当前位置: 仪器信息网 > 行业主题 > >

荧光活体成

仪器信息网荧光活体成专题为您整合荧光活体成相关的最新文章,在荧光活体成专题,您不仅可以免费浏览荧光活体成的资讯, 同时您还可以浏览荧光活体成的相关资料、解决方案,参与社区荧光活体成话题讨论。

荧光活体成相关的资讯

  • 活体成像中荧光色素标记细胞的方法举例
    活体光学成像(Optical in vivo Imaging)主要采用生物发光(bioluminescence)技术与荧光(fluorescence)技术。生物发光是用荧光素酶(Luciferase)基因标记细胞或DNA,今天,生物发光标记物可以标记到任何一种基因上,使对基因功能的全面细致研究成为现实。而荧光技术则采用荧光报告基团(GFP、RFP, Cyt及dyes等)进行标记,利用荧光蛋白在外源光源或是内源发光照射下被激发产生的荧光作为检测信号。研究人员能够利用一套非常灵敏的光学检测仪器直接监控活体生物体内的细胞活动和基因行为。 该技术可被广泛应用于标记细胞或基因的示踪及检测;基因治疗在活体动物体内直接的观察和检测;基因组、蛋白组学、药学及生物技术在活体动物内的研究;药物及化学合成药物的药物代谢及毒理学监测;食品菌落生长成像;皮肤医学中皮肤疾病的体内成像;法医鉴定;微孔板成像,例如:免疫分析、报告基因、基因探针和嗜菌作用分析等;荧光团的体内成像,例如:Alzheimer疾病研究中结合嗪的β-淀粉沉淀物分析;转基因植物中通过报告基因对生理周期节奏的研究;凝胶成像分析等等。 但在研究过程中,研究者们必须事先用基因技术进行荧光素酶基因标记,或者某种荧光报告基团标记。目前活体光学成像系统的知名制造商,如Berthold、GE、Xenogen、Photometrics、Carestream Health等,不仅为客户提供先进的仪器,也提供具体实验所需的整套解决方案,包括试剂、实验手册、特殊用途的质粒、细胞株、转基因动物、细胞处理和动物处理设施等配套技术支持。出色的多任务处理能力,人性化的整体设计,便捷精确的操作系统,使实验室影像分析领域进入了一个全新的时代。 下面以研究干细胞活体移植后的存活率为例,简介一两种内源性荧光色素标记的实验方法,供专业人士参考。 用荧光色素DiD标记 间充质干细胞 1. 先用胰蛋白酶消化待标记材料,使之成为一定密度的悬浮液; 2. 从细胞培养箱中取出间充质干细胞,吸取含原有培养基的细胞悬浮液进行标记; 3. 用10 ml Mg/Ca-free PBS (不含钙镁离子的磷酸缓冲液)清洗细胞,吸去PBS, 钙镁离子会影响胰蛋白酶的活性,必须小心; 4. 加入预热的0.05% 胰蛋白酶液,加液量以T75型瓶为例,每瓶加5ml, 确保瓶的表面被完全覆盖; 5. 在细胞培养箱中37° C 孵育约 5 分钟; 6. 然后在显微镜下确认细胞已经完全分散,如果有细胞贴壁情况,轻拍若干次或延长孵育时间直至酶解消化完全成功; 7. 加入等量含 10% FCS的培养基中和胰蛋白酶; 8. 用移液器反复吸取几次确保细胞均匀分散; 9. 然后移取细胞悬浮液至15ml 已灭菌的有盖聚丙烯离心管中; 10. 400 RCF离心5 分钟; 11. 小心移去上清液,不要扰动细胞; 12. 将细胞重新悬浮于DMEM 并进行计数; 13. 需要待标记细胞在无血清DMEM溶液中的密度应为1x106 /ml ; 14. 每ml细胞悬浮液加入5 ?L DiD 染色液; 15. 用移液器将染色液与细胞悬浮液混合均匀; 16. 在6孔低附着性细胞板上37 °C 孵育20分钟; 17. 孵育完全后移取细胞悬浮液至15ml 已灭菌的有盖聚丙烯离心管中; 18. 400 RCF离心5 分钟; 19. 小心移去染色液,不要扰动细胞; 20. 用PBS清洗细胞,用移液器反复吸取几次确保细胞均匀分散; 21. 重复洗三次; 22. 细胞重新计数并用台盼蓝染色法检测细胞活性; 23. 可以进行活细胞成像了! 用荧光色素ICG标记 人胚胎干细胞 1. 必须先准备好吲哚菁绿溶液(血容量、心输出量、肝功能测定剂)作为对照品 ,然后使之与转染试剂鱼精蛋白(抗凝血作用)混合; 2. 测出1ml吲哚菁绿溶液的活力,然后在100 ?L DMSO中溶解ICG; 3. 向混合物中加入 400 ?L Dulbecco的改良Eagles 培养基 (DMEM + 10% 胎牛血清), 震荡均匀,吲哚菁绿溶液终浓度为2mg/ml; 4. 加入转染试剂鱼精蛋白,鱼精蛋白作为对照品的载体,使之能够有效进入细胞; 5. 在300 ?L ICG 和 300 ?L 无血清Dulbecco改良 Eagles 培养基中混入 5 ?L 硫酸鱼精蛋白溶液, 使之终浓度为 10mg/ml,; 6. 震荡5分钟使之形成复合物,标记溶液制备完毕; 7. 从 hESC 10mm Petri 培养皿中移去原有培养基; 8. 加入5ml预热的 DMEM; 9. 加入制备好的鱼精蛋白/ICG 溶液, 37 °C下孵育1h; 10. 孵育完全后移去染色液; 11. 用5 ml PBS漂洗培养皿以清除染色液; 12. 移去 PBS 再加入 5ml 0.25 % 胰蛋白酶液,37 °C下孵育5分钟使之酶解,适当震摇培养皿效果会更好; 13. 用移液器反复吸取几次确保细胞均匀分散; 14. 加入等量含 10% KSR的培养基中和胰蛋白酶; 15. 然后移取细胞悬浮液至15ml 已灭菌的有盖聚丙烯离心管中,400 RCF离心5 分钟; 16. 在全培养基中悬浮细胞; 17. 如果还有细胞团块,可以移去原有培养基用10ml预热的全ESC培养基重新悬浮细胞,重复酶解再离心; 18. 在这一点上,鼠源饲喂细胞需从hESCs中分离; 19. 然后将细胞悬浮液移至涂布琼脂的10 cm 培养皿中; 20. 37 °C 孵育 45 分钟,注意不要晃动培养皿,如此鼠源饲喂细胞会贴壁而干细胞保持悬浮; 21. 从Petri 培养皿中移出已标记的单细胞人胚胎干细胞悬浮液; 22. 细胞重新计数并用台盼蓝染色法检测细胞活性; 23. 可进行活细胞成像了!
  • 藻类活体荧光法技术研讨会
    近日,上海市水文协会领导一行莅临宝怡环境,双方各围绕藻类监测的活体荧光法技术进行了交流和探讨。宝怡环境产品经理朱平介绍了公司的技术和产品,汇报了宝怡环境在藻类监测、叶绿素a监测方面的优势和应用案例。宝怡环境是水生态在线监测世界知名品牌德国bbe在中国大陆设立的德国境外唯一的合资企业。公司以水环境(常规9参数),水生态(生产者,消费者,分解者)自动监测为主营业务,为广大客户提供:饮用水水源地安全预警自动监测、河湖水生态健康评价自动监测、蓝藻水华预报预警自动监测、湖泊营养物基准自动监测(总磷,总氮,叶绿素a)等相关业务的技术咨询,方案设计,系统集成及总包。藻类是水环境中的初级生产者,藻类的叶绿素a含量是衡量水体富营养化的重要指标。准确测定叶绿素a的含量是合理评价水体富营养化现状及预测的基础。常用的方法有分光光度法、荧光光谱法、色谱法和遥感监测。bbe藻类分析仪系列产品采用了世界领先的活体荧光法。这种方法具有操作简便、分析速度快、精准度高等优势,在全球广泛应用近三十年,在国内也超过10年,全国销量超过500台,在千岛湖、淀山湖、富春江、陈行水库等各大湖泊水库运行良好。实验数据显示:采用活体荧光法的bbe藻类分析仪不仅可以更精准地监测叶绿素a含量,还可以监测到不同藻种的浓度,这一点是其他荧光法做不到的。同时,与化学监测相比,这种方法不需要化学试剂,对环境和人都非常友好;也不需要取样,没有繁琐的操作流程和高深专业的方法,容易上手,提高了工作人员的效率,减轻了技术培训的负担。无论是岸边监测站,还是水上浮标站,无人船,bbe藻类分析仪在野外监测、应急保障监测方面都具有无可比拟的优势,今年杭州亚运会也选用了bbe藻类分析仪。上海市水文协会领导对宝怡环境的先进技术做出了高度评价,肯定了宝怡环境在藻类监测市场的领先地位,提出了一些问题和建议,并表示协会会支持和帮助宝怡环境,共同推动活体荧光技术的广泛应用。未来,宝怡环境将和上海市水文协会开展更多交流合作,携手助力环境监测技术的创新发展。
  • PerkinElmer小动物活体荧光断层成像技术与应用研讨会在京举行
    仪器信息网讯 2011年10月24日,由PerkinElmer主办的“FMT(Fluorescence Molecular Tomography)小动物活体荧光断层成像技术与应用研讨会”在北大博雅国际酒店举行。来自高等院校、医院、科研院所等近50名代表参加了本次研讨会。 研讨会现场   PerkinElmer大中华区生命科学业务总监郭求真先生参加了会议开幕式并致辞:“PerkinElmer公司一直致力于医学诊断解决方案的发展,目前已是小动物活体成像领域全球领先的供应商。公司于2010年已成功收购荧光活体三维成像系统全球领先的供应商VisEn,今年9月对外宣布了已经与成像与检测解决方案的领先公司Caliper Life Sciences签订了最终收购协议。通过与他们在研发、应用技术和知识产权等方面进行整合,有助于提高PerkinElmer在分子成像与检测领域的全球领导者地位,更好的为各类高增长终端市场提供强劲的客户解决方案。” PerkinElmer大中华区生命科学业务总监郭求真先生致辞   PerkinElmer影像产品首席技术官Wael Yared博士首先作了专题讲座,详细介绍了PerkinElmer推出的FMT小动物活体荧光断层成像解决方案的技术特点以及应用领域。Wael Yared博士介绍,“当前,大部分成像系统的定量方法都是基于对小动物体表发光强度的测定,以体表发光强度来量化研究对象,做不到绝对定量。而FMT应用其专利的荧光分子断层技术对体内信号进行探测及定量分析,最终的定量结果以探针浓度表示,并可精确量化至皮摩尔级别,是真正意义上的绝对精确定量。而且,FMT的定量运算充分考虑了光信号在体内传播过程中的复杂性(如组织异质性、不同组织对光信号的吸收及发散程度、轮廓边缘性等),保证了定量结果的真实性和可信度。”   关于FMT的3D断层扫描及重建技术,Wael Yared博士介绍说:“FMT荧光3D断层技术利用激光底透扫描以及超声探头深度定位的方式,获取10万级数量的不同断层深度荧光信息,并结合独特的算法及强大的3D重建和分析软件实现了真实的三维断层信号扫描及重建”。随后,他还逐一介绍了FMT系统的体内深层信号观测、多通道同时成像、多模式成像等特点,并用具体案例介绍了FMT系统的操纵流程以及应用领域。 PerkinElmer影像产品首席技术官Wael Yared博士 报告题目:Fluorescence Molecular Tomography Technology Foundations and Current Work   PerkinElmer亚太地区活体成像产品专家Jia Fu博士主要介绍了PerkinElmer公司4种不同机制的活体荧光成像试剂:酶激活类荧光试剂、靶向类荧光试剂、血管及生理类荧光试剂、荧光染料及纳米颗粒类标记试剂。并向大家重点介绍了PerkinElmer荧光成像试剂最新产品——HypoxiSense,指出当前只有PerkinElmer供应此种靶向类荧光试剂。Jia Fu博士说:“PerkinElmer提供了非常广泛的荧光成像试剂产品,使用的是NIR fluorescence(近红外荧光材料),其低毒性和高效率的特点非常适合应用在活体成像实验中,而且操作简便,没有很高的技术要求。”报告最后,Jia Fu博士指出,PerkinElmer公司整套的荧光试剂研发的目的都是为了从转录后水平监测疾病的发展过程,因此随着技术的完善,相信将可见活体成像技术应用于临床将成为可能。 PerkinElmer亚太地区活体成像产品专家Jia Fu博士 报告题目:Fluorescence Imaging Agents and Platforms 互动环节现场观众积极提问   交流会期间,PerkinElmer影像产品首席技术官Wael Yared博士、亚太地区影像产品销售主管Mark Dupal先生接受了仪器信息网独家专访,亚太地区活体成像产品专家Jia Fu博士陪同接受访问:   仪器信息网:FMT成像系统主要面向哪些客户群体?   Wael Yared博士:FMT成像系统可供两大类客户使用,第一类是制药公司,他们在药物研发过程中需要进行动物实验去证明药物功效、药物代谢过程等 第二类是开展动物实验的各科研机构,包括高等院校、科研院所等。FMT成像系统可以帮助这些客户开展相关实验。   仪器信息网:与生物发光原理相比,荧光断层成像技术的优势是什么?   Wael Yared博士:生物发光技术已广泛应用于生命科学、医学研究及药物开发等方面,但该技术主要存在着需要对研究对象进行基因改造以及二维成像不能绝对定量的不足。荧光3D断层技术是利用激光底透扫描以及超声探头深度定位的方式,实现了真实的三维断层信号扫描及重建,真正实现了绝对定量。而且无需进行基因改造工作,操作起来也十分简便。   仪器信息网:和FMT系统配套使用的荧光活体成像试剂能否用在其它系统上?   Jia Fu博士:可以在其它成像系统上使用,前提是要有合适波长的滤光片来获取PerkinElmer荧光活体成像试剂的信号,同时,FMT成像系统也能使用其它品牌近红外波段的成像试剂。但是,当前其它成像系统几乎为2D成像系统,即使使用PerkinElmer荧光活体成像试剂得到的也只是二维图像,对于使用同一成像试剂,FMT系统获取信息相对更多。   仪器信息网:贵公司如何看待活体成像产品在中国的市场前景?   Mark Dupal先生:中国是一个非常有潜力、有活力的市场,有很多制药公司、CRO公司,高等院校和科研机构,有着强劲的市场需求。美国、欧洲的市场已经比较稳定,增长速度不会有太大变化,但是未来的中国一定是个巨大的市场。FMT成像系统在欧美市场已经投放了10年,今年才开始在中国投放。对于我们来说,中国是个新的市场,我们会继续加大对中国市场的财力和人员的投入,做好客户支持和产品支持工作。   仪器信息网:贵公司如何看待PerkinElmer在小动物活体成像领域市场地位?   Mark Dupal先生:可以肯定的说,在收购Caliper之后,PerkinElmer在小动物活体成像领域已经成为全球最大的供应商。 采访现场
  • 干货|​近红外二区荧光宽场显微活体成像技术和应用
