创新能力,以及这些技术在推动半导体行业发展中的重要作用。▲中国人民大学博士——曹丹丹中国人民大学曹丹丹博士做纳米晶半导体高效单光子上转换发光报告,研究发现,钙钛矿具有显著的“声子辅助-单光子上转换”光致发光,浅能级缺陷可作为关键中间态角色。报告分享了基于配体工程调控深缺陷分布,可以有效抑制非辐射复合损失;基于结晶动力学工程调控浅缺陷分布,能够大幅度提升亚带隙电子跃迁的振子强度。在两者协同作用下,钙钛矿纳米晶的单光子上转换强度提高40%以上,有效光学冷却增益窗口超过130 meV。上述结果为深入认识纳米晶光致发光机制、拓宽纳米材料在光学/光电方面的实际应用提供了新的学术见解。▲仪器展示介绍环节除上述大会报告以外,会议期间,结合用户各种需求,卓立汉光公司适时展示多种产品系统,部分产品系统提供免费测样,欢迎详询:拉曼光谱荧光光谱微纳器件光谱响应度测试系统光栅单色仪/光栅光谱仪超快时间分辨光谱测试系统2μm波段掺铥光纤激光器笼式系统阻尼隔振平台
  • 废水监测:从生化需氧量BOD/化学需氧量COD到总有机碳TOC分析的转变
    图片来源:Avatar _023/Shutterstock.com随着全球人口水平的上升,包括制药、炼油和制造在内的各个行业也在不断发展和扩张。尽管存在差异,但每一个行业都应对所产生的水污染负责,并确保水质质量。无论是市政还是工业废水,都对人类健康构成很大风险并危害环境;因此,所有废水在排放前都必须经过仔细处理和密切监测。随着公众对健康和环境保护的不断推动,废水排放法规变得越来越严格。每个国家都有自己的废水管理机构和各种排放限制,因而开发和使用了各种监测方法。快速准确识别污染物的方法对防止有害物排放到公共水源中至关重要。世界卫生组织(WHO)于1948年应运而生,旨在帮助和促进全球健康[6]。2017年,WHO开展了一项涉及100个国家和275个国家标准的废水排放质量要求的研究。该研究确定了废水中五类最常见的污染物,即化学品、营养物、有机物、病原体和固体,其中有机物是最常监测的类别[28]。有机化合物占废水污染的很大一部分,并已监测了100多年。世界上测量有机物含量最常用的分析技术是生化需氧量BOD。[43]随着技术进步,法规允许使用其他方法,例如化学需氧量COD[44]和总有机碳TOC[45]来评估有机污染物。尽管BOD被普遍使用,但为了满足合规性和过程控制的要求,从BOD/COD转向TOC是一个新的趋势。有机污染参数有机污染物是一类污染物,由于其重要性,需要在废水中进行监测。然而,因为有多种有机化合物,单独测量它们中的每一种不切实际。因此,“总和参数”的概念用于将许多具有相似质量的化合物归为一类:BOD、COD和TOC是最常用于有机污染物检测的参数。生化需氧量BOD20世纪初期,大量污水和有机物释放至泰晤士河中,从英国排至大海大约需要五天时间。当微生物分解所含的有机物时,它们也会消耗水中的溶解氧含量,危害水生生物。[1, 48]因此,1908年发明了为期五天的生化需氧量BOD5测试,作为衡量水中有机污染物的一种方法。BOD5是用于确定废水中有机污染物含量最常用的总和参数之一。该技术依赖于微生物通过消耗样品中的氧气来分解有机物。水样中的大量有机物导致溶解氧消耗更大。BOD5测试通过测量20°C下五天培养期所消耗的氧气量,提供了有机污染物的间接指示。[43]BOD测试的需氧量通常包括碳质生化需氧量CBOD和含氮生化需氧量NBOD,这是由氨或其他含氮化合物的分解而产生的。氮需求会阻碍BOD5测试,因此通常使用替代的CBOD方法,这需要添加抑制性化合物。[43]由于该测试在过去的一个世纪中得到了长久认可,BOD5参数已纳入几乎所有全球废水法规中。虽然得到广泛使用,但生化需氧量仍存在许多问题。BOD5的一个主要缺点是取样和获得结果之间需要五天时间。该测试的持续时间使BOD5无法成为用于过程控制的参数。[2, 8]当污水处理厂意识到其已经超过了污水排放限定值时,实际上其不合规的排放已经经过了几天时间。[42]BOD5测试的另一个主要缺点是它依赖于微生物的生长。因此,阻碍生物生长的化合物(包括氯、重金属、碱或酸)都会影响结果。[8, 39]BOD仅测量可自然降解的物质,但有几种微生物无法分解的有机化合物,因此BOD5无法测定水中所有有机污染物。[8]由于取决于生物生长,该测试不仅遇到精度和准确度问题[8, 42],且灵敏度较差。[42]化学需氧量COD化学需氧量COD是另一种间接方法,用于确定废水中的有机污染物含量。在该测试中使用化学氧化分解水中的污染物,然后测量在该过程中排出的氧气。与BOD5测试类似,氧气消耗量的增加通常意味着样品中存在更高含量的有机物。[3]有许多不同的COD测试方法已获批准。开放式回流法要求样品在重铬酸钾强酸中回流。由于与氧化剂短暂接触,挥发物可能无法有效氧化。当样品中挥发物含量增加时,密闭滴定回流是一种令人满意的方法,因为它们与氧化剂长时间接触。任何可以吸收可见光的物质(例如不溶性悬浮固体和带色组分)都会影响结果。[44]与BOD5相比,COD测试有一些优势。其中一大优势是缩短了测试所需时间。BOD需要五天才能获得结果,但COD通常只需几个小时。[2, 44]另一个好处是该测试不需要微生物生长进行氧化,因此产生相对可靠和可重复的结果。[2]与BOD只能测定可生物降解有机物的需氧量不同,COD氧化的更为彻底,几乎可以氧化样品中的所有有机物。因此,COD测试结果更高,也提供了对水中有机物含量更准确的评估。COD测试的主要缺点是需要使用有毒化学品,并会产生更多危废,包括银、六价铬和汞:氯化物和其他卤化物会在不添加银或汞离子的情况下严重干扰测试。吡啶和类似的芳香族化合物可能会排斥氧化并导致假的低测量结果。[44]总有机碳TOC多年来的技术进步,诞生了总有机碳TOC分析仪,它提供了一种测量水中有机物含量的直接方法。与BOD5或COD不同,BOD5或COD使用需氧量来确定有机物含量,而TOC分析仪直接测量并定量分析样品中所含的碳。[42, 44, 45]所有TOC分析仪都是将有机物氧化成CO2,然后可以使用电导法或非色散红外检测(NDIR)对其进行测量。[45]样品氧化的不同方法包括燃烧、紫外线过硫酸盐和超临界水氧化 (SCWO)。[45]与传统的需氧量测试相比,TOC分析有许多优势。BOD5只能测量可生物降解的有机物的需氧量。TOC分析仪可快速氧化所有有机化合物,以测定样品中存在的有机物。与COD测试不同,TOC分析可以识别有机碳和无机碳之间的差异,包括碳酸盐、碳酸氢盐和二氧化碳。如果样品中挥发性有机物含量降低,分析仪可以酸化并置换出无机碳以定量分析不可置换的有机碳(NPOC)。[43]分析仪还可以独立评估总碳(TC)和总无机碳(TIC)以计算总有机碳。TOC分析仪的显着优势是具有更高的灵敏度和多功能性,它可以测定低至0.03 ppb和高达50000 ppm的有机物浓度。与传统的BOD和COD实验室方法相比,TOC可在短短几分钟内产生准确的结果。TOC仪器通常有实验室和在线型号,这使得它们成为合规性和过程控制中必不可少的工具。[43]标准方法5310指出,“总有机碳TOC是总有机物含量更方便和直接的表达方式… … TOC的测量对于水处理和废物处理厂的运行至关重要”。[45]全球有机物监测法规的转变每个地区或国家的管理机构都制定了废水排放中有机污染物可接受的排放限值。BOD5自1908年开始推广使用,几乎包含在全球所有法规中。然而,随着监测技术的进步,法规也在不断发展。一些国家允许使用BOD与TOC的相关性[4]甚至声明TOC将用作最佳可用技术。[7]北美的废水法规1999年,加拿大环境保护法(CEPA,Canadian Environmental Protection Act)实施,以管理污染和废物。根据渔业法案,还通过了废水系统排放法规。[13]也称为SOR/2012-139,该文件强调了排放限值并详细说明了监测和报告所需的条件。有机污染物的当前限值在碳质BOD参数中有详细说明。[13, 34]SOR声明:“废水中碳质生化需氧物质的数量,必须根据具有硝化抑制作用的五天生化需氧量测试来确定需求量。”[34]该文件确定了25 mg/L的CBOD限值,并要求运营商必须对废水样品建立一致的CBOD,但取样频率可以根据装置规模而波动。[34]在美国,由于公众对水污染的日益关注,制定了《1972清洁水法案》。该法案授权美国环境保护署(USEPA,US Environmental Protection Agency)确定废水标准并制定污染管理计划。[17, 29]该《清洁水法案》促成了美国污染物排放消除制度(NPDES,National Pollutant Discharge Elimination System)的建立,以规范排放污染物的点源。这些许可证制度建立了有关排放限值、监测和报告的要求。[26, 27]目前,根据《清洁水法案》第304(a)(4)节,BOD5归类为常规污染物。[22]尽管排放要求可能因行业和NPDES许可的不同而不同,但《联邦法规》40 CFR 133.102详细规定了公有处理厂的污水排放限制(表1),指出“根据NPDES许可机构的选择,代替参数BOD5… … CBOD参数可被代替...”[3]开发TOC与BOD
