当前位置: 仪器信息网 > 行业主题 > >

有机合成杂质分离

仪器信息网有机合成杂质分离专题为您整合有机合成杂质分离相关的最新文章,在有机合成杂质分离专题,您不仅可以免费浏览有机合成杂质分离的资讯, 同时您还可以浏览有机合成杂质分离的相关资料、解决方案,参与社区有机合成杂质分离话题讨论。

有机合成杂质分离相关的论坛

  • 【求助】有哪位高手知道有机过氧化物中的杂质分离?

    Aglient6890N[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url],DB-210柱子,FID检测器,内标测定有机过氧化物中的杂质CHP(异丙苯基过氧化氢),在CHP的出峰位置总有0.15%杂质,用饱和亚硫酸钠溶液也洗不掉(CHP是可以完全被过量亚硫酸钠反应掉的) 试剂空白非常干净 样品中加入定量标准CHP后出峰的形状也很好,含量也与计算的值符合 在样品中人为加入定量的CHP再用饱和亚硫酸钠溶液洗涤,不管加多少,洗完后还是0.15%.大致可判断不是CHP.也换了DB-1,DB-5,DB-1701,DB-WAX柱子,都无法分离.因为不影响产品质量,领导没让做GC-MS.各位高手帮忙出出主意,在色谱中得到较好的分离.谢谢啦.

  • 【原创大赛】羰基合成醋酐中某杂质的定性分析

    【原创大赛】羰基合成醋酐中某杂质的定性分析

    回忆贴:远去了的GC-MS和不用再伺候的科技精英,这个是几年前的事了,当时没机会发表,现在没机会用GC-MS了,把以前的经历作写出来,虽然数据和图谱基本找不到了,但记忆还是非常深刻的,乘着今天加班无聊,完成这月的原创任务。以前单位的重点项目羰基合成醋酐,其中的杂质在研发阶段是别人做的(后来跳槽了,我也不知道她以前怎么做的,反正科研精英们也不会告诉我),生产了也就不关心里面的杂质了,质检的主任工程师闲得无聊,拿来一点产品让我分析,总离子流图出来了,但靠检索得到的数据都有点问题。http://ng1.17img.cn/bbsfiles/images/2012/12/201212301032_417223_1640192_3.jpg以上是GC-MS的总离子流图,醋酐保留时间为4.28min,杂质醋酸为3.60min、EDA为4.99min,而在醋酐和EDA中有多个小杂质,其中4.76min的杂质(以下称为A)质谱图三个明显的碎片为29,43,57,检索结果是2,3-戊二酮(原图没有了,只能用标准图代替了)http://ng1.17img.cn/bbsfiles/images/2012/12/201212301042_417224_1640192_3.jpg记得匹配率还是很好的,但我总觉得有点问题,因为醋酐沸点在139℃,EDA沸点为168℃,而2,3-戊二酮在我查到的资料中只有115℃,不该这么后面,更重要的是我写不出得到这个物质的机理(毕竟搞分析的不是科研精英),然后就跟送样的人商量,给我找各种中间馏分,终于拿到了一个A含量很高的物料,当时我想醋酐在水中会水解成醋酸并且和水混溶,而里面含量较高的杂质EDA微溶于水,通过萃取来看看A是水溶还是酯溶性的,可以推测大致结构,同时分开醋酐和EDA,相当于浓缩提纯。做法是:将物料加入一定量的水,搅拌至油相不再减少,加入乙酸乙酯进行振荡静置分离,用GC-MS分析两相的成分。另人意外的是两相中均不含有A,而出现了一定量的丙酸。虽然分离并不成功,但试验过程中的现象给了我重要的线索,A遇水很容易完全水解,显然要比一般的丙酸酯快的多,而且从质谱碎片来看它的结构应该是比较简单的,而从谱库中无法检索到匹配的物质则说明这个物质可能不在谱库中。因此我怀疑是丙醋酸酐,虽然没有该物质的物性资料,但它沸点应该在醋酸酐和丙酸酐之间,而丙酸酐的沸点是168℃,因此丙醋酸酐出峰位置应该在醋酐和EDA之间,而且乙酰基分子量为43,丙酰基分子量为57,乙基分子量29,和质谱图相符合。既然谱库没有,标样肯定是买不到了,只好自己合成了。虽然合成酸酐的方法很多,但用于验证的合成方法有其特殊性。虽然无需考虑成本,对产率也无要求。但采用的方法应当尽可能使用少量试剂,以免混合物中物质过多造成判断失误。而用于GC-MS分析,还要考虑不能有对仪器不利的物质进入仪器。显然用常规的浓酸催化或者酰氯钠盐反应生成的酸酐如果不进行分离是不能用于GC-MS分析的。由于丙醋酸酐是丙酸和醋酸脱水而成,而醋酐本身也有脱水功能,因此我就把丙酸和醋酸酐反应进GC-MS分析,没有使用其它催化剂。试验方法:将丙酸和醋酐等比例混合,在120度加热4小时,冷却,进GC-MS分析。反应液一共出现了非常明显的[/fo

  • 原料药诸多杂质的分离

    原料药生产工艺中可能产生的十多种杂质,需要使用同一分析方法进行分离。由于杂质的多少也影响其与相邻物质的分离度,请问在分离诸多杂质的过程中,称取混样时,主产品和杂质的量需要控制在什么比例较合适?有无相关规定?谢谢!