    大家好,今天给大家分享一篇近红外二区荧光宽场显微活体成像技术和应用的文章,本文的通讯作者是浙江大学的钱骏教授。传统的荧光成像技术是基于可见光波段(400~760 nm)和近红外一区波段(760~900 nm)实现的,但是由于受生物组织散射和自发荧光的影响,这些波段的光对厚样本、活体样本成像时,成像深度和空间分辨率受到了很大的影响。而近红外二区波段(1000~1700 nm, NIR-II)的光受生物组织散射和自发荧光的影响大大降低,因而用这个波段的光成像时,成像的深度和信噪比都显著提高。近年来,NIR-II荧光宽场显微术在高时间分辨率、高空间分辨率、高信背比和大深度组织穿透方面获得突破性发展,这些得益于荧光探针和成像仪器设备的开发和改进。作者在本文中通过介绍NIR-II荧光宽场显微活体成像的机制特点、演进历史、系统进展以及在不同生物模型上的最新应用,展现其临床试验的巨大潜力,使NIR-II荧光宽场显微成像术在基础研究和临床应用上得到更进一步的普及。1、NIR-II荧光活体生物成像近年来,研究者们展开了一系列的NIR-II荧光成像研究,实现了对活体生物样本的深层和功能性成像,尤其伴随着探测器性能的提升和荧光新探针的开发,NIR-II的活体荧光成像迅速成为热点。尽管NIR-II荧光成像应用日趋广泛,但其成像窗口的定义却并不统一。长期以来,NIR-II在学术界被定义为1000~1700 nm。然而,工业领域认可的典型短波红外波段为900~1700nm。浙江大学钱骏教授团队模拟了NIR区域(至2340 nm)中的光子传播,确认了活体成像中适度利用水对散射光子的吸收能提高信背比,并将NIR-II窗口扩展为900~1 880 nm,定义了2080~2340 nm为近红外三区。其中,1400~1500 nm和1700~1880nm分别被定义为NIR-IIx和NIR-IIc区域。图1:定义并扩展NIR-II窗口为900-1880nm2、NIR-II荧光宽场显微成像系统活体成像研究中,NIR-II的宏观成像不仅可以实现主动脉和微小血管循环检测,也可以实现各类器官的成像,如心、肝、脾、肺、肾、肝、肠、胆道等。但是,组织的微结构观察和检测需要更大倍率的成像系统,以提高生物组织的空间分辨率和对比度,实现生物微结构的清晰成像。钱骏教授团队与宁波舜宇仪器(SOPTOP)公司合作,开发出新型NIR-II荧光正置显微成像系统,将短波红外探测器与传统的荧光显微成像系统结合,可实现宽场激发、面阵探测,具备成像深度大、时间分辨高、空间分辨好、操作简便等优势,可实现深层组织的高倍探测,已满足商用要求。此系统先后被相关科研院所购置,已在宫颈癌靶向化疗、小鼠脑血管研究等领域得到应用和报导。图2:舜宇仪器 NIR II-MS 近红外二区活体显微影像系统3、NIR-II荧光宽场显微成像的应用基于NIR-II荧光成像的大深度、高分辨率等优势,诸多生物医学应用得以开发。其中,活体大深度显微成像不仅能够对脉管系统、组织器官清晰破译,而且能够获取生物体内生命活动细微过程的动态信息,具有对生理和行为动态观察的巨大潜力。NIR-II荧光宽场显微系统提供高时间分辨率和高空间分辨率,可实现脑血管实时解析成像,以及血流速度和心跳周期的测量。作者团队针对血流测速开展工作,静脉注射IR820(0.5 mg/mL, 200 μL)后,使用NIR-II荧光宽场显微系统监测小鼠脑血管结构和实时血液流动,实时获取150 μm深度处的毛细血管血流速度为725 μm/s。同时,研究人员使用NIR-II荧光宽场显微系统记录开颅小鼠头骨下方0 ~800 μm深度下脑血管图像,并在800 μm的深度下区分出直径仅6.1 μm(半高全宽)的毛细血管。图3:小鼠活体脑血管成像血管造影方法可提供血管状态的有用信息,用于监测疾病过程。NIR-II荧光宽场显微成像技术能以高时空分辨率实现深层组织血管可视化。作者及唐本忠院士课题组开发了一种近红外聚集诱导发射(Aggregation-Induced Emission ,AIE)纳米颗粒,借助NIR-II荧光宽场显微成像系统,对小鼠大脑中的光致血栓形成缺血(Photo-Thrombotic Ischemia, PTI)和血脑屏障(Blood–Brain Barrier,BBB)损伤过程实现了精确监测。图4:NIR-II荧光宽场显微成像系统用于血流动力学研究和小鼠脑血栓性缺血的实时跟踪肿瘤和炎症性病变的检测和诊断仍是临床的巨大挑战,而NIR-II荧光宽场显微系统亦可用于肿瘤的精准检测。唐本忠院士、钱骏教授等将AIE纳米颗粒TQ-BPN注射进入具有旧肿瘤(4周)和新肿瘤(2周)的小鼠体内,使用NIR-II荧光宽场显微系统来识别不同生长阶段的肿瘤。NIR-II荧光宽场显微系统凭借穿透深度大和成像实时的优点,能够清晰地原位显示肿瘤部位的EPR效应,这将有利于早期肿瘤检测和转移研究。图5:使用NIR-II荧光成像在肿瘤部位原位显示高渗透长滞留(EPR)效应除普通小鼠、大鼠外,大型灵长类动物(如狨猴)的NIR-II荧光成像技术的探索更有利于临床转化,对于这些动物神经活动和脑血流调节的研究,有利于揭开人类大脑疾病的神秘面纱。钱骏教授、高利霞教授及唐本忠院士等首次在非人类灵长类动物中进行了穿薄颅骨大深度脑血管显微成像。图6:高空间分辨率的狨猴穿颅脑血管显微系统NIR-II荧光宽场显微系统拥有高时间分辨率以监测动态生物过程,提供高空间分辨率以观察微小生物结构、精准定位药物分布,还具备大成像深度。同时,该系统对比其他显微成像系统(如共聚焦显微术、光片显微术)易于上手使用并且成本适中,便于在活体研究和临床实践中推广。通过相关研究团队的努力,实现了从小鼠、大鼠、狨猴到猕猴,从脑血管、肿瘤血管到炎症组织及离体细胞、组织切片等的NIR-II荧光宽场显微成像,证明了NIR-II荧光宽场显微成像技术的巨大潜力。综上所述,NIR-II荧光宽场显微成像技术不断在更大的成像深度、更优的信背比、更高的空间分辨率、更快的成像速度上得到创新、改进和突破。NIR-II荧光宽场显微成像系统有望在各种生物和材料研究实验室推广,甚至在医学机构和医院临床获得普及和应用。以上便是今天为大家分享的近红外二区荧光宽场显微活体成像技术与应用,其中所采用的实验设备均为宁波舜宇仪器的NIR II-MS活体显微影像系统。作为全球首款近红外二区活体正置显微成像系统,可以实现对近红外二区荧光探针的光学表征以及活体生物样品、厚生物组织等的大深度、高时空分辨成像,选择25X红外水镜时,活体成像深度≥1.4mm,空间分辨率≤2μm。其操作简便的系统,具备在医学研究、临床诊断和手术治疗领域作为活体成像的基础工具的潜力。本文为SOPTOP舜宇显微系统供稿。如有技术干货、科研成果、仪器使用心得、生命科学领域热点事件观点,欢迎广大相关行业朋友投稿。投稿邮箱:lizk@instrument.com.cn
  • 发布FOBI整体荧光成像系统,小动物活体成像系统新品
    FOBI整体荧光成像系统可以对动植物体发出的荧光信号进行采集成像。FOBI内置四种不同的荧光通道(蓝、绿、红、红外),应用于各种荧光蛋白和染料的标记分析。能快速实时得到直观、高品质的图像和视频。1、应用范围广:肿瘤、免疫、药物开发等生命科学领域各个都可应用;荧光成像信号强,曝光时间短,无须事先转染荧光素酶基因,在活体成像研究中比生物发光成像应用更广。2、实时:曝光时间短,成像快,可实时进行动物手术操作。3、真彩色:使用彩色CCD图像传感器,能获得全方位真彩色图像,对比度更高,图像更清晰。4、操作简单,功能实用:信号背景一键消除,软件界面简洁无复杂操作过程;可录制视频用于回顾分析和教学;仪器可改装用于较大动物。5、数据准确:采用LED散漫光光源,光均匀性好,信号采集误差小;软件去除荧光背景保证数据准确。6、小巧方便:仪器整体结构紧凑,体积小,重量轻,占用空间小,可自由选择实验场地,省去转移动物的麻烦。7、价钱便宜,维修成本低:采用实用的仪器部件和功能,节省成本,可自行选择仪器配置。8、用户多,有大量文献支持 :已有100多篇SCI文章发表,包括Cell等高分期刊。创新点:(1)相比其它产品的伪彩处理,FOBI是真正意义上的真彩色图; (2)仪器整体结构紧凑,性能稳定,体积小,重量轻,占用空间小; (3)软件自带的一键扣除荧光背景信号和荧光定量分析功能,可在成像过程中实时分析图像的相对荧光强度和荧光区域的面积; (4)专为荧光成像应用设计; (5)无论成像质量和文章发表数目均在专做荧光成像的同类产品中处于领先水平。 FOBI整体荧光成像系统,小动物活体成像系统
  • 435万!山东大学超高分辨荧光共聚焦活体成像系统采购项目
    项目编号:SDQDHF20220129-H076项目名称:山东大学超高分辨荧光共聚焦活体成像系统采购项目预算金额:435.0000000 万元(人民币)最高限价(如有):435.0000000 万元(人民币)采购需求:标包货物名称数量简要技术要求1超高分辨荧光共聚焦活体成像系统 1套详见公告附件合同履行期限:详见招标文件要求。本项目( 不接受 )联合体投标。对本次招标提出询问,请按以下方式联系。1.采购人信息名 称:山东大学地址:山东大学中心校区明德楼联系方式:王老师 0531-883697972.采购代理机构信息名 称:海逸恒安项目管理有限公司地 址:山东省济南市历下区华润置地广场A5-6号楼27层联系方式:李雨莹 0531-826619973.项目联系方式项目联系人:李雨莹电话:053-182661997;13964159515山东大学超高分辨荧光共聚焦活体成像系统采购项目公开招标公告.pdf
  • 激光共聚焦荧光显微镜 活体荧光物质检查
    激光共聚焦荧光显微镜 活体荧光物质检查激光共聚焦显微镜,简称CLSM(Confocal Laser Scanning Microscopy),是一种利用激光共振效应进行成像的显微镜。它通过使用激光束扫描样品的不同层面,将所得到的图像合成成一幅清晰的三维图像。与传统显微镜相比,激光共聚焦显微镜具有更高的分辨率和更强的穿透能力,可以观察到更加细微的结构和更深层次的物质。在活体荧光物质的检查中,激光共聚焦显微镜发挥了重要的作用。通过标记活体细胞或组织的特定结构或分子,激光共聚焦显微镜可以实时观察到这些结构或分子的活动和分布情况。在生物医学领域,它可以用于观察细胞的生长、分裂和死亡过程,研究细胞信号传导和分子交互作用等。在药物研发中,它可以用于观察药物在活体细胞或组织中的分布情况,评估药物的疗效和毒性。此外,在神经科学领域,激光共聚焦显微镜可以用于观察神经元的活动和连接,揭示大脑的工作机制。NCF950激光共聚焦显微镜较宽场荧光显微镜的优点:&bull 能够通过荧光标本连续生产薄(0.5至1.5微米)的光学切片,厚度范围可达50微米或更大。(主要优点)&bull 控制景深的能力。&bull 能够从样品中分离和收集焦平面,从而消除荧光样品通常看到的焦外“雾霾”,非共焦荧光显微镜下无法检测到。(最重要的特点)&bull 从厚试样收集连续光学切片的能力。&bull 通过三维物体收集一系列图像,用于二维或三维重建。&bull 收集双重和三重标签,精确的共定位。&bull 用于对在不透明的图案化基底上生长的荧光标记细胞之间的相互作用进行成像。&bull 有能力补偿自发荧光。耐可视共聚焦成像效果图 尼康共聚焦成成像效果图NCF950激光共聚焦显微镜应用,共聚焦显微镜在以下研究领域中应用较为广泛:1、细胞生物学:细胞结构、细胞骨架、细胞膜结构、流动性、受体、细胞器结构和分布变化、细胞凋亡;2、生物化学:酶、核酸、FISH、受体分析3、药理学:药物对细胞的作用及其动力学;4、生理学:膜受体、离子通道、离子含量、分布、动态;5、遗传学和组胚学:细胞生长、分化、成熟变化、细胞的三维结构、染色体分析、基因表达、基因诊断;6、神经生物学:神经细胞结构、神经递质的成分、运输和传递;7、微生物学和寄生虫学:细菌、寄生虫形态结构;8、病理学及病理学临床应用:活检标本的快速诊断、肿瘤诊断、自身免疫性疾病的诊断;9、生物学、免疫学、环境医学和营养学。NCF950激光共聚焦显微镜配置NCF950激光共聚焦配置表激光器激光405 nm、488 nm、561 nm、640 nm探测器波长:400-750nm,探测器:3个独立的荧光检测通道;1个DIC透射光检测通道扫描头最大像素大小:4096 x 4096 扫描速度:2 fps(512 x 512像素,双向),18 fps(512 x 32像素,双向),图像旋转: 360°扫描模式X-T, Y-T, X-Y, X-Y-Z, X-Y-Z-T针孔无级变速六边形电动针孔;调节范围:0-1.5毫米共焦视场φ18mm内接正方形图像位深12bits配套显微镜NIB950全电动倒置显微镜光学系统NIS60无限远光学系统(F200)目镜(视野)10×(25),EP17.5mm,视度可调-5~+5,接口Φ30观察镜筒铰链式三目观察镜筒,45度倾斜,瞳距47-78mm,目镜接口Φ30,固定视度;1)目/摄切换:(100/0,50/50,0/100);2)目视/关闭目视/可调焦勃氏镜NIS60物镜10×复消色差物镜,NA=0.45 WD=4.0 盖玻片=0.1720×复消色差物镜,NA=0.75 WD=1.1 盖玻片=0.1760×半复消色差物镜,NA=1.40 WD=0.14 盖玻片=0.17 油镜100×复消色差物镜,NA=1.45 WD=0.13 盖玻片=0.17 油镜物镜转换器电动六孔转换器(扩展插槽),M25×0.75聚光镜6孔位电动控制:NA0.55,WD26;相衬(10/20,40,60选配)DIC(10X,20X/40X)选配.空孔照明系统透射柯拉照明,10W LED照明;落射照明:宽场光纤照明6孔位电动荧光转盘(B,G,U标配);电动荧光光闸;中间倍率切换手动1X,1.5X、共焦切换机身端口分光比:左侧:目视=100:0;右侧:目视=100:0;平台电动控制:行程范围130 mm x100 mm (台面325 mm x 144 mm )最大速度:25mm/s;分辨率:0.1μm - 重复精度:3μm。机械可调样品夹板调焦系统同轴粗微动升降机构,行程:焦点上7下2;粗调2mm/圈,微调0.002mm/圈;可手动和电动控制,电动控制时,最小步进0.01um;DIC插板10X,20X,40X插板;可放置于转换器插槽;选配控制摇杆,控制盒,USB连接线软件软件:NOMIS Advanced C图像显示/图像处理/分析2D/3D/4D图像分析,经时变化分析,三维图像获得及正交显示,图像拼接,多通道彩色共聚焦图像
  • 生物物理所发展出线虫活体荧光显微成像法