  • 高效选型 技术迭代|束蕴仪器助力大规模仪器设备更新
    政 策 背 景日前,国家印发《推动大规模设备更新和消费品以旧换新行动方案》,强调实行大规模设备更新和消费品以旧换新,其中提到“提升教育文旅医疗设备水平。推动符合条件的高校、职业院校(含技工院校)更新置换先进教学及科研技术设备,提升教学科研水平。严格落实学科教学装备配置标准,保质保量配置并及时更新教学仪器设备”。在此战略背景下,束蕴仪器紧跟国家政策,结合自身发展,高效选型,技术迭代,提供高级、智能、绿色、安全的科学仪器,助力各大高校及科研院所、企业等提供全部的仪器设备更新解决方案。束蕴仪器选型指南束蕴仪器聚焦在为高校、科研院所、航空航天、检验机构、及工业企业提供实验室材料检测解决方案。产品覆盖了医药、生物、材料、考古、电子、食品等各个行业。重点围绕为客户量身打造适合的综合解决方案,多方位的技术支持和现场服务,优异高效的客户培训,快速及时的售后服务。01高分辨三维X射线显微镜 XRM 应用方向油气地质、材料科学、制药及医疗器械、土木工程、农林科学、锂电新能源、半导体芯片(封装)/电子元器件、生命科学、增材制造(3D打印)、食品科学、考古、4D原位测试。多量程纳米级三维X射线显微镜(Nano CT)SKYSCAN2214500nm空间分辨率;先进开管光源,可达到更小的焦点尺寸,且时刻保持光管性能处于优异状态;科研级CMOS探测器,更先进的成像技术、更快的读取速度、更大的成像视野;多探测器配置,针对不同样品类型、不同测试要求都能给出适合的解决方案;02X射线衍射仪(XRD) 应用方向应用领域:新能源正负极材料、电解质等;制药行业API晶型筛选及杂质定量等;半导体单晶和外延层材料的结晶完整性分析等;金属材料应力、织构等分析;以及所有材料物相的定性定量分析。03少数载流子测量系统(MDP) 应用方向用于表征材料体寿命和表面钝化质量,为器件设计和工艺优化提供重要参数;硅 | 化合物半导体| 氧化物 | 宽带隙材料| 钙钛矿 | 外延层|碲化镉 | 磷 | 硫化锌 | 碳化硅 | 砷化镓 | 氮化镓 | 铬的少子寿命、光电导率、电阻率、温度相关的缺陷表征、杂质浓度、LBIC光束诱导电, 活化能和俘获截面缺陷发射,界面缺陷,深能级缺陷(从宽禁带到窄禁带提供完善解决方案)。04热释光、光释光测试仪(TL/OSL)广泛应用于各种材料的辐射剂量测定,应用于地质学和考古学年代测定、回顾剂量学、法医学和事故剂量测定、辐射防护、材料研究等领域。05SPS/RES表面光电压和电阻率测量系统SPS系列设备使用从紫外到近红外连续性的脉冲光学系统对材料能带中各种微小的能级缺陷从时间或能量维度进行区分,具有优异的能量信号分辨率和时间分辨SPV光谱;通过捕获光生电荷分离、捕获、扩散、迁移造成的空间光电压差,对材料进行质量品控以及研究其能级缺陷等方面的信息。应用:一、金属卤化物钙钛矿中的扩散长度二、宽禁带半导体中体极化现象的非接触检测三、金刚石中的电子跃迁四、宽禁带金属卤化物钙钛矿中缺陷水平的测定五、优化Ga2O3探测器的检测极限六、光催化材料的研究(BiVO4)七、光催化材料的研究与监测(TiO2)八、揭示光电化学电池中掩埋界面的损耗机制九、共轭有机聚合物、分子和纳米复合材料中的电子跃迁06表面分析技术 XPS/AES/Tof-SIMS 应用方向07电池安全与性能测试解决方案08化工反应安全解决方案未完持续更新,欢迎关注!2024/03/26
  • 助力双碳,“氢”心打造-燃料电池汽车用氢质量分析方案(Ⅰ)
    助力双碳,“氢”心打造-燃料电池汽车用氢质量分析方案(Ⅰ)原创 飞飞 赛默飞色谱与质谱中国高丽摘要:含硫化合物、甲醛、有机卤化物01背景氢能因为其具有绿色无污染、零排放等优势,是未来国家能源体系的重要组成部分,是我国战略性新兴产业和未来产业重点发展方向,是我国实现2060年“碳中和”目标的重要途径。氢燃料电池汽车的研发和应用是我国氢能利用的重点应用产业,我国也将其列为战略性新兴产业予以扶持,随着质子交换膜燃料电池汽车(PEMFCV)的发展,人们越来越关注燃料电池用氢质量对燃料电池性能的影响。作为燃料电池能量来源的氢气主要来自工业副产氢、电解制氢、化工原料制氢和化石能源制氢。不同生产方式制取的氢气不可避免地会产生相应的杂质组分,会对燃料电池的性能和寿命产生不同程度的影响。经过十几年探索和验证,我们了解到氢中杂质会对PEMFC的性能造成严重的损害作用并降低其使用寿命,不同种类的杂质如硫化氢、羰基硫、二氧化硫、硫醇、硫醚等都会对PEMFC阴极催化剂产生不可逆的毒化作用等等。综上,氢气的纯度及杂质含量会对PEMFC的性能造成严重的损害并降低其使用寿命、影响效率和安全等,因而,准确而快速的测定燃料氢气的纯度和杂质含量是极其重要的。2023年赛默飞与北京石科院合作,参与氢能新国标的修订工作。采用低温预富集技术与Thermo Scientific&trade ISQ&trade 7610气质联用仪、SCD检测器对燃料氢中硫化物、甲醛和卤化物等杂质进行检测,建立燃料电池用氢质量分析方案,所有测试结果均满足新修订国标的要求。02线性测试2.1 按实验测试条件进样,硫化物典型色谱图见图1;目标物浓度0.1 ppb-10 ppb范围内,7种含硫化合物相关系数均大于0.998,硫化物多浓度点校正曲线见表1;2.2 按实验测试条件进样,卤化物典型色谱图见图2;甲醛浓度1-400 ppb范围内,相关系数为0.9998、有机卤化物浓度在1-100 ppb范围内,8种有机卤化物相关系数均大于0.998,其多浓度点校正曲线见表2。图1 硫化物分析典型色谱图(点击查看大图)表1 硫化物线性相关系数(点击查看大图)1-甲醛;2-一氯甲烷;3-溴甲烷;4-三氯一氟甲烷;5-二氯甲烷;6-顺-1,2-二氯乙烯;7-三氯甲烷;8-四氯乙烯;9-氯苯图2 甲醛、有机卤化物TIC图和定量通道谱图(点击查看大图)表2 甲醛、有机卤化物线性相关系数(点击查看大图)向下滑动查看所有内容03重复性测试 3.1 按实验测试条件,对摩尔分数为0.05 nmol/mol混合硫化物标气连续测定7次,硫化物各组分RSD均小于5%,7针标气叠加谱图见图3,重复性测试结果见表3。1-硫化氢;2-羰基硫硫化物;3-乙硫醇;4-甲硫醚;5-二硫化碳;6-噻吩;7-二甲基二硫醚图3 0.05 ppb硫化物组分7针叠加色谱图(点击查看大图)表3 硫化物各组分重复性测试结果(点击查看大图)3.2 按实验测试条件,对摩尔分数为1 nmol/mol甲醛、有机卤化物标准气体连续测定7次,所有组分的RSD 表4 甲醛、有机卤化物各组分重复性测试结果(点击查看大图)04检出限测试含硫化合物的检出限值低至0.01×10-3 μmol/mol,样品色谱图见图5;甲醛检出限值低至0.1×10-3 μmol/mol,样品的TIC图见图6;一氯甲烷等卤化物检出限值低至0.5×10-3 μmol/mol,样品的TIC图见图7。1-硫化氢;2-羰基硫;3-乙硫醇;4-甲硫醚;5-二硫化碳;6-噻吩;7-二甲基二硫醚图5 硫化物检出限测试谱图(点击查看大图)图6 甲醛检出限测试TIC图(点击查看大图)1-一氯甲烷;2-溴甲烷;3-三氯一氟甲烷;4-二氯甲烷;5-顺-1,2-二氯乙烯;6-三氯甲烷;7-四氯乙烯;8-氯苯图7 有机卤化物检出限测试TIC图(点击查看大图)向下滑动查看所有内容总 结方案适用于GB/T 37244质子交换膜燃料电池汽车用氢气中含硫化合物、甲醛和有机卤化物的测定;也可用于工业氢、高纯氢和超纯氢中含硫化合物、甲醛和有机卤化物的测定。建立的燃料电池用氢质量分析系统实现:1. 方法的检出限和测定范围满足工作要求 2. 方法准确可靠,满足各项方法特性指标的要求 3. 方法具有普遍适用性,易于推广使用。如需合作转载本文,请文末留言。
  • 华理再次突破技术壁垒!钙钛矿单晶制备进入“快车道”!
