当前位置: 仪器信息网 > 行业主题 > >

异味物质水杨酸甲酯

仪器信息网异味物质水杨酸甲酯专题为您整合异味物质水杨酸甲酯相关的最新文章,在异味物质水杨酸甲酯专题,您不仅可以免费浏览异味物质水杨酸甲酯的资讯, 同时您还可以浏览异味物质水杨酸甲酯的相关资料、解决方案,参与社区异味物质水杨酸甲酯话题讨论。

异味物质水杨酸甲酯相关的资讯

  • 水杨酸己酯安全性:从光安全性到人体研究
    光安全性评估是一个综合过程,涉及光化学特性、非临床研究数据以及对人体安全性的评估。这一评估的目的在于确定是否有必要采取风险最小化措施来预防人类的不良事件。光毒性(光刺激)是指光反应性化学物质引起的急性光诱导组织反应;光过敏是指由光化学反应后形成的光产物(如蛋白质加合物)引起的对化学物质的免疫介导反应。《ICH协调指南 药品的光安全性评价S10》根据人用药品技术要求国际协调理事会(ICH)发布的《ICH协调指南 药品的光安全性评价S10》(ICH HARMONISED TRIPARTITE GUIDELINE, PHOTOSAFETY EVALUATION OF PHARMACEUTICALS, S10),如果一个化合物需要阐明其光毒性,则应具备以下关键特征:① 吸收光为自然光线(波长范围为290-700 nm);② 吸收紫外/可见光后产生反应物质;③ 在光暴露组织(如皮肤、眼睛等)有足够的分布。如果不满足这些条件中的一个或多个,化合物通常不会产生直接的光毒性。《化妆品安全评估技术导则》皮肤光毒性试验评价化妆品原料和/或风险物质引起皮肤光毒性的可能性;皮肤光变态反应试验可评估重复接触化妆品原料和/或风险物质,并在紫外线照射下引起皮肤光变态反应的可能性。《化妆品新原料注册备案资料管理规定》申请注册或进行备案的化妆品新原料,原则上应当提供以下毒理学试验项目资料,可以根据申报注册或进行备案新原料的用途、理化特性、定量构效关系、毒理学资料、临床研究、人群流行病学调查以及类似化合物的毒性等情况,增加或减免相应的毒理学试验项目,其中包含:④ 皮肤光毒性试验(原料具有紫外线吸收特性需做该项试验);⑤ 皮肤光变态反应试验(除情形6外,原料具有紫外吸收特性时需提交该项试验资料)。◆ 光安全性评价流程 ◆图1 光安全性评价流程图表1 光安全性评价检测方法汇总《化妆品安全评估资料提交指南》指出,根据原料的化学结构特点,对原料进行充分分析或测试能够证明其不具有紫外线吸收特性的,可豁免对皮肤光毒性的评估。例如,在290nm-700nm波长范围内的摩尔消光系数(Molar Extinction Coefficient, MEC)小于1000L/mol/cm,则该物质的光反应性较低,不足以引起皮肤光毒性。◆ 以水杨酸己酯为例 ◆2024年7月29日,欧盟消费者安全科学委员会SCCS发布了《关于水杨酸己酯的科学意见附录SCCS/1658/23 - 0-3岁儿童接触》,开放征求意见截止日期至2024年9月23日。图片源自SCCS官网文件中根据紫外/可见(UV/Vis)光谱、体外数据和体内数据评估了光刺激/光致敏性终点。相关实验与结论如下:①紫外光谱分析(RIFM (Sears),2014)紫外/可见光谱(OECD TG 101)显示,水杨酸己酯在290-700 nm之间有显著的吸收峰,吸光度峰值在305 nm处,并在330 nm时返回基线。290 ~ 700 nm波长的摩尔吸收系数高于光刺激效应的关注基准(1000 Lmol-1cm-1)。② 体外3T3细胞(RIFM (Harbell),2002)在3T3中性红摄取(NRU)光刺激试验中测试了水杨酸己酯。通过比较有UVA照射和没有UVA照射的IC50值来计算光刺激因子。结果表明,水杨酸己酯不具有光刺激性。未观察到光刺激反应。③ 小鼠研究(RIFM (Urbach),1975)将未稀释的水杨酸己酯(20 ul)涂于无毛突变小鼠背部区域,暴露在长弧氙灯和荧光黑光灯下。分别在4、24、48、72和96小时评估反应。在照射阳性对照部位观察到光毒性反应。无反应辐照或未辐照的试验材料处理部位均观察到水杨酸己酯无光毒性。④ 小型猪研究(RIFM (Urbach),1975年)根据上述小鼠试验的相同程序,用未稀释的水杨酸己酯(20 ul)对两只小型猪进行试验,也未观察到光毒性。⑤豚鼠(RIFM (Learn),2003) 在两组远交白化无毛豚鼠中评价水杨酸己酯的光刺激作用。将0.3 ml水杨酸己酯按0%、5%、10%、50%和100%的比例溶于二乙基苯甲酸乙酯(DEP):乙基苯甲酸乙酯(EtOH)=3:1的溶液中进行试验。受试物给药和紫外线照射后立即、1/4小时,1/2/3天进行临床观察。水杨酸己酯不会引起光刺激引起的皮肤变化。⑥豚鼠(RIFM (Learn) 2003) 两组远交系白化无毛豚鼠暴露于水杨酸己酯(50%和100%)中未观察到光过敏。将0.3 ml用DEP:EtOHl=3:1配制的水杨酸己酯施用于颈部,动物颈部暴露于紫外线辐射约2.25小时。在给药和/或UVR暴露4小时后对这些位点进行评分。根据研究结果,水杨酸己酯不被认为是光过敏原。⑦人体研究(RIFM(Potrebka),2004)对56名受试者(41名女性和15名男性)进行光刺激潜能研究,水杨酸己酯(0.3%、3%和30%溶于DEP:ethanol=3:1的溶液中)施用于每个受试者的背部,然后用UVA和UVB照射,未辐照部位作为对照,评估受试物的刺激潜力。在UVA和UVB照射1、24、48和72小时后评估反应。未观察到任何反应。 根据现有的体外、体内和人体数据,最终可得出结论↓水杨酸己酯不具有光毒性或光致敏性。
  • 喜讯 |首批水杨酸氨氮的CCEP认证花落朗石
    近日,首批由中环协(北京)认证中心颁发的氨氮在线监测仪(水杨酸法)《中国环境保护产品认证证书》(即CCEP证书)花落朗石。又一次的权威认可不仅是朗石实力的有力证明,也是给朗石客户的“定心丸”——行业先进的朗石产品将持续为您想要的稳定、准确的监测保驾护航。朗石氨氮在线监测仪(水杨酸法)朗石氨氮水质自动在线监测仪(水杨酸法)是朗石独立创新研发的,采用国家标准方法《水杨酸分光光度法》的检测原理,结合双光路检测技术,适用于地表水(河流、湖泊、水库)、饮用水源地以及自来水管网等,能快速、准确、简单、经济地测定水质中氨氮的浓度。
  • 岛津应用:水中异味物质的筛查方案
    近年来我国饮用水异味问题发生频繁,异味已成为影响饮用水水质的重要指标之一。明确异味类型、识别出相应的异味物质,对于预防和控制异味问题具有重要意义。目前异味物质的检测方法一般有感官检测法、仪器检测法和其他检测方法。其中GCMS方法是应用最为广泛的,GCMS可检查出样品中含有何种成分(定性分析),以及该成分的含量(定量分析)。它在分析异味成分时,将正常品和异常品分析所得的数据进行比较,找出导致异味的成分候选,确认样品中的浓度是否高于臭气阈值。   但使用GCMS分析异味成分时需进行分析条件的研究和数据的解析工作,人力消耗大,同时也需要异味成分的感官信息和臭气阈值等信息,对于在异味方面知识和经验尚浅的分析人员而言,作业存在困难。岛津异味分析系统是由数据库(Smart Database)结合GCMS单级质谱仪或GCMSMS三重四极杆串级质谱仪构成的系统,也可以同时连接Sniffer嗅辨仪。数据库登录有对导致异味的主要成分(约150种化合物)和进行分析时所需的参数和感官信息(气味特征和臭气阈值等)。因此,即使是在异味分析方面知识和经验尚浅的分析人员,也可马上开始异味成分的分析。   本文利用HS-SPME-GCMSMS结合岛津异味数据库,可实现在无标准品的情况下快速建立饮用水中150种异味物质的筛查方法,分别进行正常水样和异常水样的筛查,并将分析所得的数据进行比较,找出导致异味的8种成分候选。采用数据库中生成的标准曲线进行半定量的分析,将估算出的浓度与臭气阈值进行比较,最后找到6种异味成分。 了解详情,敬请点击《岛津异味分析系统结合GCMSMS筛查水中的异味物质》 关于岛津 岛津企业管理(中国)有限公司是(株)岛津制作所于1999年100%出资,在中国设立的现地法人公司,在中国全境拥有13个分公司,事业规模不断扩大。其下设有北京、上海、广州、沈阳、成都分析中心,并拥有覆盖全国30个省的销售代理商网络以及60多个技术服务站,已构筑起为广大用户提供良好服务的完整体系。本公司以“为了人类和地球的健康”为经营理念,始终致力于为用户提供更加先进的产品和更加满意的服务,为中国社会的进步贡献力量。 更多信息请关注岛津公司网站www.shimadzu.com.cn/an/ 。 岛津官方微博地址http://weibo.com/chinashimadzu。岛津微信平台
  • 欧盟发布首批CORAP物质评估结果
    20日消息,欧洲化学品管理局(ECHA)公布首批欧盟滚动行动计划(CoRAP)物质评估结果,各成员国共完成36个物质的评估。根据评估结果,有环氧乙烷、磷酸三丁酯、甲苯二异氰酸酯、甲苯等4个物质不需要额外提供信息,而对于另外的32个物质评估成员国都已提交决议草案,要求注册人进一步提供危害、暴露等方面的信息以供评估。注册人可以对成员国的要求提出自己的意见。32个需提供进一步信息的物质是四氯化碳、甲醇、氯甲烷、双酚A、铃兰醛、1-萘氨基苯、萘烷、二苯胍、对甲苯甲醚、正己烷、二乙醇胺、1-癸醇、三溴苯酚、1,4-苯二酚、橡胶硫化促进剂PZ、异辛酸、咪唑、亚磷酸二甲酯、N-(1,4-二甲基戊基-N’-苯基对苯二胺、N,N’ (1,4-二甲基戊基)对苯二胺、偏苯三酸三辛酯、三氯生、奥克立林、水杨酸己酯、二氧化硅、异辛烷、苯酚(甲基苯乙烯)、十溴二苯乙烷、C14-17氯代烃、4-甲基-2-(2-甲基丙基-2H-四氢吡喃-4-醇、2-萘酚苄基醚、2,3,3,3-四氟-1-丙烯等。   相关注册人有30天的时间对决议草案中的信息要求给出评议,同一个物质的多个注册人则需要自行协调各方意见并将统一的意见提交给ECHA。   物质的CAS号、EC号、评估成员国等详细资料请登陆http://www.echa.europa.eu/view-article/-/journal_content/title/first-substance-evaluation-results-further-information-needed-on-32-substances查询。
  • 17种化妆品禁/限用物质检测方法公布
    各省、自治区、直辖市食品药品监督管理局(药品监督管理局):   为规范化妆品中禁用物质和限用物质检测技术要求,提高化妆品质量安全,化妆品中氢化可的松等禁用物质或限用物质的检测方法已经国家食品药品监督管理局化妆品标准专家委员会审议通过,现予印发。   附件:   1.化妆品中氢化可的松等7种禁限用物质的检测方法   2.化妆品中水杨酸的检测方法   3.化妆品中酮麝香的检测方法   4.化妆品中巯基乙酸的检测方法   5.化妆品中8种邻苯二甲酸酯的检测方法   6.化妆品中4-氨基偶氮苯和联苯胺的检测方法   7.化妆品中苯并[а]芘的检测方法   8.化妆品中4-氨基联苯及其盐的检测方法   9.化妆品中间苯二酚的检测方法   10.化妆品中32种禁限用染料成分的检测方法   11.化妆品中苯扎氯铵的检测方法   12.化妆品中羟基喹啉的检测方法   13.化妆品中过氧化氢的检测方法   14.化妆品中苄索氯铵、劳拉氯铵和西他氯铵的检测方法   15.化妆品中颜料橙5等5种禁用着色剂检测方法   16.化妆品中呋喃香豆素类(三甲沙林、8-甲氧基补骨脂素、5-甲氧基补骨脂素)和欧前胡内酯的检测方法   17.化妆品中补骨脂特征成分补骨脂素、异补骨脂素、新补骨脂异黄酮和补骨脂二氢黄酮的检测方法   国家食品药品监督管理局   二○一二年一月十六日
  • 化妆品中8种禁用或限用物质检测方法征求意见
    关于征求化妆品中间苯二酚等禁用物质或限用物质检测方法(征求意见稿)意见的函 食药监保化函[2011]327号 各省、自治区、直辖市食品药品监督管理局(药品监督管理局),有关单位:   为进一步加强化妆品安全评价工作,规范化妆品中禁用物质或限用物质检测方法,我司组织起草了化妆品中间苯二酚等禁用物质或限用物质检测方法(征求意见稿)。现向社会公开征求意见,请将修改意见于2011年8月20日前反馈我司。   联 系 人:林庆斌   联系电话:010-88330884   传  真:010-88373268   电子邮件:linqb@sfda.gov.cn   附件:1.化妆品中间苯二酚的检测方法(征求意见稿)      2.化妆品中巯基乙酸的检测方法(征求意见稿)      3.化妆品中水杨酸的检测方法(征求意见稿)      4.化妆品中酮麝香的检测方法(征求意见稿)      5.化妆品中8种邻苯二甲酸酯的检测方法(征求意见稿)      6.化妆品中4-氨基偶氮苯和联苯胺的检测方法(征求意见稿)      7.化妆品中苯并[α]芘的检测方法(征求意见稿)      8.化妆品中4-氨基联苯及其盐的检测方法(征求意见稿)      9.反馈意见表   国家食品药品监督管理局保健食品化妆品监管司   二〇一一年八月三日
  • 岛津特色口味物质鉴定分析系统,助力白酒品质提升
    中国白酒特有的纯粮固态蒸馏工艺,使得白酒组成非常复杂。粮食中的淀粉经堆积糖化、窖池发酵,转化为基酒中丰富的微生物代谢产物。 酱香型白酒古法酿造过程中采用七次蒸馏取酒的坤沙工艺,又使得发酵的过程不断深入,风味物质不断累积。基酒窖藏经历岁月的洗礼,在与外界环境的相互作用下,继续着它的化学变化,老熟、生香、生酯,最终被端上消费者的餐桌。 白酒特有的空杯留香现象表明白酒中存在大量非挥发性成分,是影响白酒口感的重要物质,共同构成了白酒口味的骨架成分,而这些成分用气相色谱等传统的技术手段是难以分析的。相比于挥发性物质,白酒中非挥发性物质含量低,无论在提取、定性与定量等方面都存在一定的困难。 中国白酒特有的纯粮固态蒸馏(图片来自网络) 以茅台等知名品牌白酒为研究对象,基于岛津液相色谱-飞行时间高分辨质谱仪LCMS-QTOF及液相色谱-串联质谱法LC-MS/MS开发口味物质鉴定分析系统,该系统将应用于白酒香型鉴别、名优白酒真假鉴别及口感调制等领域。 白酒口味物质鉴定分析系统 岛津公司与中轻食品检验认证有限公司程劲松主任团队通力合作,联合推出白酒口味物质鉴定分析系统(专利申请号:202110118801.8)。该系统基于液相色谱-四极杆飞行时间高分辨质谱LCMS-QTOF和三重四极杆型液相色谱质谱LC-MS/MS,分别开发了液相色谱质谱高分辨MS/MS特征质谱图库和串联四极杆质谱LC-MS/MS检测方法包。 三重四极杆液相色谱-质谱仪(左)和液相色谱-四极杆飞行时间质谱仪(右) 口味物质鉴定系统可对白酒样品进行高分辨质谱数据采集和定性识别,可与白酒MS/MS特征质谱图库进行检索匹配打分。白酒分析系统预制口味物质内标法工作曲线,使用者仅需购买7-羟基香豆素和水杨酸两种内标物,即可实现半定量,降低了检测成本。每种化合物下提供1~6个MRM离子对条件,供不同香型白酒检测时进行优选。 45种口味物质MRM检测色谱图(250 µg/L) 白酒口味物质鉴定系统包括氨基酸、醛类、生物碱、腺苷、有机酸和酯类等共计45种口味物质的中英文名称、分子式、结构式、CAS编号、保留时间和二级质谱图。白酒口味物质分析系统采用LCMS-TQ配合ESI电离源,建立上述口味物质的定量测定方法,包括化合物的分离条件、色谱柱和MRM质谱检测条件。 白酒MS/MS特征质谱图库 采用液相色谱质谱高分辨MS/MS特征质谱图库和串联四极杆质谱LC-MS/MS检测方法包,无需设置优化分析方法参数,可快速鉴定出不同香型白酒中普遍存在的45种口味物质及其半定量结果,用科学方法提供客观的评价结果。该系统将应用于白酒香型鉴别、名优白酒真假鉴别及口感调制等领域。
  • 德合创睿发布放射性水样蒸发浓缩赶酸仪新品