    中国科学院生物物理研究所欧光朔研究组在2012年12月期的Nature Protocols上发表题为Live imaging of cellular dynamics during Caenorhabditis elegans postembryonic development的文章,介绍他们发展的研究线虫胚胎后发育的荧光活体显微成像方法。   胚胎后发育是生命体一个重要的发育时期。例如,线虫的959个体细胞中有400多个是在胚胎后时期产生的。观察线虫胚胎时期发育的显微成像技术相对成熟,而研究线虫胚胎后发育的活体荧光显微成像方法缺乏。   该文章系统介绍了观察活体线虫胚胎后发育时期细胞动态的方法,并对可能的技术难点进行了讨论。欧光朔研究组将这项成像技术与线虫遗传学的结合,发现了迁移细胞的分子标识(Ou & Vale, Journal of Cell Biology, 2009)、 一种新的细胞不对称分裂方式(Ou et al., Science, 2010) 、自体吞噬基因在凋亡细胞降解中的作用(Li et al., Journal of Cell Biology, 2012)等。   该项工作得到科技部、国家自然科学基金委和“青年千人计划”的资助。 线虫Q神经前体细胞在L1幼虫时期迁移及产生子代细胞的简图
  • 我国科学家拓展了光学探针与活体荧光成像新应用
    性能优良的光学探针是构建高灵敏度、高时空分辨能力的光学传感与活体成像分析方法的物质基础,其发展一直受到人们的关注。中国科学院化学研究所活体分析化学实验室马会民课题组长期从事该方面的研究,并取得了一系列的成果 (Angew. Chem. Int. Ed., 2012, 51, 6432 Anal. Chem., 2014, 86, 6115 Angew. Chem. Int. Ed., 2014, 53, 10916 Chem. Sci., 2016, 7, 788 Chem. Sci., 2016, 7, 4694)。近年,该课题组还应邀系统总结并评述了光学探针的各种设计方法(Chem. Rev., 2014, 114, 590-659 Chem. Sci., 2016, 7, 6309-6315)。  酪氨酸酶是黑色素癌的重要标志物,并与白化病、帕金森等疾病密切相关。因此,发展酪氨酸酶的光学传感与成像分析方法对相关疾病的诊断研究具有重要的意义。传统的检测酪氨酸酶荧光探针均包含4-羟基苯单元,在用于细胞等生物体系成像分析时受到活性氧物种的干扰,从而严重影响检测结果的准确性。最近,在国家自然科学基金委、科技部和中科院的大力支持下,该课题组提出了新的酪氨酸酶识别单元(3-羟基苄基),并结合稳定的半菁母体,发展出了适用于细胞及活体斑马鱼成像的近红外光学探针(如图),有效解决了现有荧光探针受活性氧物种的干扰问题。相关结果发表在《德国应用化学》(Angew. Chem. Int. Ed. 2016, 55, 14728-14732)上。
  • 最新成果:近红外荧光成像用于活体生物研究(发布于Advanced Materials)
    荧光成像一直是生物动态分析、活体追踪以及药物代谢动力学分析的重要工具,同时也在生物医学研究领域扮演至关重要的角色。在该技术领域,近红外光学技术因其自身独特的生物适应性以及高精准度,已经被认为是生物医学研究和活体生物成像的一种超越可见光成像的重要工具,也被广泛证实可为活体成像研究提供可行性解决方案。尽管当前的近红外一区(NIR-I)成像相比可见光波长下的成像,展示出良好的优越性。但是,最近的研究表明近红外二区(NIR-II,1000-1700nm)可以提供更高质量生物活体成像,这主要得益于 NIR-II 区域具有弱的组织自体荧光、低光子散射以及干扰,便于实现信噪比、分辨率和穿透深度等多方面的提升。因此,发展更高亮度的近红外二区成像方法以及工具可以实现更深更精准的生物成像与检测。近红外荧光成像的技术发展往往受限于探针的发展,高亮度以及具有特殊响应性能的探针材料是荧光成像技术的核心。在过去几年间,经过全球化学材料家以及药学家们的努力,近红外二区荧光探针得到了长足发展,已经发展出多种多样的分子体系,并在荧光成像与活体分析等多个方面取得了一系列重要进展。但是当前仍缺乏高效的探针,特别是高亮度和长波长的荧光材料,这严重限制了该技术的进一步发展和应用。针对上述问题,该团队开发出一系列在近红外二区具有高亮度的有机荧光探针,实现了 NIR-IIb 波长(1000-1700nm)下的全身血管、胆道系统以及脑部血管动力学高分辨成像。研究成果“Molecular Programming of NIR-IIb-Emissive Semiconducting Small Molecules for In Vivo High-Contrast Bioimaging Beyond 1500nm”,发表在 Advanced Materials 上。Advanced Materials,2021-2022年影响因子为30.849该研究首先合成了具有 A-D-A 骨架结构的近红外二区发光探针母体,并进一步采用硒和氟原子工程方法改造所得的近红外二区发光探针母体,从而增强分子内电荷转移并降低能级带隙。通过纳米制备技术,获得了高稳定的水溶性 NIR-II 纳米荧光探针材料,该荧光探针具有高效的 NIR-II 发光性能,其发光波长可延伸至 1700 nm。更进一步的活体生物成像证实了该荧光探针可高分辨的可视化全身血管以及膀胱胆道系统。此外,该探针也对脑部血管成像以及血流动力学进行了高速成像,取得了可观的脑血管造影性能。概括来说该研究为新型近红外二区有机荧光探针的设计合成以及高分辨生物成像提供了一种新的思路和有效工具。上述工作立足于近红外二区的波长问题,只是做了初步的尝试和探索,后续他们将继续挖掘近红外二区新的分子体系以及优越性,深入研究分子体系的发光波长以及量子产率的优化,以期在这两者之间寻找到平衡。荧光成像介导的手术导航方法因为其本身实时可视化和高速动态成像性能,已经被认为是一种极具潜力的可视化手术工具,有望协助临床医生进行实时病灶发现和手术扫除。“因此,我们基于前期在近红外二区分子设计方面的经验和基础上,将进一步开发近红外二区荧光成像在疾病诊疗,特别是在手术导航方面的进行深入性应用探索。”李盛亮说。除此之外,该团队也一直关注并致力于近红外二区肿瘤治疗研究,通过研究近红外成像与近红外治疗的联合体系,发展新型的高效诊疗一体化药物。特别是利用分子设计合成的基础,发展单分子具备多个光学功能的 All-in-One 体系十分值得期待。
  • 435万!山东大学超高分辨荧光共聚焦活体成像系统采购项目
    项目编号:SDQDHF20220129-H076项目名称:山东大学超高分辨荧光共聚焦活体成像系统采购项目预算金额:435.0000000 万元(人民币)最高限价(如有):435.0000000 万元(人民币)采购需求:标包货物名称数量简要技术要求1超高分辨荧光共聚焦活体成像系统 1套详见公告附件合同履行期限:详见招标文件要求。本项目( 不接受 )联合体投标。山东大学超高分辨荧光共聚焦活体成像系统采购项目公开招标公告.pdf
  • 五洲东方高灵敏度化学发光、多色荧光、活体成像技术研讨会在河北医科大学举办
    碧玉妆成一树高,万条垂下绿丝绦。不知细叶谁裁出,二月春风似剪刀。 2013年3月6日,高灵敏度化学发光、多色荧光、活体成像技术研讨会在春意盎然的河北医科大学举行,这是五洲东方独家代理的法国VILBER产品研讨会的2013年的第一站。 生物领域新技术新方法不断涌现,科学发现日新月异。 Western Blot是蛋白质研究中最常用的分析方法之一,多色荧光技术以同时检测多种蛋白而大大加快了Western的效率,活体成像技术以在活体内直接观察蛋白、药物等的真实特征而逐渐火热。本次会议围绕着这个问题对化学发光成像系统展开详细介绍,从而对化学发光及分子成像用户有所帮助。 vilber公司全球销售总监讲解 会议现场 研讨会由法国VILBER公司全球销售总监Mathieu先生亲临做高灵敏度化学发光及荧光活体成像系统的技术报告,并与参加会议的师生热烈交流实验操作应用方法和实验技巧,并对同学们事先准备的相关样品进行了测试,均得到了理想的成像图片和实验结果。 同时,会场还展示了德国BRAND移液产品及最新推出的真空吸液系统(BVC),得到了到会老师的关注。 五洲东方会更努力的为用户提供更全面更优质的服务!
  • 睿光科技发布NirVivo系列 近红外二区活体荧光成像系统新品
    非凡的成像性能评价小动物活体荧光成像系统的关键要素——所选用相机的性能水平。NirVivo系列采用深度制冷科学相机产品,CCD制冷温度(-90℃)和InGaAs制冷温度(-80℃),基于这样的硬件配置,系统具备了高灵敏度的生物发光及荧光成像性能,同时能够满足微区成像和血管动态成像。全面而先进的荧光成像解决方案高透光率滤光片为了实现高品质的荧光成像系统,NirVivo配置了丰富且优质的荧光滤光片,光谱覆盖包括从VIS至NIR I区,NIR IIa区至NIR IIb区的全部区域,并且所有滤光片均采用硬涂层技术,在保证高透光率(95%以上)的同时具备长寿命耐损伤品质。系统内部构造及组成成像暗箱● 高避光性成像箱体● 高度整合的荧光成像组件● 用于维持动物正常体温的加热载物台● 用于控制载物台升级、滤光片轮切换的电动马达● 内置的气体麻醉接口● 电磁门锁● 可滑动脚轮CCD相机● 高量子效率背照式、科学一级CCD探测器● 像素尺寸13.5um,分辨率2048x2048● 高动态范围16 bit数字转换器● 帕尔贴型制冷,制冷温度-90℃,保证极低的暗电流● 曝光时间可达60分钟InGaAs相机 ● 高量子效率InGaAs探测器 ● 像素尺寸15um,分辨率640x512 ● 高动态范围16 bit数字转换器 ● 帕尔贴型制冷,制冷温度-80℃,保证极低的暗电流● 曝光时间可达5分钟半导体激光器 ● 808nm, 980nm和1064nm可选 ● 激光输出功率15W(可定制其它功率) ● 支持高重频调制工作参考型号系统型号NirVivo-LiteNirVivo-ProNirVivo-MIX成像光谱范围900-1700nm900-1700nm400-1700nm芯片类型InGaAs, TE1制冷InGaAs, TE4制冷CCD和InGaAs,TE4制冷芯片工作温度15℃-80℃-90℃ CCD芯片-80℃ InGaAs芯片芯片尺寸9.6mm x 7.7mm9.6mm x 7.7mm27.7mm x 27.7mm像素数量640 x 512640 x 5122048 x 2048640 x 512量子效率70% @1000-1600nm70% @1000-1600nm85%@500-700nm70% @1000-1600nm像素尺寸15um x 15um15um x 15um13.5um x 13.5um CCD15um x 15um InGaAs镜头1x, 2.5x, 5x, (8-50)x1x, 2.5x, 5x, (8-50)x1x, 2.5x, 5x, (8-50)x读出噪声(RMS)30e- 30e-2.3e- CCD芯片30e- InGaAs芯片暗电流60Ke-/p/s@15℃100e-/p/s@-80℃0.0001e-/p/s@-90℃100e-/p/s@-80℃激发滤光片数量449发射滤光片数量449加热恒温载物台有有有气体麻醉接口有有有计算机及软件有有有成像暗箱内部尺寸45 x 50 x 65cm载物台温度 20 - 40℃电源要求100-240 VAC, 50-60 Hz工作温度 0 - 50℃创新点:采用-80℃深度制冷的红外探测器,独特的光路设计,可以选择三种不同的激光波长进行测量,双相机设计,兼容了从可见光,近红外一区到近红外二区的全谱段小动物荧光成像应用的需求,属于业内领先的设计及系统。NirVivo系列 近红外二区活体荧光成像系统
  • 全球首台活体单细胞拉曼分选仪问世
    近日,中科院青岛生物能源与过程研究所功能基因组团队与北京惟馨雨生物科技公司联合承担的科技部创新方法工作专项&mdash &mdash &ldquo 拉曼光钳筛选新方法在活体单细胞高通量分离中的应用&rdquo 通过了评审验收,这标志着全球首台活体单细胞拉曼分选仪在中国研制成功。   该研究是在青岛能源所研究员徐健和兼职研究员、英国谢菲尔德大学黄巍主持下,通过所企联合攻关完成的。项目组此次研发的是目前已公开文献报道的首台基于细胞拉曼指纹图谱的细胞手动和自动分选仪器。该分选仪可实现单细胞拉曼图谱快速采集,并首次将单细胞的拉曼信号采集时间缩短到1~100毫秒 还可完成基于拉曼图谱的细胞种类及生长状态快速鉴别等多项任务。   该仪器的核心优势在于,对细胞生化信息及其变化敏感,无须预知生物标识物,无须标记细胞,可进行原位和非侵害性的活体检测等。此项技术将对单细胞生物技术和单细胞基因组的研究产生积极的贡献。   项目组利用该仪器,已经在光合产油微藻生理状态识别、多环芳烃降解微生物分离等研究中取得初步成果,并建立起应用示范技术参照方法和数据分析流程。   据了解,目前该仪器已服务于国内外多个科研团队,在海洋资源挖掘、生物燃料和生物材料、生物能源种质筛选、食品微生物检测、药物研究、肿瘤监测与分选、环境微生物监控、农业生态研究等领域发挥重要作用。 青岛能源所首台&ldquo 活体单细胞拉曼分选仪&rdquo 样机通过验收   背景新闻:   日前,受科技部条财司委托,中国21世纪议程管理中心在北京组织专家对中国科学院青岛生物能源与过程研究所功能基因组团队与北京惟馨雨生物科技公司联合承担的科技部创新方法工作专项&ldquo 拉曼光钳筛选新方法在活体单细胞高通量分离中的应用&rdquo 项目进行验收,标志着研究所基于自主技术开发的首台&ldquo 活体单细胞拉曼分选仪&rdquo 通过科技部验收。   验收专家听取了项目组的工作总结汇报、审查了验收材料,认为项目组基于自主开发的&ldquo 活体单细胞拉曼分选仪&rdquo 开展的各项工作完全符合任务书下达的全部考核指标,一致同意项目通过验收。   在项目实施过程中,项目组成功研制开发了&ldquo 活体单细胞拉曼分选仪&rdquo (&ldquo Raman-Activated Cell Sorter&rdquo ,简称RACS),并在中科院青岛能源所成功搭建了首台样机。该样机(编号RACS-1)由激光器、拉曼光谱仪、落射荧光显微镜、细胞分选系统以及自动控制系统组成,是目前已公开文献报道的首台基于细胞拉曼指纹图谱的细胞手动和自动分选仪器。目前,RACS-1已可实现的功能包括:单细胞拉曼图谱快速采集,并首次将单细胞的拉曼信号采集时间缩短到1-100ms 基于拉曼图谱的细胞种类及生长状态快速鉴别 拉曼-落射荧光不可培养功能微生物鉴定 拉曼光钳单细胞操纵 基于拉曼信号的单细胞计数 单细胞拉曼数据库系统 拉曼激活单细胞分选等。   与现有的基于细胞荧光信号的荧光流式细胞分选仪(&ldquo Fluorescence-Activated Cell Sorter&rdquo ,简称 FACS)原理和方法均不同,RACS是基于对单个细胞的拉曼化学指纹图谱(细胞生化信息)的获取并与参照细胞拉曼数据库比对,从而原位、不依赖于培养、高通量地分选具有特定(或指定)生化状态的单细胞。与FACS相比,RACS的核心优势在于:对细胞生化信息及其变化敏感、不需预知生物标识物、不需标记细胞、原位和非侵害性的活体检测等。因此,RACS可有效克服&ldquo 细胞功能异质性&rdquo 、&ldquo 尚不可培养微生物&rdquo 、&ldquo 探测未知的细胞表型&rdquo 等三个共性科学与技术瓶颈。   此外,项目组利用RACS-1在光合产油微藻生理状态识别、多环芳烃降解微生物分离等方面研究取得了初步示范成果,并建立起应用示范技术参照方法和数据分析流程,为未来对细胞表型鉴定及功能微生物筛选奠定了基础。