  • 萘酮与中间体杂质I的分离

    萘酮与中间体杂质I的分离

    [align=center]萘酮与中间体杂质I的分离[/align]根据客户提出的依赖分析需求,实验室对以下结构的萘酮(RSL)及其中间体杂质I(Ser-I)进行分离尝试。[align=center][img=,638,249]http://ng1.17img.cn/bbsfiles/images/2017/06/201706210849_01_2222981_3.png[/img][/align][align=center][img=,690,226]http://ng1.17img.cn/bbsfiles/images/2017/06/201706210850_01_2222981_3.png[/img][/align]注:在客户给出的数据文件中,RSL命名为萘酮,Ser-I命名为中间体I;在加磷酸体系中,中间体I先出峰,不加磷酸体系中,萘酮先出峰。由于萘酮(RSL)与中间体I(Ser-I)在水相中会发生结构转换现象,因此我们在无水条件下开展实验。使用资生堂疏水性与表面极性得到良好平衡的反相色谱柱CAPCELL PAK C18 MG S5 4.6 mm i.d. × 250 mm进行分析,同时对柱温进行优化,结果如图1所示。[align=center][img=,690,280]http://ng1.17img.cn/bbsfiles/images/2017/06/201706210849_02_2222981_3.png[/img][/align][img=,581,198]http://ng1.17img.cn/bbsfiles/images/2017/06/201706210849_04_2222981_3.png[/img]图2、图3分别为萘酮和杂质I的光谱图。[align=center][img=,690,271]http://ng1.17img.cn/bbsfiles/images/2017/06/201706210849_03_2222981_3.png[/img][/align]由图1可知,在萘酮的分析中,柱温越高其保留时间越短。同时发现在萘酮与杂质I之间出现一较明显倒峰。由图2、图3决定检测波长,由于流动相中添加了三乙胺,会对短波长检测产生一定干扰,因此建议在254nm或者288nm进行检测(本实验选择254nm)。我们对图1中倒峰的来源进行了多方排查,最终发现该实验体系中不得引入任何水,建议客户使用的所有实验容器必须烘干,并且需将洗针液更换为纯有机相。排除水干扰后分析对比结果如图4所示。[align=center][img=,638,363]http://ng1.17img.cn/bbsfiles/images/2017/06/201706210849_05_2222981_3.png[/img][/align]同时,为进一步延长保留时间,我们也尝试使用了资生堂键合金刚烷基团的高表面极性色谱柱CAPCELL PAK ADME S5 4.6 mm i.d. × 250 mm进行分析,所得结果如图5所示,相较于MG色谱柱,ADME色谱柱能够得到更强保留。[align=center][img=,616,304]http://ng1.17img.cn/bbsfiles/images/2017/06/201706210849_06_2222981_3.png[/img][/align]

  • 液相色谱杂质的分离

    [color=#444444]最近在做一个酯类的液相分析,它在高温条件下容易发生聚合反应,高温降解的样品在现在的液相条件下2min左右就有很多杂质峰出现,但完全不能分离,我们调节了流动相、柱温、流速等都没有效果,请问这种情况应该怎么办,一般用什么方法或者什么柱子来分离比较好[/color]

  • 求助:杂质分离不好的原因?急啊!!!

    各位:以下是安宫黄体酮的杂质F 的TLC检测.可是按以下方法我做的薄层效果不好.不能分离,是何原因啊?用薄层色谱法检测 ,使用TLC硅胶色谱板。分别取加10μl的溶液点板,用10体积四氢呋喃试剂、45体积的1,1-二甲基乙基 甲基醚试剂和45体积的环己烷试剂配制的展开剂展开超过10cm,让色谱板在空气中晾干,然后用相同的展开剂在同一方向上再次展开超过10cm,加热色谱板到120℃并保持10min,用200g/l的甲苯亚璜酸乙醇溶液来喷板,加热到120℃并保持10min, 冷却。 在365nm的紫外光下检测,供试液(a)得到的色谱图中任一蓝色荧光斑点的Rf值比安宫黄体酮主斑点的Rf值要高,但是斑点的颜色不能深于参照液(a)得到色谱图中杂质F的蓝色荧光斑点(0.5%)。 只有当参照液(a)得到色谱图中有两个明显分离的斑点时,该测试结果才有效。

  • 上海有机所首次成功完成群蛀虫内酯的全合成

    群蛀虫内酯(Clavulactone)是我国科学家在文革结束之后分离获得并完成鉴定的一例结构独特的生理活性海洋二萜。生命有机化学国家重点实验室经过多年的努力,最近成功完成了该天然产物的首次全合成,为中科院上海有机化学研究所自上个世纪70年代后期以来围绕这一海洋天然产物进行的综合研究工作画上了一个新标记。 1987年,上海有机所李金翠、张志明、倪朝周、夏宗芗、吴毓林等研究人员于从中国南海软珊瑚中首次分离获得并成功鉴定了一种具有跨环内酯单元的新颖复杂中环二萜,并命名为群蛀虫内酯;这也是我国利用X-衍射单晶技术进行复杂天然产物结构鉴定的早期例子之一。群蛀虫内酯具有较强的抗肿瘤作用,它能成倍提高癌细胞的cAMP水平,从而抑制癌细胞的分裂。 随着我国研究生制度的恢复和健全,上海有机所吴毓林研究员领导的研究组于1993年秋天最早开始制定群蛀虫内酯的全合成计划,先后有博士生乔立新和朱强(现为广州健康与医药研究院研究员)等相继参与并开展了有关研究工作,在J. Org. Chem.和 Org. Lett.上发表了第一批关于此天然产物某些结构单元(五元环、六元环、十一元环)的合成方法。许杏祥研究员领导的研究组于1995年之后也开始独立开展群蛀虫内酯的全合成研究,先后有多名博士生发展并发表了具有参考价值的区域合成新方法。2000年之后,这个领域不断被重视,包括美国哈佛大学Corey研究组和波士顿学院的Hoveyda研究组相继开展具有类似十一元中环特点的海兔烷型(dolabellane)海洋二萜的全合成研究,并先后报道了其它三例天然产物的全合成。 姚祝军研究员指导的研究组于2005年制定了两条新的群蛀虫內酯合成路线。最近完成并发表的群蛀虫內酯首次全合成就是其中的一条路线(Angew. Chem., Int. Ed. 2012, 51, 6484-6487)。与以往报道的环系处理方式不同,该路线先立体控制地构建五元/六元并环结构,从而控制中环形成前的中间体构象,有利于实现十一元环的闭合,最后对其进行官能团修饰而完成全合成。实践证明这一思路是成功的。在报道的群蛀虫内酯首次全合成中,他们发展并应用了多个高效率的立体控制反应,包括利用Lewis酸促进的手性环氧醇重排构建季碳;发展并使用SmI3催化的可放大的分子内Ene反应构建五元环;使用手性磷酸催化的区域与立体选择性氧杂Diles-Alder反应引入六元环,从而锁定中环形成前的侧链空间伸展方向;运用吴毓林组最先发展使用的分子内SN2取代形成C-C键完成高效率的中环形成;利用甲基铜锂试剂的高立体选择性共轭加成引入中环上的孤立甲基;最后使用区域/化学选择性烯丙基sp3 C-H直接氧化获得跨环内酯结构,完成全合成。 群蛀虫內酯的首次全合成成果发表之后,获得众多化学界同行的关注,发表首月(2012年6月)即位列德国《应用化学》杂志Most Accessed Articles的第二名;新近又被英国化学家Steven Ley推荐收录于今年第九期的Synfacts杂志(Synfacts 2012, 8, 937)。 从上世纪70年代后期开始群蛀虫内酯的分离工作,到1987年群蛀虫内酯结构的鉴定,再从1993年群蛀虫内酯全合成工作的启动,到2012年完成了群蛀虫内酯的全合成,中国科学院上海有机化学研究所的三代化学工作者,在国家自然科学基金委、科技部、上海市科委以及中国科学院的持续资助下,历经三十年的艰苦工作和不断积累,最终完成了群蛀虫内酯的分离、鉴定与全合成的所有环节,成为我国天然有机化学不断发展、取得进步的又一例证。http://www.cas.cn/ky/kyjz/201209/W020120905366675342749.gif群蛀虫内酯首次全合成关键技术剖析