    一、仪器简介传统的放射性水样前处理过程,包括取样、浓缩、转移、洗涤、蒸发、灼烧、灰化、称重等一系列环节;水样浓缩环节,样品量不得超过烧杯的1/2,浓缩过程中要求微沸,浓缩步骤需要多次手工加液、转移、洗涤,浓缩过程中加热功率不好控制,全程需要人员值守;水样硫酸磺化环节,水样蒸干过程容易溅射,不好控制,电炉灼烧不方便且安全性差;整个实验过程操作必须认真仔细,整个水样前处理过程相当漫长和繁琐,给实验人员带来很多不便。德合创睿全自动放射性水样蒸发浓缩赶酸仪依据国标方法,实现各类样品蒸发浓缩赶酸无需人员值守,实验效率大大提高,且转移过程中无样品损失,保证安全高效运行。二、仪器用途适用于水质及自来水行业,放射性总α、β及其他放射性水样检测过程中的水样蒸发浓缩赶酸全自动前处理;环境空气降尘样品自动蒸发浓缩;溶解性总固体(TDS)项目的蒸发浓缩,等其他大体积水样浓缩过程。三、仪器特点可以最多将50L的水样,在无人值守的情况下蒸发浓缩到50ml,蒸发完成后可以不需要转移继续进行浓缩赶酸工序;最多可同时处理6/10个样品,满足大样品量浓缩用户需求;一键启动无人值守工作,仪器智能添加补充水样,实时记录已蒸发量,达到设定量停止工作;使用蒸发皿作为蒸发容器,赶酸无需转移,减少了待测物质的损失;具备断电保护功能,断电开机可继续工作,数据不丢失,样品无损坏;远红外陶瓷辐射加热,加热均匀,避免水样迸溅。一、适用标准 国际标准:? ISO 9696:2007水质 不含盐的水中 总α活度的测量 厚源法? ISO 9697:2008水质 不含盐的水中 总β活度的测量 厚源法 核行业标准:? EJ/T 1075-1998 水中总α放射性活度的测定 厚源法? EJ/T 900-1994 水中总β放射性的测定 蒸发法 地质矿产标准? DZ/T 0064.76-1993 地下水质检验方法 放射性化学法测定总α和β 环保行业标准:? HJ 898-2017 《水质 总α放射性的测定 厚源法》? HJ 899-2017 《水质 总β放射性的测定 厚源法》 国家标准:? GB 8537-2008 《饮用天然矿泉水检验方法》? GB/T 15265-94《环境空气 降尘的测定 重量法》? GB/T 5750.13-2006 《生活饮用水标准检验方法 放射性指标》? GB/T 5750.4-2006 8.1 《水质 溶解性总固体的测定 生活饮用水标准检验方法》创新点:可以最多将50L的水样,在无人值守的情况下蒸发浓缩到50ml,蒸发完成后可以不需要转移继续进行浓缩赶酸工序;最多可同时处理6/10个样品,满足大样品量浓缩用户需求;一键启动无人值守工作,仪器智能添加补充水样,实时记录已蒸发量,达到设定量停止工作;使用蒸发皿作为蒸发容器,赶酸无需转移,减少了待测物质的损失;具备断电保护功能,断电开机可继续工作,数据不丢失,样品无损坏;远红外陶瓷辐射加热,加热均匀,避免水样迸溅。 放射性水样蒸发浓缩赶酸仪
  • 从造纸厂走出的顶尖科学家|未来科学大奖得主柴继杰
    8月16日上午,从北京传来消息,西湖大学植物免疫学讲席教授柴继杰荣获“未来科学大奖—生命科学奖”。  与他一同分享这个奖项的,是中国科学院遗传与发育生物学研究所研究员周俭民,两人在植物免疫上的研究合作,跨度将近20年。  颁奖词写道:“奖励他们为发现抗病小体并阐明其结构和在抗植物病虫害中的功能做出的开创性工作。”  柴继杰刚刚入职西湖,但很多人对这个名字并不陌生。不仅因为他是中国大陆首位“德国洪堡教授”,还有他颇为传奇的人生经历。  这是一位从造纸厂走出的世界顶尖科学家。  柴继杰教授  1. 纸浆  柴,这个字拆开来看,是“此木”,就是“这个木头”。柴继杰似乎注定和植物有缘。  初中毕业时,他倔强地拒绝接替父亲的岗位。父亲是烤烟的一把好手,在烟草收购站工作,在上世纪70年代末,那是可以领细粮的“国家工作”。作为热带植物的烟草,想要在辽东半岛存活,得掐准时间。春末在大棚育苗,然后移栽到大田上,两个月可以收割。烟草茂盛时,比人还高。1980年的夏天,14岁的柴继杰穿梭其间,帮着家里收烟叶子。他没考上重点高中,但无论如何,普通高中他一定要去。七年后,他从大连轻工业学院造纸专业毕业,被分配到丹东鸭绿江造纸厂,做助理工程师,离家比较近。那份工作,那个专业,他说不上喜欢或不喜欢,只是因为报考大学选专业的时候,稀里糊涂就选了。  鸭绿江造纸厂老照片  把木头变成纸浆,是一个艰难的过程。造纸厂的水循环中有大量微生物,如果不及时处理,在高温下发酵变臭,添加物中还有各种含硫物质,味道难闻。再加上蒸汽和水流的噪音,让人避之不及。工人们的牌局就是在这样的氛围中进行的,柴继杰偶尔也会加入。虽然他并不觉得造纸厂的环境有多么难以忍受,但隐隐感觉这并不是他想要的生活。上大学和工作期间,柴继杰曾两次到访北京。他至今仍记得第一次见到立交桥时的震撼,飞驰的汽车、城市的繁华,让他莫名心动。柴继杰回忆说:  对当时的普通人来说,最有效也是最好的改变命运的办法,就是读书。  柴继杰对这次突围有着清晰的考虑。首先,他想去北京 其次,他觉得石油化工有行业优势,所以选择报考石油化工科学研究院。他对自己很有信心,他在大学里的考试成绩不错,尤其是化学相关的学科。  柴继杰花了半年时间备考,笔试通过后,石科院专门派人来造纸厂对他考察,对方很疑惑,这名考生居然来自工厂,且已经工作四年。考察人员走之前,留下一句话:“竟是这样的环境。”柴继杰被应用化学专业录取了。研究生期间的补贴比他在工厂的工资还高,他很开心。1994年,他继续读博,考入中国协和医科大学,误打误撞进入晶体学领域。晶体学是一个伏笔,1994年也是一个伏笔。 这一年,人类首次克隆出植物的相关抗病基因。植物没有动物一样的抗体免疫系统,只能通过不断进化获得防御机制,甚至和病原体协同进化。早在上世纪40年代,美国植物病理学家弗洛尔提出著名的“基因对基因”假说。该假说认为当病原体侵入植物时,会释放出“毒性因子”。在很多情况下这些毒性因子会阻碍植物的生长发育,促进病原体生长。但是在有些植物存在相应的受体,会“感知”这些病原体的“毒性因子”,从而引起植物的免疫反应。而这些配体和受体,都是双方基因表达出来的。另一个伏笔是蛋白质晶体学,柴继杰在博士期间的研究方向。蛋白质是参与所有生命活动的重要成员。本质上,它们通过基因来合成。作为一个“密码本”,基因的序列决定了蛋白质的氨基酸序列。不同的蛋白质有不同氨基酸序列,形成不同排列组合、空间折叠,即蛋白质的三维结构。如果条件合适,蛋白质会形成有序“堆积”,即晶体。在显微镜下,蛋白质晶体看上去与宝石很像。蛋白质晶体会对x射线产生衍射。通过收集衍射数据,可以计算出蛋白质的三维结构。蛋白质的三维结构对认识其作用机制具有非常重要的意义。这两个伏笔已经暗暗交织在一起,影响了柴继杰未来的人生走向。尽管读博士期间的柴继杰只是对科研很感兴趣,还说不上理想。事实上,一直到申请普林斯顿的博后时,他身上“造纸厂出身”的标签依然醒目:起点低,基础差,英语也不行。听到类似的声音,柴继杰也不反驳,任凭皱纹在微笑中绽放。他从来没觉得自己不行。很少有人知道,他考入的那所普通高中,在1983年的夏天,他是唯一考上本科的学生。只是没几年,这所“微不足道”的学校就被撤销了。他从唯一的一个,成了孤独的一个。  2. 冷泉  冷泉颇有禅意,以此命名的一个港湾,其实位于纽约长岛之上,《了不起的盖茨比》就是以长岛为背景。那是一战后、经济大萧条之前,纸醉金迷的爵士时代。而冷泉港实验室始建于1890年,也不知见证了多少个跌宕起伏的时代,这里对生命研究的探索一直在持续。把蛋白样品装入液氮罐,放到后备箱,就可以出发去冷泉港了。施一公开车,副驾驶坐着柴继杰。冷泉港的同步辐射光源时间非常紧张,需要预约。同步辐射光源能量相比普通衍射仪光源高得多,通常可以大大提高晶体衍射的分辨率。所以一旦预约上,一般都会连续实验,不分昼夜。冷泉港实验室给施一公和柴继杰提供了一个休息室,只有一张床位,两人每次都争着把床位让给对方,自己打地铺。柴继杰是施一公的博士后。1998年,施一公正在普林斯顿大学组建自己的实验室,翻到了柴继杰的简历,他觉得这个人很“邪乎”,居然在最基层的造纸厂工作了四年,还能再考上研究生。按捺不住好奇心,施一公拨通了北京的电话。他觉得眼前这个比他还大一岁的博士后申请人,能从造纸厂一路坚持下来,一定有他的过人之处。新入职的两位博士后到普林斯顿大学报到的第一天,施一公在实验室旁边的会议室里,认认真真地讲述了研究课题要求和初步的实验设计,讲完后,其中一位博后去准备实验了,剩下柴继杰站在那里没有动:  “一公,你能不能再讲一遍?”柴继杰问。  “你听懂多少?”施一公反问。  “我,可能大部分没太听懂……”柴继杰略显尴尬地说。  施一公很无奈,不得不从头开始,一点一点从基础教起。以至于后来柴继杰回忆起这段历史时还很得意,因为他的生物学实验技术都是施一公亲自传授,绝对的嫡传。是啊,不然呢?柴继杰似乎自带“免疫体质”,这些他都没有太放在心上。他听从了施一公的建议,每天坚持阅读英文报纸及文献,以及,把烟戒了。因为吸烟要下楼,浪费时间。 那些年,在反复开往冷泉港的小车上,正驾驶和副驾驶位置上的两个人,年龄相仿,一个是普林斯顿最年轻最拼的教授之一,一个是在33岁的时候重拾生物学的博士后。  一个愿意等待奇迹,一个愿意相信奇迹。等到普林斯顿的樱花五开五落,柴继杰终于找到了做科研的感觉,也发了不错的文章。他自信满满,但依然不敢说有什么梦想。他一度考虑到工业界工作,施一公把他劝住了,对他说了一句:  继杰,你肯定会后悔的。  当时,北京生命科学研究所(北生所)刚刚组建,在美国招聘独立实验室负责人(PI)研究员,所长是王晓东,也是著名的生物化学家。施一公带着他驱车前往面试地点康涅狄格纽黑文。柴继杰还是坐副驾驶。这一趟旅程之后,他希望自己有“独立驾驶”的机会。  这是北生所第一次招聘PI,一共13位候选人进入最终的面试。面试地点就设在纽黑文国际机场附近的一家酒店。一天面试下来,大家投票,6人顺利入选,柴继杰排在第七位,个别评委对他的潜力仍然存疑。王晓东问施一公:“柴继杰的潜力究竟如何?你给句话吧。”施一公径直回复:“如果继杰和我竞争同一个高难度课题,我的胜率大约50%。”大家释然。经过五年的博士后训练,柴继杰在科学研究上已自信满满。回国之前,他找施一公长聊,他说:“施老师啊,我走了以后,谁和你一起做难的课题啊?”这话说得,就好像傲娇的孙悟空离别唐僧——师傅啊,以后谁帮你打妖怪?而施一公的千言万语,其实早就写入给柴继杰的推荐信里。按照惯例,柴继杰看不到推荐信的内容,所以施一公说了什么,他至今无从知晓。  3.草木  回国后的第二年,柴继杰又重新点燃了香烟,复吸了。这一年他39岁,已近不惑。北京生命科学研究所刚成立,也就二十几个实验室,红色四层建筑。柴继杰的实验室在二楼,对面是周俭民的实验室,中间隔着一些共用的实验设备。周俭民致力于研究植物和微生物相互作用机理,接下来即将发生的合作,正是一种植物撮合的——烟草。柴继杰经常和周俭民一起抽烟。柴继杰一次次掐灭烟头,却逐渐燃起了真正的热情——接下来20年他真正要施展的领域——植物免疫。  周俭民(左)和柴继杰(右)  植物可以说是人类文明的基石之一,特别是农作物。柴继杰经常提起爱尔兰大饥荒,1845年到1850年间,爱尔兰人口锐减了四分之一,起因就是晚疫病菌的卵菌造成的马铃薯腐烂。科幻电影里也展现出这种忧虑——《星际穿越》一开场,农作物的枯萎病蔓延,最后只剩下玉米艰难生存。可人类对植物免疫知之甚少,水杨酸就是最有代表性的故事。古希腊人就知道咀嚼柳树皮可以减轻分娩痛苦。直到1828年,化学家从柳树皮中提炼出少量活性成分。1898年,乙酰水杨酸被合成,这就是著名的解热镇痛药物阿斯匹林。但直到阿斯匹林畅销全球差不多一个世纪后,人类才搞清楚,水杨酸是植物免疫机制中的一种信号分子,最初用来做验证实验的植物恰好就是烟草。周俭民和柴继杰开始合作的时候,虽然前人已经提出了“基因到基因”的理论,并通过遗传方法克隆到的一些抗病基因,但植物的这些抗病蛋白究竟是如何工作的,工作机制是什么,基本一片空白。而理解这一机制,对更好利用抗病蛋白具有重要意义。柴继杰和周俭民从2004年开始合作,直到2007年才有了一些关于抗病蛋白的初步结果。他们描述了这样一场战斗。一边是番茄中抗性蛋白Pto,一边是病原菌产生的效应蛋白AvrPto。Pto伪装成“空城”, AvrPto像是病原菌的先头部队,一旦先头部队误入空城,城上的Prf蛋白就会燃起烽火,传递战事信号。这后来被称为“诱饵模型”,他们捕获到了AvrPto-Pto的结合状态,并通过与周俭民实验合作,探索其免疫机制,这项成果发表在Nature上。虽然这项工作在认识抗病蛋白作用机理的道路上迈了一步,但是仅仅是万里长征的第一步。但受限于当时的技术条件,柴继杰和同事在植物免疫领域的探索“沉寂”了好些年,他们也会做一些植物抗病蛋白之外的研究,保持实验室的科研节奏。植物不会动,没有血液循环,但进化出复杂的免疫机制,每一个细胞,就是一个部队。仅仅是在细胞膜上,就有很多蛋白质肩负着对抗病原体的任务,它们像一个个哨兵,守卫着植物健康生长。神奇的是,柴继杰和团队更多地是用昆虫细胞来表达植物抗病蛋白,表达效果更好。研究植物竟然是借助昆虫细胞,生命进化遥相呼应,正如我们对卑微生命的语言描述,常把两者放在一起:草木虫豸。  4.花环  熟悉施一公的人都知道,他喜欢给学生上课,也喜欢和年轻学生交流。2005年,施一公在清华讲课,台下一位自称来自北大的女生提问,问题很精彩,引起了施一公的关注,问她,你是谁的学生?  “柴大老板。”女生回答说。  “哪个柴大老板?”施一公似乎听懂了,  故意反问。  “柴继杰,柴大教授!”女生得意地回答。  “哦,继杰啊,是我的学生。”施一公故  意漫不经心地笑着说。  “我们柴老师觉得,他是青出于蓝而胜于蓝!”女生话语里透着几分骄傲。  这段对话,同样让施一公倍感骄傲。直到今天,柴继杰仍是他实验室培养出来的最得意的博士后之一。施一公在很多地方不断重复这个故事,在他看来,“输在起跑线上”并不那么重要,关键还是后程发力。柴继杰主攻的植物免疫大致分成两个层面,细胞膜上,由膜表面识别受体(PRR)直接识别病原体,包括受体激酶和受体蛋白两种 细胞内,由核苷酸结合和富含亮氨酸重复序列受体(NLR),识别病原体的效应因子,从而引发免疫效应。根据N端结构域不同,NLR又可以分为CNL和TNL。2013年前后,柴继杰和团队在PRR领域的研究已经取得多项突破,他们发现,不仅是植物免疫、还包括植物生长发育,二聚化是植物受体激酶活化的最小单位,而受体蛋白的活化也遵循“二聚化”的基本规律。这些发现可以为培育广谱抗病作物品种提供理论基础。2017年又是一个转折点。凭借受体激酶的研究,柴继杰与合作者获得国家自然科学二等奖。同年,柴继杰获得德国“洪堡教席奖”,前往普朗克植物育种研究所继续开展研究。  在清华,柴继杰经常是第一个到实验室,最后一个走。“我们很怀疑,柴老师有没有逛过清华园。”柴继杰的同事说。普朗克植物育种研究所一派田园风光,这所创建近百年的研究所,拥有自己的试验田和温室大棚。每到傍晚时分,柴继杰会如期穿梭在其中,一边快走锻炼身体,戴着耳机听音乐,一边思考这一天来的研究工作。以及,他彻底戒掉了香烟。  柴继杰在德国  2019年,更大的突破接踵而至。柴继杰团队揭示CNL类抗病蛋白ZAR1的不同状态,识别到病原体信号时,五个ZAR1蛋白会聚合到一起,形似一朵紫金花。柴继杰和周俭民为它取名为“抗病小体”,这被认为是植物免疫领域里程碑事件。“抗病小体”的激活,会引发植物免疫反应和细胞死亡。“抗病小体”的外形和施一公研究过的凋亡体有一种呼应,凋亡体是花环形,而两者都可以和细胞死亡相关。看到结构后,柴继杰展现出一种敏锐的直觉,虽然结构相似,但后者功能可能不同。“抗病小体”的中心有一个凸起的结构,柴继杰猜测可能和细胞膜通道或膜孔有关。之后,柴继杰和周俭民合作以及其他老师合作,发现 “抗病小体”可以抵达细胞膜,形成钙离子通道,进而引发后续的免疫反应。2020年,柴继杰和团队继续突破,发现TNL类抗病蛋白RPP1四聚化后,会产生全新的核苷类化合物,作为“第二信使”,从而起始植物的免疫和死亡通路。这是2022年柴继杰和合作者连续发表五篇关于植物抗病蛋白的文章。快吗?柴继杰对此的回答是:我们为此准备了近20年。  柴继杰在植物房  现在,柴继杰和他的团队,已经打扫好新的实验室,包括几间植物房,播下了种子,包括拟南芥、水稻,还有本氏烟草。这些都是理想的模式植物。柴继杰画了一张图,上面是植物免疫的各种模式,其中还标注了很多问号。在西湖大学,他要把这些问号拉直,并且探索帮助植物提高免疫的新机制和方法。植物房里的种子刚刚冒出苗头。柴继杰对新环境很喜欢,他的实验室在西湖大学云栖校区,这是杭州著名的风景区之一,周围低山环绕。曾经,他向往都市生活去考了研究生,但现在他更喜欢草木虫豸。曾经,他为了能继续上学拒绝烟叶田,但现在却心甘情愿地在实验室种上烟草。时间给他画了一个圈,就像一个花环。