    据华东理工大学(简称华理)消息,华东理工大学清洁能源材料与器件团队近期自主研发了一种钙钛矿单晶薄膜通用生长技术,将晶体生长周期由7天缩短至1.5天,实现了30余种金属卤化物钙钛矿半导体的低温、快速、可控制备,为新一代的高性能光电子器件提供了丰富的材料库,相关成果发表于国际知名学术期刊《自然-通讯》。华东理工大学科研人员展示钙钛矿单晶晶片通用生长技术金属卤化物钙钛矿是一类光电性质优异、可溶液制备的新型半导体材料,在太阳能电池、发光二极管、辐射探测领域显示出应用前景,被誉为新能源、环境等领域的新质生产力,成为学术界、工业界争相创新研发的目标。相对于碎钻般的多晶薄膜,钙钛矿单晶晶片具有极低的缺陷密度(约为多晶薄膜的十万分之一),同时兼具优异的光吸收、输运能力以及稳定性,是高性能光电子器件的理想候选材料。然而,国际上尚未有钙钛矿单晶晶片的通用制备方法,传统的空间限域方法仅能以高温、生长速率慢的方式制备几种毫米级单晶,极大地限制了单晶晶片的实际应用。钙钛矿单晶薄膜材料生长涉及到成核、溶解、传质、反应等多个过程,其生长过程的控制步骤仍不明确。研究团队结合多重实验论证和理论模拟,揭示了传质过程是决定晶体生长速率的关键因素,自主研发了以二甲氧基乙醇为代表的生长体系,通过多配位基团精细调控胶束的动力学过程,使得溶质的扩散系数提高了3倍。在高溶质通量系统中,研究人员将原有的晶体生长温度降低了60度,晶体的生长速率提高了4倍,生长周期由7天缩短至1.5天。该成果的主要完成人、华东理工大学侯宇教授介绍,“该单晶薄膜生长技术具有普适性,可以实现30余种厘米级单晶薄膜的低温、快速、高通量生长。”钙钛矿结构中常用的铅元素可以轻易替换成低毒性的锡、锗、铋、锑、铜,卤素离子(氯、溴、碘)全覆盖。此外,一些难以合成的具有双金属结构、多元素合金的单晶,也首次实现了单晶的可控制备。华理研究团队称,这一研究成果不但突破了传统生长体系中溶质扩散不足的技术壁垒,提供了一条普适性、低温、快速的单晶薄膜生长路线,构建了30余种高质量厘米级单晶薄膜材料库,团队还组装了高性能单晶薄膜辐射探测器件,实现大面积复杂物体的自供电成像,避免高工作电压的限制,拓展辐射探测的应用场景,为便携式、户外条件提供了新范式。该研究工作以华东理工大学为唯一通讯单位。华理材料科学与工程学院博士生刘达为论文的第一作者,侯宇教授和杨双教授为论文的通讯作者,并得到了杨化桂教授的悉心指导。上述研究工作得到了国家高层次人才特殊支持计划、国家优秀青年科学基金、上海市基础研究特区等项目的资助。
  • 大连化学物理研究所研制出单组分暖白光电致发光器件
    近日,大连化学物理研究所复杂分子体系反应动力学研究组(1101组)杨斌副研究员与山东大学刘锋研究员等合作,开发出了具有高效白光发射的新型双钙钛矿材料,并制备了基于该材料的单组分暖白光发光二极管(LED)。电气照明占全球电力消耗的15%,释放了全球5%的温室气体。采用更加高效、低成本的照明技术可缓解能源、环境危机,助力实现“双碳”目标。目前,绝大多数白光LED技术主要依靠蓝光LED激发多组分荧光叠加的方式产生白光,因此很容易出现显色性差、发光效率低、有害蓝光成分高、白光光谱不连续等问题。开发高效单组分白光材料被认为是解决以上问题的关键。研究人员发现,非铅金属卤化物双钙钛矿材料可在低温溶液法制备,生产成本低。此外,由于自身结构的限域以及强烈的电—声子耦合效应,双钙钛矿材料具有独特的自陷激子特性(STE),其复合发光表现出较大的斯托克斯位移及宽带光发射,从而表现出白光发射的特点。在本工作中,科研人员通过利用有机分子4, 4-二氟哌啶(DFPD)和碱金属之间的强化学键,制备了具有一维结构的(DFPD)2MIInX6 (MI= K, Rb X= Cl, Br)双钙钛矿化合物。其中,DFPD+不仅作为有效的层间间隔物来平衡电荷,而且可作为构成金属卤化物八面体的关键组分。特别地,(DFPD)2MIInX6中的电子态在空间上被限制在单个八面体中,产生了天然的电子限域效应。为了促进辐射复合,研究人员进一步采用微量Sb3+掺杂策略,将白光量子效率从5%提高到90%以上。由于所制备的低维双钙钛矿材料具有高光电性能和优异的溶液可加工性,可以通过简单的溶液法制备基于该材料的单组分暖白光LED,因此,该工作为下一代照明器件的设计提供新的思路。杨斌等近年来在基于自陷激子的单组分白光材料及其发光动力学领域开展了系统的研究:揭示了激子超快自陷过程(Angew. Chem. Int. Ed.,2019;Acc. Chem. Res.,2019),以及电—声子耦合对该超快过程的影响机制(Sci. Bull.,2020);揭示了基于自陷激子热活化延迟荧光的发光机制(Angew. Chem. Int. Ed.,2020);通过三线态自陷激子与受体离子Mn2+之间的高效能量转移,实现了胶体纳米晶中的高效白光发射(Nano Lett.,2021);并基于自陷激子独特的性质拓展了其在长余辉发光材料(Angew. Chem. Int. Ed.,2022)、高灵敏紫外光电探测器(Adv. Mater.,2021;Laser Photonics Rev.,2022)、X-射线闪烁体(J. Phys. Chem. Lett.,2022;J. Phys. Chem. Lett.,2022;Laser Photonics Rev.,2022)、超灵敏的光学测温器(J. Phys. Chem. Lett.,2022)等领域的应用。相关研究成果以“Highly Luminescent One-Dimensional Organic–Inorganic Hybrid Double-Perovskite-Inspired Materials for Single-Component Warm White-Light-Emitting Diodes”为题,发表在《德国应用化学》(Angewandte Chemie International Edition)上。该工作的第一作者是我所1101组联合培养博士研究生柏天新。上述工作得到国家自然科学基金、中科院青促会、我所创新基金等项目的支持。
  • 科研人员制备稳定钙钛矿纳米晶体,可使LED灯成本更低/寿命更长
    据外媒报道,发光二极管(LED)是照明行业的无名英雄。它们运行效率高,散发的热量少,持续时间长。现在,科学家们正在研究一种新材料以使LED在消费电子、医药和安全领域的应用变得更有效且寿命更长。来自美国能源部(DOE)阿贡国家实验室、布鲁克海文国家实验室、洛斯阿拉莫斯国家实验室和SLAC国家加速器实验室的研究人员报告称,他们已经为此类LED制备了稳定的钙钛矿纳米晶体。来自中国台湾地区的研究院也在这项研究中做出了贡献。钙钛矿是一类具有特殊晶体结构的材料,具有吸光和发光的特性,在一系列节能应用中非常有用,包括太阳能电池和各种探测器。虽然钙钛矿纳米晶体是一种新型LED材料的主要候选材料,但在测试中证明其不稳定。研究小组将纳米晶体稳定在多孔结构中,这种多孔结构被称为金属有机框架,简称MOF。基于地球上丰富的材料并在室温下制造,这些LED有朝一日可能会使成本更低的电视和消费电子产品以及更好的伽马射线成像设备,甚至是用于医学、安全扫描和科学研究的自供电X射线探测器。“我们通过将钙钛矿材料封装在MOF结构中来解决其稳定性问题,”DOE用户设施办公室Argonne的奈米材料中心(CNM)的科学家Xuedan Ma说道,“我们的研究表明,这种方法使我们能大幅提高发光纳米晶体的亮度和稳定性。”美国洛斯阿拉莫斯大学前J. R. Oppenheimer博士后Hsinhan Tsai补充称:“在MOF中结合钙钛矿纳米晶体的有趣概念已经以粉末形式被证明,但这是我们首次成功地将其集成为LED的发射层。”之前试图制造纳米晶体LED的尝试被纳米晶体降解回不需要的体积相所阻碍,这使其失去了纳米晶体的优势并削弱了它们作为实用LED的潜力。大块物质由数十亿个原子组成。像钙钛矿这样的材料在纳米阶段是由几个到几千个原子组成的,因此表现不同。在他们的新方法中,研究小组通过在MOF的矩阵中制造纳米晶体来稳定纳米晶体,就像网球被铁丝网夹住一样。他们使用框架中的铅节点作为金属前体,卤化物盐作为有机材料。卤化物盐的溶液中含有甲基溴化铵,它跟框架中的铅反应并在基体中的铅核周围组装纳米晶体。由于基质会使纳米晶体保持分离,所以它们不会相互作用和降解。这种方法是基于一种解决方案涂层的方法,比目前广泛使用的用于制造无机LED的真空处理要便宜得多。MOF稳定的LED可以制造出明亮的红色、蓝色和绿色光以及每种光的不同色调。洛斯阿拉莫斯国家实验室综合纳米技术中心的科学家Wanyi Nie说道:“在这项工作中,我们首次证明了在MOF中稳定的钙钛矿纳米晶体将创造出各种颜色的明亮、稳定的LED。我们可以创造不同的颜色、提高颜色纯度并提高光致发光量子产量,这是一种衡量材料发光能力的指标。”该研究小组使用先进光子源(APS)--DOE位于阿贡的科学用户设施办公室--进行时间分辨X射线吸收光谱分析,这项技术使他们能发现钙钛矿材料随时间的变化。研究人员能跟踪电荷在材料中移动的过程并了解光发射时发生的重要信息。“我们只能通过APS强大的单个X射线脉冲和独特的时间结构来实现这一点,”阿贡X射线科学部的小组负责人Xiaoyi Zhang说道,“我们可以追踪带电粒子在微小钙钛矿晶体中的位置。”在耐久性测试中,该材料在紫外线辐射、热和电场下表现良好且不会降解并失去其光探测和发光效率,这是电视和辐射探测器等实际应用的关键条件。
  • 傅若农:气-固色谱的魅力