  • 【求助】杂质峰和目标峰如何分离?

    大家好!请教大家个问题,我用FPD做农药有机磷残留,有一个去不掉的杂质峰和目标峰重合,我降低升温速率,改变柱流速,没能让它们分开,柱子没法换,因为我们只有一根柱子,还有什么方法能让它们分开呢?谢谢!

  • 浅谈金属杂质的负影响及分离技术

    金属杂质的影响:1)堵塞注塑机的射嘴、模具的流道等,导致经常需要维修人员去清理,造成生产停顿。 2)损坏设备,比如螺杆断裂、滚筒刮花或有压痕、模具损坏。增加维修费用。 3)注塑或挤出的产品不合格,比如不耐高压、绝缘有问题、影响外观等。 4)导致产品召回。引起客户抱怨, 损害市场形象。金属分离器的特点和优势: 1.生产设备:避免金属杂质对模具、螺杆和生产设备带来的危害。减少维修费用,延长使用寿命。 2.生产效率:避免临时停机、打乱正常的生产安排,减少报废率,提高生产效率。 3.产品质量:避免含有金属杂质的产品,伤害消费者,引起巨额的赔偿。 4.资源节约:提高回料利用率。金属分离器利用电磁转化原理,完成生产过程中金属和非金属分离的工作。从而保证生产的正常运作和质量把控。被广泛应用于食品行业,医药行业,药物和胶囊兼用细微的粉末产品;调料,添加剂或粉状原料进入下一步处理之前对其进行质量检测,保护后续设备。金属分离器的具体分离原理:当电流通过线圈时会产生磁场,根据电磁转换理论,当一定的电流通过固定的线圈时就在线圈内产生稳定的磁场,该磁场会受到外界的环境变化而被破坏,主要是受到金属物体的破坏,破坏了磁场的稳定,磁场的改变又会引起电路电流的改变,得到一个改变的电流,该改变的电流就会被侦测到,并被放大。然后通过金属分离器的微处理器对前后的电流变化比较,得到是否有金属通过,根据现在技术DSP的应用很快能分选出是否有金属通过和非金属通过。

  • DB-624 色谱柱分离氯甲烷的杂质

    DB-624 色谱柱分离氯甲烷的杂质: 各位大师,请教个问题,我现在用安捷伦7890配DB-624 分析氯甲烷及其杂质(DME,一氯甲烷,二氯甲烷,氯乙烯,二氯甲烷,二氯乙烯等)的色谱峰及出峰顺序,保留时间最好有啊?现在标准物质没弄着!

  • 有机溶剂中杂质离子测试,蒸发时会把杂质离子带走么?

    有机溶剂中杂质离子测试,蒸发时会干扰么?测的是碳酸二甲酯里面的杂质里金属离子,我用低温蒸发的办法,100度左右,想把溶剂除掉的同时保留杂质离子,然后水解进行测试。但担心这样溶剂挥发时会不会把大部分的金属离子带走,使得测得结果大大的偏低?谢谢!

  • 怎么分离杂质跟目标物质

    怎么分离杂质跟目标物质

    我的流动相A 甲醇+B 1%乙酸水。图一(上为标准品,图下为加标)等度洗脱,A:B=1:1。图2(上为样品,下为加标)等度洗脱,比例是A:B=80:20,这时候分的不是分好,但是能看出来分开了,所以试了A:B=90:10,A:B=70:10,效果都不好。图3(上为加标,下为标准品)梯度洗脱,0-2min,A 50% 2-3min,A 90% 3-7min,A 90% 7.1-10min,A 50%。最终分离的效果都不好,想问下大神的建议。顺便问下调整流动相的规律是什么,在一个未知物面前,怎么调整流动相比例,快速找到目标峰,然后如何将目标峰与杂质分开呀,感觉很多时候等度不太行,改变流动相比例,目标峰是变了,但是杂质峰跟着一起变。很多文献说梯度洗脱可以去除杂质,但是我不太会,望大神给予经验,谢谢。[img=图1,690,516]https://ng1.17img.cn/bbsfiles/images/2022/06/202206221831515422_3162_5627976_3.jpg!w690x516.jpg[/img][img=,690,516]https://ng1.17img.cn/bbsfiles/images/2022/06/202206221832549891_350_5627976_3.jpg!w690x516.jpg[/img][img=,690,516]https://ng1.17img.cn/bbsfiles/images/2022/06/202206221833057939_2607_5627976_3.jpg!w690x516.jpg[/img]