  • Carestream多模式活体成像声明
    Carestream多模式活体成像重要声明   2010年7月, Carestream起诉Caliper(原Xenogen)活体成像产品直接侵犯了我公司的成像专利(美国专利号7,734,325) 在2010年2月,Caliper的全资子公司Xenogen,以及Stanford大学起诉Carestream在其成像系统的营销和销售中,间接涉及由斯坦福大学独家授权给Xenogen的成像专利。为了调停诉讼,双方于2011年8月达成和解协议。但是近期,个别代理机构利用Caliper Life Sciences, Inc. 和我公司双方专利诉讼调停的报道,来故意误导中国境内的客户,造成了严重的不良影响,Carestream中国区在此澄清和声明:   1 利兰-斯坦福青年大学托管委员会于1995年向中国国家知识产权局所申请的专利均为研究方法学专利,非仪器和功能专利(专利号:95198006.8)。   2 Carestream多模式小动物活体成像仪,具备发光,荧光,x-ray,同位素检测等功能,目前为止,已经为中国和世界其它各地的广大科研工作者提供了性能优异,质量可靠的活体成像的研究工具。   3 根据中华人民共和国专利法第六十九条第四款规定,为科学研究和实验等用途而使用专利的,不视为专利侵权,可无偿使用 此规定为包括美国、欧洲、日本等国家在内的国际通行准则。   4 我公司对任何错误解读翻译和误导该事件的商业行为所造成的不良影响和后果,将保留通过法律途经追究相关责任的权利,以维护我公司的合法权益 同时,本着对客户负责任的态度,我公司郑重对客户承诺,在Carestream多模式小动物活体成像仪器使用中,如有涉及专利方面的事宜,请直接与我们联系,我公司将会认真处理,避免给客户带来任何损失。   如有任何疑问请致电我公司   电话: 021-3852 6888   Carestream   Molecular Imaging
  • 中国小动物活体成像仪市场销售及使用情况简析
    随着医学和生命科学领域的快速发展,动物模型在研究人类生命奥秘中扮演着至关重要的角色。1999年,分子影像学的概念应运而生,它通过影像学方法使得活体动物体内成像成为可能。这一技术的出现极大地推动了生命科学研究的进步,尤其是在特异性细胞研究、靶细胞追踪、药物和基因治疗优化等方面。活体成像技术是一系列用于观察活体动物体内过程的非侵入性技术。这些技术包括光学成像、核素成像(PET、SPECT)、磁共振成像(MRI)、CT成像、超声成像以及磁粒子成像(MPI)。它们各自具有独特的优势,通常不是相互竞争,而是互补共存,共同为生命科学研究提供支持。光学成像技术光学成像技术是小动物活体成像系统中应用最为广泛的一种技术。它利用生物发光和荧光原理,通过特定的成像设备捕捉活体动物体内发出的光信号,从而实现对细胞、分子和组织等生物过程的实时、动态监测。光学成像技术具有操作简便、结果直观、测量快速、同时可检测多个动物费用低廉等优点,因此受到生命科学、医学研究等各领域研究者的广泛关注和应用。基于此,本文聚焦以光学成像技术为核心的小动物活体成像仪,通过对2023年中国小动物活体成像仪(单价大于100万元)市场销售情况的调研统计,并以重大科研设施与仪器国家网络管理平台(以下简称“重大平台”)所收录的超过12万台重大仪器设备(货值大于100万元)为数据基础,对当前中国小动物活体成像仪的销售及使用情况进行简要分析。一、2023年中国小动物活体成像仪市场销售情况分析 根据仪器信息网调研统计,2023年中国小动物活体成像仪市场销售额约为5.6亿元,其中约90%为近红外一区小动物活体成像仪,10%为近红外二区小动物活体成像仪。瑞孚迪Revvity以69.5%的市场份额,毫无争议地成为了市场的领头羊。2023年中国小动物活体成像仪主要品牌销售额市场分布数据来源:信立方科学仪器产业大数据、仪器信息网,2024年6月 从销售额分布来看,2023年中国小动物活体成像仪市场占比最高的是瑞孚迪Revvity,以69.5%的市场占比高居榜首之位。其他品牌均在10%以内,博鹭腾、德国伯托、上海恒光智影、北京DPM、和法国Vilber等,其市场占比分别约为9%、3.6%、2.9%、2.7%和2.5%。自2011年收购专注于生命科学研究、成像和检测服务的Caliper Life Sciences公司以来,瑞孚迪Revvity已经成为全球小动物成像领域最大的供应商,除了整机产品之外,还提供种类丰富的生物发光细胞株、细菌、生物发光底物及丰富的活体荧光成像试剂。据报道,瑞孚迪Revvity IVIS系列高端小动物活体光学成像系统在国内装机量已经超过1000台,在生命科学研究领域中扮演着重要的角色。二、重大平台小动物活体成像仪使用情况分析重大平台小动物活体成像仪单位类型分布数据来源:信立方科学仪器产业大数据、仪器信息网,2024年6月据仪器信息网统计,重大平台收录登记的小动物活体成像仪共398台,小动物活体成像仪使用单位主要以大专院校和科研院所为主,两者合计约占9成。进一步分析发现,大专院校用户单位中,双一流大学占据较大比例,约占2/3。科研院所用户单位则主要以医学研究所、药物研究所、动物研究所、肿瘤研究所等为主。除了大专院校和科研院所用户单位之外,以疾控、医院等为代表的卫生系统用户单位也占据了一部分比例,所占比例约为6%。小动物活体成像仪重大平台用户省份分布数据来源:信立方科学仪器产业大数据、仪器信息网,2024年6月 重大平台数据分析表明,小动物活体成像仪用户分布涉及29个省份/直辖市/自治区,主要分布在江苏、北京、广东、浙江、上海、河南等地区。由此可见仪器资源依然集中分布在高等教育强省,存在资源分布不均的问题。重大平台小动物活体成像仪品牌分布数据来源:信立方科学仪器产业大数据、仪器信息网,2024年6月重大平台数据分析表明,目前国内用户登记使用的小动物活体成像仪主要以进口品牌为主,其中瑞孚迪Revvity以68%的占比排在首位,遥遥领先其他品牌,其次是美国Carestream(原Kodak),所占比例约为8%。德国伯托和布鲁克也占据了一定的比例,分别约为6%和5%。除了以上品牌之外,其他品牌所占比例不超过1%。由此可见,瑞孚迪Revvtiy深受高校、科研院所等用户的欢迎。重大平台江苏地区小动物活体成像仪品牌分布数据来源:信立方科学仪器产业大数据、仪器信息网,2024年6月 从江苏地区重大平台小动物活体成像仪品牌分布来看,整体趋势与全国重大平台品牌分布相似,瑞孚迪Revvity在江苏地区有着绝对的竞争优势,所占比例高达83%,这不仅证明了其产品的卓越性能,也反映了市场对其品牌的深厚信任。
  • 新品推荐 | 3D小动物活体成像系统ERI TM 600
    何为电子共振成像(ERI)?电子顺磁共振(EPR)是当今材料表征手段之一,该技术通过检测样品中的未成对电子在磁场线圈中的跃迁所产生的顺磁图谱来研究物质结构信息和动态信息。初这种技术主要用于研究复杂原子的电子结构、晶体结构、原子偶矩及分子结构等问题。在随后的发展中逐渐向化学和生物学领域扩展,主要用于阐明复杂的有机化合物中的化学键和电子密度分布以及动植物中存在自由基等问题。随着医学的发展,生物组织内的氧含量被发现与诸多疾病有着直接关系,而EPR能够很好地应用于这一检测。在EPR基础上研发的电子共振成像(ERI)是一种使用特定磁场对外部注射的自旋探针进行成像的技术。这种技术使用的自旋探针往往基于一个孤电子的氮氧化物或三苯基类化合物,能够在生物体内因内环境的不同而发出不同的信号。因此能够用于活体实时监测生物体内的组分含量信息,诸如氧含量、氧化还原水平,pH变化,氧化应激水平等。 ERI的制造一直是一个难题,相较于传统的磁共振成像(MRI)来说,ERI需要的磁体更大,冷却技术要求难度更高,因此实现大尺度样品的成像十分困难。目前市面上的ERI设备腔体难以容纳一整只动物,因此难以实现小动物活体顺磁成像。近期Novilet公司研发的全新一代顺磁成像系统ERI TM 600成功攻克了ERI大样品活体成像的难题。将样品腔的直径扩大到了5 cm,其体积与传统顺磁共振波谱仪相当,为ERI活体成像技术扫清了障碍。电子共振成像有何优势?随着自旋探针的开发,现在已经有多种可用于成像的自旋探针问世,使得ERI也可用于生物成像。这种成像技术相较于荧光成像来说具有许多优势:自旋探针具有高度特异性,在成像中具有很高的信噪比,不易受到生物本身的影响;自旋探针代谢速度快、毒性低,对活体影响小;顺磁技术成像速度快、检测精度高(可达亚微米的分辨率),具有更好的时间、空间分辨率。 电子共振成像有何应用?● 肿瘤成像和监测● 神经退行性疾病的诊断● 监测缺氧和氧浓度区域及其机制● ROS成像和氧化应激反应的研究● 基于自旋探针的小动物成像● 脑部病变中的氧化应激水平检测
  • 文献速递|动物活体成像系统在纳米医学领域中的应用
    ● 快讯近日,同济大学医学院-纳米院李永勇教授团队在纳米医学领域取得新的研究成果,在国际知名期刊《Biomaterials》(IF=12.479,JCR1区)上发表研究性论文。图1|国际知名期刊《Biomaterials》(IF=12.479,JCR1区)新抗原长肽疫苗(NeoVax)具有扩大和拓宽肿瘤特异性细胞毒性T淋巴细胞(CTL)反应的潜力,成为对抗多种肿瘤类型的希望。然而,外源抗原会被体内的内溶酶体捕获,进而限制在抗原提呈细胞(APCs)中的胞浆递送,导致抗原的交叉呈递效率低下,无法对癌症进行有效的CTL反应。研究表明,获得性免疫系统可以通过激活NADPH氧化酶2(NOX2)复合体产生脂质氧化作用,使得外源抗原逃逸内溶酶体,进而赋予APCs促进外源抗原交叉呈递的能力。但是,NOX2激活的确切机制尚不清楚,阻碍了安全有效的干预策略的发展。受NOX2机制的启发,李永勇教授团队设计了一种名为NVscp的生物矿化纳米疫苗。NVscp通过在模型抗原卵清蛋白(Ova)自组装的纳米疫苗(Nvs)上原位生长过氧化钙而发展起来,具有超高的Ova抗原密度,并含有必要的过氧化钙佐剂(8.9%)。过氧化钙佐剂响应内溶酶体的酸性环境,触发ROS的释放,进而形成脂质氢过氧化物,导致内溶酶体脂质过氧化。因此,NVscp被赋予内溶酶体逃逸能力,以实现抗原交叉提呈的胞浆转运。体内实验表明,NVscp的大小可以有效地滞留在引流淋巴结(dLNs)中,从而增强不同的APCs(特别是髓窦巨噬细胞(MSMs,F4/80+CD169+))和树突状细胞(DCs,CD11c+F4/80-)的抗原交叉提呈,有效地促进肿瘤特异性CD8+CTL和CD4+T辅助细胞(Th1细胞)的激活,用于癌症免疫治疗。图2|NVscp的形成和NVscp诱导肿瘤免疫治疗机制的示意图文章中,评估NVscp在小鼠体内淋巴结的累积活体实验成像,使用了AniView100多模式动物活体成像系统拍摄。于小鼠关节皮下注射FITC标记的NVs和NVscp,在不同时间点采集腹股沟淋巴结(ILNs)荧光信号。结果显示Hock注射4h后,NVs和NVscp在病灶内迅速积累,两组荧光信号强度无差异。然而,NVs的荧光在注射24h后迅速减弱。对两组荧光信号强度定量分析,显示NVscp组的抗原积累大约是NVs组的2.8倍,猜测NVscp的积累增强可能与过氧化钙有效修饰后纳米疫苗的物理化学性质(表面电荷和组成)的改变有关。图3|NVscp在小鼠体内淋巴结累积的情况a、注射后2、4和24小时解剖ILNs的体外荧光图像b、对皮下注射后不同时间点ILNs的荧光强度进行量化,来测量疫苗动力学长期以来,癌症严重威胁人类健康和生命安全,在治疗癌症的过程中,疫苗发挥了举足轻重的作用。基于大多数蛋白质/多肽结构都含有促进钙生物矿化的羧基,受NOX2机制的启发,李永勇教授团队构建了一种有前途的技术手段,用于改善各种癌症疫苗模式的交叉呈现,包括多肽和蛋白质疫苗等无细胞平台。考虑到它的方便性、有效性和生物相容性,未来可能被广泛应用于癌症治疗。参考文献:1、https://doi.org/10.1016/j.biomaterials.2021.121089
  • 东胜创新举行“ Kodak活体成像技术进展和应用” 全国巡回讲座圆满结束
    由东胜与Kodak活体成像仪生产公司—Carestream公司共同举办的“Kodak活体成像技术进展和应用”全国巡回讲座,分别于2008年10月6日于北京新世纪日航酒店、10月7日于广州花园酒店、10月9日于上海好望角酒店举行,活动取得了圆满成功。 讲座邀请到了国际分子影像专家—美国Baylor 医学院放射科师克教授,结合其研究做“分子影像技术的进展与应用”的报告;还邀请Carestream公司研发总监Bill Mclaughlin博士做“Kodak活体成像系统和纳米染料”的报告。 三地讲座与会听众与两位讲师和东胜创新的技术人员进行了很好的交流,并纷纷感谢东胜组织了本次讲座,对提升研究实验思路很有帮助。东胜创新还备有本次讲座幻灯的少量光盘,全国各地用户如有需要,可通过各地办事处索取。 附一: Carestream Health公司介绍: 成立于 2007 年,是由位于加拿大多伦多的 Onex 公司收购伊士曼柯达公司医疗集团后组成。Carestream Health 公司秉承了柯达引以自豪的创新历史,在医疗成像领域积累了110多年的经验,其在数字和胶片成像及信息技术方面拥有1,000 多项专利,为全球150 多个国家的数万名客户提供优质的医疗产品。已进入中国,总部位于上海浦东金桥开发区。 附二:Kodak 活体成像系统 Kodak活体成像系统为Carestream Health公司开发的集生物发光、荧光、X-光、同位素活体成像于一身的多功能活体成像系统。其专利的产品设计和高质量的成像效果曾在Nature 杂志上有过专门报道。专利的X-光成像系统专门用于为荧光、生物发光以及同位素活体成像提供精细的解剖学定位;专业的多光谱解析软件能够将荧光信号同动物的皮毛自发荧光彻底区分开来。专利的同位素活体成像不仅可以观察同位素标记药物在体内的迁移方向,还可以对同位素信号进行精确定量。 附三:东胜创新KODAK产品链接 http://www.eastwin.com.cn/product_kodak.asp