  • 北京市场部分化妆品汞、巯基乙酸含量不合格
    北京市药监局昨天公布了第三季度全市药品质量监督抽验结果,其中17种药品抽检不合格,不合格率为1.43%。   此次,药监部门共进行监督性抽验1185批次。抽检不合格的药品包括:度米芬含片、复方乙酰水杨酸片、补肾明目颗粒、仙鹿益肾颗粒、紫苏梗、女宝胶囊、橘红、款冬花、川贝母、丹参、瓜蒌、法半夏、柴胡、银黄颗粒、珍菊降压片、双氯芬酸钠缓释胶囊、清火栀麦片。   市药监局昨天同时公布了今年上半年化妆品的抽检结果,共完成抽检335批次,其中有2批次产品不合格,分别是中法合资深圳市星孜化妆品有限公司生产的医圣牌美白祛斑霜和广州兰皙化妆品有限公司生产的澳桃美牌速效防敏脱毛膏。不合格原因分别是汞含量不合格、巯基乙酸含量不合格。
  • 异味自来水“没问题”暴露了“大问题”
    自今年1月以来,全国已曝出十余起自来水异味事件,而其中有多数“问题水”经当地机构检测认定“水质达标”,一些水务部门甚至拍胸脯告知民众“可放心饮用”,这就让许多人心生疑惑:仅凭感官就能发现异味的自来水,何以经过科学检测后却“没了问题”? 事实上,我国从2012年7月起开始执行的生活饮用水卫生标准,检测指标达106项,与世界最严的欧盟水质标准基本持平,标准中规定“生活饮用水的感官性状要良好”,在“臭和味”一项中更明确要求“无异臭、异味”。作为强制性标准,这意味着106项指标中任意一项不合格都代表水质有问题,当然也包括“异味”在内。而被普遍反映有异味的“问题水”被检测为“合格”,这究竟是由于公众的嗅觉“集体失灵”,还是相关机构“选择性失明”,答案不言自明。一些部门为了逃避责任,不惜“ 睁眼说瞎话”、把“异味水”认可为“达标水”,既暴露了对于国家标准的不屑一顾,更暴露了对民生问题的公然漠视。 自来水水质检测标准 根据GB5749-85、GB5750-85自来水质量标准在感官性状和一般化学指标:色度不超过15度;浑浊度不超过3度;不得有臭味、异味;不得含有肉眼可见物;PH在6.5-8.5;总硬度(以碳酸钙计):450mg/L 氯化物250mg/L 细菌学指标:细菌总数:100个/ml;总大肠菌群3个/L 游离余氯:在与水接触30分钟后不低于0.3mg/L,集中式给水,除出厂水应符合以上条件外,网管末梢水应不低于0.05mg/L。 水质检测方法 色:铂钴标准比色法:用氯铂酸钾和氯化钴配成标准色列,与水样进行比较,规定相当于1毫克铂在1升水中所具有的颜色成为1度,作为色度单位。 浑浊度:是反应天然水饮用水的物理性状的一项指标。天然水的浑浊度是由于水中含有泥沙、粘土、有机物、微生物等微粒悬浮物所致。一般采用分光光度法。 臭和味:去水样100ml,置于三角瓶中,振摇后闻水的气味,用适当的词句描述,并按六级记录其强度。同时取少量的水入口,不要下咽,尝尝水的味道,并加以描述,按六级记录其强度。   肉眼可见物:直接观察。 PH值:PH值是水中氢离子活度倒数的绝对值。水的PH值了用PH电位计法和比色法制定。PH电位法比较准确,比色法简易方便。 总硬度:水的硬度戏指沉淀肥皂的程度。 氯化物:氯化物几乎存在于所有的饮用水中,饮用水中氯化物的测定方法常用的有硝酸银滴定法及硝酸汞滴定法。硝酸银滴定法操作简单,但终点不甚明显;硝酸汞滴定法终点敏锐,但水质检测要求严格控制PH。 总大肠菌群:多管发酵法或滤膜法检验。 相关危害 不合格水对人体的危害,有看得见的,有看不见的。看得见的通常是微生物污染危害,可能致人突发急性疾病,消费者食用微生物超标严重的食品,很容易患痢疾等肠道疾病,可能引起呕吐、腹泻等症状,危害人体健康安全。好在国人习惯饮用开水,可以杀死微生物污染物,这个危害表现并不明显。 看不见的危害,容易被忽视但更值得关注。自来水的有机化合物总量(CODMn)超标易导致慢性疾病。 饮用水中氟化物超标并长期使用,最严重的情况会引起氟骨症。氟斑牙的牙齿变色是氟元素的过量摄入引起的,这主要是由环境因素所造成的。氟斑牙及称斑釉牙或黄斑牙,是一种慢性氟中毒在牙齿中的表现。这种病是因为平常饮用水中的氟元素含过高。氟是一种在自然界含量很小的化学物质,它既有防龋齿的作用,又能致病。水中如果缺少含氟的物质,会减低儿童牙齿抵抗龋齿 的能力 如果氟含量过高,又会沉积在体内,引起慢性的氟中毒,在牙齿就会表现出氟斑牙。 快速水质检测水是大家每天都必会饮用的,所以水的安全也是我们所关注的,我们对生活饮用水的水质要求也不断提高。水质检测可以帮助您在家中轻松完成检测。智云达科技有限公司研发生产的水质大肠菌群检测纸片和水中余氯(消毒液有效氯)速测试纸可以帮助您快速检测饮用水的质量安全。
  • 快速应对水质异味,权威嗅味数据库来了
    导语 近年来,国内饮用水嗅味突发事件频出,受到社会广泛关注。 中科院生态环境研究中心杨敏研究员团队通过大量的科学研究和实际样品检测,采用岛津GCMS-TQ8040气相色谱-三重四极杆质谱仪,建立了水质特征嗅味物质的多组分同时定量分析方法,并构建了嗅味物质快速筛查数据库,这套水质嗅味数据库正式进入岛津的产品序列面向全国发售。 中科院生态中心-岛津水质嗅味数据库合作签约仪式 110种水质嗅味数据库 特点和优势 水质嗅味数据库结合近年来我国饮用水中经常出现的嗅味类型,选取来源于微生物、生活污染、工业化学污染等110种致嗅物质为研究的目标物质,确定了5种修正校准曲线用的内标化合物,建立气相色谱-串联四极杆质谱联用仪(GC-MS/MS)同时定性定量分析数据库。 该数据库包含了目标嗅味化合物和内标化合物进行GC-MS/MS分析时所需的最佳仪器条件(气相条件和质谱条件),包括保留指数、保留时间、选择离子监测模式(SIM)离子信息、多反应监测模式(MRM)离子对信息和两种模式下各化合物的校准曲线方程等。 即使在没有分析方法和嗅味物质标准品的条件下,该系统可帮助分析人员快速地对环境样品中的嗅味化合物进行定性和半定量分析。 水质嗅味数据库分析 流程及结果 使用液液萃取法前处理图1. 异常水样中检测到部分异味物质的MRM图谱 表1. 异常水样中检测到4种异味物质注1:红色标记的化合物估算浓度为小于气味阈值的1/10,不会对气味造成影响。 注2:气味阈值和气味特征为数据库中各个异味组分登记的信息,可以显示在结果报告中。 总结 目前环境管理主要是集中在一些常规物质的检测,而环境中还存在很多未知的风险物质,这就需要不断梳理,对未知的需要进行监管的物质进行筛查。 岛津-中科院生态环境研究中心推出的110种嗅味物质数据库可在突发性环境污染事件中嗅味化合物的应急监测方面发挥优势。使用该数据库,无需配制嗅味物质标准溶液即可得到未知水样中嗅味成分的半定量结果,不但可以节省标品配置和处理数据的时间,而且即使是在嗅味分析方面知识和经验尚浅的分析人员,也可快速对样品中的嗅味成分进行分析。 撰稿人:杜世娟、郑嘉、田菲菲
  • 仪器百科|放射性水样蒸发浓缩赶酸仪 新品分享
    优云谱放射性水样蒸发浓缩赶酸仪是一款专为水质检测、环境监测和自来水行业设计的实验设备。这款仪器主要用于处理放射性总α、β及其他放射性水样的蒸发浓缩赶酸前处理,同时也适用于环境空气降尘样品的自动浓缩、溶解性总固体(TDS)的浓缩以及其他大体积水样的处理。了解更多放射性水样蒸发浓缩赶酸仪产品详情→https://www.instrument.com.cn/show/C581916.html主要功能与特点1. 快速浓缩与自动盐化灼烧该仪器利用蒸发浓缩技术,能够迅速处理大量水样。在样品浓缩过程中,仪器会自动进行盐化灼烧处理,无需将样品转移到其他容器。这种设计减少了样品转移可能导致的损失或污染,并简化了操作流程。2. 整机防腐耐高温放射性水样蒸发浓缩赶酸仪采用了防腐耐高温材料制造,这保证了仪器在高温环境下的长期稳定运行。其耐用性使得仪器能够在各种实验条件下提供可靠的性能。3. 自动化操作该仪器配备了先进的自动化系统,能够自动完成样品的蒸发浓缩和盐化灼烧过程。用户只需设置好操作参数,即可实现无人值守的自动化运行,提高了实验的效率和便捷性。4. 准确控制仪器具备精准的温控系统和浓缩速率调节功能,可以准确控制蒸发过程中的温度和速度,确保样品浓缩的一致性和准确性。这对需要严格控制实验条件的应用尤为重要。应用范围放射性水样蒸发浓缩赶酸仪广泛应用于以下领域:放射性水样检测:用于处理放射性总α、β及其他放射性水样,确保检测数据的准确性。环境空气降尘样品分析:自动浓缩降尘样品,为环境监测提供可靠的数据支持。溶解性总固体(TDS)测定:快速浓缩水样中的溶解性固体。大体积水样处理:满足大体积水样的浓缩需求,适用于各种实验和分析任务。总结放射性水样蒸发浓缩赶酸仪以其可靠的浓缩处理能力、自动盐化灼烧功能和整机防腐耐高温设计,成为处理各种水样的理想设备。其自动化操作和精确控制功能,不仅提高了实验效率,还确保了数据的准确性。这款仪器在水质检测、环境监测等领域中提供了可靠的技术支持,是实验室和工业分析中的重要工具。
  • FDA建议消费者应避免使用箭牌药油和涂擦剂
    2010年5月27日,美国食品和药物管理局(FDA)警告消费者不要购买或使用一种称为 “箭牌驱风油和涂擦剂”的产品,该产品也被标记为 "Aceite Medicinal La Flecha (西班牙语) 或 "箭嘜驅風油 (普通话)"。该产品具有潜在毒性并含有两种物质:水杨酸甲脂和樟脑,如果咽下会中毒。   如果将水杨酸甲脂和樟脑涂于较大面积的皮肤上或使用时加热以增加对其活性成分的吸收,也会造成中毒。其成分特别容易使儿童中毒。   这些成分中毒的症状可能包括:腹疼、恶心、呕吐、腹泻、头疼、视力变化、头昏眼花和精神错乱。过量使用水杨酸甲脂和樟脑甚至可能有致命风险。   FDA在对该产品进行初步测试时还发现一种化合物,似二甘醇 (DEG),一种用于防冻的成分,如果咽下可能中毒。需做进一步的测试以确认二甘醇 (DEG)的存在。   该产品主要在互联网上和面向亚裔与拉丁裔的专卖店内销售。除了警告消费者不要使用或购买该产品外,美国食品和药物管理局还在要求零售商将该产品从商店的货架上拿掉。
  • 10月1日起化妆品包装须标明所有成分
    化妆品包装上必须标明所有成分,所标注的名称应该按照加入量降序排列,同时,所标明的成分名称将按照国际标准标注。   今年10月1日国家标准委将出台新规,要求化妆品包装上必须标明所有成分,所标注的名称应该按照加入量降序排列,同时,所标明的成分名称将按照国际标准标注。这意味着,类似“保湿因子”、“天然萃取物”这样的名称将不能出现。进口化妆品也必须在其加贴的中文标签上标明。   广东省化妆品标准检测中心主任郑伟东告诉记者,目前省内的化妆品企业都已经准备“换装”,具体到化妆品成分表的更换可延迟至明年6月17日执行。   然而,也有消费者担心,专业成分名称很难看得懂,更不知道具体的功效是什么。记者看到,一些化妆品成分,如氨甲基丙醇、三乙醇胺等,对普通消费者而言还真难弄懂有些什么作用。   部分专业术语解释:   水杨酸:能去除老化角质堆积,改善皮肤纹理 能渗透毛囊,有效地干燥面疱的化脓部位,对皮肤有抗痘美白的效果。有许多抗痘产品都含有水杨酸。相较于果酸,水杨酸对皮肤的刺激性较低。但用于敏感皮肤时仍可能会造成过敏 。   高岭土:有抑制皮脂及吸汗的性能,在化妆品中与滑石粉配合使用,有缓解消除滑石粉光泽的作用,主要用作粉条、眼影、爽身粉、香粉、粉饼、胭脂等各种粉类的化妆品的重要原料。
  • 兽药非法添加物检测标准与方法集合(截至2024年6月30日)
    兽药非法添加物通常指的是在兽药生产过程中未经批准或超出规定范围添加的化学物质,这些物质可能对动物健康和人类食品安全构成风险。及时对兽药非法添加物进行检测,可以确保兽药的安全性和有效性,防止非法添加物对动物和人类健康造成危害,同时保障食品安全和公共卫生。兽药非法添加物检测通常在以下情况下进行:1. 兽药生产过程中的质量控制。2. 兽药上市前的注册检验。3. 市场监管中的随机抽检。4. 怀疑兽药存在质量问题时的专项检测。通过这些检测,可以及时发现并处理非法添加问题,保护消费者权益,维护市场秩序。检测主要用到的仪器为:高效液相色谱仪、液相色谱-质谱联用仪、显微镜等。中国农业农村部已经组织制定了多项兽药中非法添加物的检查方法标准,以加强兽药监管。这些标准包括《兽药制剂中非法添加磺胺类药物检查方法》、《兽药中非特定非法添加物质检查方法》等,旨在规范兽药生产,确保兽药中不含有非法添加物质。据仪器信息网查询和统计,截至2024年6月30日,农业农村部官方网站上一共公告了61种兽药非法添加物检测标准与方法,整理如下表所示,供各行业的读者参考借鉴。序号名称兽药制剂非法添加物发布时间文件/公告号01《硫酸卡那霉素注射液中非法添加尼可刹米检查方法》硫酸卡那霉素注射液尼可刹米2016.05.09农业部公告第2395号02《恩诺沙星注射液中非法添加双氯芬酸钠检查方法》恩诺沙星注射液双氯芬酸钠2016.05.19农业部公告第2398号03《中药散剂中非法添加呋喃唑酮、呋喃西林、呋喃妥因检查方法》中药散剂:止痢散、清瘟败毒散、银翘散呋喃唑酮、呋喃西林、呋喃妥因2016.09.23农业部公告第2448号《兽药制剂中非法添加磺胺类药物检查方法》等34项检查方法(修订31个;新建3个)04《中兽药散剂中非法添加氯霉素检查方法》中兽药散剂:白头翁散、苍术香连散、银翘散氯霉素2016.09.2305《中药散剂中非法添加乙酰甲喹、喹乙醇检查方法》中药散剂:止痢散、健胃散、清瘟败毒散、胃肠活、肥猪散、清热散、银翘散乙酰甲喹、喹乙醇2016.09.2306《黄芪多糖注射液中非法添加解热镇痛类、抗病毒类、抗生素类、氟喹诺酮类等11种化学药物(物质)检查方法》黄芪多糖注射液解热镇痛类:对乙酰氨基酚、安乃近、氨基比林、安替比林;抗病毒类:利巴韦林、盐酸吗啉胍;抗生素类:林可霉素;氟喹诺酮类:诺氟沙星、氧氟沙星、环丙沙星、恩诺沙星等11种化学药物( 