  • 间羟胺杂质的作用

    间羟胺杂质的作用

    间羟胺是一种有机化合物,主要用作还原剂和抗氧化剂,也用于一些特殊的有机合成反应。然而,它也是某些药物和化妆品制造过程中的杂质,如果含量过高,可能对人体健康产生不利影响。间羟胺杂质如果未经妥善处理,可能会导致药物或化妆品的质量下降,甚至影响药效。一些间羟胺化合物对人体有毒,长期或大量接触可能会引起皮肤和眼睛的刺激,甚至影响肝脏和肾脏,或引发神经系统和呼吸道问题。除此之外,间羟胺对环境也有潜在危害,过量的间羟胺可能污染水源,对水生生物和环境产生破坏。CATO标准品格外关注间羟胺杂质的存在是十分重要的,需要通过科学严谨的检测和控制技术,保证药物和化妆品的质量和安全。[img=,597,562]https://ng1.17img.cn/bbsfiles/images/2024/02/202402052113508399_5763_6381668_3.png!w597x562.jpg[/img]

  • 有机物测元素杂质

    想咨询一下各位,测克霉唑这样的有机物中的元素杂质怎么做才好,尝试了加不同的硝酸再去消解(调整了消解温度),但是消解出来还有样品沉淀在底部,这类物质怎么做才好呢?老板也没买有机进样系统[img]https://ng1.17img.cn/bbsfiles/images/2024/01/202401101512168079_4003_5790987_3.png[/img][img]https://ng1.17img.cn/bbsfiles/images/2024/01/202401101512165797_2257_5790987_3.png[/img]

  • 间三氟甲基苯丙醇和杂质I的分离——CAPCELL PAK C18 MGII

    间三氟甲基苯丙醇和杂质I的分离——CAPCELL PAK C18 MGII

    [align=center][b]间三氟甲基苯丙醇和杂质I的分离[/b][/align]客户提供了间三氟甲基苯丙醇和相关杂质I,并反馈曾尝试使用反相C[sub]18[/sub]柱对两化合物进行分离,但未能得到基线分离结果。现客户希望本实验室选择合适色谱柱并对色谱条件进行优化,来实现间氟甲基苯丙醇和其相关杂质I的基线分离。首先,我们尝试使用中等极性的CAPCELLPAK C[sub]18[/sub] MGII色谱柱,在磷酸盐-乙腈体系中分析50 μg/mL的混标溶液及各单标溶液,通过调整流动相中水相和有机相比例为60:40时,50 μg/mL的混标溶液中,间三氟甲基苯丙醇和杂质I能实现基线分离,分离度为1.52(见图1)。同客户沟通,客户希望供试品溶液(当间三氟甲基苯丙醇浓度为1mg/mL,杂质I为1 μg/mL)中两化合物分离度大于1.50。[align=center][img=,422,132]http://ng1.17img.cn/bbsfiles/images/2018/04/201804031009027392_4941_2222981_3.png!w422x132.jpg[/img][/align][align=center][img=,656,427]http://ng1.17img.cn/bbsfiles/images/2018/04/201804031009243004_918_2222981_3.png!w656x427.jpg[/img][/align][align=center]图1 MGII分析混标及单标溶液结果[/align][align=left][img=,575,197]http://ng1.17img.cn/bbsfiles/images/2018/04/201804031009245664_7431_2222981_3.png!w575x197.jpg[/img][/align][align=left]在此实验基础上,进一步分析供试品溶液,结果发现由于间三氟甲基苯丙醇浓度过高,致使色谱峰展宽,杂质I与间三氟甲基苯丙醇的分离度下降,未能达到1.50的基线分离要求;进一步尝试通过升高柱温来改善分离度,结果如图2,在50°C时能够得到良好分离结果,分离度为1.59。[/align][align=left][/align][align=center][img=,650,418]http://ng1.17img.cn/bbsfiles/images/2018/04/201804031030364182_5088_2222981_3.png!w650x418.jpg[/img][/align][align=center]图2 MGII分析混标及单标溶液结果[/align][align=left]注: 峰上标数字为分离度。[/align][align=left][img=,575,195]http://ng1.17img.cn/bbsfiles/images/2018/04/201804031031319132_5141_2222981_3.png!w575x195.jpg[/img][/align][align=left][/align][align=left]为有更多的选择,我们也尝试了两款非C[sub]18[/sub]色谱柱,包括键合特殊官能团——金刚烷基的高极性色谱柱ADME和键合五氟苯基的PFP色谱柱。在使用PFP色谱柱分析50 μg/mL混标溶液时,发现两化合物峰重合,未能实现分离。但使用ADME分析混标溶液时,能够得到1.36的分离度(见图3)。[/align][align=left][/align][align=center][img=,620,423]http://ng1.17img.cn/bbsfiles/images/2018/04/201804031034384978_3594_2222981_3.png!w620x423.jpg[/img][/align][align=center]图3 PFP、ADME分析50 μg/mL混标溶液结果[/align][align=left]注: 峰上标数字为分离度。[/align][align=left][img=,552,214]http://ng1.17img.cn/bbsfiles/images/2018/04/201804031034366042_2199_2222981_3.png!w552x214.jpg[/img][/align][align=left][/align][align=left]尝试改善分离度,继续使用ADME色谱柱进行分析,通过降低有机相比例来延长保留,最终得到了1.50的分离度(见图4),与此同时对供试品溶液进行分析,发现由于主成分峰展宽未能得到基线分离结果(见图5)。[/align][align=left][/align][align=center][img=,658,430]http://ng1.17img.cn/bbsfiles/images/2018/04/201804031035399180_5905_2222981_3.png!w658x430.jpg[/img][/align][align=center]图4 ADME分析混标溶液结果[/align][align=center][/align][align=center][img=,657,435]http://ng1.17img.cn/bbsfiles/images/2018/04/201804031035148034_8911_2222981_3.png!w657x435.jpg[/img][/align][align=center]图5 ADME分析供试品溶液结果[/align]注: 峰上标数字为分离度。[align=left][img=,586,223]http://ng1.17img.cn/bbsfiles/images/2018/04/201804031035150115_8050_2222981_3.png!w586x223.jpg[/img][/align]