    编者注:傅若农教授生于1930年,1953年毕业于北京大学化学系,而后一直在北京理工大学(原北京工业学院)从事教学与科研工作。1958年,傅若农教授开始带领学生初步进入吸附柱色谱和气相色谱的探索 1966到1976年文化大革命的后期,傅若农教授在干校劳动的间隙,系统地阅读并翻译了两本气相色谱启蒙书,从此进入其后半生一直从事的事业&mdash &mdash 色谱研究。傅若农教授是我国老一辈色谱研究专家,见证了我国气相色谱研究的发展,为我国培养了众多色谱研究人才。此次仪器信息网特邀傅若农教授亲述气相色谱技术发展历史及趋势,以飨读者。   第一讲:傅若农讲述气相色谱技术发展历史及趋势   第二讲:傅若农:从三家公司GC产品更迭看气相技术发展   第三讲:傅若农:从国产气相产品看国内气相发展脉络及现状   第四讲:傅若农:气相色谱固定液的前世今生   一、 气-固色谱早于气-液色谱问世   大多数人知道1952年Martin和Synge由于发明了气相色谱而获得诺贝尔化学奖,但是,真正的第一台气-固色谱仪是Erika Cremer和她的学生在奥地利因斯布鲁克(Innsbruck)大学开发出来的。1944-1945年第二次世界大战正酣期间,Cremer和她的学生设计开发出第一台气-固色谱仪。在此期间有一段迷人的故事。   Erika Cremer(1900-1996)学的是物理化学,具有很好的吸附/解吸方面的研究背景。1940年,她进入奥地利因斯布鲁克大学参与了乙炔的氢化研究工作,她碰到的问题之一是测定混合物中的乙炔和乙烯的含量,她在开始时的试验是用选择性吸附方法进行测定,但是,她发现这两个化合物的吸附热的差别不足以使它们用经典的吸附方法得到分离,与此同时她很熟悉由Hesse写的液相色谱教科书(1943年出版),此书让她知道可以考虑使用吸附色谱的方法,用气体作流动相,利用吸附性差别来分离混合物。   Cremer经过研究和思考,总结了她的新思路并写成一篇短文,投送到Naturwissenschaften 杂志发表,该杂志于1944年11月29日收到她的论文,1945年2月杂志接受了她的论文, Cremer收到出版社的清样后立即校对返回。可是当出版社正准备以特刊付印时,出版社工厂在空袭中被炸毁,所以这篇论文葬身于废墟之中,一直未能发表,直到31年后的1976年才作为历史文件发表。   在第二次世界大战结束以后,奥地利因斯布鲁克大学的实验室大部分被毁了,但是Cremer的一个新来的研究生Fritz Prior,可以在他原来的中学(他原是这个中学的老师)进行试验,作为他的博士论文,Cremer决定进行在空袭中被炸毁论文中设想的气-固色谱仪器和方法,幸运的是她原来自己设计制作的热导池还在,她们组装的气相色谱仪具备了现代气相色谱仪的主要部件,氢气发生气做载气,有载气流量调节器,有一个进样系统,分离用色谱柱和一个热导检测器,这一方案现在还存放在德意志博物馆的波恩分馆中展出。   1947年春Prior的工作结束了,得到了正结果,这一仪器可以定量分离空气、乙炔、乙烯。下图是这篇论文的一张分离图。 图 1 Prior 分离乙炔和乙烯的色谱 色谱柱:u型管,直径1 cm,填充硅胶20 cm 柱温 25 ℃. A= 空气, B= 乙烯, C= 乙炔 图 2 1959年Cremer在东德举行的气相色谱报告会时和当代四位著名色谱学专家的合影 (中间是Cremer) (来源:L. S. Ettre,Chromatographia,2002,55:625)   二、 早期的气-固色谱的固定相   气-固色谱的出现早于气-液色谱,这也是因为在上世纪40-50年代有几位出色的物理化学家研究吸附剂的吸附理论,为气-固色谱奠定了理论和实际基础。   在上世纪后半页用于气-固色谱的吸附剂有硅胶、活性碳、氧化铝、分子筛、石墨化炭黑、碳分子筛、多孔聚合物等,这些吸附剂可以作填充柱的固定相,也可以填充或涂渍到玻璃、金属或弹性石英毛细管中。这些吸附剂的用途如表 1 所示。 表 1 吸附剂的应用领域   1、硅胶吸附剂   气相色谱发展早期,硅胶可以用作气-固色谱的固定相,也可以用作气-液色谱的载体,由于硅胶制作工艺、原料表面积及孔径的不同,其分离性能有很大的差别,为此厂家进行了标准化的分级,有不同品牌和规格的色谱用硅胶,下表是Rhone- Progil 公司生产的球型多孔硅胶,而Waters公司又把其中的 Porasil 进一步筛分成不同粒度的产品。 表 2 商品硅胶的型号和规格   我国当时的天津第二试剂厂也生产了DG-1,DG-2,DG-3和DG-4,其性能类似于Porasil A,Porasil B,Porasil C,Porasil D。例如Supelco公司和Sigma-Aldrich公司供应用于分析硫化合物的硅胶填充色谱柱:Chromosil 310和 Chromosil 330,有许多实际使用的报告。   硅胶吸附剂的填充柱使用者不多,但在分析硫化物的场合仍然有人在用,如上海大学的Hui Wang等使用Chromosil 310和 GDX 502(极性聚合物多孔小球)以吸附-解吸方是分析色谱方式分析氢气中 ppb 级 SO2. (Intern.J. hydrogen energy,2010,35:2994-2996)。   德国的 Martin Steinbacher等也是使用Chromosil 310 柱(152cm x 3.2mm id )分析土壤和大气中的微量的硫化羰和二氧化硫(Atmospheric Environment, 2004,38:6043&ndash 6052)。   英国的 Evelyn E. Newby 利用 Chromosil 330 柱(244cm x 3.2mm id )在60℃分析口腔气体中的硫化氢和甲基硫醇等气体,评价牙膏消除口臭的作用(Archives of oral biology 53,2008, Suppl. 1 :S19&ndash S25)。   美国的Julie K. Furne等利用Chromosil 330 柱(244cm x 3.2mm id )分析排泄物中的硫化氢。(J. Chromatogr.B, 2001,754:253&ndash 258)。   英国的M. Steinke 等使用Chromosil 330 柱(183cm x 3.2mm id )的顶空气相色谱法测定二甲基硫化物评价硫代甜菜碱裂解酶的活性。(J. Sea Research,2000, 43:233&ndash 244)。   2、 氧化铝吸附剂   氧化铝有5种晶形,在气相色谱里多用g型,它有很好的热稳定性和机械强度,其含水量不同吸附性就有很大的差异,所以在使用前要进行适当的活化处理。上世纪80年代已故色谱学者鞠云甫对氧化铝吸附剂做过深入研究,他得到如下的结论:   (1) 可用改变热处理温度的方法来控制g-氧化铝微球的比表面, 氧化铝微球在350 ℃ 发生相转变, 至420℃ 完全转变为g氧化铝。   (2) g-氧化铝微球表面的酸, 主要是路易斯酸可用涂渍固定液改性的方法予以降低。改性后的 g-氧化铝微球表面酸度低于国外氧化铝表面酸度, 这种改性减弱了固定相的极性。   (3)热处理温度对要分离组分的保留值有重大影响,如用0.3% 阿皮松-L 对经过500℃ 灼烧4小时得到的g-氧化铝微球改性而制得的固定相, 在85 ℃ 柱温下能够全分离C1-C 4的烃类15个组分。(鞠云甫等,燃料化学学报,1983,12(1):69-76)   但是后来的研究表明,人们用碱金属卤化物让氧化铝改性,也可以得到很好的效果。英国的 A. Braithwaitel等研究了用碱金属卤化物处理氧化铝的表面,得到以下的结论:   (1) 未改性氧化铝表面有路易斯酸活化点,可以与不饱和烃的p电子产生作用,比饱和烃的保留时间增加,同时不饱和烃的色谱峰会产生拖尾,用碱金属卤化物改性氧化铝表面会消除拖尾,但是也会影响饱和烃和不饱和烃的分离保留因子。   (2) 氧化铝的改性必须要减少路易斯酸活化点,以便形成更为均一的表面性能,假定氧化铝表面的改性过程是碱金属阳离子和阴离子的共同作用,那么改性剂的阴离子就有选择性封闭大部分路易斯酸活化点的作用,这些活化点就不能再和被分析物作用,但不是所有的卤化物阴离子都有这一作用。改性剂的阳离子也会影响氧化铝的吸附作用,主要是卤化物的阳离子随其阳离子体积的减小,使烯烃/烷烃的分离度增加。其原因显然是表面上的极性或者是表面上阳离子的电荷密度增加所致,或者是两种原因的结合所致。   (3) 假定阳离子对氧化铝表面的改性是由于它降低了吸附剂的吸附特性,从而降低了吸附物质和吸附剂的作用力,被改型吸附剂的活性就可以用改性剂的量来控制,但是只要很少量的改性剂就可以使色谱峰的拖尾消除,得到对称的色谱峰。改性剂浓度超过一个临界值盐就会析出来,就起不到封闭活化点的作用,改性剂的浓度在2-4%之间。(Chromatographia,1996,42(1/2):77-82)   3、分子筛吸附剂   1925年人们发现了天然泡沸石(如菱沸石)对水、甲醇、乙醇等蒸气有很强的吸附作用,而对丙酮、醚和苯等蒸气则不予吸附,这种泡沸石就是天然的分子筛。后来人们模仿天然泡沸石的生成条件,并不断改进合成工艺,合成了多种类型的人造分子筛。所以叫做分子筛,是因为泡沸石具有象笼子一样的结晶结构,笼子的孔穴大小一致,而且正好是与分子的尺寸大小相当,分子尺寸比泡沸石孔穴尺寸小的就容易吸附,相反就不吸附。   分子筛具有几何选择性:分子筛的结晶结构有一定的尺寸,不同类型的分子筛具有不同的尺寸,表 中的数据。因而分子筛的选择性和所用分子筛类型及被分离化合物的临界尺寸有关。所谓临界尺寸是指垂直于其长度的最大横截面的直径,一些化合物的临界尺寸见表3。 表3 气固色谱用分子筛的几何尺寸   分子筛对极性分子和极化率大的分子作用力强,对极性分子和不饱和烃分子有较大的亲和力,如在4A 分子筛上吸附下列气体的能力依次加大:   O2 图3 SBA-15投射电镜图 (A) 6nm, (B)8.9nm (C) 20nm, (D) 26nm   平均孔径数据来自BET和X-射线衍射结果.   国内一些单位把SBA-15介孔分子筛作为气-固色谱固定相,如中科院煤炭化学研究所的赵燕玲等研究了SBA-15介孔分子筛作为气相色谱固定相对含有甲烷、乙烷、乙烯、丙烷和丙烯的气态烃类混合物和正己烷/l-己烯、正庚烷/l-庚烯、正辛烷/1-辛烯 3 种液态烃类混合物的色谱分离性能 并与硅胶作为色谱固定相分离3 种液态烃类混合物的情况进行了比较。与常规色谱填料硅胶相比,SBA-15介孔分子筛更适合作为烯烃/烷烃分离的色谱固定相。(赵燕玲等,石油化工,2010,39(10):1110-1114)   4、高分子多孔小球(GDX)   高分子多孔小球是1966年 Hollis 用苯乙烯和二乙烯基苯进行共聚而得到的,他对这类聚合物的色谱分离性能进行了详细的研究,把它们叫做Porapak。他所研究 Porapak Q 是一种色谱分离性能十分优秀的气-固色谱固定相。不久出现了各种品牌的高分子多孔小球固定相。我国在60年代末中科院化学所也研究出这类高分子多孔小球固定相,把它们命名为GDX(Gaofenzi Duokong Xiaoqiu),是高分子多孔小球汉语拼音的字头。后来天津化学试剂二厂生产了GDX 101、GDX 102、GDX 103、GDX 104、GDX 105、GDX 201、GDX 301、GDX 501等牌号,上海化学试剂厂生产了叫做&ldquo 401.....404有机载体&rdquo 的高分子多孔小球。   (1) GDX的特点   a、GDX的疏水性很强,水峰可以在乙烷后洗脱出,为有机物中微量水的测定提供了一种优良的色谱固定相。   b、GDX是球形,大小均匀,有利于色谱柱的填充,提高了柱效。   c、改变聚合工艺条件,可改变GDX的极性和孔径,制出各种性能的的高分子多孔小球来。   (2) GDX的制备   GDX是用二乙烯基苯和苯乙烯在水中进行悬浮聚合而得。即把要聚合的单体分散在水中,在引发剂的作用下进行共聚,由于在原料中加入一定量的溶剂作稀释剂,在聚合过程中稀释剂不起反应,但它会在小球中占据一定空间,待聚合后把稀释剂赶出来,在高分子多孔小球中就形成了很多小孔。GDX的结构如图4。 