物质)2016.09.2307《肥猪散、健胃散、银翘散等中药散剂中非法添加氟喹诺酮类药物(物质)检查方法》肥猪散、健胃散、银翘散氟喹诺酮类药物(物质):氧氟沙星、诺氟沙星等2016.09.2308《氟喹诺酮类制剂中非法添加乙酰甲喹、喹乙醇等化学药物检查方法》氟喹诺酮类制剂:氧氟沙星制剂、诺氟沙星(及其盐)制剂、恩诺沙星(及其盐)制剂、环丙沙星(及其盐)制剂乙酰甲喹、喹乙醇2016.09.2309《氟苯尼考粉和氟苯尼考预混剂中非法添加氧氟沙星、诺氟沙星、环丙沙星、恩诺沙星检查方法》氟苯尼考粉、氟苯尼考预混剂氧氟沙星、诺氟沙星、环丙沙星、恩诺沙星2016.09.2310《氟苯尼考制剂中非法添加磺胺二甲嘧啶、磺胺间甲氧嘧啶检查方法》氟苯尼考制剂:氟苯尼考可溶性粉、氟苯尼考粉、氟苯尼考预混剂、氟苯尼考溶液、氟苯尼考注射液磺胺二甲嘧啶、磺胺间甲氧嘧啶2016.09.2311《乳酸环丙沙星注射液中非法添加对乙酰氨基酚检查方法》乳酸环丙沙星注射液对乙酰氨基酚2016.09.2312《阿莫西林可溶性粉中非法添加解热镇痛类药物检查方法》阿莫西林可溶性粉解热镇痛类药物:对乙酰氨基酚、安替比林、氨基比林、安乃近、萘普生2016.09.2313《注射用青霉素钾(钠)中非法添加解热镇痛类药物检查方法》注射用青霉素钾(钠)解热镇痛类药物:安乃近、对乙酰氨基酚、氨基比林、安替比林、2016.09.2314《氟苯尼考制剂中非法添加烟酰胺、氨茶碱检查方法》氟苯尼考制剂:氟苯尼考粉、氟苯尼考可溶性粉、氟苯尼考预混剂烟酰胺、氨茶碱2016.09.2315《氟喹诺酮类制剂中非法添加对乙酰氨基酚、安乃近检查方法》氟喹诺酮类制剂:氧氟沙星、诺氟沙星(及其盐)、恩诺沙星(及其盐)、环丙沙星(及其盐)注射液、可溶性粉及粉剂对乙酰氨基酚、安乃近2016.09.2316《硫酸庆大霉素注射液中非法添加甲氧苄啶检查方法》硫酸庆大霉素注射液甲氧苄啶2016.09.2317《氟苯尼考固体制剂中非法添加β-受体激动剂检查方法》氟苯尼考固体制剂:氟苯尼考粉、可溶性粉、预混剂β-受体激动剂:克伦特罗、莱克多巴胺、沙丁胺醇、西马特罗、西布特罗、妥布特罗、马布特罗、特布他林、氯丙那林2016.09.2318《盐酸林可霉素制剂中非法添加对乙酰氨基酚、安乃近检查方法》盐酸林可霉素制剂:盐酸林可霉素可溶性粉、注射液乙酰氨基酚、安乃近2016.09.2319《黄芪多糖注射液中非法添加地塞米松磷酸钠检查方法》黄芪多糖注射液地塞米松磷酸钠2016.09.2320《氟苯尼考液体制剂中非法添加β-受体激动剂检查方法》氟苯尼考液体制剂:氟苯尼考注射液、溶液β-受体激动剂:克伦特罗、莱克多巴胺、沙丁胺醇、西马特罗、西布特罗、妥布特罗、马布特罗、特布他林、氯丙那林2016.09.2321《柴胡注射液中非法添加利巴韦林检查方法》柴胡注射液利巴韦林2016.09.2322《柴胡注射液中非法添加盐酸吗啉胍、金刚烷胺、金刚乙胺检查方法》柴胡注射液盐酸吗啉胍、金刚烷胺、金刚乙胺2016.09.2323《柴胡注射液中非法添加对乙酰氨基酚检查方法》柴胡注射液对乙酰氨基酚2016.09.2324《鱼腥草注射液中非法添加甲氧氯普胺检查方法》鱼腥草注射液甲氧氯普胺2016.09.2325《鱼腥草注射液中非法添加林可霉素检查方法》鱼腥草注射液林可霉素2016.09.2326《鱼腥草注射液中非法添加水杨酸、氧氟沙星检查方法》鱼腥草注射液水杨酸、氧氟沙星2016.09.2327《中兽药散剂中非法添加金刚烷胺和金刚乙胺检查方法》中兽药散剂:白头翁散、苍术香连散、银翘散金刚烷胺、金刚乙胺2016.09.2328《扶正解毒散中非法添加茶碱、安乃近检查方法》扶正解毒散茶碱、安乃近2016.09.2329《黄连解毒散中非法添加对乙酰氨基酚、盐酸溴己新检查方法》黄连解毒散对乙酰氨基酚、盐酸溴己新2016.09.2330《酒石酸泰乐菌素可溶性粉中非法添加茶碱检查方法》酒石酸泰乐菌素可溶性粉茶碱2016.09.2331《硫酸安普霉素可溶性粉中非法添加诺氟沙星检查方法》硫酸安普霉素可溶性粉诺氟沙星2016.09.2332《硫酸黏菌素预混剂中非法添加乙酰甲喹检查方法》硫酸黏菌素预混剂乙酰甲喹2016.09.2333《硫酸安普霉素可溶性粉中非法添加头孢噻肟检查方法》硫酸安普霉素可溶性粉头孢噻肟2016.09.2334《阿维拉霉素预混剂中非法添加莫能菌素检查方法》阿维拉霉素预混剂莫能菌素2016.09.2335《甘草颗粒中非法添加吲哚美辛检查方法》甘草颗粒吲哚美辛2016.09.2336《兽药制剂中非法添加磺胺类药物检查方法》阿莫西林可溶性粉、氟苯尼考粉、盐酸林可霉素注射液、伊维菌素注射液、恩诺沙星注射液、盐酸环丙沙星可溶性粉、鱼腥草注射液、止痢散、黄芪多糖注射液、健胃散磺胺类药物:磺胺嘧啶、磺胺二甲嘧啶、磺胺对甲氧嘧啶、磺胺间甲氧嘧啶、磺胺甲噁唑2016.09.2337《兽药中非法添加甲氧苄啶检查方法》替米考星预混剂、磷酸泰乐菌素预混剂、盐酸多西环素可溶性粉、乳酸环丙沙星可溶性粉及注射液、恩诺沙星注射液甲氧苄啶2016.10.08农业部公告第2451号38《兽药中非法添加氨茶碱和二羟丙茶碱检查方法》环丙沙星注射液及可溶性粉、恩诺沙星注射液、替米考星注射液及预混剂、盐酸多西环素可溶性粉、酒石酸泰乐菌素可溶性粉、磷酸泰乐菌素预混剂、金花平喘散、荆防败毒散、麻杏石甘散氨茶碱、二羟丙茶碱2016.10.0839《兽药中非法添加对乙酰氨基酚、安乃近、地塞米松和地塞米松磷酸钠检查方法》氟苯尼考粉及预混剂、泰乐菌素预混剂、替米考星预混剂及注射液、板蓝根注射液、穿心莲注射液对乙酰氨基酚、安乃近、地塞米松和地塞米松磷酸钠2016.10.0840《兽药中非法添加喹乙醇和乙酰甲喹检查方法》硫酸黏菌素可溶性粉及预混剂、黄连解毒散、白头翁散喹乙醇和乙酰甲喹2016.10.0841《硫酸黏菌素制剂中非法添加阿托品检查方法》硫酸黏菌素制剂:硫酸黏菌素可溶性粉、硫酸黏菌素预混剂阿托品2016.10.0842《鱼腥草注射液中非法添加庆大霉素检查方法》鱼腥草注射液庆大霉素2017.02.27农业部公告第2494号43《兽药中非法添加非泼罗尼检查方法》阿维菌素粉非泼罗尼2017.08.31农业部公告第2571号44《兽药中非法添加药物快速筛查法(液相色谱-二级管阵列法)》兽药兽药及其原料与辅料中紫外光谱图库中所列153种药物2019.05.16农业部公告第169号45《麻杏石甘口服液、杨树花口服液中非法添加黄芩苷检查方法》麻杏石甘口服液、杨树花口服液黄芩苷2019.07.31农业农村部公告第199号46《兽药中非特定非法添加物质检查方法》兽药非特定非法添加物质:对人或动物具有药理活性或毒性作用等的物质2020.05.09农业农村部公告第289号47《中兽药固体制剂中非法添加物质检查方法—显微鉴别法》不含动物类、矿物类药材的中兽药散剂;中兽药散剂、颗粒剂、胶囊剂、片剂、丸剂、锭剂化学成分;其他药味2020.05.0948《兽药中非法添加硝基咪唑类药物检查方法》盐酸多西环素可溶性粉、硫酸新霉素可溶性粉罗硝唑、甲硝唑、替硝唑、地美硝唑、奥硝唑或异丙硝唑2020.05.0949《兽药中非法添加四环素类药物的检查方法》麻杏石甘散、银翘散、替米考星预混剂、氟苯尼考预混剂、磺胺氯吡嗪钠可溶性粉四环素类药物:土霉素、盐酸四环素、盐酸金霉素或多西环素2020.11.19农业农村部公告第361号50《兽药固体制剂中非法添加酰胺醇类药物的检查方法》健胃散、止痢散、球虫散、胃肠活、阿莫西林可溶性粉、氨苄西林可溶性粉、硫酸新霉素可溶性粉、盐酸大观霉素林可霉素可溶性粉、盐酸土霉素预混剂、注射用盐酸土霉素、盐酸金霉素可溶性粉、酒石酸泰乐菌素可溶性粉、硫酸红霉素可溶性粉、替米考星预混剂、盐酸林可霉素可溶性粉、硫酸粘菌素可溶性粉、恩诺沙星可溶性粉、盐酸环丙沙星可溶性粉、氧氟沙星可溶性粉、盐酸环丙沙星小檗碱预混剂、阿苯达唑伊维菌素预混剂、阿维菌素粉、地克珠利预混剂、维生素C可溶性粉、复方维生素B可溶性粉酰胺醇类药物:甲砜霉素、氟苯尼考、氯霉素2020.11.1951《兽药制剂中非法添加磺胺类及喹诺酮类25种化合物检查方法》黄芪多糖注射液、维生素C可溶性粉、硫酸卡那霉素注射液磺胺脒、磺胺、磺胺二甲异嘧啶钠、磺胺醋酰、磺胺嘧啶、甲氧苄啶、磺胺吡啶、马波沙星、磺胺甲基嘧啶、氧氟沙星、培氟沙星、洛美沙星、达氟沙星、恩诺沙星、磺胺间甲氧嘧啶、磺胺氯达嗪钠、沙拉沙星、磺胺多辛、磺胺甲噁唑、磺胺异噁唑、磺胺苯甲酰、磺胺氯吡嗪钠、磺胺地索辛、磺胺喹噁啉或磺胺苯吡唑等磺胺类及喹诺酮类25种化合物2021.01.11农业农村部公告第384号52林可霉素注射液中非法添加盐酸左旋咪唑检查方法林可霉素注射仦盐酸左旋咪唑2021.11.8农业农村部公告第485号53硫酸新霉素可溶性粉中非法添加苯并咪唑和大环内酯类抗寄生虫药物检查方法硫酸新霉素可溶性粉氧阿苯达唑、阿苯达唑、芬苯达唑、三氯苯达唑、乙酰氨基阿维菌素、阿维菌素、伊维菌素2022.10.13农业农村部公告第611号54复方麻黄散中非法添加喹烯酮检查方法复方麻黄散喹烯酮2022.10.13农业农村部公告第611号55恩诺沙星注射液中非法添加呋噻米检查方法恩诺沙星呋噻米2022.10.13农业农村部公告第611号56鸡传染性支气管炎活疫苗中非法添加/改变制苗用毒种检测方法鸡传染性支气管炎活疫苗-2023.10.23农业农村部公告第717号57鸡传染性法氏囊病活疫苗中非法添加/改变制苗用毒种检测方法鸡传染性法氏囊病活疫苗-2023.10.2358鸡新城疫活疫苗中非法添加/改变制苗用毒种检测方法
  • 环保部征求8项国家环保检测标准意见
    为执行《中华人民共和国环境保护法》,保障人体健康,提高环境管理水平,规范环境监测工作,环境保护部决定修订《水质 吡啶的测定 顶空气相色谱法》等8项国家环境保护标准。目前,标准编制单位已编制完成标准的征求意见稿。根据国家环境保护标准制修订工作管理规定,现将标准征求意见稿和有关材料印送给你们,请研究并提出书面意见,于2009年3月15日前反馈我部。   联系人:环境保护部科技标准司 谷雪景   通信地址:北京市西直门内南小街115号   邮政编码:100035   联系电话:(010)66556214   传真:(010)66556213   附件:1.征求意见单位名单      2.《水质 吡啶的测定 顶空气相色谱法》(征求意见稿)      3.《水质 吡啶的测定 顶空气相色谱法》(征求意见稿)编制说明      4.《水质 硝基苯、硝基甲苯、硝基氯苯、二硝基甲苯、二硝基氯苯的测定 液液萃取和固相萃取气相色谱法》(征求意见稿)      5.《水质 硝基苯、硝基甲苯、硝基氯苯、二硝基甲苯、二硝基氯苯的测定 液液萃取和固相萃取气相色谱法》(征求意见稿)编制说明      6.《水质 氨氮的测定 蒸馏-中和滴定法》(征求意见稿)      7.《水质 氨氮的测定 蒸馏-中和滴定法》(征求意见稿)编制说明      8.《水质 氨氮的测定 水杨酸分光光度法》(征求意见稿)      9.《水质 氨氮的测定 水杨酸分光光度法》(征求意见稿)编制说明      10.《水质 氨氮的测定 纳氏试剂分光光度法》(征求意见稿)      11.《水质 氨氮的测定 纳氏试剂分光光度法》(征求意见稿)编制说明      12.《环境空气 臭氧的测定 紫外光度法》(征求意见稿)      13.《环境空气 臭氧的测定 紫外光度法》(征求意见稿)编制说明      14.《环境空气 氨的测定 次氯酸钠-水杨酸分光光度法》(征求意见稿)      15.《环境空气 氨的测定 次氯酸钠-水杨酸分光光度法》(征求意见稿)编制说明      16.《环境空气 氨的测定 纳氏试剂分光光度法》(征求意见稿)      17.《环境空气 氨的测定 纳氏试剂分光光度法》(征求意见稿)编制说明
  • 国家植物基因研究中心植物激素检测平台举办技术讲座
    植物激素是植物体内合成的一系列天然微量有机物小分子化合物, 调控着植物生长发育过程中重要的生理反应,但其定量分析检测一直是限制研究深入的瓶颈问题。为了解决这一难题,国家植物基因研究中心(北京)从2007年开始致力于植物激素测定平台的建设,经过不断努力探索,目前已经建立了稳定的生长素、脱落酸、茉莉酸和水杨酸等激素的测定方法,并对外提供技术服务,部分数据已发表在Plant Cell、Cell Host & Microbe等杂志上。   为了充分发挥植物激素检测平台的作用,国家植物基因研究中心(北京)于11月26日举办了植物激素检测技术讲座。   此次讲座由负责植物激素检测平台工作的褚金芳主持。Waters公司的王则含首先介绍了超高效液相—三重四级杆串联质谱仪的工作原理、特点及其在痕量组分定性、定量分析中的应用及优势。随后,褚金芳就国内外植物激素检测的现状、植物激素检测平台的建设和运行、植物激素检测方法的建立以及植物激素检测流程需要注意的问题作了详细说明。来自所内外多个科研院所的70多名科研人员参加了此次培训。大家就植物激素检测相关问题踊跃提问,并得到了细致耐心的解答。
  • 天美讲堂丨提高中药荧光指纹图谱的专属性(二)酸度效应
    应用背景以中国传统医药理论指导采集、炮制、制剂,说明作用机理,指导临床应用的药物,统称为中药。中药作为中华民族传统文化的瑰宝,主要来源于天然药及其加工品,包括植物药、动物药、矿物药及部分化学、生物制品类药物。 中药品种繁多,来源广泛,成分复杂,单味中药中即含有几十种乃至更多的化学成分,临床多使用复方制剂,且中药的特点是多成分整体作用于有机体,因此,中药的质量评价和质量控制十分重要。中药为天然有机化合物,其中的某些成分能够在紫外光或日光照射下产生不同颜色的荧光,因此,荧光检验法是中药鉴别中常用的一种理化鉴别方法。中药的三维荧光图谱可以给出被测中药全面的荧光信息,为复杂的中药体系的荧光分析提供了方便。专属性是指中药指纹图谱的测定方法对中药样品特征的分析鉴定能力。对于中药材的三维荧光图谱而言,可以从荧光峰的位置、峰强度、峰形状、各个峰的强度比等方面使一种药材区别于其他药材。在中性水溶液中进行实验的方法是最简便、应用最多的方法,大部分药材可以用这一方法获得图形美观、专属性好的三维荧光图谱。但某些药材使用这一方法获得的三维荧光图谱相似,或者荧光太弱甚至无荧光。对于这些药材,需要采取特殊的实验方法以提高三维荧光图谱的专属性。由于物质的荧光性质与环境因素密切相关,因此,提高三维荧光图谱的专属性可以通过优化实验条件得以实现。(二)酸度效应许多荧光物质是弱酸或弱碱,随着溶液pH的变化,弱酸或弱碱发生质子离解或结合作用,质子化程度不同的型体通常具有不同的荧光光谱和荧光量子产率。因此,改变溶液pH常可导致荧光物质的光谱特征发生明显变化。如水杨酸和伞形花内酯在不同pH条件下具有不同的荧光光谱。在pH较低时,水杨酸荧光很弱,随着pH升高,羧基质子电离,导致荧光增强。由于水杨酸(邻羟基苯甲酸)能够形成分子内氢键,其荧光比对(或间)羟基苯甲酸的荧光强。伞形花内酯,在pH值从6.58至9.49变化的过程中,存在7-羟基质子的电离(电离前后都是荧光型体,发射波长相同但激发波长不同,故,在激发光谱中可以形成一个等荧光点)。 中药荧光成分大多是有机弱酸或弱碱,分子结构中包括羟基、羧基或含有可以质子化的氮原子(如生物碱类化合物)。因此,改变溶液的pH常常是改变三维荧光图谱进而提高专属性的有效方法。 *本文参考:魏永巨 《中药三维荧光检验法》(科学出版社)天美讲堂丨提高中药荧光指纹图谱的专属性(一)仪器推荐天美FL970系列荧光分光光度计具有可靠、快速的光路系统(150W高能量氙灯、一体化的光路底板、PMT值增益的光电倍增管、超快的扫描速度)和人性化、直观、易用的操作界面。 天美分析更多资讯
  • 江苏大学陈全胜团队: 通过HS-SPME-GC/MS结合代谢组学分析鉴定超声波辅助康普茶发酵过程中的挥发性物质及其代谢途径