  • 【转帖】分析在有机合成中的作用

    分析在有机合成中的作用本人做了十几年的有机合成工作对分析在合成中的重要作用深有感触。分析对合成人员的帮助不仅仅是能定量的告诉合成人员他的反应进行情况,如转化率、选择性是多少,定性的告诉他其产物中是否有他要得目的产品。以及他的产品纯度是多少,杂质含量否合格。更重要的是分析可以帮助合成人员调整工艺条件提高反应的转化率、选择性以及判断出应该采取什么样的提纯方法。所以合成人员必须懂得分析。一般来说当一个全新的反应结束后工艺人员都会定性反应物中有无他所要得目的产物以便判断该工艺的可行性。而后再定量分析原料的转化率、产品占多少、副产占多少。但大家可能都突略了对副产的定性分析,因为主产品好判断而副产不好定性,而如果不知道副产是什么东西就无法知道什么样的工艺条件利于主产的合成而不利于副产的产生。有时侯有机合成工作就是在研究副产,可以说没有副产物就根本用不着研究。知道副产结构了你就可以根据二者的活化能、反应速率不同而采用不同的反应温度、不同的反应浓度、不同的滴加条件以及应该将谁向谁滴加。在工艺路线选择时副产物的定性有时可以影响到工艺路线的选择。比如在合成医药时,如果能定性出副产物的结构,知道其性质即使产品的纯度很低但如果副产物毒性、副作用很小也可以被接受,但是如果副产不能被定性出结构不知道其物性即使产品纯度很高但也不能被接受(除非产品纯度特别高副产含量极低)。所以如果副产物不能被提纯又不能定性时就不得不采用牺牲转化率、收率的工艺条件来抑制副产的生成,如果此法还不行就只能改选工艺路线了。定性也可以影响到中间产品是否需要提纯,如果定性出副产物结构可以判断出该副产不参加下步反应时无论副产好不好提纯都可以不提纯,当然如果在合成中间产物时副产虽然不能定性但却可以根据色谱图各物质含量比例判断出副产不参与下步反应时也不用提纯,而改在最后一步提纯来减少提纯的次数。除非该副产无法和最终产品分离。在提纯产品时如果能够定性出副产的结构式我们可以采用化学法提纯产品。最典型的就是酸碱法,如果副产有酸性而主产无酸性可以用强碱液将杂质洗涤除去,如果副产无酸性而主产有酸性可以使产品溶于水过滤除去杂质再用强酸中和回原来的产品。如果副产无碱性而主产有碱性可以在有机相中加酸使产品沉淀,过滤后在中和成原产品,反之亦然。如果不能定性出副产的结构在精馏时我们一样可以根据[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]图判断出精馏的难易程度,各种成分出馏的时间,甚至可以判断出精馏成败的原因。记得我在一次精馏中发现看起来很容易分离的副产却很难分离,虽然我在不断的加高精馏柱和提高回流比。当我猛然发现精馏产品中的副产与精馏前的副产出峰位置略有不同时,一定性分析才发现此副产非彼副产,精馏后的副产是我的主产品受热分解而成。改用高真空低精馏柱后精馏一举成功。在重结晶时我们可以通过液相色谱图判断出各物质的极性强弱来选择不同极性的溶剂来重结晶提纯产品。另外说一下定量分析时选择[url=https://insevent.instrument.com.cn/t/Mp]气相[/url]还是液相色谱也很关键。一般大多数物质用[url=https://insevent.instrument.com.cn/t/Mp]气相[/url]分析,只有沸点较高且含有双键的物质才采用液相分析,前者不仅仅分析成本低而且准确度高。一次在给一个含有2个羰基的吡啶加氢制备哌啶时因为该化合物分子量较高且含双键,我们采用液相分析。定性反应物中含有目的产品后我就开始改进工艺条件,但无论如何改进都有一个大个的副产峰,最后将副产含量多的产物做氢谱分析、[url=https://insevent.instrument.com.cn/t/bp][color=#3333ff]气质[/color][/url]连用时分析其结构时才发现副产物是少加了一个双键的吡啶而且其含量也很低,只不过多含了一个双键的它在液相中吸收峰很大可是却显得副产很多。一般在大企业中都设有专业的分析人员,工艺员一般不管分析。但工艺员如果懂一些分析的话可以及时的发现分析人员的一些失误,特别是那些由于不了解工艺情况下犯的错误。比如在使用[url=https://insevent.instrument.com.cn/t/bp][color=#3333ff]气质[/color][/url]连用定性化合物时,分析人员只能根据集团碎片判段分子结构,如果定性的分子结构在理论上沸点应该高于主产品而在[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]上却早于主产品出峰时就可能是该化合物的异构体。再比如有一次我们的一个产品用[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]分析纯度很高,灰分也很低但色度分析却不合格,到底是什么杂质造成的呢?分析人员无能为力。但我们工艺人员却根据工艺反应情况、机理判断出该杂质是硝酸盐,因为硝酸盐有水溶性在[url=https://insevent.instrument.com.cn/t/Mp]气相[/url]中不出峰,测灰分时又会受热分解挥发造成灰分很少的假象。通过化学分析发现工艺中的问题的例子很多,总之分析对工艺人员很有帮助,懂分析对于工艺人员很重要,当然了如果分析人员也能够懂得有机合成就更好了。

  • 【讨论】杂质峰始终无法分离,求助下!帖子里有图!

    【讨论】杂质峰始终无法分离,求助下!帖子里有图!

    [img]http://ng1.17img.cn/bbsfiles/images/2010/03/201003041013_203617_1731932_3.jpg[/img]做含测,时间要控制在30分钟之内,我们实验室条件差,只有岛津的单泵的机子,不能做梯度。目标峰前面有一个很小的杂质峰,流动相试过甲醇:水、乙腈:水、甲醇:乙腈:水(流动相中都含有0.1%的36%乙酸)的各种比列都无法让这个小峰有较好的分离度,分离度只有0.9左右!非常之恼火!求助下 该怎么办?非常感谢!