图 4 GDX的结构   (3) GDX的性质   GDX是白色或微黄色的圆球,比表面从几十到几百 m2/g,表观密度为0.1~0.5 g/mL,一般可耐高温250~270℃。国内外高分子多孔小球的性能见分析化学手册第5分册-气相色谱分析。   (4) GDX的应用   有机物中微量水的测定:如顺丁橡胶的合成中要求单体丁二烯含水量在3× 10-5 g/mL以下,用100 cm × 0.4cm i.d.GDX-105色谱柱,在120℃柱温下,载气流速 33mL/min,可很好地进行测定。有机溶剂和氯化氢中的微量水分可用GDX-104柱测定。   半水煤气成分的测定:用GDX-104(3.7m)和分子筛(3.0m)的串联柱,通过阀切换在GDX-104柱上分离CH4、CO、CO2。在分子筛柱上分离O2和N2。可避免CO2通过分子筛柱。   自从Hollis 开发出高分子多孔小球之后有很多近一步的研究,但是没有更多的突破,只是在扩大了应用方面有不少研究工作。   5、碳吸附剂   (1)活性碳   早期除去硅胶以外活性碳是气相色谱使用最早的固定相,开始主要使用工业级别的活性碳,但是,使用了一段时间以后,色谱性能不能令人满意,就把它改性,以适应色谱分离的要求。在制备活性碳当中,要得到所需要的性能,碳化和活化过程的参数中最最重要的是原料的选择和预处理。活性碳的基本性质决定于所用原料,使用的原料有自然的木头、泥炭、煤、果核、坚果的外壳以及人工合成物质,主要是聚合物。在没有空气和化学品条件下的碳化过程中,首先是大多数非碳元素(氢、氧和微量硫和氮)由于裂解的破坏而分解挥发了,这样元素碳就留下来,形成结晶化的石墨,其结晶以无规则方式相互排列,而碳则无规律地存在于自由空间里,这一空间是由于滞留在这里的物质被沉积和分解而形成的。进行碳化的目的是使之形成适当的空隙并形成碳的排列结构,碳化过程使碳吸附剂具有较低的吸附容量,使其比表面只有几个 m2/g,一直到没有所担心的过高的吸附性。为了得到高空隙度和一定的比表面积,碳化还要进行活化过程。从天然原料制得的活性碳要比从合成物制得的活性碳具有较高的灰分,从合成物制得的活性碳几乎没有灰分,并且具有很好的机械性能,不易压碎和被磨损。由天然原料制得的活性碳其吸附性能受到它表面化学结构的影响,而其表面性质又决定于与其键合在一起各种杂原子(如氧、氮、氢、硫、氯等)的种类,活性碳是没有特殊选择性,或选择性很小的吸附剂,制备良好的活性碳为多孔结构,主要是各种直径的微孔和介孔,其比表面可达1000 m2/g到2m2/g,或者更高一些,使其具有高的吸附容量。由于活性碳表面具有很大的化学和几何不均一性,特别是工业用活性碳尤为严重,即使是低沸点气体和轻烃,也会产生很厉害的拖尾。在气相色谱发展早期活性碳只用于分析稳定的气体特别是惰性气体和轻烃。上世纪 50年代初捷克的 Janak 和 60年代初波兰的 Zielinski 在使用活性碳作固定相分析气体混合物方面做了很多工作。此后由于气相色谱的发展和活性碳研究的深入,人们就对活性碳的表面进行改性,包括用化学方法除去活性碳中的灰分(除去无机杂质),在无氧气氛中进行高温处理除去活性碳表面结合的氧,用催化活化及高温碳沉积的方法对多孔结构进行改性。用活性碳填充的色谱柱出现拖尾不仅是由于活性碳上的微孔和孔径的不均一所造成毛细管凝聚,更重要的也还由于混合物中的一些成分在各种非碳物质上的强烈吸附所致,这些附加的物质有两类,在活性碳孔中的无机物,他们在表面上没有键合,部分灰分和杂原子(常常是氧和氢、硫、氮、卤素等),这些杂原子与碳骨架进行了化学结合。而且这些附加物会使进行色谱分离的物质产生可逆吸附。在气相色谱的应用中,活性碳的改性是把活性碳在150-200 ℃下处理几个小时,并在0.1 mm Hg真空下除去水分,这样不会影响吸附剂的表面性能。之后就出现了石墨化炭黑和碳分子筛。   (2)石墨化碳黑   为了克服活性碳的缺点,国内外早期进行了许多研究,就把碳黑在真空中或在还原性气氛中进行高温处理,如加热到3000℃,结果在碳表面上形成石墨状的晶形。这样处理之后,表面均匀、活化点也大为减少了。比表面由几百 m2/g 下降到 低于 30 m2/g 。所以大大改善了色谱峰形。提高了分析的再现性。据原苏联基先列夫的研究,认为在石墨化碳黑的表面上没有官能团,没有&pi 键,所以它的吸附性主要靠色散力起作用,因而石墨化碳黑的极性比角鲨烷还小。   为了适应各种样品的分离,可对它进行各种表面处理,如:   ① 涂渍少量固定液消除残存的少量活化点。   ② 分离酸性化合物时可用磷酸处理石墨化碳黑。   ③ 分离碱性化合物时可用有机碱处理石墨化碳黑。   ④ 在100℃下用氢气处理石墨化碳黑可除去表面的氧,适于还原性物质的分离。   (3) 碳分子筛 (碳多孔小球)   1968年 Kaiser 制备出一种碳吸附剂叫&ldquo 碳分子筛&rdquo ,国外的商品名是 Carbosieve B,它是用偏聚氯乙烯小球进行热裂解,得到固体多孔状的碳,其比表面为1000 m2/g,平均孔径为 1.2 nm 。作。 表4 2008年后有关CNTs作气相色谱固定相的研究的工作   2、金属有机框架化合物作气相色谱固定相   金属有机框架化合物(MOFs)是由无机金属离子和有机配体,通过共价键或离子共价键自组装络合形成的具有周期性网络结构的晶体材料。其中,金属为顶点,有机配体为桥链。MOFs结构中的金属离子几乎包含了所有过渡金属离子。通常分为含氮杂环有机配体、含羧基有机配体、含氮杂环与羧酸混合配体三种类型。MOFs具有独特的孔道,可设计和调控它的尺寸和几何形状,并在孔道内存在开放式不饱和金属配位点,使其可用于吸附或分辨不同的气体或离子,MOFs极适宜于辨识特定的小分子或离子,在多相催化、气体分离和储存等方面有着广泛的应用。由于MOFs具有优异的性质,比如比表面高、热稳定性好、纳米级孔道结构均一、内孔具有功能性、外表面可修饰等,在分析化学领域有广泛的应用前景,MOFs在分析化学中有多种应用,也是极好的气相色谱固定相。   由于MOFs不容易涂渍在毛细管壁上。南开大学严秀平研究组用动态法把纳米级MOF-101涂渍在15m长的大内径(0.53mm)石英毛细管柱上,使最难分离的二甲苯三个位置异构体得到十分漂亮的基线分离,并用于多种混合物的分离上。 图 6 二甲苯三个位置异构体的分离图   近几年国内严秀平研究组和云南师范大学的袁黎明研究组对MOFs作色谱固定相做了许多十分出色的工作,限于篇幅有机会再讨论。   另外固体固定相当今主要用于制备PLOT(多孔层开管柱,这一课题下次再讨论。   在结束此文之际,看到已故蒋生祥先生和郭勇博士团队今年发表的一篇有关碳基吸附剂-碳纳米管的综述(J Chromatogr A, 2014,1357:53&ndash 67)(但是此文只涉及碳纳米管作固相萃取和固相微萃取的论述,没有设计碳基吸附剂作气相色谱固定相的综述)。同时看到瞿其署先生团队在2014年发表的有关石墨烯的制备、性能及在分析化学中应用的综述论文(J Chromatogr A,2014,1362:1&ndash 15 ),有兴趣者可直接阅读。   小结   气-固色谱虽然它的应用广泛性远不如气-液色谱,但它还是一个很有用的方法,有它突出的魅力,是气-液色谱不能代替的技术。使用上述几种吸附剂制备的填充柱或PLOT柱,对低沸点混合物的分离具有独到的作用。不过,近年出现的多种纳米材料可作气-固色谱固定相,虽然它们具有独特的优点,但是还有待进行更深入的工作,形成商品柱,才能发挥其作用。目前实际应用的还是常规的气-固色谱固定相。下一讲,我将介绍PLOT柱的诱惑力。(未完待续)   (作者:北京理工大学傅若农教授)
  • 北理工联合北大发布Science:促进钙钛矿光伏商业化(北京理工大学陈棋教授&北京大学周欢萍特聘研究员)
    2021年7月30日,北京理工大学陈棋教授和北京大学周欢萍特聘研究员在Science上发表文章,Liquid medium annealing for fabricating durable perovskite solar cells with improved reproducibility,演示了液态介质退火(LMA)作为有效调节卤化物钙钛矿材料晶体生长的方法。不仅仅是提高退火温度,LMA采用全向加热,特别是薄膜上额外的“自上而下”传热,以更高的加热速度加速晶体生长。此外,液体介质从前体薄膜中提取残留溶剂,以减轻其对晶体生长的干扰。此外,液体介质为晶体生长创造了一个微环境,以防止整个薄膜上的挥发性成分损失。该技术创造了一个强大的化学环境和恒定的加热场,以调节整个薄膜的晶体生长。该方法生产结晶度高、缺陷少、所需化学计量学和整体薄膜均匀性的薄膜。由此产生的钙钛矿太阳能电池(PSC)的稳定功率输出为24.04%(认证为23.7%,0.08 cm2),并在运行2000小时后保持其初始功率转换效率(PCE)的95%。此外,1cm2的PSC表现出23.15%的稳定功率输出(认证的PCE为 22.3%),并在1120小时运行后保持其初始PCE的90%,这表明了其可规模化制造的可行性。LMA对气候的依赖性较低,可全年生产性能差异微不足道的器件。因此,这种方法为以可规模化和可重现的方式提高钙钛矿薄膜和光伏器件的质量开辟了一条新的有效途径。图1. LMA过程示意图图2. 钙钛矿在Ref和LMA过程下的结晶动力学图3. FA1-x-yMAxCsyPbI3-zBrz薄膜在Ref和LMA工艺下的均匀性和缺陷行为以及LMA技术的通用性图4. Ref和LMA法制备的FA1-x-yMAxCsyPbI3-zBrz基PSCs的光电性能和稳定性半导体的溶液处理是制造具有成本效益的电子学和光电子学的有前途的方法。最近,基于溶液工艺的金属卤化物钙钛矿已被证明具有电子和光电性能,适用于各种设备应用,特别是光伏。为了促进钙钛矿光伏的商业化,开发一个具有足够可重现性的可规模化的解决方案非常重要。研究应扩大空间视角对晶体质量的研究,旨在精确控制任何大气中整个薄膜的钙钛矿结晶动力学。然而,实现这一目标将面临重大困难。首先,钙钛矿的形成包括路易斯酸和碱之间的反应,即使在低温下也会迅速自发地发生。其次,实际使用的卤化物钙钛矿通常是混合物,其中不同成分在薄膜生长过程中表现出不同的反应性和扩散性。此外,前体反应物对水分和普通溶剂敏感,这导致加工条件的每次轻微变化都会产生相当大的差异。因此,开发一种简单、可控制和有效的退火技术,来满足规模化生产和可重复制造的要求具有挑战性。(文源:顶刊动态)作者介绍陈棋 教授 北京理工大学陈棋,2005年本科毕业于清华大学化工系,2007年硕士毕业于清华大学化学系,2012年博士毕业于加州大学洛杉矶分校(UCLA)材料科学与工程系,随后以博士后身份在UCLA加州纳米研究中心。2016年入职北京理工大学。2019年,入选北京市自然科学基金杰出青年项目。主要从事有机无机杂化及复合材料的开发与应用研究,材料广泛应用于能源、光电信息等器件,如太阳能电池等。迄今发表论文90余篇,包括Science、Nature Comm.、Joule、J Am. Chem. Soc.、Adv. Mater.等,H-Index 38,总引用超过14000次(Google Scholar),单篇最高他引超过4000次。入选“全球2018科睿唯安‘高被引科学家’名单”。承担多项国家级项目,包括北京市自然科学基金杰出青年项目,国家科技部重点研发计划、国家自然科学基金面上项目、北京市科技计划等。周欢萍 北京大学 特聘研究员,博士生导师 2010年博士毕业于北京大学化学与分子工程学院,师从严纯华院士,2010年至2015年期间,于美国加州大学洛杉矶分校材料科学与工程系从事博士后工作研究,师从杨阳教授。其研究领域包括:低成本/高效率太阳能电池(如钙钛矿)的材料设计,器件构筑;纳米结构与光电器件的耦合;新型功能材料(如半导体或者稀土)的合成、性质研究及其在光电领域的应用。周欢萍研究员在Science, Nature Energy,Nature. Commun.,Joule, J. Am. Chem. Soc.,Nano Lett.,Adv. Mater.等材料、化学、物理及综合类的国际国内有影响的学术期刊上,累计发表学术论文100余篇,截止2020年7月被引用20000次以上,H因子为52,多次入选科睿唯安全球高被引作者。代表性研究工作“阐明铕离子对提升钙钛矿太阳能电池寿命的机理”入选科学技术部高技术研究发展中心发布的2019年度中国科学十大进展。点击查看原文:https://science.sciencemag.org/content/sci/373/6554/561.full.pdf