    Introduction茶菌等传统微生物发酵饮料使用富含蔗糖的茶水作为原料,经酵母和细菌共发酵而成。红茶作为茶菌发酵的主要原料,也被称为康普茶,具有促进胃肠道消化、抑制肠道有害微生物生长、抗氧化特性、促进血管舒缩、辅助预防心脑血管疾病的功能。发酵是康普茶香气产生的关键工序,可以产生大量的醛、酸、酮和其他化合物。目前,红外、微波、超声波等物理加工技术已成功应用于食品发酵,与传统加工技术相比更能促进风味的形成。其中,超声波处理的茶叶非常稳定,通过物理作用增强参与香气合成基因的表达,使得茶叶形成不同香气化合物。近年来,顶空固相微萃取(HS-SPME)样品前处理方法因其对样品需求量小、不需要有机溶剂、操作简单、灵敏度高、重现性好等特点,已成功应用于各种茶叶香气物质的提取。超声提取技术具有速度快、成本低、操作简单、环保、效率高等优点,是增强茶叶香气释放的一种特殊方式。因此,HS-SPME结合超声波技术可能适用于茶叶发酵过程的分析。代谢组学可以同时实现所有代谢物的全面定性和定量分析。现阶段,基于HS-SPME结合气相色谱-质谱(GC/MS)技术的组学方法已广泛应用于挥发性化合物的代谢组学分析。然而,结合HS-SPME-GC/MS与代谢组学方法,用于康普茶代谢产物变化与代谢途径之间的关系的研究鲜有报道。本文改进了康普茶的发酵工艺,并通过单因素和响应面分析进行优化。采用HS-SPME-GC/MS技术对康普茶发酵过程进行代谢组学分析,探究其代谢产物变化,并进一步分析代谢途径及其对挥发性化合物性质的影响(图1)。图1. 基于HS-SPME-GC/MS的代谢组学结合多元分析研究康普茶发酵过程中的特征挥发性物质和代谢途径。Results and Discussion发酵条件的确定不同超声频率下发酵液中总糖和茶多酚的消耗率如图2A和2B所示。结果表明,超声处理和非超声处理的样品其总糖和茶多酚的消耗率存在显著差异。优选发酵时间为3 d。根据采样时间记录发酵周期为S0~S7,其中发酵初期阶段记录为S0。此外,优选23 kHz的超声波频率为后续实验的最佳频率(图2C),优选pH 3.2为后续发酵的最佳条件(图2D),优选30 °C为最佳温度(图2E)。以发酵后总糖和酚的消耗率为响应值,进行Box-Behnken分析,建立高度拟合的茶提取物发酵条件的三元回归模型。图2. 探究超声处理对(A)茶多酚消耗率、(B)糖消耗率的影响,(C)五种超声频率对茶多酚和糖消耗率的影响,(D)五种pH值对茶多酚和糖消耗率的影响,(E)五种温度对茶多酚和糖消耗率的影响。采用扫描电子显微镜(SEM)表征23 kHz处理组和对照组茶菌的形态。结果表明,对照组表面光滑圆润,而超声后的细胞表面存在凹痕和皱纹(图3)。这可能与20~40 kHz频率下的急性气穴现象有关。超声波处理可以提高微生物中相关酶的活性,从而提高发酵效率。图3. SEM表征超声对茶菌形态的影响,(A和B)超声处理组,(C和D)对照组。代谢组组成分析GC-MS-TQ8040具有高通量和智能操作特性,配备高亮度离子源和高效碰撞池,可用于超灵敏分析。保留时间、已鉴定化合物列表、缩写、CAS号和分子式如表1所示。 表1. 基于HS-SPME-GC/MS鉴定康普茶发酵过程中的代谢物。132种气味活性化合物被分为10组(32种醇类、13种酮类、16种烯烃、18种酯类、14种烷烃、11种芳烃、9种酸类、7种醚类、4种氮挥发性化合物和1种硫化物)。康普茶发酵过程中挥发物的代谢谱表明,鉴定的化合物分离良好。采用单因素方差分析和Tukey图基事后检验法验证上述132种挥发性化合物在发酵过程中具有显著性。132种高贡献挥发物的方差分析统计如表2所示。表2. 康普茶发酵过程中挥发性成分的相对峰面积变化及其与发酵时间的相关性。标志性挥发性物质的分析采用主成分分析(PCA)将发酵样品分为不同类群,结果表明,发酵和未发酵的茶叶具有不同的挥发性物质成分(图4A)。发酵过程中茶叶的挥发性物质经历周期性的变化。进一步采用PCA的载荷图解释S0~S7代谢物变化差异的具体成分,结果如图4B所示。2-甲基丁酸、D-柠檬烯和苯乙醇等香气化合物有助于康普茶的整体花香、酸甜和柠檬味,并且远离零点,对PC1和PC2有显著贡献,从而影响发酵液的气味特征。PLS-DA得分图显示出更好的模型拟合(组间差异更显著),PC1和PC2分别占比59.1%和7.6%(图4C)。如图4D所示,选择了25种挥发性化合物。苯乙醇增强了“花香”风味,改善了整体的感官香气质量,并增强了康普茶的“甜”香气特征。其难闻气味可能是由2-甲基丁酸引起。挥发性成分的鉴别结果表明,发酵工艺对康普茶挥发性成分具有显著影响。此外,这些挥发性化合物被认为是康普茶发酵过程中的主要特征香气成分。图4. (A)康普茶样品的多元统计分析和质谱数据集的PCA得分图,基于PCA模型的(B)康普茶样品中变量的载荷图、(C)PLS-DA得分图、(D)PLS-DA评选的前25种挥发性化合物。特征代谢物的鉴定结合载荷图和VIP得分进一步筛选特征代谢物。结果如图5所示,部分差异代谢物与康普茶发酵过程呈线性相关。叶醇、二十烷、水杨酸异辛酯、2-甲基丁酸、邻伞花烃、甲基三十烷基醚、苯乙醇和棕榈酸异丙酯的含量与红茶发酵时间呈正相关。其余化合物(甲氧基苯肟、芳樟醇、雪松醇、二氯乙酸、癸酯)与储存时间呈负相关。图5. 12种代谢物的箱形图表明发酵中存在显著差异。代谢途径分析本文介绍了特征挥发物的产生途径、形成机制以及它们之间的转化关系。康普茶发酵过程中发现的特征代谢物的代谢途径如图6所示。图6. 康普茶发酵过程中发现的特征代谢物的代谢途径。Conclusion本文采用单因素优化实验和响应面分析确定康普茶的最佳发酵条件为30 °C、pH 3.2、23 kHz。通过代谢组学技术监测超声辅助处理过程中挥发性物质的综合变化。总而言之,鉴定了由132种成分组成的综合代谢组学图谱,并成功进行多元统计分析,筛选VIP>1的25种特征代谢物作为生物标志物。此外,详细研究了代谢途径以及各种挥发性物质的转化。结果表明,发酵后期存在挥发性物质转化的代谢途径。综上所述,在康普茶发酵过程中可以通过优化工艺加快和改进反应过程。本文为红茶菌发酵代谢产物的变化及影响机制的研究提供了重要的理论价值。
  • 禾工发布三聚氰胺检测方法和整套仪器配置
    固相萃取(SPE)方法介绍 1、固相萃取(SPE)柱的选择: 三聚氰胺呈弱碱性(弱阳离子化合物),净化过程一般选择阳离子交换柱。混合型的阳离子交换柱(PCX)通过将磺酸基团(-SO3H)键合在极性高聚物聚苯乙烯/二乙烯苯(PEP)吸附剂上,具有阳离子和反相两种吸附机理,并具有以下优点: 1)、可通过两种不同溶液的洗涤(水/一定pH值的缓冲溶液和有机溶剂),使样品更干净,提高检测的灵敏度。 2)、批次重复性好。 3)、回收率高,重现性好,即使小柱跑干也可以得到较高回收率。 五、HPLC-UV检测方法(GB/T&hellip &hellip ..) 一、 检测方法 1、试剂与材料: 除另有规定外,试剂为分析纯,水符合GB/T6682规定的三级水,色谱用水符合一级水的规定。 1.1 乙腈:色谱纯 1.2 甲醇:色谱纯 1.3 氨水:浓度25%~28% 1.4 混合型阳离子交换固相萃取小柱:60mg/3mL 1.5 三氯乙酸溶液10g/L :称取10g三氯乙酸加水至1000mL。 1.6 乙腈水溶液:乙腈:水为50:50 1.7 盐酸溶液:0.1mol/L 1.8 氨水-甲醇溶液:量取5mL 氨水,溶解于100mL 甲醇中。 1.9 乙酸锌溶液219 g/L:取219g乙酸锌用300mL 水溶解后,定溶至1L。 1.10 20%甲醇溶液:200mL 甲醇,溶解于800mL 水中。混匀。 1.11 缓冲液:10mmol/L辛烷磺酸钠,10mmol/L柠檬酸,调pH3.0。 1.12 标准溶液: 1.12.1 标准贮备液1mg/mL :称取100.0mg 与小烧杯中,加少量乙腈: 水40:60 溶解并转入100mL 容 量瓶中定容。 1.12.2 标准工作液10&mu g/mL :准确吸取标准贮备液1mL 于100mL 容量瓶中,用乙腈: 水40:60定容。 2 仪器设备 实验室常用仪器及: 2.1 液相色谱仪 2.2 超声波振荡器 3 操作步骤 3.1 试样提取: 称取5g试样(精确到0.01g)与150mL 三角瓶中,加入50mL三氯乙酸溶液(1.5)或乙腈水溶液溶解 样品,放于超声波振荡器中超声萃取30min。取出加入5mL 乙酸锌溶液(1.9),前者采用三氯乙酸溶液 (1.5)、后者采用盐酸溶液(1.7)将试样转入100mL 容量瓶中定容至刻度,混匀后用滤纸过滤。 3.2 净化 分别用3mL 水,3mL 甲醇活化混合型阳离子交换固相萃取小柱后。取2mL 滤液上柱,然后分别用3mL 甲醇和3mL 水淋洗,将淋洗液全部抽干后,用3mL 氨水-甲醇(1.8)洗脱,洗脱液于50℃水浴中旋转蒸发至干。用20%甲醇溶液定容至1mL ,漩涡震荡1min,过0.45um滤膜过滤,上机测定。 3.3 测定 3.3.1 色谱条件 色谱柱:极性 C8柱(4.6mmi.d.× 250mm,5&mu m)或C18柱(4.6mmi.d.× 250mm,5um); 流 速:1.0mL /min; 进样量:50&mu l; 柱 温:35℃; 波 长:240nm. 流动相:C8柱使用的为缓冲液(3.11):乙腈=95:5; C18柱使用的为缓冲液(3.11):乙腈=90:10; 3.3.2 标准曲线绘制 分别吸取标准工作液(3.12.2)0.5、2.0、4.0、7.5、10.0mL于50mL 容量瓶中,用乙腈: 水40:60 分别定容混匀,该标准系列浓度分别为0.10、0.40、0.80、1.50、2.00&mu g/mL。将该标准系列溶液分别 注入仪器中,测定峰高(或峰面积)。以标准系列浓度为横坐标,峰高(或峰面积)为纵坐标绘制标准 曲线。或计算回归方程。3.3.3 测定 分别吸取试液(3.2)注入仪器中,测定峰高(或峰面积)。由标准曲线查得试液中三聚氰胺的浓度或通过回归方程计算出试液中三聚氰胺的浓度。 4 结果表示 4.1 试样中三聚氰胺的含量X,以质量分数毫克每千克(mg/kg)表示 式中: Cs&mdash 试液中三聚氰胺的浓度,(&mu g/mL ); V&mdash 试液体积,(100mL ); m&mdash 试样的质量,(g); n&mdash 稀释倍数; 6.2 平行测定结果用算术平均值表示,结果保留小数点后两位有效数字。 六、HPLC-DAD检测方法(GB/T&hellip &hellip ..) (婴幼儿配方奶粉和牛奶中三聚氰胺的高效液相色谱筛选法) 一、检测方法 1、方法来源 本方法是在参考FCC三聚氰胺检测方法[Updated FCC Development MelamineQuantitation(HPLC&mdash UV),April2,2007],FDA三聚氰胺检测方法 [GC-MS Screen for the Presence of Melamine ,(Adapted from FDA/ORA Forensic Chemistry Center SOP T015) Revised April 10, 2007]的基础上,综合制定而成的 婴幼儿配方奶粉和牛奶中三聚氰胺高效液相色谱筛选方法。 2、试剂 1.1 磺基水杨酸:分析纯; 1.2 柠檬酸:分析纯; 1.3 辛烷磺酸钠:高效液相色谱离子对试剂; 1.4 乙腈:色谱纯; 1.5 盐酸:分析纯; 1.6 超纯水:18.2M&Omega ; 1.7 60g/L磺基水杨酸:称取60g磺基水杨酸用水定容至1L; 1.8 0.1N HCl:量取8.3mL盐酸用水稀释至1L; 1.9 标准储备液:精密称取三聚氰胺0.0100g,用甲醇配制成浓度为1mg/mL 标准储备液。 2.0 标准使用液:将标准储备液用甲醇逐级稀释至适宜浓度。 3、仪器 高效液相色谱,附二极管阵列检测器 4、样品处理 2.1 配方奶粉:称取0.5g样品,加入0.1N HCl约15mL,涡旋混匀,超声提取30min后加入60g/L磺基 水杨酸3~4mL,用0.1N HCl定容至25mL,混匀后离心,上清液经0.45&mu m的微孔滤膜过滤后进样。 2.2 牛奶:称取15g左右样品,加入60g/L磺基水杨酸3~4mL,用0.1N HCl 定容至25mL,混匀后离心, 上清液经0.45&mu m的微孔滤膜过滤后进样。 5、参考色谱条件 4.1 色谱柱:ODS C8,250mm× 4.6mm 4.2 流动相:缓冲液:乙腈=85:15,等度洗脱 4.3 缓冲液:10mM柠檬酸+10mM辛烷磺酸钠,调pH为3.0 4.4 流 速:1.0mL/min 4.5 柱 温:40 ℃ 4.6 波 长:240nm 6 计算公式 式中:X&mdash 样品中三聚氰胺含量,mg/kg; C&mdash 从标准曲线上查出的含量,&mu g/mL; V&mdash 定容体积,mL; M&mdash 称样量,g 7 定量限 本方法的定量限为1mg/kg 8 参考色谱图和光谱图 高效液相色谱仪三聚氰胺检测配置 1) STI 5000型液相色谱仪系统 1 P5000 型高压恒流输液泵 1台 2 UV5000紫外检测器 1台 3 Rheohyne 7725i 手动进样阀 1支 4 三聚氰胺分析专用液相色谱柱 1支 5 25/50ul微量注射器 1支 6 N2000色谱工作站(SP1版) 1套 7 液相启动工具包 1套 2) 液相附助设备 1 KQ-2200 超声波清洗器 3L 1台 2 HP-01袖珍式真空泵 0.80MP 1台 3 FB-10T溶剂过滤器 1000mL 1台 4 HG-330色谱柱温箱 室温-100℃ / 0.1℃ 1台 6 有机过滤膜 &phi 50× 0.45mm 1盒 7 水系过滤膜 &phi 50× 0.45mm 1盒 8 有机针式过滤器 &phi 13× 0.45mm 1盒 9 水系针式过滤器 &phi 13× 0.45mm 1盒 10 RO DI反渗透超纯水机 15L/H  1台 VERTEX系列液相色谱仪主要指标 一、P5000高压恒流输液泵 技术指标 产品说明 等度泵 流速精度:0.1% 流速范围:0.001~10ml/min/0.001ml增量 最高耐压:6000psi(0~10ml/min) 压力脉冲:1% 特点说明 双柱塞串联式往复泵,自动脉冲抑制系统 输液泵开机自检,自动判断故障 泵头各部件单独设计,便于拆装维护 内置高低压报警和保护功能 多种泵头选择:微量泵、分析泵、半制备/制备泵 自动检测泵头类型,智能修正参数设置 程序化溶剂压缩因子,能自动补偿流量 梯度由内部软件实现自动控制,可编辑、存贮60个梯度方法,能运行复杂的梯度程序 可以通过外部接点闭合控制。 独特优点: 独特的柱塞杆自动清洗装置,使P5000系列高压输液泵不需要花钱购买在线清洗装置,也无须担心盐类晶体的析出对柱塞杆造成损伤; 专利设计的&ldquo 浮动式泵柱塞杆密封圈&rdquo 技术,可设定溶剂相应的压缩因子,泵头可以自动排空,无须手动排空即可输液;可延长密封圈使用寿命; P5000型输液泵使用的&ldquo 自吸式单向阀&rdquo ,是世界上最好的单向阀,阀球能在溶剂通过单向阀后回流之前回到阀座将之密封,保障了泵流量超常的稳定。 优秀的单向阀设计与先进的&ldquo 浮动式泵柱塞杆密封圈&rdquo 技术,使P5000输液泵在0-10ml/min的流量范围内都能耐压6000Psi,且压力波动远小于10Psi,成为国内外压力波动最小的泵之一。 拥有用户至关重要的两大功能 ①自动排空 ②自动清洗 二元梯度泵 流速精度:0.1% 流速范围:0.001~10ml/min(等度), 0.001~10ml/min(梯度)/0.001ml增量 延迟体积:150uL 最高耐压:6000psi(0-10ml/min) 压力脉冲:1% 比例精度:± 0.2%, 2ml/min 四元梯度泵 流速精度:0.1% 流速范围:0.001~10ml/min,0.001ml增量 延迟体积:400uL 最高耐压:6000psi(具高低压保护功能) 压力脉冲:1% 外置4流路在线真空脱气机 制备泵 流速精度:0.1% 流速范围:0.2~80ml/min(等度), 0.2~100ml/min(梯度),0.001ml增量 延迟体积:150uL 压力脉冲:1.5% 比例精度:± 0.2%, 5ml/min 自吸式单向阀-世界上最为优秀的单向阀 高压输液泵所使用的ASI自吸式单向阀是目前世界上最好的单向阀,它产生的流量有非常好的可重复性与准确性,这意味着单向阀能保持非常好的重复性。下图是Waters公司的单向阀与ASI公司的单向阀的使用比较,显而易见,ASI的自吸式单向阀的性能效果要优于Waters的单向阀。(Data Certified by: Baseline Services, Mercerville, NJ May 21, 1997, Bodman Chromatography Aston, PA May 21, 1997)
  • 水中氨氮测定方法及操作步骤汇总介绍