  • 【求助】请问判定主峰中不含其它杂质的标准是什么?

    我在做一个合成多肽的纯化制备工艺和有关物质研究的工作。现在手上有一个已经经过纯化的样品,且经检测纯度和杂质限量都符合某标准,但样品中不排除还含有其它超限的杂质,已经使用了几个HPLC分析体系,都未分离出新的杂质峰来,若另外再根据经验使用几种其他的分析体系还分不出杂质来,最终判定该物质主峰中不含其它杂质的标准是什么?用PDA检测器进行峰纯度检测的可靠性有多大?谢谢指教!

  • 石油产品机械杂质测定的作用及意义

    石油产品机械杂质测定的作用及意义1、什么叫做试油的机械杂质?答:试油中的机械杂质是指存在于油品中所有不溶于溶剂(汽油,苯)的沉淀状或悬浮状物质。这些杂质多由砂子,粘土、铁屑粒子等组成。现行方法测出的杂质也包括了一些不溶于溶剂的有机成份,如碳青质和碳化物等。2、油品中机械杂质对机组运行以下危害:(1)可引起调速系统卡涩和机组的转动部分磨损等潜在故障。(2)引起绝缘油的绝缘强度、介质损耗因数及体积电阻率等电气性能下降。(3)影响汽轮机油的乳化性能和分离空气的性能。。(4)堵塞滤油器和滤网,影响油箱油位的显示,磨损油泵齿轮。(5)影响变压器散热,引起局部过热故障

  • 石油产品机械杂质测定的作用及意义

    石油产品机械杂质测定的作用及意义1、什么叫做试油的机械杂质?答:试油中的机械杂质是指存在于油品中所有不溶于溶剂(汽油,苯)的沉淀状或悬浮状物质。这些杂质多由砂子,粘土、铁屑粒子等组成。现行方法测出的杂质也包括了一些不溶于溶剂的有机成份,如碳青质和碳化物等。2、油品中机械杂质对机组运行以下危害:(1)可引起调速系统卡涩和机组的转动部分磨损等潜在故障。(2)引起绝缘油的绝缘强度、介质损耗因数及体积电阻率等电气性能下降。(3)影响汽轮机油的乳化性能和分离空气的性能。。(4)堵塞滤油器和滤网,影响油箱油位的显示,磨损油泵齿轮。(5)影响变压器散热,引起局部过热故障。