  • 文献速递ㅣ动物活体成像系统在外泌体研究中的应用
    细胞外囊泡(Extracellular vesicles,EVs)是来源于细胞的脂质双层包裹的纳米囊泡。外泌体(Exosomes)作为EVs的一个亚型,由于具有体积较小、能跨越生物屏障、循环稳定和固有靶向性等特性,成为非常有吸引力的药物输送载体。目前对于外泌体的获取,主要是基于差速超速离心,对细胞培养上清液的外泌体进行离心分离、收集和浓缩;但是在分析外泌体的内容物、研究其功能或用于治疗应用之前,储存条件对sEVs(small EVs)特性的影响还没有完全阐明,也缺乏对不同储存条件的对比评价。▲ 典型的外泌体结构。外面由磷脂双层包围,含有对运输很重要的膜联蛋白;用于细胞靶向的四环素以及参与其他生物过程的蛋白。近日,中南大学、湖南省转化医学与创新药物工程研究中心向大雄教授课题组通过差速超速离心分离获得bEnd.3细胞来源的sEVs,并测试了保存条件对sEVs的大小、数量、蛋白质/RNA含量和与治疗应用相关的性质影响。在研究不同储存温度对sEVs在活体治疗应用的影响时,采用博鹭腾AniView100多模式动物活体成像系统进行了连续纵向检测sEVs在活体体内生物分布。结果直观清晰地显示储存会显著影响bEnd.3细胞来源的sEVs的脑靶向能力;因此,对于sEVs的治疗应用,应使用新鲜的sEVs或可在-80℃下短期保存备用。相关成果已发表在期刊《Drug Delivery》,可为未来sEVs的商业化储存提供参考。▲ 使用博鹭腾AniView100拍摄的sEVs在小鼠体内和体外器官的生物分布结果。(A) sEVs在健康小鼠体内的生物分布(B) 在小鼠主要器官的生物分布(C) sEVs在小鼠脑部生物分布比较(D) sEVs在小鼠器官中的荧光信号强度(E) sEVs在小鼠脑部荧光信号的强度参考文献:1、Wu J Y , et al. Preservation of small extracellular vesicles for functional analysis and therapeutic applications: a comparative evaluation of storage conditions[J]. Drug Delivery, 2021, 28(1):162-170.2、Kourembanas, Stella. Exosomes: Vehicles of Intercellular Signaling, Biomarkers, and Vectors of Cell Therapy[J]. Annual Review of Physiology, 2015, 77(1):13-27.AniView100多模式动物活体成像系统应用实例肿瘤学研究新药筛选评价干细胞研究病毒感染模式疫苗开发基因表达调控研究
  • 第一届华南动物活体成像应用研讨会暨小动物活体三维成像系统发布会
    在去年发布的「十四五规划」的国家战略中,生命科学被纳入引领性科技领域的重点攻关项目,而正在呼吁生物医药行业健康发展的议题也引起了广泛关注。动物活体成像技术作为基础医学、材料科学、药效评估等领域的基础研究方式,受到越来越多的应用。 博鹭腾作为专业从事动物活体成像设备研发与生产的高新技术企业,一直致力于对动物活体成像相关技术的开发与推广,现已研发出国际先进的小动物活体三维成像系统。 为了加速动物活体成像技术的发展,进而推动整个生命科学研究行业的进步,博鹭腾特举办《第一届华南动物活体成像应用研讨会暨小动物活体三维成像系统发布会》。【会议流程】08:30-09:00 | 签到入座09:00-09:05 | 主持人开场09:05-09:10 | 领导致辞 张俊修 广东省食品医药行业联合党委书记09:10-09:15 | 领导致辞 朱才毅 广东省实验动物学会秘书长09:15-09:20 | 总经理致辞 罗文波 博士 广州博鹭腾生物科技有限公司09:20-09:40 |《活体成像技术在纤维化疾病研究中的应用》 苏金 教授 广州医科大学呼吸疾病国家重点实验室09:40-10:00 |《光学分子影像技术在乳腺外科手术导航中的应用》 邱斯奇 博士 汕头市中心医院10:00-10:20 |《常见肿瘤动物模型构建以及应用》 聂晶 博士 湖南斯莱克景达实验动物有限公司10:20-10:35 | 茶歇10:35-10:55 |《活体成像仪在动物模型构建及临床前评价中的应用》 谢水林 副研究员 华南理工大学10:55-11:15 |《近红外荧光成像用于食管癌术中导航的研究》 李丹 副研究员 中山大学11:15-11:25 | 新产品发布仪式11:25-11:45 |“AniView Kirin”介绍 小动物活体三维成像系统11:45-12:00 | 合影【举办单位】指导单位:广东省医药行业协会 广东省实验动物学会 主办单位:广州博鹭腾生物科技有限公司协办单位:广州云星科学仪器有限公司
  • PerkinElmer发布全新高通量小动物活体成像系统
    PerkinElmer发布全新高通量小动物活体成像系统IVIS® Lumina™ S5及 Lumina™ X5 顶级二维多模式成像系统帮助科学家从结构及分子层面研究疾病并开发药物 作为全球顶级的生命科学解决方案供应商,PerkinElmer正式发布了两款全新的高通量小动物活体二维成像系统 IVIS® Lumina™ S5及X5。基于先进的软硬件及智能化的成像配件,这两款成像系统能够帮助科学家更便捷、高效地开展成像实验,用于进行包括癌症、感染、免疫等多种疾病的研究。 IVIS® Lumina™ S5是第四代小动物活体光学二维成像平台,该系统在继承Lumina系列高灵敏度生物发光成像性能与专利的荧光多光谱扫描及分离(Spectral unmixing)成像性的基础上,进一步拓展成像视野,成为市场中最先进的高通量活体成像系统之一。 IVIS® Lumina™ X5除具有S5的所有功能外,还集成高分辨率X射线功能,是目前最高端的光学/X光多模式成像系统之一。 “作为一家被广泛认可的二维及三维小动物活体光学成像技术领导者,我们持续致力于为研究者带来创新性的解决方案,帮助研究者在小动物疾病模型中更深入地洞察生物学变化,”PerkinElmer 研发和分析解决方案部门执行副总裁兼总裁 Jim Corbett 表示,“我们全面的活体成像技术平台能够帮助科学家获得对疾病的更好解读并加速药物及治疗方案的开发。” 关键特性: IVIS® Lumina™ S5及X5的新特性 拓展的相机视野:研究者可同时获取更多只实验动物影像; 高通量及高分辨率X光成像; 用于影像获取及分析的智能化配件:帮助研究者更便捷地进行动物预处理及记录分析。 更多内容: IVIS® Lumina™ S5及X5是PerkinElmer IVIS Lumina™ 小动物活体二维系列成像平台的新成员。PerkinElmer公司的小动物活体成像设备及试剂已得到全球科学家的广泛应用,涉及的研究领域包括癌症、心血管疾病、神经疾病、肺部疾病、炎症及感染等。 欲了解更多关于PerkinElmer IVIS小动物活体成像系统及整体解决方案,请访问我们的网站。 关于珀金埃尔默(PerkinElmer) PerkinElmer公司作为全球领导者,一直致力于为一个更健康的世界而不断创新。全球拥有约9,000名员工,致力于为客户提供更好的体验,以帮助客户解决关键问题,特别是在诊断,探索与分析解决方案这两大市场。我们在检测、成像、信息学和实验室服务领域的创新能力,结合深厚市场积累和专业知识,帮助客户获得更超前和更准确的研究,以改善人类健康及生态环境。公司2016年收入约为21亿美元,为超过150个国家的客户提供服务,同时该公司也是标准普尔500 指数的成员。更多信息,请访问1-877-PKI-NYSE。
  • BLT小课堂|细菌发光原理及其在动物活体成像中的应用
    夏季的夜晚,走到山间草丛,可以看到一种昆虫提着一盏灯在飞行,这就是萤火虫在发光。萤火虫体内的荧光素酶催化底物荧光素,发生化学反应,产生光子。这也是大家比较熟悉的,在动物活体生物发光成像当中运用到的反应原理。通过利用该原理,配合上转基因技术及动物活体成像系统,我们可以非侵入性和纵向研究小动物的基因表达、蛋白质-蛋白质相互作用、肿瘤学机制和抗肿瘤药物药效及动力学和疾病机制等;相比于传统研究手段,这种方法通过在动物整体水平上进行研究,能提供更多有用的信息,同时大幅减少实验研究所需的动物数量和降低个体间的差异。萤火虫荧光素酶反应的示意图(a)、荧光素酶以报告基因的形式进入细胞核,并翻译成功能性酶。该酶将底物荧光素、氧(O2)和三磷酸腺苷(ATP)转化为氧荧光素、二氧化碳(CO2)和二磷酸腺苷(ADP),同时发光。(b)、萤火虫底物D-荧光素及其产物氧合荧光素的化学结构。 那么问题来了,自然界会发光的生物除了有萤火虫,还有鱼类、藻类、植物和细菌等,这些生物的发光原理是否也和萤火虫一样呢?这些发光原理能否运用到动物活体成像研究中呢?今天,小编就为大家介绍另外一种生物发光原理—细菌发光及其在动物活体成像中的应用。细菌荧光素酶对于细菌的生物发光现象,早在1875年就被发现了,研究人员Boyle首先揭示了细菌发光对氧气的依赖。而随着研究的深入,研究人员发现细菌发光涉及到的酶有荧光素酶、脂肪酸还原酶和黄素还原酶,以及底物还原性黄素单核苷酸和长链脂肪醛。在发光细菌中发现的一种操纵子,基因顺序为luxCDABEG,其中luxA和luxB基因分别编码细菌荧光素酶α和β亚基,luxC、luxD和luxE基因分别编码合成和回收荧光素酶醛底物的脂肪酸还原酶复合物的r、s和t多肽,luxG编码黄素还原酶。到目前为止所知的所有发光细菌,都是基于细菌荧光素酶介导的酶反应来产生光。这是一种大约80kDa的异二聚体蛋白,与长链烷烃单加氧酶具有同源性。该酶通过以下反应介导O2氧化还原的黄素单核苷酸(FMNH2)和长链脂肪族(脂肪)醛(RCHO),以产生蓝绿光。细菌荧光素酶介导的酶反应1细菌发光明场图2细菌发光发光图细菌发光反应过程在发光反应中,FMNH2与酶结合,然后与O2相互作用,形成黄素-4A-过氧化氢。这种复合物与醛结合形成一种高度稳定的中间体,其缓慢的衰变导致FMNH2和醛底物的氧化和发光,反应的量子产率估计为0.1-0.2个光子。该反应对FMNH2具有高度特异性,体内的醛底物可能是十四醛。FMNH2是由NADH:FMN氧化还原酶(黄素还原酶)提供,该酶从细胞代谢(如糖酵解和柠檬酸循环)中产生的NADH中提取还原剂,还原剂通过自由扩散从FMNH2向荧光素酶的转移。长链醛的合成是由脂肪酸还原酶复合物催化。与细菌荧光素酶一样,底物FMNH2和长链脂肪醛也是细菌发光反应的特异性底物;真核生物生物发光使用不同的化学物质和荧光素酶,它们在蛋白质或基因序列水平上与细菌荧光素酶不同。细菌中的荧光素酶反应过程细菌发光原理在动物活体成像中的应用目前,细菌发光原理在动物活体成像研究中的应用有:传染病研究、菌种抗药性测试及细菌介导的肿瘤治疗等。通过将luxCDABE操纵子稳定地整合到不同的细菌基因结构中,不需要任何其他外源底物(除了氧)来产生生物发光,再通过一套超灵敏的动物活体成像系统(AniView 100),为监测细菌物种感染负担、致病机理研究和肿瘤药物靶向治疗等提供了一种快速便捷的研究检测方法。AniView 100检测减毒鼠伤寒沙门氏菌体内靶向性肿瘤情况(箭头指向为肿瘤)应用说明如以细菌介导的肿瘤治疗为例,传统的癌症治疗方法是手术切除,治疗转移性癌症还需要与其他疗法(如放疗或化疗)相结合。这些疗法存在局限性,如放疗的疗效主要取决于组织氧水平,肿瘤内坏死区和缺氧区低氧浓度是治疗失败的常见原因;而化疗的疗效主要取决于药物的分布,肿瘤内坏死区和缺氧区的血管不规则会影响药物的输送,限制药物的疗效。与传统方法相比,使用细菌进行癌症治疗有以下优势:首先,细菌会在肿瘤中选择性积累,肿瘤中的细菌聚集量大约是正常器官的1000倍,肿瘤特有的坏死区和缺氧区一般不会在大多数器官中形成。其次,细菌的增殖能力使得它们可以进行持续治疗;最后,许多细菌的全基因组测序已经完成,能够通过基因组操作提高它们在人类使用中的安全性,并增强其杀瘤效果。目前,细菌介导的肿瘤治疗广泛应用于DNA或siRNA的传递、运送经工程改造的毒素或前药物和触发机体免疫反应,进而达到抑制或杀灭肿瘤细胞、起到抗击肿瘤的作用。应用案例 静脉注射3天后,表达lux的鼠伤寒沙门氏菌在各种肿瘤中积聚。CT26:小鼠结肠癌,4T1:小鼠乳腺癌,MC38:小鼠结直肠腺癌,TC-1:小鼠肺癌,Hep3B:人肝细胞癌,ARO:人甲状腺癌,ASPC1:人胰腺癌应用案例 携带受L-阿拉伯糖诱导启动子pBAD表达系统控制的细胞毒蛋白(溶细胞素A)、表达lux报告基因的减毒鼠伤寒沙门氏菌,用于肿瘤治疗。总结利用生物发光原理进行动物活体成像,目前主要有两种方式。一种是使用萤火虫荧光素酶,最适合在哺乳动物细胞中表达;另外一种是细菌荧光素酶,广泛应用于原核生物。细菌Lux操纵子由于编码生物发光所需的所有蛋白质,包括荧光素酶、底物和底物生成酶,不需要外源底物,成像更加的方便,不需要像萤火虫荧光素酶一样,考虑ATP的可用性、底物分子的渗透、药代动力学和生物分布等对成像的影响。但是,细菌荧光素酶的发射波长较短(490nm),组织吸收较大,这会影响成像数据的量化;而且,对于某些真核微生物(包括真菌和寄生虫)和真核细胞,仍然需要使用萤火虫荧光素酶标记,原因在于lux报告基因没有得到足够的优化,还不能在真核细胞中稳定表达。不过由于细菌荧光素酶和萤火虫荧光素酶的发射波长不同,从而可以进行多光谱成像,用于同时定量评估小动物的不同生物过程,进一步扩展生物发光原理在动物活体成像中的应用。TipsAniView 100多模式动物活体成像系统 AniView 100多模式动物活体成像系统作为广州博鹭腾生物科技有限公司推出的高灵敏度动物活体成像系统,其采用全密闭抗干扰暗箱,避免外界光源及宇宙射线对拍照影响的同时,配合零缺陷、科研级高灵敏背部薄化、背部感应型冷CCD相机,极大地提高成像的灵敏度。AniView 100可以检测到100个luciferase标记细胞,对于动物活体细菌荧光素酶的生物发光信号,无论是在皮下或器官,均可以轻易检测到。快来关注我们,申请免费试用!