    氨 氮 氨氮(NH3-N)以游离氨(NH3)或铵盐(NH4+)形式存在于水中,两者的组成比取决于水的pH值。当pH值偏高时,游离氨的比例较高。反之,则铵盐的比例为高。 水中氨氮的来源主要为生活污水中含氮有机物受微生物作用的分解产物,某些工业废水,如焦化废水和合成氨化肥厂废水等,以及农田排水。此外,在无氧环境中,水中存在的亚硝酸盐亦可受微生物作用,还原为氨。在有氧环境中,水中氨亦可转变为亚硝酸盐、甚至继续转变为硝酸盐。 测定水中各种形态的氮化合物,有助于评价水体被污染和“自净”状况。 氨氮含量较高时,对鱼类则可呈现毒害作用。 1. 方法的选择 氨氮的测定方法,通常有纳氏比色法、苯酚-次氯酸盐(或水杨酸-次氯酸盐)比色法和电极法等。纳氏试剂比色法具操作简便、灵敏等特点,水中钙、镁和铁等金属离子、硫化物、醛和酮类、颜色,以及浑浊等干扰测定,需做相应的预处理,苯酚-次氯酸盐比色法具灵敏、稳定等优点,干扰情况和消除方法同纳氏试剂比色法。电极法通常不需要对水样进行预处理和具测量范围宽等优点。氨氮含量较高时,尚可采用蒸馏﹣酸滴定法。 2.水样的保存 水样采集在聚乙烯瓶或玻璃瓶内,并应尽快分析,必要时可加硫酸将水样酸化至pH2,于2—5℃下存放。酸化样品应注意防止吸收空气中的氮而遭致污染。 预 处 理 水样带色或浑浊以及含其它一些干扰物质,影响氨氮的测定。为此,在分析时需做适当的预处理。对较清洁的水,可采用絮凝沉淀法,对污染严重的水或工业废水,则以蒸馏法使之消除干扰。 (一)絮 凝 沉 淀 法 概 述 加适量的硫酸锌于水样中,并加氢氧化钠使呈碱性,生成氢氧化锌沉淀,再经过滤去除颜色和浑浊等。 仪 器 100ml具塞量筒或比色管。 试 剂 (1)10%(m/V)硫酸锌溶液:称取10g硫酸锌溶于水,稀释至100ml。 (2)25%氢氧化钠溶液:称取25g氢氧化钠溶于水,稀释至100ml,贮于聚乙烯瓶中。 (3)硫酸ρ=1.84。 步 骤 取100ml水样于具塞量筒或比色管中,加入1ml 10%硫酸锌溶液和0.1—0.2ml 25%氢氧化钠溶液,调节pH至10.5左右,混匀。放置使沉淀,用经无氨水充分洗涤过的中速滤纸过滤,弃去初滤液20ml。 (二)蒸 馏 法 概 述 调节水样的pH使在6.0—7.4的范围,加入适量氧化镁使呈微碱性(也可加入pH9.5的Na4B4O7-NaOH缓冲溶液使呈弱碱性进行蒸馏;pH过高能促使有机氮的水解,导致结果偏高),蒸馏释出的氨,被吸收于硫酸或硼酸溶液中。采用纳氏比色法或酸滴定发时,以硼酸溶液为吸收液;采用水杨酸-次氯酸比色法时,则以硫酸溶液为吸收液。 仪 器 带氮球的定氮蒸馏装置:500ml凯氏烧瓶、氮球、直形冷凝管和导管。 试 剂 水样稀释及试剂配制均用无氨水。 (1) 无氨水制备: ① 蒸馏法:每升蒸馏水中加0.1ml硫酸,在全玻璃蒸馏器中重蒸馏,弃去50ml初滤液,接取其余馏出液于具塞磨口的玻瓶中,密塞保存。 ② 离子交换法:使蒸馏水通过强酸性阳离子交换树脂柱。 (2) 1mol/L盐酸溶液。 (3) 1mol/L氢氧化钠溶液。 (4) 轻质氧化镁(MgO):将氧化镁在500℃下加热,以除去碳酸盐。 (5) 0.05%溴百里酚蓝指示液(pH6.0—7.6)。 (6) 防沫剂,如石蜡碎片。 (7) 吸收液:① 硼酸溶液:称取20g硼酸溶于水稀释至1L。 ② 硫酸(H2SO4)溶液:0.01mol/L。 步 骤 (1) 蒸馏装置的预处理:加250ml水于凯氏烧瓶中,加0.25g轻质氧化镁和数粒玻璃珠,加热蒸馏,至馏出液不含氨为止,弃去瓶内残渣。 (2) 分取250ml水样(如氨氮含量较高,可分取适量并加水至250ml,使氨氮含量不超过2.5mg),移入凯氏烧瓶中,加数滴溴百里酚蓝指示液,用氢氧化钠溶液或盐酸溶液调至pH7左右。加入0.25g轻质氧化镁和数粒玻璃珠,立即连接氮球和冷凝管,导管下端插入吸收液液面下。加热蒸馏至馏出液达200ml时,停止蒸馏。定容至250ml。 采用酸滴定法或纳氏比色法时,以50ml硼酸溶液为吸收液,采用水杨酸-次氯酸盐比色法时,改用50ml 0.0 1mol/L硫酸溶液为吸收液。 注意事项 (1) 蒸馏时应避免发生暴沸,否则可造成馏出液温度升高,氨吸收不完全。 (2) 防止在蒸馏时产生泡沫,必要时加入少量石蜡碎片于凯氏烧瓶中。 (3) 水样如含余氯,则应加入适量0.35%硫代硫酸钠溶液,每0.5ml可除去0.25mg余氯。 (一) 纳氏试剂光度法GB7479--87 概 述 1. 方法原理 碘化汞和碘化钾的碱性溶液与氨反应生成淡红棕色胶态化合物,此颜色在较宽的波长范围内具强烈吸收。通常测量用波长在410—425nm范围。 2. 干扰及消除 脂肪胺、芳香胺、醛类、丙酮、醇类和有机氯胺类等有机化合物,以及铁、锰、镁、硫等无机离子,因产生异色或浑浊而引起干扰,水中颜色和浑浊亦影响比色。为此,须经絮凝沉淀过滤或蒸馏预处理,易挥发的还原性干扰物质,还可在酸性条件下加热除去。对金属离子的干扰,可加入适量的掩蔽剂加以消除。 3.方法适用范围 本法最低检出浓度为0.025mol/L(光度法),测定上限为2mg/L。采用目视比色法,最低检出浓度为0.02mg/L。水样作适当的预处理后,本法可适用于地表水、地下水、工业废水和生活污水。 仪 器 (1) 分光光度法。 (2) pH计。 试 剂 配制试剂用水应为无氨水。 1. 纳氏试剂 可选择下列一种方法制备。 (1) 称取20g碘化钾溶于约25ml水中,边搅拌边分次少量加入二氯化汞(HgCI2)结晶粉末(约10g),至出现朱红色沉淀不易溶解时,改为滴加饱和二氯化汞溶液,并充分搅拌,当出现微量朱红色沉淀不再溶解时,停止滴加二氯化汞溶液。 另称取60g氢氧化钾溶于水,并稀释至250ml,冷却至室温后,将上述溶液在边搅拌下,徐徐注入氢氧化钾溶液中,用水稀释至400ml,混匀。静置过夜,将上清液移入聚乙烯瓶中,密塞保存。 (2) 称取16g氢氧化钠,溶于50ml充分冷却至室温。 另称取7g碘化钾和10g碘化汞(HgI2)溶于水,然后将此溶液在搅拌下徐徐注入氢氧化钠溶液中,用水稀释至100ml,贮于聚乙烯瓶中,密塞保存。 2.酒石酸钾钠溶液 称取50g酒石酸钾钠(KnaC4H4O64H2O)溶于100ml水中,加热煮沸以除去氨,放冷,定容至100ml。 3.铵标准贮备溶液 称取3.819g经100℃干燥过的氯化铵(NH4Cl)溶于水中,稀释至标线。此溶液每毫升含1.00mg氨氮。 4. 铵标准使用溶液 移取5.00ml铵标准贮备液于500ml容量瓶中,用水稀释至标线。此溶液每毫升含0.010mg氨氮。 步 骤 1. 校准曲线的绘制 吸取0、0.50、1.00、3.00、5.00、7.00、和10.0ml铵标准使用液于50ml比色管中,加水至标线。加1.0ml酒石酸钾钠溶液,混匀。加1.5ml纳氏试剂,混匀。放置10min后,在波长4250nm处,用光程20mm比色皿,以水作参比,测量吸光度。 由测得得吸光度,减去零浓度空白管的吸光度后,得到校正吸光度,绘制以氨氮含量(mg)对校正吸光度得校准曲线。 2. 水样的测定 (1) 分取适量经絮凝沉淀预处理后的水样(使氨氮含量不超过0.1mg),加入50ml比色管中,稀释至标线,加1.0ml酒石酸钾钠溶液。 (2)分取适量经蒸馏预处理后的馏出液,加入50ml比色管中,加一定量1mol/L氢氧化钠溶液以中和硼酸,稀释至标线。加1.5ml纳氏试剂,混匀。放置10min后,同校准曲线步骤测量吸光度。 3. 空白试验:以无氨水代替水样,作全程序空白测定。计 算 由水样测得的吸光度减去空白试验的吸光度后,从校准曲线上查得氨氮含量(mg)。 氨氮(N,mg/L)= 式中,m—由校准曲线查得的氨氮量(mg); V—水样体积(ml)。 精密度和准确度 三个实验室分析含1.14~1.16mg/L氨氮的加标水样,单个实验室的相对标准偏差不超过9.5%;加标回收率范围为95~104%。 四个实验室分析含1.81~3.06mg/L氨氮的加标水样,单个实验室的相对标准偏差不超过4.4%;加标回收率范围为94~96%。 注意事项 (1) 纳氏试剂中碘化汞与碘化钾的比例,对显色反应的灵敏度有较大影响。静置后生成的沉淀应除去。 (2) 滤纸中常含有痕量铵盐,使用时注意用无氨水洗涤。所用玻璃器皿应避免实验室空气中氨的沾污。 (二) 水杨酸-次氯酸盐光度法 GB7481--87 概 述 1. 方法原理 在亚硝基铁氰化钠存在下,铵与水杨酸盐和次氯酸离子反应生成兰色化合物,在波长697nm具最大吸收。 2. 干扰及消除 氯铵在此条件下,均被定量的测定。钙、镁等阳离子的干扰,可加酒石酸钾钠掩蔽。 3. 方法的适用范围 本法最低检出浓度为0.01mg/L,测定上限为1mg/L。适用于饮用水、生活污水和大部分工业废水中氨氮的测定。 仪 器 (1) 分光光度计。 (2) 滴瓶(滴管流出液体,每毫升相当于20±1滴) 试 剂 所有试剂配制均用无氨水。 1. 铵标准贮备液 称取3.819g经100℃干燥过的氯化铵(NH4Cl)溶于水中,移入1000ml容量瓶中,稀释至标线。此溶液每毫升含1.00mg氨氮。 2. 铵标准中间液 吸取10.00ml铵标准贮备液移取100ml容量瓶中,稀释至标线。此溶液每毫升含0.10mg氨氮。 3. 铵标准使用液 吸取10.00ml铵标准中间液移入1000ml容量瓶中,稀释至标线。此溶液每毫升含1.00μg氨氮。临用时配置。 4. 显色液 称取50g水杨酸〔C6H4(OH)COOH〕,加入100ml水,再加入160ml 2mol/L氢氧化钠溶液,搅拌使之完全溶解。另称取50g酒石酸钾钠溶于水中,与上述溶液合并移入1000ml容量瓶中,稀释至标线。存放于棕色玻瓶中,本试剂至少稳定一个月。 注: 若水杨酸未能全部溶解,可再加入数毫升氢氧化钠溶液,直至完全溶解为止,最后溶液的pH值为6.0—6.5。 5. 次氯酸钠溶液 取市售或自行制备的次氯酸钠溶液,经标定后,用氢氧化钠溶液稀释成含有效氯浓度为0.35%(m/V),游离碱浓度为0.75mol/L(以NaOH计)的次氯酸钠溶液。存放于棕色滴瓶内,本试剂可稳定一星期。 6. 亚硝基铁氰化钠溶液 称取0.1g亚硝基铁氰化钠{Na2〔Fe(CN)6NO〕2H2O}置于10ml具塞比色管中,溶于水,稀释至标线。此溶液临用前配制。 7. 清洗溶液 称取100g氢氧化钾溶于100ml水中,冷却后与900ml 95%(V/V)乙醇混合,贮于聚乙烯瓶内。 步 骤 1. 校准曲线的绘制 吸取0、1.00、2.00、4.00、6.00、8.00ml铵标准使用液于10ml比色管中,用水稀释至8ml,加入1.00ml显色液和2滴亚硝基铁氰化钠溶液,混匀。再滴加2滴次氯酸钠溶液,稀释至标线,充分混匀。放置1h后,在波长697nm处,用光程为10mm的比色皿,以水为参比,测量吸光度。 由测得的吸光度,减去空白管的吸光度后,得到校正吸光度,绘制以氨氮含量(μg)对校正吸光度的校准曲线。 2. 水样的测定 分取适量经预处理的水样(使氨氮含量不超过8μg)至10ml比色管中,加水稀释至8ml,与校准曲线相同操作,进行显色和测量吸光度。 3. 空白试验 以无氨水代替水样,按样品测定相同步骤进行显色和测量。 计 算 由水样测得的吸光度减去空白试验的吸光度后,从校准曲线上查得氨氮含量(μg)。 氨氮(N,mg/L)= 式中,m—由校准曲线查得的氨氮量(μg); V—水样体积(ml)。 注意事项 水样采用蒸馏预处理时,应以硫酸溶液为吸收液,显色前加氢氧化钠溶液使其中和。 (三) 滴 定 法 GB7478--87 概 述 滴定法仅适用于进行蒸馏预处理的水样。调节水样至pH6.0~7.4范围,加入氧化镁使呈微碱性。加热蒸馏,释出的氨被吸收入硼酸溶液中,以甲基红-亚甲蓝为指示剂,用酸标准溶液滴定馏出液中的铵。 当水样中含有在此条件下,可被蒸馏出并在滴定时能与酸反应的物质,如挥发性胺类等,则将使测定结果偏高。 试 剂 (1) 混合指示液: 称取200mg甲基红溶于100ml 95%乙醇;另称取100mg亚甲蓝溶于50ml 95%乙醇。以两份甲基红溶液与一份亚甲蓝溶液混合后供用。混合液一个月配制一次。 注: 为使滴定终点明显,必要时添加少量甲基红溶液于混合指示液中,以调节二者的比例至合适为止。 (2) 硫酸标准溶液(1/2H2SO4=0.020mol/L): 分取5.6ml(1+9)硫酸溶液于1000ml容量瓶中,稀释至标线,混匀。按下述操作进行标定。 称取经180℃干燥2h的基准试剂级无水碳酸钠(Na2CO3)约0.5g(称准至0.0001g),溶于新煮沸放冷的水中,移入500ml容量瓶中,稀释至标线。移取25.00ml碳酸钠溶液于150ml锥形瓶中,加25ml水,加1滴0.05%甲基橙指示液,用硫酸溶液滴定至淡橙红色止。记录用量,用下列公式计算,硫酸溶液的浓度。 硫酸溶液浓度(1/2H2SO4,mol/L)= 式中,W—碳酸钠的重量(g); V—硫酸溶液体积(ml)。 (3)0.05%甲基橙指示液。 步 骤 1. 水样的测定 于全部经蒸馏预处理、以硼酸溶液为吸收液的馏出液中,加2滴混合指示液,用0.020mol/L硫酸溶液滴定至绿色转变成淡紫色止,记录用量。 2. 空白试验 以无氨水代替水样,同水样全程序步骤进行测定。 计 算 氨氮(N,mg/L)= 式中,A—滴定水样时消耗硫酸溶液体积(ml); B—空白试验硫酸溶液体积(ml); M—硫酸溶液浓度(mol/L); V—水样体积(ml); 14—氨氮(N)摩尔质量。 (四) 电 极 法 概 述 1. 方法原理 氨气敏电极为一复合电极,以pH玻璃电极为指示电极,银-氯化银电极为参比电极。此电极对置于盛有0.1mol/L氯化铵内充液的塑料管中,管端部紧贴指示电极敏感膜处装有疏水半渗透薄膜,使内电解液与外部试液隔开,半透膜与pH玻璃电极有一层很薄的液膜。当水样中加入强碱溶液将pH提高到11以上,使铵盐转化为氨,生成的氨由于扩散作用而通过半透膜(水和其他离子则不能通过),使氯化铵电解质液膜层内NH4+Ö NH3+H+的反应向左移动,引起氢离子浓度改变,由pH玻璃电极测得其变化。在恒定的离子强度下,测得的电动势与水样中氨氮浓度的对数呈一定的线性关系。由此,可从测得的电位确定样品中氨氮的含量。 2. 干扰及消除 挥发性胺产生正干扰;汞和银因同氨络合力强而有干扰;高浓度溶解离子影响测定。 3. 方法适用范围 本法可用于测定饮用水、地面水、生活污水及工业废水中氨氮的含量。色度和浊度对测定没有影响,水样不必进行预蒸馏,标准溶液和水样的温度应相同,含有溶解物质的总浓度也要大致相同。 方法的最低检出浓度为0.03mg/L氨氮;测定上限为1400mg/L氨氮。 仪 器 (1) 离子活度计或带扩展毫伏的pH计。 (2) 氨气敏电极。 (3) 电磁搅拌器。 试 剂 所有试剂均用无氨水配制。 (1) 铵标准贮备液: 称取3.819g经100℃干燥过的氯化铵(NH4Cl)溶于水中,移入1000ml容量瓶中,稀释至标线。此溶液每毫升含1.00mg氨氮。 (2) 100、10、1.0、0.1mg/L的氨标准使用液: 用铵标准贮备液稀释配制。 (3) 电极内充液:0.1mol氯化铵溶液。 (4) 氢氧化钠(5mol/L)-Na2-EDTA(0.5mol/L)混合溶液,贮于聚乙烯瓶中。 步 骤 1. 仪器和电极的准备 按使用说明书进行,调试仪器。 2. 校准曲线的绘制 吸取10.00ml浓度为0.1、1.0、10、100、1000mg/L的铵标准溶液于25ml小烧杯中,浸入电极后加入1.0ml氢氧化钠-Na2-EDTA溶液,在搅拌下,读取稳定的电位值(在1min内变化不超过1mV时,即可读数)。在半对数坐标线绘制E-logc的校准曲线。 3. 水样的测定 吸取10.00ml水样,以下步骤与校准曲线绘制相同。由测得的电位值,在校准曲线上直接查得水样的氨氮含量(mg/L)。 精密度与准确度 七个实验室分析含14.5mg/L氨氮的统一分发的加标地面水。实验室内相对标准偏差为2.0%;实验室间相对标准偏差为5.2%;相对误差为-1.4%。 注意事项 (1) 绘制校准曲线时,可以根据水样中氨氮含量,自行取舍三或四个标准点。 (2) 试验过程中,应避免由于搅拌器发热而引起被测溶液温度上升,影响电位值的测定。 (3) 当水样酸性较大时,应先用碱液调至中性后,再加离子强度调节液进行测定。 (4) 水样不要加氯化汞保存。 (5) 搅拌速度应适当,不使形成涡流,避免在电极处产生气泡。 (6) 水样中盐类含量过高时,将影响测定结果。必要时,应在标准溶液中加入相同量的盐类,以消除误差。
  • 流动分析技术在《生活饮用水标准检验方法》中的应用