  • 【原创大赛】拉考沙胺系统杂质分离——多个厂家色谱柱的比较

    【原创大赛】拉考沙胺系统杂质分离——多个厂家色谱柱的比较

    [align=left][font=宋体][size=10.5pt]我知道纳谱分析这个品牌有一年多的时间,听销售介绍是用了世界顶端填料[/size][/font][font=宋体][size=10.5pt]-[/size][/font][font=宋体][size=10.5pt]纳微科技的单分散硅胶,在前赛默飞世尔色谱工作者刘晓东博士和前月旭科技创始人姚立新先生的创立下成立的,结合了国内外先进的键合和封端技术,技术领先而成熟,色谱柱优异而稳定,产品上市就有很好的体验。[/size][/font][/align][font=宋体][size=10.5pt]一直没有合适的项目和时间去体验,近期才初步体验了下纳谱分析的色谱柱,具体请了解文中[/size][/font][font='Times New Roman'][size=10.5pt][font=宋体]拉考沙胺系统杂质分离[/font][/size][/font][font=宋体][size=10.5pt]。[/size][/font][font='Times New Roman'][size=10.5pt][font=宋体]本次拉考沙胺系统杂质分离采用纳谱分析[/font]ChromCore 120 C18(250×4.6mm,5μm)[font=宋体]色谱柱分别和[/font][font=Times New Roman]Boschron ODS((250×4.6mm,5μm) [/font][font=宋体]色谱柱,[/font][font=Times New Roman]Inertsil ODS-2((250×4.6mm,5μm) [/font][font=宋体]色谱柱,[/font][font=Times New Roman]AmrritechAccurasil C18[/font][font=宋体]柱[/font][font=Times New Roman]((250×4.6mm,5μm) [/font][font=宋体]色谱柱,岛津[/font][font=Times New Roman]Wondasil C18[/font][font=宋体]柱[/font][font=Times New Roman]((250×4.6mm,5μm) [/font][font=宋体]色谱柱[/font][/size][/font][font=宋体][size=10.5pt],[/size][/font][font='Times New Roman'][size=10.5pt][font=宋体]纳谱分析[/font]ChromCore C18(250×4.6mm,5μm)[font=宋体]色谱柱比较杂质[/font][font=Times New Roman]1[/font][font=宋体]与杂质[/font][font=Times New Roman]2[/font][font=宋体],杂质[/font][font=Times New Roman]3[/font][font=宋体]与杂质[/font][/size][/font][font=宋体][size=10.5pt]4[/size][/font][font='Times New Roman'][size=10.5pt][font=宋体]的分离效果。[/font][/size][/font][font=宋体][size=10.5pt][font=宋体]共采用了[/font]6[font=宋体]款不同的色谱柱进行分离。[/font][/size][/font][font='Times New Roman'][size=10.5pt][font=宋体][b]色谱条件:[/b][/font][/size][/font][font='Times New Roman'][size=10.5pt][font=宋体]流动相:[/font]A[/size][/font][font=宋体][size=10.5pt])[/size][/font][font='Times New Roman'][size=10.5pt]0.02mol/L[font=宋体]磷酸二氢铵(磷酸调节[/font][font=Times New Roman]pH=2.5[/font][font=宋体]);[/font][/size][/font][font='Times New Roman'][size=10.5pt]B[/size][/font][font=宋体][size=10.5pt])[/size][/font][font='Times New Roman'][size=10.5pt][font=宋体]乙腈,梯度洗脱:[/font][/size][/font][font='Times New Roman'][size=10.5pt][font=宋体]波长:[/font]210nm[font=宋体];[/font][/size][/font][font='Times New Roman'][size=10.5pt][font=宋体]流速:[/font]1.0ml/min[font=宋体];[/font][/size][/font][font='Times New Roman'][size=10.5pt][font=宋体]柱温:[/font]35℃[font=宋体];[/font][/size][/font][font='Times New Roman'][size=10.5pt][font=宋体]进样体积:[/font]10μl[font=宋体];[/font][/size][/font][font='Times New Roman'][size=10.5pt][font=宋体]进样浓度:[/font]2mg/ml[font=宋体];[/font][/size][/font][font='Times New Roman'][size=10.5pt][font=宋体]稀释剂:[/font]A[/size][/font][font=宋体][size=10.5pt]:[/size][/font][font='Times New Roman'][size=10.5pt]B=85[/size][/font][font=宋体][size=10.5pt]:[/size][/font][font='Times New Roman'][size=10.5pt]15[font=宋体];[/font][/size][/font][font='Times New Roman'][size=10.5pt]1. [/size][/font][font='Times New Roman'][size=10.5pt][font=宋体]纳谱分析[/font]ChromCore 120 C18(250×4.6mm,5μm)[/size][/font][font='Times New Roman'][size=10.5pt][font=宋体]结果:杂质[/font]1[font=宋体]与杂质[/font][font=Times New Roman]2 [/font][font=宋体]分离[/font][/size][/font][font='Times New Roman'][size=10.5000pt][font=宋体]度:[/font]1.6[/size][/font][font=宋体][size=10.5000pt]88[/size][/font][font='Times New Roman'][size=10.5000pt][font=宋体],杂质[/font][/size][/font][font=宋体][size=10.5000pt]3[/size][/font][font='Times New Roman'][size=10.5000pt][font=宋体]与杂质[/font][/size][/font][font=宋体][size=10.5000pt]4[/size][/font][font='Times New Roman'][size=10.5000pt][font=宋体]分离度:[/font]2.[/size][/font][font=宋体][size=10.5000pt]302[/size][/font][font='Times New Roman'][size=10.5pt][font=宋体]如图[/font]1[font=宋体]、[/font][font=Times New Roman]2[/font][font=宋体]:[/font][/size][/font][font='Times New Roman'][size=10.5pt][font=宋体][img=,690,351]https://ng1.17img.cn/bbsfiles/images/2020/06/202006231159354626_4657_3527267_3.png!w690x351.jpg[/img][/font][/size][/font][img=,552,282]https://ng1.17img.cn/bbsfiles/images/2020/06/202006231200257429_8238_3527267_3.png!w552x282.jpg[/img][b][font='Times New Roman'][size=10.5pt]2[/size][/font][font=宋体][size=10.5pt].[/size][/font][font='Times New Roman'][size=10.5pt]Boschron ODS((250×4.6mm,5μm) [/size][/font][/b][font='Times New Roman'][size=10.5pt][font=宋体]结果:杂质[/font]1[font=宋体]与杂质[/font][font=Times New Roman]2[/font][font=宋体]分离度[/font][font=Times New Roman]:1.500[/font][/size][/font][font=宋体][size=10.5pt],[/size][/font][font='Times New Roman'][size=10.5pt][font=宋体]杂质[/font]3[font=宋体]与杂质[/font][font=Times New Roman]4[/font][font=宋体]分离度[/font][font=Times New Roman]:1.648[/font][font=宋体]。[/font][/size][/font][font='Times New Roman'][size=10.5pt][font=宋体]如图[/font]3[font=宋体]:[/font][/size][/font][font='Times New Roman'][size=10.5000pt] [img=,690,346]https://ng1.17img.cn/bbsfiles/images/2020/06/202006231200579112_656_3527267_3.png!w690x346.jpg[/img][/size][/font][font='Times New Roman'][size=10.5pt][b]3[font=宋体].[/font][font=Times New Roman]Inertsil ODS-2((250×4.6mm,5μm) [/font][/b][/size][/font][font='Times New Roman'][size=10.5pt][font=宋体]结果:杂质[/font]1[font=宋体]与杂质[/font][font=Times New Roman]2[/font][font=宋体]分离度[/font][font=Times New Roman]:1.489[/font][/size][/font][font='Times New Roman'][size=10.5pt][font=宋体]如图[/font]4[font=宋体]:[/font][/size][/font][font='Times New Roman'][size=10.5000pt][img=,690,346]https://ng1.17img.cn/bbsfiles/images/2020/06/202006231201131214_9504_3527267_3.png!w690x346.jpg[/img] [/size][/font][font='Times New Roman'][size=10.5pt]4[/size][/font][font=宋体][size=10.5pt].[/size][/font][font='Times New Roman'][size=10.5pt]AmrritechAccurasil C18[font=宋体]柱[/font][font=Times New Roman]((250×4.6mm,5μm) [/font][/size][/font][font='Times New Roman'][size=10.5pt][font=宋体]结果:杂质[/font]1[font=宋体]与杂质[/font][font=Times New Roman]2[/font][font=宋体]分离度[/font][font=Times New Roman]:0.408[/font][/size][/font][size=10.5pt][font=宋体]如图[/font][font=Times New Roman]5[/font][font=宋体]:[/font][/size][size=10.5pt][font=宋体][img=,690,351]https://ng1.17img.cn/bbsfiles/images/2020/06/202006231201286206_8976_3527267_3.png!w690x351.jpg[/img][/font][/size][font='Times New Roman'][size=10.5pt]5[/size][/font][font=宋体][size=10.5pt].[/size][/font][font='Times New Roman'][size=10.5pt][font=宋体]岛津[/font]Wondasil C18[font=宋体]柱[/font][font=Times New Roman](250×4.6mm,5μm) [/font][/size][/font][font='Times New Roman'][size=10.5pt][font=宋体]结果:杂[/font]1[font=宋体]与杂质[/font][font=Times New Roman]2[/font][font=宋体]分离度[/font][font=Times New Roman]:0.700[/font][/size][/font][font='Times New Roman'][size=10.5pt][font=宋体]如图[/font]6[font=宋体]:[/font][/size][/font][font='Times New Roman'][size=10.5000pt][img=,690,345]https://ng1.17img.cn/bbsfiles/images/2020/06/202006231201437477_9002_3527267_3.png!w690x345.jpg[/img] [/size][/font][font='Times New Roman'][size=10.5pt]6[/size][/font][font=宋体][size=10.5pt].[/size][/font][font='Times New Roman'][size=10.5pt][font=宋体]纳谱分析[/font]ChromCore C18(250×4.6mm,5μm)[/size][/font][font='Times New Roman'][size=10.5pt][font=宋体]结果:杂质[/font]1[font=宋体]与杂质[/font][font=Times New Roman]2[/font][font=宋体]分离度[/font][font=Times New Roman]:2.342[/font][font=宋体];杂质[/font][font=Times New Roman]3[/font][font=宋体]与杂质[/font][font=Times New Roman]4[/font][font=宋体]分离度:[/font][font=Times New Roman]1.124[/font][/size][/font][font='Times New Roman'][size=10.5pt][font=宋体]如图[/font]7[font=宋体]:[/font][/size][/font][img=,690,338]https://ng1.17img.cn/bbsfiles/images/2020/06/202006231201564199_3900_3527267_3.png!w690x338.jpg[/img][font='Times New Roman'][size=10.5000pt][color=#0000ff]结论:[/color][/size][/font][font='Times New Roman'][size=10.5000pt][color=#0000ff]杂质1与2的分离效果最好的是纳谱分析ChromCore C18,分离度2.342;[/color][/size][/font][font='Times New Roman'][size=10.5000pt][color=#0000ff]第二为纳谱分析ChromCore 120 C18,分离度1.6[/color][/size][/font][font=宋体][size=10.5000pt][color=#0000ff]88[/color][/size][/font][font='Times New Roman'][size=10.5000pt][color=#0000ff];[/color][/size][/font][font='Times New Roman'][size=10.5000pt][color=#0000ff]第三为Boschron ODS。[/color][/size][/font][font='Times New Roman'][size=10.5000pt][color=#0000ff]杂质3与4的分离效果最好的是纳谱分析ChromCore120 C18,分离度2.[/color][/size][/font][font=宋体][size=10.5000pt][color=#0000ff]302[/color][/size][/font][font=宋体][size=10.5000pt][color=#0000ff]第二为[/color][/size][/font][font='Times New Roman'][size=10.5000pt][color=#0000ff]Boschron ODS,分离度1.648;[/color][/size][/font][font='Times New Roman'][size=10.5000pt][color=#0000ff]第三为纳谱分析ChromCore C18,分离度1.124。[/color][/size][/font][font='Times New Roman'][size=10.5pt][font=宋体]综上所述,在拉考沙胺系统杂质分离上,选择纳谱分析[/font]ChromCore120 C18[font=宋体]对杂质[/font][font=Times New Roman]1[/font][font=宋体]与杂质[/font][font=Times New Roman]2[/font][font=宋体],杂质[/font][font=Times New Roman]3[/font][font=宋体]与杂质的分离上,综合最优。[/font][/size][/font][font='Times New Roman'][size=10.5pt][font=宋体]除此项目,我这边还[/font][/size][/font][font='Times New Roman'][size=10.5pt][font=宋体]用了[/font]ChromCore120 C8[/size][/font][font='Times New Roman'][size=10.5pt](250×4.6mm,5μm) [font=宋体],[/font][/size][/font][font='Times New Roman'][size=10.5pt]ChromCore120 C18[/size][/font][font='Times New Roman'][size=10.5pt][font=宋体]([/font]3μm, 4.6×150mm[font=宋体]),体验了下不同规格的[/font][/size][/font][font=宋体][size=10.5pt]C[/size][/font][font='Times New Roman'][size=10.5pt]18[font=宋体]和[/font][/size][/font][font=宋体][size=10.5pt]C[/size][/font][font='Times New Roman'][size=10.5pt]8[font=宋体]的效果,初步感觉很好,国产的价格,进口色谱柱的品质。希望质量一直稳定,价格完美。[/font][/size][/font][font='Times New Roman'][size=10.5pt][font=宋体]感谢纳谱分析技术(苏州)有限公司提供的分享机会,感谢阅读和投票的读者。[/font][/size][/font][color=#000099]本文为【纳谱分析第一届征文活动】获奖作品,原作者信息:[/color][color=#000099][font=宋体][size=12.0000pt]合肥信风科技开发有限公司 [/size][/font][font=宋体][size=12.0000pt]张**[/size][/font][/color]