  • 山东大学齐鲁医院345.00万元采购活体成像系统
    html, body { -webkit-user-select: text } * { padding: 0 margin: 0 } .web-box { width: 100% text-align: center } .wenshang { margin: 0 auto width: 80% text-align: center padding: 20px 10px 0 10px } .wenshang h2 { display: block color: #900 text-align: center padding-bottom: 10px border-bottom: 1px dashed #ccc font-size: 16px } .site a { text-decoration: none } .content-box { text-align: left margin: 0 auto width: 80% margin-top: 25px text-indent: 2em font-size: 14px line-height: 25px } .biaoge { margin: 0 auto /* width: 643px */ width: 100% margin-top: 25px } .table_content { border-top: 1px solid #e0e0e0 border-left: 1px solid #e0e0e0 font-family: Arial /* width: 643px */ width: 100% margin-top: 10px margin-left: 15px } .table_content tr td { line-height: 29px } .table_content .bg { background-color: #f6f6f6 } .table_content tr td { border-right: 1px solid #e0e0e0 border-bottom: 1px solid #e0e0e0 } .table-left { text-align: left padding-left: 20px } 详细信息 山东大学齐鲁医院实验动物中心设备采购项目(小动物活体成像系统)招标公告 山东省-济南市 状态:公告 更新时间: 2023-06-18 山东大学齐鲁医院实验动物中心设备采购项目(小动物活体成像系统)招标公告 时间:2023-06-18 15:52:05 项目概况 山东大学齐鲁医院实验动物中心设备采购项目(小动物活体成像系统)招标项目的潜在投标人应在济南市历山路179号历山名郡C5座西单元二楼(山东普华项目管理有限公司)获取招标文件,并于2023年07月13日09点00分(北京时间)前递交投标文件。 一、项目基本情况 项目编号:PHZB2023-061 项目名称:山东大学齐鲁医院实验动物中心设备采购项目(小动物活体成像系统) 预算金额:345.00万元(人民币) 最高限价(如有):345.00 万元(人民币) 采购需求: 1、采购内容:包括采购设备的供货、运输、安装调试及售后服务等。 2、分包情况:本次采购共1个包,具体标包情况见下表,投标人须整包响应。 包号 设备名称 简要说明 数量 本包预算金额(万元) 是否进口 1 小动物活体成像系统 通过采用生物发光与荧光探针标记研究对象,借助光学检测仪器采集功能信号,并通过结构性成像模式对动物解剖学结构进行成像,对信号进行精确定量和定位等多重研究,在活体动物水平监测疾病的发展变化并开展相关药物的临床前研发。 1套 345.00 可采进口 合同履行期限:自合同生效之日起至合同履行完毕。 本项目(不接受)联合体投标。 二、申请人的资格要求: 1.满足《中华人民共和国政府采购法》第二十二条规定; 2.落实政府采购政策需满足的资格要求:无; 3.本项目的特定资格要求: (1)投标人须是具有独立承担民事责任能力的法人、其他组织或自然人,具备所投设备的生产或经营能力; (2)投标人在“信用中国”、中国政府采购网网站,未被列入“失信被执行人”、“重大税收违法失信主体”、“政府采购严重违法失信行为记录名单”; (3)所投设备须符合国家规定的相应技术标准,环保标准和安全标准; (4)本项目不接受联合体投标; (5)若所投设备属于医疗设备,除满足以上1-4项要求外,还需同时具备以下资格条件: ①投标人为制造商的,应按照《医疗器械生产监督管理办法》(国家市场监督管理总局令第53号)的规定提供有效的医疗器械生产许可证或生产备案凭证;投标人为代理商或经销商的应按照《医疗器械经营监督管理办法》(国家市场监督管理总局令第54号)的规定提供有效的医疗器械产品经营许可证或经营备案凭证; ②投标人须按照《医疗器械注册与备案管理办法》(国家市场监督管理总局令第47号)的规定提供所投设备的医疗器械注册证(如有附表,需提供附表)或产品备案表。 三、获取招标文件 时间:2023年06月19日至2023年06月26日,每天上午8:30至11:30,下午13:30至17:00。(北京时间,法定节假日除外) 地点:济南市历山路179号历山名郡C5座西单元二楼(山东普华项目管理有限公司) 方式:投标人须携带法定代表人身份证或法定代表人授权委托书及被授权人身份证原件(法定代表人授权委托书须注明所投包号)到场领取。若无法到场领取的,可将以下资料复印件加盖公章并将彩色扫描件(要求图片清晰可辨)制作为一个PDF文档发送到puhuazb123@163.com,邮件中注明项目名称、投标人名称、被授权人(或法定代表人)姓名和联系电话。 (1)法定代表人身份证或法定代表人授权委托书及被授权人身份证(法定代表人授权委托书须注明所投包号); (2)工本费转账底单或汇款凭证(备注项目编号)。 售价:纸质版文件300元/包,缴纳形式:现金或由投标人公司账户电汇或网银转账,账号信息如下: 开户名称:山东普华项目管理有限公司 开户银行:中国民生银行股份有限公司济南历山支行 账号:639285709 注:本项目实行资格后审,获取招标文件成功不代表资格后审的通过。不接受个人转账。 四、提交投标文件截止时间、开标时间和地点 提交投标文件截止时间:2023年07月13日 09点00分(北京时间) 开标时间:2023年07月13日 09点00分(北京时间) 地点:济南市历山路179号历山名郡C5座西单元一楼会议室(山东普华项目管理有限公司)。 五、公告期限 自本公告发布之日起5个工作日。 六、其他补充事宜 无。 七、对本次招标提出询问,请按以下方式联系。 1.采购人信息 名 称:山东大学齐鲁医院 地址:济南市文化西路107号 联系方式:刘老师0531-82169507 2.采购代理机构信息 名 称:山东普华项目管理有限公司 地 址:济南市历山路179号历山名郡C5座西单元 联系方式:尹香丽 0531-55655227 3.项目联系方式 项目联系人:尹香丽 电 话:0531-55655227 × 扫码打开掌上仪信通App 查看联系方式 $('.clickModel').click(function () { $('.modelDiv').show() }) $('.closeModel').click(function () { $('.modelDiv').hide() }) 基本信息 关键内容:活体成像系统 开标时间:2023-07-13 09:00 预算金额:345.00万元 采购单位:山东大学齐鲁医院 采购联系人:点击查看 采购联系方式:点击查看 招标代理机构:山东普华项目管理有限公司 代理联系人:点击查看 代理联系方式:点击查看 详细信息山东大学齐鲁医院实验动物中心设备采购项目(小动物活体成像系统)招标公告 山东省-济南市 状态:公告 更新时间: 2023-06-18 山东大学齐鲁医院实验动物中心设备采购项目(小动物活体成像系统)招标公告 时间:2023-06-18 15:52:05 项目概况 山东大学齐鲁医院实验动物中心设备采购项目(小动物活体成像系统)招标项目的潜在投标人应在济南市历山路179号历山名郡C5座西单元二楼(山东普华项目管理有限公司)获取招标文件,并于2023年07月13日09点00分(北京时间)前递交投标文件。 一、项目基本情况 项目编号:PHZB2023-061 项目名称:山东大学齐鲁医院实验动物中心设备采购项目(小动物活体成像系统) 预算金额:345.00万元(人民币) 最高限价(如有):345.00 万元(人民币) 采购需求: 1、采购内容:包括采购设备的供货、运输、安装调试及售后服务等。 2、分包情况:本次采购共1个包,具体标包情况见下表,投标人须整包响应。 包号 设备名称 简要说明 数量 本包预算金额(万元) 是否进口 1 小动物活体成像系统 通过采用生物发光与荧光探针标记研究对象,借助光学检测仪器采集功能信号,并通过结构性成像模式对动物解剖学结构进行成像,对信号进行精确定量和定位等多重研究,在活体动物水平监测疾病的发展变化并开展相关药物的临床前研发。 1套 345.00 可采进口 合同履行期限:自合同生效之日起至合同履行完毕。 本项目(不接受)联合体投标。 二、申请人的资格要求: 1.满足《中华人民共和国政府采购法》第二十二条规定; 2.落实政府采购政策需满足的资格要求:无; 3.本项目的特定资格要求: (1)投标人须是具有独立承担民事责任能力的法人、其他组织或自然人,具备所投设备的生产或经营能力; (2)投标人在“信用中国”、中国政府采购网网站,未被列入“失信被执行人”、“重大税收违法失信主体”、“政府采购严重违法失信行为记录名单”; (3)所投设备须符合国家规定的相应技术标准,环保标准和安全标准; (4)本项目不接受联合体投标; (5)若所投设备属于医疗设备,除满足以上1-4项要求外,还需同时具备以下资格条件: ①投标人为制造商的,应按照《医疗器械生产监督管理办法》(国家市场监督管理总局令第53号)的规定提供有效的医疗器械生产许可证或生产备案凭证;投标人为代理商或经销商的应按照《医疗器械经营监督管理办法》(国家市场监督管理总局令第54号)的规定提供有效的医疗器械产品经营许可证或经营备案凭证; ②投标人须按照《医疗器械注册与备案管理办法》(国家市场监督管理总局令第47号)的规定提供所投设备的医疗器械注册证(如有附表,需提供附表)或产品备案表。 三、获取招标文件 时间:2023年06月19日至2023年06月26日,每天上午8:30至11:30,下午13:30至17:00。(北京时间,法定节假日除外) 地点:济南市历山路179号历山名郡C5座西单元二楼(山东普华项目管理有限公司) 方式:投标人须携带法定代表人身份证或法定代表人授权委托书及被授权人身份证原件(法定代表人授权委托书须注明所投包号)到场领取。若无法到场领取的,可将以下资料复印件加盖公章并将彩色扫描件(要求图片清晰可辨)制作为一个PDF文档发送到puhuazb123@163.com,邮件中注明项目名称、投标人名称、被授权人(或法定代表人)姓名和联系电话。 (1)法定代表人身份证或法定代表人授权委托书及被授权人身份证(法定代表人授权委托书须注明所投包号); (2)工本费转账底单或汇款凭证(备注项目编号)。 售价:纸质版文件300元/包,缴纳形式:现金或由投标人公司账户电汇或网银转账,账号信息如下: 开户名称:山东普华项目管理有限公司 开户银行:中国民生银行股份有限公司济南历山支行 账号:639285709 注:本项目实行资格后审,获取招标文件成功不代表资格后审的通过。不接受个人转账。 四、提交投标文件截止时间、开标时间和地点 提交投标文件截止时间:2023年07月13日 09点00分(北京时间) 开标时间:2023年07月13日 09点00分(北京时间) 地点:济南市历山路179号历山名郡C5座西单元一楼会议室(山东普华项目管理有限公司)。 五、公告期限 自本公告发布之日起5个工作日。 六、其他补充事宜 无。 七、对本次招标提出询问,请按以下方式联系。 1.采购人信息 名 称:山东大学齐鲁医院 地址:济南市文化西路107号 联系方式:刘老师0531-82169507 2.采购代理机构信息 名 称:山东普华项目管理有限公司 地 址:济南市历山路179号历山名郡C5座西单元 联系方式:尹香丽 0531-55655227 3.项目联系方式 项目联系人:尹香丽 电 话:0531-55655227
  • 文献速递|多模式动物活体成像系统在鱼疫苗研发中的应用
    病毒性疾病爆发是水产养殖业最严重的问题,具有传播快、发病快和致死率高等特点,对水产养殖业造成了巨大的经济损失;而疫苗免疫是对其进行防控的最有效措施。在水产动物免疫途径中,注射方式效果较好,但不适合渔业生产;浸浴免疫操作简单,适合在鱼苗和鱼类大规模养殖中推广使用,但是浸浴疫苗的应用需要克服生物屏障等阻碍作用,才能使疫苗发挥出理想的免疫效果。 研究发现,纳米载疫苗靶向递呈技术是解决水产养殖产业实现疫苗高效免疫保护最安全有效的手段之一;单壁碳纳米管(SWCNTs)是一种高效的疫苗载体,具有高穿透性、高承载力、易修饰性和安全性等特性;甘露糖受体(Mannose receptor)是抗原呈递细胞上的标志性受体,能够结合甘露糖修饰的抗原物质,可以作为疫苗的靶点。 近日,西北农林科技大学动物科技学院朱斌教授课题组运用纳米载疫苗靶向递呈技术,构建靶向性碳纳米管载疫苗系统,选择高效的疫苗载体(单壁碳纳米管)来突破生物屏障的限制,并利用合适的佐剂(甘露糖修饰的抗原物质)来增强疫苗的免疫效果,使疫苗充分发挥治疗和免疫保护效果。这些研究成果相继发表在期刊Vaccines和Journal of Nanobiotechnology,可以为其它水产动物纳米载疫苗系统的研究、应用奠定理论基础,对渔业的可持续发展和水产品食品安全生产具有重要意义。文章一 草鱼呼肠孤病毒(GCRV)已被公认为是所有水生病毒物种中最具致病性,VP7作为GCRV的外衣壳蛋白,是一种可以诱导宿主免疫反应的主要抗原。通过构建靶向浸没疫苗递送系统(CNTs-M-VP7),该系统由SWCNTs作为疫苗载体,GCRV VP7蛋白作为抗原,甘露糖作为抗原呈递细胞靶向部分。结果表明CNTs-M-VP7疫苗可通过粘膜组织(皮肤,腮和肠)进入鱼体内,呈现给免疫相关组织,显著诱导的成熟和呈递过程,从而引发强大的免疫反应。a、CNTs-M-VP7纳米疫苗的制备过程;b、巨噬细胞对纳米疫苗的吸收;c、鱼组织中纳米疫苗的摄取;d、用博鹭腾多模式动物活体成像系统检测接种鱼体内和体外荧光的分布;e、草鱼接种后,用GCRV人工攻击后的相对存活百分比(每组n =100)。文章二 鲤春病毒血症(Spring viremia of carp,SVC)是危害最严重的水产病毒性疾病之一,SVCV作为SVC的病原,其表面糖蛋白(G)被认为是一种主要抗原,可以诱导原发性宿主免疫反应。通过化学修饰的方法将SVCV的抗原蛋白(G)、功能化单壁碳纳米管和功能化甘露糖进行结合,构建了靶向性碳纳米管载疫苗系统(SWCNTs-MG)。结果表明SWCNTs-MG通过提高疫苗进入鱼体的含量,并增强对抗原呈递细胞的靶向呈递作用,进而提高疫苗浸浴免疫的效果。a、SWCNTs-MG纳米疫苗的制备过程;b、纳米疫苗在体内和体外的安全性评估;c、鲤鱼巨噬细胞体外纳米疫苗的摄取;d、鱼组织中纳米疫苗的摄取;e、用博鹭腾多模式动物活体成像系统检测接种鱼体内和体外荧光的分布;f、在接种的鲤鱼中用SVCV人工攻击后的相对存活百分比。TipsAniView 100多模式动物活体成像系统 AniView 100多模式动物活体成像系统作为广州博鹭腾生物科技有限公司推出的高灵敏度动物活体成像系统,其采用全密闭抗干扰暗箱,避免外界光源及宇宙射线对拍照影响的同时,配合零缺陷、科研级高灵敏背部薄化、背部感应型冷CCD相机,极大地提高成像的灵敏度。AniView 100可以检测到参考文献:1、Zhang C , Wang G X , Zhu B . Journal of Nanobiotechnology, 2020, 18(1).2、Zhu B, Zhang C, Zhao Z, Wang GX. Vaccines(Basel). 2020 8(1):87. 3、张晨.[D]. 西北农林科技大学,2019.