  • 光致发光和可穿戴传感器研究获进展
    人们对电子设备的便携性、多功能性和集成性的期待推动了可穿戴电子设备的快速发展。最近,摩擦电纳米发电机(TENGs)在能力收集、人机交互、医疗监测和自供电传感等方面引起了关注。遗憾的是,这类交互设备多由分隔的传感器和显示单元组成,因而总是需要一些笨重的设备或有线连接来将输出信号转换为人类易读出的形式。色彩提供了简单的传输信息的方法,其可调的颜色属性有望与传感器集成,为交互式信号的可视化开辟了新途径。金属卤化物钙钛矿具有特殊的光物理性质,为未来的可穿戴电子产品提供了新机会。然而,构建自供能、应变传感和显示等多功能特性一体化的光致发光传感系统是巨大的挑战。中国科学院苏州纳米技术与纳米仿生研究所轻量化实验室研究员李清文与项目研究员张其冲等,提出了高效窄光致发光金属卤化物固体的水合成策略,进一步将其应用于自供电的可穿戴式光致发光传感器。科研人员利用这一策略,仅使用水作为溶剂便制备了盐壳金属卤化物固体(具有高效和狭窄的绿色排放,PLQY为87.3%)。其中,KBr盐提供了一个富溴的环境来钝化钙钛矿的表面缺陷,且作为基质来提高其稳定性。该绿色环保的制备策略可用于制备无色水性油墨和柔性光致发光薄膜。另外,该固态化合物可作为聚乙烯醇(PVA)的填料,用于TENG中的高性能正摩擦材料,所制备的TENG的输出性能是原始TENG的2.3倍。研究进一步构建了电压响应范围为0-100kPa、响应时间为125ms的可穿戴光致发光传感器,以检测人体的各种运动。研究显示,运用简单的水蒸发结晶策略即可制备高发射窄半高峰宽的金属卤化物固体,巧妙地引入溴化钾盐使得难溶于水的溴化铅完全溶解在水中,不仅赋予了材料高量子产率,而且提升了产物光和热稳定性。得益于水蒸发结晶策略,前驱体水溶液可制备成水性墨水,通过与水性聚合物混合可以制备出柔性荧光薄膜,并可以通过喷墨打印技术打印相关的图案。作为概念验证,研究还构建了电压响应范围为0-100kPa,响应时间为125ms的可穿戴光致发光压力传感器,未来有望构建同时具有显示-传感一体化自供电集成器件,检测人体的各种运动。该研究为高发射的金属卤化物固体的合理设计提供了指导,并为扩展其在多功能可穿戴荧光传感器中的应用提供了参考。相关研究成果以Robust Salt-Shelled Metal Halide for Highly Efficient Photoluminescence and Wearable Real-Time Human Motion Perception为题,发表在Nano Energy上。研究工作得到中科院和江苏省青年基金项目的支持。该研究由苏州纳米所、华东理工大学、新加坡南洋理工大学、上海交通大学的科研人员合作完成。图1.固态盐壳金属卤化物的制备图2.固态金属卤化物的稳定性及其柔性应用图3.固态金属卤化物在传感领域的应用
  • 全国环保会议召开 重金属污染防治迎黄金期
    中国证券报记者日前获悉,为其两天的全国环保工作会议,今日(24日)将在北京如期召开。会议除总结2012年工作外,还将布置2013年工作。其中,重金属污染防治将是2013年全国环保工作的重点之一。   日前,环保部开始就《汞污染防治技术政策》和《砷污染防治技术政策》对外征求意见。业内人士认为,随着国家对汞和砷等重金属污染防治的重视,燃煤电厂脱汞、工业废水除砷,以及土壤修复等相关行业,将迎来快速发展的“黄金十年”。   燃煤电厂脱汞潜力大   1月19日,经过4年的艰苦谈判,147个国家终于就全球首个汞减排公约《水俣公约》达成,要求其缔约国到2020年在某些类型的电池、荧光灯以及肥皂和化妆品中逐步淘汰汞的使用。该条约还要求各国限制从燃煤发电厂、垃圾焚烧厂,以及水泥工厂排放的汞。   早在20世纪50年代日本水俣病爆发之后,汞的污染问题就已引起世人的重视。90年代汞作为一种全球污染物的概念提出后,汞污染防治问题引起了国际社会的广泛关注。发达国家率先采取行动,并逐渐推进诸多与汞相关的国际公约的签署和实施。而在中国,种种迹象显示,2013年或将成为汞污染防治的着力元年。   中国证券报记者日前从环保部获悉,环保部正就《汞污染防治技术政策》公开向社会征求意见。意见稿中提出到2015年的目标是:涉汞行业要基本实现汞污染物的全过程监控,含汞废气、废水稳定达标排放。到2020年,含汞废物得到全面控制,资源利用、能源消耗和污染排放指标达到国际先进水平。   以清华大学环境学院高志永牵头的专家组调查显示,目前中国总的汞消费量大概在1000吨左右,约占世界总量的50%,已经成为世界上最大的生产国和消费国。主要用汞产品和涉汞工艺为乙炔法PVC生产、体温计、电池、血压计和电光源等仪器仪表(行情 专区)和试剂。除此之外,采选矿、燃煤、钢铁(行情 专区)、有色、水泥、化工(行情 专区)等支柱行业也大量涉汞。   其中,燃煤电厂占国内汞排放的33%,其他工业锅炉占汞排放的19%。高志永专家组预计,燃煤电厂煤耗量将在2020年增加一倍,如不采取污染控制措施,届时国内汞污染将加倍排放。   有鉴于此,意见稿鼓励采用洗煤、配煤、煤炭改性以及使用煤炭添加剂等脱汞预处理技术,减少燃料中汞含量;鼓励采用流化床技术等工艺,强化燃烧过程汞的控制,减少汞的排放;鼓励采用除尘、脱硫、脱硝、脱汞协同处理技术;鼓励研发新技术、新材料(行情 专区):鼓励开展汞吸附、炉膛卤化物喷入技术以及低温等离子除汞技术研究;加快催化剂核心技术的研发,推进国产化。   “十一五”期间,因强制燃煤电厂安装烟气脱硫装置,2005年仅有10%的燃煤电厂有烟气脱硫装置,而2009年这一数字上升到71%,这使得硫污染排放大幅降低。因此,高志永牵头的专家组建议,“十二五”期间,要优先考虑氮氧化物排放控制,并准备在燃煤电厂安装相应设备(SCR)减少氮氧化物排放,SCR的安装将进一步减少燃煤电厂汞的排放。   中国证券报记者了解到,针对其他涉汞行业,意见稿提出了汞矿采选与冶炼、用汞工艺、含汞产品生产、汞的无意排放、含汞废物处置等各个环节污染防治的技术路线和方法。   砷污染防治重在工业废水   除汞污染外,我国砷污染形势同样严峻。据高志永专家组统计,全球砷矿资源探明储量70%集中在中国。砷主要来源于砷和含砷矿石的开采、选矿、冶炼加工等,以及在工农业生产和应用过程中形成的二次砷污染。   记者获悉,环保部在就《汞污染防治技术政策》征求意见的同时,还开始向社会公开征求《砷污染防治技术政策》意见。该意见稿从清洁生产、末端治理、综合(行情 专区)利用、次生污染防治、鼓励研发新技术、运行管理等几个方面对涉砷行业的污染防治提出具体要求,并指出到2015年末,涉砷行业基本实现砷污染物的全过程监控,涉砷行业的含砷废气、废水稳定达标排放,以及含砷烟尘、废渣与污泥等固体废物的安全处置率达到100%的目标。   意见稿中所指涉砷行业包括含砷矿石采选、冶炼等生产过程对应的有色金属(行情 专区)行业、硫铁矿制酸等化工行业,以及兼有砷回收的生产企业、涉砷制剂生产和使用行业。其中,工业废水是砷污染排放的重灾区。   据2010年环境统计数据,我国各行业工业废水中砷排放总量118.092吨。其中,化学原料及化学制品制造业占总排放量41%,有色金属矿采选业排放量占36%,有色金属冶炼及压延加工业占20%,三者合计砷排放量比例占97%。而据中国有色金属工业协会对全国主要有色金属企业(包括锡、锑、汞工业企业)统计,2001-2009年有色金属工业废水排放总量已达到25.57万吨,砷污染物达到841吨。   有鉴于此意见稿提出,涉砷行业应遵循污染末端治理与全过程控制相结合的原则,积极推广先进适用的生产工艺、污染防治技术及装备,提高含砷废物综合利用水平,防止次生污染,涉砷行业应加大产业结构调整和技术升级力度,加快淘汰落后产能。   土壤汞砷污染亟需防治   汞是对人体健康危害极大而且环境污染持久的有毒物质,可在生物体内积累,易被皮肤、呼吸及消化道吸收,破坏中枢神经组织及口、黏膜和牙齿。砷具有较强毒性和致癌性。除了燃煤电厂和工业废水外,汞和砷也是最为常见的土壤重金属污染物,也属于我国目前土壤污染最严重的重金属类型。   土壤中的汞和砷以多种形态存在,既有挥发性的,也有溶解性的,可以通过地表水、地下水、大气、农产品(行情 股吧 买卖点)、土壤直接接触等不同途径对人体健康造成危害。中国环境修复产业联盟秘书长高胜达告诉中国证券报记者,当排放到土壤表面后,汞和砷都趋向于积累和长期存在于浅层土壤之中,直到超过土壤的保留容量继续向下迁移,并且影响地下水。   “因此,通过土壤修复,消除汞和砷土壤污染对人体的潜在威胁,就显得十分必要。”据高胜达介绍,土壤汞修复主要以固化、稳定化为主,加入硫化物或者含硫水泥,还可以加热将其从土中分离出来。砷修复也是以固化、稳定化为主,比如加入氧化镁或氯镁水泥。对于地下水中的汞和砷,主要的修复原理是将溶解态的污染物转变为非溶解态的,将毒性大的变为毒性小的,通过降低迁移性和毒性达到修复的目的。   据中国环境修复产业联盟提供的数据,目前我国广西、湖南、云南的土壤砷污染较为严重,贵州的土壤汞污染较为严重。高胜达认为,我国虽然土壤砷污染的植物修复已经开展过一系列研究和示范,但是土壤汞和砷的修复还没有真正商业上的成功运用,所以对于掌握经济适用修复技术的公司,应该有广阔的市场空间和良好的发展前景。
  • 仪器情报,科学家首次揭示室温下自旋控制新途径!