    流动分析技术是20世纪50年代开发的一种湿化学分析技术,该技术自动化程度高,可批量检测样品,解放了劳动力,提高了工作效率,且具有检出限低、重现性好、分析速度快等特点,已广泛应用于环保、水质、烟草、质检及医学检验等行业,测试项目包括总氰化物、氰化物、挥发酚、阴离子表面活性剂、磷酸盐、总磷、总氮、氨氮、硫化物、六价铬、硝酸盐、亚硝酸盐、COD(Mn)、尿素等。目前主流的流动分析技术有两种,即连续流动分析技术(CFA)和流动注射分析技术(FIA)。2023年10月即将实施的生活饮用水标准检验方法GB/T 5750.4-2023中把感官性状和物理指标中的挥发酚类、阴离子合成洗涤剂指标规定了连续流动分析法和流动注射分析法;GB/T 5750.5-2023中无机非金属指标中的氰化物和氨(以N计)规定了连续流动和流动注射分析法。下面小编整理了生活饮用水标准检验方法中涉及到流动分析技术的标准,供大家参考。GB/T 5750.4-2023挥发酚-流动注射法原理:样品通过流动注射分析仪被带入连续流动的载液流中,与磷酸混合后进行在线蒸馏;含有挥发酚类的蒸馏液与连续流动的4-氨基安替比林及铁氰化钾混合,挥发酚类被铁氰化物氧化生成醌物质,在与4-氨基安替比林反应生成红色物质,于波长500nm处进行比色实验。仪器设备:流动注射分析仪:挥发酚反应单元和模块、500nm比色检测器、自动进样器、多通道蠕动泵、数据处理系统。仪器参考条件:自动进样器蠕动泵加热蒸馏装置流路系统数据处理系统初始化正常转速设为35r/min,转动平稳加热温度稳定于150℃±1℃无泄漏、试剂流动平稳基线平直GB/T 5750.4-2023挥发酚-连续流动法原理:连续流动分析仪是利用连续流,通过蠕动泵将样品和试剂泵入分析模块中混合、反应,并泵入气泡将流体分割成片段,使反应达到完全的稳态,然后进入流通检测池进行分析测定。在酸化条件下,样品通过在线蒸馏,释放出酚在有碱性铁氰化钾氧化剂存在的溶液中,与4-氨基安替比林反应,生成红色的络合物,然后进入50mm流通池中在505nm处进行比色实验。 仪器设备:连续流动分析仪:自动进样器、多通道蠕动泵、挥发酚反应单元和蒸馏模块、比色检测器、数据处理系统。仪器参考条件:进样速率进样:清洗比加热蒸馏装置流路系统数据处理系统30个样品/h2:1加热温度稳定于145℃±2℃无泄漏,气泡规则,试剂流动平稳基线平直GB/T 5750.4-2023挥发酚-连续流动法原理:连续流动分析仪是利用连续流,通过蠕动泵将样品和试剂泵入分析模块中混合、反应,并泵入气泡将流体分割成片段,使反应达到完全的稳态,然后进入流通检测池进行分析测定。在酸化条件下,样品通过在线蒸馏,释放出酚在有碱性铁氰化钾氧化剂存在的溶液中,与4-氨基安替比林反应,生成红色的络合物,然后进入50mm流通池中在505nm处进行比色实验。仪器设备:连续流动分析仪:自动进样器、多通道蠕动泵、挥发酚反应单元和蒸馏模块、比色检测器、数据处理系统。仪器参考条件:进样速率进样:清洗比加热蒸馏装置流路系统数据处理系统30个样品/h2:1加热温度稳定于145℃±2℃无泄漏,气泡规则,试剂流动平稳基线平直GB/T 5750.4-2023阴离子洗涤剂-流动注射法原理:通过注人阀将样品注人到一个连续流动载流、无空气间隔的封闭反应模块中,载流携带样品中的阴离子合成洗涤剂与碱性亚甲基蓝溶液混合反应成离子络合物,该离子络合物可被三氯甲烷萃取,通过萃取模块分离有机相和水相。包含离子络合物的三氯甲烷再与酸性亚甲基蓝溶液混合,反萃取洗涤三氯甲烷,再次通过萃取模块分离有机相和水相。于波长 650 m 处对包含离子络合物的三氯甲烷进行比色分析,有机相的蓝色强度与阴离子合成洗涤剂的质量浓度成正比。仪器设备:流动注射分析仪:阴离子合成洗涤剂反应单元和模块、10mm比色池、650nm滤光片、自动进样器、多通道蠕动泵、数据处理系统。仪器参考测试参数:周期时间洗针时间注射时间进样时间出峰时间进载时间到阀时间峰宽200s50s50s80s100s80s80s180s注:不同品牌或型号仪器的测试参数有所不同,可根据实际情况进行调整。GB/T 5750.4-2023阴离子洗涤剂-连续流动法原理:在水溶液中,阴离子合成洗涤剂和亚甲基蓝反应生成蓝色络合物,统称为亚甲基蓝活性物质,该化合物被取到三氯甲烷中并由相分离器分离,三氯甲烷相被酸性亚甲基蓝洗涤以除去干扰物质并在第二个相分离器中被再次分离。其色度与浓度成正比,在650/660 nm处用 10 mm比色池测量其信号值。仪器设备:连续流动分析仪:自动进样器、阴离子合成洗涤剂分析单元(即化学反应模块,由相分离器、多道蠕动泵、歧管、泵管、混合反应圈等组成)、检测单元(检测单元可配备 10 mm 比色池、阴离子合成涤剂检测配备 650/660 nm 滤光片)数据处单元及相应附件。GB/T 5750.5-2023氰化物-流动注射法原理: 在pH为4左右的弱酸条件下,水中氰化物经流动注射分析仪进行在线蒸馏,通过膜分离器分离,然后用连续流动的氢氧化钠溶液吸收;含有乙酸锌的酒石酸作为蒸馏试剂,使氰化铁沉淀,去除铁氰化物或亚铁氰化物的干扰,非化合态的氰在pH数据处理系统初始化正常转速设为35r/min,转动平稳蒸馏部分稳定于120℃±1℃显色部分稳定于60℃±1℃无泄漏、试剂流动平稳基线平直GB/T 5750.5-2023氰化物-连续流动法原理:连续流动分析仪是利用连续流,通过蠕动泵将样品和试剂泵入分析模块中混合、反应,并泵入气泡将流体分割成片段,使反应达到完全的稳态,然后进入流通检测池进行分析测定。在酸性条件下,样品通过在线蒸馏,释放出的氰化氢被碱性缓冲液吸收变成氰离子,然后与氯胺-T反应转化成氯化氰,再与异烟酸-吡唑啉酮反应生成蓝色络合物,最后进入比色池于630 nm波长下比色测定。仪器设备:连续流动分析仪:自动进样器、多通道蠕动泵、氰化物反应单元和蒸馏模块、比色检测器、数据处理系统。仪器参考条件:进样速率进样:清洗比加热蒸馏装置流路系统数据处理系统30个样品/h2:1加热温度稳定于125℃±2℃无泄漏,气泡规则,试剂流动平稳基线平直GB/T 5750.5-2023氨(以N计)-流动注射法原理:在碱性介质中,水样中的氨、铵离子与二氯异氰尿酸钠溶液释放出的次氯酸根反应,生成氯胺。在50℃~60℃的条件下,以亚硝基铁氰化钠作为催化剂,氯胺与水杨酸钠反应形成蓝绿色络合物,在660 nm波长下比色测定。仪器设备:流动注射分析仪:氨反应单元和模块、660nm比色检测器、自动进样器、多通道蠕动泵、数据处理系统、在线蒸馏模块(选配)。仪器参考条件:调整流路系统,载流、缓冲溶液、水杨酸钠溶液、亚硝基铁氰化钠溶液及二氯异氰尿酸钠溶液分别在蠕动泵的推动下进入仪器,流路系统中的试剂流动平稳,无泄漏现象。GB/T 5750.5-2023氨(以N计)-连续流动法原理:在碱性介质中,水样中的氨、铵离子与二氯异氰尿酸钠溶液释放出的次氯酸根反应,生成氯胺。在37℃~40℃的条件下,以亚硝基铁氰化钠作为催化剂,氯胺与水杨酸钠反应形成蓝绿色络合物,在660 nm波长下比色测定。仪器设备:连续流动分析仪:氨反应单元和模块、660nm比色检测器、自动进样器、多通道蠕动泵、数据处理系统、在线蒸馏模块(选配)。仪器参考条件:调整流路系统,载流、缓冲溶液、水杨酸钠溶液、亚硝基铁氰化钠溶液及二氯异氰尿酸钠溶液分别在蠕动泵的推动下进入仪器,流路系统中的试剂流动平稳,无泄漏现象。
  • 《水俣公约》正式实施 含汞试剂要淘汰吗?!
    p   《关于消耗臭氧层物质的蒙特利尔议定书》将四氯化碳列入了“作为实验室和分析用途的化学试剂”的淘汰范围,水中石油类的分析方法就开始进行彻底改变。日前,《关于汞的水俣公约》正式实施,虽然对于含汞类试剂作为实验室和分析用途没有明确禁止,但也许随着公约进一步修订,含汞类试剂也会被纳入淘汰范围。 /p p   仪器信息网编辑梳理发现,含汞试剂在环境监测行业的使用还是不少的,如《水质 化学需氧量的测定 重铬酸盐法(HJ 828—2017)》、《水质 氨氮的测定 纳氏试剂分光光度法(HJ 535-2009)》、《环境空气和废气 氨的测定 纳氏试剂分光光度法(HJ 533-2009)》、《环境空气 二氧化硫的测定 四氯汞盐吸收-副玫瑰苯胺分光光度法(HJ 483—2009)》、《固定污染源排气中氯化氢的测定 硫氰酸汞分光光度法(HJ/T 27-1999)》、《大气降水中氯化物的测定 硫氰酸汞高铁光度法(GB 13580.9-92)》等等。 /p p   《水质 氨氮的测定 纳氏试剂分光光度法(HJ 535-2009)》是目前广泛采用的一种氨氮测定方法,此方法被用于饮用水、地表水和废水中氨氮的测定。其原理为:以游离的氨或铵离子等形式存在的铵氮与纳氏试剂反应生成黄棕色络合物,该络合物的色度与铵氮的含量成正比,可用目视比色和分光光度法测定。目视比色法测定时,最低检出浓度为0.2mg/L,上限浓度为2 mg/L 分光光度法测定时,最低检出浓度为0.05 mg/L,上限浓度为2 mg/L。 /p p   其中,纳氏试剂的配置需要用到含汞试剂,标准方法中给出了两种配法: /p p   配法1:取2.50g HgCl2 (HgCl2分子量:271 Hg的分子量:200)定容100ml ,取1.5ml,对应HgCl2的质量为0.0375g,对应Hg的质量为0.0277g。 /p p   配法2:10g HgI2(HgI2分子量:454) 定容100ml,取1.0ml,对应HgI2的质量为0.1g,对应Hg为0.0441g。 /p p   目前,此方法被广泛应用于全国的省、市、县级环境监测站、第三方检测机构和工业企业中。我国共有各类环境监测站4000余家,第三方环境监测机构2000余家,工业企业数量更多,如果按照每个机构每个月分析200个样品,则每年汞消耗量为400-600kg。 /p p   无论是保护环境的角度还是从长远考虑,选择一种可替代此标准的方法都是一种不错的选择。目前可替代的方法包括: /p p   水质 氨氮的测定 流动注射-水杨酸分光光度法(HJ 666-2013) /p p   水质 氨氮的测定 连续流动-水杨酸分光光度法(HJ 665-2013) /p p   水质 氨氮的测定 蒸馏-中和滴定法(HJ 537-2009 ) /p p   水质 氨氮的测定 水杨酸分光光度法(HJ 536-2009 ) /p p   水质 氨氮的测定 气相分子吸收光谱法(HJ/T 195-2005 ) /p p   其中,气相分子吸收光谱法的原理为:水样在 2%~3%酸性介质中,加入无水乙醇煮沸除去亚硝盐等干扰,用次溴酸盐氧化剂将氨及铵盐(0~50μg)氧化成等量亚硝酸盐,以亚硝酸盐氮的形式采用气相分子吸收光谱法测定氨氮的含量。 /p p   由于自动化程度高、测量速度快、试剂毒性小等原因,气相分子吸收光谱法受到了越来越多用户的青睐,当然气相分子吸收光谱仪比分光光度计要贵,也是很多用户拒绝此种方法的原因之一,但此类方法不失为一种很好的选择。 /p
  • 欧盟可能限制使用全氟辛酸及相关物质
    德国与挪威合作,计划于2014年10月17日就全氟辛酸提交一份文件,称为《附件XV限制资料文件》。该份文件根据《化学品註册、评估、授权和限制法规》(REACH法规)附件XV内的相关资料规定匯编而成。   2014年3月5日,欧洲化学品管理局(ECHA)宣布,德国与挪威政府已展开一项资料收集工作,以确定全氟辛酸及全氟辛酸相关物质的使用、数量和供应情况,以及技术上和经济上可行的替代品。   这些资料将会用于评估替代品以及匯编「限制资料文件」。该份文件最终可能会导至限制含有全氟辛酸的物品及混合物在市场贩售。如当局採用限制措施,欧洲委员会将会把有关措施纳入REACH法规附件XVII内。   附件XVII现已载有一份禁止在欧盟市场贩售的产品清单,包括含有若干类邻苯二甲酸盐的玩具和儿童护理物品,以及含偶氮染料的纺织品。   多项产品会含有全氟辛酸,包括纺织品、地毯、家具布料、纸张、皮革、碳粉、清洁剂和地毯护理剂、密封剂、地板蜡及油漆。全氟辛酸会残留在若干物件上,包括电线绝缘体、专用电路板、用于衣服的防水膜(如Gore-Tex)、外科植入物、牙线和不粘涂层。此外,瑞典化学品管理局(KEMI)在一份报告中特别指出,进口产品(如户外衣服)是全氟辛酸的主要来源。   德国及挪威正制订限制全氟辛酸及相关物质(可以分解为全氟辛酸的前体物质)的建议。建议将涉及全氟辛酸、相关物质、其混合物、製品以及其他物质成份的製造、使用及市场贩售。含有全氟辛酸及相关物质的进口货亦包括在内。   德国及挪威展开资料收集工作的目的,在于尽量鼓励更多相关人士回答问卷,就全氟辛酸及相关物质的使用、供应以及技术上和经济上可行的替代品等问题提供资料。   收集资料的对象包括全氟辛酸、全氟辛酸盐和全氟辛酸相关物质的生产商、替代品生产商、消防泡沫生产商,以及纺织品整理加工业、摄影成像业及半导体业等下游使用者。   德国及挪威邀请可能受限制措施影响或持有相关资料的人士,于2014年4月30日提出意见。相关人士可以通过以下网址填写问卷及提交资料:http://goo.gl/yqWbFq   若德国及/或挪威提出限制措施的建议,欧洲化学品管理局亦会进行公众谘询。
  • 卫生部就71项食品安全国家标准征求意见
    卫生部办公厅关于征求《食品添加剂 庚酸烯丙酯》等71项食品安全国家标准(征求意见稿)意见的函 卫办监督函〔2011〕561号 各有关单位:   根据《食品安全法》及其实施条例的规定,我部组织制定了《食品添加剂 庚酸烯丙酯》等71项食品安全国家标准(征求意见稿)。现征求你部门意见并向社会公开征求意见(征求意见稿可从卫生部网站http://www.moh.gov.cn下载),请于2011年8月16日前以传真或电子邮件形式反馈我部。   传 真:010-67711813   电子信箱:gb2760@gmail.com。   二○一一年六月十四日   附件:   《食品添加剂 庚酸烯丙酯》等71项食品安全国家标准(征求意见稿) 序号 标准名称 1 食品添加剂 庚酸烯丙酯 2 食品添加剂 苯甲醛 3 食品添加剂 月桂酸乙酯 4 食品添加剂 肉豆蔻酸乙酯 5 食品添加剂 乙酸香茅酯 6 食品添加剂 丁酸香叶酯 7 食品添加剂 乙酸丁酯 8 食品添加剂 乙酸己酯 9 食品添加剂 乙酸辛酯 10 食品添加剂 乙酸癸酯 11 食品添加剂 顺式-3-己烯-1-醇乙酸酯(又名乙酸叶醇酯) 12 食品添加剂 乙酸异丁酯 13 食品添加剂 丁酸戊酯 14 食品添加剂 丁酸己酯 15 食品添加剂 顺式-3-己烯醇丁酸酯(又名丁酸叶醇酯) 16 食品添加剂 己酸顺式-3-己烯酯(又名己酸叶醇酯) 17 食品添加剂 2-甲基丁酸乙酯 18 食品添加剂 2-甲基丁酸 19 食品添加剂 乙酸薄荷酯 20 食品添加剂 乳酸l-薄荷酯 21 食品添加剂 二甲基硫醚 22 食品添加剂 3-甲硫基丙醇 23 食品添加剂 3-甲硫基丙醛 24 食品添加剂 3-甲硫基丙酸甲酯 25 食品添加剂 3-甲硫基丙酸乙酯 26 食品添加剂 乙酰乙酸乙酯 27 食品添加剂 乙酸肉桂酯 28 食品添加剂 肉桂醛 29 食品添加剂 肉桂酸 30 食品添加剂 肉桂酸甲酯 31 食品添加剂 肉桂酸乙酯 32 食品添加剂 肉桂酸苯乙酯 33 食品添加剂 5-甲基糠醛 34 食品添加剂 苯甲酸甲酯 35 食品添加剂 茴香醇 36 食品添加剂 大茴香醛 37 食品添加剂 水杨酸甲酯(又名柳酸甲酯) 38 食品添加剂 水杨酸乙酯(又名柳酸乙酯) 39 食品添加剂 水杨酸异戊酯(又名柳酸异戊酯) 40 食品添加剂 丁酰乳酸丁酯 41 食品添加剂 乙酸苯乙酯 42 食品添加剂 苯乙酸苯乙酯 43 食品添加剂 苯乙酸乙酯 44 食品添加剂 苯氧乙酸烯丙酯 45 食品添加剂 二氢香豆素 46 食品添加剂 2-甲基-2-戊烯酸(又名草莓酸) 47 食品添加剂 4-羟基-2,5-二甲基-3(2H)呋喃酮 48 食品添加剂 2-乙基-4-羟基-5-甲基-3(2H)-呋喃酮 49 食品添加剂 4-羟基-5-甲基-3(2H)呋喃酮(又名菊苣酮) 50 食品添加剂 2,3-戊二酮 51 食品添加剂 靛蓝 52 食品添加剂 靛蓝铝色淀 53 食品添加剂 植物炭黑 54 食品添加剂 酸性红 55 食品添加剂 β-胡萝卜素(发酵法) 56 食品添加剂 栀子蓝 57 食品添加剂 玫瑰茄红 58 食品添加剂 葡萄皮红 59 食品添加剂 辣椒油树脂 60 食品添加剂 紫草红 61 食品添加剂 番茄红(天然) 62 食品添加剂 核黄素磷酸钠 63 食品添加剂 辛癸酸甘油酯 64 食品添加剂 辛烯基琥珀酸淀粉钠 65 食品添加剂 可得然胶 66 食品添加剂 普鲁兰多糖 67 食品添加剂 磷脂 68 食品添加剂 乳酸钾 69 食品添加剂 瓜尔胶 70 食品添加剂 L-精氨酸 71 食品添加剂 麦芽糖醇和麦芽糖醇液