  • 10月高校采购意向汇总:70台套动物活体成像系统,总金额超4亿元
    近期政策利好消息推动国内高校、科研院所纷纷启动仪器设备采购工作。自国庆假期结束后,清华大学、北京大学等22所国内高校分别发布了科学仪器采购意向,据仪器信息网最新统计(截止时间2022年10月31日),总意向金额累计超过180亿元,高校科学仪器市场迎来又一波采购热潮。近年来,动物成像技术在生命科学、医药研究中发挥着越来越重要的作用,涌现出各种动物活体成像系统,为科学研究提供了强有力的工具。截至10月31日,北大、复旦等16所高校发布了动物活体成像系统的采购意向,总意向金额累计超过4亿元。兰州大学以采购总预算13001万元位居高校榜首,意向采购数量高达18套(台)。其次是北京化工大学,采购总预算达7365万元。排名第三的是中山大学,采购总预算达3940万元。另外,中南大学于10月16日发布了中南大学湘雅医学院动物实验平台采购项目,预算金额为11216万元,包含3套动物活体成像系统、2套超高频高分辨率小动物超声成像系统、1套小动物三维活体成像以及1套小动物Micro CT活体成像系统。16所高校意向采购动物活体成像系统项目详情如下:序号采购项目名称采购需求概况预算金额(万元)兰州大学1第一第二临床医学院西部高发肿瘤诊疗创新平台建设项目-小动物PET/MRI 成像仪项目详情 32002医学实验中心9.4T小动物PET/MRI采购项目项目详情 31003医学实验中心高分辨率小动物超声光声多模式成像采购项目项目详情 7634第一第二临床医学院西部高发肿瘤诊疗创新平台建设项目-小动物PET/CT成像仪项目详情 7365医学实验中心小动物PET成像系统采购项目项目详情 7346医学实验中心小动物光声成像采购项目项目详情 6707化学化工学院小动物活体成像系统采购项目项目详情 6008超高频高分辨率小动物超声成像系统采购项目项目详情 4509兰大二院超高频高分辨率小动物超声成像系统采购项目项目详情 45010医学实验中心小动物超声采购项目项目详情 45011公共卫生学院+重金属暴露与健康效应研究-IVIS Spectrum 小动物活体成像系统项目详情 38012医学实验中心宽光谱小动物活体成像系统采购项目项目详情 36013小动物活体成像系统采购项目项目详情 20014基础医学院小动物超声成像设备采购项目项目详情 20015兰大二院小动物活体成像系统采购项目项目详情 20016医学实验中心大动物CT采购项目项目详情 20017药学院高通量高灵敏小动物活体成像仪采购项目项目详情 18018基础医学院小动物视网膜成像系统设备采购项目项目详情 128共计13001中南大学1中南大学湘雅医学院动物实验平台采购项目(动物活体成像系统3套)项目详情 112162中南大学高等研究中心小动物活体三维多模式成像系统(三维光学成像和micro CT一体机)采购项目项目详情 650共计11866北京化工大学1分析测试中心小动物磁共振成像系统项目详情 14602科学技术发展研究院小动物磁共振成像系统项目详情 14603生命学院小动物磁共振成像仪项目详情 12004高分辨率小动物光声超声多模成像系统项目详情 6905低剂量小动物活体CT成像项目详情 5206全波长激光-小动物声学成像系统项目详情 5157超高频高分辨率小动物超声成像系统项目详情 4608小动物活体原位(In Vivo)细胞成像系统项目详情 4309小动物光学活体成像(二区)项目详情 21010动物磁粒子成像系统项目详情 21011近红外二区小动物活体成像系统项目详情 210共计7365中山大学1多模式小动物光声成像系统项目详情 7002化学学院小动物超声&光声二合一成像系统采购项目项目详情 6603超高分辨率小动物超声实时影像系统项目详情 5504化学学院单/双光子多模态小动物活体成像仪采购项目项目详情4505小动物活体三维断层扫描成像系统项目详情 4206小动物活体Micro-CT成像系统项目详情 4007近红外一区&近红外二区小动物全身3D光声成像系统项目详情 3608小动物活体成像(深圳校区)项目详情 2009小动物活体成像系统项目详情 200共计3940华南理工大学1自旋科技研究院购置小动物核磁共振成像设备项目项目详情 12002三维小动物活体成像系统和小动物活体MicroCT系统项目详情 6603小动物活体成像仪项目详情 3504自旋科技研究院购置小动物近红外荧光活体成像设备项目项目详情 3005近红外全景小动物活体荧光成像系统项目详情 2206小动物彩色多普勒超声成像系统项目详情 220共计2950复旦大学1小动物高场磁共振成像系统项目详情 18002小动物活体成像仪项目详情 550共计2350中国医药大学1中国药科大学小动物PET/CT项目项目详情 10002中国药科大学小动物活体光声超声多模成像系统项目项目详情 9003中国药科大学跨尺度NIR-II高分辨小动物活体成像系统项目项目详情 3004中国药科大学小动物成像系统(镜头)项目项目详情 100共计2300四川大学1高分辨活体小动物X射线断层扫描系统 In-vivo Micro CT for small animal项目详情 4502小动物活体Micro CT成像仪项目详情 3503小动物活体成像系统项目详情 3204近红外二区小动物活体成像系统项目详情 1955小动物活体成像系统项目详情 180共计1495吉林大学1三维小动物光学活体成像系统项目详情 4502小动物活体Micro-CT成像系统项目详情 4003全光谱跨尺度小动物活体成像系统项目详情 2804小动物活体光学成像系统项目详情 246共计1376北京大学1北京大学医学部小动物超光声多模态成像系统采购项目项目详情 6502小动物四模态(PET/SPECT/CT/FMT)成像系统电子模块加工集成项目详情 415共计1065华中科技大学1小动物Micro-CT成像系统项目详情 3202小动物三维活体光学成像系统项目详情 330共计650南京农业大学1小动物活体三维多模式成像系统项目详情 650山东大学1活体成像系统项目详情 480浙江大学1小动物活体成像系统项目详情 170北京师范大学1近红外二区小动物荧光活体成像系统项目详情 170东北师范大学1小动物核磁共振检测系统项目详情 170相关推荐:1.近期高校采购意向汇总:40台套分子互作分析仪,总额超1.3亿元 (点击查看)2.仅18天超2.4亿流式细胞仪采购招标!近期高校采购计划汇总 (点击查看)
  • ​科研用小动物活体成像系统全国共享资源调查分析
    动物模型对医学的发展意义重大,通过对动物本身的生命现象研究进而推进到人类,探索人类生命的奥秘,更是生命科学研究的支撑条件之一。1999年,美国哈佛大学Weissleder等人提出了分子影像学(molecular imaging)的概念—应用影像学方法,它使活体动物体内成像成为可能。近年来,随着活体成像技术广泛应用于研究观测特异性细胞、追踪靶细胞、药物和基因治疗最优化等,各类小动物活体成像系统不断涌现,为生命科学研究提供了有力保障。根据技术不同系统主要分为光学成像、 核素成像(PET、SPECT)磁共振成像 (MRI)、CT成像、超声成像、磁粒子成像(MPI),在一定程度上,这些技术大多不存在竞争取代,而是互补共存的关系。其中,光学成像技术在小动物活体成像系统中应用最为广泛。基于此,本文聚焦国内高校和科研院所共享的小动物活体成像系统,对科研用光学成像技术为核心的系统进行统计分析,在一定程度上或可得出国内科研用小动物活体成像系统的使用情况。(注:本文搜集信息来源于重大科研基础设施和大型科研仪器国家网络管理平台,不完全统计分析仅供读者参考)光学成像技术光学成像主要采用生物发光(bioluminescence)与荧光(fluorescence)两种技术。生物发光是用荧光素酶(Luciferase)基因标记细胞或DNA,而荧光技术则采用荧光报告基团(GFP、RFP, Cyt及dyes等)进行标记。小动物活体成像系统通过非常灵敏的光学检测仪器,让研究人员能够直接监控活体生物体内的细胞活动和基因行为,观测活体动物体内肿瘤的生长及转移、感染性疾病发展过程、特定基因的表达等生物学过程。共享小动物活体成像系统集中教育强省统计高校和科研院所在全国仪器共享平台上传的数据,截止2021年6月15日,平台上小动物活体成像系统(光学成像)的总数量为119台,涉及24个省份、直辖市、自治区。其中,北京、江苏、浙江、广东的小动物活体成像系统(光学成像)数量大于10台,仪器资源依然集中分布在高等教育强省,存在资源分布不均的问题。珀金埃尔默最受高校欢迎 从全国共享小动物活体成像系统(光学成像)品牌分布来看,高校和科研院所更青睐进口。珀金埃尔默独占近二分之一的市场,Caliper、carestream healthy、Berthold、Bruker、KODAK占比41.53%,CRI等品牌瓜分剩余八分之一的市场。据悉,2011年,珀金埃尔默收购了专注于生命科学研究、成像和检测服务的Caliper Life Sciences公司,在动物成像领域更进一步。所以,珀金埃尔默相当于占比66.1%,在高校和科研院所更受欢迎。省份品牌分布零散从全国共享小动物活体成像系统(光学成像)数量top7省份的仪器品牌分布来看,珀金埃尔默在北京、江苏、浙江、广东、上海、湖南的高校和科研院所中均有很强的竞争力,在福建的品牌覆盖度低,可能与宣传力度和高校科研方向等因素有关。从北京品牌分布来看,大趋势与全国共享小动物活体成像系统(光学成像)品牌分布相同,珀金埃尔默以绝对优势占据60%,carestream healthy、Bruker、Visualsonics、GE、Princeton Instruments等品牌分布零散,但在高校和科研院所的仪器采购中也存在一定的竞争力。
  • 预算超1.72亿!11月高校48项动物活体成像仪采购意向汇总
    随着2000亿贴息贷款东风吹向全国各所高校单位,瞬间点燃了第四季度高校科学仪器市场。据统计,11月全国高校仪器采购热潮中共有48项动物活体成像仪采购意向,涉及清华、复旦、同济等18所高校,累计预算金额超过1.72亿元。复旦大学以采购总预算4310万元位居榜首,意向采购数量高达10台(套)。紧随其后的是同济大学,采购总预算3420万元,拟采购数量为7台(套)。清华大学排名第三,采购总预算1463万元,拟采购数量为5台(套)。18所高校意向采购动物活体成像仪项目详情如下:序号项目名称采购单位预计采购时间采购需求概况预算金额(万元)1高分辨率X射线活体显微断层成像系统复旦大学2022-12意向原文3502活体动物体成分定量检测仪复旦大学2022-12意向原文1603近红外II区活体荧光成像复旦大学2022-12意向原文2204红外自适应光学活体成像系统复旦大学2022-12意向原文6805高分辨率X射线活体显微断层扫描成像系统复旦大学2022-12意向原文4006活体小动物全脑成像系统复旦大学2022-12意向原文6507活体鼠脑深穿透高分辨钙成像多光子系统光源复旦大学2022-12意向原文2008高通量小动物活体成像与分析仪复旦大学2022-12意向原文3209活体成像共聚焦双光子显微镜复旦大学2022-12意向原文68010小动物活体三维多模式成像系统采购复旦大学2022-12意向原文650合计431011小动物活体Micro-CT成像系统同济大学2022-12意向原文30012小动物活体三维多模式成像系统同济大学2022-12意向原文65013小动物活体Micro-CT成像系统同济大学2022-12意向原文42014小动物活体三维多模式成像系统同济大学2022-12意向原文65015小动物活体三维多模式成像系统同济大学2022-12意向原文65016小动物活体三维活体成像系统同济大学2022-12意向原文40017小动物活体Micro-CT成像系统同济大学2022-12意向原文350合计342018高分辨X射线活体显微断层成像系统清华大学2022-12意向原文30019高速高分辨率三维活体显微系统清华大学2022-12意向原文35020头戴式单光子结合光遗传微型显微成像系统(小鼠活体钙成像2)清华大学2022-12意向原文11021头戴式小鼠活体钙成像(小鼠活体钙成像1)清华大学2022-12意向原文20722活体三位多模式功能结构二合一影像系统清华大学2022-12意向原文496合计146323全光谱激光活体成像系统华东师范大学2022-11意向原文23024小动物活体成像系统华东师范大学2022-11意向原文39025小动物活体成像设备华东师范大学2022-11意向原文50026高通量活体动物荧光筛选系统华东师范大学2022-11意向原文139合计125927小动物活体成像浙江大学2022-12意向原文17028小动物活体三维多模式成像系统浙江大学2022-12意向原文68029小动物活体成像仪浙江大学2022-12意向原文16230活体成像仪浙江大学2022-12意向原文160合计117231三维活体成像仪大连理工大学2022-11意向原文42532小动物活体Micro-CT成像仪大连理工大学2022-11意向原文365合计79033TX-小动物活体原位细胞动态分析成像系统华中科技大学2022-12意向原文49034TX-小动物活体光学(1区+2区)成像系统华中科技大学2022-12意向原文280合计77035生命医学实验平台--近红外二区小动物活体荧光成像系统东北大学2022-11意向原文16036生命医学实验平台--小动物活体micro CT成像系统东北大学2022-11意向原文549合计70937小动物活体成像系统湖南大学2022-12意向原文15038小动物高分辨率活体超声成像系统湖南大学2022-12意向原文450合计60039小动物活体光学成像系统东华大学2022-12意向原文19040近红外二区小动物活体成像系统东华大学2022-12意向原文160合计35041活体原位动态分析成像系统上海交通大学2022-12意向原文72042高分辨X射线活体显微断层成像系统东南大学2022-12意向原文38043小动物活体光学成像系统北京大学2022-12意向原文37544小动物活体Micro CT成像仪四川大学2022-12意向原文34545小动物活体光学成像系统天津大学2022-11意向原文16046近红外二区荧光活体成像系统北京理工大学2022-12意向原文15047小动物活体成像厦门大学2022-12意向原文15048小动物活体成像吉林大学2022-12意向原文120共计17243附:10月高校采购意向汇总:70台套动物活体成像系统,总金额超4亿元(点击查看)为帮助大家及时了解国内高校科学仪器市场需求,仪器信息网特别开设#高校仪器采购品类盘点 话题,汇总了各所高校重点仪器品类采购最新动态。点击图片,带走商机!