    【科学背景】随着半导体在现代社会中的重要性不断增加,人们能够操控电荷的能力使得许多技术成为可能。然而,尽管半导体在电子设备中的广泛应用,控制半导体结构中的自旋(spin)仍然是一个挑战。自旋作为电子的一个额外自由度,其控制对于许多商业产品尤其是磁性存储器至关重要。目前,通过形成铁磁体和普通金属之间的异质结构来实现自旋控制已经取得了一定进展,例如巨磁电阻效应和隧道磁电阻效应。然而,利用半导体,特别是半导体/铁磁体界面的方法在应用上受到限制。手性诱导自旋选择性(CISS)描述了通过定向手性势场的电荷载流子的自旋依赖传输。在这种情况下,自旋方向与手性螺旋度平行,即手性结构决定了自旋取向。CISS在自组装的手性分子层中最为常见,但是它们与常见半导体材料的集成受到限制。为了解决这些问题,国国家可再生能源实验室Matthew C. Beard教授团队探索了一类新兴的卤化钙钛矿半导体家族,即手性卤化钙钛矿(c-HP)。这些半导体通过引入手性有机铵阳离子,例如R/S-MBA,而具有手性。这些有机分子形成高度有序的双层结构,嵌入到共享角位的金属卤化物八面体片层之间。由于这些半导体的手性特性,它们有望在半导体平台上实现自旋控制。本研究展示了如何将手性卤化钙钛矿半导体成功地集成到标准III-V族发光二极管(LED)结构中,从而将其转变为自旋LED。通过直接的c-HP/III-V半导体界面,自旋极化载流子被注入到传统的III-V LED结构中,并通过角动量守恒原理,将自旋积累转换为圆偏光的形式进行检测。这一成果不仅展示了手性卤化钙钛矿半导体在半导体平台上的潜力,还为现代光电子学提供了新的技术路径。【科学亮点】(1)实验首次展示了通过手性卤化钙钛矿(c-HP)/III-V半导体界面实现自旋注入的重要性。这一研究突破了传统半导体/铁磁体界面限制,开辟了在室温下控制自旋的新途径。(2)实验通过几种关键技术手段进行了详尽的表征,包括X射线光电子能谱、扫描凯尔文探针原子力显微镜和透射电子显微镜成像。这些分析表明,c-HP与III-V半导体形成的界面清洁、费米能级能够实现平衡,为自旋控制提供了理想的平台。(3)实验结果显示,c-HP能够有效地注入自旋极化载流子到传统的III-V LED结构中,并且通过自旋极化载流子在III-V中的积累,成功实现了通过圆偏光发射检测自旋积累的目标。这为将现代光电子技术转型为自旋控制平台提供了实质性的证据。【科学图文】图1 | 发光二极管light-emitting diode,LED示意图和界面表征。图2 | (R/S-MBA)2PbI4/(AlxGa1&minus x)0.5In0.5P自旋LED的圆偏振电致发光(CP-EL)发射。图3 | 波段对准和LED操作。【科学启迪】本研究展示了将手性卤化钙钛矿(c-HP)与传统半导体直接接触的可能性,并将其整合到III-V族发光二极管(LED)结构中,实现了从传统LED的光电荷互转控制到控制自旋到光的转变。这一创新不仅在室温下无需外部磁场即实现了自旋控制的功能性半导体结构,还展示了c-HP/III-V界面高效的自旋注入效率。通过详细的材料表征技术(TEM、XPS、KPFM),作者验证了c-HP半导体与III-V半导体之间形成的直接、清洁的半导体/半导体界面,这为载流子的均衡和自旋注入提供了可靠的基础。这一研究开辟了新型自旋注入器的发展路径,能够为各种自旋功能的实现提供支持,例如自旋电子学和自旋逻辑电路。因此,c-HP半导体的成功整合为现代光电子学领域带来了重要的科学启迪,促进了半导体技术的进步,并可能推动新一代自旋驱动光电子器件的商业应用和发展。原文详情:Hautzinger, M.P., Pan, X., Hayden, S.C. et al. Room-temperature spin injection across a chiral perovskite/III–V interface. Nature (2024). https://doi.org/10.1038/s41586-024-07560-4
  • 加拿大发布两种卤化烃化物的最终筛选评估结果
    2013年6月4日消息,加拿大环境和卫生部发布了1,1-二氯乙烯(1,1-dichloroethene)和1,2-二溴乙烷(1,2-dibromoethane)两种卤化烃化物的最终筛选评估结果。两物质的评估结论为,虽然这两种物质被认定为优先级,但是基于这两种物质被其他机构归类为致癌物,因此不符合加拿大环境保护法第64节标准。   评估还总结道,无论哪种物质进入环境中达到一定数量或浓度,或在某种情况下都会对加拿大公民的生命或健康构成危险。另外,1,1-二氯乙烯被发现不符合持久性或潜在生物累积性标准。1,2-二溴乙烷被发现符合持久性标准,但是不符合潜在生物累积性。   目前该局并未对这两种物质采取进一步行动。然而,新产生的担忧为,新的,未被识别或评估的物质,包括1,2-二溴乙烷可能存在其他风险。环境和卫生部长建议,修订国内物质列表,要求对这类新的重要活动(Significant New Activity ,SNAc) 展开生态和健康风险评估。
  • 加拿大发布两种卤化烃化物的最终筛选评估结果
    2013年6月4日消息,加拿大环境和卫生部发布了1,1-二氯乙烯(1,1-dichloroethene)和1,2-二溴乙烷(1,2-dibromoethane)两种卤化烃化物的最终筛选评估结果。两物质的评估结论为,虽然这两种物质被认定为优先级,但是基于这两种物质被其他机构归类为致癌物,因此不符合加拿大环境保护法第64节标准。   评估还总结道,无论哪种物质进入环境中达到一定数量或浓度,或在某种情况下都会对加拿大公民的生命或健康构成危险。另外,1,1-二氯乙烯被发现不符合持久性或潜在生物累积性标准。1,2-二溴乙烷被发现符合持久性标准,但是不符合潜在生物累积性。   目前该局并未对这两种物质采取进一步行动。然而,新产生的担忧为,新的,未被识别或评估的物质,包括1,2-二溴乙烷可能存在其他风险。环境和卫生部长建议,修订国内物质列表,要求对这类新的重要活动(Significant New Activity ,SNAc) 展开生态和健康风险评估。
  • 托普云农发布高空测报灯新品
    托普云农为您提供高空测报灯参数及2019年价格报价,公司拥有专业的高空测报灯设计研发服务团队,是您值得信赖的合作伙伴。更多高空测报灯型号、品牌报价信息请来电咨询!型号列表:型号功能区别TPSC-II-G2.0不带联网功能TPSC-II-G3.0联网型,远程控制、GIS定位查看功能特点:1、远红外虫体处理,虫体致死率大于98%,虫体完整率大于95%。2、带光控、时控、休眠模式三种状态可选。3、可通过Web/APP控制,远程指导用户使用,一个账户可远程控制多台设备。4、可在GIS地图查看区域设备运行状况,便于统一管理。5、1000w金属卤化物灯光源。6、304不锈钢材料,带防雨设计,雨天正常捕虫,不错过迁飞性害虫。7、360°撞击屏,保证昆虫的诱集率。8、带排水装置,有效将雨、虫分离。 技术参数:工作电压:AC220V,频率:50HZ灯体主体尺寸:575*575*470 mm光源功率:1000w金属卤化物灯光源接虫装置:不锈钢集虫箱防水等级:IP65创新点:过去的智能虫情测报灯不能完全测报高空迁徙性害虫。这款高空测报灯是针对草地贪夜蛾等高空迁徙性害虫设计研发的一种智能测报灯。可以有效诱集高空害虫,完成测报工作。 高空测报灯
  • 美制储氢容器 有望大规模制造便携发电设备
    美国萨瓦那河国家实验室(SRNL)的科学家利用含三氢化铝的轻型材料制成了小型储氢容器,并证明它的氢释放率适合为小型商用燃料电池提供动力,这为未来大规模制造便携式发电系统铺平了道路,在军用和商用领域都可能得到应用。   SRNL研究团队展示了如何用三氢化铝和类似高性能储氢材料来制造便携的发电系统。三氢化铝与其他金属氢化物类似,也能为氢提供一种固态的储存媒介。但三氢化铝具有一大优势:它具有极高的储氢能力,能够将两倍多的氢气储存为液态氢。此外,它还具有较低的质量和有利的放电状态。这些都使它成为理想的化学储氢材料之一。   但目前可商用的三氢化铝十分有限,且生产成本很高,妨碍了它的广泛应用。研究人员表示,他们的研究克服了三氢化铝传统生产方法中的多个障碍,新方法能最少程度地使用溶液,并制出纯净、不含卤化物的三氢化铝。同时,研究小组还能借助另一过程,使从三氢化铝中提取的氢翻一番。这些进展也为开发成本低廉的新型三氢化铝生产方式奠定了基础。研究团队已经研发出一个小型的系统,以生产试验及改进研究所需的三氢化铝。   而此次研究的另一重点就是评估三氢化铝系统和小型燃料电池应用的兼容性。基于约含有22克三氢化铝的测试容器的初步结果显示,这一系统能够很好地满足100瓦燃料电池系统所需的氢释放率。该系统能够在燃料电池接近全功率的状态下运转3个多小时,并能在降低功率后再运行若干小时。   便携式发电设备制造商正在寻找可提供超过1千瓦时/千克比能的系统,这比目前最好的锂电池的储能量还要多2至3倍。SRNL的泰德莫蒂卡博士表示,更高的比能意味着单位重量获取的能量更多。他们的目标是为军队提供轻便且储能能力出色的便携系统,以及应用于其他对重量要求较高的领域。