  • 岛津二维液相色谱新应用|流动相含离子对试剂的化药杂质质谱鉴定方法
    离子对试剂:极性药物分析绕不开的话题 液相色谱是药物杂质含量测定和有关物质分离分析最常用的技术手段。对一个陌生的化合物,ODS反相色谱柱通常方法开发条件会选择酸性pH流动相。然而,总有些化合物,它们或含氨基、或含羧基、磺酸基团、磷酸基团,极性较强在反相色谱柱上没有保留。打开2020版《中国药典》第二部,不难发现这些品种,名称中常含有“马拉酸”、“盐酸”、“碱”、“酸”等关键词。对于这类强极性化合物的分析,药典给出的答案是:流动相中添加离子对试剂。例如丁溴东莨菪碱、贝敏伪麻的有关物质流动相条件中含有十二烷基硫酸钠;马来酸曲美布汀的流动相含有戊烷磺酸钠;盐酸头孢吡肟的流动相含有辛烷磺酸钠;叶酸、头孢美唑和对氨基水杨酸钠的流动相含有四丁基氢氧化铵。离子对试剂的添加,增强了极性化合物的保留,改善了药物与杂质的分离,是极性药物分析的杀手锏。 离子对试剂:“质谱不能承受之重” 辛烷磺酸钠和四丁基硫酸氢铵等常用离子对试剂,属于不挥发盐类,质谱响应强且信号经久不衰,持续抑制目标化合物的电离。一旦误操作进入质谱端,需要清洗整个离子通路才能恢复质谱的正常状态。常规二维液相在线除盐系统仅能去除无机盐,无法去除离子对试剂。这是因为无机盐(如磷酸盐)在二维反相色谱柱上无保留,在死时间将其切至废液从而实现在线除盐。然而离子对试剂具有较强的疏水性,在常规ODS色谱柱上强烈吸附显著拖尾,因此不能被常规二维液相系统去除。 上图是辛烷磺酸钠在ESI离子源上的响应。可生成簇离子,质谱响应强且持久,对ESI正负模式均可产生抑制。 上图是四丁基硫酸氢铵在ESI离子源正模式的响应,质谱响应强且持久。四丁基硫酸氢铵与固定相强烈作用,色谱上呈现显著拖尾。 ReDual:一款可以同时分离无机、有机、阴、阳离子的“神柱” ReDual系列色谱柱,是岛津公司最新推出的离子交换反相混合键合相色谱柱,共分为三款: ReDual™ SCX-C18 强阳离子交换+反相ReDual™ CX-C18 弱阳离子交换+反相ReDual™ AX-C18 强阴离子交换+反相 下图是采用ReDual AX-C18 (4.6 mm I. D. × 150 mm L., 5 µm,货号426-45415)分析磷酸二氢钠、四丁基硫酸氢铵和卡络磺钠混合样品的色谱图。该款色谱柱表面键合叔胺基团,在pH 2-7范围内色谱柱表面带阳离子。除疏水作用外,其对阴离子具有离子交换作用,对阳离子具有离子排斥作用。为分离极性类似的阳离子和阴离子型化合物提供了条件。下图中四丁基氨根离子峰型对称,不拖尾无残留,可以通过阀切换导入废液实现在线去除。 ReDual AX-C18色谱柱NQAD检测器同时分离无机有机阴阳离子(1:Na+ 2:四丁基氨根离子;3:H2PO3- 4:卡络磺酸根离子) 应用案例:卡络磺钠参比制剂中杂质结构鉴定 本应用采用常规中心切割二维液相系统,无需改造仪器;馏分转移过程配有紫外检测器监控,不存在检测盲区;离子对试剂的去除未使用强酸或强碱性试剂;方法耐用性好。一维使用C18反相色谱柱,流动相添加磷酸二氢钠(含四丁基硫酸氢铵,pH 3.0);二维使用ReDual AX-C18色谱柱,在线去除四丁基硫酸氢铵和磷酸二氢钠,实现目标化合物的质谱鉴定。 卡络磺钠杂质2的质谱鉴定结果 总结岛津中国创新中心搭载的特色中心切割二维色谱杂质鉴定系统,二维使用岛津公司最新推出的ReDual™ AX-C18强阴离子交换反相混合键合相色谱柱,成功实现一维流动相中离子对试剂和无机盐的在线去除,并对卡络磺钠参比制剂中未知杂质进行了质谱鉴定。
  • 康宁AFR与安捷伦在线 LC 的完美结合助力工艺高效开发!
    前言本应用展示了Corning Advanced-Flow Reactor流动化学反应器与Agilent Infinity Lab 在线液相色谱结合使用的能力。概要本文将主要介绍应用康宁低流量连续流微反应器对乙酰基水杨酸(阿司匹林)的水解反应进行研究。通过对反应工艺的参数改变,结合在线安捷伦LC数据分析,可以实时优化反应条件,获得最佳反应结果。图1.乙酰基水杨酸水解反应方程式研究过程一. 实验仪器Corning AFR:低流量反应器(LF)Agilent 1290 Infinity II HPLC 在线检测系统二. 实验方法Corning AFR 是一种可灵活调整的模块化微反应设备,具有独特的康宁心形结构专利设计,可将反应物高效混合及换热以优化反应。图2.反应流程装置图对于所有实验:换热器设置为 86 °C;乙酰水杨酸的浓度为 0.016 M;硫酸的浓度在 0.16、0.375、0.75 和 1.5 M 的浓度范围内变化。停留时间及相应的反应器进料流速变化见表 1。表 1. 乙酰水杨酸和硫酸停留时间和进料流速三. 分析方法作者使用Agilent ZORBAX Eclipse Plus C18,4.6 × 50 mm, 1.8 μm色谱柱,流动相为A:水 + 0.1% 甲酸 B: 乙腈 + 0.1% ,柱温50℃,分析流速2ml/min,暂停时间1.5min,进样体积1 μL 。产物从反应器流出后直接注入到液相色谱仪。取样速度:100 μL/min;等待时间:3.6 秒。每个实验条件时间点,需要系统达到稳态条件。在线 HPLC监测进程中,一旦相关目标分析物在峰面积百分比一致达到稳定,就会记录并分析相关数据。四、结果分析与讨论1. 为确保该反应条件设置能够生成高质量数据,将 0.2 mg/mL 乙酰水杨酸和水杨酸的混合物从Corning LF反应容器泵送到 Agilent Infinity Lab Online LC ,每 3 分钟抽取一次样品并立即进行分析。乙酰水杨酸和水杨酸的峰面积精度分别为 1.1% 和 1.3%,保留时间精度分别为 0.07% 和 0.06%(图 3)图3.乙酰水杨酸和水杨酸HPLC图2. 从Agilent Infinity Lab Online LC的结果从直观上可以快速分析:(A)开始与乙酰水杨酸的反应 (B)大约一半的乙酰水杨酸已经水解为乙酰水杨酸(C)几乎完全反应。图4. 间歇式酸催化水解乙酰水杨酸的研究进展【编者语】流动化学与在线检测最大的优势在于:反应进程一目了然,可以快速改变反应条件; 一次实验可以得到多组反应工艺参数;参数优化后,通过在线检测控制产品质量;康宁反应器可以与多种在线检测设备相结合(红外、拉曼、液相、核磁等)3. 为了优化反应,更仔细地考察停留时间和酸浓度。改变物料在Corning LF反应器中的停留时间,相应地修改了输送硫酸和乙酰水杨酸溶液的注射泵流速(表2)。乙酰水杨酸的温度和浓度分别保持恒定在 86 °C 和 0.016 M。从连续流反应器流出的产物连接到在线 LC 系统,每 3 分钟抽取一次样品。当分析物和产物的面积百分比恒定时达到稳定状态。表2 . 停留时间和LC在线监反应组分的组成及杂质含量4. 综上本实验应用展示了康宁AFR卓越的传质和传热效率,使得反应条件改变响应更及时,无放大效应,易升级放大;采样和结果分析通过安捷伦在线 LC 监控软件进行记录,以本质安全、高效经济的方式实现实验条件监控的完全自动化。总结康宁微反应器不仅可以与LC连用,还可以与Spinsolve 系列NMR 分析仪器连用;对两相或多相液体反应结合Zaiput系列分离器可实现在线分离;连续流反应器与在线检测设备相结合,可以实现药品的快速工艺优化;智能化全连续药品生产已成为可能。参考文献:Agilent Technologies application note, publication number 5994-3528EN, 2021.★康宁一体化合成平台★康宁专注于微反应技术的创新,同时与世界一流创新团队紧密合作,打造“微反应+微分离+在线检测”- 连续化学反应快速筛选平台。该工艺平台自动化程度高,反应结果瞬间可知。康宁反应器开放的系统可以与众多PAT设备以及分析软件链接。可对工艺条件进行快速筛选,在短时间内建立强大的化合物库。欢迎您联系我们,共同探讨最新合成技术!康宁“微反应+微分离+在线检测”一体化合成平台
  • 美国最新*产品DPX高效萃取吸管及装置首次亮相北京BCEIA,德祥
    美国最新*产品DPX高效萃取吸管及装置首次亮相北京BCEIA,德祥 由中国分析测试协会主办的&ldquo 第十三届北京分析测试学术报告会暨展览会(BCEIA)&rdquo 于2009年11月25日至28日在北京展览馆隆重举行。 德祥科技总代理的美国最新*产品(*号:US Patent No. 6,566,145)DPX高效萃取吸管及装置携手德祥在BCEIA 2009首次精彩亮相。 美国DPX 公司位于美国哥伦比亚,主要生产SPE固相萃取小柱等样品前处理装置及耗材,DPX高效萃取吸管是其最新*技术。 图一 美国DPX公司高层Habben先生和德祥集团CEO Stephen 这是继年初在美国匹兹堡展会后的又一次完美亮相,DPX作为展会最新的*产品引起了广泛的关注。DPX&mdash 高效移液萃取,它是SPE固相萃取的一个*技术,不同于以往所有SPE萃取技术。DPX采用业界领先制造商的吸附剂材料,萃取时,样品与松散的吸附剂在类似移液器吸嘴的DPX吸管中充分混合,样品与吸附剂形成一种均相混合凝胶体,然后经过洗提,快速完成萃取。因此,萃取效率及质量均达到最高。 DPX与SPE方法的对比 这意味着: ★ 最少的成本 ★ *的萃取容量 ★ 无溶剂蒸发 ★ 环保无污染 ★ 只需简单的培训 本次展出了多功能全自动Gerstel MPS-2和DPX手动萃取装置(24孔位),DPX在食品、农残、药物分析等领域有着广泛的应用,能够完全取代现有的SPE前处理方法。本次展出吸引了众多客户的关注和咨询,并现场成功敲定了多笔订单! 图二 DPX和多功能全自动 Gerstel MPS-2联用 图三DPX手动萃取装置(24孔位) DPX高效萃取吸管针对于不同性质样品有多种填料。 1. DPX-CX:基于阳离子交换机制,磺酸修饰的高聚合物。 应用范围: ● 可卡因及其代谢物活性组分 ● 阿片类药物,如*,可待因,羟考酮等。 ● 苯丙胺,甲基苯丙胺和MADA ● PCP(五氯酚) ● 美沙酮,派替啶,甲喹酮(镇静剂) ● 三环抗抑郁药、苯二氮类药物 此填料可完全取代市场上的Strata-XC,Prexa PCX,SCX等产品 2. DPX-RP:基于反相保留机制,是一种反相吸附剂,即高度交联的聚苯乙烯-二乙烯基苯共聚合物。 应用范围: ● 血液和尿样中四氢大麻酚及羧基-四氢大麻酚的提取 ● 尿样中的巴比妥类药物 ● 水果和蔬菜中的有机氯,有机磷,拟除虫菊酯农药残留 此填料可完全取代市场上的ENV PS-DVB,SDB-L,ENV,ENVI-ChromP等SPE产品。 3. DPX-Q:依据美国农残检测新方法QuEchERS 而生产的新型萃取吸管,不仅可以完全取代DPX-RP并且扩展了其应用, 应用范围:  可用于水果和蔬菜中绝大多数杀虫剂的萃取,  对于极性较大的杀虫剂如乙酰甲胺磷也具有很强的保留,回收率较高。 DPX-Qg萃取吸管:其吸附剂使用一种&ldquo 高品质&rdquo 的石墨碳黑,是专业去除植物样本中叶绿素的*选择,在不影响本身样品基质的基础上,高效去除色素,避免色素对色谱仪器的危害. 4.DPX-WAX:阴离子交换萃取吸管。包含高分子聚合物吸附剂。 应用范围:  水杨酸,脂肪酸,四氢大麻酚;  从农产品中、可可豆中提取农药,组织标本中提取药物;  可用于从临床尿液中提取有机酸。 相当于安捷伦的SAX,Si-SAX小柱。 现正提供DPX试用装,欢迎联系德祥各地办事处申请试用。 德祥作为美国中国和香港地区总代理,将致力于为食品,农残,环境等众多领域的客户提供*的产品及服务。 更多产品详情和后续报道,请关注:www.tegent.com.cn 客服热线:4008 822 822
  • 新版GB5749,生活饮用水中异味物质如何分析?
    原创 飞飞 赛默飞色谱与质谱中国关注我们,更多干货和惊喜好礼New tab (analyteguru.com)姚超 邢江涛异味物质分析最新的《生活饮用水卫生标准》(GB5749-2022)将于2023年4月1日实施。为了满足人民生活品质不断提升的更高要求,新国标中土臭素由原来的参考指标提升为扩展指标,同时加入了2-甲基异莰醇作为感官评价的化学指标。这一变动对未来生活饮用水中异味物质的检测具有非常重要的意义。熟悉标准的老师都了解,GB5749-2006版生活饮用水标准中,只需要气相和常规的“三大件”(FID、ECD、FPD)就可以完成大部分检测工作,但新版标准中这两种异味物质采用的是SPME&GCMS分析技术,常规的气相配置已无法满足要求,意味着生活饮用水实验室即将从“气相色谱时代”进入新的“质谱时代”。饮用水异味物质检测难点:1新国标中2-甲基异莰醇和土臭素的限值均是10ng/L,较其它化合物的值高很多,需要灵敏度更高的前处理和分析技术。2《生活饮用水标准检验方法 》(GB/T5750-202×)征求意见稿中引用的方法标准《生活饮用水臭味物质 土臭素和 2-甲基异莰醇检验方法》(GB/T 32470-2016),采用手动SPME&GCMS的方式分析,前处理操作复杂,耗时较长。✦ ++赛默飞饮用水异味物质全自动化检测方案作为一家历史悠久的专业质谱厂商,赛默飞公司拥有完整的气相色谱质谱产品和TriPlus RSH SMART多功能样品处理平台,自动化RSH-GCMS/GCMSMS方案能全面满足这两种异味物质的检测,解决手动SPME-GCMS/GCMSMS前处理操作复杂等痛点。(点击查看大图)可实现包括SPME在内的液体、顶空、ITEX、SPME Arrow在内的多种进样功能,满足GB 5749生活饮用水中异味物质、消毒副产物、农药、有机物等多项指标的分析需求。轻松实现样品和标准品的自动稀释、添加内标、配制标准曲线、衍生化等样品前处理操作过程,让实验室工作更加轻松自动化。自动实现多种进样模式的在线切换,无需人为干预。标准方法:液体、顶空、SPME三合一自动进样器RSH SMART &GCMS-标准方法Triplus RSH SMART &TRACE1610-ISQ7610GCMS2-甲基异莰醇和土臭素 GCMS-SIM标准样品图(点击查看大图)2-甲基异莰醇和土臭素 GCMS-SIM标准曲线(点击查看大图)2-甲基异莰醇和土臭素 GCMS检出限测定谱图(5ng/L)(点击查看大图)滑动查看更多进阶方法:液体、顶空、SPME三合一自动进样器RSH SMART &GCMS/MSTriplus RSH SMART &TRACE1610-TSQ9610GCMS/MS2-甲基异莰醇和土臭素 GCMS/MS-SRM标准样品图(点击查看大图)2-甲基异莰醇和土臭素 GCMS/MS-SRM标准曲线图(点击查看大图)2-甲基异莰醇和土臭素 GCMS/MS检出限测定谱图 (5ng/L)(点击查看大图)滑动查看更多以上两种方案灵敏度、重复性等指标均优于方法要求,可以很好满足标准需求。另外,TriPlus RSH SMART 多功能前处理进样器和GCMS& GCMS/MS联用可实现多种进样和前处理操作的自动化,提升实验室样品通量,减小操作过程中的误差,是生活饮用水实验室必备利器。如需合作转载本文,请文末留言。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制