  • 测试有机溶剂杂质金属离子的火焰干扰?

    测试碳酸二甲酯杂质金属离子的火焰干扰时,若直接有机溶剂进样测试,自己分析有机溶剂燃烧应该会使火焰发生组成发生变化,从而影响到原子化效率,这样最终导致测试的结果非常不准,到底可不可以有机溶剂直接测么?标样用水,有机溶剂对金属离子应该不容。

  • 关于丙酸中杂质的分析

    各位大侠,我最近在做丙酸酐中杂质的检测,水解过后用[url=https://insevent.instrument.com.cn/t/Mp]气相[/url]分析,没有找到合适的方法,于是转用液相来做,就遇到了下面的问题。我使用的是waters的HSS杂化颗粒25cm柱子,流动相是pH3.0磷酸缓冲液和甲醇的梯度,缓冲液起始比例是95%,波长210,检测出的杂质在丙酸峰之前,分离度1.5,保留时间7、8分钟。分析合成路线根本没有头绪,直接走[url=https://insevent.instrument.com.cn/t/Yp][color=#3333ff]液质[/color][/url]没有响应,后来把样品接出来旋蒸浓缩后进[url=https://insevent.instrument.com.cn/t/bp][color=#3333ff]气质[/color][/url]也没有响应,因为溶剂是高比例的水相,怀疑是旋蒸过程中挥发。开发HILIC方法,使用95%乙腈冲洗,丙酸保留时间也只有1分多,而且未检出其他杂质峰,现在想用正相来做,不知道各位大侠还有什么方法?

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制