  • 纤纳光电融资3.6亿元,加速钙钛矿产线扩建、产品研发等
    近日,杭州纤纳光电官网消息显示“全球知名钙钛矿光伏技术领军企业纤纳光电宣布完成C轮融资,共计3.6亿元,由三峡资本领投,京能集团、衢州金控、三峡招银等资方跟投。本轮融资将用于钙钛矿光伏百兆瓦级产线扩建、叠层产品升级、应用产品研发和生产等项目。”据了解,纤纳光电成立于2015年,创立初期以钙钛矿新材料研发、钙钛矿电池效率提升为研究重点,之后围绕着钙钛矿批量生产、组件稳定性等商业化核心研究展开探索。相关产品包括大面积高效钙钛矿组件、钙钛矿彩色光伏组件、钙钛矿轻质组件和叠层组件等多个产品系列,应用范围覆盖地面电站、工商业电站、建筑光伏一体化等集中式、分布式和低碳多能互补场景。而钙钛矿太阳能电池近年来已成为科研领域的研究热点,深受各大高校研究人员的青睐。钙钛矿型太阳能电池是继染料敏化之后的又一新型有机/无机薄膜太阳能电池。其晶格通常呈或八面体形状,分子通式为ABO3。钙钛矿太阳电池采用有机无机混合结晶材料——有机金属三卤化物CH3NH3PbX3(X=Cl, Br, I)作为光吸收材料,该材料具有合适的能带结构,其禁带宽度为1.5eV,因与太阳光谱匹配而具有良好的光吸收性能,很薄的厚度能够吸收几乎全部的可见光用于光电转换。其中代表性的CH3NH3PbIxCl3-x(x=1,2,3)是具有钙钛矿结构的自组装晶体,短链有机离子、铅离子以及卤素离子分别占据钙钛矿晶格的A、B、X位置,由此构成三维立体结构,拥有近乎完美的结晶度。由于长链有序的PbCl3-或PbI3-八面体体系有利于电子的传输,该材料具有非常优异的电子输运特性,载流子扩散长度较传统有机半导体高出1-2个数量级,优异的材料性质为制备高效钙钛矿型薄膜太阳电池提供了基础。同时钙钛矿薄膜材料合成方法简易,既可以通过共蒸发法实现,也可以通过低成本溶液加工法实现。与传统晶体硅太阳电池相比,钙钛矿薄膜太阳电池具有高开路电压(>1V)、低温低能耗(<200℃)、适合于柔性衬底材料等优势,可以兼顾效率和成本。钙钛矿太阳电池发展发展经历了敏化结构、介孔结构、柱状填充以及平面异质结等四个阶段。其中全固态平面异质结构具有制备工艺简单、转换效率高等特点。
  • 百灵威与STREM ChemicalsStrem
    Chemicals, Inc(STREM)成立于1964年,总部位于美g德马萨诸塞州。工厂占地33,000平方英尺,并经过美gFDA的cGMP认证。STREM主要为科研事业和工业化生产提供各类高纯度特种化学品。客户涵盖各学术实验室、工业实验室、政府实验室以及制药、微电子、化工和石化行业的各类企业。STREM能为客户提供包括高压合成在内的各类定制合成和cGMP生产服务,并且凭借40余年的研发生产经验不断推出新的产品。与工业伙伴的合作关系,也使得STREM能迅速引进各种*技术,并促进其商业化发展,不断实现产品和服务的创新发展。 STREM的使命是为客户及时提供高pz和高纯度的特殊化学产品,而产品和服务质量是STREM公司视若生命的核心竞争力。凭借其40余年的专业制造经验,STREM针对每y个上市产品利用全面的分析技术和动态药品生产管理规范(cGMP)以确保pz,这些检测指标甚至苛求产品的&ldquo 颜色和形式&rdquo 。STREM对产pz量的重视使得大部分化学产品的纯度c过99%,部分化学产品中金属纯度达到99.9999 %。 核心竞争力: 专业的制造经验 快速客户服务 产品创新能力 中试与放大生产能力 定制合成与动态产品生产管理规范(cGMP) 产品系列 STREM能够提供c过4,000种的金属、无机物、有机化合物和纳米材料。STREM公司利用高压反应釜制造了第y个商品化的羰基钴,现在STREM的主要产品包括各类羰基金属、合成用的金属催化剂和配体、金属有机化学气相沉积( MOCVD )和原子层沉积(ALD)的前体和纳米材料。在催化l域STREM尤其擅长膦和N-heterocyclic carbenes配体、各类不对称催化用配体和催化剂等。 高纯无机金属 & 烷基金属 金属片、丝、粉末 & 元素单质 金属卤化物、氢化物 & 氘代物 金属氧化物、硝酸盐 & 硫化物 金属乙酸盐 & 碳酸盐 贵金属 & 稀土化合物 富勒烯 催化剂 & 手性催化剂 配体 & 手性配体 有机金属 有机磷 & 有机砷 有机氟 卟啉类 & 酞菁类 羰基金属及其衍生物 茂金属 烷氧基金属 & BETA-二酮类金属 烷基金属 & 烷基胺 纳米材料 MOCVD 、ALD & CVD用挥发性前体 不锈钢的CVD用喷口 电子j化学品 离子液体 社会贡献 STREM是美g化学学会&ldquo 无机化学进步杰出服务奖&rdquo 的倡导者和赞助商,同时也是加拿大化学学会&ldquo 化学和应用化学奖&rdquo 的倡导者和赞助商。 STREM公司还是有机合成化学品制造商协会(SOCMA)的成员之y,并致力于ChemStewardsSM计划的持续发展。 网址:www.strem.com
  • 日本核污水检测:从仪器到解决方案,全面揭秘!
    据日本东电公司发布的消息,今天的核污染水排放量预计为200至210吨,每天的排放情况将在次日公布。第一阶段排海将持续17天,合计排放约7800立方米核污染水。我国生态环境部高度重视日本福岛核污染水排海问题。前两年先后组织开展了我国管辖海域的海洋辐射环境监测,摸清了目前相关海域海洋辐射环境的本底情况。针对日本福岛核污染水排海后的海洋辐射环境监测,生态环境部已经作出部署,如果发现异常将及时预警,切实维护国家利益和人民健康。小编特整理了海水水质检测中涉及到的检测项目、检测仪器及解决方案,供大家参考:一、检测项目:1.理化分析指标:总硬度、悬浮物、溶解氧、生化需氧量、氨氮、氰化物、挥发酚、pH、色度、电导率、化学需氧量、石油类和动植物油、硫化物、氯化物、氟化物、硫酸根、硝酸根等。2.金属分析指标:锑、砷、铍、锡、硼、锶、钴、硒、铜、镍、银、锌、锰、铝、锂、钡、钛、铅、镉、汞、铬、钼、钍、铀、钒、铋、镓、锗、碲、铊等。3.有机分析指标:半挥发性有机物、多氯联苯、苯系物、亚硝胺类化合物、总石油烃类、有机碳、有机卤化物、挥发性有机物、有机氯农药、有机磷农药等。4.微生物分析指标:大肠埃希氏菌、耐热大肠菌群、总大肠菌群、菌落总数、贾第鞭毛虫、和隐孢子虫等。二、海水水质检测仪器有:序号海水水质检测仪器名称用途1水质硬度检测仪测水样中钙镁离子的总浓度2BOD测定仪测定生化需氧量3悬浮物测定仪快速测定水体中悬浮物含量4氨氮测定仪测定氨氮含量的仪器5色度仪控制水的色度达到规定的水质标准6水质检测仪测定水中的浊度、色度、悬浮物、余氯、总氯、化合氯、二氧化氯、溶解氧、氨氮、亚硝酸盐、铬、铁、锰、铜、镍、锌、硫酸盐、磷酸盐、硝酸盐氮、阴离子洗涤剂、臭氧等参数7COD测定仪测定水化学需氧量8PH计水溶液中PH值检测9电导率仪测电导率、电阻率、TDS、盐度、温度10红外测油仪用于地下水、地表水、工业废水和生活污水中石油类和动植物油类的测定11水质硫化无酸化吹气仪地面水、地下水、生活污水和工业废水中硫化物的测定12氟化物测定仪氟化物浓度的检测,以便控制水的氟化物达到规定的水质标准13重金属检测仪测铬、锰、镍、锑、锡、铊等元素14冷原子测汞仪测汞含量的仪器15气相色谱-质谱联用仪水体、土壤和固体废弃物现场的有机污染物进行准确定性和定量检测16程控定量封口机测总大肠菌群和大肠埃希氏菌,耐热大肠菌(粪大肠菌群),肠球菌17菌落计数器用于针对培养皿细菌计数的快速计数器18高光谱海洋水色传感器测量海洋颜色和水质参数更多相关仪器请进入【仪器优选】查看~三、海水检测相关解决方案供大家借鉴参考:1、 用InnovOxTOC分析仪进行海水TOC分析的最佳操作方法2、 在线除盐装置测定海水中的多种金属元素3、 深海沉积物中稀土元素富集分馏的早期成岩控制4、 同位素稀释自动固相萃取-电感耦合等离子体质谱法测定海水中的Fe、Ni、Cu、Zn、Cd和Pb5、 使用红外拉曼显微镜AIRsight评价微塑料更多海水检测解决方案请点击查看:海水检测══════════▼▼▼══════════行业应用栏目简介:(http://www.instrument.com.cn/application/ ) 【行业应用】是仪器信息网专业行业导购平台,汇聚了行业内国内外主流厂商的优质分析方法及相应的仪器设备。栏目建立了兼顾国家相关规定和用户习惯的专业分类,涉及食品、药品、环境、农/林/牧/渔、石化、汽车、建筑、医疗卫生等二十余个使用仪器相对集中的行业领域,目前,已经收录行业解决方案6万+篇。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制