  • 精密测量院等实现星形胶质细胞活体成像
    近日,中科院精密测量院/深圳先进院研究员徐富强研究团队基于新型基因编码生物磁共振成像技术,首次建立了一种在体无创全脑检测星形胶质细胞的新技术。相关研究进展在学术期刊Molecular Psychiatry上发表。星形胶质细胞是哺乳动物中枢神经系统(Central nervous system, CNS)中含量最丰富、分布最广、胞体最大的一种神经胶质细胞。星形胶质细胞具有多种至关重要的生物学功能,其功能异常参与多种疾病的致病过程。然而,星形胶质细胞形态不均且高度复杂,在同一脑区或不同脑区之间均有不同,且在生理和病理状态下也是动态变化的。因此,全脑维度无损检测并跟踪星形胶质细胞的动态变化相关技术的研发迫在眉睫。研究团队通过整合重组腺相关病毒载体(rAAV)和磁共振成像活体检测的优势,逐步在细胞水平,脑区水平及全脑水平实现星形胶质细胞的活体无损检测。自2016年起,研究团队在精密测量院研究员徐富强和王杰的带领下,联合磁共振成像与病毒基因改造技术率先提出一种新型基因编码生物磁共振成像技术,逐步实现神经元网络和星形胶质细胞在体水平的无创检测。其中,rAAV是近年来发展极为迅速的一类工具病毒,是研究神经科学相关问题和基因治疗的重要载体。团队首先对rAAV工具病毒的衣壳蛋白进行突变改造,并利用人类胶质纤维蛋白的启动子GFAP构建rAAV载体,提升了病毒工具在星形胶质细胞的转导效率。另外,水通道蛋白是一组高度保守的跨膜转运蛋白,对水具有高度选择通透性。过表达AQP1蛋白可产生弥散加权成像信号的改变,因而水通道蛋白基因可作为磁共振成像报告基因。团队继续对病毒载体rAAV2/5和rAAV2/PHP.eB进行优化改造,使其同时携带水通道蛋白报告基因和荧光元件,构建新型工具病毒,逐步实现脑区和全脑水平的星形胶质细胞的无创活体成像。在全脑成像研究中,团队构建可高效通过血脑屏障的新型rAAV2/PHP.eB-AQP1-EGFP工具病毒,利用尾静脉注射技术将该病毒注入小鼠体内,在病毒表达两周和三周后分别进行MRI活体成像,最终利用荧光成像对活体成像效果进行评估。结果显示,该新型基因编码生物磁共振成像技术不仅可实现星形胶质细胞的活体全脑成像,而且其成像时间适用于常用的光遗传学/药理遗传学相关研究。全脑维度星形胶质细胞的新型检测技术的开发将有助于加强对星形胶质细胞功能的理解,提升对其在调控整个中枢神经网络中的认识,为研究神经系统疾病的致病机制和治疗靶点提供了新思路。另外,该技术可应用到疾病模型小鼠相关的星形胶质细胞异常的相关机制研究,为此类疾病的早期预防起到了重要作用。中科院深圳先进技术研究院博士后李梅和精密测量院博士柳壮为该文章的共同第一作者,王杰和徐富强为通讯作者。该项目获得国家自然科学基金等项目的支持。该项目所涉及的病毒工具均可从布林凯斯(深圳)生物技术有限公司直接获得。
  • Cell |清华大学研究团队开发新型双光子显微成像术,实现深层活体时空跨尺度观测
    双光子显微镜是对深层散射组织进行活体观测不可或缺的仪器,以其远超单光子显微成像的穿透深度而受到生命科学和医学研究的广泛关注。然而,传统双光子显微成像的点扫描成像模式从根本上限制了其成像通量与三维感知速度,极易受复杂活体成像环境干扰,同时激发点巨大的瞬时光强会对活体生物样本造成持续性的非线性光损伤,导致高速三维成像时长严重受限,极大地制约了病理学、免疫学和脑科学的发展。2023年5月12日,清华大学戴琼海、吴嘉敏、祁海作为共同通讯作者在 Cell 期刊发表了题为:Two-photon synthetic aperture microscopy for minimally invasive fast 3D imaging of native subcellular behaviors in deep tissue 的研究论文。该研究首次提出了基于空间约束的多角度衍射编码,实现非相干光孔径合成;建立了双光子合成孔径显微术(Two-photon synthetic aperture microscopy,2pSAM),“化点为针”,通过多角度针状光束的扫描在实现高速三维感知的同时,将双光子成像光毒性降低了1000倍以上;融合了戴琼海院士团队2021年同样在 Cell 上所提出的数字自适应光学架构,具备高速多区域像差矫正能力,即使在恶劣复杂活体环境下依然保持近衍射极限的空间分辨率,并进一步提升了传统双光子成像的穿透深度。基于此,2pSAM能够在哺乳动物深层散射组织中非侵入式地观测大范围亚细胞级动态变化,将毫秒级三维连续观测时长从数分钟提高到数十小时,为系统性地研究大规模细胞在不同生理与病理状态下的交互作用打开了大门。交叉研究团队利用2pSAM在小鼠活体观测到了一系列新现象,包括急性脑损伤后脑组织内周的多细胞互作,神经元在超长时程连续观测下展现出对视觉刺激的表征稳定性与功能多样性,以及首次完整高速记录下了小鼠免疫反应过程中淋巴结生发中心的形成过程,为病理学、脑科学和免疫学的研究打开了新窗口。传统双光子显微镜使用“点扫描”的方案对三维样本进行扫描,类似于共聚焦荧光显微镜,由于双光子成像的非线性效应使其能够获得数倍于单光子成像的穿透深度。例如,双光子显微镜在小鼠大脑皮层的最大穿透深度可以达到1 mm。然而,这种点扫描方式严重限制了双光子显微镜的三维成像速度与数据通量,并且由于在聚焦点位置极大的瞬时光强带来了非常严重的非线性光损伤隐患。2pSAM采用了轴向景深拓展的“针扫描”方案,通过改变针状光束的不同倾角实现样本三维信息的多角度投影,类似CT一样实现快速三维成像;同时,受到雷达成像中合成孔径方法的启发,通过在像面处引入针孔所带来的空间衍射编码约束,实现了非相干光的孔径合成,将多角度信息融合为大数值孔径对应的高空间分辨率;进一步利用样本的时空连续性先验,有效避免了视角扫描带来的时间分辨率损失。这样一种全新的计算双光子成像架构,在保留双光子本身深层组织穿透能力的同时,将有效成像通量提升了三个数量级以上。图1. 双光子合成孔径显微术(2pSAM)系统图除此之外,样本引起的光学像差给显微成像带来的分辨率与信噪比损失十分严重,随着成像深度的增加这种降质尤为明显。目前双光子成像中的硬件自适应光学技术主要面临着以下一些问题:1、成像系统复杂、成本高昂;2、有效校正视场有限,大视场多区域校正速度缓慢。2pSAM通过激发光编码获得了超精细的四维空间角度光场数据,能够使用数字自适应光学架构(DAO),无需在光学系统中增加额外的波前传感器或者空间调制器,就能实现信号采集与自适应像差校正的解耦,在后处理端完成大范围多区域自适应光学,显著提升在复杂成像环境中的空间分辨率与信噪比。图2. 双光子合成孔径显微术(2pSAM)结合数字自适应光学(DAO)与传统双光子显微镜(TPM)面对复杂成像条件下的结果对比。从左至右依次为:正常条件下拍摄,物镜校正环不匹配情况下拍摄,物镜为水镜且缺乏浸润水的情况下拍摄,物镜与样本之间增加散射胶带后进行拍摄长时间的激光照射会对活体样本产生严重的光毒性。研究团队发现,传统双光子显微成像由于使用飞秒激光激发与高NA会聚,在样本局部会产生巨大的瞬时光强,由此所产生的非线性光毒性在以往被极大地低估了,而一旦在长时程成像过程中,就会不断积累损伤从而影响细胞正常状态。与之对比,2pSAM化点为针,通过轴向景深拓展,在保持同样荧光激发效率的前提下,将瞬时峰值功率降低了1000倍,从而有效解决了非线性光损伤的问题。一方面能显著减少荧光探针的光漂白,对于同一类易淬灭染料,在同样激发光强下,传统双光子仅能拍摄几十个三维体,而2pSAM能够连续拍摄几十万个三维体而没有明显的信号衰减。除此之外,团队还对小鼠脑皮层中的小胶质细胞与脑损伤过程中的中性粒细胞进行了连续成像测试,发现即使使用较弱的光强,传统双光子显微成像在连续拍摄半小时以上时仍会导致大量细胞凋亡,而在2pSAM成像过程中细胞保持了正常的表型,并且相比于对照组结果无明显差异。团队通过一系列在体与离体实验充分证明了2pSAM能够将传统双光子成像的光毒性下降三个数量级以上,为长时程高速活体组织成像打开了新窗口。图3. 小鼠大脑急性开窗损伤后的皮层免疫细胞成像,TPM(左)与2pSAM(右)光漂白对比(GIF图)图4. 离体B细胞(GFP,蓝色通道)连续拍摄实验:使用PI标记细胞凋亡(红色通道),对比TPM(左)与2pSAM(右)的光毒性(GIF图)生发中心(Germinal center,GC)是次级淋巴器官中的动态组织区域,是被抗原激活后的B细胞在趋化作用引导下聚集形成的结构,也是产生高亲和力抗体及形成长期免疫记忆关键场所。但是由于GC形成的随机性和免疫细胞本身对光损伤的敏感性,完整的GC形成过程从未被高速长时间的清晰记录过。借助2pSAM,得以首次完整清晰地观测到了免疫反应下GC形成的全部过程。研究人员将带有荧光标记的抗原特异性B细胞回输到小鼠体内,随后将抗原接种到腹股沟附近以诱导引流淋巴结中生发中心的形成,并于免疫后90到110个小时内(生发中心未形成期),在大视场下持续地对淋巴结中抗原特异性B细胞的动态行为进行追踪,成功揭示了GC形成过程中B细胞的分裂增殖是GC形成的主因,辅助以周围活化B细胞的聚集。由于拍摄时长达十余小时,淋巴结本身会产生剧烈的形变,2pSAM通过多视角信息能够进行实时轴向聚焦位置反馈,实现自动对焦,有效避免了长时程拍摄过程中的样本漂移。 图5. 小鼠腹股沟淋巴结免疫反应后生发中心形成过程的完整观测和记录(GIF图)研究人员进一步借助2pSAM在患有创伤性大脑损伤(Traumatic brain injury,TBI)的小鼠和正在接受视觉条纹刺激的GCaMP转基因小鼠进行脑皮层组织的细胞动态观测。在TBI小鼠受伤区域磨薄颅骨后观测到了外周免疫细胞中性粒细胞在浸润后与内周星形胶质细胞的相互作用,如通过直接接触定向产生迁移体(migrasome)来传递物质和信息。对GCaMP转基因小鼠开颅恢复2周后进行视觉上的条纹刺激,进一步证实了长达数小时内小鼠视觉皮层神经元钙信号对不同方向条纹选择性表达的持续性和稳定性,同时也通过长时程功能数据挖掘出了多种单细胞水平的神经响应类型,体现了神经元的功能多样性。这些现象对于传统双光子显微镜而言都极具挑战,特别是会由于光毒性本身导致会导致细胞异常表现,比如会导致神经元在长时程拍摄过程中响应强度不断下降。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制